WO2015098843A1 - ポーラスアルミナメンブレンフィルターおよび製造方法 - Google Patents

ポーラスアルミナメンブレンフィルターおよび製造方法 Download PDF

Info

Publication number
WO2015098843A1
WO2015098843A1 PCT/JP2014/083917 JP2014083917W WO2015098843A1 WO 2015098843 A1 WO2015098843 A1 WO 2015098843A1 JP 2014083917 W JP2014083917 W JP 2014083917W WO 2015098843 A1 WO2015098843 A1 WO 2015098843A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane filter
aluminum
oxide film
anodic oxide
porous alumina
Prior art date
Application number
PCT/JP2014/083917
Other languages
English (en)
French (fr)
Inventor
高央 溝口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015098843A1 publication Critical patent/WO2015098843A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/022Anodisation on selected surface areas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0053Inorganic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/006Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods
    • B01D67/0065Inorganic membrane manufacture by inducing porosity into non porous precursor membranes by elimination of segments of the precursor, e.g. nucleation-track membranes, lithography or laser methods by anodic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/28Pore treatments
    • B01D2323/286Closing of pores, e.g. for membrane sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths

Definitions

  • the present invention relates to a porous alumina membrane filter and a method for producing the same.
  • Patent Documents 1 and 2 Anodic oxide films of aluminum have attracted attention due to their nanostructure and porosity, and a film in which holes are regularly arranged has been produced.
  • One of the applications is a porous alumina membrane filter used in the field of microfiltration (Patent Documents 1 and 2).
  • Membrane filters that use anodized aluminum films can form independent pores with a narrow pore size distribution at a high density by anodizing aluminum in an acidic electrolyte, resulting in a high porosity. Therefore, it is possible to increase the filtration flow rate per hour and to manufacture at a low cost.
  • Such a porous alumina membrane filter has a small thickness and a large number of pores so as to have a high porosity in order to increase the filtration efficiency.
  • the anodic oxide film has low toughness and is vulnerable to impact. For this reason, there has been a problem of cracking during handling.
  • such a porous alumina membrane filter is thin, it tends to warp. For this reason, there has been a problem that it cannot be properly incorporated into the filtration device and a sufficient effect cannot be exhibited.
  • an object of the present invention is to provide a porous alumina membrane filter that is difficult to break, that can be used appropriately and that can be appropriately used, and has excellent handling properties and flatness, and a method for producing the same.
  • the present inventor has an aluminum portion made of an aluminum substrate and an anodized film portion made of an anodized film having a plurality of micropores penetrating in the thickness direction.
  • the portion is formed so as to cover at least the end of the main surface of the porous alumina membrane filter, and the area ratio with respect to the entire main surface is 10 to 60%.
  • the present invention provides the following (1) to (5).
  • a porous alumina membrane filter provided with an anodized film, which has an aluminum part and an anodized film part made of an anodized film having a plurality of micropores penetrating in the thickness direction.
  • a porous alumina membrane filter formed so as to cover at least an end portion of the main surface of the alumina membrane filter and having an area ratio of 10 to 60% with respect to the entire main surface.
  • a method for manufacturing a porous alumina membrane filter comprising: a step, and a step of forming an anodized film portion by subjecting an unmasked region of an aluminum substrate to an anodizing treatment.
  • a porous alumina membrane filter that is difficult to break, that can suppress warping, and that can be appropriately used and that has excellent handling properties and flatness, and a method for manufacturing the same.
  • FIG. 2 is a partially enlarged view of a cross section taken along line AA in FIG. 1.
  • FIG. 4 (A) and FIG. 4 (B) are schematic views showing another example of a preferred embodiment of the porous alumina membrane filter of the present invention.
  • FIG. 4 (B) is schematic views showing another example of the suitable embodiment of the porous alumina membrane filter of this invention. It is a fragmentary sectional view for explaining penetration processing. It is a fragmentary sectional view for explaining penetration processing. It is a fragmentary sectional view for explaining penetration processing. It is a fragmentary sectional view for explaining penetration processing.
  • porous alumina membrane filter of the present invention will be described in detail based on the preferred embodiments shown in the accompanying drawings.
  • the description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the porous alumina membrane filter of the present invention has an aluminum portion made of an aluminum substrate and an anodized film portion made of an anodized film having a plurality of micropores penetrating in the thickness direction.
  • the aluminum portion is a porous alumina membrane filter.
  • the porous alumina membrane filter is formed so as to cover at least the end of the main surface, and has an area ratio of 10 to 60% with respect to the entire main surface.
  • FIG. 1 is a schematic diagram showing a plan view of an example of a preferred embodiment of the porous alumina membrane filter of the present invention
  • FIG. 2 is a schematic diagram showing an enlarged surface of the anodized film portion.
  • FIG. 2 is a partially enlarged view of a cross section taken along line AA of FIG.
  • a porous alumina membrane filter (hereinafter also referred to as a membrane filter) 10 has a circular flat plate shape, and includes an aluminum portion 12 made of an aluminum base material and a plurality of micropore through holes penetrating in the thickness direction. And an anodic oxide film portion 14 made of an anodic oxide film.
  • the anodic oxide film portion 14 is made of an anodic oxide film of an aluminum substrate, and as shown in FIGS. 2 and 3, is a portion having a plurality of micropore through holes 18 penetrating in the thickness direction.
  • the anodized film portion 14 is formed by being divided into three circular regions. Each region of the anodic oxide film portion 14 is separated by the aluminum portion 12.
  • the anodic oxide film portion 14 can be manufactured, for example, by anodizing an aluminum substrate and penetrating micropores generated by the anodic oxidation. A method for forming the anodic oxide film portion 14 will be described in detail later.
  • the area ratio of the anodic oxide film portion to the entire main surface of the membrane filter is 40% to 90%.
  • the aluminum part 12 consists of a part of aluminum substrate for forming an anodic oxide film. That is, the aluminum portion 12 is a region where the anodic oxide film portion 14 is not formed.
  • the aluminum portion 12 is formed so as to cover at least the end portion of the main surface, that is, the peripheral portion of the main surface.
  • the area ratio of the aluminum portion with respect to the entire main surface of the membrane filter is 10% to 60%.
  • the membrane filter using the anodized film on the aluminum substrate can arrange independent micropores with a narrow pore size distribution at a high density and can have a high porosity, so that the filtration flow rate is increased. can do.
  • a membrane filter is thin and has a high porosity, and the anodized film has low toughness and is vulnerable to impacts, it has a problem of cracking during handling.
  • such a membrane filter is thin, it tends to warp, but since it has low flexibility, there is a problem that it cannot be properly incorporated into a filtration device and cannot fully exhibit its effect.
  • the aluminum portion is formed so as to cover at least the end portion of the main surface of the membrane filter, and the area ratio with respect to the entire main surface is 10 to 60%. Is formed.
  • the peripheral part of the membrane filter is formed with the aluminum part and forming the area with an area ratio of 10% or more with the aluminum part, it is possible to improve resistance to impacts and prevent cracks and the like from occurring. , Handling properties can be improved.
  • the peripheral part of the membrane filter is formed of an aluminum part, the handling property can be improved in that it is easy to grip during handling.
  • the peripheral portion is formed of the aluminum portion, the warpage of the anodic oxide film portion can be suppressed and the flatness can be improved. Therefore, it can be appropriately incorporated into the filtration device, and a sufficient effect can be exhibited.
  • the area ratio of the aluminum portion is 60% or less.
  • the area ratio of the aluminum part is more preferably 25% to 45% from the viewpoint of handling property, flatness, and filtration flow rate.
  • the anodic oxide film portion 14 is divided into three regions, but the present invention is not limited to this, and the anodic oxide film portion includes a plurality of anodic oxide film portions. You may form in one area
  • the anodized film portion is preferably formed by being divided into a plurality of regions from the viewpoint that handling and flatness can be further improved. In particular, it is more preferable to divide into three or more regions, and it is particularly preferable to divide into five or more regions.
  • each region is symmetric with respect to a predetermined straight line passing through the center of the main surface of the membrane filter and parallel to the main surface. It is preferable to set the size, shape and arrangement.
  • each region of the anodic oxide film portion 14 is formed so as to be line symmetric with respect to the center line ⁇ .
  • the occurrence of warpage can be more suitably suppressed, and the flatness can be further improved.
  • each region of the anodized film portion is formed to be rotationally symmetric.
  • the distance between each region of the anodized film part is preferably 2 mm or more. Thereby, handling property and flatness can be improved more.
  • the thickness of the membrane filter is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 150 ⁇ m or less, from the viewpoint of securing the filtration flow rate. Since the membrane filter of the present invention can improve handling and flatness, the thickness can be reduced in this way.
  • the average opening diameter of the micropore through holes in the anodized film portion is preferably 5 nm or more, more preferably 10 nm or more, and 30 nm or more. Is particularly preferred.
  • the width between the micropore through holes in the anodic oxide film portion is preferably 20 nm to 1000 nm, and preferably 30 nm to 800 nm. Is more preferable, and 50 nm to 500 nm is particularly preferable.
  • the pore density of the micropore through holes in the anodized film portion is preferably 1 / ⁇ m 2 or more and 15000 / ⁇ m 2 or less, preferably 2 / ⁇ m 2 or more and 1000. preferably pieces / [mu] m 2 or less, more preferably 3 / [mu] m 2 or more 300 / [mu] m 2 or less.
  • the pore density is obtained by taking a surface photograph (magnification 20000 times) with an FE-SEM, counting the number of micropores present in the 1 ⁇ m ⁇ 1 ⁇ m field of view, and obtaining the density thus obtained in the 1 ⁇ m ⁇ 1 ⁇ m field of view. It is the value which calculated the average value for five places.
  • each region of the anodic oxide film portion 14 has a circular shape, but is not limited to this, and may have various shapes such as a square shape, a triangular shape, a polygonal shape, and an elliptical shape. it can.
  • an anodic oxide film portion may be formed in a region obtained by dividing a circular region that is a concentric circle smaller than the outer diameter of the circular membrane filter into three regions as in the membrane filter 44 shown in FIG. That is, each area
  • the aluminum portion and the anodic oxide film portion having the micropore through-hole are used.
  • the present invention is not limited to this, and the portion includes a non-penetrating anodic oxide film. Also good.
  • the shape of the membrane filter is not limited to a circular shape, and may be various shapes such as a square shape.
  • an anode formed by forming a plurality of micropores by performing anodization on an unmasked region after masking the region to be the aluminum portion, and forming the anode
  • the anodic oxide film portion is formed by penetrating the micropores of the oxide film.
  • a masking process for applying a mask to a part of the aluminum substrate An anodizing process for anodizing an aluminum substrate in an unmasked region; After the anodizing treatment step, the bottom portion of the aluminum substrate is removed, and a plurality of micropores generated by the anodization are penetrated to form an anodized film portion made of an anodized film having a plurality of micropore through holes. And a penetration process step of forming
  • the aluminum substrate and each processing step applied to the aluminum substrate will be described in detail.
  • the aluminum substrate used in the membrane filter of the present invention is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and a trace amount of foreign elements; low-purity aluminum (for example, recycled material) ) On which a high-purity aluminum is deposited; a substrate on which the surface of silicon wafer, quartz, glass or the like is coated with high-purity aluminum by a method such as vapor deposition or sputtering; a resin substrate on which aluminum is laminated;
  • the surface on which the anodized film is provided by an anodizing process described later preferably has an aluminum purity of 99.5% by mass or more, and 99.9% by mass or more. Is more preferable, and it is still more preferable that it is 99.99 mass% or more. When the aluminum purity is in the above range, the regularity of the micropore array is sufficient.
  • the surface which performs the anodic oxidation process mentioned later among aluminum substrates is heat-processed, a degreasing process, and a mirror surface finishing process previously.
  • the same treatments as those described in paragraphs [0021] to [0031] of Patent Document 1 Japanese Patent Laid-Open No. 2009-074133 can be performed. .
  • a region other than the region where the anodic oxide film is formed by forming the anodic oxide film is masked to leave a part of the aluminum substrate without forming the anodic oxide film.
  • the aluminum part 12 is formed. That is, the region to be the aluminum portion 12 is masked and an anodizing process is performed on the aluminum substrate.
  • the method for masking the aluminum portion 12 is not particularly limited. For example, an adhesive tape is applied, an image recording layer is formed on the surface of the aluminum substrate, and then energy is applied to the image recording layer by exposure or heating. Then, it may be masked by a method of developing into a predetermined opening pattern.
  • the anodizing step is a step of forming an anodic oxide film having micropores on the surface of a region to be an anodized film portion of the aluminum substrate by anodizing the aluminum substrate provided with a mask.
  • a conventionally known method can be used for the anodizing treatment in the present invention.
  • the self-ordering method It is preferable to use constant voltage processing.
  • the self-ordering method of the anodic oxidation treatment is the same as the treatments described in paragraphs [0033] to [0075] and [FIG. 1] of Patent Document 1 (Japanese Patent Laid-Open No. 2009-074133). Can be applied.
  • the penetration treatment step for example, a method of dissolving the bottom portion of the aluminum substrate after the anodizing treatment step and further dissolving and removing the bottom portion of the anodized film; Method of cutting and removing the bottom part of the substrate and the vicinity of the aluminum substrate; Method of cutting the bottom part of the aluminum substrate after the anodizing treatment step and dissolving and removing the bottom part of the anodized film; Examples include a method of dissolving the bottom of the aluminum substrate and cutting and removing the bottom of the anodized film after the oxidation treatment step.
  • FIG. 6 is a diagram showing a state after the anodizing process, and shows a structure in which an anodized film 14a having a plurality of micropores 16 is formed on a part of the aluminum substrate 12a.
  • the bottom of the aluminum substrate 12a is dissolved and removed from the state shown in FIG. 6, and as shown in FIG. 7, a structure in a state where the aluminum substrate 12a on the bottom side of the anodic oxide film 14a is removed is produced.
  • the aluminum substrate to be the aluminum portion 12 of the membrane filter remains, and the bottom side of the aluminum substrate 12a at the position where the anodic oxide film 14a is not formed is also removed. Therefore, in the aluminum removal treatment, a treatment solution that does not dissolve alumina but dissolves aluminum is used.
  • examples of the aluminum removal treatment method include the same methods as those described in paragraphs [0077] to [0080] of Patent Document 1 (Japanese Patent Laid-Open No. 2009-074133).
  • FIG. 8 is a partial cross-sectional perspective view showing a state after the penetration treatment, and shows a structure including the anodized film portion 14 having the micropore through hole 18 and the aluminum portion 12, that is, the membrane filter of the present invention.
  • all the micropores existing in the anodic oxide film portion 14 are the micropore through-holes 18; however, all the micropores existing in the anodic oxide film are not penetrated by the penetration process. Also good.
  • an acid aqueous solution or an alkaline aqueous solution is used as a treatment solution for dissolving the anodized film.
  • examples of the method for dissolving the anodic oxide film include the same methods as those described in paragraphs [0082] to [0085] of Patent Document 1 (Japanese Patent Laid-Open No. 2009-074133).
  • the penetration process in this invention is not limited to said method.
  • the lower part (bottom part) of the anodic oxide film 14a shown in FIG. 6 and the lower part (bottom part) of the aluminum substrate 12a that is, the bottom part of the aluminum substrate 12a including the portion of the anodic oxide film 14a on the aluminum substrate 12a side is formed by a laser or the like.
  • a method of forming a membrane filter composed of the anodized film part 14 having the micropore through-holes 18 and the aluminum part 12 shown in FIG. 8 is preferably exemplified by physical removal using a cutting process or various polishing processes.
  • a configuration may be adopted in which one of the removal of the bottom of the aluminum substrate and the removal of the bottom of the anodized film is physically removed, and the other is dissolved and removed.
  • a compound that improves the hydrophilicity of the anodized film is provided after the penetration treatment step.
  • Electropolishing treatment step A sample obtained by cutting a high-purity aluminum substrate (manufactured by Sumitomo Light Metal Co., Ltd., purity 99.99% by mass, thickness 0.4 mm) into a circle having a diameter (symbol Db in FIG. 1) of 50 mm is prepared. Then, an electropolishing treatment was performed using an electropolishing liquid having the following composition under conditions of a voltage of 10 V and a liquid temperature of 65 ° C. The cathode was a carbon electrode, and the power source was GP-250-30R (manufactured by Takasago Manufacturing Co., Ltd.).
  • an anodizing treatment was performed for 15 hours with an electrolyte solution of 0.5 mol / L oxalic acid under conditions of a voltage of 41.7 V, a liquid temperature of 15 ° C., and a liquid flow rate of 3.0 m / min. . Thereafter, the sample after re-anodizing treatment was immersed in a mixed aqueous solution of 0.5 mol / L phosphoric acid at 40 ° C. for 20 minutes to perform film removal treatment. Formed an anodic oxide film having a straight tube shape and arranged in a honeycomb shape.
  • a stainless steel electrode was used as the cathode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source. Further, NeoCool BD36 (manufactured by Yamato Kagaku Co., Ltd.) was used as the cooling device, and Pair Stirrer PS-100 (manufactured by EYELA Tokyo Rika Kikai Co., Ltd.) was used as the stirring and heating device. Furthermore, the flow rate of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by ASONE Corporation).
  • the average values of the hole diameter and the distance between the centers of the through-holes were obtained by photographing a surface photograph (magnification 20000 times) at five locations with FE-SEM, and the pore diameters of the micropores present in each 1 ⁇ m ⁇ 1 ⁇ m field of view and adjacent ones. This is a value obtained by measuring the distance between the centers of the micropores and calculating an average value for 5 fields of view of 1 ⁇ m ⁇ 1 ⁇ m. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 12%.
  • Example 2 A membrane filter was prepared in the same manner as in Example 1 except that in the masking step (B), the inner diameter Dc of the masking tape was 43 mm, and an annular masking tape having a width of 3.5 mm was prepared and masked. In addition, the area ratio with respect to the whole main surface of an aluminum part is 26%.
  • Example 3 A membrane filter was prepared in the same manner as in Example 1 except that, in the (B) masking step, the inner diameter Dc of the masking tape was 39 mm, and an annular masking tape having a width of 5.5 mm was prepared and masked. In addition, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • Example 4 A membrane filter was produced in the same manner as in Example 1 except that in the masking step (B), the inner diameter Dc of the masking tape was 34 mm, and an annular masking tape having a width of 8 mm was produced and masked. In addition, the area ratio with respect to the whole main surface of an aluminum part is 54%.
  • Example 5 In the above (B) masking step, as shown in FIG. 1, a membrane was prepared in the same manner as in Example 1 except that a masking tape was prepared and masked so as to have a pattern having three circular anodized film portions. A filter was produced. The diameter Da of the anodic oxide film portion was 22 mm, and the shortest distance ta (see FIG. 1) between the anodic oxide film portions was 1 mm. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • Example 6 In the (B) masking step, as shown in FIG. 4 (A), the same as Example 1 except that a masking tape was prepared and masked so as to have a pattern having seven circular anodic oxide film portions. Thus, a membrane filter was prepared. The diameter Da of the anodic oxide film portion was 14.4 mm, and the shortest distance ta between the anodic oxide film portions was 1 mm. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • Example 7 In the (B) masking step, as shown in FIG. 4 (B), the same as Example 1 except that a masking tape was prepared and masked so as to have a pattern having 10 circular anodic oxide film portions. Thus, a membrane filter was prepared. The diameter Da of the anodic oxide film portion was 12 mm, and the shortest distance ta between the anodic oxide film portions was 1 mm. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • Example 8 In the above (B) masking step, as shown in FIG. 5, a membrane was prepared in the same manner as in Example 1 except that a masking tape was prepared and masked so as to have a pattern having three fan-shaped anodized film portions. A filter was produced. The inner diameter Dc of the masking tape was 40 mm, and the distance ta between the anodic oxide film portions was 1 mm. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • Example 9 A membrane filter was produced in the same manner as in Example 8 except that in the masking step (B), the inner diameter Dc of the masking tape was 41 mm and the distance ta between the anodic oxide film portions was 2 mm. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • Example 10 A membrane filter was produced in the same manner as in Example 8 except that in the above (B) masking step, the inner diameter Dc of the masking tape was 41.6 mm and the distance ta between the anodic oxide film portions was 3 mm. Moreover, the area ratio with respect to the whole main surface of an aluminum part is 42%.
  • ⁇ Comparative example 2> A membrane filter was produced in the same manner as in Example 1 except that the following (B2) masking step was performed instead of the (B) masking step.
  • the area ratio with respect to the whole main surface of an aluminum part is 41%.
  • a membrane filter was prepared in the same manner as in Example 1 except that, in the masking step (B), the inner diameter Dc of the masking tape was 48.7 mm, and an annular masking tape having a width of 0.65 mm was prepared and masked. did.
  • the area ratio with respect to the whole main surface of an aluminum part is 5%.
  • a membrane filter was produced in the same manner as in Example 1 except that in the masking step (B), the inner diameter Dc of the masking tape was 30 mm, and an annular masking tape having a width of 10 mm was produced and masked.
  • the area ratio with respect to the whole main surface of an aluminum part is 64%.
  • the height of the produced membrane filter was measured using a high-precision shape measuring system (KS-1100: manufactured by Keyence Corporation). The difference between the value at the highest point and the value at the lowest point was set as X, the diameter of the membrane filter was set as Y, and X / Y was calculated as the amount of warpage.
  • the case where the amount of warpage was less than 5 ⁇ m / mm was evaluated as AA, the case where it was 5 ⁇ m / mm or more and less than 10 ⁇ m / mm, A was evaluated as B, and the case where it was 10 ⁇ m / mm or more but less than 30 ⁇ m / mm was evaluated as C.
  • filtration flow rate Using the produced membrane filter, cross-flow filtration was performed and the filtration flow rate was evaluated. Specifically, a membrane filter is installed in a stirring type ultra holder (UHP-43K, manufactured by Toyo Roshi Kaisha, Ltd.), and a 100% polystyrene particle 1% aqueous solution (standard particles: 3100 particles / mL, manufactured by Techjam Corporation). was used to measure the filtration flow rate per unit time (L / cm 2 Hr) relative to the membrane area under the condition of a suction pressure of 0.5 MPa.
  • UHP-43K stirring type ultra holder
  • a 100% polystyrene particle 1% aqueous solution standard particles: 3100 particles / mL, manufactured by Techjam Corporation
  • Example 1 has an aluminum portion made of an aluminum substrate and an anodized film portion made of an anodized film having a plurality of micropores penetrating in the thickness direction, and the aluminum portion is the main surface of the membrane filter.
  • Examples 1 to 10 of the present invention which are formed so as to cover at least the end portion and have an area ratio of 10 to 60% with respect to the entire main surface, have high strength and excellent handling properties, and can suppress warpage and flatness. It is excellent and the filtration flow rate is also high.
  • Comparative Example 1 having no aluminum part has low strength and poor handling properties, and has large warpage and poor flatness.
  • the comparative example 2 which has an aluminum part in the position which does not cover an edge part has low intensity
  • the comparative example 3 whose area ratio of an aluminum part is 5% has large curvature, and is inferior to flatness.
  • the comparative example 4 whose area ratio of an aluminum part is 64% has a low filtration flow rate.
  • the area ratio of the aluminum part is preferably 25% to 45%.
  • the anodized film portion is preferably divided into a plurality of regions.
  • the anodic oxide film portion is preferably divided into five or more regions.
  • the gap between the anodic oxide film portions is preferably 2 mm or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

割れにくく、また、反りを抑制でき適正に利用可能な、ハンドリング性および平坦性に優れたポーラスアルミナメンブレンフィルター、および、その製造方法を提供する。アルミニウム基板からなるアルミニウム部と、厚み方向に貫通する複数のマイクロポアを有する陽極酸化膜からなる陽極酸化膜部とを有し、アルミニウム部は、メンブレンフィルターの主面の少なくとも端部を覆って形成され、主面の全体に対する面積率が10~60%である。

Description

ポーラスアルミナメンブレンフィルターおよび製造方法
 本発明は、ポーラスアルミナメンブレンフィルターおよびその製造方法に関する。
 近年、アルミニウムの陽極酸化膜が、その結晶構造のナノ構造および多孔性により着目されており、ホールが規則的に配列された皮膜の作製が行われている。
 その用途の一つとして、精密濾過分野において利用されるポーラスアルミナメンブレンフィルターが挙げられる(特許文献1および2)。
 アルミニウムの陽極酸化膜を利用したメンブレンフィルターは、アルミニウムを酸性電解液中で陽極酸化処理することで、細孔径分布の狭い独立した細孔を高密度に形成することができ、高い空隙率とすることができるため、時間当たりの濾過流量を大きくすることができ、また安価に製造することができる。
特開2009-074133号公報 特開2009-050773号公報
 このようなポーラスアルミナメンブレンフィルターは、濾過効率を高くするために、厚さが薄く、また、高い空隙率となるように多数の細孔が形成されている。また、陽極酸化膜は靱性が低く衝撃等に弱い。そのため、ハンドリングの際に割れてしまうという問題があった。
 また、このようなポーラスアルミナメンブレンフィルターは、厚さが薄いので、反りやすい。そのため、濾過装置に適正に組み込むことができず、十分な効果を発揮できないという問題があった。
 そこで、本発明は、割れにくく、また、反りを抑制でき適正に利用可能な、ハンドリング性および平坦性に優れたポーラスアルミナメンブレンフィルターおよびその製造方法を提供することを目的とする。
 本発明者は、上記目的を達成すべく鋭意研究した結果、アルミニウム基板からなるアルミニウム部と、厚み方向に貫通する複数のマイクロポアを有する陽極酸化膜からなる陽極酸化膜部とを有し、アルミニウム部は、ポーラスアルミナメンブレンフィルターの主面の少なくとも端部を覆って形成され、主面の全体に対する面積率が10~60%であることで、ハンドリング性および平坦性を向上できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の(1)~(5)を提供する。
 (1) 陽極酸化膜を備えるポーラスアルミナメンブレンフィルターであって、アルミニウム部と、厚み方向に貫通する複数のマイクロポアを有する陽極酸化膜からなる陽極酸化膜部とを有し、アルミニウム部は、ポーラスアルミナメンブレンフィルターの主面の少なくとも端部を覆って形成され、主面の全体に対する面積率が10~60%であるポーラスアルミナメンブレンフィルター。
 (2) 陽極酸化膜部は、アルミニウム部により複数の領域に隔てられている(1)に記載のポーラスアルミナメンブレンフィルター。
 (3) アルミニウム部により隔てられた陽極酸化膜部の間の距離が2mm以上である(2)に記載のポーラスアルミナメンブレンフィルター。
 (4) 陽極酸化膜部は、アルミニウム部により3以上の領域に隔てられている(2)または(3)に記載のポーラスアルミナメンブレンフィルター。
 (5) 陽極酸化膜部は、主面の中心を通り主面に平行な所定の直線を軸として線対称となるように形成されている(1)~(4)のいずれかに記載のポーラスアルミナメンブレンフィルター。
 (6) (1)~(5)に記載のポーラスアルミナメンブレンフィルターの製造方法であって、アルミニウム基板の少なくとも端部を含み、主面全体に対する面積率が10~60%である領域をマスキングする工程と、マスキングされていない領域のアルミニウム基板に陽極酸化処理を施して陽極酸化膜部を形成する工程と、を有するポーラスアルミナメンブレンフィルターの製造方法。
 以下に示すように、本発明によれば、割れにくく、また、反りを抑制でき適正に利用可能な、ハンドリング性および平坦性に優れたポーラスアルミナメンブレンフィルターおよびその製造方法を提供することができる。
本発明のポーラスアルミナメンブレンフィルターの好適な実施態様の一例を示す模式図である。 陽極酸化膜部の表面を拡大して示す模式図である。 図1のA-A線断面の部分拡大図である。 図4(A)および図4(B)は、本発明のポーラスアルミナメンブレンフィルターの好適な実施態様の他の一例を示す模式図である。 本発明のポーラスアルミナメンブレンフィルターの好適な実施態様の他の一例を示す模式図である。 貫通化処理を説明するための部分断面図である。 貫通化処理を説明するための部分断面図である。 貫通化処理を説明するための部分断面図である。
 以下、本発明のポーラスアルミナメンブレンフィルターについて、添付の図面に示される好適実施態様を基に、詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
[ポーラスアルミナメンブレンフィルター]
 本発明のポーラスアルミナメンブレンフィルターは、アルミニウム基板からなるアルミニウム部と、厚み方向に貫通する複数のマイクロポアを有する陽極酸化膜からなる陽極酸化膜部とを有し、アルミニウム部は、ポーラスアルミナメンブレンフィルターの主面の少なくとも端部を覆って形成され、主面の全体に対する面積率が10~60%であるポーラスアルミナメンブレンフィルターである。
 次に、本発明のポーラスアルミナメンブレンフィルターの構成について、図1、図2、および、図3を用いて説明する。
 図1は、本発明のポーラスアルミナメンブレンフィルターの好適な実施態様の一例の平面図を示す模式図であり、図2は、陽極酸化膜部の表面を拡大して示す模式図であり、図3は、図1のA-A線断面の部分拡大図である。
 図1に示すように、ポーラスアルミナメンブレンフィルター(以下、メンブレンフィルターともいう)10は、円形平板形状であり、アルミニウム基材からなるアルミニウム部12と、厚み方向に貫通する複数のマイクロポア貫通孔を有する陽極酸化膜からなる陽極酸化膜部14とを具備するものである。
 陽極酸化膜部14は、アルミニウム基板の陽極酸化膜からなるものであり、図2および図3に示すように、厚み方向に貫通する複数のマイクロポア貫通孔18を有する部位である。
 図1に示すメンブレンフィルター10においては、陽極酸化膜部14は、3つの円形状の領域に分割されて形成されている。陽極酸化膜部14の各領域は、アルミニウム部12により隔てられている。
 本発明において、陽極酸化膜部14は、例えば、アルミニウム基板を陽極酸化し、陽極酸化により生じたマイクロポアを貫通化することにより製造することができる。
 陽極酸化膜部14の形成方法については後に詳述する。
 また、メンブレンフィルターの主面全体に対する、陽極酸化膜部の面積率は40%~90%である。
 アルミニウム部12は、陽極酸化膜を形成するためのアルミニウム基板の一部からなるものである。すなわち、アルミニウム部12は、陽極酸化膜部14を形成しなかった領域である。
 図1に示すメンブレンフィルター10においては、アルミニウム部12は、主面の少なくとも端部、すなわち、主面の周縁部分を覆うように形成されている。また、メンブレンフィルターの主面全体に対する、アルミニウム部の面積率は10%~60%である。
 前述のとおり、アルミニウム基板の陽極酸化膜を利用したメンブレンフィルターは、細孔径分布の狭い独立したマイクロポアを高密度に配置することができ、高い空隙率とすることができるので、濾過流量を大きくすることができる。しかしながら、このようなメンブレンフィルターは、厚さが薄く、空隙率が高いため、また、陽極酸化膜は靱性が低く衝撃に弱いため、ハンドリングの際に割れてしまうという問題があった。
 また、このようなメンブレンフィルターは、厚さが薄いので、反りやすいが、可撓性が低いため、適正に濾過装置に組み込むことができず、十分な効果を発揮できないという問題があった。
 これに対して、本発明のメンブレンフィルターは、アルミニウム部が、メンブレンフィルターの主面の少なくとも端部を覆って形成されており、また、主面の全体に対する面積率が10~60%となるように形成されている。
 メンブレンフィルターの周縁部分をアルミニウム部により形成して、また、面積率で10%以上の領域をアルミニウム部により形成することにより、衝撃等に対する耐性を向上して割れ等の発生を防止することができ、ハンドリング性を向上することができる。また、メンブレンフィルターの周縁部分がアルミニウム部により形成されているので、ハンドリングの際に把持しやすい点でもハンドリング性を向上することができる。
 また、周縁部分がアルミニウム部で形成されているので、陽極酸化膜部の反りを抑制することができ平坦性を向上できる。そのため、濾過装置に適正に組み込むことができ、十分な効果を発揮することができる。
 さらに、十分な濾過流量を確保するために、アルミニウム部の面積率は、60%以下である。
 なお、ハンドリング性、平坦性、および、濾過流量の確保の点で、アルミニウム部の面積率は、25%~45%であるのがより好ましい。
 ここで、図1に示すメンブレンフィルター10においては、陽極酸化膜部14を3つの領域に分割して形成する構成としたが、本発明はこれに限定はされず、陽極酸化膜部を複数の領域に分割せずに1つの領域に形成してもよい。あるいは、陽極酸化膜部を2あるいは4以上の領域に分割して形成してもよい。
 例えば、図4(A)に示すメンブレンフィルター40のように、陽極酸化膜部14を7つの領域に分割して形成してもよい。あるいは、図4(B)に示すメンブレンフィルター42のように、陽極酸化膜部14を10個の領域に分割して形成してもよい。
 なお、ハンドリング性および平坦性をより向上できる点で、陽極酸化膜部は、複数の領域に分割して形成するのが好ましい。特に、3個以上の領域に分割して形成するのがより好ましく、5個以上の領域に分割して形成するのが特に好ましい。
 また、陽極酸化膜部を複数の領域に分割して形成する場合には、メンブレンフィルターの主面の中心を通り主面に平行な所定の直線を軸として線対称となるように、各領域の大きさ、形状および配置を設定するのが好ましい。
 例えば、図1に示すメンブレンフィルター10においては、中心線αを軸として線対称となるように陽極酸化膜部14の各領域が形成されている。
 メンブレンフィルターの陽極酸化膜部の各領域を線対称となるように形成することにより、反りの発生をより好適に抑制することができ、平坦性をより向上することができる。
 なお、陽極酸化膜部の各領域は回転対称となるように形成するのがより好ましい。
 また、陽極酸化膜部の各領域の間の距離、すなわち、陽極酸化膜部を複数の領域に隔てるアルミニウム部の最薄部の幅は、2mm以上であるのが好ましい。これにより、ハンドリング性および平坦性をより向上できる。
 また、メンブレンフィルターの厚さは、濾過流量の確保の点で、300μm以下が好ましく、200μm以下がより好ましく、150μm以下が特に好ましい。本発明のメンブレンフィルターは、ハンドリング性および平坦性を向上することができるので、このように厚さを薄くすることができる。
 また、本発明においては、濾過流量の確保の点で、陽極酸化膜部におけるマイクロポア貫通孔の平均開口径は5nm以上であるのが好ましく、10nm以上であるのがより好ましく、30nm以上であるのが特に好ましい。
 また、強度および濾過流量の確保の点で、陽極酸化膜部におけるマイクロポア貫通孔間の幅(図2において符号19で表される部分)は、20nm~1000nmであるのが好ましく、30nm~800nmであるのがより好ましく、50nm~500nmであるのが特に好ましい。
 また、強度および濾過流量の確保の点で、陽極酸化膜部におけるマイクロポア貫通孔の孔密度は1個/μm2以上15000個/μm2以下であることが好ましく、2個/μm2以上1000個/μm2以下であることが好ましく、3個/μm2以上300個/μm2以下であることがさらに好ましい。
 ここで、孔密度は、表面写真(倍率20000倍)をFE-SEMにより撮影し、その1μm×1μmの視野に存在するマイクロポアの個数を数え、これにより求められる密度について1μm×1μmの視野の5箇所分の平均値を算出した値である。
 また、図1に示す例では、陽極酸化膜部14の各領域を円形状としたがこれに限定はされず、四角形状、三角形状、多角形状、楕円形状等の種々の形状とすることができる。
 例えば、図5に示すメンブレンフィルター44のように、円形のメンブレンフィルターの外径よりも小さな同心円となる円形の領域を3つに分割した領域に、陽極酸化膜部を形成してもよい。すなわち、メンブレンフィルター44の陽極酸化膜部14の各領域は、同じ大きさの扇形に形成されており、3つの領域が略円形をなすように配置されている。
 また、図示例においては、アルミニウム部と、マイクロポア貫通孔を有する陽極酸化膜部とからなる構成としたが、これに限定はされず、非貫通の陽極酸化膜からなる部分を有していてもよい。
 また、メンブレンフィルターの形状は、円形状に限定はされず、四角形状等の種々の形状とすることができる。
[メンブレンフィルターの製造方法]
 次に、上記メンブレンフィルターの製造方法について詳述する。
 本発明のメンブレンフィルターは、上記アルミニウム部となる領域にマスクを施した後に、マスクされていない領域に陽極酸化処理を施して複数のマイクロポアが形成された陽極酸化膜を形成し、形成した陽極酸化膜のマイクロポアを貫通させて上記陽極酸化膜部を形成することにより作製される。
 具体的には、
 アルミニウム基板の一部にマスクを施すマスキング工程、
 マスキングされていない領域のアルミニウム基板を陽極酸化する陽極酸化処理工程、
 上記陽極酸化処理工程の後に、アルミニウム基板の底部を除去し、さらに、上記陽極酸化により生じた複数のマイクロポアを貫通化して、複数のマイクロポア貫通孔を有する陽極酸化膜からなる陽極酸化膜部を形成する貫通化処理工程、とを有する。
 以下、アルミニウム基板およびアルミニウム基板に施す各処理工程について詳述する。
 〔アルミニウム基板〕
 本発明のメンブレンフィルターに用いられるアルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハー、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
 本発明においては、アルミニウム基板のうち、後述する陽極酸化処理工程により陽極酸化膜を設ける表面は、アルミニウム純度が、99.5質量%以上であるのが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上記範囲であると、マイクロポア配列の規則性が十分となる。
 また、本発明においては、アルミニウム基板のうち後述する陽極酸化処理工程を施す表面は、あらかじめ熱処理、脱脂処理および鏡面仕上げ処理が施されるのが好ましい。
 ここで、熱処理、脱脂処理および鏡面仕上げ処理については、特許文献1(特開2009-074133号公報)の[0021]~[0031]段落に記載された各処理と同様の処理を施すことができる。
 〔マスキング工程〕
 ここで、本発明においては、陽極酸化膜を形成して陽極酸化膜部14とする領域以外の領域には、マスク等を施して陽極酸化膜を形成せずアルミニウム基板の一部を残すことにより、アルミニウム部12を形成する。すなわち、アルミニウム部12となる領域にマスキングを施してアルミニウム基板に陽極酸化処理工程を施す。
 アルミニウム部12のマスキングの方法には特に限定はなく、例えば、粘着テープを貼り付ける方法、アルミニウム基板の表面に画像記録層を形成した後に、上記画像記録層に対して露光または加熱によりエネルギーを付与して所定の開口パターンに現像する方法等によりマスクすればよい。
 〔陽極酸化処理工程〕
 陽極酸化処理工程は、マスクを施した上記アルミニウム基板に陽極酸化処理を施すことにより、上記アルミニウム基板の陽極酸化膜部となる領域の表面にマイクロポアを有する陽極酸化皮膜を形成する工程である。
 本発明における陽極酸化処理は、従来公知の方法を用いることができるが、マイクロポア配列の規則性を高くし、平面方向の導電部の絶縁性をより確実に担保する観点から、自己規則化法や定電圧処理を用いるのが好ましい。
 ここで、陽極酸化処理の自己規則化法については、特許文献1(特開2009-074133号公報)の[0033]~[0075]段落および[図1]に記載された各処理と同様の処理を施すことができる。
 〔貫通化処理工程〕
 上記貫通化処理工程は、上記陽極酸化処理工程の後に、上記アルミニウム基板の底部側を除去し、さらに、上記陽極酸化により生じたマイクロポアによる孔を貫通化して上記陽極酸化膜部を形成する工程である。
 上記貫通化処理工程としては、例えば、上記陽極酸化処理工程の後に、アルミニウム基板の底部を溶解し、さらに、陽極酸化膜の底部を溶解して除去する方法;上記陽極酸化処理工程の後に、アルミニウム基板の底部およびアルミニウム基板近傍の陽極酸化膜を切断して除去する方法;上記陽極酸化処理工程の後に、アルミニウム基板の底部を切断し、陽極酸化膜の底部を溶解して除去する方法;上記陽極酸化処理工程の後に、アルミニウム基板の底部を溶解し、陽極酸化膜の底部を切断して除去する方法;等が挙げられる。
 貫通化処理の一例を、図6~8に示す部分断面図を用いて説明する。
 図6は、陽極酸化処理工程の後の状態を示す図であり、アルミニウム基板12a上の一部に複数のマイクロポア16を有する陽極酸化膜14aが形成された構造体が示されている。
 まず、図6に示す状態からアルミニウム基板12aの底部を溶解して除去し、図7に示すように、陽極酸化膜14aの底部側のアルミニウム基板12aが除去された状態の構造体を作製する。このとき、上記メンブレンフィルターのアルミニウム部12となるアルミニウム基板のみが残るようにして、陽極酸化膜14aが形成されない位置のアルミニウム基板12aの底部側も除去される。
 従って、アルミニウム除去処理には、アルミナは溶解せず、アルミニウムを溶解する処理液を用いる。
 ここで、アルミニウム除去処理の方法については、例えば、特許文献1(特開2009-074133号公報)の[0077]~[0080]段落に記載された各方法と同様の方法が挙げられる。
 次に、図7に示す底部のアルミニウム基板12aを除去した状態から、陽極酸化膜14aの底部を溶解して除去し、マイクロポア16を貫通させる(マイクロポア貫通孔18が形成される)。これにより本発明のメンブレンフィルターが作製される。
 図8は、貫通化処理後の状態を示した部分断面斜視図であり、マイクロポア貫通孔18を有する陽極酸化膜部14とアルミニウム部12からなる構造体、すなわち、本発明のメンブレンフィルターが示されている。
 なお、図8では、陽極酸化膜部14に存在する全てのマイクロポアがマイクロポア貫通孔18となっているが、貫通化処理により、陽極酸化膜に存在する全てのマイクロポアが貫通しなくてもよい。ただし、貫通化処理により、陽極酸化膜に存在するマイクロポアのうち70%以上が貫通することが好ましい。
 陽極酸化膜を溶解する処理液としては、酸水溶液またはアルカリ水溶液を用いる。
 ここで、陽極酸化膜を溶解する方法については、例えば、特許文献1(特開2009-074133号公報)の[0082]~[0085]段落に記載された各方法と同様の方法が挙げられる。
 また、本発明における貫通化処理は、上記の方法に限定はされない。
 例えば、図6に示す陽極酸化膜14aの下方(底部)およびアルミニウム基板12aの下方(底部)、即ち、陽極酸化膜14aにおけるアルミニウム基板12a側の部分を含むアルミニウム基板12aの底部を、レーザー等による切削処理や種々の研磨処理等を用いて物理的に除去し、図8に示すマイクロポア貫通孔18を有する陽極酸化膜部14とアルミニウム部12とからなるメンブレンフィルターとする方法が好適に例示される。
 あるいは、アルミニウム基板の底部の除去および陽極酸化膜の底部の除去のいずれか一方を物理的に除去し、他方を溶解させて除去する構成としてもよい。
 〔その他の処理〕
 <保護膜形成処理>
 本発明においては、アルミナ(陽極酸化膜)で形成された陽極酸化膜部14が、空気中の水分との水和により、経時により孔径が変化してしまうことから、上記貫通化処理工程後に、保護膜形成処理を施すことが好ましい。
 ここで、保護膜形成処理については、特許文献2(特開2009-050773号公報)の[0096]~[0105]段落に記載された各処理と同様の処理を施すことができる。
 <親水性化合物付与処理>
 本発明においては、上記貫通化処理工程後に、陽極酸化皮膜の親水性を向上する化合物が付与されるのが好ましい。特に、マイクロポア貫通孔18の内部を含めた陽極酸化皮膜の表面全域にわたって親水性を向上する化合物が付与されるのが好ましい。
 親水性化合物付与処理を施すことにより、得られる本発明のメンブレンフィルターは、有機溶剤系の濾過液を用いる系においても濾過流量に優れたものとなる。
 ここで、親水性化合物付与処理については、特許文献1(特開2009-074133号公報)の[0086]~[0101]段落に記載された各処理と同様の処理を施すことができる。
 以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。
 <実施例1>
 (A)電解研磨処理工程
 高純度アルミニウム基板(住友軽金属株式会社製、純度99.99質量%、厚さ0.4mm)を直径(図1中の符号Db)50mmの円形にカットしたサンプルを作製し、以下組成の電解研磨液を用いて、電圧10V、液温度65℃の条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP-250-30R(株式会社高砂製作所製)を用いた。
 (電解研磨液組成)
 ・85質量%リン酸(和光純薬工業株式会社製試薬)  1320mL
 ・純水  80mL
 ・硫酸  600mL
 (B)マスキング工程
 粘着テープを、外径Db=50mm、内径Dc(図5参照)=47mmにカットして、幅1.5mmの円環状のマスキングテープを作製した。このマスキングテープを電解研磨処理後のサンプルに、外径を一致させて、ずれ、しわのないように貼り付けた。
 (C)陽極酸化処理工程
 次いで、マスキング後のサンプルに、0.50mol/Lシュウ酸の電解液で、電圧40.0V、液温度15℃、液流速3.0m/minの条件で、25分間、陽極酸化処理を施した。
 その後、陽極酸化処理後のサンプルに、0.5mol/Lリン酸の混合水溶液を用いて40℃の条件で20分間浸漬して脱膜処理を施した。この処理を4回繰り返した。
 さらに、再陽極酸化処理として、0.5mol/Lシュウ酸の電解液で、電圧41.7V、液温度15℃、液流速3.0m/minの条件で、15時間、陽極酸化処理を施した。
 その後、再陽極酸化処理後のサンプルに、0.5mol/Lリン酸の混合水溶液を用いて40℃の条件で20分間浸漬して脱膜処理を施すことにより、アルミニウム基板の表面に、マイクロポアが直管状で、かつ、ハニカム状に配列された陽極酸化膜を形成した。
 なお、陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (D)貫通化処理工程
  (i)アルミニウム除去処理工程
 上記陽極酸化処理を施したサンプルの、陽極酸化処理された面とは反対側の面、すなわち、底部側を、サンプルの厚みが150μmになるまで研磨し、陽極酸化膜底部側のアルミニウム基板およびマスクされた領域の底部側のアルミニウム基板を除去した。
  (ii)陽極酸化膜除去処理工程
 次に、アルミニウム基板の一部を除去したサンプルを、pH緩衝作用のある0.1MKClaqに10分間浸漬して、陽極酸化膜のマイクロポア内部に十分浸透させた。その後、研磨処理した面のみを0.1M-KOHに、25℃で5分間浸漬させることにより、陽極酸化膜の底部を除去し、1つの陽極酸化膜部を有するメンブレンフィルターを作製した。
 なお、陽極酸化膜部のマイクロポア貫通孔の孔径および貫通孔の中心間距離の平均値を測定したところ、孔径の平均値は40nm、貫通孔の中心間距離の平均値は100nmであった。
 ここで、孔径および貫通孔の中心間距離の平均値は、表面写真(倍率20000倍)をFE-SEMにより5箇所撮影し、それぞれの1μm×1μmの視野に存在するマイクロポアの孔径および隣接するマイクロポアの中心間距離を測定し、1μm×1μmの視野5箇所分の平均値を算出した値である。
 また、アルミニウム部の主面全体に対する面積率は、12%である。
 <実施例2>
 上記(B)マスキング工程において、マスキングテープの内径Dcを43mmとし、幅3.5mmの円環状のマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。なお、アルミニウム部の主面全体に対する面積率は、26%である。
 <実施例3>
 上記(B)マスキング工程において、マスキングテープの内径Dcを39mmとし、幅5.5mmの円環状のマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。なお、アルミニウム部の主面全体に対する面積率は、42%である。
 <実施例4>
 上記(B)マスキング工程において、マスキングテープの内径Dcを34mmとし、幅8mmの円環状のマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。なお、アルミニウム部の主面全体に対する面積率は、54%である。
 <実施例5>
 上記(B)マスキング工程において、図1に示すように、円形の陽極酸化膜部を3つ有するパターンとなるようにマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 なお、陽極酸化膜部の直径Daは、22mmとし、陽極酸化膜部の間の最短距離ta(図1参照)は、1mmとした。
 また、アルミニウム部の主面全体に対する面積率は、42%である。
 <実施例6>
 上記(B)マスキング工程において、図4(A)に示すように、円形の陽極酸化膜部を7つ有するパターンとなるようにマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 なお、陽極酸化膜部の直径Daは、14.4mmとし、陽極酸化膜部の間の最短距離taは、1mmとした。
 また、アルミニウム部の主面全体に対する面積率は、42%である。
 <実施例7>
 上記(B)マスキング工程において、図4(B)に示すように、円形の陽極酸化膜部を10個有するパターンとなるようにマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 なお、陽極酸化膜部の直径Daは、12mmとし、陽極酸化膜部の間の最短距離taは、1mmとした。
 また、アルミニウム部の主面全体に対する面積率は、42%である。
 <実施例8>
 上記(B)マスキング工程において、図5に示すように、扇形の陽極酸化膜部を3個有するパターンとなるようにマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 なお、マスキングテープの内径Dcは40mmとし、陽極酸化膜部の間の距離taは、1mmとした。
 また、アルミニウム部の主面全体に対する面積率は、42%である。
 <実施例9>
 上記(B)マスキング工程において、マスキングテープの内径Dcを41mmとし、陽極酸化膜部の間の距離taを、2mmとした以外は、実施例8と同様にしてメンブレンフィルターを作製した。
 また、アルミニウム部の主面全体に対する面積率は、42%である。
 <実施例10>
 上記(B)マスキング工程において、マスキングテープの内径Dcを41.6mmとし、陽極酸化膜部の間の距離taを、3mmとした以外は、実施例8と同様にしてメンブレンフィルターを作製した。
 また、アルミニウム部の主面全体に対する面積率は、42%である。
 <比較例1>
 上記(B)マスキング工程を行わなかった以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 <比較例2>
 上記(B)マスキング工程に代えて、以下の(B2)マスキング工程を行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 アルミニウム部の主面全体に対する面積率は、41%である。
 (B2)マスキング工程
 粘着テープを、外径32mmにカットして円形状のマスキングテープを作製した。このマスキングテープを電解研磨処理後のサンプルに、中心を一致させて、ずれ、しわのないように貼り付けた。
 <比較例3>
 上記(B)マスキング工程において、マスキングテープの内径Dcを48.7mmとし、幅0.65mmの円環状のマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 アルミニウム部の主面全体に対する面積率は、5%である。
 <比較例4>
 上記(B)マスキング工程において、マスキングテープの内径Dcを30mmとし、幅10mmの円環状のマスキングテープを作製しマスキングを行った以外は、実施例1と同様にしてメンブレンフィルターを作製した。
 アルミニウム部の主面全体に対する面積率は、64%である。
 <評価>
 作製した各メンブレンフィルターについて、以下の各評価を行った。
 (強度)
 作製したメンブレンフィルターを30cmの高さから落下させる試験を10回行った。10回で割れなかった場合をAA、7~9回目で割れた場合をA、4~6回目で割れた場合をB、1~3回目で割れた場合をCとして評価した。
 (反り)
 高精度形状測定システム(KS-1100:キーエンス株式会社製)を用いて、作製したメンブレンフィルターの高さを測定した。最も高い箇所の値と、最も低い箇所の値の差をXとし、メンブレンフィルターの直径をYとして、X/Yを反り量として算出した。
 反り量が5μm/mm未満の場合をAA、5μm/mm以上10μm/mm未満の場合をA、10μm/mm以上30μm/mm未満の場合をB、30μm/mm以上の場合をCとして評価した。
 (濾過流量)
 作製したメンブレンフィルターを用いて、クロスフロー方式の濾過処理を行い、濾過流量を評価した。
 具体的には、撹拌型ウルトラホルダー(UHP-43K、東洋濾紙株式会社製)に、メンブレンフィルターを設置し、100nmポリスチレン粒子1%水溶液(標準粒子:3100個/mL、株式会社テックジャム社製)を用いて、吸引圧0.5MPaの条件下で、膜面積に対する単位時間当たりの濾過流量(L/cm2Hr)を測定した。
 濾過流量が、55L/cm2Hr以上の場合をAA、45L/cm2Hr以上55L/cm2Hr未満の場合をA、35L/cm2Hr以上45L/cm2Hr未満の場合をB、35L/cm2Hr未満の場合をCとした。
 評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、アルミニウム基板からなるアルミニウム部と、厚み方向に貫通する複数のマイクロポアを有する陽極酸化膜からなる陽極酸化膜部とを有し、アルミニウム部は、メンブレンフィルターの主面の少なくとも端部を覆って形成され、主面の全体に対する面積率が10~60%である本発明の実施例1~10は、強度が高くハンドリング性に優れ、また、反りを抑制でき平坦性に優れ、濾過流量も高いことがわかる。
 これに対して、アルミニウム部を有さない比較例1は、強度が低くハンドリング性に劣り、また、反りが大きく平坦性に劣ることがわかる。また、端部を覆わない位置にアルミニウム部を有する比較例2は、強度が低くハンドリング性に劣ることがわかる。また、アルミニウム部の面積率が5%の比較例3は、反りが大きく平坦性に劣ることがわかる。また、アルミニウム部の面積率が64%の比較例4は、濾過流量が低いことがわかる。
 また、実施例1~4の対比から、アルミニウム部の面積率は、25%~45%が好ましいことがわかる。
 また、実施例3と実施例5~10との対比から、陽極酸化膜部は複数の領域に隔てられているのが好ましいことがわかる。
 また、実施例5~7の対比から、陽極酸化膜部は5個以上の領域に隔てられているのが好ましいことがわかる。
 また、実施例8~10の対比から、陽極酸化膜部の間の間隙は、2mm以上であるのが好ましいことがわかる。
 以上から本発明の効果は明らかである。
  10、40、42、44 メンブレンフィルター
  12  アルミニウム部
  12a アルミニウム基板
  14  陽極酸化膜部
  14a 陽極酸化膜
  16  マイクロポア
  18  マイクロポア貫通孔

Claims (6)

  1.  陽極酸化膜を備えるポーラスアルミナメンブレンフィルターであって、
     アルミニウム部と、
     厚み方向に貫通する複数のマイクロポアを有する前記陽極酸化膜からなる陽極酸化膜部とを有し、
     前記アルミニウム部は、ポーラスアルミナメンブレンフィルターの主面の少なくとも端部を覆って形成され、前記主面の全体に対する面積率が10~60%であるポーラスアルミナメンブレンフィルター。
  2.  前記陽極酸化膜部は、前記アルミニウム部により複数の領域に隔てられている請求項1に記載のポーラスアルミナメンブレンフィルター。
  3.  前記アルミニウム部により隔てられた前記陽極酸化膜部の間の距離が2mm以上である請求項2に記載のポーラスアルミナメンブレンフィルター。
  4.  前記陽極酸化膜部は、前記アルミニウム部により3以上の領域に隔てられている請求項2または3に記載のポーラスアルミナメンブレンフィルター。
  5.  前記陽極酸化膜部は、前記主面の中心を通り前記主面に平行な所定の直線を軸として線対称となるように形成されている請求項1~4のいずれか1項に記載のポーラスアルミナメンブレンフィルター。
  6.  請求項1~5に記載のポーラスアルミナメンブレンフィルターの製造方法であって、
     アルミニウム基板の少なくとも端部を含み、主面全体に対する面積率が10~60%である領域をマスキングする工程と、
     マスキングされていない領域のアルミニウム基板に陽極酸化処理を施して陽極酸化膜部を形成する工程と、を有するポーラスアルミナメンブレンフィルターの製造方法。
PCT/JP2014/083917 2013-12-26 2014-12-22 ポーラスアルミナメンブレンフィルターおよび製造方法 WO2015098843A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013268889 2013-12-26
JP2013-268889 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015098843A1 true WO2015098843A1 (ja) 2015-07-02

Family

ID=53478697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083917 WO2015098843A1 (ja) 2013-12-26 2014-12-22 ポーラスアルミナメンブレンフィルターおよび製造方法

Country Status (2)

Country Link
TW (1) TW201526980A (ja)
WO (1) WO2015098843A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463005A (en) * 1987-09-02 1989-03-09 Showa Aluminum Corp Production of filter membrane
JPH09141069A (ja) * 1995-11-24 1997-06-03 Tokyo Metropolis アルミニウムの陽極酸化皮膜による多孔質メンブレン作 成方法
JPH10121292A (ja) * 1996-08-26 1998-05-12 Nippon Telegr & Teleph Corp <Ntt> 多孔性陽極酸化アルミナ膜の作製方法
JP2012117144A (ja) * 2010-11-30 2012-06-21 Imec 正確に制御されたマスク陽極酸化のための方法
JP2013202465A (ja) * 2012-03-27 2013-10-07 Toshiba Corp 平板膜補強構造体、及び平板膜モジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6463005A (en) * 1987-09-02 1989-03-09 Showa Aluminum Corp Production of filter membrane
JPH09141069A (ja) * 1995-11-24 1997-06-03 Tokyo Metropolis アルミニウムの陽極酸化皮膜による多孔質メンブレン作 成方法
JPH10121292A (ja) * 1996-08-26 1998-05-12 Nippon Telegr & Teleph Corp <Ntt> 多孔性陽極酸化アルミナ膜の作製方法
JP2012117144A (ja) * 2010-11-30 2012-06-21 Imec 正確に制御されたマスク陽極酸化のための方法
JP2013202465A (ja) * 2012-03-27 2013-10-07 Toshiba Corp 平板膜補強構造体、及び平板膜モジュール

Also Published As

Publication number Publication date
TW201526980A (zh) 2015-07-16

Similar Documents

Publication Publication Date Title
JP4027218B2 (ja) 濾過膜の製造方法
US8231789B2 (en) Cross-flow filtration method and cross-flow filtration device
EP1967616B1 (en) Microstructure and method of manufacturing the same
US7838105B2 (en) Microstructure and method of manufacturing the same
WO2008014977A3 (en) A method of manufacturing a self-ordered porous structure of aluminium oxide, a nanoporous article and a nano object
JP2006213992A (ja) 陽極酸化ポーラスアルミナおよびその製造方法
CN103007781B (zh) 一种用于空气与水净化的过滤膜及其制备方法
KR20150064422A (ko) 고분자 막과 금속산화물 막으로 형성된 복합분리막 및 그 제조방법
JP2007247015A (ja) 微細構造体の製造方法および微細構造体
JP6353330B2 (ja) 微粒子捕捉用ろ過膜及びその製造方法並びに多孔質膜及びその製造方法
JP2009074133A (ja) 微細構造体
WO2015098843A1 (ja) ポーラスアルミナメンブレンフィルターおよび製造方法
JP5824399B2 (ja) ナノインプリント用樹脂モールドおよびその製造方法
JP4423077B2 (ja) 陽極酸化ポーラスアルミナおよびその製造方法
JP2004285404A (ja) 陽極酸化ポーラスアルミナおよびその製造方法
KR102329300B1 (ko) 미립자 포착용 여과막 및 이의 제조 방법, 그리고 다공질막 및 이의 제조 방법
JP2008093652A (ja) 微細構造体および製造方法
JP2011157624A (ja) 高耐電圧性を有する表面処理アルミニウム部材およびその製造方法
KR20130043601A (ko) 양끝이 열린 나노크기 직경의 직관통공을 갖는 나노다공질 알루미나 분리막의 제조방법
WO2011099115A1 (ja) アルマイトメンブレンフィルター及びアルマイトメンブレンフィルターの製造方法
JP2009299188A (ja) 陽極酸化ポーラスアルミナおよびその製造方法
Rahimi et al. The effect of aluminum electropolishing on nano-pores arrangement in anodic alumina membranes
KR101316082B1 (ko) 비대칭 균일기공 알루미나 분리막 및 이의 제조방법
JP4788880B2 (ja) バルブ金属酸化物ナノ構造体の製造方法
JPS59213402A (ja) フイルタ−

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP