WO2015097843A1 - Air conditioning device - Google Patents

Air conditioning device Download PDF

Info

Publication number
WO2015097843A1
WO2015097843A1 PCT/JP2013/085037 JP2013085037W WO2015097843A1 WO 2015097843 A1 WO2015097843 A1 WO 2015097843A1 JP 2013085037 W JP2013085037 W JP 2013085037W WO 2015097843 A1 WO2015097843 A1 WO 2015097843A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
refrigerant
expansion valve
heat exchanger
bypass
Prior art date
Application number
PCT/JP2013/085037
Other languages
French (fr)
Japanese (ja)
Inventor
浩之 豊田
浦田 和幹
内藤 宏治
和彦 谷
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to PCT/JP2013/085037 priority Critical patent/WO2015097843A1/en
Publication of WO2015097843A1 publication Critical patent/WO2015097843A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/005Outdoor unit expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of the present invention is to improve the reliability of a compressor. This air conditioning device is formed by connecting, by piping: a compressor (3) for compressing a refrigerant; an outdoor heat exchanger (14) for exchanging heat between outside air and the refrigerant; an indoor heat exchanger (7) for exchanging heat between indoor air and the refrigerant; a first expansion valve provided between the outdoor heat exchanger (14) and the indoor heat exchanger (7) and reducing the pressure of the refrigerant; and a four-way valve (4) for switching between refrigerant flow passages. The air conditioning device is characterized by comprising: a bypass passage (18) for connecting a route from the first expansion valve to the outdoor heat exchanger (7), and a route from the discharge side of the compressor (3) to the four-way valve (4); and a bypass expansion valve provided in the bypass passage (18) at a position between the ends thereof, the degree of opening of the bypass expansion valve being adjustable while the bypass expansion valve is open.

Description

空気調和装置Air conditioner
 本発明は、空気調和装置に関するものである。 The present invention relates to an air conditioner.
 空気調和装置では、特に外気温が低い条件における暖房の起動時に、圧縮機内の潤滑油が発泡することがある。これは潤滑油に溶け込んだ冷媒が、潤滑油内でガス化することで発生する現象であり、これに伴って潤滑油が大量に圧縮機外に放出され、潤滑油不足が発生することが考えられる。 In the air conditioner, the lubricating oil in the compressor may foam, particularly when heating is started under conditions where the outside air temperature is low. This is a phenomenon that occurs when the refrigerant dissolved in the lubricating oil is gasified in the lubricating oil. Along with this, a large amount of lubricating oil is released outside the compressor, and a shortage of lubricating oil may occur. It is done.
 また停止中に、圧縮機内の潤滑油に液冷媒が溜まることがある。このような状態で停止していた圧縮機を再起動すると、潤滑油の大量放出と同時に、大量の液冷媒が圧縮部に流入し、液圧縮により圧縮部が損傷することが考えられた。また、冷媒は圧縮機内の潤滑油中に溶け込むため、液冷媒が圧縮機室に大量に留まると、潤滑油が液冷媒により希釈され、潤滑不足が生じ摺動部が損傷することが考えられた。または、潤滑油が液冷媒と共に大量に圧縮機から吐出された場合、潤滑油自体が不足し、潤滑不足により摺動部が損傷することが考えられた。 In addition, liquid refrigerant may accumulate in the lubricating oil in the compressor during stoppage. When the compressor stopped in such a state is restarted, it is considered that a large amount of liquid refrigerant flows into the compression section at the same time as a large amount of lubricating oil is released, and the compression section is damaged by liquid compression. In addition, since the refrigerant is dissolved in the lubricating oil in the compressor, if a large amount of liquid refrigerant stays in the compressor chamber, it is considered that the lubricating oil is diluted with the liquid refrigerant, resulting in insufficient lubrication and damage to the sliding part. . Or when lubricating oil was discharged from a compressor in large quantities with the liquid refrigerant, it was thought that lubricating oil itself was insufficient and a sliding part was damaged by lack of lubrication.
 また、外気が低温である時の暖房運転では、室外機の蒸発温度が0℃以下となり、これに伴って熱交換器表面に着霜が発生する場合がある。また、室外機のおかれる気象条件によっては、室外機の熱交換器に積雪し、さらには外気温度の変化により積雪した雪が熱交換器表面に凍りつくことも考えられる。このような場合には熱交換器は、従来の性能を発揮できないため、正常な運転開始の遅れにつながることが考えられる。 Also, in the heating operation when the outside air is at a low temperature, the evaporation temperature of the outdoor unit becomes 0 ° C. or lower, and accordingly, frost formation may occur on the heat exchanger surface. Also, depending on the weather conditions in which the outdoor unit is placed, it is conceivable that snow will accumulate on the heat exchanger of the outdoor unit, and snow that has accumulated due to changes in the outside air temperature may freeze on the surface of the heat exchanger. In such a case, since the heat exchanger cannot exhibit the conventional performance, it can be considered that it leads to a delay in the normal operation start.
 このために特許文献1では、起動時に圧縮機から吐出されるガスを、バイパス路に通し、かつ室外機の熱交換器を経由させて圧縮機の吸入側に流すことで、室外機の熱交換器の除霜と、圧縮機の加熱を同時に行うことを示している。 For this reason, in Patent Document 1, the gas discharged from the compressor at the time of start-up is passed through the bypass and through the heat exchanger of the outdoor unit to the suction side of the compressor, thereby exchanging heat of the outdoor unit. It shows that the defrosting of the vessel and the heating of the compressor are performed simultaneously.
特開2000-105015号公報JP 2000-105015 A
 特許文献1では、バイパス路に設けられるのは電磁弁であることから、閉回路内で減圧調整ができず、圧縮機の吐出側と吸込側の圧力差を調整することができない。つまり、室外機の熱交換器での放熱ロスが大きいことが考えられ、圧縮機の温度上昇に時間がかかることが考えられる。また、閉回路に冷媒を循環させている間は圧縮機の吐出側と吸込側の圧力差を調整できないため、通常運転へ切り替えた後に室内機から十分な温風が出るまでに、さらなる時間が必要となる。 In Patent Document 1, since the solenoid valve is provided in the bypass path, the pressure reduction cannot be adjusted in the closed circuit, and the pressure difference between the discharge side and the suction side of the compressor cannot be adjusted. That is, it is considered that the heat radiation loss in the heat exchanger of the outdoor unit is large, and it takes time to increase the temperature of the compressor. In addition, since the pressure difference between the discharge side and the suction side of the compressor cannot be adjusted while the refrigerant is circulated in the closed circuit, further time is required until sufficient hot air comes out from the indoor unit after switching to normal operation. Necessary.
 本発明の目的は、圧縮機の信頼性を向上させることにあり、さらには、例えば圧縮機の温度を素早くかつ高効率に上昇させること、起動前に室外機の熱交換器に取りついた霜および氷を取り除くことを両立させることであり、通常の暖房運転切り替え後、すぐに室内機から温風が出るようにすることである。 An object of the present invention is to improve the reliability of the compressor, and further, for example, to increase the temperature of the compressor quickly and with high efficiency, and frost attached to the heat exchanger of the outdoor unit before starting. It is to make it compatible with removing ice and to make warm air come out from the indoor unit immediately after switching to normal heating operation.
 本発明の特徴は、冷媒を圧縮する圧縮機と、外気と冷媒を熱交換させる室外熱交換器と、室内の空気と冷媒を熱交換させる室内熱交換器と、前記室外熱交換器と前記室内熱交換の間に設けられて冷媒を減圧する第一の膨張弁と、冷媒流路を切り替える四方弁と、が配管接続されて構成される空気調和装置において、前記第一の膨張弁から前記室外熱交換器までの経路と、前記圧縮機の吐出側から前記四方弁までの経路とを接続するバイパス路と、前記バイパス路の途中に設けられ、開弁時に開度を調節できるバイパス膨張弁と、を備えることにある。 The present invention is characterized by a compressor that compresses refrigerant, an outdoor heat exchanger that exchanges heat between the outside air and the refrigerant, an indoor heat exchanger that exchanges heat between indoor air and the refrigerant, the outdoor heat exchanger, and the indoor In the air conditioner configured by connecting a first expansion valve that is provided during heat exchange and depressurizes the refrigerant, and a four-way valve that switches the refrigerant flow path from the first expansion valve to the outdoor A bypass path connecting the path to the heat exchanger, the path from the discharge side of the compressor to the path to the four-way valve, and a bypass expansion valve provided in the middle of the bypass path, the opening degree of which can be adjusted when the valve is opened; , To provide.
 本発明によれば、圧縮機の信頼性を向上させることができる。さらには、例えば電気ヒータよりも高効率に圧縮機を加熱できるため、運転起動時の信頼性および製品の信頼性を向上させながら、省電力化も達成できる。また、暖房スタート時に素早く、温風を供給することが可能となる。また室外熱交換器の着霜、着氷も除くことができる。 According to the present invention, the reliability of the compressor can be improved. Furthermore, since the compressor can be heated more efficiently than, for example, an electric heater, it is possible to achieve power saving while improving the reliability at the start of operation and the reliability of the product. Moreover, it becomes possible to supply warm air quickly at the start of heating. In addition, frost formation and icing of the outdoor heat exchanger can be removed.
本発明の第1の実施形態(実施例1)になる暖房時における冷凍サイクル図である。It is a refrigerating cycle figure at the time of the heating which becomes the 1st Embodiment (Example 1) of this invention. 本発明の第1の実施形態(実施例1)になる暖房起動時における動作順序をしめすフローチャートである。It is a flowchart which shows the operation | movement order at the time of heating starting which becomes the 1st Embodiment (Example 1) of this invention. 本発明の第2の実施形態(実施例2)になる暖房時における冷凍サイクル図である。It is the refrigerating cycle figure at the time of the heating which becomes the 2nd Embodiment (Example 2) of this invention. 本発明の第3の実施形態(実施例3)になる暖房時における冷凍サイクル図である。It is the refrigerating cycle figure at the time of the heating which becomes the 3rd Embodiment (Example 3) of this invention.
 以下、本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and various modifications and application examples are included in the technical concept of the present invention. Is also included in the range.
 まず、本発明の第1の実施形態について図1を用いて詳細に説明する。図1は暖房時の冷凍サイクルを示しており、空気調和装置の主な構成について冷媒の流れとともに説明する。冷凍サイクルは、大きく分けて室外機1と室内機2に分けられる。暖房においては、室外機1にて外気より吸熱し、室内機2にて室内空気に放熱することで、室内を暖める。冷媒は圧縮機3で圧縮され高圧、高温ガスとして吐出される。吐出したガスは、四方弁4によりガス阻止弁5側へ流される。 First, a first embodiment of the present invention will be described in detail with reference to FIG. FIG. 1 shows a refrigeration cycle during heating, and the main configuration of the air conditioner will be described together with the flow of the refrigerant. The refrigeration cycle is roughly divided into an outdoor unit 1 and an indoor unit 2. In heating, the outdoor unit 1 absorbs heat from the outside air, and the indoor unit 2 radiates heat to the indoor air, thereby warming the room. The refrigerant is compressed by the compressor 3 and discharged as a high-pressure and high-temperature gas. The discharged gas is caused to flow to the gas blocking valve 5 side by the four-way valve 4.
 ここで、図1での四方弁4は実線により暖房時用の接続状態を示しており、これが冷房の際には図の破線側の接続状態となる。ガス阻止弁5および液阻止弁11は、室外機1と室内機2をつなぐ配管を接続する口ともなっている。ガス阻止弁5より室内機2へ流れたガス冷媒は、室内ガスヘッダ6を通過し、室内熱交換器7へと流れる。 Here, the four-way valve 4 in FIG. 1 indicates a connection state for heating by a solid line, and this is in a connection state on the broken line side in the figure during cooling. The gas blocking valve 5 and the liquid blocking valve 11 are also ports for connecting a pipe connecting the outdoor unit 1 and the indoor unit 2. The gas refrigerant that has flowed from the gas blocking valve 5 to the indoor unit 2 passes through the indoor gas header 6 and flows to the indoor heat exchanger 7.
 室内熱交換器7は室内ファン8によって室内の空気が流されており、ガス冷媒温度より室内空気温度は低いので、室内熱交換器7の中でガス冷媒は冷やされ凝縮する。凝縮することで液となった冷媒は、室内液分配器9を通過し室内膨張弁10を経て室外機1の液阻止弁11に至る。液阻止弁11を通過した液冷媒は室外膨張弁12にて減圧され、低圧でかつ、室外空気温度より低温の冷媒として室外液分配器13を経て室外熱交換器14へ流れる。 In the indoor heat exchanger 7, the indoor air is flowed by the indoor fan 8, and the indoor air temperature is lower than the gas refrigerant temperature, so that the gas refrigerant is cooled and condensed in the indoor heat exchanger 7. The refrigerant that has become liquid by condensing passes through the indoor liquid distributor 9, passes through the indoor expansion valve 10, and reaches the liquid blocking valve 11 of the outdoor unit 1. The liquid refrigerant that has passed through the liquid blocking valve 11 is decompressed by the outdoor expansion valve 12, and flows to the outdoor heat exchanger 14 through the outdoor liquid distributor 13 as a low-pressure refrigerant having a temperature lower than the outdoor air temperature.
 室外熱交換器14には、室外ファン15にて室外空気が流されており、外気に温められることで室外熱交換器14内にて冷媒は蒸発する。蒸発した冷媒は、室外ガスヘッダ16を経て、四方弁4に至り、アキュムレータ17へ流れる。 Outdoor air is passed through the outdoor heat exchanger 14 by the outdoor fan 15, and the refrigerant evaporates in the outdoor heat exchanger 14 by being heated to the outside air. The evaporated refrigerant passes through the outdoor gas header 16, reaches the four-way valve 4, and flows to the accumulator 17.
 アキュムレータ17は、気液分離と、余剰液冷媒および余剰潤滑油の貯蔵を担っており、圧縮機3へ過剰な液冷媒が流れることを抑制し、過剰な液冷媒の流入により圧縮機3が故障することを防ぐ役割がある。 The accumulator 17 is responsible for gas-liquid separation and storage of excess liquid refrigerant and excess lubricating oil, suppresses excessive liquid refrigerant from flowing into the compressor 3, and causes the compressor 3 to malfunction due to inflow of excessive liquid refrigerant. There is a role to prevent that.
 このような暖房の運転起動時の課題として、圧縮機3内の潤滑油の発泡現象がある。この現象は、圧縮機3内に貯められている潤滑油内に溶け込んだ冷媒が潤滑油内でガス化することで発生する。この潤滑油内に冷媒が溶け込む原因として、装置の停止中と起動時の2つの原因が考えられる。一つは、装置の停止中に冷媒が潤滑油に流れ込んでしまうこと、もう一つは起動時に流れ込んだガス冷媒が凝縮することである。 As a problem at the start of such heating operation, there is a foaming phenomenon of the lubricating oil in the compressor 3. This phenomenon occurs when the refrigerant dissolved in the lubricating oil stored in the compressor 3 is gasified in the lubricating oil. There are two possible causes for the refrigerant dissolving in the lubricating oil: when the apparatus is stopped and when it is started. One is that the refrigerant flows into the lubricating oil while the apparatus is stopped, and the other is that the gas refrigerant that has flowed in at the start-up condenses.
 装置停止中の冷媒浸入を防ぐためには、ヒータ30により圧縮機3を加熱し続けることがされている。これにより、圧縮機3内に浸入した冷媒はガス化するため潤滑油に溶け込まなくなる。潤滑油の冷媒への溶解度は、冷媒がガス状態の時よりも液状態のときのほうが大きい。 In order to prevent the refrigerant from entering while the apparatus is stopped, the compressor 3 is continuously heated by the heater 30. As a result, the refrigerant that has entered the compressor 3 is gasified and thus does not dissolve in the lubricating oil. The solubility of the lubricating oil in the refrigerant is greater when the refrigerant is in the liquid state than when the refrigerant is in the gas state.
 また、発泡現象のもう一方の原因である起動時の圧縮機3内部での凝縮抑制にもヒータ30を使用する手段がある。圧縮機3内部には、圧縮機3吸込み側の低圧部分と、圧縮機3吐出側の高圧部分とが存在する。起動時に圧縮機3の内部が低温の場合、この高圧部分へ圧縮され高圧化された吐出ガス冷媒が流れ込むと凝縮が発生する。 There is also a means of using the heater 30 to suppress condensation inside the compressor 3 at the start-up, which is another cause of the foaming phenomenon. Inside the compressor 3, there are a low-pressure portion on the suction side of the compressor 3 and a high-pressure portion on the discharge side of the compressor 3. When the inside of the compressor 3 is at a low temperature at the time of start-up, condensation occurs when the discharge gas refrigerant compressed into the high-pressure portion and increased in pressure flows.
 特に、この高圧部へ潤滑油を貯めている場合、凝縮した液冷媒が流れ込み発泡現象の原因となる。凝縮が発生する条件は、圧縮機3内部温度が、その冷媒の圧力における飽和温度よりも低いことである。したがって、ヒータ30により圧縮機3を暖めれば凝縮量を小さくすることができる。 In particular, when lubricating oil is stored in this high-pressure part, the condensed liquid refrigerant flows and causes a foaming phenomenon. The condition for the condensation to occur is that the internal temperature of the compressor 3 is lower than the saturation temperature at the refrigerant pressure. Therefore, if the compressor 3 is warmed by the heater 30, the amount of condensation can be reduced.
 しかしながら、ヒータ30は電力をそのまま熱に変換するため加熱効率は高くない。また、微燃性と呼ばれるR32(ジフルオロメタン、CH22)や、可燃性のプロパンなどの冷媒を空気調和装置へ使用するにあっては、ヒータ30を使用しないことが望ましい。さらには、ヒータ30を削減できればコスト削減につながる。 However, since the heater 30 directly converts electric power into heat, the heating efficiency is not high. Further, R32 called slightly combustible (difluoromethane, CH 2 F 2) and, in a refrigerant such as flammable propane In the use the air conditioner, it is desirable not to use the heater 30. Furthermore, if the heater 30 can be reduced, the cost can be reduced.
 そこで本実施例では、圧縮機3の吐出側配管と、室外膨張弁12と室外液分配器13の間とを結ぶバイパス路18を設け、そのバイパス路18の途中にバイパス膨張弁26を設ける。図1では、圧縮機3から四方弁4までの経路でバイパスさせているが、四方弁4からガス阻止弁5までの経路でバイパスさせても良い。なお、バイパス膨張弁26には、開弁時に開度を調節でき、減圧度合を変更できるものを使用する。 Therefore, in this embodiment, a bypass pipe 18 connecting the discharge side piping of the compressor 3 and the outdoor expansion valve 12 and the outdoor liquid distributor 13 is provided, and a bypass expansion valve 26 is provided in the middle of the bypass path 18. In FIG. 1, the bypass is performed from the compressor 3 to the four-way valve 4, but the bypass may be performed from the four-way valve 4 to the gas blocking valve 5. As the bypass expansion valve 26, a valve that can adjust the opening degree when the valve is opened and change the degree of pressure reduction is used.
 これらの構成により、暖房起動時に、室内膨張弁10、室外膨張弁12を全閉し、バイパス膨張弁26を全開することで、圧縮機3の吐出ガスを、室外熱交換器14を経由させ、圧縮機3の吸込み側へ戻す閉回路を成すことができる。これにより、ヒータを使用せずに圧縮機3を加熱できるとともに、閉回路により室内機2側まで冷媒を循環させなくても良いため早期に圧縮機3を加熱することができる。このとき室外ファン15は停止させたままとし、室外熱交換器14での放熱ロスを小さくすることで圧縮機3の加熱を早めることができる。 With these configurations, when heating is started, the indoor expansion valve 10 and the outdoor expansion valve 12 are fully closed, and the bypass expansion valve 26 is fully opened, whereby the discharge gas of the compressor 3 is caused to pass through the outdoor heat exchanger 14, A closed circuit returning to the suction side of the compressor 3 can be formed. Thereby, while being able to heat the compressor 3 without using a heater, since it is not necessary to circulate a refrigerant | coolant to the indoor unit 2 side by a closed circuit, the compressor 3 can be heated at an early stage. At this time, the outdoor fan 15 is kept stopped, and the heating of the compressor 3 can be accelerated by reducing the heat dissipation loss in the outdoor heat exchanger 14.
 また、このような閉回路を形成して圧縮機3を加熱する方法では、室内膨張弁10、室外膨張弁12の間の配管に液冷媒を一時保持できる。室内膨張弁10または室外膨張弁12のどちらか一方を閉じれば閉回路を形成できるが、両方を全閉することで、加熱すべき冷媒量を減らせるため圧縮機3の温度上昇時間の短縮につながる。また圧縮機3により暖められたガスを、室外熱交換器14を経由させることで、室外熱交換器14の着霜、着氷の除去ができる。 In the method of heating the compressor 3 by forming such a closed circuit, the liquid refrigerant can be temporarily held in the pipe between the indoor expansion valve 10 and the outdoor expansion valve 12. If either the indoor expansion valve 10 or the outdoor expansion valve 12 is closed, a closed circuit can be formed. However, if both are fully closed, the amount of refrigerant to be heated can be reduced, so that the temperature rise time of the compressor 3 can be shortened. Connected. Further, by allowing the gas heated by the compressor 3 to pass through the outdoor heat exchanger 14, frost formation and icing of the outdoor heat exchanger 14 can be removed.
 また起動時の圧縮機3内部の高圧側での冷媒の凝縮現象は、圧縮機3内部の温度がその吐出ガスの圧力の飽和温度に達するまで発生する。つまり、圧縮機3内の潤滑油の発泡現象は、吐出側の圧力が高いほど、飽和温度も上がるため発生しやすい。しかしバイパス膨張弁26を全開としているため、圧縮機3の吸込み側と吐出側の圧力差は小さく、吸込み側の圧力は室外熱交換器14の温度に支配されるため、圧縮機3の吐出圧力を低めに、しかも室外温度つまり長時間停止後の圧縮機3がなっていると考えられる温度と近い飽和圧力に維持することができる。このため、圧縮機3内部の高圧側で凝縮する冷媒量を少なくすることができ、発泡現象が起きたとしても短い時間ですむ。 Also, the refrigerant condensation phenomenon on the high pressure side inside the compressor 3 at the time of start-up occurs until the temperature inside the compressor 3 reaches the saturation temperature of the pressure of the discharged gas. That is, the foaming phenomenon of the lubricating oil in the compressor 3 is likely to occur because the saturation temperature increases as the pressure on the discharge side increases. However, since the bypass expansion valve 26 is fully opened, the pressure difference between the suction side and the discharge side of the compressor 3 is small, and the pressure on the suction side is governed by the temperature of the outdoor heat exchanger 14, so the discharge pressure of the compressor 3 Can be maintained at a saturation pressure close to the outdoor temperature, that is, the temperature at which the compressor 3 is considered to have been stopped for a long time. For this reason, the amount of refrigerant condensed on the high pressure side inside the compressor 3 can be reduced, and even if a foaming phenomenon occurs, a short time is required.
 また、一定時間以上停止した後の暖房運転開始時には、たいてい冷媒の一部が圧縮機3の中で潤滑油に溶け込んでいる。特に環境温度が非常に低い運転開始時では、潤滑油に溶け込む冷媒量が多い。本実施例では、圧縮機3にヒータ30を取り付けており、これにより圧縮機3を暖め、冷媒が圧縮機3内部の潤滑油へ溶け込むことを抑制できる。従来ヒータ30は、圧縮機3起動時にも高圧側で冷媒が凝縮しないように圧縮機3を加熱するために用いられてきたが、本方式では起動時のヒータ30による過熱は必要ない、もしくは非常にわずかで良い。 Also, at the start of heating operation after being stopped for a certain time or more, a part of the refrigerant is usually dissolved in the lubricating oil in the compressor 3. In particular, when the operation is started at a very low environmental temperature, the amount of refrigerant dissolved in the lubricating oil is large. In the present embodiment, the heater 30 is attached to the compressor 3, thereby warming the compressor 3 and suppressing the refrigerant from being dissolved in the lubricating oil inside the compressor 3. Conventionally, the heater 30 has been used to heat the compressor 3 so that the refrigerant does not condense on the high pressure side even when the compressor 3 is started. However, in this method, overheating by the heater 30 at the time of starting is not necessary or very Just fine.
 さらに、通常の暖房運転の起動では、潤滑油が吐出された場合には、室外機1と室内機2を結ぶ接続配管を通って室内機2へと流れる。場合によってはこの接続配管が非常に長く、たとえば100m以上となることも考えられる。このような場合には、潤滑油が圧縮機3へ戻ってくるには時間が必要となり、発泡による油の流出が、圧縮機3内に潤滑油不足の問題を発生させることも考えられる。 Furthermore, in the start of normal heating operation, when lubricating oil is discharged, it flows to the indoor unit 2 through a connection pipe connecting the outdoor unit 1 and the indoor unit 2. In some cases, this connecting pipe may be very long, for example, 100 m or longer. In such a case, it takes time for the lubricating oil to return to the compressor 3, and the outflow of oil due to foaming may cause a problem of insufficient lubricating oil in the compressor 3.
 しかし、バイパス路18を使用した閉回路は、すべて室外機1内でクローズしている。このため、発泡等によって圧縮機3の潤滑油がサイクル内に吐出しても、室外機1内を循環して短時間で圧縮機3に戻すことができる。 However, all closed circuits using the bypass 18 are closed in the outdoor unit 1. For this reason, even if the lubricating oil of the compressor 3 is discharged into the cycle by foaming or the like, it can be circulated through the outdoor unit 1 and returned to the compressor 3 in a short time.
 また、図1に示すように室外熱交換器14の着霜、着氷状態を検知する着霜検知手段25と、圧縮機3の吐出側の冷媒圧力を測定する吐出圧力検知手段27と、圧縮機3の吸込み側の冷媒圧力を測定する吸込み圧力検知手段28と、圧縮機3の筺体温度(吐出側に近い温度)を測定する圧縮機温度検知手段29を設ける。 Moreover, as shown in FIG. 1, the frost formation detection means 25 which detects the frost formation of the outdoor heat exchanger 14, and the icing state, the discharge pressure detection means 27 which measures the refrigerant | coolant pressure of the discharge side of the compressor 3, and compression A suction pressure detecting means 28 for measuring the refrigerant pressure on the suction side of the machine 3 and a compressor temperature detecting means 29 for measuring the housing temperature (temperature close to the discharge side) of the compressor 3 are provided.
 この吐出圧力検知手段27により検知した圧力から吐出側の冷媒の飽和温度を推定することで吐出圧力検知手段27を飽和温度検知手段として利用し、この飽和温度よりも圧縮機温度検知手段29により検知する温度が大きくなるように維持することで、圧縮機3停止中または作動中における圧縮機3内の冷媒の凝縮を抑制でき、最低限のヒータ入力で済ませることができる。 By estimating the saturation temperature of the refrigerant on the discharge side from the pressure detected by the discharge pressure detection means 27, the discharge pressure detection means 27 is used as the saturation temperature detection means, and is detected by the compressor temperature detection means 29 rather than the saturation temperature. By maintaining the temperature to be increased, condensation of the refrigerant in the compressor 3 while the compressor 3 is stopped or operating can be suppressed, and a minimum heater input can be used.
 図2には、本実施例の暖房運転起動時の作動順序を示す。まず起動開始信号が入力された後、室内膨張弁10、室外膨張弁12を全閉とし、バイパス膨張弁26を全開とする。また四方弁4は暖房時の状態とし、室外ファン15は停止したままとする。続いて圧縮機3の運転を開始し、所定の回転数まで圧縮機3の回転数を上げる。ここで、圧縮機温度検知手段29の検知温度をTd(℃)、吐出圧力検知手段27の検知圧力をPd(Pa)、吸込み圧力検知手段28の検知圧力をPs(Pa)とする。 In FIG. 2, the operation | movement order at the time of heating operation start of a present Example is shown. First, after an activation start signal is input, the indoor expansion valve 10 and the outdoor expansion valve 12 are fully closed, and the bypass expansion valve 26 is fully opened. The four-way valve 4 is in a heating state, and the outdoor fan 15 is stopped. Subsequently, the operation of the compressor 3 is started, and the rotational speed of the compressor 3 is increased to a predetermined rotational speed. Here, the detected temperature of the compressor temperature detecting means 29 is T d (° C.), the detected pressure of the discharge pressure detecting means 27 is P d (Pa), and the detected pressure of the suction pressure detecting means 28 is P s (Pa). .
 圧縮機3の運転が開始したのち、圧縮機3吐出側温度でもあるTdが所定の温度T1を超え、さらには着霜検知手段25によって、室外熱交換器14の霜もしくは氷が取り除かれたと判断した後に、徐々にバイパス膨張弁26を閉める。ここで、吐出側圧力Pdより求まる飽和温度に対して、圧縮機3吐出側温度Tdがどれだけ過熱しているかを示す過熱度をTd-SHとする。バイパス膨張弁26は、このTd-SHが常に0より大きくなるように動作させる。 After the operation of the compressor 3 starts, T d which is also the discharge side temperature of the compressor 3 exceeds a predetermined temperature T 1 , and further, frost or ice in the outdoor heat exchanger 14 is removed by the frosting detection means 25. After it is determined that the bypass expansion valve 26 is gradually closed. Here, the degree of superheat indicating how much the compressor 3 discharge side temperature Td is overheated with respect to the saturation temperature obtained from the discharge side pressure Pd is defined as Td-SH . The bypass expansion valve 26 is operated so that the T d-SH is always greater than zero.
 バイパス膨張弁26を絞ることにより、圧縮機3の吸込み側と吐出側の圧力差をつけ、圧縮機3仕事量が増えるため圧縮機3の温度が上がりやすくなる。また、バイパス膨張弁26での減圧作用により冷媒温度を低下させることで、圧縮機3に戻るまでに生じる熱損失を低減することもでき、より圧縮機3の加熱速度を向上させることができる。 The throttle expansion of the bypass expansion valve 26 creates a pressure difference between the suction side and the discharge side of the compressor 3, and the work of the compressor 3 increases, so that the temperature of the compressor 3 is easily increased. Further, by reducing the refrigerant temperature by the pressure reducing action at the bypass expansion valve 26, it is possible to reduce the heat loss that occurs before returning to the compressor 3, and to further improve the heating speed of the compressor 3.
 しかしながら差圧をつけるということは、前述したとおり吐出側の圧力が上がることを意味するので、飽和温度の低下に対し圧縮機3内での凝縮を抑えるため、Td-SHが常に0より大きくなるように調整する。すなわち、Pdより求まる飽和温度よりもTdが大きくなるように調整する。なお、一般にセンサで得られた温度や圧力は、誤差などを考慮して尤度をもって調整する。 However, applying a differential pressure means that the pressure on the discharge side increases as described above. Therefore, T d-SH is always larger than 0 in order to suppress condensation in the compressor 3 against a decrease in saturation temperature. Adjust so that That is, adjustment is made so that T d becomes larger than the saturation temperature obtained from P d . In general, the temperature and pressure obtained by the sensor are adjusted with likelihood in consideration of errors and the like.
 ここで、室外温度検知手段39より得られた外気温度T2(℃)における冷媒の飽和蒸発圧力P2(Pa)を推定することで室外温度検知手段39を飽和圧力検知手段として利用し、圧縮機3の吸込み圧力Psが外気温度T2(℃)での飽和圧力P2よりも十分低くなった場合には、室外ファン15をスタートする。これにより、室外熱交換器14において室外空気より吸熱することができるため圧縮機3の温度上昇がさらに早まる。なお、圧縮機3の吸込み側の温度を検知する吸込み温度検知手段を設けて、直接T2(℃)と温度を比較しても良い。 Here, by estimating the saturated evaporation pressure P 2 (Pa) of the refrigerant at the outdoor temperature T 2 (° C.) obtained from the outdoor temperature detection means 39, the outdoor temperature detection means 39 is used as the saturation pressure detection means, and compression is performed. When the suction pressure P s of the machine 3 becomes sufficiently lower than the saturation pressure P 2 at the outside air temperature T 2 (° C.), the outdoor fan 15 is started. Thereby, since the outdoor heat exchanger 14 can absorb heat from outdoor air, the temperature rise of the compressor 3 is further accelerated. Note that suction temperature detection means for detecting the temperature on the suction side of the compressor 3 may be provided to directly compare the temperature with T 2 (° C.).
 最後に圧縮機3の吐出圧力Pdまたは温度Tdが所定の圧力P3(Pa)または温度T3(℃)より大きくなった場合には、バイパス膨張弁26を全閉し、室内膨張弁10および室外膨張弁12を所定の開度にし、通常の暖房運転に切り替える。バイパス膨張弁26を絞り、吐出側のガス温度を高圧、高温にし、吸込み側の圧力を低くし、通常の暖房運転の条件と近い状態にすることで、通常運転への切り替え後、すぐに室内機2から温風を出すことが可能となる。 Finally, when the discharge pressure P d or the temperature T d of the compressor 3 becomes higher than the predetermined pressure P 3 (Pa) or the temperature T 3 (° C.), the bypass expansion valve 26 is fully closed, and the indoor expansion valve 10 and the outdoor expansion valve 12 are set to predetermined opening degrees and switched to normal heating operation. Immediately after switching to normal operation, the bypass expansion valve 26 is throttled, the gas temperature on the discharge side is increased or decreased, the pressure on the suction side is decreased, and the conditions are close to those for normal heating operation. Hot air can be emitted from the machine 2.
 ここでは、各部の温度、圧力検出手段により制御を行ったが、事前に運転開始からの時間と各部の温度、圧力の関係を把握しておくことにより、時間管理のみでおおよそ近い制御が可能であることは考えられる。 Here, the temperature and pressure detection means of each part are used for control, but by knowing the relationship between the time from the start of operation and the temperature and pressure of each part in advance, it is possible to control roughly by time management alone. It is possible that there is.
 バイパス流路を用いない通常の暖房準備運転では、ヒータ30を用いて潤滑油の発泡を抑えながら、圧縮機3を作動させ、通常の暖房のサイクルで冷媒を循環させるため、大量の冷媒により圧縮機3の吸いこみ側の圧力は大きく低下する。また、暖房を行うために吐出側の圧力を上げる必要があるが、吐出側と吸込み側の圧力比が大きくなる場合がある。あまりに過剰な圧力比は圧縮機3にダメージを与える可能性もある。これに対して、バイパス路18を用いた方法では、圧力比はバイパス膨張弁26で制御可能であり、また、通常暖房条件の圧力へ持っていくため、それ以上の過剰な圧力比の状態になることはない。 In normal heating preparatory operation that does not use a bypass flow path, the compressor 3 is operated while suppressing the foaming of the lubricating oil using the heater 30 and the refrigerant is circulated in a normal heating cycle. The pressure on the suction side of the machine 3 is greatly reduced. Further, it is necessary to increase the pressure on the discharge side for heating, but the pressure ratio between the discharge side and the suction side may increase. An excessively high pressure ratio may damage the compressor 3. On the other hand, in the method using the bypass 18, the pressure ratio can be controlled by the bypass expansion valve 26 and is brought to the pressure of the normal heating condition. Never become.
 以上のように、本実施例では、室外膨張弁12または室内膨張弁10から室外熱交換器14までの経路と、圧縮機3の吐出側から四方弁4またはガス阻止弁5までの経路とを接続するバイパス路18を設けることで、冷媒が室内機2まで到達しない室外機3内に閉じた閉回路を形成することができる。 As described above, in this embodiment, the path from the outdoor expansion valve 12 or the indoor expansion valve 10 to the outdoor heat exchanger 14 and the path from the discharge side of the compressor 3 to the four-way valve 4 or the gas blocking valve 5 are as follows. By providing the bypass path 18 to be connected, a closed circuit can be formed in the outdoor unit 3 where the refrigerant does not reach the indoor unit 2.
 閉回路を形成するときは、室外膨張弁12または室内膨張弁10を閉じれば良いが、バイパス路18が室外膨張弁12と室外熱交換器14の間に接続される場合は、両方の弁を閉じることで配管内に冷媒を保持して閉回路を形成することができる。特に時間差を設けて室外膨張弁12を閉じた後に室内膨張弁10を閉じる動作を設けることで、より液冷媒を室外膨張弁12と室内膨張弁10の間の配管に閉じこめることができる。これにより、閉回路内の液冷媒が減るため、アキュムレータに溜まる液冷媒の量を低減でき,圧縮機の吐出ガス温度を高くしやすくなる。さらには、閉回路内の加熱すべき冷媒量が減るため、圧縮機3の温度が上昇するまでの時間が短縮される。 When forming the closed circuit, the outdoor expansion valve 12 or the indoor expansion valve 10 may be closed. However, when the bypass path 18 is connected between the outdoor expansion valve 12 and the outdoor heat exchanger 14, both valves must be connected. By closing, the refrigerant can be held in the pipe and a closed circuit can be formed. In particular, by providing an operation of closing the indoor expansion valve 10 after closing the outdoor expansion valve 12 with a time difference, the liquid refrigerant can be further confined in the pipe between the outdoor expansion valve 12 and the indoor expansion valve 10. Thereby, since the liquid refrigerant in a closed circuit decreases, the quantity of the liquid refrigerant which accumulates in an accumulator can be reduced, and it becomes easy to raise discharge gas temperature of a compressor. Furthermore, since the amount of refrigerant to be heated in the closed circuit is reduced, the time until the temperature of the compressor 3 rises is shortened.
 そして、このバイパス路18には開弁時に減圧度を調整できるバイパス膨張弁26を設ける。これにより、暖房開始前に閉回路に冷媒を循環させる暖房準備運転では、バイパス膨張弁26により減圧することで、熱損失を低減し、圧縮機3の加熱速度を向上させることができる。このとき、圧縮機3の吐出側圧力が大きくなるため、吐出圧力検知手段27の検知するPdから推定される飽和温度よりも、圧縮機温度検知手段29が検知するTdを大きくすることで、凝縮の発生を抑制できる。 The bypass passage 18 is provided with a bypass expansion valve 26 that can adjust the degree of pressure reduction when the valve is opened. Thereby, in the heating preparatory operation in which the refrigerant is circulated in the closed circuit before the heating is started, the pressure is reduced by the bypass expansion valve 26, so that heat loss can be reduced and the heating speed of the compressor 3 can be improved. At this time, since the discharge pressure of the compressor 3 is greater than the saturation temperature estimated from P d for detecting the discharge pressure detection means 27, by the compressor temperature detecting means 29 to increase the T d for detecting , The occurrence of condensation can be suppressed.
 さらに、着霜検知手段25が着霜を検知した場合は、バイパス膨張弁26を全開して除霜運転を行ってから、バイパス膨張弁26を絞るようにする。 Further, when the frost detection means 25 detects frost formation, the bypass expansion valve 26 is fully opened to perform the defrosting operation, and then the bypass expansion valve 26 is throttled.
 また、室外温度検知手段39により検知した外気温度における冷媒の飽和圧力P2よりも、吸込み圧力Psの方が低い場合、室外ファン15による送風を開始することで、外気から吸熱しながら暖房準備運転を行うことができる。 When the suction pressure P s is lower than the refrigerant saturation pressure P 2 at the outdoor temperature detected by the outdoor temperature detection means 39, the air supply by the outdoor fan 15 is started to prepare for heating while absorbing heat from the outdoor air. You can drive.
 次に、本発明の第2の実施形態について図3を用いて詳細に説明する。本実施例では、分配器31と冷暖切り替えユニット41によって1台の室外機1に室内機2が複数台取り付けられている構成となっている。冷暖切り替えユニット41は、室内機2と高圧ガス阻止弁32および低圧ガス阻止弁33の接続を切りかえるものであり、これにより、一方の室内機2を暖房運転中に、もう一方の室内機2では冷房運転が可能となる。 Next, a second embodiment of the present invention will be described in detail with reference to FIG. In the present embodiment, a plurality of indoor units 2 are attached to one outdoor unit 1 by a distributor 31 and a cooling / heating switching unit 41. The cooling / warming switching unit 41 switches the connection between the indoor unit 2 and the high-pressure gas blocking valve 32 and the low-pressure gas blocking valve 33, so that one indoor unit 2 is being heated and the other indoor unit 2 is Cooling operation is possible.
 また室外膨張弁12より液阻止弁11側に室外サブ熱交換器20を有している。この室外サブ熱交換器20は、暖房運転時に室外膨張弁12で低圧、低温になる前の冷媒が通過する。室外機1の底面には、ドレインパンと呼ばれる熱交換器で凝縮した水を受ける水受け機構が取り付けられている。この室外サブ熱交換器20を室外機1のドレインパン側に設けることで、ヒータ30を用いずにドレインパンで水が凍りつくことを抑制することができる。室外サブ熱交換器20は、ドレインパンと接するように設けられるが、完全に接触してしまうとドレインパンに熱が逃げてしまい、暖房時などは不利になることがある。ドレインパンは、淵の高さだけ保水できるようになっているので、室外サブ熱交換器20は、この淵の内側に配置されるように、かつドレインパンとは完全に接触しないように配置することが望ましい。 Further, the outdoor sub heat exchanger 20 is provided on the liquid blocking valve 11 side from the outdoor expansion valve 12. The outdoor sub heat exchanger 20 passes the refrigerant before it becomes low pressure and low temperature in the outdoor expansion valve 12 during heating operation. A water receiving mechanism that receives water condensed by a heat exchanger called a drain pan is attached to the bottom surface of the outdoor unit 1. By providing the outdoor sub heat exchanger 20 on the drain pan side of the outdoor unit 1, it is possible to prevent water from being frozen in the drain pan without using the heater 30. The outdoor sub heat exchanger 20 is provided so as to be in contact with the drain pan. However, if the outdoor sub heat exchanger 20 is completely contacted, heat escapes to the drain pan, which may be disadvantageous during heating. Since the drain pan can hold water by the height of the ridge, the outdoor sub heat exchanger 20 is disposed so as to be disposed inside the ridge and not in contact with the drain pan. It is desirable.
 また、圧縮機3の吐出側の先には潤滑油と冷媒を分離するオイルセパレータ34が取り付けられており、ここで分離された冷媒は四方弁4またはバイパス路18へ流れ、潤滑油はストレーナ36、キャピラリ35を経由してアキュムレータ17、そして圧縮機3へと戻される。ここでストレーナ36は、内部にメッシュを有し冷媒中の金属片のようなゴミを除去し、ゴミがキャピラリ35または電磁弁、膨張弁に詰まることを抑制するものである。 An oil separator 34 for separating the lubricating oil and the refrigerant is attached to the tip of the discharge side of the compressor 3. The separated refrigerant flows to the four-way valve 4 or the bypass 18 and the lubricating oil is applied to the strainer 36. Then, it is returned to the accumulator 17 and the compressor 3 via the capillary 35. Here, the strainer 36 has a mesh inside to remove dust such as metal pieces in the refrigerant, and suppresses clogging of the dust into the capillary 35, the electromagnetic valve, or the expansion valve.
 このようなオイルセパレータ34を設けることで、発泡により潤滑油が圧縮機3から大量に吐出されても、潤滑油を再び圧縮機3へ戻しやすい構造となっている。これにより、オイルセパレータ34と、室外膨張弁12と室外液分配器13の間とを結ぶバイパス路18を設け、そのバイパス路18の途中にバイパス膨張弁19を設け、暖房起動時に、室内膨張弁10、室外膨張弁12を全閉し、バイパス膨張弁19を全開することで、圧縮機3の吐出ガスを、室外熱交換器14を経由させ、圧縮機3の吸込み側へ戻す閉回路を成すことで、圧縮機3よりヒータ30を除去し圧縮機3停止時の加熱をなくしても、圧縮機3の潤滑油不足を起こすことなく、暖房の立ち上げが可能となる。 By providing such an oil separator 34, even if a large amount of lubricating oil is discharged from the compressor 3 due to foaming, the lubricating oil can be easily returned to the compressor 3 again. Thereby, the bypass line 18 which connects the oil separator 34 and the outdoor expansion valve 12 and the outdoor liquid distributor 13 is provided, and the bypass expansion valve 19 is provided in the middle of the bypass path 18. 10. The outdoor expansion valve 12 is fully closed and the bypass expansion valve 19 is fully opened, thereby forming a closed circuit for returning the discharge gas of the compressor 3 to the suction side of the compressor 3 via the outdoor heat exchanger 14. Thus, even if the heater 30 is removed from the compressor 3 and heating is not performed when the compressor 3 is stopped, heating can be started up without causing a shortage of lubricating oil in the compressor 3.
 ここで、微燃性と呼ばれるR32(ジフルオロメタン、CH22)や、可燃性のプロパンなどの冷媒を空気調和装置へ使用するにあっては、万が一の漏電や着火源となりかねないヒータ30を使用しないことが望ましい。従来の空気調和装置では一般的に、ドレインパンの凍結を防ぐヒータ、圧縮機3停止中に冷媒が潤滑油に溜まることを防ぐために圧縮機3を暖めるヒータ、または圧縮機3始動時に圧縮機3を暖めるヒータなどを使用していた。しかし本発明のように室外サブ熱交換器20を用い、かつオイルセパレータ34と組み合わせたバイパス路18、バイパス膨張弁19を組み合わせることで、上記のヒータを使用せずに信頼性を確保することができ、微燃性、可燃性冷媒を使用する際には望ましいヒータを全く用いない空気調和装置の提供が可能となる。 Here, when using a refrigerant such as R32 (difluoromethane, CH 2 F 2 ) called flammability or flammable propane in an air conditioner, a heater that may become a potential electric leakage or ignition source It is desirable not to use 30. In a conventional air conditioner, generally, a heater that prevents the drain pan from freezing, a heater that warms the compressor 3 to prevent the refrigerant from accumulating in the lubricating oil while the compressor 3 is stopped, or the compressor 3 when the compressor 3 is started. The heater etc. which warms was used. However, by using the outdoor sub heat exchanger 20 as in the present invention and combining the bypass passage 18 and the bypass expansion valve 19 combined with the oil separator 34, reliability can be ensured without using the heater. In addition, it is possible to provide an air conditioner that does not use any desirable heater when using a slightly flammable or combustible refrigerant.
 ここで図3中に記載されている、真空防止電磁弁37は、圧縮機3の吸込み側が何らかの理由で真空に近い圧力になった場合に、吐出側のガスをバイパスさせ圧縮機3の吸込み側の圧力を上昇させるための電磁弁である。また、ガス調整電磁弁38は、圧縮機3吐出側の高圧ガスを、圧縮機3吸込み側に導くバイパスの弁である。暖房時には、真空防止電磁弁37の換わりにバイパス路18およびバイパス膨張弁19を使用することも可能である。 Here, the vacuum prevention solenoid valve 37 described in FIG. 3 bypasses the gas on the discharge side when the suction side of the compressor 3 becomes a pressure close to vacuum for some reason, and the suction side of the compressor 3. It is a solenoid valve for raising the pressure of the. The gas regulating solenoid valve 38 is a bypass valve that guides the high-pressure gas on the discharge side of the compressor 3 to the suction side of the compressor 3. During heating, the bypass path 18 and the bypass expansion valve 19 can be used instead of the vacuum prevention electromagnetic valve 37.
 暖房立ち上げ時の手順は、実施例1に記載の順番と同様である。また、図3には記載していないが、室外機1を複数台並列につなぐことも可能であり、その場合にも、全室外機が同時であれば暖房の立ち上げを、各室外機のバイパス路18とバイパス膨張弁19を使用して可能である。 The procedure for starting up the heating is the same as the order described in the first embodiment. Although not shown in FIG. 3, it is also possible to connect a plurality of outdoor units 1 in parallel. In this case, if all the outdoor units are simultaneous, the heating is started. This is possible using a bypass 18 and a bypass expansion valve 19.
 バイパス路18は、圧縮機3吐出側からオイルセパレータ34を通過したのちの冷媒配管と、室外膨張弁12と室外液分配器13の間を結ぶように設ける。これにより発泡により圧縮機3から吐出された大量の油は、室外熱交換器14側へ行くことなく、オイルセパレータ34で回収されるため、バイパス路18からなる閉回路の圧力損失を小さく保つことができる。これにより、暖房立ち上げ時には、圧縮機3吐出側の圧力の上昇を抑えることができるため、圧縮機3吐出側での冷媒の凝縮をより抑えることが可能となる。 The bypass passage 18 is provided so as to connect the refrigerant pipe after passing through the oil separator 34 from the discharge side of the compressor 3 and the outdoor expansion valve 12 and the outdoor liquid distributor 13. As a result, a large amount of oil discharged from the compressor 3 due to foaming is recovered by the oil separator 34 without going to the outdoor heat exchanger 14 side, so that the pressure loss of the closed circuit including the bypass 18 is kept small. Can do. Thereby, at the time of heating start-up, the rise in pressure on the discharge side of the compressor 3 can be suppressed, so that the condensation of refrigerant on the discharge side of the compressor 3 can be further suppressed.
 以上のように、本実施例では、室外膨張弁12と室内熱交換器7の間を流れる冷媒と水受け機構とを熱交換させるサブ熱交換器を設ける。そして、オイルセパレータ34を圧縮機3の吐出側から四方弁4までの経路、かつ、バイパス路18より上流に設け、オイルセパレータ34の冷媒出口側をバイパス路18に繋がる配管に接続し、オイルセパレータ34の油出口側を圧縮機3の吸入側に繋がる配管に接続する。これらの構成により、ヒータを使用しなくとも信頼性の高い空気調和装置を提供でき、特に微燃性のR32(ジフルオロメタン、CH22)や、可燃性のプロパンなどの冷媒を使用する場合に信頼性および安全性が向上する。 As described above, in this embodiment, a sub heat exchanger that exchanges heat between the refrigerant flowing between the outdoor expansion valve 12 and the indoor heat exchanger 7 and the water receiving mechanism is provided. The oil separator 34 is provided on the path from the discharge side of the compressor 3 to the four-way valve 4 and upstream of the bypass path 18, and the refrigerant outlet side of the oil separator 34 is connected to a pipe connected to the bypass path 18. The oil outlet side of 34 is connected to a pipe connected to the suction side of the compressor 3. With these configurations, it is possible to provide a highly reliable air conditioner without using a heater, especially when using a flammable refrigerant such as R32 (difluoromethane, CH 2 F 2 ) or flammable propane. Reliability and safety are improved.
 次に、本発明の第3の実施形態について図4を用いて詳細に説明する。ここでは、圧縮機3の吐出側と、室外膨張弁12と液阻止弁11の間とを結ぶバイパス路18を設け、その途中に開弁と閉弁の2制御を行うバイパス電磁弁40を設けた。 Next, a third embodiment of the present invention will be described in detail with reference to FIG. Here, a bypass passage 18 that connects the discharge side of the compressor 3 and between the outdoor expansion valve 12 and the liquid blocking valve 11 is provided, and a bypass electromagnetic valve 40 that performs two controls of opening and closing is provided in the middle. It was.
 このような構成とし、暖房立ち上げ時にバイパス電磁弁40を開け、室内膨張弁10を閉じれば、圧縮機3の吐出側と圧縮機3の吸込み側を、室外熱交換器14を介して結ぶ閉回路を作成することができる。またバイパス電磁弁40と室外液分配器13の間には、室外膨張弁12があるので、これを調整することで、より安価なバイパス電磁弁40を使用しつつ実施例1および実施例2のバイパス膨張弁と同じ効果を得ることができる。 When the bypass solenoid valve 40 is opened and the indoor expansion valve 10 is closed when the heating is started, the closed side connecting the discharge side of the compressor 3 and the suction side of the compressor 3 via the outdoor heat exchanger 14 is configured. A circuit can be created. Further, since the outdoor expansion valve 12 is provided between the bypass electromagnetic valve 40 and the outdoor liquid distributor 13, by adjusting this, the cheaper bypass electromagnetic valve 40 can be used while using the cheaper bypass electromagnetic valve 40. The same effect as the bypass expansion valve can be obtained.
 この構成における暖房立ち上げ時の流れは、まず起動開始信号が入力された後、室内膨張弁10を全閉とし、室外膨張弁12、バイパス電磁弁40を全開とする。また四方弁4は暖房時の状態とし、室外ファン15は停止したままとする。続いて圧縮機3の運転を開始し、所定の回転数まで回転数を上げる。圧縮機3の運転が開始したのち、圧縮機3吐出側温度でもあるTdが所定の温度T1を超え、さらには着霜検知手段25によって、室外熱交換器14の霜もしくは氷が取り除かれたと判断した後に、徐々に室外膨張弁12を、Td-SHが常に0より大きいことを維持しながら、徐々に絞る。これにより、圧縮機3の吸込み側と吐出側の圧力差をつけ、圧縮機3仕事量が増えるため圧縮機3の温度が上がりやすくする。 With regard to the flow at the time of heating start-up in this configuration, first, after an activation start signal is input, the indoor expansion valve 10 is fully closed, and the outdoor expansion valve 12 and the bypass electromagnetic valve 40 are fully opened. The four-way valve 4 is in a heating state, and the outdoor fan 15 is stopped. Subsequently, the operation of the compressor 3 is started and the rotational speed is increased to a predetermined rotational speed. After the operation of the compressor 3 starts, T d which is also the discharge side temperature of the compressor 3 exceeds a predetermined temperature T 1 , and further, frost or ice in the outdoor heat exchanger 14 is removed by the frosting detection means 25. The outdoor expansion valve 12 is gradually throttled while maintaining that Td-SH is always greater than zero. This creates a pressure difference between the suction side and the discharge side of the compressor 3 and increases the work amount of the compressor 3 so that the temperature of the compressor 3 is easily increased.
 ここで、圧縮機3の吸込み圧力Psが、室外空気温度検出手段より得られた温度における冷媒の蒸発圧力P2よりも十分低くなった場合には、室外ファン15をスタートする。これにより、室外熱交換器14において室外空気より吸熱することができるため圧縮機3の温度上昇がさらに早まる。 Here, when the suction pressure P s of the compressor 3 becomes sufficiently lower than the refrigerant evaporation pressure P 2 at the temperature obtained from the outdoor air temperature detecting means, the outdoor fan 15 is started. Thereby, since the outdoor heat exchanger 14 can absorb heat from outdoor air, the temperature rise of the compressor 3 is further accelerated.
 最後に圧縮機3の吐出圧力Pdまたは温度Tdが所定の圧力P3または温度T3より大きくなった場合には、バイパス電磁弁40を全閉し、室内膨張弁10および室外膨張弁12を所定の開度にし、通常の暖房運転に切り替える。これによりバイパス膨張弁を使用せずに実施例1および実施例2と同じ効果が得られるため、コストの削減ともなる。 Finally, when the discharge pressure P d or temperature T d of the compressor 3 becomes higher than the predetermined pressure P 3 or temperature T 3 , the bypass solenoid valve 40 is fully closed, and the indoor expansion valve 10 and the outdoor expansion valve 12 are closed. Switch to normal heating operation. Thereby, since the same effect as Example 1 and Example 2 is acquired, without using a bypass expansion valve, it also becomes cost reduction.
 以上のように、本実施例では、室外膨張弁12から室内膨張弁10までの経路と、圧縮機3の吐出側から四方弁4またはガス阻止弁5までの経路とバイパス路18で接続する。そして、バイパス路18の途中には、開弁と閉弁の2制御を行うバイパス電磁弁40を設ける。このように構成することで、室内膨張弁10を閉じてバイパス電磁弁40を開くことで閉回路を形成できるとともに、室外膨張弁12を利用して減圧度を調整することができる。 As described above, in this embodiment, the path from the outdoor expansion valve 12 to the indoor expansion valve 10 and the path from the discharge side of the compressor 3 to the four-way valve 4 or the gas blocking valve 5 are connected by the bypass path 18. In the middle of the bypass path 18, a bypass electromagnetic valve 40 that performs two controls of valve opening and valve closing is provided. With this configuration, a closed circuit can be formed by closing the indoor expansion valve 10 and opening the bypass electromagnetic valve 40, and the degree of decompression can be adjusted using the outdoor expansion valve 12.
1…室外機
2…室内機
3…圧縮機
4…四方弁
5…ガス阻止弁
6…室内ガスヘッダ
7…室内熱交換器
8…室内ファン
9…室内液分配器
10…室内膨張弁
11…液阻止弁
12…室外膨張弁
13…室外液分配器
14…室外熱交換器
15…室外ファン
16…室外ガスヘッダ
17…アキュムレータ
18…バイパス路
19…バイパス膨張弁
20…室外サブ熱交換器
25…着霜検知手段
26…バイパス膨張弁
27…吐出圧力検知手段(飽和温度検知手段)
28…吸込み圧力検知手段
29…圧縮機温度検知手段
30…ヒータ
31…分配器
32…高圧ガス阻止弁
33…低圧ガス阻止弁
34…オイルセパレータ
35…キャピラリ
36…ストレーナ
37…真空防止電磁弁
38…ガス調整電磁弁
39…室外温度検知手段(飽和圧力検知手段)
40…バイパス電磁弁
41…冷暖切り替えユニット
DESCRIPTION OF SYMBOLS 1 ... Outdoor unit 2 ... Indoor unit 3 ... Compressor 4 ... Four-way valve 5 ... Gas blocking valve 6 ... Indoor gas header 7 ... Indoor heat exchanger 8 ... Indoor fan 9 ... Indoor liquid distributor 10 ... Indoor expansion valve 11 ... Liquid blocking Valve 12 ... Outdoor expansion valve 13 ... Outdoor liquid distributor 14 ... Outdoor heat exchanger 15 ... Outdoor fan 16 ... Outdoor gas header 17 ... Accumulator 18 ... Bypass passage 19 ... Bypass expansion valve 20 ... Outdoor sub heat exchanger 25 ... Frosting detection Means 26 ... Bypass expansion valve 27 ... Discharge pressure detection means (saturation temperature detection means)
28 ... Suction pressure detecting means 29 ... Compressor temperature detecting means 30 ... Heater 31 ... Distributor 32 ... High pressure gas blocking valve 33 ... Low pressure gas blocking valve 34 ... Oil separator 35 ... Capillary 36 ... Strainer 37 ... Vacuum preventing solenoid valve 38 ... Gas regulating solenoid valve 39 ... outdoor temperature detecting means (saturated pressure detecting means)
40 ... Bypass solenoid valve 41 ... Cooling / heating switching unit

Claims (11)

  1.  冷媒を圧縮する圧縮機と、外気と冷媒を熱交換させる室外熱交換器と、室内の空気と冷媒を熱交換させる室内熱交換器と、前記室外熱交換器と前記室内熱交換の間に設けられて冷媒を減圧する第一の膨張弁と、冷媒流路を切り替える四方弁と、が配管接続されて構成される空気調和装置において、
     前記第一の膨張弁から前記室外熱交換器までの経路と、前記圧縮機の吐出側から前記四方弁までの経路とを接続するバイパス路と、
     前記バイパス路の途中に設けられ、開弁時に開度を調節できるバイパス膨張弁と、を備えることを特徴とする空気調和装置。
    Provided between a compressor that compresses the refrigerant, an outdoor heat exchanger that exchanges heat between the outside air and the refrigerant, an indoor heat exchanger that exchanges heat between the indoor air and the refrigerant, and the outdoor heat exchanger and the indoor heat exchange In the air conditioner configured by connecting the first expansion valve for reducing the pressure of the refrigerant and the four-way valve for switching the refrigerant flow path,
    A bypass path connecting a path from the first expansion valve to the outdoor heat exchanger and a path from the discharge side of the compressor to the four-way valve;
    An air conditioning apparatus comprising: a bypass expansion valve provided in the middle of the bypass path and capable of adjusting an opening when the valve is opened.
  2.  請求項1に記載の空気調和装置において、
     暖房運転の開始前に、前記圧縮機,前記バイパス膨張弁,前記室外熱交換器,前記四方弁,を順次冷媒が流れる閉回路を形成するとともに、前記バイパス膨張弁により減圧し、前記閉回路に冷媒を循環させる暖房準備運転を行うことを特徴とする空気調和装置。
    In the air conditioning apparatus according to claim 1,
    Before starting the heating operation, the compressor, the bypass expansion valve, the outdoor heat exchanger, and the four-way valve are formed in a closed circuit through which the refrigerant sequentially flows, and the pressure is reduced by the bypass expansion valve, so that the closed circuit is An air conditioner that performs a heating preparation operation for circulating a refrigerant.
  3.  請求項2に記載の空気調和装置において、
     前記第一の膨張弁から前記室内熱交換器までの経路の途中に設けられ、冷媒を減圧する第二の膨張弁を備え、
     前記第一の膨張弁と前記第二の膨張弁を閉じ、前記第一の膨張弁と前記第二の膨張弁の間の接続配管に冷媒を閉じ込めた状態で、前記暖房準備運転を行うことを特徴とする空気調和装置。
    In the air conditioning apparatus according to claim 2,
    A second expansion valve that is provided in the middle of the path from the first expansion valve to the indoor heat exchanger and depressurizes the refrigerant;
    Closing the first expansion valve and the second expansion valve and performing the heating preparatory operation in a state where a refrigerant is confined in a connection pipe between the first expansion valve and the second expansion valve. An air conditioner characterized.
  4.  請求項2に記載の空気調和装置において、
     前記圧縮機の吐出側の飽和温度を検知する飽和温度検知手段と、前記圧縮機の温度を検知する圧縮機温度検知手段と、を備え、
     前記飽和温度検知手段の検知した飽和温度よりも、前記圧縮機温度検知手段の検知した温度が高くなるように前記バイパス膨張弁の開度を調整することを特徴とする空気調和装置。
    In the air conditioning apparatus according to claim 2,
    Saturation temperature detection means for detecting the saturation temperature on the discharge side of the compressor, and compressor temperature detection means for detecting the temperature of the compressor,
    An air conditioner that adjusts the opening degree of the bypass expansion valve so that the temperature detected by the compressor temperature detecting means is higher than the saturation temperature detected by the saturation temperature detecting means.
  5.  請求項2に記載の空気調和装置において、
     前記室外熱交換器への着霜を検知する着霜検知手段と、を備え、
     前記着霜検知手段が着霜を検知した場合、前記バイパス膨張弁を全開して、前記閉回路に冷媒を循環させる除霜運転を行った後、前記暖房準備運転を行うことを特徴とする空気調和装置。
    In the air conditioning apparatus according to claim 2,
    Frost detection means for detecting frost formation on the outdoor heat exchanger,
    When the frost detection means detects frost, the defrosting operation for fully circulating the bypass expansion valve and circulating the refrigerant in the closed circuit is performed, and then the heating preparation operation is performed. Harmony device.
  6.  請求項2に記載の空気調和装置において、
     前記室外熱交換器に送風する送風ファンと、外気温度における冷媒の飽和圧力を検知する飽和圧力検知手段と、前記圧縮機の吸入側の圧力を検知する吸込み圧力検知手段と、を備え、
     前記飽和圧力検知手段により検知した圧力よりも、前記吸込み圧力検知手段により検知した圧力の方が低い場合、前記送風ファンにより送風しながら、前記暖房準備運転を行うことを特徴とする空気調和装置。
    In the air conditioning apparatus according to claim 2,
    A fan for blowing air to the outdoor heat exchanger, a saturation pressure detecting means for detecting a saturation pressure of the refrigerant at an outside air temperature, and a suction pressure detecting means for detecting the pressure on the suction side of the compressor,
    When the pressure detected by the suction pressure detection means is lower than the pressure detected by the saturation pressure detection means, the heating preparation operation is performed while the air is blown by the blower fan.
  7.  圧縮機,室外熱交換器,第一の膨張弁,四方弁を備える室外機と、室内熱交換器,第二の膨張弁を備える室内機と、が配管接続されて構成される空気調和装置において、
     前記第一の膨張弁から前記第二の膨張弁までの経路と、前記圧縮機の吐出側から前記四方弁までの経路とを接続するバイパス路と、
     前記バイパス路の途中に設けられ、閉弁と開弁の2制御を行うバイパス電磁弁と、を備えることを特徴とする空気調和装置。
    In an air conditioner configured by pipe-connecting an outdoor unit including a compressor, an outdoor heat exchanger, a first expansion valve, and a four-way valve, and an indoor unit including an indoor heat exchanger and a second expansion valve ,
    A bypass path connecting the path from the first expansion valve to the second expansion valve and the path from the discharge side of the compressor to the four-way valve;
    An air conditioning apparatus comprising: a bypass electromagnetic valve that is provided in the middle of the bypass path and performs two controls of valve closing and valve opening.
  8.  請求項7に記載の空気調和装置において、
     暖房運転の開始前に、前記第二の膨張弁を閉じ、かつ、前記バイパス電磁弁を開き、
     前記圧縮機,前記バイパス電磁弁,前記室外熱交換器,前記四方弁,を順次冷媒が流れる閉回路を形成するとともに、前記第一の膨張弁により減圧し、前記閉回路に冷媒を循環させる暖房準備運転を行うことを特徴とする空気調和装置。
    The air conditioner according to claim 7,
    Before starting the heating operation, close the second expansion valve, and open the bypass solenoid valve,
    The compressor, the bypass solenoid valve, the outdoor heat exchanger, and the four-way valve form a closed circuit through which the refrigerant flows, and the first expansion valve depressurizes and heats the refrigerant to circulate through the closed circuit. An air conditioner that performs a preparatory operation.
  9.  請求項1から8のいずれか一つに記載の空気調和装置において、
     ジフルオロメタンを70wt%以上含む冷媒が用いられることを特徴とする空気調和装置。
    In the air harmony device according to any one of claims 1 to 8,
    An air conditioner using a refrigerant containing 70 wt% or more of difluoromethane.
  10.  請求項9に記載の空気調和装置において、
     冷媒と圧縮機を潤滑する油とを分離するオイルセパレータが、前記圧縮機の吐出側から前記四方弁までの経路の途中であって、前記バイパス路より上流に設けられ、
     前記オイルセパレータの冷媒出口側は前記バイパス路に繋がる配管に接続され、油出口側は前記圧縮機の吸入側に繋がる配管に接続されることを特徴とする空気調和装置。
    The air conditioner according to claim 9,
    An oil separator that separates refrigerant and oil that lubricates the compressor is provided in the middle of the path from the discharge side of the compressor to the four-way valve, and upstream of the bypass path,
    The air conditioner characterized in that the refrigerant outlet side of the oil separator is connected to a pipe connected to the bypass passage, and the oil outlet side is connected to a pipe connected to the suction side of the compressor.
  11.  請求項10に記載の空気調和装置において、
     前記室外熱交換器に結露した凝縮水を受ける水受け機構と、
     前記第一の膨張弁と前記室内熱交換器との間を流れる冷媒と、前記水受け機構とを熱交換させるサブ熱交換器と、を備えることを特徴とする空気調和装置。
    The air conditioner according to claim 10,
    A water receiving mechanism for receiving condensed water condensed on the outdoor heat exchanger;
    An air conditioner comprising: a refrigerant that flows between the first expansion valve and the indoor heat exchanger; and a sub heat exchanger that exchanges heat between the water receiving mechanism.
PCT/JP2013/085037 2013-12-27 2013-12-27 Air conditioning device WO2015097843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085037 WO2015097843A1 (en) 2013-12-27 2013-12-27 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/085037 WO2015097843A1 (en) 2013-12-27 2013-12-27 Air conditioning device

Publications (1)

Publication Number Publication Date
WO2015097843A1 true WO2015097843A1 (en) 2015-07-02

Family

ID=53477778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085037 WO2015097843A1 (en) 2013-12-27 2013-12-27 Air conditioning device

Country Status (1)

Country Link
WO (1) WO2015097843A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631513A (en) * 2017-09-20 2018-01-26 珠海格力电器股份有限公司 Heat pump and its control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159059A (en) * 1984-12-27 1986-07-18 松下電器産業株式会社 Controller for refrigerant flow of heat pump type air conditioner
JPH062979A (en) * 1992-06-16 1994-01-11 Nippondenso Co Ltd Air conditioner
JP2000105015A (en) * 1998-09-30 2000-04-11 Sharp Corp Air conditioner
JP2003064352A (en) * 2001-08-28 2003-03-05 Matsushita Electric Ind Co Ltd Mixed working fluid and freezing cycle device
JP2005049002A (en) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2010281492A (en) * 2009-06-04 2010-12-16 Hitachi Appliances Inc Air conditioner
JP2013164238A (en) * 2012-02-13 2013-08-22 Mitsubishi Heavy Ind Ltd Air conditioning device, and four-way valve control method for air conditioning device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159059A (en) * 1984-12-27 1986-07-18 松下電器産業株式会社 Controller for refrigerant flow of heat pump type air conditioner
JPH062979A (en) * 1992-06-16 1994-01-11 Nippondenso Co Ltd Air conditioner
JP2000105015A (en) * 1998-09-30 2000-04-11 Sharp Corp Air conditioner
JP2003064352A (en) * 2001-08-28 2003-03-05 Matsushita Electric Ind Co Ltd Mixed working fluid and freezing cycle device
JP2005049002A (en) * 2003-07-28 2005-02-24 Matsushita Electric Ind Co Ltd Air conditioner
JP2010164257A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2010281492A (en) * 2009-06-04 2010-12-16 Hitachi Appliances Inc Air conditioner
JP2013164238A (en) * 2012-02-13 2013-08-22 Mitsubishi Heavy Ind Ltd Air conditioning device, and four-way valve control method for air conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107631513A (en) * 2017-09-20 2018-01-26 珠海格力电器股份有限公司 Heat pump and its control method

Similar Documents

Publication Publication Date Title
JP4974714B2 (en) Water heater
JP5659292B2 (en) Dual refrigeration cycle equipment
JP6292480B2 (en) Refrigeration equipment
JP2017142039A (en) Air conditioner
JP2011052884A (en) Refrigerating air conditioner
JP2008096033A (en) Refrigerating device
JP6264688B2 (en) Refrigeration equipment
JP2017142038A (en) Refrigeration cycle device
JP2017053598A (en) Refrigeration device
JP6388260B2 (en) Refrigeration equipment
JP6072264B2 (en) Refrigeration equipment
WO2017138419A1 (en) Refrigeration device
WO2015097843A1 (en) Air conditioning device
JP4823131B2 (en) Air conditioner
JP3993540B2 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
US11708981B2 (en) High-pressure re-start control algorithm for microchannel condenser with reheat coil
KR102017405B1 (en) Heat pump
JP6522154B2 (en) Refrigeration cycle device
JP6555584B2 (en) Refrigeration equipment
JP6467682B2 (en) Refrigeration equipment
JP6704513B2 (en) Refrigeration cycle equipment
JP6103181B2 (en) Engine-driven air conditioner
JP2014070829A (en) Refrigerator
JP6902729B2 (en) Cascade refrigeration system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13900417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13900417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP