WO2015098192A1 - 半導体装置及び表示装置 - Google Patents

半導体装置及び表示装置 Download PDF

Info

Publication number
WO2015098192A1
WO2015098192A1 PCT/JP2014/073642 JP2014073642W WO2015098192A1 WO 2015098192 A1 WO2015098192 A1 WO 2015098192A1 JP 2014073642 W JP2014073642 W JP 2014073642W WO 2015098192 A1 WO2015098192 A1 WO 2015098192A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
metal material
film
electrode
semiconductor film
Prior art date
Application number
PCT/JP2014/073642
Other languages
English (en)
French (fr)
Inventor
福島 康守
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/107,897 priority Critical patent/US9864248B2/en
Publication of WO2015098192A1 publication Critical patent/WO2015098192A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/464Lateral top-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Definitions

  • the present invention relates to a semiconductor device and a display device.
  • the display elements of image display devices such as television receivers are shifting from conventional cathode ray tubes to thin display panels such as liquid crystal panels and plasma display panels, which enables thinning of image display devices.
  • a display panel used in such an image display device is provided with a large number of TFTs in a matrix as switching elements for controlling the operation of each pixel.
  • silicon semiconductors such as amorphous silicon and polycrystalline silicon have been generally used as semiconductor films used in TFTs.
  • organic semiconductor films made of organic materials have been used as semiconductor films. Has been proposed. Since the organic semiconductor film can be formed at a low temperature, it can be formed by a low-cost coating process such as a spin coating method, or a flexible substrate such as a plastic substrate can be used. Since it can be used, it is suitable for a flexible image display device.
  • An example of a semiconductor device using such an organic semiconductor film is described in Patent Documents 1 and 2 below.
  • Patent Document 1 the source electrode and the drain electrode are respectively covered with an adhesion layer made of a metal having good adhesion to the gate insulating film and a current path, and the semiconductor layer is in ohmic contact.
  • An organic TFT formed with an ohmic contact layer to form is described.
  • Patent Document 2 described above describes an organic field effect transistor in which a source electrode and a drain electrode to which charges are transferred through an organic semiconductor material layer are made of a mixture of a conductive polymer material and a charge transfer complex. Has been.
  • Patent Document 2 discloses an organic electric field effect in which a source electrode and a drain electrode are composed of a conductive layer and a conductive coating layer, and the conductive coating layer is composed of a mixture of a conductive polymer material and a charge transfer complex. A type transistor is also described.
  • the ohmic contact layer can provide good ohmic contact with the organic semiconductor film
  • the ohmic contact layer is made of a material selected from gold, platinum, palladium, and the like. There was a problem that the manufacturing cost was high.
  • Patent Document 2 Although the source electrode and the drain electrode are made of a mixture of a conductive polymer material and a charge transfer complex, good ohmic contact with the organic semiconductor film can be obtained, but a metal material is used. Compared to the case of the conventional case, the electric resistance of the source electrode and the drain electrode itself was high. Further, in Patent Document 2 described above, since the source electrode and the drain electrode are composed of the conductive layer and the conductive coating layer, good ohmic contact with the organic semiconductor film is obtained, and the electrical resistance of the source electrode and the drain electrode itself is obtained. However, since the conductive layer is made of a material selected from gold, platinum, palladium and the like, there is still a problem that the manufacturing cost is high.
  • the present invention has been completed based on the above situation, and while reducing the contact resistance of the composite metal electrode to the organic semiconductor film, the electrical resistance of the composite metal electrode itself is reduced and the manufacturing cost is reduced. The purpose is to let you.
  • the semiconductor device of the present invention is an organic semiconductor film made of an organic semiconductor material and a composite metal electrode in contact with the organic semiconductor film, and is in ohmic contact with the base metal material made of a metal material with respect to the organic semiconductor film.
  • the base metal material made of the metal material is mixed with the low resistance metal material that is in ohmic contact with the organic semiconductor film and has a lower contact resistance than the base metal material.
  • the low resistance metal material is arranged so as to be exposed at least on the contact surface with respect to the organic semiconductor film, the composite metal electrode can be satisfactorily brought into ohmic contact with the organic semiconductor film with sufficiently low contact resistance.
  • the electrical resistance of the composite metal electrode itself can be kept low.
  • the low-resistance metal material is generally considered to have a higher material cost than the base metal material. Therefore, the low-resistance metal material has a low resistance compared to the case where the composite metal electrode is composed of only the low-resistance metal material. Since the amount of metal used is small, the manufacturing cost can be reduced.
  • the base metal material has a film shape, and at least an end surface along the thickness direction thereof is the contact surface, whereas the low resistance metal material is contained in the base metal material in large numbers. It is made into the attitude
  • the low-resistance metal material is composed of flat metal pieces contained in a large amount in the base metal material, and the flat surface is compared with the end surface along the thickness direction of the base metal material forming a film shape. Therefore, the metal piece is easily exposed on the end surface of the base metal material.
  • the contact resistance of the composite metal electrode with respect to the organic semiconductor film can be reduced, for example, even if the content of the metal piece is reduced to further reduce the manufacturing cost. Can be sufficiently reduced.
  • the composite metal electrode is formed such that the low-resistance metal material is exposed not only on the contact surface but also on a non-contact surface that is not in contact with the organic semiconductor film. In this way, it is not necessary to provide the low resistance metal material with selectivity compared to a case where the low resistance metal material is selectively exposed only on the contact surface with respect to the organic semiconductor film. . Thereby, since a composite metal electrode can be easily provided at the time of manufacture, the manufacturing cost can be further reduced.
  • the composite metal electrode is formed by laminating a low-resistance metal main layer having a relatively large amount of the low-resistance metal material and a base metal main layer having a relatively large amount of the base metal material. It becomes.
  • the low-resistance metal main layer of the composite metal electrode has a contact surface with respect to the organic semiconductor film in the composite metal electrode.
  • the low resistance metal material is more reliably exposed.
  • the low-resistance metal material is efficiently in contact with the organic semiconductor film. For example, even if the content of the low-resistance metal material is reduced to further reduce the manufacturing cost, the composite metal for the organic semiconductor film is used. It becomes possible to sufficiently reduce the contact resistance of the electrode.
  • At least a part of the organic semiconductor film is laminated on a base surface on which the composite metal electrode is laminated, and the film thickness thereof is thinner than the thickness of the composite metal electrode.
  • the electrode is arranged such that the low-resistance metal main layer is unevenly distributed on the base surface side in the film thickness direction of the organic semiconductor film. In this way, charge is mainly exchanged between the portion of the composite metal electrode on the base surface side and the organic semiconductor film. Therefore, in the composite metal electrode, the low-resistance metal main layer is arranged in a form unevenly distributed on the base surface side in the film thickness direction of the organic semiconductor film, so that charges are more smoothly transferred between the organic semiconductor film and the composite metal electrode. Is exchanged. Thereby, the contact resistance of the composite metal electrode with respect to the organic semiconductor film can be sufficiently reduced.
  • the composite metal electrode is configured such that the content ratio of the low-resistance metal material is in the range of 1% to 30%.
  • a low resistance metal material is generally considered to have a higher material cost than a base metal material. If the content ratio of the low-resistance metal material is less than 1%, the contact resistance of the composite metal electrode with respect to the organic semiconductor film tends to be too large. Conversely, if the content ratio of the low-resistance metal material is more than 30%, Since the amount of the resistance metal material used is increased, the manufacturing cost tends to be too high.
  • the contact resistance of the composite metal electrode to the organic semiconductor film can be sufficiently reduced, and the amount of the low-resistance metal material used Therefore, the manufacturing cost can be reduced sufficiently.
  • the organic semiconductor film comprising:
  • the composite metal electrode is stacked on the opposite side of the substrate with respect to the gate insulating film and overlapped with the gate electrode, whereas the composite metal electrode is disposed on the substrate with respect to the gate insulating film.
  • the source electrode and the drain electrode are stacked on the side opposite to the side and are spaced apart from each other and are in contact with the organic semiconductor film. In this way, when a voltage is applied to the gate electrode stacked on the substrate, an electric field is applied to the organic semiconductor film that overlaps the gate electrode through the gate insulating film.
  • Electric charges are transferred between the source electrode and the drain electrode forming the composite metal electrode through the semiconductor film.
  • the electrodes and the gate insulating film are not arranged on the side opposite to the substrate side with respect to the organic semiconductor film, the organic semiconductor film is affected by the heat generated during the formation of each electrode during manufacturing. It is avoided.
  • a substrate on which the organic semiconductor film and the composite metal electrode are stacked, a gate insulating film stacked on the opposite side of the substrate side with respect to the organic semiconductor film and the composite metal electrode, and the gate insulation A gate electrode laminated on a side opposite to the substrate side with respect to the film, and the organic semiconductor film is arranged so as to overlap the gate electrode, whereas the composite metal electrode is , And a source electrode and a drain electrode, which are arranged at intervals and are respectively in contact with the organic semiconductor film.
  • the charge is transferred between the source electrode and the drain electrode forming the composite metal electrode through the organic semiconductor film.
  • a layer with good electrical conductivity may be formed in the portion of the organic semiconductor film opposite to the substrate side in the film thickness direction. Since a layer having good electrical conductivity in the film is arranged closer to the gate electrode than other portions, the electrical characteristics of the semiconductor device are good.
  • An adhesive film that is disposed between the base metal surface on which the composite metal electrode is stacked and the composite metal electrode and that adheres the composite metal electrode to the base surface is provided. In this way, even when the base metal material and the low-resistance metal material forming the composite metal electrode are materials having low adhesion to the base surface, the adhesion of the composite metal electrode to the base surface is achieved by the adhesive film. Secured.
  • the organic semiconductor film has a portion laminated on the base surface on which the composite metal electrode is laminated, and a portion laminated on the opposite side to the base surface side with respect to the composite metal electrode. And a protective film laminated on the side opposite to the base surface side with respect to the organic semiconductor film. In this way, the organic semiconductor film has a portion laminated on the side opposite to the base surface side with respect to the composite metal electrode, and thus is affected by heat generated during formation of the composite metal electrode during manufacturing. It is avoided.
  • the protective film is laminated on the side opposite to the base surface side with respect to the organic semiconductor film, for example, another film is disposed on the side opposite to the organic semiconductor film side with respect to the protective film, Even when the film has the property of degrading the organic semiconductor film, the organic semiconductor film is protected by the protective film, so that the organic semiconductor film is hardly deteriorated.
  • the low-resistance metal material is made of any one of silver, gold, platinum, and palladium. In this way, since the low resistance metal material is satisfactorily in ohmic contact with the organic semiconductor film, the contact resistance of the composite metal electrode with respect to the organic semiconductor film can be more suitably lowered.
  • the metal material forming the base metal material is made of any of copper, aluminum, tungsten, molybdenum, cobalt, and nickel. If it does in this way, the material cost which concerns on a composite metal electrode can be suppressed low, restraining the electrical resistance of composite metal electrode itself low enough.
  • the display device of the present invention includes an element substrate having the above-described semiconductor device as a switching element.
  • the electrical characteristics of the switching element are excellent, so that excellent display performance is obtained and the manufacturing cost is low.
  • the display device of the present invention it is preferable to include a counter substrate facing the element substrate and a liquid crystal layer sandwiched between the element substrate and the counter substrate.
  • a display device can be applied as a liquid crystal display device to various uses such as a display of a smartphone or a tablet personal computer.
  • FIG. 1 is a schematic plan view showing a connection configuration of a liquid crystal panel, a flexible substrate, and a control circuit board on which a driver according to Embodiment 1 of the present invention is mounted.
  • Schematic cross-sectional view showing a cross-sectional configuration along the long side direction of the liquid crystal display device Schematic sectional view showing the sectional structure of the liquid crystal panel
  • FIG. 5 is an enlarged view of FIG. 4, which is a cross-sectional view showing a contact portion between a source electrode and an organic semiconductor film constituting a TFT FIG.
  • FIG. 2 is a drawing showing a TFT manufacturing method, and is a cross-sectional view showing a process of patterning a resist applied on a gate metal film forming a gate electrode and etching the gate metal film using the resist as a mask
  • FIG. 2 is a drawing showing a TFT manufacturing method, and is a cross-sectional view showing a step of forming a gate insulating film on a resin substrate and a gate electrode
  • FIG. 6 is a drawing showing a method for manufacturing a TFT, and is a cross-sectional view showing a process of patterning a resist applied on a base metal film forming a source electrode and a drain electrode and etching the base metal film using the resist as a mask
  • FIG. 2 is a diagram showing a method for manufacturing a TFT, showing a step of patterning a resist applied on a transparent electrode film formed on a drain electrode and a planarizing film, and etching the transparent electrode film using the resist as a mask.
  • Cross section Sectional drawing which shows the cross-sectional structure of TFT which concerns on Embodiment 2 of this invention
  • Sectional drawing which shows the contact part of the source electrode and organic-semiconductor film which comprise TFT concerning Embodiment 3 of this invention
  • Sectional drawing which shows the contact part of the source electrode which comprises TFT concerning Embodiment 4 of this invention
  • an organic-semiconductor film Sectional drawing which shows the cross-sectional structure of TFT concerning Embodiment 5 of this invention
  • Sectional drawing which shows the cross-sectional structure of TFT concerning Embodiment 6 of this invention
  • Sectional drawing which shows the contact part of the source electrode which comprises TFT concerning Embodiment 7 of this invention
  • FIGS. 1 A first embodiment of the present invention will be described with reference to FIGS.
  • the liquid crystal display device 10 is illustrated.
  • a part of each drawing shows an X axis, a Y axis, and a Z axis, and each axis direction is drawn to be a direction shown in each drawing.
  • FIGS. 2 to 4 are used as a reference, and the upper side of the figure is the front side and the lower side of the figure is the back side.
  • the liquid crystal display device 10 includes a liquid crystal panel (display device, display panel) 11, a driver (panel drive unit) 21 that drives the liquid crystal panel 11, and various inputs to the driver 21.
  • a control circuit board (external signal supply source) 12 that supplies signals from the outside
  • a flexible board (external connection component) 13 that electrically connects the liquid crystal panel 11 and the external control circuit board 12, and the liquid crystal panel 11
  • a backlight device (illumination device) 14 that is an external light source for supplying light.
  • the liquid crystal display device 10 also includes a pair of front and back exterior members 15 and 16 for housing and holding the liquid crystal panel 11 and the backlight device 14 assembled to each other.
  • the liquid crystal display device 10 includes a portable information terminal (including an electronic book and a PDA), a mobile phone (including a smartphone), a notebook computer (including a tablet notebook computer), a digital photo frame, It is used for various electronic devices (not shown) such as portable game machines and electronic ink paper. For this reason, the screen size of the liquid crystal panel 11 constituting the liquid crystal display device 10 is set to about several inches to several tens of inches, and is generally classified into a small size and a small size.
  • the backlight device 14 includes a chassis 14a having a substantially box shape that opens toward the front side (the liquid crystal panel 11 side), and a light source (not shown) disposed in the chassis 14a (for example, a cold cathode tube, LED, organic EL, etc.) and an optical member (not shown) arranged to cover the opening of the chassis 14a.
  • the optical member has a function of converting light emitted from the light source into a planar shape.
  • the liquid crystal panel 11 has a vertically long rectangular shape (rectangular shape) as a whole, and an image is located at a position offset toward one end side (upper side in FIG. 1) in the long side direction.
  • Display area (active area) AA is arranged, and the driver 21 and the flexible substrate 13 are respectively attached to the other end side in the long side direction (the lower side shown in FIG. 1).
  • an area outside the display area AA is a non-display area (non-active area) NAA in which no image is displayed, and a part of the non-display area NAA is a mounting area for the driver 21 and the flexible substrate 13. Yes.
  • a frame-shaped one-dot chain line that is slightly smaller than the CF substrate 11a represents the outer shape of the display area AA, and an area outside the one-dot chain line is a non-display area NAA.
  • the control circuit board 12 is attached to the back surface of the chassis 14a (the outer surface opposite to the liquid crystal panel 11 side) of the backlight device 14 with screws or the like.
  • the control circuit board 12 is mounted with electronic components for supplying various input signals to the driver 21 on a board made of paper phenol or glass epoxy resin, and wiring (conductive path) of a predetermined pattern (not shown) is provided. Routed formation.
  • One end (one end side) of the flexible substrate 13 is electrically and mechanically connected to the control circuit board 12 via an ACF (Anisotropic Conductive Film) (not shown).
  • the flexible substrate (FPC substrate) 13 includes a base material made of a synthetic resin material (for example, polyimide resin) having insulating properties and flexibility, and a large number of wirings are provided on the base material. It has a pattern (not shown), and one end in the length direction is connected to the control circuit board 12 arranged on the back side of the chassis 14a as described above, while the other end Since the portion (the other end side) is connected to the array substrate 11 b in the liquid crystal panel 11, the liquid crystal display device 10 is bent in a folded shape so that the cross-sectional shape is substantially U-shaped.
  • a synthetic resin material for example, polyimide resin
  • the wiring pattern is exposed to the outside to form terminal portions (not shown), and these terminal portions are respectively connected to the control circuit board 12 and the liquid crystal panel 11. Are electrically connected to each other. Thereby, an input signal supplied from the control circuit board 12 side can be transmitted to the liquid crystal panel 11 side.
  • the driver 21 is composed of an LSI chip having a drive circuit therein, and operates based on a signal supplied from a control circuit board 12 that is a signal supply source. An input signal supplied from the control circuit board 12 is processed to generate an output signal, and the output signal is output toward the display area AA of the liquid crystal panel 11.
  • the driver 21 has a horizontally long rectangular shape when viewed in a plan view (longitudinal along the short side of the liquid crystal panel 11), and also with respect to a non-display area NAA of the liquid crystal panel 11 (array substrate 11b described later). It is mounted directly, that is, COG (Chip On Glass).
  • the long side direction of the driver 21 coincides with the X-axis direction (the short side direction of the liquid crystal panel 11), and the short side direction coincides with the Y-axis direction (the long side direction of the liquid crystal panel 11).
  • the liquid crystal panel 11 will be described again. As shown in FIG. 3, the liquid crystal panel 11 is interposed between a pair of transparent (excellent light-transmitting) substrates 11a and 11b and both the substrates 11a and 11b, and its optical characteristics change as an electric field is applied. A liquid crystal layer 11c containing liquid crystal molecules as a substance is provided, and both substrates 11a and 11b are bonded together by a sealing agent (not shown) in a state where a cell gap corresponding to the thickness of the liquid crystal layer 11c is maintained.
  • a sealing agent not shown
  • Both substrates 11a and 11b are made of, for example, a synthetic resin material (for example, polyethylene terephthalate resin, polyethylene resin, naphthalate resin, polyether sulfone resin, polypropylene resin, polycarbonate resin, polyester resin, polyimide resin, etc.) and are made of glass. Since the plate thickness is thinner than the above, it has moderate flexibility. Therefore, the liquid crystal panel 11 is a flexible display panel having a certain flexibility, and displays an image in the display area AA even when the liquid crystal panel 11 is bent to warp the surface, for example. Is possible.
  • a synthetic resin material for example, polyethylene terephthalate resin, polyethylene resin, naphthalate resin, polyether sulfone resin, polypropylene resin, polycarbonate resin, polyester resin, polyimide resin, etc.
  • the front side is a CF substrate (counter substrate) 11a
  • the back side is an array substrate (element substrate, TFT substrate, active matrix substrate) 11b
  • the CF substrate 11a has a short side dimension substantially equal to that of the array substrate 11b as shown in FIGS. 1 and 2, but the long side dimension is smaller than that of the array substrate 11b. It is bonded to 11b with one end (upper side shown in FIG. 1) in the long side direction aligned. Therefore, the other end (the lower side shown in FIG.
  • the configuration existing in the display area AA in the array substrate 11b and the CF substrate 11a will be sequentially described in detail.
  • the TFTs 17 and the pixel electrodes 18 are semiconductor devices.
  • the TFTs 17 and the pixel electrodes 18 are provided side by side in a matrix, and surrounding the gate lines (row control lines and scanning lines) and source lines (column control lines and data lines) (not shown) that form a lattice. Arranged.
  • the TFT 17 and the pixel electrode 18 are arranged in parallel in a matrix form at the intersection of the gate wiring and the source wiring forming a lattice shape.
  • Each of the gate wiring and the source wiring is made of a metal material, and is arranged in such a manner that a gate insulating film 23 described later is interposed between the intersecting portions.
  • a gate wiring and a source wiring are respectively connected to a gate electrode 17a and a source electrode 17b of a TFT 17 described later, and a pixel electrode 18 is connected to a drain electrode 17c of the TFT 17.
  • the pixel electrode 18 has a vertically long rectangular shape (rectangular shape) when seen in a plan view, and is made of a transparent electrode material such as ITO (IndiumInTin Oxide) or ZnO (Zinc Oxide).
  • the array substrate 11b may be provided with a capacitor wiring (not shown) that is parallel to the gate wiring and overlaps with the gate insulating film 23 while crossing the pixel electrode 18.
  • the CF substrate 11a has colored portions such as R (red), G (green), and B (blue) as viewed in plan with the pixel electrodes 18 on the array substrate 11b side.
  • a large number of color filters 11h are arranged in parallel so as to overlap each other.
  • a substantially lattice-shaped light shielding layer (black matrix) 11i for preventing color mixture is formed between each colored portion constituting the color filter 11h.
  • the light shielding layer 11i is arranged so as to overlap the above-described gate wiring and source wiring in a plan view.
  • a solid counter electrode 11j facing the pixel electrode 18 on the array substrate 11b side is provided on the surface of the color filter 11h and the light shielding layer 11i.
  • one display pixel which is a display unit by a set of three colored portions of R (red), G (green), and B (blue) and three pixel electrodes 18 facing them. Is configured.
  • the display pixel includes a red pixel having an R colored portion, a green pixel having a G colored portion, and a blue pixel having a B colored portion.
  • the pixels of each color constitute a pixel group by being repeatedly arranged along the row direction (X-axis direction) on the plate surface of the liquid crystal panel 11, and this pixel group constitutes the column direction (Y-axis direction). Many are arranged side by side.
  • the array substrate 11b includes a first metal film 22, a gate insulating film (insulating film) 23, in order from the lower layer side (side closer to the array substrate 11b, side far from the CF substrate 11a, back side).
  • a second metal film 24, an organic semiconductor film 25, a planarizing film 26, and a transparent electrode film 27 are stacked.
  • an alignment film 11e is disposed on the planarization film 26 and the transparent electrode film 27 so as to face the liquid crystal layer 11c (see FIG. 3). ).
  • the first metal film 22 is laminated on the upper layer side of the array substrate 11b, and for example, a laminated film in which titanium (Ti), aluminum (Al), and titanium are laminated in this order from the lower layer side. (The illustration of each laminated film is omitted).
  • the first metal film 22 constitutes a gate wiring and a gate electrode 17a of the TFT 17, respectively.
  • the lowermost titanium layer has a thickness of, for example, 5 nm to 30 nm
  • the intermediate aluminum layer has a thickness of, for example, 100 nm to 400 nm.
  • the titanium layer has a thickness in the range of, for example, 30 nm to 100 nm.
  • the gate insulating film 23 is laminated on the upper layer side of the array substrate 11b and the first metal film 22 and has a solid pattern.
  • the gate insulating film 23 is made of an organic resin material such as polyimide, polystyrene, polyvinylphenol, or fluoropolymer. It is said.
  • the organic resin material used for the gate insulating film 23 has photosensitivity.
  • the gate insulating film 23 has a thickness in the range of 100 nm to 1000 nm, for example.
  • the second metal film 24 is laminated on the upper layer side of the gate insulating film 23, and constitutes a source wiring and a source electrode 17 b and a drain electrode 17 c of the TFT 17.
  • the surface of the gate insulating film 23 is a base surface on which the source electrode 17b and the drain electrode 17c are stacked.
  • the thickness of the second metal film 24 is, for example, in the range of 100 nm to 400 nm. The detailed configuration of the source electrode 17b and the drain electrode 17c made of the second metal film 24 will be described later in detail.
  • the organic semiconductor film 25 is stacked on the upper side of a part of the gate insulating film 23 and the second metal film 24 (source electrode 17b and drain electrode 17c), and in the plane of the array substrate 11b. Is patterned in an island shape according to the planar arrangement of the TFT 17 in FIG.
  • the organic semiconductor film 25 is made of an organic semiconductor material, specifically, a low molecular weight organic semiconductor material such as TIPS pentacene, TES pentacene, TES-ADT, dif-TES-ADT, or polythiophene, polyfluorene, etc. Of high molecular organic semiconductor materials.
  • the organic semiconductor material forming the organic semiconductor film 25 can be formed on the array substrate 11b by a low-temperature process as compared with, for example, a silicon-based semiconductor material, the array substrate as in the present embodiment.
  • 11b is suitable for the structure which consists of a synthetic resin material whose heat-resistant temperature (glass transition point) is low compared with glass, ie, the flexible liquid crystal panel 11.
  • FIG. Since the organic semiconductor material forming the organic semiconductor film 25 can be dispersed in a solvent, it can be formed on the array substrate 11b by a low-cost coating process (for example, spin coating method). In addition, it is possible to form a film on the array substrate 11b by, for example, a vacuum deposition method.
  • the thickness of the organic semiconductor film 25 is, for example, in the range of 30 nm to 100 nm, and is preferably made thinner than the thickness of the second metal film 24 described above.
  • the planarizing film 26 is laminated on the upper layer side of the gate insulating film 23, the second metal film 24, and the organic semiconductor film 25 and has a solid pattern, for example, polyimide or polystyrene. It is made of an organic resin material such as polyvinylphenol or fluoropolymer. The organic resin material used for the planarizing film 26 has photosensitivity. A number of contact holes CH are formed in the planarizing film 26 in accordance with the planar arrangement of the TFTs 17 in the plane of the array substrate 11b.
  • the planarizing film 26 has a thickness in the range of 1 ⁇ m to 3 ⁇ m, for example.
  • the transparent electrode film 27 is laminated on an upper layer side of the planarization film 26 and a part of the second metal film 24 (drain electrode 17c), and in an island shape according to the planar arrangement of the TFT 17 in the plane of the array substrate 11b. It is patterned and is made of a transparent electrode material such as ITO (Indium Tin Oxide) or ZnO (Zinc Oxide).
  • the transparent electrode film 27 constitutes the pixel electrode 18.
  • the TFT 17 includes a gate electrode 17a made of the first metal film 22 stacked on the array substrate 11b, and a source electrode 17b and a drain electrode made of the second metal film 24 stacked on the gate insulating film 23. 17c, the gate insulating film 23, and the organic semiconductor film 25 stacked on a part of the source electrode 17b and the drain electrode 17c, which is a so-called bottom gate type (reverse stagger type).
  • the organic semiconductor film 25 is laminated in such a manner as to straddle a portion of the gate insulating film 23 sandwiched between the source electrode 17b and the drain electrode 17c and a portion of the source electrode 17b and the drain electrode 17c facing each other. Has been. Since the source electrode 17b and the drain electrode 17c are partly in direct contact with the organic semiconductor film 25, the movement of electric charges between the source electrode 17b and the drain electrode 17c via the organic semiconductor film 25 is prevented. It is possible. That is, the organic semiconductor film 25 constitutes a channel portion of the TFT 17.
  • the organic semiconductor film 25 is arranged so as to overlap with the gate electrode 17a through the gate insulating film 23, when a voltage is applied to the gate electrode 17a, an electric field is applied to the organic semiconductor film 25, so that the organic semiconductor film 25 is organic.
  • the charge moving between the source electrode 17b and the drain electrode 17c through the semiconductor film 25 can be controlled.
  • the pixel electrode 18 is in contact with the drain electrode 17 c forming the TFT 17 through a contact hole CH formed in the planarization film 26. Accordingly, when a voltage is applied to the gate electrode 17 a of the TFT 17, charges move between the source electrode 17 b and the drain electrode 17 c through the organic semiconductor film 25 and a predetermined pixel potential is applied to the pixel electrode 18. .
  • the organic semiconductor material used for the organic semiconductor film 25 has a problem that the contact resistance to the source electrode 17b and the drain electrode 17c made of a metal material tends to be higher than that of a silicon-based semiconductor material.
  • attempts have been made to use a mixture of a conductive polymer material and a charge transfer complex as a material for the source electrode 17b and the drain electrode 17c this increases the electrical resistance of the source electrode 17b and the drain electrode 17c itself. For this reason, the electrical characteristics of the TFT 17 are deteriorated.
  • the source electrode 17b and the drain electrode 17c are in contact with the base metal material 28 made of a metal material and the organic semiconductor film 25, as shown in FIGS.
  • a low-resistance metal material 29 made of a metal material whose resistance is lower than that of the base metal material 28 is mixed, that is, a “composite metal electrode”. Since the low resistance metal material 29 is exposed on the contact surface CS of the source electrode 17b and the drain electrode 17c with respect to the organic semiconductor film 25, the exposed low resistance metal material 29 is disposed in the organic semiconductor film 25. In contrast, ohmic contact is achieved with sufficiently low contact resistance.
  • the source electrode 17b and the drain electrode 17c are both formed by mixing a base metal material 28 and a low-resistance metal material 29 made of a metal material, it is compared with a case where a conductive polymer is used.
  • the electrical resistance of the source electrode 17b and the drain electrode 17c itself is kept low.
  • the low-resistance metal material 29 generally has a higher material cost than the base metal material 28, the source electrode and the drain electrode are assumed to be composed of only the low-resistance metal material 29. Compared with, the amount of the low-resistance metal material 29 used is small, so that the manufacturing cost can be reduced.
  • FIGS. 5 and 6 the source electrode 17b of the source electrode 17b and the drain electrode 17c is shown as a representative. However, the drain electrode 17c has a configuration in which FIGS. The arrangement of the end face 28a is reversed left and right).
  • the base metal material 28 has a film shape with a constant film thickness, and its outer shape substantially matches the outer shape of the source electrode 17 b and the drain electrode 17 c.
  • the lower principal surface is a fixing surface to the surface of the gate insulating film 23 as a base, whereas the two electrodes 17b, out of the outer peripheral end surfaces along the thickness direction (Z-axis direction).
  • Opposing end faces 28 a that 17 c face each other constitute a main part (main contact part) of the contact surface CS with respect to the organic semiconductor film 25.
  • the entire area of the opposing end surface 28a of the base metal material 28 constitutes the main part of the contact surface CS.
  • a part of the upper main surface 28 b (a part adjacent to the opposed end surface 28 a) also constitutes a part (sub-contact part) of the contact surface CS with respect to the organic semiconductor film 25.
  • two end surfaces (the left end surface shown in FIG. 5 and the right end surface shown in FIG. 5) adjacent to the opposing end surface 28a, a part of the end surfaces 28c and 28d (adjacent to the opposing end surface 28a).
  • a portion (sub-contact portion) of the contact surface CS with respect to the organic semiconductor film 25 is configured (see FIG. 5).
  • the metal material is, for example, copper (Cu).
  • Al aluminum
  • molybdenum (Mo) molybdenum
  • Ni nickel
  • etc. can be used in addition to copper. Is done.
  • the low-resistance metal material 29 is made of a flat metal piece MP contained in the base metal material 28 as shown in FIGS. 5 and 6.
  • Each of the metal pieces MP constituting the low resistance metal material 29 has a rectangular shape when viewed in a plane, and the dimensions and thickness dimensions of each side thereof are those of the sides viewed in the plane of the base metal material 28. Both are set to be sufficiently smaller than the dimension and the thickness dimension.
  • each metal piece MP forming the low resistance metal material 29 has a dimension of each side viewed in a plane of, for example, about 10 nm to 1 ⁇ m.
  • the large number of metal pieces MP constituting the low-resistance metal material 29 has the flat surface FS substantially parallel to the main surface 28b of the base metal material 28 and substantially to the opposing end surface 28a that is the main part of the contact surface CS. They are regularly arranged so that they are orthogonal (crossed). Many metal pieces MP constituting the low-resistance metal material 29 have a flat surface FS substantially orthogonal to two end surfaces 28c and 28d (part of the contact surface CS) adjacent to the opposed end surface 28a. It is said. Of the contact surface CS of the base metal material 28, the number of metal pieces MP exposed at the end faces 28a, 28c, 28d is greater than the number of metal pieces MP exposed at the main surface 28b.
  • the metal piece MP is easily exposed to the end faces 28a, 28c, and 28d, which are the contact surfaces CS, so that the content ratio of the low-resistance metal material 29 is reduced to reduce the material cost and the manufacturing cost. It is possible to reduce.
  • the large number of metal pieces MP constituting the low-resistance metal material 29 includes contact surfaces CS to the organic semiconductor film 25 in the base metal material 28 (the entire area of the opposed end surface 28 a, the upper main surface). 28b and a part of the end faces 28c and 28d).
  • the portion of the low resistance metal material 29 exposed to the contact surface CS is in good ohmic contact with the organic semiconductor film 25.
  • a large number of metal pieces MP constituting the low-resistance metal material 29 are arranged so as to be exposed also on the non-contact surface NCS that is not in contact with the organic semiconductor film 25 in the base metal material 28.
  • a large number of metal pieces MP constituting the low resistance metal material 29 are arranged so as to be exposed on any of the outer surfaces of the base metal material 28.
  • the source electrode 17b and the drain electrode 17c (second metal film 24) can be easily provided at the time of manufacturing, so that the manufacturing cost can be further reduced.
  • the non-contact surface NCS includes a lower main surface of the outer surface of the base metal material 28, an end surface opposite to the facing end surface 28a, and most of end surfaces 28c and 28d adjacent to the facing end surface 28a ( And a portion adjacent to the end surface opposite to the opposite end surface 28a).
  • the low resistance metal material 29 according to the present embodiment is made of silver (Ag), for example.
  • a metal material of the low resistance metal material 29 it is possible to use, for example, gold, platinum, palladium and the like other than silver. That is, it is preferable to use a noble metal as the metal material of the low resistance metal material 29.
  • gold, platinum, and palladium are used as the metal material of the low-resistance metal material 29, the work function is higher than that of the metal material that forms the base metal material 28, and the work function is higher.
  • the low-resistance metal material 29 is brought into better ohmic contact with the organic semiconductor film 25. Can do.
  • the material cost per unit mass for the low resistance metal material 29 is higher than the material cost for the base metal material 28.
  • the content ratio of the low resistance metal material 29 in the source electrode 17b and the drain electrode 17c is smaller than the content ratio of the base metal material 28. Thereby, compared with the case where a source electrode and a drain electrode are comprised only by the low resistance metal material 29 etc., the material cost concerning the source electrode 17b and the drain electrode 17c can be reduced.
  • the content ratio of the low-resistance metal material 29 in the source electrode 17b and the drain electrode 17c is specifically in the range of 1% to 30%.
  • the content ratio of the low-resistance metal material is less than 1%, the contact resistance of the source electrode 17b and the drain electrode 17c with respect to the organic semiconductor film 25 tends to be too high, and conversely, the content ratio of the low-resistance metal material is 30%. If it exceeds, the amount of the low-resistance metal material used is increased, so that the production cost tends to be too high. In that respect, by setting the content ratio of the low-resistance metal material 29 in the range of 1% to 30%, the contact resistance of the source electrode 17b and the drain electrode 17c with respect to the organic semiconductor film 25 can be sufficiently reduced, and the low Since the usage amount of the resistance metal material 29 is reduced, the manufacturing cost can be sufficiently reduced.
  • the present embodiment has the above structure, and a method for manufacturing the liquid crystal panel 11 constituting the liquid crystal display device 10 will be described.
  • the liquid crystal panel 11 includes a CF substrate manufacturing process for manufacturing the CF substrate 11a, an array substrate manufacturing process for manufacturing the array substrate 11b, a liquid crystal dropping process for dropping a liquid crystal material on the array substrate 11b or the CF substrate 11a, and both substrates 11a. , 11b, and a bonding process.
  • the array substrate manufacturing process will be described in detail. Since the CF substrate 11a and the array substrate 11b according to the present embodiment are made of synthetic resin, there is a concern that the plate thickness is thinner than that made of glass and flatness is not ensured. In each manufacturing process, the flatness is ensured by supporting each substrate 11a, 11b from the back side by a glass-made supporting substrate SB having high rigidity. The support substrate SB is removed from each of the substrates 11a and 11b after finishing each manufacturing process.
  • a first metal film forming process for forming the first metal film 22, a gate insulating film forming process for forming the gate insulating film 23, and a second metal film forming process for forming the second metal film 24 are performed.
  • An organic semiconductor film forming step for forming the organic semiconductor film 25, a flattening film forming step for forming the flattening film 26, and a transparent electrode film forming step for forming the transparent electrode film 27 are sequentially performed. .
  • a three-layer laminated film forming the first metal film 22 is sequentially formed into a solid shape by a film formation method such as sputtering, CVD, or vacuum deposition.
  • the resist RS1 having the same planar shape as the gate electrode 17a and the gate wiring (not shown) is patterned, and the gate electrode 17a and the gate wiring are patterned by wet etching, for example, using the resist RS1 as a mask.
  • the titanium layer in the laminated film is etched using a hydrogen fluoride-based or oxidant-based etchant, and the aluminum layer is etched using a mixed liquid etchant of phosphoric acid, nitric acid, and acetic acid.
  • the resist RS1 is removed with a stripping solution.
  • a printing method using a conductive paste, an electroplating method, an electroless plating method, or the like can be used as a method for forming the first metal film 22.
  • a state in which a portion of the first metal film 22 that is not masked by the resist RS ⁇ b> 1 is etched is represented by an arrow line.
  • an organic resin material is applied in a solid form on the surface of the array substrate 11b and the patterned first metal film 22, and then fired. This firing is performed at about 100 ° C. to 150 ° C. for several minutes to several tens of minutes. If it is necessary to form an opening such as a contact hole in the gate insulating film 23, the opening may be patterned by a photolithography method.
  • the second metal film 24 is formed in a solid shape on the surface of the gate insulating film 23.
  • this film forming method it is preferable to use a sputtering method or a vacuum evaporation method.
  • a target is prepared in which a metal piece MP, which is a low-resistance metal material 29 made of silver, is dispersed and blended with a base metal material 28 made of copper at a content ratio of 1% to 30%. Then, the target may be transferred onto the gate insulating film 23 by sputtering the target with argon gas or the like.
  • the base metal material 28 which consists of copper and the low resistance metal material 29 which consists of silver are vapor-deposited simultaneously, for example.
  • the resist RS2 having the same planar shape as the source electrode 17b, the drain electrode 17c, and the source wiring (not shown) is patterned, and the source electrode 17b is formed by wet etching, for example, using the resist RS2 as a mask.
  • the drain electrode 17c and the source wiring are patterned.
  • the base metal material 28 made of copper is etched using hydrogen peroxide and an organic acid-based etchant.
  • the low resistance metal material 29 contained in the etched portion of the base metal material 28 is lifted off and removed. Accordingly, the low-resistance metal material 29 arranged in a manner straddling the portion to be etched and the portion not to be etched of the base metal material 28 is exposed on the outer surface of the source electrode 17b and the drain electrode 17c patterned by etching. Will be distributed.
  • the metal piece MP constituting the low-resistance metal material 29 is arranged such that the flat surface FS is substantially orthogonal to the end surfaces 28a, 28c, 28d of the base metal material 28, so that the end surfaces 28a, 28c, 28d Many are exposed.
  • the resist RS2 is removed with a stripping solution.
  • FIG. 9 a state in which a portion of the second metal film 24 that is not masked by the resist RS ⁇ b> 2 is etched is represented by an arrow line.
  • the organic semiconductor material forming the organic semiconductor film 25 with respect to the surfaces of the gate insulating film 23 and the second metal film 24 (source electrode 17b and drain electrode 17c) is solid.
  • the organic semiconductor film 25 is formed by baking after coating. This firing is performed at about 100 ° C. to 150 ° C. for several minutes to several tens of minutes.
  • the island-shaped resist RS3 is patterned on the organic semiconductor film 25, and the organic semiconductor film 25 is patterned by, for example, wet etching using the resist RS3 as a mask. That is, the organic semiconductor film 25 is patterned by photolithography.
  • a printing method (screen printing method, ink jet printing method, etc.) can also be used.
  • a state in which a portion of the organic semiconductor film 25 that is not masked by the resist RS ⁇ b> 3 is etched is represented by an arrow line.
  • the organic resin material is solid on the surfaces of the gate insulating film 23, the second metal film 24 (the source electrode 17 b and the drain electrode 17 c), and the organic semiconductor film 25. It is made to bake after apply
  • the resist RS4 having the same planar shape as the portion excluding the contact hole CH (a part of the drain electrode 17c) is patterned, and the contact hole CH is patterned by dry etching, for example, using the resist RS4 as a mask. To do.
  • a state in which a portion of the planarizing film 26 that is not masked by the resist RS4 is etched is represented by an arrow line.
  • the transparent electrode material 27 is formed in a solid form on the surfaces of the planarizing film 26 and the second metal film 24 (drain electrode 17c). Film. At this time, a portion of the transparent electrode film 27 that overlaps the drain electrode 17c in plan view is contacted to the drain electrode 17c through the contact hole CH.
  • the resist RS5 having the same planar shape as the pixel electrode 18 is patterned, and the pixel electrode 18 is patterned by, for example, wet etching using the resist RS5 as a mask.
  • the TFT 17 having the configuration shown in FIG. 4 is formed on the array substrate 11b.
  • a state in which a portion of the transparent electrode film 27 that is not masked by the resist RS ⁇ b> 5 is etched is represented by an arrow line.
  • the TFT (semiconductor device) 17 of the present embodiment includes the organic semiconductor film 25 made of an organic semiconductor material, and the source electrode 17b and the drain electrode 17c (composite metal electrode) in contact with the organic semiconductor film 25.
  • the base metal material 28 made of a metal material is mixed with a low resistance metal material 29 having an ohmic contact with the organic semiconductor film 25 and having a contact resistance lower than that of the base metal material 28, and the low resistance metal material 29 is at least
  • a source electrode 17b and a drain electrode 17c are provided so as to be exposed at the contact surface CS with respect to the organic semiconductor film 25.
  • the source electrode 17 b and the drain electrode 17 c that are in contact with the organic semiconductor film 25 are in ohmic contact with the base metal material 28 made of a metal material and have a contact resistance higher than that of the base metal material 28. Since the low resistance metal material 29 is mixed and the low resistance metal material 29 is arranged so as to be exposed at least on the contact surface CS with respect to the organic semiconductor film 25, the source electrode 17b and the drain electrode 17c are connected to the organic semiconductor film 25. As a result, a good ohmic contact can be achieved with a sufficiently low contact resistance, and the electrical resistance of the source electrode 17b and the drain electrode 17c itself can be kept low.
  • the source electrode 17b and the drain electrode 17c are assumed to be composed of only the low-resistance metal material 29. Compared to the case, the amount of the low-resistance metal material 29 used is small, so that the manufacturing cost can be reduced. As described above, while reducing the contact resistance of the source electrode 17b and the drain electrode 17c to the organic semiconductor film 25, the electrical resistance of the source electrode 17b and the drain electrode 17c itself can be reduced and the manufacturing cost can be reduced.
  • the base metal material 28 has a film shape and at least an end surface along the thickness direction serves as a contact surface CS, whereas a large number of low-resistance metal materials 29 are contained in the base metal material 28.
  • the metal piece MP is in a posture in which the flat surface FS intersects the end surface.
  • the low-resistance metal material 29 is composed of flat metal pieces MP contained in the base metal material 28, and the flat surface FS is formed in the thickness direction of the base metal material 28 in the form of a film. Therefore, the metal piece MP is easily exposed on the end surface of the base metal material 28.
  • the metal piece MP is efficiently contacted with the organic semiconductor film 25, even if the content of the metal piece MP is reduced to further reduce the manufacturing cost, for example, the source electrode for the organic semiconductor film 25 is used. It is possible to sufficiently reduce the contact resistance between 17b and the drain electrode 17c.
  • the source electrode 17b and the drain electrode 17c are arranged in such a manner that the low-resistance metal material 29 is exposed not only on the contact surface CS but also on the non-contact surface NCS that is not in contact with the organic semiconductor film 25. In this way, the arrangement of the low-resistance metal material 29 is more selective than the low-resistance metal material that is selectively exposed only on the contact surface CS with respect to the organic semiconductor film 25. There is no need. Thereby, since the source electrode 17b and the drain electrode 17c can be easily provided at the time of manufacture, the manufacturing cost can be further reduced.
  • the source electrode 17b and the drain electrode 17c are configured such that the content ratio of the low-resistance metal material 29 is in the range of 1% to 30%.
  • the low resistance metal material 29 generally has a higher material cost than the base metal material 28. If the content ratio of the low-resistance metal material is less than 1%, the contact resistance of the source electrode 17b and the drain electrode 17c with respect to the organic semiconductor film 25 tends to be too high, and conversely, the content ratio of the low-resistance metal material is 30%. If it exceeds, the amount of use of the low-resistance metal material 29 increases, so that the manufacturing cost tends to be too high.
  • the contact resistance of the source electrode 17b and the drain electrode 17c with respect to the organic semiconductor film 25 can be sufficiently reduced, and the low Since the usage amount of the resistance metal material 29 is reduced, the manufacturing cost can be sufficiently reduced.
  • the organic semiconductor film 25 is laminated on the side opposite to the array substrate 11b side with respect to the gate insulating film 23 and is arranged so as to overlap the gate electrode 17a, whereas the composite metal
  • the electrodes are laminated on the side opposite to the array substrate 11b side with respect to the gate insulating film 23, and are arranged with a space between them, and each comprises a source electrode 17b and a drain electrode 17c that are in contact with the organic semiconductor film 25. It is said.
  • the low resistance metal material 29 is made of any one of silver, gold, platinum, and palladium. In this way, the low-resistance metal material 29 is in good ohmic contact with the organic semiconductor film 25, so that the contact resistance of the source electrode 17b and the drain electrode 17c with respect to the organic semiconductor film 25 can be more preferably lowered. it can.
  • the metal material forming the base metal material 28 is made of any of copper, aluminum, tungsten, molybdenum, cobalt, and nickel. In this way, it is possible to suppress the material cost of the source electrode 17b and the drain electrode 17c while keeping the electric resistance of the source electrode 17b and the drain electrode 17c itself sufficiently low.
  • the liquid crystal panel (display device) 11 includes an array substrate (element substrate) 11b having the above-described TFT 17 as a switching element. According to the display device having such a configuration, the electrical characteristics of the switching element are excellent, so that excellent display performance can be obtained and the manufacturing cost is low.
  • a CF substrate (counter substrate) 11a facing the array substrate 11b, and a liquid crystal layer 11c sandwiched between the array substrate 11b and the CF substrate 11a are provided.
  • the liquid crystal panel 11 can be applied to the liquid crystal display device 10 for various uses, for example, a display of a smartphone or a tablet personal computer.
  • ⁇ Embodiment 2> A second embodiment of the present invention will be described with reference to FIG.
  • a protective film 30 for protecting the organic semiconductor film 125 is provided.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • the protective film 30 is stacked on the upper layer side of the organic semiconductor film 125 (on the side opposite to the gate insulating film 123 side, which is the underlying surface of the source electrode 117b and the drain electrode 117c). ing.
  • the protective film 30 is made of an organic resin material, and is arranged so that a pattern viewed in a plane coincides with the organic semiconductor film 125 and overlaps the organic semiconductor film 125.
  • the organic semiconductor film 125 is covered from the upper layer side over the entire region by the protective film 30, for example, when the planarizing film 126 is formed on the upper layer side of the organic semiconductor film 125 and the protective film 30, the organic resin The organic semiconductor film 125 is prevented from being deteriorated by the solvent contained in the material. In addition, even when the planarizing film 126 disposed on the upper layer side of the organic semiconductor film 125 and the protective film 30 contains moisture, the organic semiconductor film 125 is prevented from being deteriorated by the moisture. It is like that. Note that the thickness of the protective film 30 is larger than the thickness of the organic semiconductor film 125.
  • the organic semiconductor film 125 includes the portion stacked on the base surface on which the source electrode 117b and the drain electrode 117c are stacked, and the base surface with respect to the source electrode 117b and the drain electrode 117c. And a protective film 30 that is laminated on the side opposite to the base surface side with respect to the organic semiconductor film 125.
  • the organic semiconductor film 125 has a portion laminated on the side opposite to the base surface side with respect to the source electrode 117b and the drain electrode 117c. Therefore, the source electrode 117b and the drain electrode 117c are manufactured at the time of manufacturing. It is avoided to be affected by the heat generated during the formation of.
  • the protective film 30 is laminated on the side opposite to the base surface side with respect to the organic semiconductor film 125, for example, another film on the side opposite to the organic semiconductor film 125 side with respect to the protective film 30. Even if the film has a property capable of degrading the organic semiconductor film 125, the organic semiconductor film 125 is protected by the protective film 30, so that the organic semiconductor film 125 is hardly deteriorated. .
  • Embodiment 3 of the present invention will be described with reference to FIG.
  • this Embodiment 3 what changed arrangement
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • the metal pieces MP forming the low-resistance metal material 229 according to the present embodiment are arranged in a layered form on the source electrode 217b (second metal film 224) as shown in FIG. That is, the source electrode 217b is formed by laminating a low-resistance metal main layer 31 with a relatively large amount of low-resistance metal material 229 and a base metal main layer 32 with a relatively large amount of base metal material 228. It is supposed to be. In the low-resistance metal main layer 31, a large number of metal pieces MP constituting the low-resistance metal material 229 are concentrated and arranged with a high distribution density, but the base metal material 228 is interposed between adjacent metal pieces MP. Yes.
  • the base metal main layer 32 is almost made of the base metal material 228, and hardly contains the metal piece MP constituting the low resistance metal material 229. With such a configuration, in the low-resistance metal main layer 31 in the source electrode 217b, many metal pieces MP are exposed on the contact surface CS with respect to the organic semiconductor film 225, and the exposure reliability is high. It has become. Therefore, the low-resistance metal material 229 can be in ohmic contact with the organic semiconductor film 225 better.
  • the low-resistance metal main layer 31 and the base metal main layer 32 are alternately arranged in the source electrode 217b in the thickness direction (Z-axis direction), specifically, the lower layer side (the gate insulating film as the base) 223 side) in order from the first base metal main layer 32A, the first low resistance metal main layer 31A, the second base metal main layer 32B, the second low resistance metal main layer 31B, and the third base metal main layer. 32C.
  • the low-resistance metal main layer 31 has a thickness smaller than that of the base metal main layer 32.
  • the low-resistance metal main layer 31 has a thickness dimension of, for example, about 10 nm, while the base metal main layer 32 has a thickness dimension of, for example, about 60 nm.
  • the source electrode 217b is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • the source electrode 217b includes the low-resistance metal main layer 31 in which the relatively low-resistance metal material 229 is disposed, and the base metal material 228 relatively.
  • the base metal main layer 32 is provided in a large number of layers. In this way, the source electrode 217b (drain electrode) in the low-resistance metal main layer 31 of the source electrode 217b (drain electrode) is compared with the case where the low-resistance metal material is evenly dispersed and blended in the base metal material.
  • the low-resistance metal material 229 is more reliably exposed on the contact surface CS with respect to the organic semiconductor film 225 in FIG.
  • the organic semiconductor film 225 since the low resistance metal material 229 is efficiently contacted with the organic semiconductor film 225, even if the content of the low resistance metal material 229 is reduced to further reduce the manufacturing cost, the organic semiconductor film The contact resistance of the source electrode 217b (drain electrode) with respect to 225 can be sufficiently reduced.
  • Embodiment 4 A fourth embodiment of the present invention will be described with reference to FIG. In this Embodiment 4, what changed further arrangement
  • the source electrode 317 b (second metal film 324) according to the present embodiment has a low-resistance metal main layer 331 in the lower layer side (under the base) in the film thickness direction (Z-axis direction) of the organic semiconductor film 325. It is arranged so as to be unevenly distributed on a certain gate insulating film 323 side.
  • the organic semiconductor film 325 has a main portion (a portion sandwiched between the source electrode 317b and the drain electrode) formed of the gate insulating film 323 in the same manner as the source electrode 317b and the drain electrode. While being stacked on the surface, the film thickness is smaller than the thicknesses of the source electrode 317b and the drain electrode.
  • the passage through which charges move in the organic semiconductor film 325 is located on the lower layer side in the film thickness direction in the source electrode 317b and the drain electrode. Accordingly, charge is mainly exchanged between the organic semiconductor film 325 and the lower portion of the source electrode 317b and the drain electrode.
  • the low-resistance metal main layer 331 is arranged so as to be unevenly distributed on the lower layer side in the film thickness direction of the organic semiconductor film 325. Therefore, the organic semiconductor film 325 and the source electrode 317b (drain electrode) Charges are exchanged more smoothly between the two. Thereby, the contact resistance of the source electrode 317b (drain electrode) with respect to the organic semiconductor film 325 can be sufficiently reduced.
  • the source electrode 317b is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • the organic semiconductor film 325 is stacked on the base surface on which the source electrode 317b (drain electrode) is stacked, and the film thickness thereof is the source electrode 317b (
  • the source electrode 317b (drain electrode) is arranged such that the low-resistance metal main layer 331 is unevenly distributed on the base surface side in the film thickness direction of the organic semiconductor film 325. In this way, charge is mainly exchanged between the portion of the source electrode 317b (drain electrode) on the base surface side and the organic semiconductor film 325.
  • the low-resistance metal main layer 331 is arranged in a form unevenly distributed on the base surface side in the film thickness direction of the organic semiconductor film 325, whereby the organic semiconductor film 325 and the source electrode 317b ( Charges are exchanged more smoothly with the drain electrode). Thereby, the contact resistance of the source electrode 317b (drain electrode) with respect to the organic semiconductor film 325 can be sufficiently reduced.
  • the TFT 417 includes a source electrode 417b and a drain electrode 417c made of a second metal film 424 stacked on the array substrate 411b, and an array substrate 411b, a source electrode 417b, and a drain electrode 417c. From the stacked organic semiconductor film 425, the array substrate 411 b, the source electrode 417 b, the drain electrode 417 c, the gate insulating film 423 stacked on the organic semiconductor film 425, and the first metal film 422 stacked on the gate insulating film 423. And a so-called top gate type (stagger type).
  • the organic semiconductor film 425 is disposed on the lower layer side (side closer to the array substrate 411b) with respect to the gate electrode 417a, and overlaps with the gate insulating film 423 in a plan view.
  • the contact hole CH communicates with the gate insulating film 423 in addition to the planarization film 426. It is formed with.
  • a layer having good electrical conductivity is formed on the upper side of the organic semiconductor film 425 in the film thickness direction (on the side opposite to the array substrate 411b side).
  • a layer having good electrical conductivity in the organic semiconductor film 425 is disposed closer to the gate electrode 417a than other portions, so that the TFT 417 has good electrical characteristics. It becomes.
  • a gate insulating film (insulating film) 423 is stacked on the side opposite to the array substrate 411b side with respect to the electrode 417b and the drain electrode 417c, and a gate insulating film 423 is stacked on the side opposite to the array substrate 411b side.
  • the organic semiconductor film 425 is disposed so as to overlap with the gate electrode 417a, whereas the composite metal electrodes are disposed with a space therebetween, and the organic semiconductor film 425 is disposed on the organic semiconductor film 425.
  • the source electrode 417b and the drain electrode 417c are in contact with each other.
  • a voltage is applied to the gate electrode 417a stacked on the side opposite to the array substrate 411b side with respect to the gate insulating film 423, it overlaps with the gate electrode 417a via the gate insulating film 423.
  • An electric field is applied to the organic semiconductor film 425 to be transferred, whereby electric charges are transferred between the source electrode 417b and the drain electrode 417c forming the composite metal electrode through the organic semiconductor film 425.
  • a layer having good electrical conductivity may be formed in the portion of the organic semiconductor film 425 opposite to the array substrate 411b side in the film thickness direction. In that case, a layer having good electrical conductivity in the organic semiconductor film 425 is arranged closer to the gate electrode 417a than other portions, so that the electrical characteristics of the TFT 417 are good.
  • Embodiment 6 of the present invention will be described with reference to FIG.
  • the sixth embodiment shows a structure in which the adhesion film 33 for bringing the source electrode 517b and the drain electrode 517c into close contact with the underlying gate insulating film 523 in the first embodiment is provided.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • an adhesion film 33 is interposed between the source electrode 517b and the drain electrode 517c (second metal film 524) according to the present embodiment and the gate insulating film 523.
  • the adhesion film 33 is made of a metal material having good adhesion to both the source electrode 517b and the drain electrode 517c and the gate insulating film 523 which is an underlying layer thereof. Specifically, titanium (Ti), It consists of titanium nitride (TiN), tantalum nitride (TaN), or the like.
  • the film thickness of the adhesion film 33 is, for example, about 5 nm.
  • the adhesion film 33 is formed on the gate insulating film 523 prior to the second metal film 524 in the second metal film formation step, and then the second metal film 524 is etched. It is patterned by being etched at the same time.
  • the source electrode 517b and the drain electrode 517c are disposed between the base surface on which the source electrode 517b and the drain electrode 517c are stacked and the source electrode 517b and the drain electrode 517c.
  • An adhesion film is provided for closely attaching the drain electrode 517c to the underlying surface.
  • the base metal material 528 and the low-resistance metal material 529 forming the source electrode 517b and the drain electrode 517c are materials having low adhesion to the base surface, the source film with respect to the base surface is formed by the adhesive film. Adhesion between the electrode 517b and the drain electrode 517c is ensured.
  • Embodiment 7 shows what changed arrangement
  • FIG. 7 shows what changed arrangement
  • FIG. 7 shows what changed arrangement
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • a large number of metal pieces MP forming the low-resistance metal material 629 according to the present embodiment are randomly and irregularly distributed in the base metal material 628.
  • many metal pieces MP constituting the low-resistance metal material 629 have flat surfaces FS that are not parallel to each other, and their postures are not regularly aligned.
  • the metal piece MP forming the low-resistance metal material 629 can be suitably exposed to the contact surface CS of the source electrode 617b (drain electrode) with the organic semiconductor film 625.
  • the source electrode 617b is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • the low resistance metal material 729 has a spherical shape as shown in FIG.
  • a large number of low-resistance metal materials 729 having a spherical shape are randomly and randomly distributed in the base metal material 728. Even with such a configuration, the low-resistance metal material 729 can be suitably exposed on the contact surface CS of the source electrode 717b (drain electrode) with respect to the organic semiconductor film 725.
  • the source electrode 717b is shown as a representative, but a drain electrode (not shown) has the same configuration.
  • Embodiment 9 of the present invention will be described with reference to FIG.
  • this Embodiment 9 what changed the form of the low resistance metal material 829 from Embodiment 1 mentioned above is shown.
  • movement, and effect as above-mentioned Embodiment 1 is abbreviate
  • the low resistance metal material 829 has an elliptical shape as shown in FIG.
  • a large number of the low-resistance metal materials 829 having an elliptical spherical shape are distributed in a random (irregular) manner in the base metal material 828. Even with such a configuration, the low-resistance metal material 829 can be suitably exposed on the contact surface CS with respect to the organic semiconductor film 825 in the source electrode 817b (drain electrode).
  • the source electrode 817b is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • Embodiment 10 A tenth embodiment of the present invention will be described with reference to FIG. In this Embodiment 10, what changed the form of the low resistance metal material 929 from Embodiment 1 mentioned above is shown. In addition, the overlapping description about the same structure, operation
  • the low resistance metal material 929 according to the present embodiment is in the form of particles as shown in FIG.
  • a large number of the low-resistance metal materials 929 in the form of particles are dispersed and arranged randomly (irregularly) in the base metal material 928. Even with such a configuration, the low-resistance metal material 929 can be suitably exposed on the contact surface CS with respect to the organic semiconductor film 925 in the source electrode 917b (drain electrode).
  • the source electrode 917b is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • the low resistance metal material 1029 has a layer shape as shown in FIG. That is, the source electrode 1017b is formed by laminating the low resistance metal layer 34 on which the low resistance metal material 1029 is exclusively disposed and the base metal layer 35 on which the base metal material 1028 is exclusively disposed.
  • the low resistance metal layer 34 is made of a low resistance metal material 1029 and is a layer that hardly contains the base metal material 1028.
  • the base metal layer 35 is made of the base metal material 1028 and is a layer that hardly contains the low resistance metal material 1029.
  • the low-resistance metal material 1029 can be more in ohmic contact with the organic semiconductor film 1025.
  • the source electrode 1017b is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • the present invention is not limited to the embodiments described with reference to the above description and drawings.
  • the following embodiments are also included in the technical scope of the present invention.
  • the planar shape of a flat metal piece forming a low-resistance metal material is changed.
  • the flat metal piece MP-1 forming the low-resistance metal material 29-1 may have a horizontally long elliptical shape when seen in a plan view.
  • the source electrode 17b-1 is shown as a representative, but the drain electrode (not shown) has the same configuration.
  • planar shape of the metal piece constituting the low-resistance metal material can be changed as appropriate, for example, a square, a triangle, a trapezoid, a rhombus, a pentagon or more polygon. Is possible.
  • the low resistance metal material is disposed so as to be exposed on any of the outer surfaces of the base metal film, but the low resistance metal material is the outer surface of the base metal film, It is possible to adopt a configuration in which only a specific outer surface is exposed. In that case, a configuration in which the low-resistance metal material is selectively exposed only to a portion of the outer surface of the base metal film that serves as a contact surface for the organic semiconductor film (a configuration in which the low-resistance metal material is not exposed to the non-contact surface) ). Furthermore, it is also possible to adopt a configuration in which the low-resistance metal material is selectively exposed only to a part of the contact surface of the base metal film, for example, only the facing end surface.
  • the specific content ratio of the low-resistance metal material can be changed as appropriate. That is, the content ratio of the low-resistance metal material may be 1% or less, or 30% or more.
  • the specific metal material of the low-resistance metal material can be appropriately changed.
  • the metal material of the low resistance metal material ruthenium, rhodium, osmium, iridium, or the like, which is a noble metal, can be used. Further, the metal material of the low resistance metal material can be other than the noble metal.
  • the specific metal material of the base metal material can be changed as appropriate.
  • the metal material of the base metal material for example, a transition metal that is a non-noble metal and is included in Group 5 to Group 13 of the periodic table can be used.
  • the metal material used for the base metal material is preferably less expensive than the metal material used for the low resistance metal material. If so, the metal material used for the base metal material can be a noble metal. It is. Further, the metal material used for the base metal material may be in ohmic contact with the organic semiconductor film or may not be in ohmic contact.
  • the material used for the substrate can be an inorganic material such as glass or silicon.
  • the metal material used for the first metal film may be titanium nitride, tantalum nitride, or the like.
  • the resin material used for the gate insulating film may be a resin material having no photosensitivity. It is also possible to use an inorganic resin material as the resin material for the gate insulating film.
  • the plurality of base metal main layers have the same thickness and the low-resistance metal main layers are arranged at regular intervals in the thickness direction. It is also possible to arrange the low-resistance metal main layers irregularly arranged with different thicknesses. The configuration of the eleventh embodiment can be similarly changed.
  • the numbers of the base metal main layer and the low-resistance metal main layer can be changed as appropriate.
  • the configuration of the eleventh embodiment can be similarly changed.
  • Embodiments 7 to 10 can be appropriately combined with the configurations described in Embodiments 2 to 4 and Embodiment 6 described above.
  • Embodiments 2 to 4 It is possible to appropriately combine Embodiments 2 to 4 with the configuration (top gate TFT) described in Embodiment 5 above.
  • Embodiment 7 to Embodiment 10 can be appropriately combined with Embodiment 5.
  • the specific form of the low-resistance metal material can be changed as appropriate.
  • the low-resistance metal material can be a cylinder, a prism, a cone, a pyramid, or the like.
  • liquid crystal panel having a vertically long rectangular shape is illustrated, but the present invention can also be applied to a liquid crystal panel having a horizontally long rectangular shape or a liquid crystal panel having a square shape.
  • the present invention includes a configuration in which functional panels such as a touch panel and a parallax barrier panel (switch liquid crystal panel) are attached to the liquid crystal panels described in the above embodiments.
  • the edge light type is exemplified as the backlight device included in the liquid crystal display device, but the present invention includes a backlight device of a direct type.
  • a transmissive liquid crystal display device including a backlight device that is an external light source has been exemplified.
  • the present invention provides a reflective liquid crystal display device that performs display using external light.
  • the backlight device can be omitted.
  • the TFT is used as a switching element of the liquid crystal display device.
  • the present invention can be applied to a liquid crystal display device using a switching element other than the TFT (for example, a thin film diode (TFD)).
  • the present invention can be applied to a liquid crystal display device for monochrome display in addition to a liquid crystal display device for color display.
  • the liquid crystal display device using the liquid crystal panel as the display panel is exemplified.
  • other types of display panels PDP (plasma display panel), organic EL panel, EPD (electrophoretic display panel) are used.
  • the present invention can also be applied to display devices using the above. In that case, the backlight device can be omitted.
  • the present invention is also applicable to a liquid crystal panel having a screen size of, for example, 20 inches to 90 inches and classified into a medium size or a large size (very large size).
  • the liquid crystal panel can be used for an electronic device such as a television receiver, an electronic signboard (digital signage), or an electronic blackboard.
  • SYMBOLS 11 Liquid crystal panel (display apparatus), 11a ... CF board
  • Drain electrode composite metal electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本発明は、有機半導体膜に対する複合金属電極の接触抵抗を低下させつつも、複合金属電極自身の電気抵抗を低下させるとともに製造コストを低下させることを目的とする。本発明のTFT17は、有機半導体材料からなる有機半導体膜25と、有機半導体膜25に接触する複合金属電極をなすソース電極17b及びドレイン電極17cであって、金属材料からなるベース金属材28に、有機半導体膜25に対してオーミック接触してその接触抵抗がベース金属材28よりも低い低抵抗金属材29を混在させるとともに、低抵抗金属材29が少なくとも有機半導体膜25に対する接触面CSに露出する形で配されてなるソース電極17b及びドレイン電極17cと、を備える。

Description

半導体装置及び表示装置
 本発明は、半導体装置及び表示装置に関する。
 近年、テレビ受信装置をはじめとする画像表示装置の表示素子は、従来のブラウン管から液晶パネルやプラズマディスプレイパネルなどの薄型の表示パネルに移行しつつあり、画像表示装置の薄型化を可能としている。このような画像表示装置に用いられる表示パネルには、各画素の動作を制御するためのスイッチング素子としてTFTを行列状に多数個設けられている。従来では、TFTに用いられる半導体膜としては、アモルファスシリコンや多結晶シリコンなどのシリコン半導体が用いられるのが一般的であったが、近年では、半導体膜として有機材料からなる有機半導体膜を用いることが提案されている。有機半導体膜は、低温での成膜が可能であることから、スピンコーティング法などの低コストな塗布系のプロセスによって形成することができる他、例えばプラスティック基板のような可撓性を有する基板を用いることが可能となるので、フレキシブルな画像表示装置に適している。このような有機半導体膜を用いた半導体装置の一例が下記特許文献1,2に記載されている。
特開2006-147613号公報
特開2006-302925号公報
(発明が解決しようとする課題)
 上記した特許文献1には、ソース電極及びドレイン電極を、それぞれゲート絶縁膜との密着性のよい金属からなる密着層と、電流通路との接触域において密着層を被覆し、半導体層とオーミック接触を形成するオーミック接触層とで形成した有機TFTが記載されている。一方、上記した特許文献2には、有機半導体材料層を介して電荷が移動されるソース電極及びドレイン電極が、導電性高分子材料と電荷移動錯体との混合物からなる有機電界効果型トランジスタが記載されている。また、特許文献2には、ソース電極及びドレイン電極が、導電層と導電性被覆層とからなり、そのうちの導電性被覆層が導電性高分子材料と電荷移動錯体との混合物からなる有機電界効果型トランジスタも記載されている。
 しかしながら、上記した特許文献1では、オーミック接触層により有機半導体膜との良好なオーミック接触が得られるものの、このオーミック接触層は、金、白金及びパラジウムなどの中から選択された材料からなるので、製造コストが高くつくという問題があった。
 一方、上記した特許文献2では、ソース電極及びドレイン電極が導電性高分子材料と電荷移動錯体との混合物からなることで、有機半導体膜との良好なオーミック接触が得られるものの、金属材料を用いた場合に比べると、ソース電極及びドレイン電極自身の電気抵抗が高くなっていた。また、上記した特許文献2では、ソース電極及びドレイン電極が導電層と導電性被覆層とからなることで、有機半導体膜との良好なオーミック接触を得るとともに、ソース電極及びドレイン電極自身の電気抵抗を低下させているものの、導電層が金、白金及びパラジウムなどの中から選択された材料からなるので、やはり製造コストが高くつくという問題があった。
 本発明は上記のような事情に基づいて完成されたものであって、有機半導体膜に対する複合金属電極の接触抵抗を低下させつつも、複合金属電極自身の電気抵抗を低下させるとともに製造コストを低下させることを目的とする。
(課題を解決するための手段)
 本発明の半導体装置は、有機半導体材料からなる有機半導体膜と、前記有機半導体膜に接触する複合金属電極であって、金属材料からなるベース金属材に、前記有機半導体膜に対してオーミック接触してその接触抵抗が前記ベース金属材よりも低い低抵抗金属材を混在させるとともに、前記低抵抗金属材が少なくとも前記有機半導体膜に対する接触面に露出する形で配されてなる複合金属電極と、を備える。
 このように、有機半導体膜に接触する複合金属電極は、金属材料からなるベース金属材に、有機半導体膜に対してオーミック接触してその接触抵抗がベース金属材よりも低い低抵抗金属材を混在させるとともに、低抵抗金属材が少なくとも有機半導体膜に対する接触面に露出する形で配されてなるから、複合金属電極を有機半導体膜に対して十分に低い接触抵抗でもって良好にオーミック接触させることができるとともに、複合金属電極自身の電気抵抗を低く抑えることができる。そして、低抵抗金属材は、一般的にベース金属材に比べて材料費が高いものとされているから、仮に複合金属電極を低抵抗金属材のみからなる構成とした場合に比べると、低抵抗金属材の使用量が少なく済むので、製造コストを低下させることができる。
 本発明の半導体装置の実施態様として、次の構成が好ましい。
(1)前記ベース金属材は、膜状をなしていて少なくともその厚さ方向に沿う端面が前記接触面とされているのに対し、前記低抵抗金属材は、前記ベース金属材中に多数含有される扁平な金属片からなり且つその金属片が扁平な面を前記端面に対して交差させた姿勢とされる。このようにすれば、低抵抗金属材は、ベース金属材中に多数含有される扁平な金属片からなり、その扁平な面を、膜状をなすベース金属材における厚さ方向に沿う端面に対して交差させた姿勢とされているので、ベース金属材の端面に金属片が露出し易くなる。これにより、金属片が有機半導体膜に対して効率的に接触されるから、例えば金属片の含有量を少なくして製造コストのさらなる低下を図っても、有機半導体膜に対する複合金属電極の接触抵抗を十分に低下させることが可能となる。
(2)前記複合金属電極は、前記低抵抗金属材が、前記接触面に加えて前記有機半導体膜とは非接触とされる非接触面にも露出する形で配されてなる。このようにすれば、仮に低抵抗金属材が有機半導体膜に対する接触面のみに選択的に露出する形で配されたものに比べると、低抵抗金属材の配置に選択性を持たせる必要がなくなる。これにより、製造に際して複合金属電極を容易に設けることができるので、製造コストのさらなる低下を図ることができる。
(3)前記複合金属電極は、相対的に前記低抵抗金属材が多く配される低抵抗金属主体層と、相対的に前記ベース金属材が多く配されるベース金属主体層と、を積層してなる。このようにすれば、仮にベース金属材中に低抵抗金属材を均等に分散配合した場合に比べると、複合金属電極の低抵抗金属主体層においては、複合金属電極における有機半導体膜に対する接触面に低抵抗金属材がより確実に露出することになる。これにより、低抵抗金属材が有機半導体膜に対して効率的に接触されるから、例えば低抵抗金属材の含有量を少なくして製造コストのさらなる低下を図っても、有機半導体膜に対する複合金属電極の接触抵抗を十分に低下させることが可能となる。
(4)前記有機半導体膜は、少なくとも一部が、前記複合金属電極が積層された下地表面に積層されるとともに、その膜厚が前記複合金属電極の厚さよりも薄くなっており、前記複合金属電極は、前記低抵抗金属主体層が前記有機半導体膜の膜厚方向について前記下地表面側に偏在する形で配されてなる。このようにすれば、複合金属電極のうちの下地表面側の部分と有機半導体膜との間で主に電荷のやりとりが行われることになる。従って、複合金属電極において、低抵抗金属主体層が有機半導体膜の膜厚方向について下地表面側に偏在する形で配されることで、有機半導体膜と複合金属電極との間で電荷がより円滑にやりとりされる。これにより、有機半導体膜に対する複合金属電極の接触抵抗を十分に低下させることができる。
(5)前記複合金属電極は、前記低抵抗金属材の含有比率が1%~30%の範囲となる構成とされる。まず、低抵抗金属材は、一般的にベース金属材に比べて材料費が高いものとされる。仮に低抵抗金属材の含有比率が1%を下回ると、有機半導体膜に対する複合金属電極の接触抵抗が大きくなり過ぎる傾向があり、逆に低抵抗金属材の含有比率が30%を上回ると、低抵抗金属材の使用量が多くなるために製造コストが高くなり過ぎる傾向にある。その点、低抵抗金属材の含有比率を1%~30%の範囲とすることで、有機半導体膜に対する複合金属電極の接触抵抗を十分に低下させることができるとともに、低抵抗金属材の使用量が少なく抑制されるので製造コストを十分に低下させることができる。
(6)基板と、前記基板に対して積層されるゲート電極と、前記ゲート電極に対して前記基板側とは反対側に積層されるゲート絶縁膜と、を備えており、前記有機半導体膜は、前記ゲート絶縁膜に対して前記基板側とは反対側に積層されるとともに前記ゲート電極と重畳する形で配されるのに対し、前記複合金属電極は、前記ゲート絶縁膜に対して前記基板側とは反対側に積層されるとともに間隔を空けて配され、それぞれが前記有機半導体膜に接触されるソース電極及びドレイン電極からなるものとされる。このようにすれば、基板に対して積層されたゲート電極に電圧が印加されると、ゲート電極に対してゲート絶縁膜を介して重畳する有機半導体膜に電界を付与されるので、それにより有機半導体膜を介して複合金属電極をなすソース電極とドレイン電極との間で電荷が移動される。その上で、有機半導体膜に対して基板側とは反対側に各電極およびゲート絶縁膜が配されない構成となっているので、製造に際して各電極の形成時に生じる熱の影響を有機半導体膜が受けることが避けられている。
(7)前記有機半導体膜及び前記複合金属電極が積層される基板と、前記有機半導体膜及び前記複合金属電極に対して前記基板側とは反対側に積層されるゲート絶縁膜と、前記ゲート絶縁膜に対して前記基板側とは反対側に積層されるゲート電極と、を備えており、前記有機半導体膜は、前記ゲート電極と重畳する形で配されるのに対し、前記複合金属電極は、間隔を空けて配され、それぞれが前記有機半導体膜に接触されるソース電極及びドレイン電極からなるものとされる。このようにすれば、ゲート絶縁膜に対して基板側とは反対側に積層されたゲート電極に電圧が印加されると、ゲート電極に対してゲート絶縁膜を介して重畳する有機半導体膜に電界を付与されるので、それにより有機半導体膜を介して複合金属電極をなすソース電極とドレイン電極との間で電荷が移動される。有機半導体膜をなす有機半導体材料の種類によっては、有機半導体膜のうちその膜厚方向について基板側とは反対側の部分に電気伝導性が良好な層が生じる場合があり、その場合は有機半導体膜において電気伝導性が良好な層が他の部分に比べてゲート電極の近くに配されることになるので、当該半導体装置の電気的な特性が良好なものとなる。
(8)前記複合金属電極が積層された下地表面と前記複合金属電極との間に介在する形で配されるとともに、前記複合金属電極を前記下地表面に密着させる密着膜を備える。このようにすれば、複合金属電極をなすベース金属材及び低抵抗金属材が、下地表面に対して密着性の低い材料であった場合でも、密着膜によって下地表面に対する複合金属電極の密着性が担保される。
(9)前記有機半導体膜は、前記複合金属電極が積層された下地表面に積層される部分と、前記複合金属電極に対して前記下地表面側とは反対側に積層される部分とを有してなり、前記有機半導体膜に対して前記下地表面側とは反対側に積層される保護膜を備える。このようにすれば、有機半導体膜は、複合金属電極に対して下地表面側とは反対側に積層される部分を有しているので、製造に際して複合金属電極の形成時に生じる熱の影響を受けることが避けられている。その上で、有機半導体膜に対して下地表面側とは反対側に保護膜が積層されているので、例えば、保護膜に対して有機半導体膜側とは反対側に別の膜が配され、その膜が有機半導体膜を劣化させ得る性質を持ったものであった場合でも、保護膜によって有機半導体膜が保護されるので、有機半導体膜に劣化が生じ難くなる。
(10)前記低抵抗金属材は、銀、金、白金、及びパラジウムのいずれかからなる。このようにすれば、有機半導体膜に対して低抵抗金属材が良好にオーミック接触されるので、有機半導体膜に対する複合金属電極の接触抵抗をより好適に低くすることができる。
(11)前記ベース金属材をなす金属材料は、銅、アルミニウム、タングステン、モリブデン、コバルト、及びニッケルのいずれかからなる。このようにすれば、複合金属電極自身の電気抵抗を十分に低く抑えつつ、複合金属電極に係る材料費を低く抑制することができる。
 次に、上記課題を解決するために、本発明の表示装置は、上記した半導体装置をスイッチング素子として有する素子基板を備える。
 このような構成の表示装置によれば、スイッチング素子の電気的特性が優れたものとなることで優れた表示性能が得られるとともに、製造コストが低いものとなる。
 本発明の表示装置の実施態様としては、前記素子基板と対向状をなす対向基板と、前記素子基板と前記対向基板との間に挟持される液晶層と、を備える構成が好ましい。このような表示装置は液晶表示装置として、種々の用途、例えばスマートフォンやタブレット型パソコンのディスプレイ等に適用できる。
(発明の効果)
 本発明によれば、有機半導体膜に対する複合金属電極の接触抵抗を低下させつつも、複合金属電極自身の電気抵抗を低下させるとともに製造コストを低下させることができる。
本発明の実施形態1に係るドライバを実装した液晶パネルとフレキシブル基板と制御回路基板との接続構成を示す概略平面図 液晶表示装置の長辺方向に沿った断面構成を示す概略断面図 液晶パネルの断面構成を示す概略断面図 TFTの断面構成を示す断面図 TFTを構成するソース電極の斜視図 図4の拡大図であって、TFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 TFTの製造方法を示す図面であって、ゲート電極をなすゲート金属膜の上に塗布したレジストをパターニングし、そのレジストをマスクとしてゲート金属膜をエッチングする工程を示す断面図 TFTの製造方法を示す図面であって、樹脂基板及びゲート電極上にゲート絶縁膜を成膜する工程を示す断面図 TFTの製造方法を示す図面であって、ソース電極及びドレイン電極をなすベース金属膜の上に塗布したレジストをパターニングし、そのレジストをマスクとしてベース金属膜をエッチングする工程を示す断面図 TFTの製造方法を示す図面であって、ゲート絶縁膜、ソース電極、及びドレイン電極上に成膜された有機半導体膜の上に塗布したレジストをパターニングし、そのレジストをマスクとして有機半導体膜をエッチングする工程を示す断面図 TFTの製造方法を示す図面であって、ゲート絶縁膜、ソース電極、ドレイン電極、及び有機半導体膜上に成膜された平坦化膜の上に塗布したレジストをパターニングし、そのレジストをマスクとして平坦化膜をエッチングする工程を示す断面図 TFTの製造方法を示す図面であって、ドレイン電極及び平坦化膜上に成膜された透明電極膜の上に塗布したレジストをパターニングし、そのレジストをマスクとして透明電極膜をエッチングする工程を示す断面図 本発明の実施形態2に係るTFTの断面構成を示す断面図 本発明の実施形態3に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の実施形態4に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の実施形態5に係るTFTの断面構成を示す断面図 本発明の実施形態6に係るTFTの断面構成を示す断面図 本発明の実施形態7に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の実施形態8に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の実施形態9に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の実施形態10に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の実施形態11に係るTFTを構成するソース電極と有機半導体膜との接触部分を示す断面図 本発明の他の実施形態(1)に係るTFTを構成するソース電極の斜視図
 <実施形態1>
 本発明の実施形態1を図1から図12によって説明する。本実施形態では、液晶表示装置10について例示する。なお、各図面の一部にはX軸、Y軸及びZ軸を示しており、各軸方向が各図面で示した方向となるように描かれている。また、上下方向については、図2から図4などを基準とし、且つ同図上側を表側とするとともに同図下側を裏側とする。
 液晶表示装置10は、図1及び図2に示すように、液晶パネル(表示装置、表示パネル)11と、液晶パネル11を駆動するドライバ(パネル駆動部)21と、ドライバ21に対して各種入力信号を外部から供給する制御回路基板(外部の信号供給源)12と、液晶パネル11と外部の制御回路基板12とを電気的に接続するフレキシブル基板(外部接続部品)13と、液晶パネル11に光を供給する外部光源であるバックライト装置(照明装置)14とを備える。また、液晶表示装置10は、相互に組み付けた液晶パネル11及びバックライト装置14を収容・保持するための表裏一対の外装部材15,16をも備えており、このうち表側の外装部材15には、液晶パネル11に表示された画像を外部から視認させるための開口部15aが形成されている。本実施形態に係る液晶表示装置10は、携帯型情報端末(電子ブックやPDAなどを含む)、携帯電話(スマートフォンなどを含む)、ノートパソコン(タブレット型ノートパソコンなどを含む)、デジタルフォトフレーム、携帯型ゲーム機、電子インクペーパなどの各種電子機器(図示せず)に用いられるものである。このため、液晶表示装置10を構成する液晶パネル11の画面サイズは、数インチ~10数インチ程度とされ、一般的には小型または中小型に分類される大きさとされている。
 先にバックライト装置14について簡単に説明する。バックライト装置14は、図2に示すように、表側(液晶パネル11側)に向けて開口した略箱形をなすシャーシ14aと、シャーシ14a内に配された図示しない光源(例えば冷陰極管、LED、有機ELなど)と、シャーシ14aの開口部を覆う形で配される図示しない光学部材とを備える。光学部材は、光源から発せられる光を面状に変換するなどの機能を有するものである。
 続いて、液晶パネル11について簡単に説明する。液晶パネル11は、図1に示すように、全体として縦長な方形状(矩形状)をなしており、その長辺方向における一方の端部側(図1に示す上側)に片寄った位置に画像を表示可能な表示領域(アクティブエリア)AAが配されるとともに、長辺方向における他方の端部側(図1に示す下側)に片寄った位置にドライバ21及びフレキシブル基板13がそれぞれ取り付けられている。この液晶パネル11において表示領域AA外の領域が、画像が表示されない非表示領域(ノンアクティブエリア)NAAとされ、この非表示領域NAAの一部がドライバ21及びフレキシブル基板13の実装領域となっている。液晶パネル11における短辺方向が各図面のX軸方向と一致し、長辺方向が各図面のY軸方向と一致している。なお、図1では、CF基板11aよりも一回り小さな枠状の一点鎖線が表示領域AAの外形を表しており、当該一点鎖線よりも外側の領域が非表示領域NAAとなっている。
 次に、液晶パネル11に接続される部材について説明する。制御回路基板12は、図1及び図2に示すように、バックライト装置14におけるシャーシ14aの裏面(液晶パネル11側とは反対側の外面)にネジなどにより取り付けられている。この制御回路基板12は、紙フェノールないしはガラスエポキシ樹脂製の基板上に、ドライバ21に各種入力信号を供給するための電子部品が実装されるとともに、図示しない所定のパターンの配線(導電路)が配索形成されている。この制御回路基板12には、フレキシブル基板13の一方の端部(一端側)が図示しないACF(Anisotropic Conductive Film)を介して電気的に且つ機械的に接続されている。
 フレキシブル基板(FPC基板)13は、図2に示すように、絶縁性及び可撓性を有する合成樹脂材料(例えばポリイミド系樹脂等)からなる基材を備え、その基材上に多数本の配線パターン(図示せず)を有しており、長さ方向についての一方の端部が既述した通りシャーシ14aの裏面側に配された制御回路基板12に接続されるのに対し、他方の端部(他端側)が液晶パネル11におけるアレイ基板11bに接続されているため、液晶表示装置10内では断面形状が略U型となるよう折り返し状に屈曲されている。フレキシブル基板13における長さ方向についての両端部においては、配線パターンが外部に露出して端子部(図示せず)を構成しており、これらの端子部がそれぞれ制御回路基板12及び液晶パネル11に対して電気的に接続されている。これにより、制御回路基板12側から供給される入力信号を液晶パネル11側に伝送することが可能とされている。
 ドライバ21は、図1に示すように、内部に駆動回路を有するLSIチップからなるものとされ、信号供給源である制御回路基板12から供給される信号に基づいて作動することで、信号供給源である制御回路基板12から供給される入力信号を処理して出力信号を生成し、その出力信号を液晶パネル11の表示領域AAへ向けて出力するものとされる。このドライバ21は、平面に視て横長の方形状をなす(液晶パネル11の短辺に沿って長手状をなす)とともに、液晶パネル11(後述するアレイ基板11b)の非表示領域NAAに対して直接実装され、つまりCOG(Chip On Glass)実装されている。なお、ドライバ21の長辺方向がX軸方向(液晶パネル11の短辺方向)と一致し、同短辺方向がY軸方向(液晶パネル11の長辺方向)と一致している。
 改めて、液晶パネル11について説明する。液晶パネル11は、図3に示すように、一対の透明な(透光性に優れた)基板11a,11bと、両基板11a,11b間に介在し、電界印加に伴って光学特性が変化する物質である液晶分子を含む液晶層11cとを備え、両基板11a,11bが液晶層11cの厚さ分のセルギャップを維持した状態で図示しないシール剤によって貼り合わせられている。両基板11a,11bは、共に例えば合成樹脂材料(例えばポリエチレンテレフタレート樹脂、ポリエチレン樹脂、ナフタレート樹脂、ポリエーテルスルフォン樹脂、ポリプロピレン樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリイミド樹脂など)からなるとともに、ガラス製のものに比べて板厚が薄くなっているので、適度な可撓性を有している。従って、この液晶パネル11は、一定の可撓性を備えたフレキシブルな表示パネルとなっており、例えば表面を反らせるよう撓まされた状態であっても、その表示領域AAに画像を表示することが可能とされている。両基板11a,11bのうち表側(正面側)がCF基板(対向基板)11aとされ、裏側(背面側)がアレイ基板(素子基板、TFT基板、アクティブマトリクス基板)11bとされる。このうち、CF基板11aは、図1及び図2に示すように、短辺寸法がアレイ基板11bと概ね同等であるものの、長辺寸法がアレイ基板11bよりも小さなものとされるとともに、アレイ基板11bに対して長辺方向についての一方(図1に示す上側)の端部を揃えた状態で貼り合わせられている。従って、アレイ基板11bのうち長辺方向についての他方(図1に示す下側)の端部は、所定範囲にわたってCF基板11aが重なり合うことがなく、表裏両板面が外部に露出した状態とされており、ここにドライバ21及びフレキシブル基板13の実装領域が確保されている。なお、両基板11a,11bの内面側には、液晶層11cに含まれる液晶分子を配向させるための配向膜11d,11eがそれぞれ形成されている。また、両基板11a,11bの外面側には、それぞれ偏光板11f,11gが貼り付けられている。
 続いて、アレイ基板11b及びCF基板11aにおける表示領域AA内に存在する構成について順次に詳しく説明する。アレイ基板11bの内面側(液晶層11c側、CF基板11aとの対向面側)には、図3に示すように、半導体装置であるTFT(Thin Film Transistor)17及び画素電極18が多数個ずつマトリクス状に並んで設けられるとともに、これらTFT17及び画素電極18の周りには、格子状をなす図示しないゲート配線(行制御線、走査線)及びソース配線(列制御線、データ線)が取り囲むようにして配設されている。言い換えると、格子状をなすゲート配線及びソース配線の交差部に、TFT17及び画素電極18が行列状に並列配置されている。ゲート配線及びソース配線は、それぞれ金属材料からなり、相互の交差部位間には後述するゲート絶縁膜23が介在する形で配されている。ゲート配線とソース配線とがそれぞれ後述するTFT17のゲート電極17aとソース電極17bとに接続され、画素電極18がTFT17のドレイン電極17cに接続されている。また、画素電極18は、平面に視て縦長の方形状(矩形状)をなすとともに、ITO(Indium Tin Oxide)或いはZnO(Zinc Oxide)といった透明電極材料からなる。なお、アレイ基板11bには、ゲート配線に並行するとともに画素電極18を横切りつつゲート絶縁膜23を介して重畳する容量配線(図示せず)を設けることも可能である。
 一方、CF基板11aには、図3に示すように、R(赤色),G(緑色),B(青色)等の各着色部が、アレイ基板11b側の各画素電極18と平面に視て重畳するよう多数個マトリクス状に並列して配置されたカラーフィルタ11hが設けられている。カラーフィルタ11hをなす各着色部間には、混色を防ぐための略格子状の遮光層(ブラックマトリクス)11iが形成されている。遮光層11iは、上記したゲート配線及びソース配線と平面に視て重畳する配置とされる。カラーフィルタ11h及び遮光層11iの表面には、アレイ基板11b側の画素電極18と対向するベタ状の対向電極11jが設けられている。なお、当該液晶パネル11においては、R(赤色),G(緑色),B(青色)の3色の着色部及びそれらと対向する3つの画素電極18の組によって表示単位である1つの表示画素が構成されている。表示画素は、Rの着色部を有する赤色画素と、Gの着色部を有する緑色画素と、Bの着色部を有する青色画素とからなる。これら各色の画素は、液晶パネル11の板面において行方向(X軸方向)に沿って繰り返し並べて配されることで、画素群を構成しており、この画素群が列方向(Y軸方向)に沿って多数並んで配されている。
 続いて、アレイ基板11bの内面側(液晶層11c側、CF基板11aとの対向面側)には、既知のフォトリソグラフィ法などによって複数の膜が積層されており、これらの膜について説明する。アレイ基板11bには、図4に示すように、下層側(アレイ基板11bに近い側、CF基板11aから遠い側、裏側)から順に、第1金属膜22、ゲート絶縁膜(絶縁膜)23、第2金属膜24、有機半導体膜25、平坦化膜26、透明電極膜27、が積層形成されている。また、図4では図示を省略しているが、平坦化膜26及び透明電極膜27の上層側には、液晶層11cに臨んで配される配向膜11eが配されている(図3を参照)。
 第1金属膜22は、図4に示すように、アレイ基板11bの上層側に積層されるとともに、例えば下層側から順にチタン(Ti)、アルミニウム(Al)、チタンの順で積層された積層膜により形成されている(各積層膜の図示は省略する)。この第1金属膜22は、ゲート配線と、TFT17のゲート電極17aと、をそれぞれ構成している。第1金属膜22のうち、最下層のチタン層は、その膜厚が例えば5nm~30nmの範囲とされ、中間層のアルミニウム層は、その膜厚が例えば100nm~400nmの範囲とされ、最上層のチタン層は、その膜厚が例えば30nm~100nmの範囲とされる。ゲート絶縁膜23は、アレイ基板11b及び第1金属膜22の上層側に積層されるとともにベタ状のパターンとされており、例えばポリイミドやポリスチレン、ポリビニルフェノール、フルオロポリマーなどの有機樹脂材料からなるものとされる。このゲート絶縁膜23に用いられる有機樹脂材料は、感光性を有している。ゲート絶縁膜23は、その膜厚が例えば100nm~1000nmの範囲とされる。第2金属膜24は、ゲート絶縁膜23の上層側に積層されており、ソース配線と、TFT17のソース電極17b及びドレイン電極17cと、を構成している。従って、ゲート絶縁膜23の表面が、ソース電極17b及びドレイン電極17cが積層された下地表面とされている。第2金属膜24は、その膜厚が例えば100nm~400nmの範囲とされる。なお、第2金属膜24からなるソース電極17b及びドレイン電極17cの詳しい構成については後に改めて詳しく説明する。
 有機半導体膜25は、図4に示すように、ゲート絶縁膜23及び第2金属膜24(ソース電極17b及びドレイン電極17c)の一部の上層側に積層されるとともに、アレイ基板11bの面内におけるTFT17の平面配置に応じて島状にパターニングされている。有機半導体膜25は、有機半導体材料からなるものとされており、具体的にはTIPSペンタセン、TESペンタセン、TES-ADT、dif-TES-ADTなどの低分子量有機半導体材料、またはポリチオフェン、ポリフルオレンなどの高分子有機半導体材料などからなる。この有機半導体膜25をなす有機半導体材料は、例えばシリコン系の半導体材料に比べると、低温のプロセスでアレイ基板11b上に成膜することが可能であるため、本実施形態のように、アレイ基板11bがガラスに比べて耐熱温度(ガラス転移点)の低い合成樹脂材料からなる構成、つまりフレキシブルな液晶パネル11に好適とされる。有機半導体膜25をなす有機半導体材料は、溶媒に分散させることができるので、低コストな塗布系のプロセス(例えばスピンコーティング法)によってアレイ基板11b上に成膜することが可能とされるが、それ以外にも例えば真空蒸着法によってアレイ基板11b上に成膜することも可能である。有機半導体膜25は、その膜厚が例えば30nm~100nmの範囲とされており、上記した第2金属膜24の膜厚よりも薄くされるのが好ましい。
 平坦化膜26は、図4に示すように、ゲート絶縁膜23、第2金属膜24、及び有機半導体膜25の上層側に積層されるとともにベタ状のパターンとされており、例えばポリイミドやポリスチレン、ポリビニルフェノール、フルオロポリマーなどの有機樹脂材料からなるものとされる。この平坦化膜26に用いられる有機樹脂材料は、感光性を有している。この平坦化膜26には、アレイ基板11bの面内におけるTFT17の平面配置に応じてコンタクトホールCHが多数開口形成されている。平坦化膜26は、その膜厚が例えば1μm~3μmの範囲とされる。透明電極膜27は、平坦化膜26及び第2金属膜24の一部(ドレイン電極17c)の上層側に積層されるとともに、アレイ基板11bの面内におけるTFT17の平面配置に応じて島状にパターニングされており、例えばITO(Indium Tin Oxide)或いはZnO(Zinc Oxide)といった透明電極材料からなる。この透明電極膜27が、画素電極18を構成している。
 ここで、アレイ基板11bに備えられるTFT17に関して詳しく説明する。TFT17は、図4に示すように、アレイ基板11bに積層された第1金属膜22からなるゲート電極17aと、ゲート絶縁膜23に積層された第2金属膜24からなるソース電極17b及びドレイン電極17cと、ゲート絶縁膜23、並びにソース電極17b及びドレイン電極17cの一部に積層された有機半導体膜25と、を備えており、いわゆるボトムゲート型(逆スタガ型)とされている。有機半導体膜25は、ゲート絶縁膜23のうちソース電極17bとドレイン電極17cとの間に挟み込まれた部分と、ソース電極17b及びドレイン電極17cのうち互いに対向する側の部分とに跨る形で積層されている。ソース電極17b及びドレイン電極17cは、それぞれの一部が直接有機半導体膜25に接触しているので、この有機半導体膜25を介してソース電極17bとドレイン電極17cとの間での電荷の移動が可能とされている。つまり、有機半導体膜25がTFT17のチャネル部を構成している。そして、この有機半導体膜25は、ゲート絶縁膜23を介してゲート電極17aと重畳する配置とされているので、ゲート電極17aに電圧を印加すると、有機半導体膜25に電界が付与され、もって有機半導体膜25を介してソース電極17bとドレイン電極17cとの間を移動する電荷を制御することが可能とされている。また、TFT17をなすドレイン電極17cには、平坦化膜26に開口形成されたコンタクトホールCHを通して画素電極18がコンタクトされている。従って、TFT17のゲート電極17aに電圧が印加されると、有機半導体膜25を介してソース電極17bとドレイン電極17cとの間を電荷が移動するとともに画素電極18に所定の画素電位が付与される。
 ここで、有機半導体膜25に用いられる有機半導体材料は、シリコン系の半導体材料に比べると、金属材料からなるソース電極17b及びドレイン電極17cに対する接触抵抗が高くなりがちであるという問題があった。有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗を低減させるには、ソース電極17b及びドレイン電極17cの金属材料として金や白金などを用いるのが好ましいものの、このような金属材料は概して材料費が高価であるため、製造コストが高くなってしまう。一方、ソース電極17b及びドレイン電極17cの材料として、導電性高分子材料と電荷移動錯体との混合物を用いることが試みられているものの、それではソース電極17b及びドレイン電極17c自身の電気抵抗が高くなるため、TFT17の電気的特性が悪化してしまう。
 そこで、本実施形態では、ソース電極17b及びドレイン電極17c(第2金属膜24)が、図4から図6に示すように、それぞれ金属材料からなるベース金属材28と、有機半導体膜25に対する接触抵抗がベース金属材28よりも低い金属材料からなる低抵抗金属材29と、を混合した構成、つまり「複合金属電極」とされている。そして、ソース電極17b及びドレイン電極17cにおける有機半導体膜25に対する接触面CSには、低抵抗金属材29が露出する形で配されているので、その露出した低抵抗金属材29が有機半導体膜25に対して十分に低い接触抵抗でもってオーミック接触することになる。しかも、ソース電極17b及びドレイン電極17cは、共に金属材料からなるベース金属材28及び低抵抗金属材29を混合させてなるものとされているから、仮に導電性高分子などを用いた場合に比べると、ソース電極17b及びドレイン電極17c自身の電気抵抗が低く抑えられている。さらには、低抵抗金属材29は、一般的にベース金属材28に比べて材料費が高いものとされているから、仮にソース電極及びドレイン電極を低抵抗金属材29のみからなる構成とした場合に比べると、低抵抗金属材29の使用量が少なく済むので、製造コストを低下させることができる。なお、図5及び図6では、ソース電極17b及びドレイン電極17cのうちのソース電極17bを代表して図示しているが、ドレイン電極17cは、図5及び図6を左右反転させた構成(対向端面28aの配置を左右反転させた構成)となっている。
 詳しくは、ベース金属材28は、図4及び図5に示すように、一定の膜厚の膜状をなしており、その外形がソース電極17b及びドレイン電極17cの外形とほぼ一致している。ベース金属材28は、下側の主面が下地であるゲート絶縁膜23の表面に対する固着面とされるのに対し、厚さ方向(Z軸方向)に沿う外周端面のうち、両電極17b,17cが互いに対向する対向端面28aが有機半導体膜25に対する接触面CSの主要部(主接触部)を構成している。ベース金属材28の対向端面28aは、その全域が上記接触面CSの主要部を構成している。ベース金属材28のうち、上側の主面28bの一部(対向端面28aに隣接する部分)についても、有機半導体膜25に対する接触面CSの一部(副接触部)を構成している。また、ベース金属材28の外周端面のうち、対向端面28aにそれぞれ隣り合う2つの端面(図5に示す左側の端面、及び同図右側の端面)28c,28dの一部(対向端面28aに隣接する部分)についても、有機半導体膜25に対する接触面CSの一部(副接触部)を構成している(図5を参照)。本実施形態に係るベース金属材28は、その金属材料が例えば銅(Cu)とされている。なお、ベース金属材28の金属材料としては、銅以外にも、例えばアルミニウム(Al)、タングステン(W)、モリブデン(Mo)、コバルト(Co)、及びニッケル(Ni)などを用いることが可能とされる。
 一方、低抵抗金属材29は、図5及び図6に示すように、ベース金属材28中に多数含有される扁平な(平べったい)金属片MPからなるものとされる。低抵抗金属材29をなす多数の金属片MPは、個々が平面に視て長方形状をなしており、その各辺の寸法及び厚さ寸法が、ベース金属材28における平面に視た各辺の寸法及び厚さ寸法に比べていずれも十分に小さくなるよう設定されている。具体的には、低抵抗金属材29をなす多数の金属片MPは、その平面に視た各辺の寸法が例えば10nm~1μm程度とされるのが好ましい。低抵抗金属材29をなす多数の金属片MPは、その扁平な面FSを、ベース金属材28の主面28bにほぼ並行させるとともに、接触面CSの主要部である対向端面28aに対してほぼ直交(交差)させた姿勢となるよう規則的に揃えられている。低抵抗金属材29をなす多数の金属片MPは、その扁平な面FSを、対向端面28aに隣り合う2つの端面28c,28d(接触面CSの一部)に対してもほぼ直交させた姿勢とされる。ベース金属材28の接触面CSのうち、各端面28a,28c,28dに露出する金属片MPの数は、主面28bに露出する金属片MPの数よりも多いものとされる。以上のような構成により、金属片MPが接触面CSである各端面28a,28c,28dに露出し易くなっているので、低抵抗金属材29の含有比率を小さくして材料費並びに製造コストを低下させることが可能とされる。
 そして、低抵抗金属材29をなす多数の金属片MPは、図5及び図6に示すように、ベース金属材28における有機半導体膜25に対する接触面CS(対向端面28aの全域、上側の主面28bの一部、及び端面28c,28dの一部)に露出する形で配されている。これにより、低抵抗金属材29のうち接触面CSに露出する部分が有機半導体膜25に対して良好にオーミック接触されるようになっている。それに加えて、低抵抗金属材29をなす多数の金属片MPは、ベース金属材28のうち有機半導体膜25とは非接触とされる非接触面NCSにも露出する形で配されている。つまり、低抵抗金属材29をなす多数の金属片MPは、ベース金属材28における外面のいずれにも露出する形で配されている。このようにすれば、例えば低抵抗金属材を有機半導体膜25に対する接触面CSのみに選択的に露出する形で配した場合に比べると、低抵抗金属材29の配置に選択性を持たせる必要がなくなる。これにより、製造に際してソース電極17b及びドレイン電極17c(第2金属膜24)を容易に設けることができるので、製造コストのさらなる低下を図ることができる。なお、非接触面NCSには、ベース金属材28の外面のうち、下側の主面と、対向端面28aとは反対側の端面と、対向端面28aに隣り合う端面28c,28dの大部分(対向端面28aとは反対側の端面に隣接する部分)と、が含まれる。
 本実施形態に係る低抵抗金属材29は、その金属材料が例えば銀(Ag)とされている。なお、低抵抗金属材29の金属材料としては、銀以外にも、例えば金、白金、及びパラジウムなどを用いることが可能とされる。つまり、低抵抗金属材29の金属材料には、貴金属を用いるのが好ましい。特に、低抵抗金属材29の金属材料として金、白金、及びパラジウムを用いた場合には、ベース金属材28をなす金属材料に比べて、仕事関数が高い値となるのに加えて、その高い仕事関数の値と、有機半導体膜25をなす有機半導体材料の仕事関数の値との差が小さなものとなるので、有機半導体膜25に対して低抵抗金属材29をより良好にオーミック接触させることができる。このように、低抵抗金属材29に係る単位質量当たりの材料費は、ベース金属材28に係る同材料費に比べると、高いものとなっている。
 そして、ソース電極17b及びドレイン電極17cにおける低抵抗金属材29の含有比率は、ベース金属材28の含有比率に比べて小さなものとなっている。これにより、仮にソース電極及びドレイン電極を低抵抗金属材29のみにより構成した場合などに比べて、ソース電極17b及びドレイン電極17cに係る材料費を低下させることができる。その上で、ソース電極17b及びドレイン電極17cにおける低抵抗金属材29の含有比率は、具体的には1%~30%の範囲とされている。仮に低抵抗金属材の含有比率が1%を下回ると、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗が大きくなり過ぎる傾向があり、逆に低抵抗金属材の含有比率が30%を上回ると、低抵抗金属材の使用量が多くなるために製造コストが高くなり過ぎる傾向にある。その点、低抵抗金属材29の含有比率を1%~30%の範囲とすることで、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗を十分に低下させることができるとともに、低抵抗金属材29の使用量が少なく抑制されるので製造コストを十分に低下させることができる。
 本実施形態は以上のような構造であり、続いて液晶表示装置10を構成する液晶パネル11の製造方法について説明する。液晶パネル11は、CF基板11aを製造するCF基板製造工程と、アレイ基板11bを製造するアレイ基板製造工程と、アレイ基板11bまたはCF基板11aに液晶材料を滴下する液晶滴下工程と、両基板11a,11bを貼り合わせる貼り合わせ工程と、を経ることで製造される。以下では、このうちのアレイ基板製造工程について詳しく説明する。なお、本実施形態に係るCF基板11a及びアレイ基板11bは、合成樹脂製とされるとともに、ガラス製のものに比べて板厚が薄くなっていて平坦性が担保されないことが懸念されるので、それぞれの製造工程では、高い剛性を有するガラス製の支持基板SBによって各基板11a,11bを裏側から支持することで平坦性を担保するようにしている。この支持基板SBは、各製造工程を終えた後に各基板11a,11bから取り外されるものとされる。
 アレイ基板製造工程では、第1金属膜22を形成する第1金属膜形成工程と、ゲート絶縁膜23を形成するゲート絶縁膜形成工程と、第2金属膜24を形成する第2金属膜形成工程と、有機半導体膜25を形成する有機半導体膜形成工程と、平坦化膜26を形成する平坦化膜形成工程と、透明電極膜27を形成する透明電極膜形成工程と、を順次に行っている。第1金属膜形成工程では、図7に示すように、第1金属膜22をなす3層の積層膜を、スパッタ法、CVD法、真空蒸着法などの成膜方法によって順次にベタ状に成膜した後、ゲート電極17a及びゲート配線(図示せず)と同じ平面形状のレジストRS1をパターニングし、そのレジストRS1をマスクとして例えばウェットエッチングによりゲート電極17a及びゲート配線をパターニングする。このとき、積層膜のうちのチタン層に関しては、フッ化水素系または酸化剤系のエッチャントを用い、アルミニウム層に関しては、リン酸、硝酸、酢酸の混合液エッチャントを用いて、それぞれをエッチングする。エッチングを行った後に剥離液によってレジストRS1を除去する。なお、第1金属膜22の成膜方法としては、導電性ペーストを用いた印刷法、電界メッキ法、無電界メッキ法などを用いることも可能である。また、図7では、第1金属膜22のうちレジストRS1にてマスクされない部分がエッチングされる様子を矢線によって表現している。
 ゲート絶縁膜形成工程では、図8に示すように、アレイ基板11b及びパターニングされた第1金属膜22の表面に対して有機樹脂材料をベタ状に塗布してから、焼成するようにしている。この焼成に関しては、100℃~150℃程度で数分から数十分程度行う。なお、ゲート絶縁膜23にコンタクトホールなどの開口を形成する必要があれば、フォトリソグラフィ法によってその開口をパターニングすればよい。
 第2金属膜形成工程では、図9に示すように、まず、ゲート絶縁膜23の表面に対して第2金属膜24をベタ状に成膜する。この成膜方法としては、スパッタ法や真空蒸着法を用いるのが好ましい。スパッタ法を用いる場合には、例えば、銅からなるベース金属材28に、銀からなる低抵抗金属材29である金属片MPを、1%~30%の含有比率でもって分散配合したターゲットを用意し、そのターゲットをアルゴンガスなどによってスパッタリングすることで、ゲート絶縁膜23上にターゲットを転写すればよい。また、真空蒸着法を用いる場合には、例えば、銅からなるベース金属材28と、銀からなる低抵抗金属材29とを同時に蒸着する。第2金属膜24を成膜したら、ソース電極17b、ドレイン電極17c、及びソース配線(図示せず)と同じ平面形状のレジストRS2をパターニングし、そのレジストRS2をマスクとして例えばウェットエッチングによりソース電極17b、ドレイン電極17c、及びソース配線をパターニングする。このとき、銅からなるベース金属材28を過酸化水素及び有機酸系のエッチャントを用いてエッチングする。このエッチングを行うと、ベース金属材28のうちエッチングされる部分に含有された低抵抗金属材29がリフトオフされて除去されることになる。従って、ベース金属材28のうちエッチングされる部分と、エッチングされない部分とに跨る形で配されていた低抵抗金属材29は、エッチングによりパターニングされたソース電極17b及びドレイン電極17cにおける外面に露出して配されることになる。この低抵抗金属材29をなす金属片MPは、その扁平な面FSがベース金属材28における端面28a,28c,28dとほぼ直交する姿勢で配されているので、同端面28a,28c,28dにおいて多数が露出している。エッチングを行った後に剥離液によってレジストRS2を除去する。また、図9では、第2金属膜24のうちレジストRS2にてマスクされない部分がエッチングされる様子を矢線によって表現している。
 有機半導体膜形成工程では、図10に示すように、ゲート絶縁膜23及び第2金属膜24(ソース電極17b及びドレイン電極17c)の表面に対して有機半導体膜25をなす有機半導体材料をベタ状に塗布してから、焼成することで有機半導体膜25を成膜している。この焼成に関しては、100℃~150℃程度で数分から数十分程度行う。有機半導体膜25を成膜したら、有機半導体膜25上に島状のレジストRS3をパターニングし、そのレジストRS3をマスクとして例えばウェットエッチングにより有機半導体膜25をパターニングする。つまり、有機半導体膜25は、フォトリソグラフィ法によりパターニングされている。有機半導体膜25の成膜方法及びパターニング方法としては、上記以外にも、例えば印刷法(スクリーン印刷法、インクジェット印刷法など)を用いることも可能である。また、図10では、有機半導体膜25のうちレジストRS3にてマスクされない部分がエッチングされる様子を矢線によって表現している。
 平坦化膜形成工程では、図11に示すように、ゲート絶縁膜23、第2金属膜24(ソース電極17b及びドレイン電極17c)、及び有機半導体膜25の表面に対して有機樹脂材料をベタ状に塗布してから、焼成するようにしている。この焼成に関しては、100℃~150℃程度で数分から数十分程度行う。平坦化膜26を成膜したら、コンタクトホールCH(ドレイン電極17cの一部)を除いた部分と同じ平面形状のレジストRS4をパターニングし、そのレジストRS4をマスクとして例えばドライエッチングによりコンタクトホールCHをパターニングする。また、図11では、平坦化膜26のうちレジストRS4にてマスクされない部分がエッチングされる様子を矢線によって表現している。
 透明電極膜形成工程では、図12に示すように、平坦化膜26及び第2金属膜24(ドレイン電極17c)の表面に対して透明電極材料をベタ状に塗布し、透明電極膜27を成膜する。このとき、透明電極膜27のうちのドレイン電極17cと平面に視て重畳する部分がコンタクトホールCHを通してドレイン電極17cに対してコンタクトされる。透明電極膜27を成膜した後、画素電極18と同じ平面形状のレジストRS5をパターニングし、そのレジストRS5をマスクとして例えばウェットエッチングにより画素電極18をパターニングする。以上により、図4に示される構成のTFT17がアレイ基板11b上に形成される。また、図12では、透明電極膜27のうちレジストRS5にてマスクされない部分がエッチングされる様子を矢線によって表現している。
 以上説明したように本実施形態のTFT(半導体装置)17は、有機半導体材料からなる有機半導体膜25と、有機半導体膜25に接触するソース電極17b及びドレイン電極17c(複合金属電極)であって、金属材料からなるベース金属材28に、有機半導体膜25に対してオーミック接触してその接触抵抗がベース金属材28よりも低い低抵抗金属材29を混在させるとともに、低抵抗金属材29が少なくとも有機半導体膜25に対する接触面CSに露出する形で配されてなるソース電極17b及びドレイン電極17cと、を備える。
 このように、有機半導体膜25に接触するソース電極17b及びドレイン電極17cは、金属材料からなるベース金属材28に、有機半導体膜25に対してオーミック接触してその接触抵抗がベース金属材28よりも低い低抵抗金属材29を混在させるとともに、低抵抗金属材29が少なくとも有機半導体膜25に対する接触面CSに露出する形で配されてなるから、ソース電極17b及びドレイン電極17cを有機半導体膜25に対して十分に低い接触抵抗でもって良好にオーミック接触させることができるとともに、ソース電極17b及びドレイン電極17c自身の電気抵抗を低く抑えることができる。そして、低抵抗金属材29は、一般的にベース金属材28に比べて材料費が高いものとされているから、仮にソース電極17b及びドレイン電極17cを低抵抗金属材29のみからなる構成とした場合に比べると、低抵抗金属材29の使用量が少なく済むので、製造コストを低下させることができる。以上により、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗を低下させつつも、ソース電極17b及びドレイン電極17c自身の電気抵抗を低下させるとともに製造コストを低下させることができる。
 また、ベース金属材28は、膜状をなしていて少なくともその厚さ方向に沿う端面が接触面CSとされているのに対し、低抵抗金属材29は、ベース金属材28中に多数含有される扁平な金属片MPからなり且つその金属片MPが扁平な面FSを端面に対して交差させた姿勢とされる。このようにすれば、低抵抗金属材29は、ベース金属材28中に多数含有される扁平な金属片MPからなり、その扁平な面FSを、膜状をなすベース金属材28における厚さ方向に沿う端面に対して交差させた姿勢とされているので、ベース金属材28の端面に金属片MPが露出し易くなる。これにより、金属片MPが有機半導体膜25に対して効率的に接触されるから、例えば金属片MPの含有量を少なくして製造コストのさらなる低下を図っても、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗を十分に低下させることが可能となる。
 また、ソース電極17b及びドレイン電極17cは、低抵抗金属材29が、接触面CSに加えて有機半導体膜25とは非接触とされる非接触面NCSにも露出する形で配されてなる。このようにすれば、仮に低抵抗金属材が有機半導体膜25に対する接触面CSのみに選択的に露出する形で配されたものに比べると、低抵抗金属材29の配置に選択性を持たせる必要がなくなる。これにより、製造に際してソース電極17b及びドレイン電極17cを容易に設けることができるので、製造コストのさらなる低下を図ることができる。
 また、ソース電極17b及びドレイン電極17cは、低抵抗金属材29の含有比率が1%~30%の範囲となる構成とされる。まず、低抵抗金属材29は、一般的にベース金属材28に比べて材料費が高いものとされる。仮に低抵抗金属材の含有比率が1%を下回ると、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗が大きくなり過ぎる傾向があり、逆に低抵抗金属材の含有比率が30%を上回ると、低抵抗金属材29の使用量が多くなるために製造コストが高くなり過ぎる傾向にある。その点、低抵抗金属材29の含有比率を1%~30%の範囲とすることで、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗を十分に低下させることができるとともに、低抵抗金属材29の使用量が少なく抑制されるので製造コストを十分に低下させることができる。
 また、アレイ基板(基板)11bと、アレイ基板11bに対して積層されるゲート電極17aと、ゲート電極17aに対してアレイ基板11b側とは反対側に積層されるゲート絶縁膜(絶縁膜)23と、を備えており、有機半導体膜25は、ゲート絶縁膜23に対してアレイ基板11b側とは反対側に積層されるとともにゲート電極17aと重畳する形で配されるのに対し、複合金属電極は、ゲート絶縁膜23に対してアレイ基板11b側とは反対側に積層されるとともに間隔を空けて配され、それぞれが有機半導体膜25に接触されるソース電極17b及びドレイン電極17cからなるものとされる。このようにすれば、アレイ基板11bに対して積層されたゲート電極17aに電圧が印加されると、ゲート電極17aに対してゲート絶縁膜23を介して重畳する有機半導体膜25に電界を付与されるので、それにより有機半導体膜25を介して複合金属電極をなすソース電極17b及びドレイン電極17cとの間で電荷が移動される。その上で、有機半導体膜25に対してアレイ基板11b側とは反対側に各電極17a~17cおよびゲート絶縁膜23が配されない構成となっているので、製造に際して各電極17a~17cの形成時に生じる熱の影響を有機半導体膜25が受けることが避けられている。
 また、低抵抗金属材29は、銀、金、白金、及びパラジウムのいずれかからなる。このようにすれば、有機半導体膜25に対して低抵抗金属材29が良好にオーミック接触されるので、有機半導体膜25に対するソース電極17b及びドレイン電極17cの接触抵抗をより好適に低くすることができる。
 また、ベース金属材28をなす金属材料は、銅、アルミニウム、タングステン、モリブデン、コバルト、及びニッケルのいずれかからなる。このようにすれば、ソース電極17b及びドレイン電極17c自身の電気抵抗を十分に低く抑えつつ、ソース電極17b及びドレイン電極17cに係る材料費を低く抑制することができる。
 また、本実施形態に係る液晶パネル(表示装置)11は、上記したTFT17をスイッチング素子として有するアレイ基板(素子基板)11bを備える。このような構成の表示装置によれば、スイッチング素子の電気的特性が優れたものとなることで優れた表示性能が得られるとともに、製造コストが低いものとなる。
 また、アレイ基板11bと対向状をなすCF基板(対向基板)11aと、アレイ基板11bとCF基板11aとの間に挟持される液晶層11cと、を備える。このようにすれば、このような液晶パネル11は液晶表示装置10として、種々の用途、例えばスマートフォンやタブレット型パソコンのディスプレイ等に適用できる。
 <実施形態2>
 本発明の実施形態2を図13によって説明する。この実施形態2では、有機半導体膜125を保護するための保護膜30を設けるようにしたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る保護膜30は、図13に示すように、有機半導体膜125の上層側(ソース電極117b及びドレイン電極117cの下地表面であるゲート絶縁膜123側とは反対側)に積層されている。保護膜30は、有機樹脂材料からなるものとされており、平面に視たパターンが有機半導体膜125と一致するとともに有機半導体膜125と重畳する配置とされる。つまり、有機半導体膜125は、保護膜30によって全域にわたって上層側から覆われているから、例えば有機半導体膜125及び保護膜30の上層側に平坦化膜126を成膜する際に、その有機樹脂材料に含有される溶媒によって有機半導体膜125が劣化させられるのが防がれるようになっている。それ以外にも、例えば有機半導体膜125及び保護膜30の上層側に配される平坦化膜126が水分を含有していても、その水分によって有機半導体膜125が劣化させられるのが防がれるようになっている。なお、保護膜30は、その厚さが有機半導体膜125の厚さよりも大きなものとされる。
 以上説明したように本実施形態によれば、有機半導体膜125は、ソース電極117b及びドレイン電極117cが積層された下地表面に積層される部分と、ソース電極117b及びドレイン電極117cに対して下地表面側とは反対側に積層される部分とを有してなり、有機半導体膜125に対して下地表面側とは反対側に積層される保護膜30を備える。このようにすれば、有機半導体膜125は、ソース電極117b及びドレイン電極117cに対して下地表面側とは反対側に積層される部分を有しているので、製造に際してソース電極117b及びドレイン電極117cの形成時に生じる熱の影響を受けることが避けられている。その上で、有機半導体膜125に対して下地表面側とは反対側に保護膜30が積層されているので、例えば、保護膜30に対して有機半導体膜125側とは反対側に別の膜が配され、その膜が有機半導体膜125を劣化させ得る性質を持ったものであった場合でも、保護膜30によって有機半導体膜125が保護されるので、有機半導体膜125に劣化が生じ難くなる。
 <実施形態3>
 本発明の実施形態3を図14によって説明する。この実施形態3では、上記した実施形態1から低抵抗金属材229の配置を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る低抵抗金属材229をなす金属片MPは、図14に示すように、ソース電極217b(第2金属膜224)において層状をなす形で配されている。つまり、このソース電極217bは、相対的に低抵抗金属材229が多く配される低抵抗金属主体層31と、相対的にベース金属材228が多く配されるベース金属主体層32と、を積層してなるものとされる。低抵抗金属主体層31には、低抵抗金属材229をなす多数の金属片MPが高い分布密度でもって集約配置されているものの、隣り合う金属片MP間にはベース金属材228が介在している。ベース金属主体層32は、殆どがベース金属材228からなるものとされ、低抵抗金属材229をなす金属片MPが殆ど含有されていない。このような構成とすることで、ソース電極217bのうちの低抵抗金属主体層31では、有機半導体膜225に対する接触面CSにより多くの金属片MPが露出するとともに、その露出確実性が高いものとなっている。従って、有機半導体膜225に対して低抵抗金属材229をより良好にオーミック接触させることができる。
 低抵抗金属主体層31及びベース金属主体層32は、ソース電極217bにおいてその厚さ方向(Z軸方向)について交互に並んで配されており、具体的には下層側(下地であるゲート絶縁膜223側)から順に第1のベース金属主体層32A、第1の低抵抗金属主体層31A、第2のベース金属主体層32B、第2の低抵抗金属主体層31B、第3のベース金属主体層32Cとされる。低抵抗金属主体層31は、その厚さ寸法がベース金属主体層32の厚さ寸法よりも小さなものとされている。具体的には、低抵抗金属主体層31は、その厚さ寸法が例えば10nm程度とされるのに対し、ベース金属主体層32は、その厚さ寸法が例えば60nm程度とされる。なお、図14では、ソース電極217bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 以上説明したように本実施形態によれば、ソース電極217b(ドレイン電極)は、相対的に低抵抗金属材229が多く配される低抵抗金属主体層31と、相対的にベース金属材228が多く配されるベース金属主体層32と、を積層してなる。このようにすれば、仮にベース金属材中に低抵抗金属材を均等に分散配合した場合に比べると、ソース電極217b(ドレイン電極)の低抵抗金属主体層31においては、ソース電極217b(ドレイン電極)における有機半導体膜225に対する接触面CSに低抵抗金属材229がより確実に露出することになる。これにより、低抵抗金属材229が有機半導体膜225に対して効率的に接触されるから、例えば低抵抗金属材229の含有量を少なくして製造コストのさらなる低下を図っても、有機半導体膜225に対するソース電極217b(ドレイン電極)の接触抵抗を十分に低下させることが可能となる。
 <実施形態4>
 本発明の実施形態4を図15によって説明する。この実施形態4では、上記した実施形態3から低抵抗金属材329の配置をさらに変更したものを示す。なお、上記した実施形態3と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るソース電極317b(第2金属膜324)は、図15に示すように、低抵抗金属主体層331が有機半導体膜325の膜厚方向(Z軸方向)について下層側(下地であるゲート絶縁膜323側)に偏在する形で配されてなる。有機半導体膜325は、実施形態1にて説明した通り、その主要部分(ソース電極317bとドレイン電極との間に挟み込まれた部分)が、ソース電極317b及びドレイン電極と同様にゲート絶縁膜323の表面に積層されるとともに、ソース電極317b及びドレイン電極の厚さに比べて、膜厚が薄くなっている。このため、有機半導体膜325において電荷が移動する通路は、ソース電極317b及びドレイン電極では膜厚方向について下層側に位置することになる。従って、ソース電極317b及びドレイン電極のうちの下層側の部分と有機半導体膜325との間で主に電荷のやりとりが行われることになる。これに対し、本実施形態では、低抵抗金属主体層331が有機半導体膜325の膜厚方向について下層側に偏在する形で配されているから、有機半導体膜325とソース電極317b(ドレイン電極)との間で電荷がより円滑にやりとりされる。これにより、有機半導体膜325に対するソース電極317b(ドレイン電極)の接触抵抗を十分に低下させることができる。なお、図15では、ソース電極317bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 以上説明したように本実施形態によれば、有機半導体膜325は、少なくとも一部が、ソース電極317b(ドレイン電極)が積層された下地表面に積層されるとともに、その膜厚がソース電極317b(ドレイン電極)の厚さよりも薄くなっており、ソース電極317b(ドレイン電極)は、低抵抗金属主体層331が有機半導体膜325の膜厚方向について下地表面側に偏在する形で配されてなる。このようにすれば、ソース電極317b(ドレイン電極)のうちの下地表面側の部分と有機半導体膜325との間で主に電荷のやりとりが行われることになる。従って、ソース電極317b(ドレイン電極)において、低抵抗金属主体層331が有機半導体膜325の膜厚方向について下地表面側に偏在する形で配されることで、有機半導体膜325とソース電極317b(ドレイン電極)との間で電荷がより円滑にやりとりされる。これにより、有機半導体膜325に対するソース電極317b(ドレイン電極)の接触抵抗を十分に低下させることができる。
 <実施形態5>
 本発明の実施形態5を図16によって説明する。この実施形態5では、上記した実施形態1からTFT417の構成を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るTFT417は、図16に示すように、アレイ基板411bに積層された第2金属膜424からなるソース電極417b及びドレイン電極417cと、アレイ基板411b、ソース電極417b及びドレイン電極417cに積層された有機半導体膜425と、アレイ基板411b、ソース電極417b、ドレイン電極417c、及び有機半導体膜425に積層されたゲート絶縁膜423と、ゲート絶縁膜423に積層された第1金属膜422からなるゲート電極417aと、を備えており、いわゆるトップゲート型(スタガ型)とされている。有機半導体膜425は、ゲート電極417aに対して下層側(アレイ基板411bに近い側)に配されるとともに、ゲート絶縁膜423を介して平面に視て重畳する配置とされる。このTFT417では、ソース電極417b及びドレイン電極417cが最下層(最もアレイ基板411bに近い層)に配されているので、平坦化膜426に加えてゲート絶縁膜423にもコンタクトホールCHが連通する形で形成されている。
 ところで、有機半導体膜425をなす有機半導体材料は、その種類によっては、有機半導体膜425のうちその膜厚方向について上側(アレイ基板411b側とは反対側)に電気伝導性が良好な層が生じる場合がある。そのような場合には、有機半導体膜425において電気伝導性が良好な層が他の部分に比べてゲート電極417aの近くに配されることになるので、TFT417の電気的な特性が良好なものとなる。
 以上説明したように本実施形態によれば、有機半導体膜425及び複合金属電極であるソース電極417b及びドレイン電極417cが積層されるアレイ基板411bと、有機半導体膜425、並びに複合金属電極であるソース電極417b及びドレイン電極417cに対してアレイ基板411b側とは反対側に積層されるゲート絶縁膜(絶縁膜)423と、ゲート絶縁膜423に対してアレイ基板411b側とは反対側に積層されるゲート電極417aと、を備えており、有機半導体膜425は、ゲート電極417aと重畳する形で配されるのに対し、複合金属電極は、間隔を空けて配され、それぞれが有機半導体膜425に接触されるソース電極417b及びドレイン電極417cからなるものとされる。このようにすれば、ゲート絶縁膜423に対してアレイ基板411b側とは反対側に積層されたゲート電極417aに電圧が印加されると、ゲート電極417aに対してゲート絶縁膜423を介して重畳する有機半導体膜425に電界を付与されるので、それにより有機半導体膜425を介して複合金属電極をなすソース電極417bとドレイン電極417cとの間で電荷が移動される。有機半導体膜425をなす有機半導体材料の種類によっては、有機半導体膜425のうちその膜厚方向についてアレイ基板411b側とは反対側の部分に電気伝導性が良好な層が生じる場合があり、その場合は有機半導体膜425において電気伝導性が良好な層が他の部分に比べてゲート電極417aの近くに配されることになるので、当該TFT417の電気的な特性が良好なものとなる。
 <実施形態6>
 本発明の実施形態6を図17によって説明する。この実施形態6では、上記した実施形態1において、ソース電極517b及びドレイン電極517cを、下地であるゲート絶縁膜523に対して密着させる密着膜33を設けたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係るソース電極517b及びドレイン電極517c(第2金属膜524)と、ゲート絶縁膜523との間には、図17に示すように、密着膜33が介在する形で設けられている。密着膜33は、ソース電極517b及びドレイン電極517cと、その下地であるゲート絶縁膜523との双方に対して密着性が良好な金属材料からなるものとされ、具体的にはチタン(Ti)、窒化チタン(TiN)、窒化タンタル(TaN)などからなる。密着膜33は、その膜厚が例えば5nm程度とされる。密着膜33は、アレイ基板511bの製造に際しては、第2金属膜形成工程において第2金属膜524に先立ってゲート絶縁膜523上に成膜された後、第2金属膜524をエッチングするのと同時にエッチングされることでパターニングされている。
 以上説明したように本実施形態によれば、ソース電極517b及びドレイン電極517cが積層された下地表面とソース電極517b及びドレイン電極517cとの間に介在する形で配されるとともに、ソース電極517b及びドレイン電極517cを下地表面に密着させる密着膜を備える。このようにすれば、ソース電極517b及びドレイン電極517cをなすベース金属材528及び低抵抗金属材529が、下地表面に対して密着性の低い材料であった場合でも、密着膜によって下地表面に対するソース電極517b及びドレイン電極517cの密着性が担保される。
 <実施形態7>
 本発明の実施形態7を図18によって説明する。この実施形態7では、上記した実施形態1から低抵抗金属材629をなす金属片MPの配置を変更したしたものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る低抵抗金属材629をなす金属片MPは、図18に示すように、ベース金属材628中においてランダム(不規則)に多数が分散配置されている。詳しくは、低抵抗金属材629をなす多数の金属片MPは、その扁平な面FSが互いに並行することがなく、その姿勢が規則的に揃えられていない。このような構成であっても、低抵抗金属材629をなす金属片MPを、ソース電極617b(ドレイン電極)における有機半導体膜625に対する接触面CSに好適に露出させることができる。なお、図18では、ソース電極617bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 <実施形態8>
 本発明の実施形態8を図19によって説明する。この実施形態8では、上記した実施形態1から低抵抗金属材729の形態を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る低抵抗金属材729は、図19に示すように、球状をなしている。この球状をなす低抵抗金属材729は、ベース金属材728中においてランダム(不規則)に多数が分散配置されている。このような構成であっても、低抵抗金属材729を、ソース電極717b(ドレイン電極)における有機半導体膜725に対する接触面CSに好適に露出させることができる。なお、図19では、ソース電極717bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 <実施形態9>
 本発明の実施形態9を図20によって説明する。この実施形態9では、上記した実施形態1から低抵抗金属材829の形態を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る低抵抗金属材829は、図20に示すように、楕円球状をなしている。この楕円球状をなす低抵抗金属材829は、ベース金属材828中においてランダム(不規則)に多数が分散配置されている。このような構成であっても、低抵抗金属材829を、ソース電極817b(ドレイン電極)における有機半導体膜825に対する接触面CSに好適に露出させることができる。なお、図20では、ソース電極817bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 <実施形態10>
 本発明の実施形態10を図21によって説明する。この実施形態10では、上記した実施形態1から低抵抗金属材929の形態を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る低抵抗金属材929は、図21に示すように、粒子状をなしている。この粒子状をなす低抵抗金属材929は、ベース金属材928中においてランダム(不規則)に多数が分散配置されている。このような構成であっても、低抵抗金属材929を、ソース電極917b(ドレイン電極)における有機半導体膜925に対する接触面CSに好適に露出させることができる。なお、図21では、ソース電極917bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 <実施形態11>
 本発明の実施形態11を図22によって説明する。この実施形態11では、上記した実施形態1から低抵抗金属材1029の形態を変更したものを示す。なお、上記した実施形態1と同様の構造、作用及び効果について重複する説明は省略する。
 本実施形態に係る低抵抗金属材1029は、図22に示すように、層状をなしている。つまり、このソース電極1017bは、専ら低抵抗金属材1029が配される低抵抗金属層34と、専らベース金属材1028が配されるベース金属層35と、を積層してなるものとされる。低抵抗金属層34は、低抵抗金属材1029からなるものとされ、ベース金属材1028が殆ど含有されない層となっている。同様に、ベース金属層35は、ベース金属材1028からなるものとされ、低抵抗金属材1029が殆ど含有されない層となっている。このような構成とすることで、ソース電極1017bのうちの低抵抗金属層34では、実施形態3,4に比べて、有機半導体膜1025に対する接触面CSにさらに多くの金属片MPが露出するとともに、その露出確実性がさらに高いものとなっている。従って、有機半導体膜1025に対して低抵抗金属材1029をより良好にオーミック接触させることができる。なお、図22では、ソース電極1017bを代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 <他の実施形態>
 本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
 (1)上記した実施形態1以外にも、低抵抗金属材をなす扁平な金属片の平面形状を変更である。具体的には、図23に示すように、低抵抗金属材29-1をなす扁平な金属片MP-1が、平面に視て横長な楕円形状をなす構成とすることも可能である。なお、図23では、ソース電極17b-1を代表して図示しているが、図示しないドレイン電極についても同様の構成とされる。
 (2)上記した(1)以外にも、低抵抗金属材をなす金属片の平面形状は適宜に変更可能であり、例えば正方形、三角形、台形、菱形、五角形以上の多角形などとすることが可能である。
 (3)上記した各実施形態では、低抵抗金属材がベース金属膜の外面のいずれにも露出する形で配されるものを示したが、低抵抗金属材がベース金属膜の外面のうち、特定の外面のみに露出する構成とすることが可能である。その場合、低抵抗金属材がベース金属膜の外面のうち、有機半導体膜に対する接触面となる部分のみに選択的に露出する構成(低抵抗金属材が非接触面には露出することがない構成)とすることができる。さらには、低抵抗金属材がベース金属膜の接触面のうちの一部、例えば対向端面のみに選択的に露出する構成とすることも可能である。
 (4)上記した各実施形態以外にも、低抵抗金属材の具体的な含有比率は適宜に変更可能である。つまり、低抵抗金属材の含有比率は、1%以下でもよく、また30%以上とすることも可能である。
 (5)上記した各実施形態以外にも、低抵抗金属材の具体的な金属材料は適宜に変更可能である。例えば、低抵抗金属材の金属材料としては、貴金属であるルテニウム、ロジウム、オスミウム、イリジウムなどを用いることができる。また、低抵抗金属材の金属材料を貴金属以外にすることも可能である。
 (6)上記した各実施形態以外にも、ベース金属材の具体的な金属材料は適宜に変更可能である。例えば、ベース金属材の金属材料としては、例えば非貴金属であり且つ周期表の第5族から第13族に含まれる遷移金属を用いることが可能である。ベース金属材に用いる金属材料としては、低抵抗金属材に用いられる金属材料に比べて、材料費が安価なものが好ましく、そうであればベース金属材に用いる金属材料を貴金属とすることも可能である。また、ベース金属材に用いる金属材料は、有機半導体膜に対してオーミック接触するものであっても、オーミック接触しないものであっても構わない。
 (7)上記した各実施形態以外にも、基板、第1金属膜、有機半導体膜、ゲート絶縁膜、平坦化膜各膜、及び透明電極膜に用いる具体的な材料は、適宜に変更可能である。例えば、基板に用いる材料はガラスやシリコンなどの無機材料とすることも可能である。また、第1金属膜に用いる金属材料は、窒化チタンや窒化タンタルなどとすることも可能である。また、ゲート絶縁膜に用いる樹脂材料は、感光性を有さない樹脂材料でもよい。また、ゲート絶縁膜の樹脂材料として無機樹脂材料を用いることも可能である。
 (8)上記した各実施形態以外にも、各金属膜、有機半導体膜、ゲート絶縁膜、平坦化膜各膜、及び透明電極膜の具体的な成膜方法は、適宜に変更可能である。
 (9)上記した実施形態2では、保護膜の樹脂材料として有機樹脂材料を用いた場合を示したが、保護膜の材料として無機樹料を用いることも可能である。
 (10)上記した実施形態3では、複数のベース金属主体層の厚さが同一で、低抵抗金属主体層が厚さ方向について等間隔に並ぶものを例示したが、複数のベース金属主体層の厚さが互いに異なっていて低抵抗金属主体層が不規則に並ぶ配置とすることも可能である。なお、実施形態11の構成に関しても同様に変更することが可能である。
 (11)上記した実施形態3,4以外にも、ベース金属主体層及び低抵抗金属主体層の数については適宜に変更可能である。なお、実施形態11の構成に関しても同様に変更することが可能である。
 (12)上記した実施形態2から実施形態4及び実施形態6に記載した各構成に、実施形態7から実施形態10を適宜に組み合わせることも可能である。
 (13)上記した実施形態5に記載した構成(トップゲート型のTFT)に、実施形態2から実施形態4を適宜に組み合わせることも可能である。また、実施形態5に実施形態7から実施形態10を適宜に組み合わせることも可能である。
 (14)上記した実施形態7から実施形態10以外にも、低抵抗金属材の具体的な形態は適宜に変更可能である。例えば、低抵抗金属材を円柱状、角柱状、円錐状、角錐状などとすることが可能である。
 (15)上記した各実施形態では、縦長な方形状をなす液晶パネルを例示したが、横長な方形状をなす液晶パネルや正方形状をなす液晶パネルにも本発明は適用可能である。
 (16)上記した各実施形態に記載した液晶パネルに対して、タッチパネルや視差バリアパネル(スイッチ液晶パネル)などの機能性パネルを積層する形で取り付けるようにしたものも本発明に含まれる。
 (17)上記した各実施形態では、液晶表示装置が備えるバックライト装置としてエッジライト型のものを例示したが、直下型のバックライト装置を用いるようにしたものも本発明に含まれる。
 (18)上記した各実施形態では、外部光源であるバックライト装置を備えた透過型の液晶表示装置を例示したが、本発明は、外光を利用して表示を行う反射型液晶表示装置にも適用可能であり、その場合はバックライト装置を省略することができる。
 (19)上記した各実施形態では、液晶表示装置のスイッチング素子としてTFTを用いたが、TFT以外のスイッチング素子(例えば薄膜ダイオード(TFD))を用いた液晶表示装置にも適用可能であり、またカラー表示する液晶表示装置以外にも、白黒表示する液晶表示装置にも適用可能である。
 (20)上記した各実施形態では、表示パネルとして液晶パネルを用いた液晶表示装置を例示したが、他の種類の表示パネル(PDP(プラズマディスプレイパネル)、有機ELパネル、EPD(電気泳動ディスプレイパネル)など)を用いた表示装置にも本発明は適用可能である。その場合、バックライト装置を省略することが可能である。
 (21)上記した各実施形態では、小型または中小型に分類され、携帯型情報端末、携帯電話、ノートパソコン、デジタルフォトフレーム、携帯型ゲーム機、電子インクペーパなどの各種電子機器などに用いされる液晶パネルを例示したが、画面サイズが例えば20インチ~90インチで、中型または大型(超大型)に分類される液晶パネルにも本発明は適用可能である。その場合、液晶パネルをテレビ受信装置、電子看板(デジタルサイネージ)、電子黒板などの電子機器に用いることが可能とされる。
 11…液晶パネル(表示装置)、11a…CF基板(対向基板)、11b,411b,511b…アレイ基板(基板、素子基板)、11c…液晶層、17,417…TFT(半導体装置、スイッチング素子)、17a,417a…ゲート電極、17b,117b,217b,317b,417b,517b,617b,717b,817b,917b,1017b,17b-1…ソース電極(複合金属電極)、17c,117c,417c,517c…ドレイン電極(複合金属電極)、23,123,223,423,523…ゲート絶縁膜(絶縁膜)、25,125,225,325,425,625,725,825,925,1025…有機半導体膜、28,228,528,628,728,828,928,1028…ベース金属材、28a…対向端面(端面)、29,229,529,629,729,829,929,1029,29-1…低抵抗金属材、30…保護膜、31,331…低抵抗金属主体層、32,332…ベース金属主体層、33…密着膜、CS…接触面、FS…扁平な面、MP…金属片、NCS…非接触面

Claims (14)

  1.  有機半導体材料からなる有機半導体膜と、
     前記有機半導体膜に接触する複合金属電極であって、金属材料からなるベース金属材に、前記有機半導体膜に対してオーミック接触してその接触抵抗が前記ベース金属材よりも低い低抵抗金属材を混在させるとともに、前記低抵抗金属材が少なくとも前記有機半導体膜に対する接触面に露出する形で配されてなる複合金属電極と、を備える半導体装置。
  2.  前記ベース金属材は、膜状をなしていて少なくともその厚さ方向に沿う端面が前記接触面とされているのに対し、
     前記低抵抗金属材は、前記ベース金属材中に多数含有される扁平な金属片からなり且つその金属片が扁平な面を前記端面に対して交差させた姿勢とされる請求項1記載の半導体装置。
  3.  前記複合金属電極は、前記低抵抗金属材が、前記接触面に加えて前記有機半導体膜とは非接触とされる非接触面にも露出する形で配されてなる請求項1または請求項2記載の半導体装置。
  4.  前記複合金属電極は、相対的に前記低抵抗金属材が多く配される低抵抗金属主体層と、相対的に前記ベース金属材が多く配されるベース金属主体層と、を積層してなる請求項1から請求項3のいずれか1項に記載の半導体装置。
  5.  前記有機半導体膜は、少なくとも一部が、前記複合金属電極が積層された下地表面に積層されるとともに、その膜厚が前記複合金属電極の厚さよりも薄くなっており、
     前記複合金属電極は、前記低抵抗金属主体層が前記有機半導体膜の膜厚方向について前記下地表面側に偏在する形で配されてなる請求項4記載の半導体装置。
  6.  前記複合金属電極は、前記低抵抗金属材の含有比率が1%~30%の範囲となる構成とされる請求項1から請求項5のいずれか1項に記載の半導体装置。
  7.  基板と、
     前記基板に対して積層されるゲート電極と、
     前記ゲート電極に対して前記基板側とは反対側に積層される絶縁膜と、を備えており、
     前記有機半導体膜は、前記絶縁膜に対して前記基板側とは反対側に積層されるとともに前記ゲート電極と重畳する形で配されるのに対し、
     前記複合金属電極は、前記絶縁膜に対して前記基板側とは反対側に積層されるとともに間隔を空けて配され、それぞれが前記有機半導体膜に接触されるソース電極及びドレイン電極からなるものとされる請求項1から請求項6のいずれか1項に記載の半導体装置。
  8.  前記有機半導体膜及び前記複合金属電極が積層される基板と、
     前記有機半導体膜及び前記複合金属電極に対して前記基板側とは反対側に積層される絶縁膜と、
     前記絶縁膜に対して前記基板側とは反対側に積層されるゲート電極と、を備えており、
     前記有機半導体膜は、前記ゲート電極と重畳する形で配されるのに対し、
     前記複合金属電極は、間隔を空けて配され、それぞれが前記有機半導体膜に接触されるソース電極及びドレイン電極からなるものとされる請求項1から請求項6のいずれか1項に記載の半導体装置。
  9.  前記複合金属電極が積層された下地表面と前記複合金属電極との間に介在する形で配されるとともに、前記複合金属電極を前記下地表面に密着させる密着膜を備える請求項1から請求項8のいずれか1項に記載の半導体装置。
  10.  前記有機半導体膜は、前記複合金属電極が積層された下地表面に積層される部分と、前記複合金属電極に対して前記下地表面側とは反対側に積層される部分とを有してなり、
     前記有機半導体膜に対して前記下地表面側とは反対側に積層される保護膜を備える請求項1から請求項9のいずれか1項に記載の半導体装置。
  11.  前記低抵抗金属材は、銀、金、白金、及びパラジウムのいずれかからなる請求項1から請求項10のいずれか1項に記載の半導体装置。
  12.  前記ベース金属材をなす金属材料は、銅、アルミニウム、タングステン、モリブデン、コバルト、及びニッケルのいずれかからなる請求項1から請求項11のいずれか1項に記載の半導体装置。
  13.  請求項1から請求項12のいずれか1項に記載の半導体装置をスイッチング素子として有する素子基板を備える表示装置。
  14.  前記素子基板と対向状をなす対向基板と、前記素子基板と前記対向基板との間に挟持される液晶層と、を備える請求項13記載の表示装置。
PCT/JP2014/073642 2013-12-27 2014-09-08 半導体装置及び表示装置 WO2015098192A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/107,897 US9864248B2 (en) 2013-12-27 2014-09-08 Semiconductor device and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-272791 2013-12-27
JP2013272791 2013-12-27

Publications (1)

Publication Number Publication Date
WO2015098192A1 true WO2015098192A1 (ja) 2015-07-02

Family

ID=53478075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073642 WO2015098192A1 (ja) 2013-12-27 2014-09-08 半導体装置及び表示装置

Country Status (2)

Country Link
US (1) US9864248B2 (ja)
WO (1) WO2015098192A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170185190A1 (en) * 2015-12-27 2017-06-29 Lg Display Co., Ltd. Display Device with Touch Sensor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183648B (zh) * 2014-07-25 2017-06-27 京东方科技集团股份有限公司 一种薄膜晶体管及其制作方法、阵列基板和显示装置
KR102362741B1 (ko) * 2015-05-27 2022-02-14 삼성전자주식회사 플렉서블 디스플레이 장치 및 플렉서블 디스플레이 장치의 디스플레이 방법
KR102446200B1 (ko) * 2017-12-22 2022-09-21 엘지디스플레이 주식회사 플렉서블 디스플레이 장치 및 이를 포함하는 롤러블 디스플레이 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023071A (ja) * 2002-06-20 2004-01-22 Mitsubishi Chemicals Corp 電子デバイスの作製方法及び電子デバイス
JP2006319102A (ja) * 2005-05-12 2006-11-24 Ricoh Co Ltd 発光素子
JP2007305839A (ja) * 2006-05-12 2007-11-22 Hitachi Ltd 配線および有機トランジスタとその製法
JP2009087907A (ja) * 2007-10-03 2009-04-23 Rohm Co Ltd 有機半導体発光装置
JP2011077044A (ja) * 2003-08-25 2011-04-14 Semiconductor Energy Lab Co Ltd 電極の作製方法
JP2012074683A (ja) * 2010-08-30 2012-04-12 Sumitomo Chemical Co Ltd 有機薄膜トランジスタ絶縁層用組成物及び有機薄膜トランジスタ
JP2013016613A (ja) * 2011-07-04 2013-01-24 Sony Corp 電子デバイス及び半導体装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706236B2 (ja) 2004-11-16 2011-06-22 ソニー株式会社 半導体装置及びその製造方法
JP4923434B2 (ja) 2005-04-15 2012-04-25 ソニー株式会社 半導体装置、光学装置及びセンサ装置
KR101393265B1 (ko) * 2009-12-25 2014-05-08 가부시키가이샤 리코 전계효과 트랜지스터, 반도체 메모리, 표시 소자, 화상 표시 장치, 및 시스템

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023071A (ja) * 2002-06-20 2004-01-22 Mitsubishi Chemicals Corp 電子デバイスの作製方法及び電子デバイス
JP2011077044A (ja) * 2003-08-25 2011-04-14 Semiconductor Energy Lab Co Ltd 電極の作製方法
JP2006319102A (ja) * 2005-05-12 2006-11-24 Ricoh Co Ltd 発光素子
JP2007305839A (ja) * 2006-05-12 2007-11-22 Hitachi Ltd 配線および有機トランジスタとその製法
JP2009087907A (ja) * 2007-10-03 2009-04-23 Rohm Co Ltd 有機半導体発光装置
JP2012074683A (ja) * 2010-08-30 2012-04-12 Sumitomo Chemical Co Ltd 有機薄膜トランジスタ絶縁層用組成物及び有機薄膜トランジスタ
JP2013016613A (ja) * 2011-07-04 2013-01-24 Sony Corp 電子デバイス及び半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170185190A1 (en) * 2015-12-27 2017-06-29 Lg Display Co., Ltd. Display Device with Touch Sensor
US10444877B2 (en) * 2015-12-27 2019-10-15 Lg Display Co., Ltd. Display device with touch sensor

Also Published As

Publication number Publication date
US9864248B2 (en) 2018-01-09
US20160341997A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
US9171866B2 (en) Array substrate for narrow bezel type liquid crystal display device and method of manufacturing the same
US8848142B2 (en) Liquid crystal display device including black matrix and method of fabricating the same
US11460948B2 (en) Touch panel and preparation method thereof, and display apparatus
US9798203B2 (en) Semiconductor device and display device
CN102636925B (zh) 液晶显示器
US9229289B2 (en) Array substrate for narrow bezel type liquid crystal display device and method of manufacturing the same
KR102007833B1 (ko) 프린지 필드 스위칭 모드 액정표시장치용 어레이 기판
US10050061B2 (en) Array substrate and manufacturing method thereof, display device
US8927998B2 (en) Array substrate for liquid crystal display and manufacturing method thereof
US7852451B2 (en) Manufacturing method of liquid display device having touch screen function
US9496284B2 (en) Display panel and display apparatus including the same
JP5940163B2 (ja) 半導体装置及び表示装置
US10025146B2 (en) Liquid crystal display device
TW201013279A (en) Liquid crystal display and method of manufacturing the same
US20140306216A1 (en) Thin film transistor array panel and manufacturing method thereof
CN109839779A (zh) 液晶面板
JP2015135530A (ja) 液晶表示装置
CN104641285A (zh) 半导体装置和显示装置
WO2015098192A1 (ja) 半導体装置及び表示装置
US11816283B2 (en) Touch panel, preparation method thereof and display apparatus
KR101631620B1 (ko) 프린지 필드형 액정표시장치 및 그 제조방법
KR20080112849A (ko) 액정표시장치 및 그 제조방법
JP2008070874A (ja) 可撓性表示装置の製造装置及び製造方法
US11997903B2 (en) Display substrate and preparation method thereof, and display apparatus
EP4020578A2 (en) Display device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14874348

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15107897

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14874348

Country of ref document: EP

Kind code of ref document: A1