WO2015098325A1 - 車載画像認識装置 - Google Patents

車載画像認識装置 Download PDF

Info

Publication number
WO2015098325A1
WO2015098325A1 PCT/JP2014/079902 JP2014079902W WO2015098325A1 WO 2015098325 A1 WO2015098325 A1 WO 2015098325A1 JP 2014079902 W JP2014079902 W JP 2014079902W WO 2015098325 A1 WO2015098325 A1 WO 2015098325A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
imaging unit
unit
imaging
image
Prior art date
Application number
PCT/JP2014/079902
Other languages
English (en)
French (fr)
Inventor
直樹 興梠
裕史 大塚
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/102,282 priority Critical patent/US20170041591A1/en
Priority to EP14873199.5A priority patent/EP3089442B1/en
Priority to JP2015554663A priority patent/JP6325000B2/ja
Publication of WO2015098325A1 publication Critical patent/WO2015098325A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/296Synchronisation thereof; Control thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/141Control of illumination
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/582Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of traffic signs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof

Definitions

  • the present invention relates to an on-vehicle camera, and more particularly to an on-vehicle image recognition apparatus having a function of simultaneously recognizing a plurality of objects such as a preceding vehicle, a white line, a pedestrian, and a light source.
  • LEDs have the advantages of low power consumption and long life.
  • the visibility is high, and it is said to contribute to the improvement of safety.
  • ⁇ LEDs used for traffic lights and road signs are blinking repeatedly turning on and off at high speed when lighting.
  • the blinking cycle is 100 Hz in a region where the commercial power supply is 50 Hz, and 120 Hz in a region where the commercial power is 50 Hz.
  • the in-vehicle camera there is a problem that the light emitted from the light source is not recorded in the image obtained from the camera when the light source that repeats blinking is turned off and the exposure timing of the camera matches. Further, when the imaging cycle of the camera and the cycle of the blinking light source are close to a constant multiple, the above-described problem occurs continuously in a plurality of frames.
  • Patent Document 1 a large number of imaging units are installed, and imaging is performed while shifting the exposure timing in a time shorter than the blinking cycle of the blinking light source, and the luminance change of the light source is observed.
  • Means for recognizing a blinking light source is disclosed.
  • the object of the present invention has been made in view of the above points, and the object of the present invention is to reduce the cost of a blinking light source without impairing the performance of an image recognition application such as preceding vehicle recognition or white line recognition. It is providing the vehicle-mounted imaging device which can improve recognition performance.
  • An in-vehicle image recognition apparatus of the present invention that solves the above-described problem is an in-vehicle image recognition apparatus that performs image processing on images captured by a pair of imaging units, and the same light source is flashed in advance by the pair of imaging units.
  • the imaging cycle is an integral multiple of the cycle, and the exposure timing of the pair of imaging units is shifted by a half cycle of the blinking cycle, and the pixel value of the light source captured by one imaging unit and the other imaging unit When the difference from the pixel value of the light source is greater than or equal to a threshold value, the light source is determined to be a blinking light source.
  • the recognition performance of a blinking light source can be improved at a low cost without impairing the performance of an image recognition application such as preceding vehicle recognition or white line recognition.
  • the block diagram explaining the function of a vehicle-mounted image recognition apparatus.
  • the figure which shows an example of blinking of a blinking light source, and the exposure timing of a 1st imaging part and a 2nd imaging part.
  • the flowchart which shows the operation example of an exposure timing adjustment part.
  • FIG. 1 is a functional block diagram showing an example of an in-vehicle image recognition device in the present embodiment.
  • the in-vehicle image recognition device 10 alternately captures images by shifting the exposure timing between the first imaging unit 11a and the second imaging unit 11b that are paired in the in-vehicle camera, and is obtained from the first imaging unit 11a.
  • the flashing light source is detected from one or both of the first image 12a and the second image 12b obtained from the second imaging unit 11b, and from the next time, the first light source is synchronized with the lighting timing of the flashing light source.
  • the blinking light source is recognized with high accuracy without impairing the performance of the image recognition function.
  • the in-vehicle image recognition device 10 is a stereo camera mounted on a vehicle, and as illustrated, a first imaging unit 11a and a second imaging unit 11b, and a first imaging unit 11a and a second imaging unit.
  • the distance data generation unit 13 that generates distance information based on the first image 12a and the second image 12b acquired by 11b, the distance data storage unit 14 that stores the distance information to the imaging target, and image recognition are performed.
  • the first imaging unit 11a and the second imaging unit 11b face the same direction, and image the same range.
  • it is arranged separately on the left and right in the vicinity of the vehicle rearview mirror so as to image the front of the vehicle through the windshield.
  • the distance data generation unit 13 generates distance information such as a parallax image by viewing the first image 12a and the second image 12b in stereo.
  • the image recognition unit 15 recognizes an object such as a signal, a sign, a preceding vehicle, a pedestrian, or a bicycle from the image using at least one of the first image 12a and the second image 12b.
  • a recognition method known pattern matching or the like can be used.
  • the light source recognition unit 16 recognizes a light source from at least one of the first image 12a and the second image 12b, and recognizes whether the recognized light source is a blinking light source.
  • the exposure timing adjustment unit 17 adjusts the exposure timings of the first imaging unit 11a and the second imaging unit 11b based on the image recognition result of the image recognition unit 15 and the external information received by the external information reception unit 18.
  • the first exposure control unit 19a and the second exposure control unit 19b control the exposure timing of the first imaging unit 11a and the second imaging unit 11b in accordance with, for example, an instruction from the exposure timing adjustment unit 17. Further, based on the image information acquired from the first imaging unit 11a and the second imaging unit 11b, the exposure parameter is adjusted to be optimal for image recognition.
  • the external information receiver 18 is connected to the vehicle network 20, and acquires external information such as vehicle speed information 21, yaw rate 22, GPS information 23, time information 24, and map data 25 by the external information receiver 18.
  • the vehicle image recognition device 10 captures the first imaging unit 11a and the second imaging in accordance with the blinking cycle of the LED when imaging a display device such as a traffic light using an LED as a blinking light source or an electric road sign. The image is taken in accordance with the exposure timing of the unit 11b.
  • the imaging cycle Tc of the first imaging unit 11a and the second imaging unit 11b is set to an integer Nc times the blinking cycle Tl, the exposure timing of the first imaging unit 11a, and the second imaging
  • Nc the exposure timing of the unit 11b
  • Ns + 0.5 times the blinking period the first image and the second image shifted by a half period with respect to the blinking are obtained.
  • at least one of the first image 12a and the second image 12b records the light source in the lighting state.
  • the light source recognition unit 16 performs a recognition process of extracting a light source from the first image 12a and the second image 12b. Then, when the pixel value of the extracted light source has a difference of a certain value or more between the first image 12a and the second image 12b, it is determined that the light source is a blinking light source.
  • the exposure timing adjustment unit 17 of the first imaging unit 11a and the second imaging unit 11b that captures the bright light of the blinking light source.
  • the exposure timing of the other imaging unit is changed in accordance with the exposure timing, and the exposure timings of the first imaging unit 11a and the second imaging unit 11b are adjusted at the same time.
  • the distance data generation unit generates distance data from the vehicle to the light source based on the first image and the second image captured by the first imaging unit and the second imaging unit.
  • FIG. 2 is a diagram illustrating an example of the timing of blinking of the blinking light source and exposure of the first imaging unit and the second imaging unit.
  • the exposure timing adjustment unit 17 captures the imaging cycle of the first imaging unit 11a and the second imaging unit 11b.
  • Tc is set to an integer Nc times the blinking cycle Tl.
  • the exposure timing of one imaging unit of the first imaging unit 11a and the second imaging unit 11b is the dark timing of the blinking light source
  • the exposure timing of the other imaging unit is the blinking cycle Tl.
  • the timing is always bright.
  • the light source recognition unit 16 recognizes that the light source is blinking by recognizing that the image obtained from one imaging unit has a bright light source and the image obtained from the other imaging unit does not have a bright light source. Can be recognized. Therefore, from the next time on, the flashing light source can be reliably imaged by exposing the first imaging unit 11a and the second imaging unit 11b simultaneously at the timing when the flashing light source is bright. Therefore, the blinking light source can be viewed in stereo, and accurate distance information to the blinking light source can be obtained.
  • the blinking light source can be imaged with sufficient pixel values and can be recognized in the same way as a non-flashing light source (always-on light source). It becomes.
  • the light source can be recognized in accordance with any exposure timing of the first imaging unit 11a and the second imaging unit 11b. Therefore, by performing stereo viewing in accordance with the exposure timing of one of the imaging units, it is possible to recognize the blinking light source and obtain distance information. That is, the state is the same as when recognizing a light source that always emits light.
  • any method can be used as long as it can extract features from an image such as template matching or classification using color information, and a known method can be used.
  • FIG. 3 is a flowchart for explaining an example of an exposure timing setting method by the exposure timing adjustment unit.
  • the exposure timing adjustment unit 17 determines whether or not to perform distance data generation by stereo vision based on the recognition result of the image recognition unit 15 and the information acquired from the external information reception unit 18.
  • step S1 recognition result information is received from the image recognition unit 15 and the light source recognition unit 16.
  • step S2 external information such as vehicle speed information 21, yaw rate 22, GPS information 23, time information 24, and map data 25 connected to the vehicle network 20 is acquired from the external information receiving unit 18.
  • step S3 it is determined whether or not the blinking light source blinking period Tl is 1/50 second. Since the imaging cycle Tc and the imaging shift time are determined based on the flashing cycle of the flashing light source, it is necessary to determine the flashing cycle of the flashing light source.
  • step S4 the blinking cycle of the blinking light source is set to 1/50 second, otherwise it is 1/50. If it is determined that it is not seconds, in step S5, the blinking cycle of the blinking power supply is set to 1/60 seconds.
  • the first time since the blinking cycle is unknown, set it to either 1/50 seconds or 1/60 seconds.
  • the imaging cycle is an integral multiple of the intended flashing cycle, and the flashing cycle setting is Can be judged correct.
  • the pixel value of the light source fluctuates step by step in images captured by the same imaging unit, it is determined that the blinking cycle of the light source is different from the current setting, and the setting of the blinking cycle is switched to the other one. . From the next time, the previous cycle is set, and switching is performed when it is determined that the blinking cycle is different based on the same reference.
  • the blinking cycle of the blinking light source may be determined based on the power supply frequency of the blinking light source. Since the frequency of the commercial power supply is determined depending on the region, the blinking cycle may be determined by receiving GPS information or a position where the vehicle travels in cooperation with the car navigation system. For example, in the case of Japan, the power frequency of East Japan is 50 Hz, and the power frequency of Western Japan is 60 Hz. Therefore, by specifying the current position of the vehicle from external information such as GPS information 23 and map data 25, the power frequency of the flashing power source can be recognized. For example, when the power frequency is 50 Hz, the flashing cycle of the flashing light source is 1 / When the power supply frequency is 50 Hz for 50 seconds, it can be set that the blinking cycle of the blinking light source is 1/60 seconds.
  • step S6 it is determined whether or not the light emission timing of the blinking light source has been estimated. If the light emission timing of the flashing light source has been estimated, the first imaging unit 11a and the second imaging unit 11b simultaneously capture images in accordance with the light emission timing of the flashing light source in step S8. In this case, the blinking light source can be reliably imaged by both the first imaging unit 11a and the second imaging unit 11b, and distance information to the light source can be acquired by stereo vision.
  • step S7 it is determined whether distance information is necessary in step S7.
  • the distance information can be acquired with a stereo camera, but distance information is not necessary for every frame. Therefore, depending on the situation, stereo viewing is performed (exposure timing is set simultaneously) or exposure timing is set. Whether to shift is selected based on the recognition result acquired in step S1 and the external information acquired in step S2. If it is determined that the distance information is necessary, the first imaging unit and the second imaging unit are simultaneously imaged in accordance with the light emission timing of the blinking light source in step S8. If it is determined that distance information is not necessary, the exposure timings of the first imaging unit and the second imaging unit are shifted by a predetermined time in step S9.
  • the exposure timing is given priority over other applications over the estimation of the flashing light emission timing. Take images simultaneously.
  • the in-vehicle image recognition device 10 recognizes a preceding vehicle or a pedestrian from the image, and acquires the result from the image recognition unit 15.
  • the preceding vehicle is less than a certain distance, or when a pedestrian or bicycle exists near the traveling path of the own vehicle, it is determined that distance information is necessary to avoid danger.
  • a counter is provided inside, and even when there is no change in the surrounding environment, stereo vision and the case where the exposure timing is shifted alternately. May be repeated.
  • the exposure timing may be shifted only when the vehicle approaches a certain distance or more. It is desirable that the parameters related to exposure be optimal for recognizing a preceding vehicle or a pedestrian. However, when priority is given to recognizing a light source, the shutter opening time is lengthened. May be done.
  • the on-vehicle image recognition device 10 since the shutter length and the pixel transfer amount of the imaging unit are not changed, the performance of the image recognition application is not impaired, and the light source extraction processing remains the same as the conventional processing load. Therefore, the recognition performance of the flashing light source can be improved at low cost.
  • the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
  • a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
  • SYMBOLS 10 Car-mounted image recognition apparatus, 11a ... 1st imaging part, 11b ... 2nd imaging part, 12a ... 1st image, 12b ... 2nd image, 13 ... Distance data generation part, 14 ... Distance data, 15 ... Image recognition unit, 16 ... Light source recognition unit, 17 ... Exposure timing adjustment unit, 18 ... External information reception unit, 19a ... First exposure control unit, 19b ... Second exposure control unit, 20 ... Vehicle network, 21 ... Vehicle speed information, 22 ... Yaw rate, 23 ... GPS information, 24 ... Time information, 25 ... Map data

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Studio Devices (AREA)
  • Traffic Control Systems (AREA)

Abstract

 先行車認識や白線認識等の画像認識アプリケーションの性能を損なうことなく、かつ低コストに点滅光源の認識性能を向上させる車載画像認識装置を得るために、車載カメラにおいて対となる第1の撮像部11aと第2の撮像部11bとで露光のタイミングをずらして交互に撮像を行い、第1の撮像部11aから得られる第1の画像12aと第2の撮像部11bから得られる第2の画像12bのどちらか一方もしくは両方から点滅する光源を検出し、さらに次回からは点滅光源の点灯するタイミングに合わせて第1の撮像部11aと第2の撮像部11bとで露光を行うことにより画像認識機能の性能を損なうことなく高い精度で点滅光源を認識する。

Description

車載画像認識装置
 本発明は、車載カメラに係り、特に、先行車および白線および歩行者、および光源といった複数の対象を同時に認識する機能を備えた車載画像認識装置に関わる。
 近年、信号機や、電光式の道路標識に使用される光源が、従来の白熱灯からLEDへ置き換わっている。LEDは白熱灯と比較し、消費電力が少なく、かつ高寿命であるという利点がある。また日光の反射により発光しているように見える疑似点灯もないため視認性が高く、安全性の向上にも寄与するとされている。
 信号機や道路標識に使用されるLEDは、点灯時において、高速で点灯と消灯を繰り返す点滅をしている。この点滅の周期は、商用電源が50Hzの地域では100Hz、60Hzの地域では120Hzであり、高速であるため人間には常時点灯しているように見える。
 車載カメラでは、点滅を繰り返す光源が消灯している状態とカメラの露光のタイミングが一致した場合、カメラから得られる画像に光源の発する光が記録されないという問題がある。また、カメラの撮像周期、点滅光源の周期が定数倍に近い場合、複数のフレームに連続して前記の問題が発生する。
 上記の問題を解決するために、例えば特許文献1には、多数の撮像部を設置し、点滅光源の点滅周期より短い時間で露光タイミングをずらしながら撮像し、光源の輝度変化を観測することにより点滅光源を認識する手段が開示されている。
特開2007-286943号公報
 しかしながら、前述した従来の手法では、光源の点滅周期より短い周期Tledで画像を取得し、各画像に対して認識処理を実施するので、処理負荷が非常に大きくなる。また、多数の画像を撮像部から認識部に転送するので、バスの転送量が膨大になることが想定される。画像認識機能を有する車載カメラでは、先行車や歩行者、道路上の白線など多数の物体を同時に認識することが求められており、処理負荷やバス転送量が大きいと、他の認識処理との両立が困難となる。また、より多くの数の撮像部が必要となるため、コストが高いという問題がある。
 本発明の目的は、上記の点に鑑みてなされたものであり、その目的とするところは、先行車認識や白線認識などの画像認識アプリケーションの性能を損なうことなく、かつ低コストに点滅光源の認識性能を向上させることができる車載撮像装置を提供することである。
 上記課題を解決する本発明の車載画像認識装置は、一対の撮像部で撮像した画像を画像処理する車載画像認識装置であって、前記一対の撮像部により同一の光源を、予め設定された点滅周期を整数倍した撮像周期でかつ前記一対の撮像部の露光タイミングを前記点滅周期の半周期分だけずらして撮像し、一方の撮像部で撮像した光源の画素値と他方の撮像部で撮像した光源の画素値との差が閾値以上である場合に前記光源が点滅光源であると判定することを特徴とする。
 本発明によれば、先行車認識や白線認識などの画像認識アプリケーションの性能を損なうことなく、かつ低コストに点滅光源の認識性能を向上させることができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
車載画像認識装置の機能を説明するブロック図。 点滅光源の点滅と、第1の撮像部および第2の撮像部の露光タイミングの一例を示す図。 露光タイミング調整部の動作例を示すフローチャート。
 次に、本発明の実施形態について図を用いて以下に説明する。
 図1は、本実施形態における車載画像認識装置の一例を示した機能ブロック図である。
 車載画像認識装置10は、車載カメラにおいて一対となる第1の撮像部11aと第2の撮像部11bとで露光のタイミングをずらして交互に撮像を行い、第1の撮像部11aから得られる第1の画像12aと、第2の撮像部11bから得られる第2の画像12bのどちらか一方もしくは両方から点滅する光源を検出し、さらに次回からは点滅光源の点灯するタイミングに合わせて第1の撮像部11aと第2の撮像部11bとで露光を行うことにより画像認識機能の性能を損なうことなく高い精度で点滅光源を認識するものである。
 車載画像認識装置10は、車両に搭載されるステレオカメラであって、図示のように、第1の撮像部11aおよび第2の撮像部11bと、第1の撮像部11aおよび第2の撮像部11bにより取得した第1の画像12aおよび第2の画像12bに基づいて距離情報を生成する距離データ生成部13と、撮像対象までの距離情報を格納する距離データ格納部14と、画像認識を行う画像認識部15と、光源の認識を行う光源認識部16と、露光のタイミングをそれぞれ調整する露光タイミング調整部17と、外部の情報を受信する外部情報受信部18と、第1の撮像部11aおよび第2の撮像部11bの露光を制御する第1の露光制御部19aおよび第2の露光制御部19bを具備するものである。
 第1の撮像部11aおよび第2の撮像部11bは、同じ方向を向いており、また同じ範囲を撮像する。例えば、フロントガラスを通して車両前方を撮像するように、車両のルームミラー近傍で左右に分かれて配置されている。
 距離データ生成部13は、第1の画像12aと第2の画像12bをステレオ視して視差画像などの距離情報を生成する。画像認識部15は、第1の画像12aと第2の画像12bの少なくとも一方を用いて、信号や標識、先行車、歩行者、自転車などの対象物を画像から認識する。認識方法としては、既知のパターンマッチング等を用いることができる。
 光源認識部16は、第1の画像12aと第2の画像12bの少なくとも一方から光源を認識し、その認識した光源が点滅光源であるか否かを認識する。露光タイミング調整部17は、画像認識部15の画像認識結果および外部情報受信部18で受信した外部情報に基づき、第1の撮像部11aおよび第2の撮像部11bの露光タイミングを調整する。第1の露光制御部19aおよび第2の露光制御部19bは、例えば露光タイミング調整部17からの指示に応じて、第1の撮像部11aおよび第2の撮像部11bの露光タイミングを制御する。また、第1の撮像部11a及び第2の撮像部11bから取得した画像の情報に基づいて、画像認識に最適な露光パラメータに調整する。外部情報受信部18は、車両ネットワーク20に接続されており、外部情報受信部18によって、車速情報21、ヨーレート22、GPS情報23、時刻情報24、地図データ25などの外部情報を取得する。
 車両画像認識装置10は、点滅光源であるLEDを使用した信号機や電光式の道路標識等の表示機を撮像する際に、LEDの点滅周期に合わせて第1の撮像部11aおよび第2の撮像部11bの露光のタイミングを合わせて撮像する。
 具体的には、第1の撮像部11aおよび第2の撮像部11bの撮像周期Tcを点滅周期Tlの整数Nc倍に設定し、かつ第1の撮像部11aの露光タイミングと、第2の撮像部11bの露光タイミングとを、点滅周期の整数Ns+0.5倍ずらすことにより、点滅に対して半周期ずらした第1の画像および第2の画像を取得する。これにより、少なくとも第1の画像12aと第2の画像12bのいずれかには、点灯状態で光源が記録される。
 光源認識部16では、第1の画像12aと第2の画像12bから光源を抽出する認識処理を行う。そして、抽出した光源の画素値が、第1の画像12aと第2の画像12bとの間で、一定値以上の差がある場合に、かかる光源は点滅光源であると判定する。露光タイミング調整部17は、光源認識部16において光源が点滅光源と判定された場合、第1の撮像部11aと第2の撮像部11bのうち、点滅光源が明るく撮像される方の撮像部の露光タイミングに合わせて、他方の撮像部の露光タイミングを変更し、第1の撮像部11aおよび第2の撮像部11bの露光タイミングが同時になるように調整する。距離データ生成部は、第1の撮像部および第2の撮像部で撮像した第1の画像および第2の画像に基づいて車両から光源までの距離データを生成する。
 次に、本発明の露光タイミング調整の一例を図2に示す。
 図2は、点滅光源の点滅と、第1の撮像部および第2の撮像部の露光のタイミングの一例を示す図である。図2に示すように、点滅周期TlでLEDの輝度が増減して点滅光源が発光している場合、露光タイミング調整部17は、第1の撮像部11aおよび第2の撮像部11bの撮像周期Tcを点滅周期Tlの整数Nc倍に設定する。これにより、点滅光源であっても、毎フレームを同じ輝度で撮像することができ、各フレームに写る点滅光源の輝度を一定にできる。
 そして、露光タイミング調整部17は、第1の撮像部の露光タイミングと第2の撮像部の露光タイミングのずれ時間を、点滅周期Tlの整数Ns+0.5倍に設定する(ずれ時間=Tl×(Ns+0.5))。したがって、第1の撮像部11aと第2の撮像部11bは、LEDの点滅周期Tlの半周期だけずれた輝度を取得することができる。ここで、第1の撮像部11aと第2の撮像部11bのうち、一方の撮像部の露光タイミングが、点滅光源の暗いタイミングであった場合、他方の撮像部の露光タイミングは点滅周期Tlに対して半周期ずれているため、必ず明るいタイミングとなる。
 光源認識部16は、一方の撮像部から得られる画像は明るい光源が存在し、他方の撮像部から得られる画像は明るい光源が存在しないことを認識することにより、光源が点滅していることを認識することができる。したがって、次回以降、点滅光源が明るいタイミングに合わせて第1の撮像部11aおよび第2の撮像部11bを同時に露光することにより、点滅光源を確実に撮像することができる。したがって、点滅光源をステレオ視することができ、点滅光源までの正確な距離情報を得ることができる。
 点滅光源を撮像し、第1の撮像部11aおよび第2の撮像部11bが同じ輝度で撮像されるタイミングであっても、信号機や電光式の道路標識等のLEDを用いた表示機は、視認性を確保するために、先行車や路面等と比較して十分に明るい。したがって、先行車や路面を認識するために最適な露光を行った場合でも、点滅光源を十分な画素値で撮像でき、点滅していない光源(常時点灯の光源)と同様に認識することが可能となる。
 この場合は、第1の撮像部11aおよび第2の撮像部11bのいずれの露光タイミングに合わせても光源の認識は可能である。したがって、いずれか一方の撮像部の露光タイミングに合わせてステレオ視を行うことで、点滅光源を認識し、かつ距離情報を得ることができる。つまり、常時発光している光源を認識する場合と同様の状態となる。
 なお、画像から光源を認識する方法としては、例えばテンプレートマッチングや色情報を用いた分類など、画像から特徴を抽出できる方法であればよく、公知の方法を用いることができる。
 図3は、露光タイミング調整部による露光タイミングの設定方法の一例を説明するフローチャートである。露光タイミング調整部17は、画像認識部15の認識結果および、外部情報受信部18から取得した情報に基づき、ステレオ視による距離データ生成を行うかを判定する。
 まず、ステップS1では、画像認識部15および光源認識部16から認識結果情報を受信する。次に、ステップS2では、外部情報受信部18から、車両ネットワーク20に接続されている車速情報21、ヨーレート22、GPS情報23、時刻情報24、地図データ25などの外部情報を取得する。
 そして、ステップS3では、点滅光源の点滅周期Tlが1/50秒であるか否かが判断される。撮像周期Tcおよび撮像ずらし時間は、点滅光源の点滅周期に基づいて決定されるので、点滅光源の点滅周期を判断する必要がある。
 ステップS3で、点滅光源の点滅周期が1/50秒であると判断した場合には、ステップS4で、点滅光源の点滅周期を1/50秒に設定し、それ以外の場合、すなわち1/50秒ではないと判断した場合には、ステップS5で、点滅電源の点滅周期を1/60秒に設定する。
 初回は、点滅周期が不明であるため1/50秒と1/60秒のいずれかに設定しておく。例えば光源の画素値が、同一の撮像部で撮像される画像においてほぼ同一の値となっている場合は、撮像周期が意図した一方の点滅周期の整数倍となっており、点滅周期の設定が正しいと判断できる。
 一方、光源の画素値が、同一の撮像部で撮像される画像において段階的に変動する場合は、光源の点滅周期が現在の設定と異なると判断し、点滅周期の設定を他方のものに切り替える。次回以降は前回の周期を設定し、同様の基準で点滅周期が異なると判定された場合に切り替えを行う。
 点滅光源の点滅周期は、点滅光源の電源周波数に基づいて決定してもよい。商用電源の周波数は地域により決まっているため、GPS情報や、カーナビゲーションシステムと連携して自車が走行する位置を受信し、点滅周期を決定してもよい。例えば日本の場合、東日本の電源周波数は50Hz、西日本の電源周波数は60Hzである。したがって、GPS情報23や地図データ25などの外部情報から車両の現在位置を特定することにより、点滅電源の電源周波数を認識でき、例えば電源周波数が50Hzの場合には点滅光源の点滅周期が1/50秒、電源周波数が60Hzの場合には点滅光源の点滅周期が1/60秒であると設定できる。
 次に、ステップS6では、点滅光源の発光タイミングを推定済か否かを判定する。点滅光源の発光タイミングを推定済である場合は、ステップS8により点滅光源の発光タイミングに合わせて第1の撮像部11aおよび第2の撮像部11bで同時に撮像する。この場合、第1の撮像部11aおよび第2の撮像部11bの両方で点滅光源を確実に撮像でき、かつステレオ視により光源までの距離情報を取得することができる。
 一方、点滅光源の発光タイミングを推定出来ていない場合は、ステップS7で、距離情報が必要かの判定を行う。ステレオカメラでは距離情報を取得可能であることが特徴だが、全てのフレームで距離情報が必要ではないため、状況に応じてステレオ視を行うか(露光タイミングを同時にするか)、または、露光タイミングをずらすかを、ステップS1で取得した認識結果および、ステップS2で取得した外部情報に基づいて選択する。距離情報が必要であると判定された場合には、ステップS8により点滅光源の発光タイミングに合わせて第1の撮像部および第2の撮像部を同時に撮像する。距離情報が必要でないと判定された場合には、ステップS9により、第1の撮像部と第2の撮像部の露光タイミングを所定の時間ずらして撮像する。
 例えば、歩行者検出や先行車検出などの他のアプリケーションがステレオカメラからの距離情報を必要としている状況である場合には、点滅光源の発光タイミングの推定よりも他のアプリケーションを優先して露光タイミングを同時にして撮像する。
 車載画像認識装置10では、先行車や歩行者などを画像上から認識しており、その結果を画像認識部15から取得する。先行車が一定の距離以下である場合や、歩行者や自転車が自車の進行路の近くに存在する場合には、危険を回避するため、距離情報が必要と判断する。また、ステレオ視では立体物を効果的に検出可能であるため、内部にカウンタを設けておき、周囲の環境に変動がない場合においても、一定周期でステレオ視と、露光タイミングをずらす場合を交互に繰り返してもよい。
 地図データ25から信号機や電光式の道路標識の位置を取得できる場合には、自車が一定距離以上接近した場合のみ露光タイミングをずらすようにしてもよい。露光に関するパラメータは、先行車や歩行者を認識するために最適なものであることが望ましいが、光源を認識することを優先すると判定する場合には、その限りでなくシャッタ開放時間を長くするなどを行ってよい。
 上記した車載画像認識装置10によれば、撮像部のシャッタ長や画素転送量を変えることがないため、画像認識アプリケーションの性能を損なうことなく、また光源の抽出処理は従来のままのため処理負荷を増大せず、かつハードウェアの増加がないため低コストに、点滅する光源の認識性能を向上することができる。
 以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
10…車載画像認識装置、11a…第1の撮像部、11b…第2の撮像部、12a…第1の画像、12b…第2の画像、13…距離データ生成部、14…距離データ、15…画像認識部、16…光源認識部、17…露光タイミング調整部、18…外部情報受信部、19a…第1の露光制御部、19b…第2の露光制御部、20…車両ネットワーク、21…車速情報、22…ヨーレート、23…GPS情報、24…時刻情報、25…地図データ

Claims (8)

  1.  一対の撮像部で撮像した画像を画像処理する車載画像認識装置であって、
     前記一対の撮像部により同一の光源を、予め設定された点滅周期を整数倍した撮像周期でかつ前記一対の撮像部の露光タイミングを前記点滅周期の半周期分だけずらして撮像し、
     一方の撮像部で撮像した光源の画素値と他方の撮像部で撮像した光源の画素値との差が閾値以上である場合に前記光源が点滅光源であると判定することを特徴とする車載画像認識装置。
  2.  前記光源が点滅光源であると判定した場合に、前記一対の撮像部のうち、点滅光源が明るく撮像されている方の撮像部の露光タイミングに、他方の撮像部の露光タイミングを一致させて、前記一対の撮像部により同時の露光タイミングで撮像した一対の画像に基づいて光源までの距離データを生成することを特徴とする請求項1に記載の車載画像認識装置。
  3.  予め2種類の点滅周期が設定されており、前記光源の画素値が、同一の撮像部で撮像される画像において一定の場合は点滅周期の設定が正しいと判断し、段階的に変動する場合は点滅周期の設定が異なっていると判断し、点滅周期の設定を他方のものに切り替えることを特徴とする請求項2に記載の車載画像認識装置。
  4.  第1の撮像部と、
     前記第1の撮像部と並列に配置された第2の撮像部と、
     前記第1の撮像部及び前記第2の撮像部から取得した画像から距離データを生成する距離データ生成部と、
     前記第1の撮像部及び前記第2の撮像部から取得した画像から光源を認識する光源認識部と、を有し、
     前記第1の撮像部及び前記第2の撮像部は、認識する点滅光源の点滅周期に基づく撮像周期でかつ前記第1の撮像部及び前記第2の撮像部の露光タイミングを前記点滅周期の半周期分だけずらして撮像し、
     前記光源認識部は、前記第1の撮像部で撮像した画像と前記第2の撮像部で撮像した画像に基づいて前記光源が点滅光源であるか否かを判定することを特徴とする請求項1に記載の車載画像認識装置。
  5.  前記第1の撮像部及び第2の撮像部から取得した画像と前記距離データとに基づいて画像認識を行う画像認識部と、
     車速、ヨーレート、GPS情報、時刻情報、地図データの少なくとも一つを含む情報を受信する外部情報受信部と、を有し、
     前記光源認識部の認識結果と、前記画像認識部の認識結果と、前記外部情報受信部の情報に基づいて前記露光タイミングを調整する露光タイミング調整部を有することを特徴とする請求項4に記載の車載画像認識装置。
  6.  前記第1の撮像部及び第2の撮像部から取得した画像の情報に基づいて、画像認識に最適な露光パラメータに調整する第1の露光制御部と、第2の露光調整部とを有する請求項5に記載の車載画像認識装置。
  7.  前記露光タイミング調整部は、前記光源認識部の認識結果に基づき、前記点滅光源の点滅周期を推定し、前記露光タイミングを調整することを特徴とする請求項5に記載の車載画像認識装置。
  8.  前記露光タイミング調整部は、前記画像認識部の認識結果および、前記外部情報受信部から取得した情報に基づき、ステレオ視による距離データ生成を行うかを判定することを特徴とする請求項5に記載の車載画像認識装置。
PCT/JP2014/079902 2013-12-25 2014-11-12 車載画像認識装置 WO2015098325A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/102,282 US20170041591A1 (en) 2013-12-25 2014-11-12 Vehicle-Mounted Image Recognition Device
EP14873199.5A EP3089442B1 (en) 2013-12-25 2014-11-12 Vehicle-mounted image recognition device
JP2015554663A JP6325000B2 (ja) 2013-12-25 2014-11-12 車載画像認識装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-267292 2013-12-25
JP2013267292 2013-12-25

Publications (1)

Publication Number Publication Date
WO2015098325A1 true WO2015098325A1 (ja) 2015-07-02

Family

ID=53478202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079902 WO2015098325A1 (ja) 2013-12-25 2014-11-12 車載画像認識装置

Country Status (4)

Country Link
US (1) US20170041591A1 (ja)
EP (1) EP3089442B1 (ja)
JP (1) JP6325000B2 (ja)
WO (1) WO2015098325A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016162975A1 (ja) * 2015-04-08 2018-02-08 日産自動車株式会社 信号機検出装置及び信号機検出方法
JP2018064257A (ja) * 2016-10-15 2018-04-19 キヤノン株式会社 撮像システム
CN109070802A (zh) * 2016-05-20 2018-12-21 金泰克斯公司 具有激活曝光校正的成像器
EP3472000A4 (en) * 2016-08-08 2019-07-10 Gentex Corporation SYSTEM AND METHOD FOR PROCESSING VIDEO DATA FOR DETECTING AND REMOVING FLIMMING LIGHT SOURCES THROUGH DYNAMIC EXPOSURE CONTROL

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX350449B (es) * 2014-03-10 2017-09-07 Nissan Motor Dispositivo de deteccion de semaforo y metodo de deteccion de semaforo.
BR112016020884B1 (pt) * 2014-03-10 2022-01-11 Nissan Motor Co. Ltd. Dispositivo de detecção de sinal de trânsito e método de detecção de sinal de trânsito
JP6137081B2 (ja) * 2014-07-29 2017-05-31 株式会社デンソー 車載機器
JP6759460B2 (ja) * 2017-06-07 2020-09-23 日立オートモティブシステムズ株式会社 画像処理装置
JP2019036907A (ja) * 2017-08-21 2019-03-07 ソニーセミコンダクタソリューションズ株式会社 撮像装置及び機器
US10200599B1 (en) * 2017-09-07 2019-02-05 Qualcomm Incorporated Image capture setting determination in devices having access to multiple cameras
KR20190051146A (ko) * 2017-11-06 2019-05-15 에스케이하이닉스 주식회사 이미지 동기화 장치 및 이를 포함하는 이미지 정보 생성 장치
US11030472B2 (en) 2019-04-30 2021-06-08 Axon Enterprise, Inc. Asymmetrical license plate reading (ALPR) camera system
CA3138302A1 (en) 2019-04-30 2020-11-05 Axon Enterprise, Inc. License plate reading system with enhancements
US10715738B1 (en) * 2019-04-30 2020-07-14 Axon Enterprise, Inc. Asymmetrical license plate reading (ALPR) camera system
US20220329723A1 (en) * 2019-09-03 2022-10-13 Jaguar Land Rover Limited Method and system for mitigating image flicker from strobed lighting systems
US10863106B1 (en) * 2019-10-21 2020-12-08 GM Global Technology Operations LLC Systems and methods for LED flickering and banding detection
CN111291620A (zh) * 2020-01-14 2020-06-16 北京小马智行科技有限公司 识别光源的方法、装置和系统
CN113160590B (zh) * 2020-01-23 2023-02-03 华为技术有限公司 智能汽车的控制方法、装置及相关设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286943A (ja) 2006-04-18 2007-11-01 Fujifilm Corp 信号灯検出装置
JP2008134844A (ja) * 2006-11-28 2008-06-12 Alpine Electronics Inc ドライブレコーダおよびその画像取得タイミング制御方法
JP2011234318A (ja) * 2010-04-30 2011-11-17 Yamaha Corp 撮像装置
JP2013237389A (ja) * 2012-05-16 2013-11-28 Denso Corp 灯火検出装置及び車両制御システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046292B2 (en) * 2002-01-16 2006-05-16 Hewlett-Packard Development Company, L.P. System for near-simultaneous capture of multiple camera images
JP4337353B2 (ja) * 2002-03-25 2009-09-30 セイコーエプソン株式会社 フリッカ検出装置、フリッカ補正装置、撮像装置、フリッカ検出プログラムおよびフリッカ補正プログラム
KR101085802B1 (ko) * 2007-03-05 2011-11-22 르네사스 일렉트로닉스 가부시키가이샤 촬상 장치 및 플리커 검출 방법
JP2009065586A (ja) * 2007-09-10 2009-03-26 Hitachi Ltd 車載カメラ
FR3009469B1 (fr) * 2013-07-31 2016-11-25 Morpho Procede de synchronisation de plusieurs cameras d'un systeme de prise de vues, notamment un systeme de prise de vues stereoscopique et systeme de prise de vues pour la mise en œuvre dudit procede.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007286943A (ja) 2006-04-18 2007-11-01 Fujifilm Corp 信号灯検出装置
JP2008134844A (ja) * 2006-11-28 2008-06-12 Alpine Electronics Inc ドライブレコーダおよびその画像取得タイミング制御方法
JP2011234318A (ja) * 2010-04-30 2011-11-17 Yamaha Corp 撮像装置
JP2013237389A (ja) * 2012-05-16 2013-11-28 Denso Corp 灯火検出装置及び車両制御システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3089442A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016162975A1 (ja) * 2015-04-08 2018-02-08 日産自動車株式会社 信号機検出装置及び信号機検出方法
CN109070802A (zh) * 2016-05-20 2018-12-21 金泰克斯公司 具有激活曝光校正的成像器
CN109070802B (zh) * 2016-05-20 2021-09-28 金泰克斯公司 具有激活曝光校正的成像器
EP3472000A4 (en) * 2016-08-08 2019-07-10 Gentex Corporation SYSTEM AND METHOD FOR PROCESSING VIDEO DATA FOR DETECTING AND REMOVING FLIMMING LIGHT SOURCES THROUGH DYNAMIC EXPOSURE CONTROL
US10412312B2 (en) 2016-08-08 2019-09-10 Gentex Corporation System and method for processing video data to detect and eliminate flickering light sources through dynamic exposure control
JP2018064257A (ja) * 2016-10-15 2018-04-19 キヤノン株式会社 撮像システム

Also Published As

Publication number Publication date
JPWO2015098325A1 (ja) 2017-03-23
JP6325000B2 (ja) 2018-05-16
EP3089442A4 (en) 2017-08-30
EP3089442A1 (en) 2016-11-02
US20170041591A1 (en) 2017-02-09
EP3089442B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP6325000B2 (ja) 車載画像認識装置
CN103213540B (zh) 车辆的行驶环境辨识装置
EP3588939B1 (en) Bundling night vision and other driver assistance systems (das) using near infra red (nir) illumination and a rolling shutter
US10552688B2 (en) Method and device for detecting objects in the surroundings of a vehicle
CN112040154A (zh) 用于减少成像光源中的闪烁伪影的系统和方法
JP5187651B2 (ja) 自動車におけるカメラシステムのための露光制御方法
JP5772714B2 (ja) 灯火検出装置及び車両制御システム
CN102047166A (zh) 用于产生机动车周围环境的图像的装置、摄像机和方法
JP2013206380A (ja) 車外監視装置
JP2018019387A (ja) 信号処理装置、撮影装置、及び、信号処理方法
WO2016076016A1 (ja) 車載カメラシステム
JP2017016194A (ja) 車外環境認識装置
JP6335037B2 (ja) 車外環境認識装置
JP6759460B2 (ja) 画像処理装置
KR102155374B1 (ko) 자동차용 야간 화상들을 형성하는 시스템 및 방법
JP5898535B2 (ja) 撮像ユニットの露光制御装置
EP2709356B1 (en) Method for operating a front camera of a motor vehicle considering the light of the headlight, corresponding device and motor vehicle
JP6259335B2 (ja) 車外環境認識装置
CN112565618B (zh) 曝光控制装置
JPWO2018056070A1 (ja) 信号処理装置、撮影装置、及び、信号処理方法
JP6335065B2 (ja) 車外環境認識装置
GB2586802A (en) System and method for identifying light emitter flicker
US20170061221A1 (en) Method and device for detecting objects in the dark using a vehicle camera and a vehicle lighting system
JP2018182540A (ja) 表示制御装置、表示制御方法及びカメラモニタリングシステム
US20220329723A1 (en) Method and system for mitigating image flicker from strobed lighting systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015554663

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15102282

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014873199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE