WO2017138419A1 - Refrigeration device - Google Patents

Refrigeration device Download PDF

Info

Publication number
WO2017138419A1
WO2017138419A1 PCT/JP2017/003661 JP2017003661W WO2017138419A1 WO 2017138419 A1 WO2017138419 A1 WO 2017138419A1 JP 2017003661 W JP2017003661 W JP 2017003661W WO 2017138419 A1 WO2017138419 A1 WO 2017138419A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
auxiliary
expansion valve
electric expansion
Prior art date
Application number
PCT/JP2017/003661
Other languages
French (fr)
Japanese (ja)
Inventor
對比地 亮佑
桑原 修
豊明 木屋
森 徹
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780010059.0A priority Critical patent/CN108603697B/en
Priority to JP2017566895A priority patent/JP6653463B2/en
Publication of WO2017138419A1 publication Critical patent/WO2017138419A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression

Definitions

  • the present invention relates to a refrigeration apparatus in which a refrigerant circuit is constituted by a compression means, a gas cooler, a main throttle means, and an evaporator.
  • a refrigeration cycle is constituted by a compression means, a gas cooler, a throttle means, an evaporator, etc., and the refrigerant compressed by the compression means dissipates heat in the gas cooler, and then is depressurized by the throttle means, and then in the evaporator Evaporate.
  • the ambient air is cooled by the evaporation of the refrigerant at this time.
  • An object of the present invention is to provide a refrigeration apparatus capable of ensuring a refrigeration capacity when a carbon dioxide refrigerant is used.
  • the refrigeration apparatus includes a refrigerant circuit including a compression unit having a first rotary compression element and a second rotary compression element driven by the same rotary shaft, a gas cooler, a main throttle unit, and an evaporator.
  • the auxiliary compression means provided separately from the compression means, and connected to the refrigerant circuit downstream of the gas cooler and upstream of the main throttle means.
  • a pressure adjusting throttle means for adjusting the pressure of the refrigerant flowing out of the gas cooler; a tank connected to the refrigerant circuit downstream of the pressure adjusting throttle means and upstream of the main throttle means; A split heat exchanger provided in the refrigerant circuit downstream of the tank and upstream of the main throttle means, having a first flow path and a second flow path; and a first height of the tank Provided
  • the first auxiliary throttle means for adjusting the pressure of the refrigerant flowing out of the first pipe and the second pipe provided at a position lower than the first height, and the split heat exchanger
  • the second auxiliary throttle means for adjusting the pressure of the first refrigerant out of the refrigerant diverted downstream of the second flow path, and outflow from the second pipe
  • a third auxiliary throttle means for adjusting the pressure of the second refrigerant among the refrigerants that are diverted downstream of the second flow path after passing through the second flow path of the split heat exchanger.
  • a first bypass circuit that flows into the downstream side of the flow path, a refrigerant in which a refrigerant whose pressure is adjusted by the first auxiliary throttle means and a refrigerant whose pressure is adjusted by the second auxiliary throttle means are mixed.
  • the refrigeration capacity can be ensured when carbon dioxide refrigerant is used.
  • Refrigerant circuit diagram of a refrigerating apparatus of one embodiment to which the present invention is applied PH diagram showing the operating state of a refrigeration system not equipped with an auxiliary compressor PH diagram showing an operation state according to operation example 1 of the refrigeration apparatus PH diagram showing an operation state according to operation example 2 of the refrigeration apparatus
  • FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment to which the present invention is applied.
  • the refrigeration apparatus R in this embodiment is a show of a refrigerator unit 3 installed in a machine room or the like of a store such as a supermarket, and one or a plurality of units (only one is shown in the drawing) installed in the store sales area.
  • the refrigerator unit 3 and the showcase 4 are connected to each other by a refrigerant pipe (liquid pipe) 8 and a refrigerant pipe 9 via a unit outlet 6 and a unit inlet 7, and a predetermined refrigerant circuit 1 is provided. It is composed.
  • This refrigerant circuit 1 uses, as a refrigerant, carbon dioxide (R744) whose refrigerant pressure on the high pressure side can be higher than the critical pressure (supercritical).
  • This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity.
  • As the lubricating oil existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used. Each arrow shown in FIG. 1 indicates the flow of the carbon dioxide refrigerant.
  • the refrigerator unit 3 includes a compressor 11 (an example of compression means).
  • the compressor 11 is, for example, an internal intermediate pressure type two-stage compression rotary compressor.
  • the compressor 11 includes a sealed container 12 and a rotary compression mechanism unit.
  • the rotary compression mechanism section includes an electric element 13 as a drive element housed in the upper part of the internal space of the sealed container 12, and a first (low-stage) rotary compression element (lower stage side) disposed below the electric element 13.
  • the compressor 11 is a two-stage compressor having a first rotary compression element 14 and a second rotary compression element 16 driven by the same rotary shaft (the rotary shaft of the electric element 13). In such a two-stage compressor, the excluded volume ratio between the low stage side and the high stage side is determined, and the intermediate pressure (MP) is determined according to the excluded volume ratio.
  • MP intermediate pressure
  • the first rotary compression element 14 of the compressor 11 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9, boosts it to an intermediate pressure, and discharges it.
  • the second rotary compression element 16 sucks in the intermediate pressure refrigerant discharged by the first rotary compression element 14, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1.
  • the compressor 11 is a variable frequency compressor.
  • the control device 57 to be described later controls the rotation speed of the first rotary compression element 14 and the second rotary compression element 16 by changing the operating frequency of the electric element 13.
  • a high-stage suction port 19 and a high-stage discharge port 21 that communicate with each other are formed.
  • One end of the refrigerant introduction pipe 22 is connected to the lower stage side suction port 17 of the compressor 11, and the other end is connected to the refrigerant pipe 9 at the unit inlet 7.
  • the low-pressure refrigerant gas sucked into the low-pressure portion of the first rotary compression element 14 from the low-stage suction port 17 is compressed to the first pressure by the first rotary compression element 14 to be increased to the intermediate pressure.
  • the liquid is discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).
  • One end of the intermediate pressure discharge pipe 23 is connected to the low-stage discharge port 18 of the compressor 11 from which the intermediate pressure refrigerant gas in the sealed container 12 is discharged, and the other end is connected to the inlet of the intercooler 24.
  • the intercooler 24 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 14.
  • One end of an intermediate pressure suction pipe 26 is connected to the outlet of the intercooler 24.
  • the other end of the intermediate pressure suction pipe 26 is connected to the high stage side suction port 19 of the compressor 11.
  • the intermediate pressure (MP) refrigerant gas sucked into the second rotary compression element 16 from the high-stage side suction port 19 of the compressor 11 is compressed by the second rotary compression element 16 in the second stage, It becomes a high-temperature and high-pressure refrigerant gas.
  • a high-pressure discharge pipe 27 is connected to the high-stage discharge port 21 provided on the high-pressure chamber side of the second rotary compression element 16 of the compressor 11, and the other end of a gas cooler (heat radiator) 28. Connected to the entrance.
  • a gas cooler heat radiator
  • an oil separator 20 may be provided in the middle of the high-pressure discharge pipe 27. The oil separated from the refrigerant by the oil separator is returned to the sealed container 12 of the compressor 11 and the sealed container 61 of the auxiliary compressor 60.
  • the gas cooler 28 cools the high-pressure discharged refrigerant discharged from the compressor 11.
  • a gas cooler blower 31 for air-cooling the gas cooler 28 is disposed in the vicinity of the gas cooler 28.
  • the gas cooler 28 is juxtaposed with the intercooler 24 described above, and these are arranged in the same air passage.
  • One end of a gas cooler outlet pipe 32 is connected to the outlet of the gas cooler 28, and the other end of the gas cooler outlet pipe 32 is connected to the inlet of an electric expansion valve 33 (an example of a pressure adjusting throttle means).
  • the electric expansion valve 33 is located downstream of the gas cooler 28 and upstream of the electric expansion valve 39.
  • the electric expansion valve 33 is used for restricting and expanding the refrigerant discharged from the gas cooler 28 and adjusting the high-pressure side pressure of the refrigerant circuit 1 upstream from the electric expansion valve 33.
  • the outlet of the electric expansion valve 33 is connected to the upper part of the tank 36 via a tank inlet pipe 34.
  • the tank 36 is a volume body having a predetermined volume space therein.
  • One end of a tank outlet pipe 37 is connected to the lower part of the tank 36, and the other end of the tank outlet pipe 37 is connected to the refrigerant pipe 8 at the unit outlet 6.
  • a second flow path 29B of the split heat exchanger 29 is provided in the middle of the tank outlet pipe 37.
  • This tank outlet pipe 37 constitutes a main circuit 38 in the present embodiment.
  • the tank 36 is located downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39.
  • the split heat exchanger 29 is located downstream of the tank 36 and upstream of the electric expansion valve 39.
  • One end of a gas pipe 42 is connected to the upper part of the tank 36.
  • the other end of the gas pipe 42 is connected to the inlet of an electric expansion valve 43 (an example of a first auxiliary circuit throttle means).
  • the gas pipe 42 causes the gas refrigerant to flow out from the upper part of the tank 36 and flow into the electric expansion valve 43.
  • One end of an intermediate pressure return pipe 44 is connected to the outlet of the electric expansion valve 43.
  • the other end of the intermediate pressure return pipe 44 communicates with the intermediate pressure suction pipe 26 connected to the intermediate pressure portion of the compressor 11.
  • one end of the liquid pipe 46 is connected to the tank outlet pipe 37 on the downstream side of the second flow path 29B of the split heat exchanger 29.
  • the other end of the liquid pipe 46 is connected to an intermediate pressure return pipe 44 on the downstream side of the electric expansion valve 43.
  • an electric expansion valve 47 (an example of a second auxiliary circuit throttle means) is provided.
  • branch pipe 71 is connected to the tank outlet pipe 37 on the downstream side of the second flow path 29B of the split heat exchanger 29.
  • the other end of the branch pipe 71 is connected to the suction port 64 of the auxiliary compressor 60.
  • the configuration of the auxiliary compressor 60 will be described later.
  • an electric expansion valve 70 (an example of a third auxiliary circuit throttle means) is disposed in the middle of the branch pipe 71. Further, in the middle of the branch pipe 71, a first flow path 29 ⁇ / b> A of the split heat exchanger 29 is provided on the downstream side of the electric expansion valve 70.
  • the branch pipe 71 is connected to the bypass circuit 73 on the downstream side of the first flow path 29A.
  • the other end of the bypass circuit 73 is connected to the gas pipe 42.
  • the bypass circuit 73 is provided with an electromagnetic valve 74.
  • the electromagnetic valve 74 is controlled by the control device 57 to either the open state or the closed state.
  • the refrigerant that has passed through the second flow path 29B of the split heat exchanger 29 has three directions (the first refrigerant toward the electric expansion valve 47 and the first flow toward the electric expansion valve 70 on the downstream side of the second flow path 29B. 2 refrigerant, the third refrigerant heading toward the electric expansion valve 39).
  • the electric expansion valve 43 (first auxiliary circuit throttle means), the electric expansion valve 47 (second auxiliary circuit throttle means) and the electric expansion valve 70 (third auxiliary circuit throttle means) described above are
  • the auxiliary aperture means in the embodiment is configured.
  • the branch pipe 71 constitutes the auxiliary circuit 48 in the present embodiment.
  • the intermediate pressure return pipe 44 constitutes the return circuit 80 in the present embodiment.
  • the showcase 4 installed in the store is connected to the refrigerant pipes 8 and 9.
  • the showcase 4 is provided with an electric expansion valve 39 (an example of a main throttle means) and an evaporator 41, which are sequentially connected between the refrigerant pipe 8 and the refrigerant pipe 9 (the electric expansion valve 39 is Refrigerant pipe 8 side, evaporator 41 is refrigerant pipe 9 side).
  • a cool air circulation blower (not shown) for blowing air to the evaporator 41 is provided.
  • the refrigerant pipe 9 is connected to the low-stage suction port 17 that communicates with the first rotary compression element 14 of the compressor 11 via the refrigerant introduction pipe 22 as described above.
  • the refrigerator unit 3 includes an auxiliary compressor 60 (an example of auxiliary compression means).
  • the auxiliary compressor 60 includes an airtight container 61, an electric element 62 as a driving element housed in the internal space of the airtight container 61, and a rotary compression element 63 that is driven by the rotation shaft of the electric element 62. Yes.
  • a suction port 64 and a discharge port 65 communicating with the rotary compression element 63 are formed on the side surface of the sealed container 61.
  • One end of a branch pipe 71 is connected to the suction port 64.
  • the discharge port 65 is connected to one end of a pipe 72.
  • the other end of the pipe 72 is connected to the high pressure discharge pipe 27.
  • the rotary compression element 63 compresses the refrigerant sucked from the branch pipe 71, raises the pressure to high pressure, and discharges it to the high pressure side of the refrigerant circuit 1.
  • the auxiliary compressor 60 is a variable frequency compressor.
  • the control device 57 described later controls the rotational speed of the rotary compression element 63 by changing the operating frequency of the electric element 62.
  • a high pressure sensor 49 is attached to the high pressure discharge pipe 27.
  • the high pressure sensor 49 detects the high pressure side pressure HP of the refrigerant circuit 1 (pressure between the high stage discharge port 21 of the compressor 11 and the inlet of the electric expansion valve 33).
  • a low pressure sensor 51 is attached to the refrigerant introduction pipe 22.
  • the low pressure sensor 51 detects the low pressure LP of the refrigerant circuit 1 (pressure between the outlet of the electric expansion valve 39 and the low stage suction port 17).
  • an intermediate pressure sensor 52 is attached to the intermediate pressure return pipe 44.
  • the intermediate pressure sensor 52 is an intermediate pressure MP (pressure in the intermediate pressure return pipe 44 downstream from the outlets of the electric expansion valves 43 and 47, which is the pressure in the intermediate pressure region 1 of the refrigerant circuit, and is low in the compressor 11. A pressure equal to the pressure between the stage side discharge port 18 and the high stage side suction port 19) is detected.
  • a unit outlet sensor 53 is attached to the tank outlet pipe 37 on the downstream side of the split heat exchanger 29.
  • the unit outlet sensor 53 detects the pressure OP in the tank 36.
  • the pressure in the tank 36 becomes the pressure of the refrigerant that leaves the refrigerator unit 3 and flows into the electric expansion valve 39 from the refrigerant pipe 8.
  • Each sensor described above is connected to the input of the control device 57 (an example of the control means) of the refrigerator unit 3 composed of a microcomputer.
  • the output of the control device 57 includes the electric element 13 of the compressor 11, the electric element 62 of the auxiliary compressor 60, the gas cooler blower 31, the electric expansion valve 33, the electric expansion valve 43, the electric expansion valve 47, and the electric expansion valve. 70, the electric expansion valve 39, and the electromagnetic valve 74 are connected.
  • the control device 57 controls each component on the output side based on detection results from each sensor, setting data, and the like.
  • control means in this embodiment may be a concept including the control device 57, the control device on the showcase 4 side, the main control device described above, and the like.
  • the intermediate-pressure gas refrigerant in the sealed container 12 enters the intercooler 24 through the intermediate-pressure discharge pipe 23 from the low-stage discharge port 18 and is air-cooled in the intercooler 24.
  • the air-cooled gas refrigerant flows out from the intercooler 24 to the intermediate pressure suction pipe 26, and in the intermediate pressure suction pipe 26, the gas refrigerant flows into the intermediate pressure suction pipe 26 from the intermediate pressure return pipe 44 (details will be described later). Mix.
  • the mixed gas refrigerant flows into the high stage suction port 19 (intermediate pressure part) of the compressor 11.
  • the intermediate-pressure gas refrigerant that has flowed into the high-stage side suction port 19 is sucked into the second rotary compression element 16, and the second-stage compression is performed by the second rotary compression element 16, so that the high-temperature and high-pressure gas refrigerant is obtained. It becomes.
  • This gas refrigerant is discharged from the high-stage discharge port 21 to the high-pressure discharge pipe 27.
  • the controller 57 opens the opening degree (starting of the electric expansion valve 33 when starting the refrigeration apparatus R based on the outside air temperature).
  • the control device 57 stores in advance a data table showing the relationship between the outside air temperature at the time of starting and the valve opening degree at the time of starting the electric expansion valve 33, and the outside air at the time of starting is stored. From the temperature, the opening degree of the electric expansion valve 33 at the start is set with reference to the data table.
  • the outside air temperature is detected by, for example, an outside temperature sensor (not shown).
  • the outside air temperature sensor is disposed inside or in the vicinity of an outdoor unit in which the intercooler 24, the gas cooler 28, the gas cooler blower 31 and the like are stored.
  • the control device 57 may detect the outside air temperature from the high-pressure side pressure HP detected by the high-pressure sensor 49 (hereinafter the same). Since there is a correlation between the high pressure side pressure HP detected by the high pressure sensor 49 and the outside air temperature, the controller 57 can determine the outside temperature from the high pressure side pressure HP.
  • control device 57 stores in advance a data table indicating the relationship between the high-pressure side pressure HP (outside air temperature) at the time of starting and the valve opening degree at the time of starting the electric expansion valve 33.
  • HP high-pressure side pressure
  • the outside air temperature is estimated, and the valve opening degree at the start of the electric expansion valve 33 is set with reference to the data table.
  • the control device 57 is based on the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 which is an index indicating the outside air temperature.
  • the opening degree of the electric expansion valve 33 is set.
  • the control device 57 sets the opening degree of the electric expansion valve 33 so as to increase when the high-pressure side pressure HP (outside air temperature) is low.
  • the pressure drop in the electric expansion valve 33 can be suppressed to a minimum, a pressure difference from the intermediate pressure (MP) of the intermediate pressure suction pipe 26 entering the compressor 11 is secured, and the refrigeration operation and the refrigeration operation are performed. Can be done efficiently.
  • control device 57 stores in advance a data table showing the relationship between the high pressure side pressure HP (outside air temperature) and the opening degree of the electric expansion valve 33, and by referring to it, the control device 57 opens the electric expansion valve 33.
  • the degree may be set, or the opening degree may be calculated from a calculation formula.
  • the supercritical refrigerant gas from the gas cooler 28 is decompressed by the electric expansion valve 33 to be in a gas-liquid two-phase mixed state, and flows into the tank 36 from above through the tank inlet pipe 34.
  • the tank 36 temporarily stores and separates the liquid / gas refrigerant flowing in from the tank inlet pipe 34, and the high pressure side pressure of the refrigeration apparatus R (in this case, the compressor 11 upstream from the tank 36 to the compressor 11. In the region up to the high-pressure discharge pipe 27) and absorbs fluctuations in the circulation amount of the refrigerant.
  • the liquid refrigerant accumulated in the lower part of the tank 36 flows out from the tank 36 to the tank outlet pipe 37 (main circuit 38).
  • the flow of the refrigerant flowing out from the tank 36 to the tank outlet pipe 37 will be described.
  • the liquid refrigerant that has flowed out of the tank 36 flows into the second flow path 29B of the split heat exchanger 29, and is cooled (supercooled) by the refrigerant flowing through the first flow path 29A in the second flow path 29B. Thereafter, the liquid refrigerant exits the refrigerator unit 3 and flows into the electric expansion valve 39 from the refrigerant pipe 8.
  • the refrigerant that has flowed into the electric expansion valve 39 is expanded by being throttled by the electric expansion valve 39, so that the liquid content further increases and flows into the evaporator 41 to evaporate.
  • the cooling effect is exhibited by the endothermic action.
  • the control device 57 controls the degree of superheat of the refrigerant in the evaporator 41 by controlling the valve opening degree of the electric expansion valve 39 based on the output of a temperature sensor (not shown) that detects the temperatures of the inlet side and the outlet side of the evaporator 41. Adjust to the appropriate value.
  • the low-temperature gas refrigerant discharged from the evaporator 41 returns from the refrigerant pipe 9 to the refrigerator unit 3, passes through the refrigerant introduction pipe 22, and communicates with the first rotary compression element 14 of the compressor 11. Sucked into.
  • the above is the flow of the refrigerant in the main circuit 38.
  • the electric expansion valve 43 functions to adjust the pressure in the tank 36 (the pressure of the refrigerant flowing into the electric expansion valve 39) to a predetermined target value SP in addition to the function of restricting the refrigerant flowing out from the upper portion of the tank 36. . Then, the control device 57 controls the valve opening degree of the electric expansion valve 43 based on the output of the unit outlet sensor 53. This is because if the valve opening degree of the electric expansion valve 43 increases, the amount of gas refrigerant flowing out of the tank 36 increases and the pressure in the tank 36 decreases.
  • the target value SP is set to a value lower than the high pressure side pressure HP and higher than the intermediate pressure MP. Then, the control device 57 adjusts the valve opening degree of the electric expansion valve 39 from the difference between the pressure OP in the tank 36 (pressure of the refrigerant flowing into the electric expansion valve 39) detected by the unit outlet sensor 53 and the target value SP. (Step number) is calculated and added to a valve opening at the time of starting, which will be described later, to control the pressure OP in the tank 36 to the target value SP.
  • the valve opening degree of the electric expansion valve 43 is increased to cause the gas refrigerant to flow out from the tank 36 to the gas pipe 42, and conversely, the target value SP.
  • the valve opening is reduced and controlled to close.
  • the control device 57 sets the outside air temperature or the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 as an index indicating the outside air temperature. Based on this, the valve opening degree of the electric expansion valve 43 when starting the refrigeration apparatus R (the valve opening degree when starting) is set. In the case of the present embodiment, the control device 57 stores in advance a data table indicating the relationship between the outside air temperature at the time of starting or the high pressure side pressure HP (outside air temperature) and the opening degree of the electric expansion valve 43 at the time of starting. Yes.
  • the controller 57 increases from the outside air temperature at the time of starting or the detected pressure (high pressure side pressure HP) as the high pressure side pressure HP (outside air temperature) is high based on the data table, and conversely, the high pressure side pressure.
  • the opening degree of the electric expansion valve 43 at the time of starting is set so as to decrease as HP decreases.
  • the target value SP of the pressure OP in the tank 36 is fixed and controlled.
  • the outside air temperature or the high pressure sensor 49 that is an index indicating the outside air temperature is used.
  • the target value SP may be set based on the detected pressure (high pressure side pressure HP).
  • the controller 57 becomes higher as the outside air temperature or the high pressure side pressure HP is higher. Therefore, in an environment where the outside air temperature is high, the target value SP during operation of the pressure of the refrigerant flowing into the electric expansion valve 39 becomes high.
  • the intermediate pressure MP increases, so that it is possible to prevent the inconvenience that the refrigerant does not easily flow to the return circuit 80 even if the valve opening degree of the electric expansion valve 43 increases. Will be able to.
  • the valve opening degree of the electric expansion valve 43 by reducing the valve opening degree of the electric expansion valve 43, the amount of refrigerant flowing into the return circuit 80 can be reduced, and the disadvantage that the refrigerant pressure at the unit outlet 6 is reduced can be prevented.
  • the valve opening degree of the electric expansion valve 43 can be appropriately controlled to suppress the change in the refrigerant pressure at the unit outlet 6, and the amount of refrigerant can be accurately determined. Can be adjusted.
  • the valve opening degree of the electric expansion valve 47 is set by the control device 57.
  • the control device 57 sets the electric expansion valve 47 to an open state when the temperature (discharge temperature) of the refrigerant discharged from the high-stage discharge port 21 of the compressor 11 is higher than the target value.
  • the discharge temperature is detected by a discharge temperature sensor (not shown) and input to the control device 57.
  • control device 57 controls the opening and closing of the electric expansion valve 70 and the electromagnetic valve 74, so that the flow of refrigerant flowing out of the tank 36 is controlled. Can be switched.
  • the operation example 1 and the operation example 2 will be described.
  • the refrigerant flowing into the tank outlet pipe 37 from the tank 36 passes through the second flow path 29B of the split heat exchanger 29 and then does not flow through the branch pipe 71 because the electric expansion valve 70 is closed. It flows into each of the expansion valve 47 and the electric expansion valve 39.
  • the refrigerant flowing from the tank 36 into the gas pipe 42 is branched in the gas pipe 42.
  • One of the refrigerants divided in the gas pipe 42 is throttled by the electric expansion valve 43 as described above, and then flows into the intermediate pressure return pipe 44 and mixes with the refrigerant passed through the electric expansion valve 47 to return to the intermediate pressure. It flows into the intermediate pressure suction pipe 26 from the pipe 44. Thereafter, the refrigerant is mixed with the refrigerant from the intercooler 24 and is sucked into the high-stage suction port 19 of the compressor 11 from the intermediate pressure suction pipe 26. The sucked refrigerant is compressed by the second rotary compression element 16 and becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure refrigerant is discharged from the high-stage discharge port 21 and flows into the high-pressure discharge pipe 27.
  • the other refrigerant separated in the gas pipe 42 flows into the bypass circuit 73, passes through the open electromagnetic valve 74, and flows into the branch pipe 71. Thereafter, the refrigerant is sucked from the branch pipe 71 into the suction port 64 of the auxiliary compressor 60.
  • the rotary compression element 63 rotates. Thereby, the sucked refrigerant is compressed by the rotary compression element 63 and becomes a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure refrigerant flows into the high-pressure discharge pipe 27 from the discharge port 65 via the pipe 72 and is mixed with the refrigerant discharged from the high-stage discharge port 21 of the compressor 11.
  • FIG. 2 is a PH diagram showing an operating state of a refrigeration apparatus not equipped with an auxiliary compressor in a high temperature environment.
  • the refrigeration apparatus excludes the auxiliary compressor 60, the electric expansion valve 70, the branch pipe 71, the pipe 72, the bypass circuit 73, and the electromagnetic valve 74 from the configuration of FIG. 1 and splits in the middle of the intermediate pressure return pipe 44.
  • the first flow path 29A of the heat exchanger 29 is provided.
  • FIG. 3 is a PH diagram showing an operating state of the refrigeration apparatus R in a high temperature environment.
  • the high temperature environment is, for example, an environment where the outside air temperature is about 32 degrees Celsius (for example, summer).
  • the line from X1 to X2, the line from X3 to X4, the line from X5 to X6, and the line from X3 to X8 are respectively an electric expansion valve 33, an electric expansion valve 39, The decompression by the electric expansion valve 43 and the electric expansion valve 47 is shown. Further, the line diagonally upward from X5 indicates the pressure increase by the auxiliary compressor 60, and the line diagonally upward from X11 indicates the pressure increase by the compressor 11.
  • X9 indicates the specific enthalpy / pressure when the refrigerant having passed through the electric expansion valve 43 and the refrigerant having passed through the electric expansion valve 47 are mixed.
  • X11 represents the specific enthalpy / pressure when the refrigerant flowing through the intermediate pressure suction pipe 26 flows into the high-stage suction port 19 of the compressor 11.
  • 3 indicates the specific enthalpy / pressure when flowing into the suction port 64 of the auxiliary compressor 60.
  • the excluded volume ratio of the low stage side and the high stage side is determined.
  • the intermediate pressure is determined according to the excluded volume ratio. Therefore, it was not possible to increase the refrigerant suction amount (excluded volume) only on the high stage side to lower the intermediate pressure.
  • the auxiliary compressor 60 is provided separately from the compressor 11 that is a two-stage compressor, and the electromagnetic valve 74 of the bypass circuit 73 is opened, so that the high stage side Only the refrigerant suction amount (excluded volume) is increased. Thereby, even if the excluded volume ratio in the compressor 11 is determined, the intermediate pressure can be reduced.
  • the pressure OP in the tank 36 (pressure at X3) can be reduced by reducing the intermediate pressure. Thereby, the specific enthalpy at the outlet of the tank 36 can be reduced, and the refrigerating capacity can be ensured. Further, the pressure OP in the tank 36 can be prevented from exceeding the critical pressure CP in a high temperature environment, and gas-liquid separation can be performed. Further, protection control (for example, medium pressure cut, step-out, etc.) forcibly stopping the compressor 11 at a predetermined high pressure value (abnormally high pressure) can be avoided, and stable operation of the refrigeration apparatus R can be realized.
  • protection control for example, medium pressure cut, step-out, etc.
  • the electric expansion valve 70 is set to an open state (a state in which the valve opening is larger than zero) and the electromagnetic valve 74 is set to a closed state by the control device 57 (an example of a second setting).
  • the refrigerant flowing out of the tank 36 is as follows.
  • the refrigerant that has flowed into the gas pipe 42 from the tank 36 flows into the electric expansion valve 43 without flowing through the bypass circuit 73 because the electromagnetic valve 74 is closed. Then, as described above, the refrigerant is throttled by the electric expansion valve 43, then flows into the intermediate pressure return pipe 44 and mixes with the refrigerant that has passed through the electric expansion valve 47, and the intermediate pressure suction pipe 26 passes through the intermediate pressure return pipe 44. Flow into. Thereafter, the refrigerant is mixed with the refrigerant from the intercooler 24 and is sucked into the high-stage suction port 19 of the compressor 11 from the intermediate pressure suction pipe 26.
  • the sucked refrigerant is compressed by the second rotary compression element 16 and becomes a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure refrigerant is discharged from the high-stage discharge port 21 and flows into the high-pressure discharge pipe 27.
  • the refrigerant flowing into the tank outlet pipe 37 from the tank 36 passes through the second flow path 29B of the split heat exchanger 29 and then is divided into three.
  • one of the refrigerants divided into three after passing through the second flow path 29B flows into the liquid pipe 46, is throttled by the electric expansion valve 47, and then flows into the intermediate pressure return pipe 44, The refrigerant is mixed with the refrigerant that has passed through the electric expansion valve 43.
  • one of the refrigerants branched after passing through the second flow path 29B flows into the electric expansion valve 70 and is throttled by the electric expansion valve 70, and then the first flow path of the split heat exchanger 29. Flows into 29A where it evaporates. The supercooling of the refrigerant flowing through the second flow path 29B is increased by the endothermic action at this time. Then, the refrigerant that has passed through the first flow path 29 ⁇ / b> A is sucked into the suction port 64 of the auxiliary compressor 60 from the branch pipe 71. When the electric element 62 of the auxiliary compressor 60 is driven by the control device 57, the rotary compression element 63 rotates.
  • the sucked refrigerant is compressed by the rotary compression element 63 and becomes a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure refrigerant flows into the high-pressure discharge pipe 27 from the discharge port 65 via the pipe 72 and is mixed with the refrigerant discharged from the high-stage discharge port 21 of the compressor 11.
  • control device 57 adjusts the amount of liquid refrigerant flowing through the first flow path 29A of the split heat exchanger 29 by controlling the electric expansion valve 70 to be in an open state.
  • the example of control of the valve opening degree of the electric expansion valve 70 in this operation example will be described.
  • the control device 57 first determines the temperature of the outlet of the second flow path 29B of the split heat exchanger 29 (hereinafter referred to as outlet temperature based on the temperature of the showcase 4; for example, at X3 in FIG. Temperature). Next, the control device 57 determines a temperature at which the refrigerant is evaporated in the split heat exchanger 29 (hereinafter referred to as an evaporation temperature; for example, a temperature at X13 in FIG. 4 described later) as a temperature lower than the outlet temperature. And the control apparatus 57 sets the valve opening degree of the electric expansion valve 70 so that the temperature of the refrigerant
  • FIG. 4 is a PH diagram showing an operating state of the refrigeration apparatus R in a high temperature environment.
  • the high temperature environment is, for example, an environment where the outside air temperature is about 32 degrees Celsius (for example, summer).
  • a line from X3 to X13 indicates pressure reduction by the electric expansion valve 70.
  • the dotted line L1 indicates the specific enthalpy / pressure until the refrigerant throttled by the electric expansion valve 70 flows out of the electric expansion valve 70, flows through the compression by the auxiliary compressor 60, and flows into the high-pressure discharge pipe 27.
  • control device 57 responds to an operation performed by the user (an operation to instruct which operation example 1 or operation example 2 is executed). You may control to perform either the operation example 1 or the operation example 2.
  • control device 57 normally controls to execute the operation example 2, and when the intermediate pressure MP detected by the intermediate pressure sensor 52 becomes higher than a preset threshold value, the operation example 2 You may control to switch to the operation example 1. Thereby, an intermediate pressure can be reduced, without performing protection control.
  • control device 57 may switch between the operation example 1 and the operation example 2 in accordance with the outside air temperature, the cooling condition of the showcase 4, and the like.
  • the refrigerating apparatus R of the present embodiment can obtain the following effects in addition to the effects obtained by the operation example 1 and the operation example 2 described above.
  • the design pressure of the piping can be lowered and a thin-walled tube can be used.
  • the liquid refrigerant is held in the tank 36 and the amount thereof can be continuously changed. Therefore, the amount of refrigerant circulating in the refrigeration circuit 1 can be stably maintained at an appropriate amount.
  • the necessary supercooling degree can be ensured by including the tank 36, the electric expansion valves 43 and 47, and the split heat exchanger 29 that function as an economizer.
  • FIG. 5 is a refrigerant circuit diagram of a refrigeration apparatus R having a configuration different from that of FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted below.
  • 5 includes an electric expansion valve 75 in place of the electromagnetic valve 74 in the bypass circuit 73 shown in FIG.
  • control device 57 sets the electric expansion valve 70 and the electric expansion valve 75 to an open state (a state where the valve opening is larger than zero) (an example of a third setting).
  • the valve opening degree of the electric expansion valve 70 is set as follows, for example. First, the control device 57 determines the outlet temperature of the second flow path 29B of the split heat exchanger 29 (for example, the temperature at X3 in FIG. 6 described later) based on the temperature of the showcase 4. Next, the control device 57 determines an evaporation temperature at which the refrigerant is evaporated in the split heat exchanger 29 (for example, a temperature at X15 in FIG. 6 described later) as a temperature lower than the outlet temperature. And the control apparatus 57 sets the valve opening degree of the electric expansion valve 70 so that the temperature of the refrigerant
  • the valve opening degree of the electric expansion valve 75 is set as follows, for example.
  • the control device 57 is based on the intermediate pressure detected by the intermediate pressure sensor 52 and the temperature of the refrigerant discharged from the auxiliary compressor 60 (hereinafter referred to as a discharge refrigerant temperature; detected by a sensor not shown).
  • a valve opening of 75 is set. For example, when the detected intermediate pressure is higher than the target value and the detected discharged refrigerant temperature is lower than the target value, the control device 57 controls the electric expansion valve 75 to be closed.
  • FIG. 6 is a PH diagram showing an operating state of the refrigeration apparatus R in a high temperature environment.
  • the high temperature environment is, for example, an environment where the outside air temperature is about 32 degrees Celsius (for example, summer).
  • a line from X3 to X15 indicates pressure reduction by the electric expansion valve 70.
  • a dotted line L2 indicates a specific enthalpy / pressure until the refrigerant throttled by the electric expansion valve 70 flows out of the electric expansion valve 70, flows through the compression by the auxiliary compressor 60, and flows into the high-pressure discharge pipe 27.
  • FIG. 7 is a refrigerant circuit diagram of a refrigeration apparatus R having a configuration different from that of FIG.
  • the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted below.
  • the refrigeration apparatus R shown in FIG. 7 includes a bypass circuit 82 and a solenoid valve 81 in addition to the configuration shown in FIG.
  • One end of the bypass circuit 82 is connected to the refrigerant introduction pipe 22, and the other end of the bypass circuit 82 is connected to the suction port 64 of the auxiliary compressor 60.
  • an electromagnetic valve 81 is provided in the middle of the bypass circuit 82. Opening and closing of the electromagnetic valve 81 is controlled by the control device 57.
  • the control device 57 stores in advance a data table indicating the relationship between the outside air temperature (high pressure side pressure HP) and the opening and closing of the electromagnetic valve 81, estimates the outside air temperature, and refers to the data table to Open / close of the valve 81 is set.
  • a check valve may be provided instead of the solenoid valve 81.
  • the control device 57 closes the solenoid valve 81 and drives the compressor 11 and the auxiliary compressor 60. Thereby, the refrigerant circulates as described in the operation example 1 or the operation example 2 described above.
  • the control device 57 opens the solenoid valve 81 and does not drive the compressor 11, and the auxiliary compressor 60 is driven.
  • the control device 57 maximizes the valve opening degree of the electric expansion valve 33 and closes the electric expansion valve 43, the electric expansion valve 47, and the electric expansion valve 70.
  • the refrigerant exiting the evaporator 41 flows into the bypass circuit 82 and is sucked into the suction port 64 of the auxiliary compressor 60. Then, the refrigerant compressed by the auxiliary compressor 60 is discharged from the discharge port 65 to the high pressure discharge pipe 27. Thereafter, the refrigerant flows in the order of the gas cooler 28, the electric expansion valve 33, the tank 36, the tank outlet pipe 37, the second flow path 29B of the split heat exchanger 29, the electric expansion valve 39, and the evaporator 41, and again the bypass circuit 82. Flows into.
  • FIG. 8 shows a PH diagram when the refrigerant flows through the bypass circuit 82. 8 are the same as those in FIGS. 2 and 3. As shown in FIG. 8, the refrigerant is compressed only in one stage by the auxiliary compressor 60.
  • the compressor 11 that is the two-stage compressor is not used, and only the auxiliary compressor 60 is used. Energy consumption can be reduced.
  • bypass circuit 82 and the electromagnetic valve 81 may be added to the configuration shown in FIG.
  • FIG. 9 is a refrigerant circuit diagram of a refrigeration apparatus R having a configuration different from that of FIG. Note that FIG. 9 is a simplified illustration of FIG. 1, and the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted below.
  • the refrigerating apparatus R shown in FIG. 9 includes a compressor 11a in addition to the configuration shown in FIG.
  • the compressor 11 a is a two-stage compressor provided in parallel with the compressor 11 and has the same configuration as the compressor 11.
  • the refrigerant from the evaporator 41 is sucked into each of the compressor 11 and the compressor 11a.
  • the refrigerant in which the refrigerant from the intercooler 24 and the refrigerant from the intermediate pressure return pipe 44 are mixed is sucked into the compressor 11 and the compressor 11a.
  • the electric expansion valve 39, the showcase 4, and the evaporator 41 are provided one by one.
  • the electric expansion valve 39, the showcase 4, and the evaporator 41 are provided in a plurality. It is good.
  • one electric expansion valve 39, one showcase 4, and one evaporator 41 are set as one set, and the set is provided in parallel.
  • the compressor 11a may be added to the configuration shown in FIG.
  • FIGS. 1, 5, 7, and 9 Another configuration example 4 of the refrigeration apparatus R In the configuration shown in FIGS. 1, 5, 7, and 9, only one auxiliary compressor 60 is provided. However, a plurality of auxiliary compressors 60 may be provided. In that case, the refrigerant from the branch pipe 71 is sucked into each of the plurality of auxiliary compressors 60.
  • the compressor 11 compression means having the first rotary compression element 14 and the second rotary compression element 16 driven by the same rotary shaft, the gas cooler 28, and the electric motor
  • an auxiliary compressor 60 auxiliary compression means provided separately from the compressor 11.
  • an electric expansion valve 33 pressure adjusting throttle means which is connected to the refrigerant circuit 1 downstream of the gas cooler 28 and upstream of the electric expansion valve 39 and adjusts the pressure of the refrigerant flowing out of the gas cooler 28;
  • the tank 36 connected to the refrigerant circuit 1 downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39, and the refrigerant circuit downstream of the tank 36 and upstream of the electric expansion valve 39 Set in 1
  • the split heat exchanger 29 having the first flow path 29A and the second flow path 29B, and the refrigerant flowing out of the gas pipe 42 (first pipe) provided at the first height of the tank 36
  • the electric expansion valve 43 first auxiliary throttle means for adjusting the pressure and the tank outlet pipe 37 (second pipe) provided at a position lower than the first height flow out of the split heat exchanger 29.
  • An electric expansion valve 47 (second auxiliary throttle means) that adjusts the pressure of the first refrigerant of the refrigerant that has passed through the second flow path 29B and then diverted downstream of the second flow path 29B; After flowing out from the tank outlet pipe 37 and passing through the second flow path 29B of the split heat exchanger 29, the pressure of the second refrigerant out of the refrigerant divided on the downstream side of the second flow path 29B is adjusted.
  • Electric expansion valve 70 (third auxiliary throttle means), electric expansion valve 70 and An auxiliary circuit 48 for sucking the refrigerant that has passed through the first flow path 29A of the split heat exchanger 29 into the auxiliary compressor 60 and an electromagnetic valve 74 or an electric expansion valve 75 (open / close valve) are provided and flowed out from the gas pipe 42.
  • a bypass circuit 73 (first bypass circuit) for allowing the refrigerant to flow into the downstream side of the first flow path 29A of the split heat exchanger 29 in the auxiliary circuit 48, a refrigerant whose pressure is adjusted by the electric expansion valve 43, and electric expansion
  • the return circuit 80 for sucking the refrigerant mixed with the refrigerant whose pressure is adjusted by the valve 47 into the intermediate pressure portion of the compressor 11, and the refrigerant flowing out of the tank 36 into the second flow path 29 ⁇ / b> B of the split heat exchanger 29.
  • the refrigerant flows out and exchanges heat with the refrigerant flowing through the first flow path 29A of the split heat exchanger 29, and then the refrigerant out of the refrigerant divided downstream of the second flow path 29B flows into the electric expansion valve 39.
  • a control device 57 (control means) for controlling the operation.
  • the refrigerant suction amount (exclusion volume) in the intermediate pressure part can be increased, and the intermediate pressure can be reduced even if the excluded volume ratio in the compressor 11 is determined. Can do.
  • the specific enthalpy at the outlet of the tank 36 can be reduced, and the refrigerating capacity can be ensured.
  • control device 57 closes the electric expansion valve 70 and opens the electromagnetic valve 74, opens the electric expansion valve 70, and closes the electromagnetic valve 74.
  • the second setting is switched.
  • control device 57 performs the third setting for opening the electric expansion valve 70 and opening the electric expansion valve 75.
  • the refrigeration apparatus R further includes a bypass circuit 82 (second bypass circuit) that connects the auxiliary compressor 60 and the refrigerant introduction pipe 22 provided on the downstream side of the evaporator 41 and the upstream side of the compressor 11.
  • the bypass circuit 82 is provided with a check valve or an electromagnetic valve 81 whose opening and closing is controlled by the control device 57.
  • the rotation speed of the auxiliary compressor 60 is variable.
  • the refrigeration apparatus R includes a plurality of auxiliary compressors 60, and the refrigerant flowing through the auxiliary circuit 48 is sucked into the plurality of auxiliary compressors 60.
  • the refrigeration apparatus R includes a plurality of compressors 11 and 11a provided in parallel with each other, and an intermediate pressure portion of the plurality of compressors 11 and 11a is electrically operated with a refrigerant whose pressure is adjusted by an electric expansion valve 43.
  • the refrigerant mixed with the refrigerant whose pressure is adjusted by the expansion valve 47 is sucked.
  • the present invention is suitable for use in a refrigeration apparatus in which a refrigerant circuit is constituted by a compression means, a gas cooler, a main throttle means, and an evaporator.
  • Refrigeration apparatus 1 Refrigerant circuit 3
  • Refrigerator unit 4 Showcase 6 Unit outlet 7 Unit inlet 8, 9 Refrigerant piping 11, 11a Compressor 12, 61 Sealed container 13, 62 Electric element 14
  • First rotary compression element 16 Second Rotational compression element 17
  • Low stage side suction port 18 Low stage side discharge port 19
  • High stage side suction port 21 High stage side discharge port 22
  • Intermediate pressure discharge pipe 24 Intercooler 26
  • Gas cooler 29 Split heat exchanger 29A 1st flow path 29B 2nd flow path 31
  • Gas cooler blower 32
  • Electric expansion valve (throttle means for pressure adjustment) 34
  • Tank inlet piping 36 36
  • Tank outlet piping (third piping) 38
  • Main circuit 39 Electric expansion valve (Main throttle means) 41
  • Evaporator 42
  • Gas piping (first piping) 43
  • Electric expansion valve (first auxiliary circuit throttle means) 44
  • Intermediate pressure return piping 46

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

In order to ensure refrigeration performance when a carbon dioxide refrigerant is used, this refrigeration device (R) has a refrigerant circuit configured from a compressor (11) having a first rotary compression element (14) and a second rotary compression element (16) driven by the same rotary shaft, a gas cooler (28), an electromagnetic expansion valve (39), and an evaporator (41), and is equipped with an electric expansion valve (33), a tank (36), a split heat exchanger (29), an electric expansion valve (43), an electric expansion valve (47), an electric expansion valve (70), an auxiliary circuit (48), a main circuit (38), a control device (57), an auxiliary compressor (60), a bypass circuit (73), and a return circuit (80). Refrigerant that has passed through the electric expansion valve (70) and a first flow path (29A) of the split heat exchanger (29) and/or refrigerant that has passed through the bypass circuit (73) is drawn into the auxiliary compressor (60).

Description

冷凍装置Refrigeration equipment
 本発明は、圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成される冷凍装置に関する。 The present invention relates to a refrigeration apparatus in which a refrigerant circuit is constituted by a compression means, a gas cooler, a main throttle means, and an evaporator.
 従来、冷凍装置では、圧縮手段、ガスクーラ、絞り手段、蒸発器等から冷凍サイクルが構成され、圧縮手段で圧縮された冷媒はガスクーラにて放熱し、その後絞り手段にて減圧され、蒸発器にて蒸発する。そして、このときの冷媒の蒸発により周囲の空気が冷却される。 Conventionally, in a refrigeration system, a refrigeration cycle is constituted by a compression means, a gas cooler, a throttle means, an evaporator, etc., and the refrigerant compressed by the compression means dissipates heat in the gas cooler, and then is depressurized by the throttle means, and then in the evaporator Evaporate. The ambient air is cooled by the evaporation of the refrigerant at this time.
 近年、この種の冷凍装置では、自然環境問題などからフロン系冷媒が使用できなくなってきている。このため、フロン冷媒の代替品として自然冷媒である二酸化炭素を使用する冷凍装置が開発されている。二酸化炭素冷媒は、高低圧差の激しい冷媒で、臨界圧力が低く、圧縮により冷媒サイクルの高圧側が超臨界状態となることが知られている(例えば、特許文献1参照)。 In recent years, in this type of refrigeration equipment, it has become impossible to use chlorofluorocarbon refrigerants due to natural environmental problems. For this reason, a refrigeration apparatus using carbon dioxide, which is a natural refrigerant, has been developed as an alternative to a fluorocarbon refrigerant. The carbon dioxide refrigerant is a refrigerant having a high and low pressure difference, and has a low critical pressure. It is known that the high pressure side of the refrigerant cycle is brought into a supercritical state by compression (for example, see Patent Document 1).
 また、給湯機を構成するヒートポンプ装置でも、ガスクーラにて優れた加熱作用が得られる二酸化炭素冷媒が使用されるようになってきており、その場合にガスクーラから出た冷媒を2段膨張させ、各膨張装置の間に気液分離器を介設して、圧縮機にガスインジェクションできるようにするものも開発されている(例えば、特許文献2参照)。 Further, in the heat pump device constituting the water heater, a carbon dioxide refrigerant capable of obtaining an excellent heating action in the gas cooler has been used. In this case, the refrigerant discharged from the gas cooler is expanded in two stages, There has also been developed an apparatus in which a gas-liquid separator is interposed between expansion devices to enable gas injection into a compressor (see, for example, Patent Document 2).
特公平7-18602号公報Japanese Patent Publication No. 7-18602 特開2007-178042号公報JP 2007-178042 A
 しかしながら、上述した二酸化炭素冷媒を使用する冷凍装置では、例えばショーケース等に設置された蒸発器において吸熱作用を利用し、庫内を冷却するが、外気温度(ガスクーラ側の熱源温度)が高い等の原因により、ガスクーラ出口の冷媒温度が高くなることがある。この場合、蒸発器入口の比エンタルピーが大きくなるため、冷凍能力が著しく低下する。 However, in the refrigeration apparatus using the carbon dioxide refrigerant described above, for example, an evaporator installed in a showcase or the like uses an endothermic action to cool the interior, but the outside air temperature (heat source temperature on the gas cooler side) is high. For this reason, the refrigerant temperature at the outlet of the gas cooler may increase. In this case, since the specific enthalpy at the evaporator inlet increases, the refrigerating capacity significantly decreases.
 本発明の目的は、二酸化炭素冷媒を使用する場合に冷凍能力を確保することができる冷凍装置を提供することである。 An object of the present invention is to provide a refrigeration apparatus capable of ensuring a refrigeration capacity when a carbon dioxide refrigerant is used.
 本発明に係る冷凍装置は、同一の回転軸により駆動される第1の回転圧縮要素と第2の回転圧縮要素を有する圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、二酸化炭素冷媒が用いられる冷凍装置において、前記圧縮手段とは別に設けられた補助圧縮手段と、前記ガスクーラの下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続され、前記ガスクーラから流出した冷媒の圧力を調整する圧力調整用絞り手段と、前記圧力調整用絞り手段の下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続されたタンクと、前記タンクの下流側であって、前記主絞り手段の上流側の前記冷媒回路に設けられ、第1の流路と第2の流路を有するスプリット熱交換器と、前記タンクの第1の高さに設けられた第1の配管から流出した冷媒の圧力を調整する第1の補助絞り手段と、前記第1の高さよりも低い位置に設けられた第2の配管から流出し、前記スプリット熱交換器の前記第2の流路を通過した後、前記第2の流路の下流側で分流した冷媒のうちの第1の冷媒の圧力を調整する第2の補助絞り手段と、前記第2の配管から流出し、前記スプリット熱交換器の前記第2の流路を通過した後、前記第2の流路の下流側で分流した冷媒のうちの第2の冷媒の圧力を調整する第3の補助絞り手段と、前記第3の補助絞り手段および前記スプリット熱交換器の前記第1の流路を経た冷媒を前記補助圧縮手段に吸い込ませる補助回路と、開閉弁が設けられ、前記第1の配管から流出した冷媒を前記補助回路における前記スプリット熱交換器の前記第1の流路の下流側へ流入させる第1のバイパス回路と、前記第1の補助絞り手段により圧力が調整された冷媒と前記第2の補助絞り手段により圧力が調整された冷媒とが混合した冷媒を前記圧縮手段の中間圧部に吸い込ませる戻し回路と、前記タンクから流出した冷媒を前記スプリット熱交換器の前記第2の流路に流し、前記スプリット熱交換器の前記第1の流路を流れる冷媒と熱交換させた後、前記第2の流路の下流側で分流した冷媒のうちの第3の冷媒を前記主絞り手段に流入させる主回路と、前記圧縮手段、前記補助圧縮手段、前記主絞り手段、前記圧力調整用絞り手段、前記第1の補助絞り手段、前記第2の補助絞り手段、前記第3の補助絞り手段、および、前記開閉弁の動作を制御する制御手段と、を備える構成を採る。 The refrigeration apparatus according to the present invention includes a refrigerant circuit including a compression unit having a first rotary compression element and a second rotary compression element driven by the same rotary shaft, a gas cooler, a main throttle unit, and an evaporator. In the refrigeration apparatus configured and using carbon dioxide refrigerant, the auxiliary compression means provided separately from the compression means, and connected to the refrigerant circuit downstream of the gas cooler and upstream of the main throttle means. A pressure adjusting throttle means for adjusting the pressure of the refrigerant flowing out of the gas cooler; a tank connected to the refrigerant circuit downstream of the pressure adjusting throttle means and upstream of the main throttle means; A split heat exchanger provided in the refrigerant circuit downstream of the tank and upstream of the main throttle means, having a first flow path and a second flow path; and a first height of the tank Provided The first auxiliary throttle means for adjusting the pressure of the refrigerant flowing out of the first pipe and the second pipe provided at a position lower than the first height, and the split heat exchanger After passing through the second flow path, the second auxiliary throttle means for adjusting the pressure of the first refrigerant out of the refrigerant diverted downstream of the second flow path, and outflow from the second pipe And a third auxiliary throttle means for adjusting the pressure of the second refrigerant among the refrigerants that are diverted downstream of the second flow path after passing through the second flow path of the split heat exchanger. An auxiliary circuit for sucking the refrigerant that has passed through the first flow path of the third auxiliary throttling means and the split heat exchanger into the auxiliary compression means, and an on-off valve, and flows out of the first pipe The first refrigerant of the split heat exchanger in the auxiliary circuit. A first bypass circuit that flows into the downstream side of the flow path, a refrigerant in which a refrigerant whose pressure is adjusted by the first auxiliary throttle means and a refrigerant whose pressure is adjusted by the second auxiliary throttle means are mixed. A return circuit that sucks into the intermediate pressure part of the compression means, and a refrigerant that has flowed out of the tank flows into the second flow path of the split heat exchanger, and flows through the first flow path of the split heat exchanger. A main circuit for flowing a third refrigerant out of the refrigerant diverted downstream of the second flow path into the main throttle means after heat exchange with the refrigerant, the compression means, the auxiliary compression means, Main throttle means, pressure adjusting throttle means, first auxiliary throttle means, second auxiliary throttle means, third auxiliary throttle means, and control means for controlling the operation of the on-off valve. Use a configuration to provide.
 本発明によれば、二酸化炭素冷媒を使用する場合に冷凍能力を確保することができる。 According to the present invention, the refrigeration capacity can be ensured when carbon dioxide refrigerant is used.
本発明を適用した一実施例の冷凍装置の冷媒回路図Refrigerant circuit diagram of a refrigerating apparatus of one embodiment to which the present invention is applied 補助圧縮機を備えない冷凍装置の動作状態を示すP-H線図PH diagram showing the operating state of a refrigeration system not equipped with an auxiliary compressor 冷凍装置の動作例1に係る動作状態を示すP-H線図PH diagram showing an operation state according to operation example 1 of the refrigeration apparatus 冷凍装置の動作例2に係る動作状態を示すP-H線図PH diagram showing an operation state according to operation example 2 of the refrigeration apparatus 図1とは別の構成を有する冷凍装置の冷媒回路図Refrigerant circuit diagram of a refrigeration apparatus having a configuration different from that of FIG. 図5に示した冷凍装置の動作状態を示すP-H線図PH diagram showing the operating state of the refrigeration apparatus shown in FIG. 図1とは別の構成を有する冷凍装置の冷媒回路図Refrigerant circuit diagram of a refrigeration apparatus having a configuration different from that of FIG. 図7に示した冷凍装置の動作状態を示すP-H線図PH diagram showing the operating state of the refrigeration apparatus shown in FIG. 図1とは別の構成を有する冷凍装置の冷媒回路図Refrigerant circuit diagram of a refrigeration apparatus having a configuration different from that of FIG.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (1)冷凍装置Rの構成
 図1は、本発明を適用する一実施例にかかる冷凍装置Rの冷媒回路図である。本実施例における冷凍装置Rは、スーパーマーケット等の店舗の機械室等に設置された冷凍機ユニット3と、店舗の売り場内に設置された一台若しくは複数台(図面では一台のみ示す)のショーケース4とを備え、これら冷凍機ユニット3とショーケース4とが、ユニット出口6とユニット入口7を介して、冷媒配管(液管)8および冷媒配管9により連結されて所定の冷媒回路1を構成している。
(1) Configuration of Refrigeration Apparatus R FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus R according to an embodiment to which the present invention is applied. The refrigeration apparatus R in this embodiment is a show of a refrigerator unit 3 installed in a machine room or the like of a store such as a supermarket, and one or a plurality of units (only one is shown in the drawing) installed in the store sales area. The refrigerator unit 3 and the showcase 4 are connected to each other by a refrigerant pipe (liquid pipe) 8 and a refrigerant pipe 9 via a unit outlet 6 and a unit inlet 7, and a predetermined refrigerant circuit 1 is provided. It is composed.
 この冷媒回路1は、高圧側の冷媒圧力がその臨界圧力以上(超臨界)となり得る二酸化炭素(R744)を冷媒として用いる。この二酸化炭素冷媒は、地球環境に優しく、可燃性および毒性等を考慮した自然冷媒である。また、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等、既存のオイルが使用される。図1に示す各矢印は、二酸化炭素冷媒の流れを示している。 This refrigerant circuit 1 uses, as a refrigerant, carbon dioxide (R744) whose refrigerant pressure on the high pressure side can be higher than the critical pressure (supercritical). This carbon dioxide refrigerant is a natural refrigerant that is friendly to the global environment and takes into consideration flammability and toxicity. As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used. Each arrow shown in FIG. 1 indicates the flow of the carbon dioxide refrigerant.
 冷凍機ユニット3は、圧縮機11(圧縮手段の一例)を備える。圧縮機11は、例えば、内部中間圧型2段圧縮式ロータリコンプレッサである。この圧縮機11は、密閉容器12と、回転圧縮機構部とを備えている。回転圧縮機構部は、密閉容器12の内部空間の上部に収納された駆動要素としての電動要素13、この電動要素13の下側に配置された、第1の(低段側)回転圧縮要素(第1の圧縮要素)14、および、第2の(高段側)回転圧縮要素(第2の圧縮要素)16から成る。圧縮機11は、同一の回転軸(電動要素13の回転軸)により駆動される第1の回転圧縮要素14および第2の回転圧縮要素16を有する二段圧縮機である。このような二段圧縮機では、低段側と高段側の排除容積比率が決まっており、その排除容積比率に応じて中間圧(MP)が決定される。 The refrigerator unit 3 includes a compressor 11 (an example of compression means). The compressor 11 is, for example, an internal intermediate pressure type two-stage compression rotary compressor. The compressor 11 includes a sealed container 12 and a rotary compression mechanism unit. The rotary compression mechanism section includes an electric element 13 as a drive element housed in the upper part of the internal space of the sealed container 12, and a first (low-stage) rotary compression element (lower stage side) disposed below the electric element 13. A first compression element) 14 and a second (higher stage) rotary compression element (second compression element) 16. The compressor 11 is a two-stage compressor having a first rotary compression element 14 and a second rotary compression element 16 driven by the same rotary shaft (the rotary shaft of the electric element 13). In such a two-stage compressor, the excluded volume ratio between the low stage side and the high stage side is determined, and the intermediate pressure (MP) is determined according to the excluded volume ratio.
 圧縮機11の第1の回転圧縮要素14は、冷媒配管9を介して冷媒回路1の低圧側から圧縮機11に吸い込まれる低圧冷媒を圧縮し、中間圧まで昇圧して吐出する。第2の回転圧縮要素16は、第1の回転圧縮要素14により吐出された中間圧の冷媒を吸い込み、圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。圧縮機11は、周波数可変型の圧縮機である。後述する制御装置57は、電動要素13の運転周波数を変更することで、第1の回転圧縮要素14、および、第2の回転圧縮要素16の回転数を制御する。 The first rotary compression element 14 of the compressor 11 compresses the low-pressure refrigerant sucked into the compressor 11 from the low-pressure side of the refrigerant circuit 1 through the refrigerant pipe 9, boosts it to an intermediate pressure, and discharges it. The second rotary compression element 16 sucks in the intermediate pressure refrigerant discharged by the first rotary compression element 14, compresses it to a high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The compressor 11 is a variable frequency compressor. The control device 57 to be described later controls the rotation speed of the first rotary compression element 14 and the second rotary compression element 16 by changing the operating frequency of the electric element 13.
 圧縮機11の密閉容器12の側面には、第1の回転圧縮要素14に連通する低段側吸込口17、密閉容器12内に連通する低段側吐出口18、第2の回転圧縮要素16に連通する高段側吸込口19、および、高段側吐出口21が形成されている。圧縮機11の低段側吸込口17には、冷媒導入配管22の一端が接続され、その他端はユニット入口7にて冷媒配管9に接続されている。 On the side surface of the sealed container 12 of the compressor 11, a low-stage suction port 17 communicating with the first rotary compression element 14, a low-stage discharge port 18 communicating with the inside of the sealed container 12, and a second rotary compression element 16. A high-stage suction port 19 and a high-stage discharge port 21 that communicate with each other are formed. One end of the refrigerant introduction pipe 22 is connected to the lower stage side suction port 17 of the compressor 11, and the other end is connected to the refrigerant pipe 9 at the unit inlet 7.
 低段側吸込口17より第1の回転圧縮要素14の低圧部に吸い込まれた低圧の冷媒ガスは、当該第1の回転圧縮要素14により1段目の圧縮が行われて中間圧に昇圧され、密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。 The low-pressure refrigerant gas sucked into the low-pressure portion of the first rotary compression element 14 from the low-stage suction port 17 is compressed to the first pressure by the first rotary compression element 14 to be increased to the intermediate pressure. The liquid is discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).
 そして、密閉容器12内の中間圧の冷媒ガスが吐出される圧縮機11の低段側吐出口18には、中間圧吐出配管23の一端が接続され、その他端はインタークーラ24の入口に接続されている。このインタークーラ24は、第1の回転圧縮要素14から吐出された中間圧の冷媒を空冷する。インタークーラ24の出口には、中間圧吸入配管26の一端が接続される。中間圧吸入配管26の他端は、圧縮機11の高段側吸込口19に接続される。 One end of the intermediate pressure discharge pipe 23 is connected to the low-stage discharge port 18 of the compressor 11 from which the intermediate pressure refrigerant gas in the sealed container 12 is discharged, and the other end is connected to the inlet of the intercooler 24. Has been. The intercooler 24 air-cools the intermediate pressure refrigerant discharged from the first rotary compression element 14. One end of an intermediate pressure suction pipe 26 is connected to the outlet of the intercooler 24. The other end of the intermediate pressure suction pipe 26 is connected to the high stage side suction port 19 of the compressor 11.
 圧縮機11の高段側吸込口19から第2の回転圧縮要素16に吸い込まれた中間圧(MP)の冷媒ガスは、第2の回転圧縮要素16により2段目の圧縮が行われて、高温高圧の冷媒ガスとなる。 The intermediate pressure (MP) refrigerant gas sucked into the second rotary compression element 16 from the high-stage side suction port 19 of the compressor 11 is compressed by the second rotary compression element 16 in the second stage, It becomes a high-temperature and high-pressure refrigerant gas.
 また、圧縮機11の第2の回転圧縮要素16の高圧室側に設けられた高段側吐出口21には、高圧吐出配管27の一端が接続され、その他端はガスクーラ(放熱器)28の入口に接続されている。なお、図示は省略するが、高圧吐出配管27の途中にはオイルセパレータ20が設けられてもよい。オイルセパレータにより冷媒から分離されたオイルは、圧縮機11の密閉容器12内および補助圧縮機60の密閉容器61内に戻される。 In addition, one end of a high-pressure discharge pipe 27 is connected to the high-stage discharge port 21 provided on the high-pressure chamber side of the second rotary compression element 16 of the compressor 11, and the other end of a gas cooler (heat radiator) 28. Connected to the entrance. Although illustration is omitted, an oil separator 20 may be provided in the middle of the high-pressure discharge pipe 27. The oil separated from the refrigerant by the oil separator is returned to the sealed container 12 of the compressor 11 and the sealed container 61 of the auxiliary compressor 60.
 ガスクーラ28は、圧縮機11から吐出された高圧の吐出冷媒を冷却する。ガスクーラ28の近傍には、当該ガスクーラ28を空冷するガスクーラ用送風機31が配設されている。本実施形態では、ガスクーラ28は、上述したインタークーラ24と並設されており、これらは同一の風路に配設されている。 The gas cooler 28 cools the high-pressure discharged refrigerant discharged from the compressor 11. A gas cooler blower 31 for air-cooling the gas cooler 28 is disposed in the vicinity of the gas cooler 28. In the present embodiment, the gas cooler 28 is juxtaposed with the intercooler 24 described above, and these are arranged in the same air passage.
 そして、ガスクーラ28の出口にはガスクーラ出口配管32の一端が接続され、このガスクーラ出口配管32の他端は電動膨張弁33(圧力調整用絞り手段の一例)の入口に接続されている。 One end of a gas cooler outlet pipe 32 is connected to the outlet of the gas cooler 28, and the other end of the gas cooler outlet pipe 32 is connected to the inlet of an electric expansion valve 33 (an example of a pressure adjusting throttle means).
 電動膨張弁33は、ガスクーラ28の下流側であって電動膨張弁39の上流側に位置する。この電動膨張弁33は、ガスクーラ28から出た冷媒を絞って膨張させるとともに、電動膨張弁33から上流側の冷媒回路1の高圧側圧力の調整を行うためのものである。電動膨張弁33の出口は、タンク入口配管34を介してタンク36の上部に接続されている。 The electric expansion valve 33 is located downstream of the gas cooler 28 and upstream of the electric expansion valve 39. The electric expansion valve 33 is used for restricting and expanding the refrigerant discharged from the gas cooler 28 and adjusting the high-pressure side pressure of the refrigerant circuit 1 upstream from the electric expansion valve 33. The outlet of the electric expansion valve 33 is connected to the upper part of the tank 36 via a tank inlet pipe 34.
 タンク36は、その内部に所定容積の空間を有する容積体である。タンク36の下部には、タンク出口配管37の一端が接続され、このタンク出口配管37の他端がユニット出口6にて冷媒配管8に接続されている。このタンク出口配管37の途中には、スプリット熱交換器29の第2の流路29Bが設けられる。このタンク出口配管37が、本実施形態における主回路38を構成する。タンク36は、電動膨張弁33の下流側であって電動膨張弁39の上流側に位置する。スプリット熱交換器29は、タンク36の下流側であって電動膨張弁39の上流側に位置する。 The tank 36 is a volume body having a predetermined volume space therein. One end of a tank outlet pipe 37 is connected to the lower part of the tank 36, and the other end of the tank outlet pipe 37 is connected to the refrigerant pipe 8 at the unit outlet 6. In the middle of the tank outlet pipe 37, a second flow path 29B of the split heat exchanger 29 is provided. This tank outlet pipe 37 constitutes a main circuit 38 in the present embodiment. The tank 36 is located downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39. The split heat exchanger 29 is located downstream of the tank 36 and upstream of the electric expansion valve 39.
 タンク36の上部には、ガス配管42の一端が接続されている。ガス配管42の他端は、電動膨張弁43(第1の補助回路用絞り手段の一例)の入口に接続されている。ガス配管42は、タンク36上部からガス冷媒を流出させ、電動膨張弁43に流入させる。この電動膨張弁43の出口には、中間圧戻り配管44の一端が接続されている。中間圧戻り配管44の他端は、圧縮機11の中間圧部に繋がる中間圧吸入配管26の途中に連通されている。 One end of a gas pipe 42 is connected to the upper part of the tank 36. The other end of the gas pipe 42 is connected to the inlet of an electric expansion valve 43 (an example of a first auxiliary circuit throttle means). The gas pipe 42 causes the gas refrigerant to flow out from the upper part of the tank 36 and flow into the electric expansion valve 43. One end of an intermediate pressure return pipe 44 is connected to the outlet of the electric expansion valve 43. The other end of the intermediate pressure return pipe 44 communicates with the intermediate pressure suction pipe 26 connected to the intermediate pressure portion of the compressor 11.
 また、スプリット熱交換器29の第2の流路29Bの下流側において、液配管46の一端がタンク出口配管37に接続されている。液配管46の他端は、電動膨張弁43の下流側の中間圧戻り配管44に接続されている。液配管46の途中には、電動膨張弁47(第2の補助回路用絞り手段の一例)が設けられている。 Further, one end of the liquid pipe 46 is connected to the tank outlet pipe 37 on the downstream side of the second flow path 29B of the split heat exchanger 29. The other end of the liquid pipe 46 is connected to an intermediate pressure return pipe 44 on the downstream side of the electric expansion valve 43. In the middle of the liquid pipe 46, an electric expansion valve 47 (an example of a second auxiliary circuit throttle means) is provided.
 また、スプリット熱交換器29の第2の流路29Bの下流側において、分岐配管71の一端がタンク出口配管37に接続されている。分岐配管71の他端は、補助圧縮機60の吸入口64に接続されている。なお、補助圧縮機60の構成については後述する。 Also, one end of the branch pipe 71 is connected to the tank outlet pipe 37 on the downstream side of the second flow path 29B of the split heat exchanger 29. The other end of the branch pipe 71 is connected to the suction port 64 of the auxiliary compressor 60. The configuration of the auxiliary compressor 60 will be described later.
 また、分岐配管71の途中には、電動膨張弁70(第3の補助回路用絞り手段の一例)が配置されている。また、分岐配管71の途中には、電動膨張弁70の下流側に、スプリット熱交換器29の第1の流路29Aが設けられている。 In the middle of the branch pipe 71, an electric expansion valve 70 (an example of a third auxiliary circuit throttle means) is disposed. Further, in the middle of the branch pipe 71, a first flow path 29 </ b> A of the split heat exchanger 29 is provided on the downstream side of the electric expansion valve 70.
 また、分岐配管71は、第1の流路29Aの下流側において、バイパス回路73と接続している。バイパス回路73の他端は、ガス配管42に接続されている。また、バイパス回路73には、電磁弁74が設けられている。電磁弁74は、制御装置57により開状態または閉状態のいずれかに制御される。 The branch pipe 71 is connected to the bypass circuit 73 on the downstream side of the first flow path 29A. The other end of the bypass circuit 73 is connected to the gas pipe 42. The bypass circuit 73 is provided with an electromagnetic valve 74. The electromagnetic valve 74 is controlled by the control device 57 to either the open state or the closed state.
 スプリット熱交換器29の第2の流路29Bを通過した冷媒は、第2の流路29Bの下流側において、3方向(電動膨張弁47へ向かう第1の冷媒、電動膨張弁70へ向かう第2の冷媒、電動膨張弁39へ向かう第3の冷媒)に分流する。 The refrigerant that has passed through the second flow path 29B of the split heat exchanger 29 has three directions (the first refrigerant toward the electric expansion valve 47 and the first flow toward the electric expansion valve 70 on the downstream side of the second flow path 29B. 2 refrigerant, the third refrigerant heading toward the electric expansion valve 39).
 上述した電動膨張弁43(第1の補助回路用絞り手段)、電動膨張弁47(第2の補助回路用絞り手段)、および電動膨張弁70(第3の補助回路用絞り手段)が、本実施形態における補助絞り手段を構成する。また、分岐配管71が、本実施形態における補助回路48を構成する。また、中間圧戻り配管44が、本実施形態における戻し回路80を構成する。 The electric expansion valve 43 (first auxiliary circuit throttle means), the electric expansion valve 47 (second auxiliary circuit throttle means) and the electric expansion valve 70 (third auxiliary circuit throttle means) described above are The auxiliary aperture means in the embodiment is configured. The branch pipe 71 constitutes the auxiliary circuit 48 in the present embodiment. Further, the intermediate pressure return pipe 44 constitutes the return circuit 80 in the present embodiment.
 店舗内に設置されるショーケース4は、冷媒配管8、9に接続される。ショーケース4には、電動膨張弁39(主絞り手段の一例)と蒸発器41とが設けられており、冷媒配管8と冷媒配管9との間に順次接続されている(電動膨張弁39が冷媒配管8側、蒸発器41が冷媒配管9側)。蒸発器41の隣には、当該蒸発器41に送風する冷気循環用送風機(図示略)が設けられている。そして、冷媒配管9は、上述したように冷媒導入配管22を介して圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に接続されている。 The showcase 4 installed in the store is connected to the refrigerant pipes 8 and 9. The showcase 4 is provided with an electric expansion valve 39 (an example of a main throttle means) and an evaporator 41, which are sequentially connected between the refrigerant pipe 8 and the refrigerant pipe 9 (the electric expansion valve 39 is Refrigerant pipe 8 side, evaporator 41 is refrigerant pipe 9 side). Next to the evaporator 41, a cool air circulation blower (not shown) for blowing air to the evaporator 41 is provided. The refrigerant pipe 9 is connected to the low-stage suction port 17 that communicates with the first rotary compression element 14 of the compressor 11 via the refrigerant introduction pipe 22 as described above.
 冷凍機ユニット3は、補助圧縮機60(補助圧縮手段の一例)を備える。補助圧縮機60は、密閉容器61と、この密閉容器61の内部空間に収納された駆動要素としての電動要素62と、この電動要素62の回転軸により駆動される回転圧縮要素63とを備えている。 The refrigerator unit 3 includes an auxiliary compressor 60 (an example of auxiliary compression means). The auxiliary compressor 60 includes an airtight container 61, an electric element 62 as a driving element housed in the internal space of the airtight container 61, and a rotary compression element 63 that is driven by the rotation shaft of the electric element 62. Yes.
 密閉容器61の側面には、回転圧縮要素63に連通する吸込口64および吐出口65が形成されている。吸込口64には分岐配管71の一端が接続されている。また、吐出口65は、配管72の一端が接続されている。配管72の他端は、高圧吐出配管27に接続されている。 A suction port 64 and a discharge port 65 communicating with the rotary compression element 63 are formed on the side surface of the sealed container 61. One end of a branch pipe 71 is connected to the suction port 64. The discharge port 65 is connected to one end of a pipe 72. The other end of the pipe 72 is connected to the high pressure discharge pipe 27.
 回転圧縮要素63は、分岐配管71から吸い込まれた冷媒を圧縮して高圧まで昇圧し、冷媒回路1の高圧側に吐出する。補助圧縮機60は、周波数可変型の圧縮機である。後述する制御装置57は、電動要素62の運転周波数を変更することで、回転圧縮要素63の回転数を制御する。 The rotary compression element 63 compresses the refrigerant sucked from the branch pipe 71, raises the pressure to high pressure, and discharges it to the high pressure side of the refrigerant circuit 1. The auxiliary compressor 60 is a variable frequency compressor. The control device 57 described later controls the rotational speed of the rotary compression element 63 by changing the operating frequency of the electric element 62.
 冷媒回路1の各所には種々のセンサが取り付けられている。 Various sensors are attached to various parts of the refrigerant circuit 1.
 例えば、高圧吐出配管27には、高圧センサ49が取り付けられる。高圧センサ49は、冷媒回路1の高圧側圧力HP(圧縮機11の高段側吐出口21と電動膨張弁33の入口の間の圧力)を検出する。 For example, a high pressure sensor 49 is attached to the high pressure discharge pipe 27. The high pressure sensor 49 detects the high pressure side pressure HP of the refrigerant circuit 1 (pressure between the high stage discharge port 21 of the compressor 11 and the inlet of the electric expansion valve 33).
 また、例えば、冷媒導入配管22には、低圧センサ51が取り付けられる。低圧センサ51は、冷媒回路1の低圧側圧力LP(電動膨張弁39の出口と低段側吸込口17の間の圧力)を検出する。 Further, for example, a low pressure sensor 51 is attached to the refrigerant introduction pipe 22. The low pressure sensor 51 detects the low pressure LP of the refrigerant circuit 1 (pressure between the outlet of the electric expansion valve 39 and the low stage suction port 17).
 また、例えば、中間圧戻り配管44には、中間圧センサ52が取り付けられる。中間圧センサ52は、冷媒回路の1の中間圧領域の圧力である中間圧MP(電動膨張弁43、47の出口より下流の中間圧戻り配管44内の圧力であって、圧縮機11の低段側吐出口18と高段側吸込口19との間の圧力に等しい圧力)を検出する。 Further, for example, an intermediate pressure sensor 52 is attached to the intermediate pressure return pipe 44. The intermediate pressure sensor 52 is an intermediate pressure MP (pressure in the intermediate pressure return pipe 44 downstream from the outlets of the electric expansion valves 43 and 47, which is the pressure in the intermediate pressure region 1 of the refrigerant circuit, and is low in the compressor 11. A pressure equal to the pressure between the stage side discharge port 18 and the high stage side suction port 19) is detected.
 また、例えば、スプリット熱交換器29の下流側のタンク出口配管37には、ユニット出口センサ53が取り付けられている。このユニット出口センサ53は、タンク36内の圧力OPを検出する。このタンク36内の圧力は、冷凍機ユニット3から出て冷媒配管8から電動膨張弁39に流入する冷媒の圧力となる。 For example, a unit outlet sensor 53 is attached to the tank outlet pipe 37 on the downstream side of the split heat exchanger 29. The unit outlet sensor 53 detects the pressure OP in the tank 36. The pressure in the tank 36 becomes the pressure of the refrigerant that leaves the refrigerator unit 3 and flows into the electric expansion valve 39 from the refrigerant pipe 8.
 上述した各センサは、マイクロコンピュータから構成された冷凍機ユニット3の制御装置57(制御手段の一例)の入力に接続される。一方、制御装置57の出力には、圧縮機11の電動要素13、補助圧縮機60の電動要素62、ガスクーラ用送風機31、電動膨張弁33、電動膨張弁43、電動膨張弁47、電動膨張弁70、電動膨張弁39、電磁弁74が接続される。制御装置57は、各センサからの検出結果と設定データ等に基づいて、出力側の各構成要素を制御する。 Each sensor described above is connected to the input of the control device 57 (an example of the control means) of the refrigerator unit 3 composed of a microcomputer. On the other hand, the output of the control device 57 includes the electric element 13 of the compressor 11, the electric element 62 of the auxiliary compressor 60, the gas cooler blower 31, the electric expansion valve 33, the electric expansion valve 43, the electric expansion valve 47, and the electric expansion valve. 70, the electric expansion valve 39, and the electromagnetic valve 74 are connected. The control device 57 controls each component on the output side based on detection results from each sensor, setting data, and the like.
 なお、以下では、ショーケース4側の電動膨張弁39や上述した冷気循環用送風機も制御装置57が制御するものとして説明するが、これらは店舗の主制御装置(図示略)を介し、制御装置57と連携して動作するショーケース4側の制御装置(図示略)により制御されることとしてもよい。したがって、本実施形態における制御手段は、制御装置57やショーケース4側の制御装置、上述した主制御装置等を含めた概念としてもよい。 In the following description, it is assumed that the electric expansion valve 39 on the showcase 4 side and the above-described cool air circulation blower are also controlled by the control device 57, but these are controlled via the main control device (not shown) of the store. It is good also as being controlled by the control apparatus (illustration omitted) by the side of the showcase 4 which cooperates with 57. Therefore, the control means in this embodiment may be a concept including the control device 57, the control device on the showcase 4 side, the main control device described above, and the like.
 (2)冷凍装置Rの動作
 次に、冷凍装置Rの動作を説明する。制御装置57により圧縮機11の電動要素13が駆動されると、第1の回転圧縮要素14および第2の回転圧縮要素16が回転し、低段側吸込口17より第1の回転圧縮要素14の低圧部に低圧の冷媒ガス(二酸化炭素)が吸い込まれる。そして、第1の回転圧縮要素14により中間圧に昇圧されて密閉容器12内に吐出される。これにより、密閉容器12内は中間圧(MP)となる。
(2) Operation of Refrigeration Apparatus R Next, the operation of the refrigeration apparatus R will be described. When the electric element 13 of the compressor 11 is driven by the control device 57, the first rotary compression element 14 and the second rotary compression element 16 are rotated, and the first rotary compression element 14 is rotated from the low-stage suction port 17. Low-pressure refrigerant gas (carbon dioxide) is sucked into the low-pressure part. Then, the pressure is increased to an intermediate pressure by the first rotary compression element 14 and discharged into the sealed container 12. Thereby, the inside of the airtight container 12 becomes an intermediate pressure (MP).
 そして、密閉容器12内の中間圧のガス冷媒は、低段側吐出口18から中間圧吐出配管23を経てインタークーラ24に入り、インタークーラ24において空冷される。 Then, the intermediate-pressure gas refrigerant in the sealed container 12 enters the intercooler 24 through the intermediate-pressure discharge pipe 23 from the low-stage discharge port 18 and is air-cooled in the intercooler 24.
 空冷されたガス冷媒は、インタークーラ24から中間圧吸入配管26へ流出し、その中間圧吸入配管26において、中間圧戻り配管44から中間圧吸入配管26へ流入するガス冷媒(詳細は後述)と混合する。混合したガス冷媒は、圧縮機11の高段側吸込口19(中間圧部)に流入する。 The air-cooled gas refrigerant flows out from the intercooler 24 to the intermediate pressure suction pipe 26, and in the intermediate pressure suction pipe 26, the gas refrigerant flows into the intermediate pressure suction pipe 26 from the intermediate pressure return pipe 44 (details will be described later). Mix. The mixed gas refrigerant flows into the high stage suction port 19 (intermediate pressure part) of the compressor 11.
 高段側吸込口19へ流入した中間圧のガス冷媒は、第2の回転圧縮要素16に吸い込まれ、この第2の回転圧縮要素16により2段目の圧縮が行われて高温高圧のガス冷媒となる。このガス冷媒は、高段側吐出口21から高圧吐出配管27に吐出される。 The intermediate-pressure gas refrigerant that has flowed into the high-stage side suction port 19 is sucked into the second rotary compression element 16, and the second-stage compression is performed by the second rotary compression element 16, so that the high-temperature and high-pressure gas refrigerant is obtained. It becomes. This gas refrigerant is discharged from the high-stage discharge port 21 to the high-pressure discharge pipe 27.
 (2-1)電動膨張弁33の制御
 高圧吐出配管27からガスクーラ28へ流入したガス冷媒は、ガスクーラ28にて空冷された後、ガスクーラ出口配管32を経て電動膨張弁33に至る。この電動膨張弁33は、電動膨張弁33より上流側の冷媒回路1の高圧側圧力HPを所定の目標値THPに制御するために設けられており、高圧センサ49の出力に基づき、制御装置57によりその弁開度が制御される。
(2-1) Control of the electric expansion valve 33 The gas refrigerant flowing into the gas cooler 28 from the high pressure discharge pipe 27 is cooled by the gas cooler 28 and then reaches the electric expansion valve 33 through the gas cooler outlet pipe 32. The electric expansion valve 33 is provided to control the high-pressure side pressure HP of the refrigerant circuit 1 upstream of the electric expansion valve 33 to a predetermined target value THP, and based on the output of the high-pressure sensor 49, the control device 57. Is used to control the valve opening.
 (2-1-1)電動膨張弁33の運転始動時の開度の設定
 運転始動時には先ず、制御装置57は外気温度に基づいて冷凍装置Rの始動時における電動膨張弁33の開度(始動時の弁開度)を設定する。具体的には、本実施形態では、制御装置57は、始動時における外気温度と電動膨張弁33の始動時の弁開度との関係を示すデータテーブルを予め記憶しており、始動時における外気温度から、上記データテーブルを参照して、電動膨張弁33の始動時の弁開度を設定する。
(2-1-1) Setting of opening degree of electric expansion valve 33 when starting operation First, when starting the operation, the controller 57 opens the opening degree (starting of the electric expansion valve 33 when starting the refrigeration apparatus R based on the outside air temperature). Set the valve opening. Specifically, in the present embodiment, the control device 57 stores in advance a data table showing the relationship between the outside air temperature at the time of starting and the valve opening degree at the time of starting the electric expansion valve 33, and the outside air at the time of starting is stored. From the temperature, the opening degree of the electric expansion valve 33 at the start is set with reference to the data table.
 なお、外気温度は、例えば、外気温度センサ(図示略)により検出される。外気温度センサは、インタークーラ24、ガスクーラ28、ガスクーラ用送風機31などが格納される室外機の内部、または、その近傍などに配置される。これに限らず、高圧センサ49が検出する高圧側圧力HPから制御装置57が外気温度を検出するようにしてもよい(以下、同じ)。高圧センサ49が検出する高圧側圧力HPと外気温度との間には相関関係があるため、制御装置57は高圧側圧力HPから外気温度を判断することができる。具体的には、制御装置57は、始動時における高圧側圧力HP(外気温度)と電動膨張弁33の始動時の弁開度との関係を示すデータテーブルを予め記憶しており、始動時における外気温度を推定し、上記データテーブルを参照して、電動膨張弁33の始動時の弁開度を設定する。 Note that the outside air temperature is detected by, for example, an outside temperature sensor (not shown). The outside air temperature sensor is disposed inside or in the vicinity of an outdoor unit in which the intercooler 24, the gas cooler 28, the gas cooler blower 31 and the like are stored. Not limited to this, the control device 57 may detect the outside air temperature from the high-pressure side pressure HP detected by the high-pressure sensor 49 (hereinafter the same). Since there is a correlation between the high pressure side pressure HP detected by the high pressure sensor 49 and the outside air temperature, the controller 57 can determine the outside temperature from the high pressure side pressure HP. Specifically, the control device 57 stores in advance a data table indicating the relationship between the high-pressure side pressure HP (outside air temperature) at the time of starting and the valve opening degree at the time of starting the electric expansion valve 33. The outside air temperature is estimated, and the valve opening degree at the start of the electric expansion valve 33 is set with reference to the data table.
 (2-1-2)運転中における電動膨張弁33の開度の設定
 運転中、制御装置57は、外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP)に基づいて、電動膨張弁33の開度を設定する。この場合、制御装置57は、高圧側圧力HP(外気温度)が低い場合に大きくなるよう電動膨張弁33の開度を設定する。これにより、電動膨張弁33における圧力低下を最小限に抑えることができ、圧縮機11に入る中間圧吸入配管26の中間圧(MP)との圧力差を確保して、冷凍運転および冷蔵運転を効率的に行うことができる。
(2-1-2) Setting of the opening degree of the electric expansion valve 33 during operation During operation, the control device 57 is based on the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 which is an index indicating the outside air temperature. The opening degree of the electric expansion valve 33 is set. In this case, the control device 57 sets the opening degree of the electric expansion valve 33 so as to increase when the high-pressure side pressure HP (outside air temperature) is low. Thereby, the pressure drop in the electric expansion valve 33 can be suppressed to a minimum, a pressure difference from the intermediate pressure (MP) of the intermediate pressure suction pipe 26 entering the compressor 11 is secured, and the refrigeration operation and the refrigeration operation are performed. Can be done efficiently.
 ここで、制御装置57は、高圧側圧力HP(外気温度)と電動膨張弁33の開度との関係を示すデータテーブルを予め記憶しておき、それを参照することにより電動膨張弁33の開度を設定してもよいし、当該開度を計算式から算出してもよい。 Here, the control device 57 stores in advance a data table showing the relationship between the high pressure side pressure HP (outside air temperature) and the opening degree of the electric expansion valve 33, and by referring to it, the control device 57 opens the electric expansion valve 33. The degree may be set, or the opening degree may be calculated from a calculation formula.
 (2-1-3)高圧側圧力HPの上限値MHPでの制御
 なお、上述のように制御を行っているときに、設置環境や負荷の影響で電動膨張弁33より上流側の高圧側圧力HPが所定の上限値MHPに上昇してしまった場合、制御装置57は電動膨張弁33の弁開度をさらに増大させる。この弁開度の増大により、高圧側圧力HPは低下する方向に向かうので、高圧側圧力HPを常に上限値MHP以下に維持することができるようになる。これにより、電動膨張弁33より上流側の高圧側圧力HPの異常上昇を的確に抑制して圧縮機11の保護を確実に行うことが可能となり、異常な高圧による圧縮機11の強制停止(保護動作)を未然に回避することが可能となる。
(2-1-3) Control with the upper limit value MHP of the high pressure side pressure HP When the control is performed as described above, the high pressure side pressure upstream of the electric expansion valve 33 due to the influence of the installation environment and load. When HP has increased to the predetermined upper limit value MHP, the control device 57 further increases the valve opening degree of the electric expansion valve 33. As the valve opening increases, the high-pressure side pressure HP tends to decrease, so that the high-pressure side pressure HP can always be kept below the upper limit value MHP. As a result, it is possible to reliably suppress the abnormal increase in the high-pressure side pressure HP upstream from the electric expansion valve 33 and to reliably protect the compressor 11, and to forcibly stop (protect) the compressor 11 due to an abnormal high pressure. Operation) can be avoided in advance.
 ここで、ガスクーラ28から超臨界状態の冷媒ガスは、電動膨張弁33で減圧されて気液二相の混合状態となり、タンク入口配管34を経て上部からタンク36内に流入する。タンク36は、タンク入口配管34から流入した液/ガスの冷媒を一旦貯留し、分離する役割と、冷凍装置Rの高圧側圧力(この場合は、タンク36からタンク36より上流側の圧縮機11の高圧吐出配管27までの領域)の圧力変化や冷媒循環量の変動を吸収する役割を果たす。 Here, the supercritical refrigerant gas from the gas cooler 28 is decompressed by the electric expansion valve 33 to be in a gas-liquid two-phase mixed state, and flows into the tank 36 from above through the tank inlet pipe 34. The tank 36 temporarily stores and separates the liquid / gas refrigerant flowing in from the tank inlet pipe 34, and the high pressure side pressure of the refrigeration apparatus R (in this case, the compressor 11 upstream from the tank 36 to the compressor 11. In the region up to the high-pressure discharge pipe 27) and absorbs fluctuations in the circulation amount of the refrigerant.
 このタンク36内の下部に溜まった液冷媒は、タンク36からタンク出口配管37(主回路38)へ流出する。以下、タンク36からタンク出口配管37へ流出した冷媒の流れについて説明する。 The liquid refrigerant accumulated in the lower part of the tank 36 flows out from the tank 36 to the tank outlet pipe 37 (main circuit 38). Hereinafter, the flow of the refrigerant flowing out from the tank 36 to the tank outlet pipe 37 will be described.
 タンク36から流出した液冷媒は、スプリット熱交換器29の第2の流路29Bへ流入し、第2の流路29Bにおいて第1の流路29Aを流れる冷媒により冷却(過冷却)される。その後、液冷媒は、冷凍機ユニット3から出て冷媒配管8から電動膨張弁39に流入する。 The liquid refrigerant that has flowed out of the tank 36 flows into the second flow path 29B of the split heat exchanger 29, and is cooled (supercooled) by the refrigerant flowing through the first flow path 29A in the second flow path 29B. Thereafter, the liquid refrigerant exits the refrigerator unit 3 and flows into the electric expansion valve 39 from the refrigerant pipe 8.
 電動膨張弁39に流入した冷媒は、電動膨張弁39で絞られて膨張することでさらに液分が増え、蒸発器41に流入して蒸発する。これによる吸熱作用により冷却効果が発揮される。制御装置57は、蒸発器41の入口側と出口側の温度を検出する温度センサ(図示略)の出力に基づき、電動膨張弁39の弁開度を制御して蒸発器41における冷媒の過熱度を適正値に調整する。 The refrigerant that has flowed into the electric expansion valve 39 is expanded by being throttled by the electric expansion valve 39, so that the liquid content further increases and flows into the evaporator 41 to evaporate. The cooling effect is exhibited by the endothermic action. The control device 57 controls the degree of superheat of the refrigerant in the evaporator 41 by controlling the valve opening degree of the electric expansion valve 39 based on the output of a temperature sensor (not shown) that detects the temperatures of the inlet side and the outlet side of the evaporator 41. Adjust to the appropriate value.
 蒸発器41から出た低温のガス冷媒は、冷媒配管9から冷凍機ユニット3に戻り、冷媒導入配管22を経て、圧縮機11の第1の回転圧縮要素14に連通する低段側吸込口17に吸い込まれる。以上が主回路38における冷媒の流れである。 The low-temperature gas refrigerant discharged from the evaporator 41 returns from the refrigerant pipe 9 to the refrigerator unit 3, passes through the refrigerant introduction pipe 22, and communicates with the first rotary compression element 14 of the compressor 11. Sucked into. The above is the flow of the refrigerant in the main circuit 38.
 (2-2)電動膨張弁43の制御
 戻し回路80における冷媒の流れを説明する。タンク36内の上部に溜まるガス冷媒は、電動膨張弁33の減圧により温度が低下している。このガス冷媒は、タンク36からガス配管42へ流出する。上述したようにガス配管42には電動膨張弁43が接続されている。ガス冷媒は、電動膨張弁43で絞られた後、中間圧戻り配管44へ流入し、電動膨張弁47を経た冷媒と混合する。そして、その冷媒は、中間圧戻り配管44から中間圧吸入配管26に流入し、インタークーラ24から出た冷媒と混合し、圧縮機11の高段側吸込口19に吸い込まれる。
(2-2) Control of the electric expansion valve 43 The flow of the refrigerant in the return circuit 80 will be described. The temperature of the gas refrigerant that accumulates in the upper part of the tank 36 is lowered due to the decompression of the electric expansion valve 33. This gas refrigerant flows out from the tank 36 to the gas pipe 42. As described above, the electric expansion valve 43 is connected to the gas pipe 42. After being throttled by the electric expansion valve 43, the gas refrigerant flows into the intermediate pressure return pipe 44 and mixes with the refrigerant that has passed through the electric expansion valve 47. Then, the refrigerant flows into the intermediate pressure suction pipe 26 from the intermediate pressure return pipe 44, mixes with the refrigerant discharged from the intercooler 24, and is sucked into the high-stage suction port 19 of the compressor 11.
 電動膨張弁43は、タンク36の上部から流出する冷媒を絞る機能の他に、タンク36内の圧力(電動膨張弁39に流入する冷媒の圧力)を所定の目標値SPに調整する役割を果たす。そして、制御装置57は、ユニット出口センサ53の出力に基づき、電動膨張弁43の弁開度を制御する。電動膨張弁43の弁開度が増大すれば、タンク36内からのガス冷媒の流出量が増大し、タンク36内の圧力は低下するからである。 The electric expansion valve 43 functions to adjust the pressure in the tank 36 (the pressure of the refrigerant flowing into the electric expansion valve 39) to a predetermined target value SP in addition to the function of restricting the refrigerant flowing out from the upper portion of the tank 36. . Then, the control device 57 controls the valve opening degree of the electric expansion valve 43 based on the output of the unit outlet sensor 53. This is because if the valve opening degree of the electric expansion valve 43 increases, the amount of gas refrigerant flowing out of the tank 36 increases and the pressure in the tank 36 decreases.
 本実施形態では、目標値SPは高圧側圧力HPよりも低く、中間圧MPよりも高い値に設定されている。そして、制御装置57は、ユニット出口センサ53が検出するタンク36内の圧力OP(電動膨張弁39に流入する冷媒の圧力)と目標値SPの差から電動膨張弁39の弁開度の調整値(ステップ数)を算出し、後述する始動時の弁開度に加算してタンク36内の圧力OPを目標値SPに制御する。すなわち、タンク36内の圧力OPが目標値SPより上昇した場合には、電動膨張弁43の弁開度を増大させてタンク36内からガス冷媒をガス配管42に流出させ、逆に目標値SPより降下した場合には、弁開度を縮小させて閉じる方向に制御する。 In the present embodiment, the target value SP is set to a value lower than the high pressure side pressure HP and higher than the intermediate pressure MP. Then, the control device 57 adjusts the valve opening degree of the electric expansion valve 39 from the difference between the pressure OP in the tank 36 (pressure of the refrigerant flowing into the electric expansion valve 39) detected by the unit outlet sensor 53 and the target value SP. (Step number) is calculated and added to a valve opening at the time of starting, which will be described later, to control the pressure OP in the tank 36 to the target value SP. That is, when the pressure OP in the tank 36 rises above the target value SP, the valve opening degree of the electric expansion valve 43 is increased to cause the gas refrigerant to flow out from the tank 36 to the gas pipe 42, and conversely, the target value SP. When the valve is further lowered, the valve opening is reduced and controlled to close.
 (2-2-1)電動膨張弁43の運転始動時の開度の設定
 制御装置57は、外気温度、または、外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP)に基づいて、冷凍装置Rの始動時における電動膨張弁43の弁開度(始動時の弁開度)を設定する。本実施形態の場合、制御装置57は始動時における外気温度、または、高圧側圧力HP(外気温度)と電動膨張弁43の始動時の弁開度との関係を示すデータテーブルを予め記憶している。
(2-2-1) Setting of Opening at Operation Start of Electric Expansion Valve 43 The control device 57 sets the outside air temperature or the detected pressure (high pressure side pressure HP) of the high pressure sensor 49 as an index indicating the outside air temperature. Based on this, the valve opening degree of the electric expansion valve 43 when starting the refrigeration apparatus R (the valve opening degree when starting) is set. In the case of the present embodiment, the control device 57 stores in advance a data table indicating the relationship between the outside air temperature at the time of starting or the high pressure side pressure HP (outside air temperature) and the opening degree of the electric expansion valve 43 at the time of starting. Yes.
 そして、制御装置57は、始動時における外気温度、または、検出圧力(高圧側圧力HP)から、上記データテーブルに基づいて高圧側圧力HP(外気温度)が高い程増大し、逆に高圧側圧力HPが低い程減少するよう電動膨張弁43の始動時の弁開度を設定する。これにより、外気温度が高い環境での始動時におけるタンク36内圧力の上昇を抑制し、電動膨張弁39に流入する冷媒の圧力上昇を防止することが可能となる。 Then, the controller 57 increases from the outside air temperature at the time of starting or the detected pressure (high pressure side pressure HP) as the high pressure side pressure HP (outside air temperature) is high based on the data table, and conversely, the high pressure side pressure. The opening degree of the electric expansion valve 43 at the time of starting is set so as to decrease as HP decreases. Thereby, it is possible to suppress an increase in the pressure in the tank 36 at the time of start-up in an environment where the outside air temperature is high, and to prevent an increase in the pressure of the refrigerant flowing into the electric expansion valve 39.
 なお、本実施形態では、タンク36内の圧力OPの目標値SPを固定して制御するが、電動膨張弁33の場合と同様に、外気温度、または、外気温度を示す指標である高圧センサ49の検出圧力(高圧側圧力HP)に基づいて目標値SPを設定するようにしてもよい。この場合には、制御装置57は、外気温度、または、高圧側圧力HPが高い程高くなる。そのため、外気温度が高い環境では電動膨張弁39に流入する冷媒の圧力の運転中における目標値SPが高くなる。 In the present embodiment, the target value SP of the pressure OP in the tank 36 is fixed and controlled. However, as in the case of the electric expansion valve 33, the outside air temperature or the high pressure sensor 49 that is an index indicating the outside air temperature is used. The target value SP may be set based on the detected pressure (high pressure side pressure HP). In this case, the controller 57 becomes higher as the outside air temperature or the high pressure side pressure HP is higher. Therefore, in an environment where the outside air temperature is high, the target value SP during operation of the pressure of the refrigerant flowing into the electric expansion valve 39 becomes high.
 すなわち、高い外気温度の影響で圧力が高くなる状況では、中間圧MPが高くなるので、電動膨張弁43の弁開度が大きくなっても戻し回路80に冷媒が流れにくくなる不都合を防止することができるようになる。逆に、電動膨張弁43の弁開度を小さくすることで、戻し回路80に流入する冷媒量を減少させ、ユニット出口6における冷媒の圧力が低下する不都合を防止することができるようになる。これらにより、季節の移り変わりに伴う外気温度の変化に関わらず、電動膨張弁43の弁開度を適切に制御して、ユニット出口6における冷媒の圧力の変化を抑えることができ、冷媒量を的確に調整することができる。 In other words, in a situation where the pressure increases due to the influence of a high outside air temperature, the intermediate pressure MP increases, so that it is possible to prevent the inconvenience that the refrigerant does not easily flow to the return circuit 80 even if the valve opening degree of the electric expansion valve 43 increases. Will be able to. Conversely, by reducing the valve opening degree of the electric expansion valve 43, the amount of refrigerant flowing into the return circuit 80 can be reduced, and the disadvantage that the refrigerant pressure at the unit outlet 6 is reduced can be prevented. As a result, regardless of the change in the outside air temperature due to seasonal changes, the valve opening degree of the electric expansion valve 43 can be appropriately controlled to suppress the change in the refrigerant pressure at the unit outlet 6, and the amount of refrigerant can be accurately determined. Can be adjusted.
 (2-2-2)タンク内圧力OPの規定値MOPでの制御
 なお、上述のように制御を行っているときに、設置環境や負荷の影響でタンク36内圧力OP(電動膨張弁39に流入する冷媒の圧力)が所定の規定値MOPに上昇してしまった場合、制御装置57は、電動膨張弁43の弁開度を所定ステップ増大させる。この弁開度の増大により、タンク36内圧力OPは低下する方向に向かうので、圧力OPを常に規定値MOP以下に維持することができるようになり、高圧側圧力変動の影響抑制と、電動膨張弁39に搬送される冷媒の圧力の抑制効果を確実に達成することが可能となる。
(2-2-2) Control of tank internal pressure OP at specified value MOP Note that when the control is performed as described above, the internal pressure OP of the tank 36 (in the electric expansion valve 39) due to the influence of the installation environment and load. When the pressure of the refrigerant flowing in) has increased to a predetermined specified value MOP, the control device 57 increases the valve opening degree of the electric expansion valve 43 by a predetermined step. As the valve opening increases, the pressure OP in the tank 36 decreases, so that the pressure OP can always be maintained below the specified value MOP. It becomes possible to reliably achieve the effect of suppressing the pressure of the refrigerant conveyed to the valve 39.
 (2-3)電動膨張弁47の制御
 戻し回路80における冷媒の流れを説明する。タンク36内の下部に溜まる液冷媒は、タンク36からタンク出口配管37へ流入し、第2の流路29Bを通過後、分流する。分流した液冷媒のうちの1つは、液配管46へ流入し、電動膨張弁47で絞られる。その後、液冷媒は、中間圧戻り配管44へ流入し、電動膨張弁43を経た冷媒と混合する。そして、その冷媒は、中間圧戻り配管44から中間圧吸入配管26に流入し、インタークーラ24から出た冷媒と混合し、圧縮機11の高段側吸込口19に吸い込まれる。
(2-3) Control of Electric Expansion Valve 47 The flow of the refrigerant in the return circuit 80 will be described. The liquid refrigerant that accumulates in the lower part of the tank 36 flows into the tank outlet pipe 37 from the tank 36, and is divided after passing through the second flow path 29B. One of the divided liquid refrigerant flows into the liquid pipe 46 and is throttled by the electric expansion valve 47. Thereafter, the liquid refrigerant flows into the intermediate pressure return pipe 44 and is mixed with the refrigerant that has passed through the electric expansion valve 43. Then, the refrigerant flows into the intermediate pressure suction pipe 26 from the intermediate pressure return pipe 44, mixes with the refrigerant discharged from the intercooler 24, and is sucked into the high-stage suction port 19 of the compressor 11.
 電動膨張弁47の弁開度は、制御装置57により設定される。例えば、制御装置57は、圧縮機11の高段側吐出口21から吐出される冷媒の温度(吐出温度)が目標値よりも高い場合、電動膨張弁47を開状態に設定する。なお、吐出温度は、図示しない吐出温度センサにより検出され、制御装置57へ入力される。 The valve opening degree of the electric expansion valve 47 is set by the control device 57. For example, the control device 57 sets the electric expansion valve 47 to an open state when the temperature (discharge temperature) of the refrigerant discharged from the high-stage discharge port 21 of the compressor 11 is higher than the target value. The discharge temperature is detected by a discharge temperature sensor (not shown) and input to the control device 57.
 (3-1)電動膨張弁70および電磁弁74の制御
 本実施形態では、制御装置57により電動膨張弁70および電磁弁74の開閉が制御されることで、タンク36から流出する冷媒の流れを切り替えることができる。以下、動作例1と動作例2のそれぞれについて説明する。
(3-1) Control of Electric Expansion Valve 70 and Electromagnetic Valve 74 In this embodiment, the control device 57 controls the opening and closing of the electric expansion valve 70 and the electromagnetic valve 74, so that the flow of refrigerant flowing out of the tank 36 is controlled. Can be switched. Hereinafter, each of the operation example 1 and the operation example 2 will be described.
 <動作例1>
 本動作例では、制御装置57によって、電動膨張弁70が閉状態(弁開度がゼロの状態)に設定され、かつ、電磁弁74が開状態に設定される(第1の設定の一例)。この場合にタンク36から流出する冷媒の流れは、以下の通りとなる。
<Operation example 1>
In this operation example, the electric expansion valve 70 is set to the closed state (the valve opening is zero) by the control device 57, and the electromagnetic valve 74 is set to the open state (an example of the first setting). . In this case, the refrigerant flowing out of the tank 36 is as follows.
 タンク36からタンク出口配管37に流入した冷媒は、スプリット熱交換器29の第2の流路29Bを通過した後、電動膨張弁70が閉状態であることから分岐配管71を流れずに、電動膨張弁47および電動膨張弁39のそれぞれに流入する。 The refrigerant flowing into the tank outlet pipe 37 from the tank 36 passes through the second flow path 29B of the split heat exchanger 29 and then does not flow through the branch pipe 71 because the electric expansion valve 70 is closed. It flows into each of the expansion valve 47 and the electric expansion valve 39.
 また、タンク36からガス配管42に流入した冷媒は、ガス配管42において分流する。 Further, the refrigerant flowing from the tank 36 into the gas pipe 42 is branched in the gas pipe 42.
 ガス配管42において分流した冷媒のうちの一方は、上述したとおり、電動膨張弁43で絞られた後、中間圧戻り配管44へ流入して電動膨張弁47を経た冷媒と混合し、中間圧戻り配管44から中間圧吸入配管26に流入する。その後、その冷媒は、インタークーラ24からの冷媒と混合し、中間圧吸入配管26から圧縮機11の高段側吸込口19へ吸い込まれる。吸入された冷媒は、第2の回転圧縮要素16により圧縮され、高温高圧のガス冷媒となる。そして、高温高圧となった冷媒は、高段側吐出口21から吐出され、高圧吐出配管27へ流入する。 One of the refrigerants divided in the gas pipe 42 is throttled by the electric expansion valve 43 as described above, and then flows into the intermediate pressure return pipe 44 and mixes with the refrigerant passed through the electric expansion valve 47 to return to the intermediate pressure. It flows into the intermediate pressure suction pipe 26 from the pipe 44. Thereafter, the refrigerant is mixed with the refrigerant from the intercooler 24 and is sucked into the high-stage suction port 19 of the compressor 11 from the intermediate pressure suction pipe 26. The sucked refrigerant is compressed by the second rotary compression element 16 and becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure refrigerant is discharged from the high-stage discharge port 21 and flows into the high-pressure discharge pipe 27.
 ガス配管42において分流した冷媒のうちのもう一方は、バイパス回路73へ流入し、開状態の電磁弁74を通過し、分岐配管71へ流入する。その後、その冷媒は、分岐配管71から補助圧縮機60の吸入口64へ吸い込まれる。そして、制御装置57により補助圧縮機60の電動要素62が駆動されると、回転圧縮要素63が回転する。これにより、吸入された冷媒は、回転圧縮要素63により圧縮され、高温高圧のガス冷媒となる。そして、高温高圧となった冷媒は、吐出口65から配管72を介して高圧吐出配管27に流入し、圧縮機11の高段側吐出口21から吐出された冷媒と混合する。 The other refrigerant separated in the gas pipe 42 flows into the bypass circuit 73, passes through the open electromagnetic valve 74, and flows into the branch pipe 71. Thereafter, the refrigerant is sucked from the branch pipe 71 into the suction port 64 of the auxiliary compressor 60. When the electric element 62 of the auxiliary compressor 60 is driven by the control device 57, the rotary compression element 63 rotates. Thereby, the sucked refrigerant is compressed by the rotary compression element 63 and becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure refrigerant flows into the high-pressure discharge pipe 27 from the discharge port 65 via the pipe 72 and is mixed with the refrigerant discharged from the high-stage discharge port 21 of the compressor 11.
 次に、本動作例により得られる効果について、図2、図3を用いて説明する。 Next, effects obtained by this operation example will be described with reference to FIGS.
 図2は、高温期の環境における補助圧縮機を備えない冷凍装置の動作状態を示すP-H線図である。この冷凍装置は、例えば、図1の構成から補助圧縮機60、電動膨張弁70、分岐配管71、配管72、バイパス回路73、電磁弁74を除き、かつ、中間圧戻り配管44の途中にスプリット熱交換器29の第1の流路29Aが設けられる構成である。一方、図3は、高温期の環境における冷凍装置Rの動作状態を示すP-H線図である。なお、高温期の環境とは、例えば、外気温度が摂氏32度程度の環境(例えば、夏季)である。 FIG. 2 is a PH diagram showing an operating state of a refrigeration apparatus not equipped with an auxiliary compressor in a high temperature environment. For example, the refrigeration apparatus excludes the auxiliary compressor 60, the electric expansion valve 70, the branch pipe 71, the pipe 72, the bypass circuit 73, and the electromagnetic valve 74 from the configuration of FIG. 1 and splits in the middle of the intermediate pressure return pipe 44. The first flow path 29A of the heat exchanger 29 is provided. On the other hand, FIG. 3 is a PH diagram showing an operating state of the refrigeration apparatus R in a high temperature environment. The high temperature environment is, for example, an environment where the outside air temperature is about 32 degrees Celsius (for example, summer).
 図2、図3において、X1からX2に向かう線、X3からX4に向かう線、X5からX6に向かう線、および、X3からX8に向かう線は、それぞれ、電動膨張弁33、電動膨張弁39、電動膨張弁43、および、電動膨張弁47による減圧を示している。また、X5から斜め上方に向かう線は補助圧縮機60による昇圧を示しており、X11から斜め上方に向かう線は圧縮機11による昇圧を示している。 2 and 3, the line from X1 to X2, the line from X3 to X4, the line from X5 to X6, and the line from X3 to X8 are respectively an electric expansion valve 33, an electric expansion valve 39, The decompression by the electric expansion valve 43 and the electric expansion valve 47 is shown. Further, the line diagonally upward from X5 indicates the pressure increase by the auxiliary compressor 60, and the line diagonally upward from X11 indicates the pressure increase by the compressor 11.
 また、図2、図3において、X9は、電動膨張弁43を経た冷媒と電動膨張弁47を経た冷媒とが混合する際の比エンタルピー/圧力を示している。X11は、中間圧吸入配管26を流れる冷媒が圧縮機11の高段側吸込口19に流入する際の比エンタルピー/圧力を示している。なお、図3のX5は、補助圧縮機60の吸込口64に流入する際の比エンタルピー/圧力を示している。 2 and 3, X9 indicates the specific enthalpy / pressure when the refrigerant having passed through the electric expansion valve 43 and the refrigerant having passed through the electric expansion valve 47 are mixed. X11 represents the specific enthalpy / pressure when the refrigerant flowing through the intermediate pressure suction pipe 26 flows into the high-stage suction port 19 of the compressor 11. 3 indicates the specific enthalpy / pressure when flowing into the suction port 64 of the auxiliary compressor 60.
 上述したとおり、同一の回転軸により第1の回転圧縮要素と第2の回転圧縮要素とが駆動される二段圧縮機では、低段側と高段側の排除容積比率が決まっており、その排除容積比率に応じて中間圧が決定される。よって、高段側のみの冷媒の吸込量(排除容積)を増やして中間圧を低下させることはできなかった。 As described above, in the two-stage compressor in which the first rotary compression element and the second rotary compression element are driven by the same rotary shaft, the excluded volume ratio of the low stage side and the high stage side is determined. The intermediate pressure is determined according to the excluded volume ratio. Therefore, it was not possible to increase the refrigerant suction amount (excluded volume) only on the high stage side to lower the intermediate pressure.
 これに対し、本実施形態の冷凍装置Rでは、二段圧縮機である圧縮機11とは別に補助圧縮機60を備え、バイパス回路73の電磁弁74を開状態にすることにより、高段側のみにおいて冷媒の吸込量(排除容積)を増やしている。これにより、圧縮機11における排除容積比率が決まっていても、中間圧を低下させることができる。 On the other hand, in the refrigeration apparatus R according to the present embodiment, the auxiliary compressor 60 is provided separately from the compressor 11 that is a two-stage compressor, and the electromagnetic valve 74 of the bypass circuit 73 is opened, so that the high stage side Only the refrigerant suction amount (excluded volume) is increased. Thereby, even if the excluded volume ratio in the compressor 11 is determined, the intermediate pressure can be reduced.
 そして、図2と図3の比較から明らかなように、中間圧を低下させることにより、タンク36内圧力OP(X3のときの圧力)を低下させることができる。これにより、タンク36の出口の比エンタルピーを低下させることができ、冷凍能力を確保することができる。また、高温期の環境においてタンク36内圧力OPが臨界圧力CPを超えることを防止でき、気液分離を行うことができる。また、所定の高い圧力値(異常な高圧)で圧縮機11を強制的に停止する保護制御(例えば、中圧カット、脱調等)を回避でき、安定した冷凍装置Rの運転を実現できる。 As is clear from the comparison between FIG. 2 and FIG. 3, the pressure OP in the tank 36 (pressure at X3) can be reduced by reducing the intermediate pressure. Thereby, the specific enthalpy at the outlet of the tank 36 can be reduced, and the refrigerating capacity can be ensured. Further, the pressure OP in the tank 36 can be prevented from exceeding the critical pressure CP in a high temperature environment, and gas-liquid separation can be performed. Further, protection control (for example, medium pressure cut, step-out, etc.) forcibly stopping the compressor 11 at a predetermined high pressure value (abnormally high pressure) can be avoided, and stable operation of the refrigeration apparatus R can be realized.
 <動作例2>
 本動作例では、制御装置57によって、電動膨張弁70が開状態(弁開度がゼロより大きい状態)に設定され、かつ、電磁弁74が閉状態に設定される(第2の設定の一例)。この場合にタンク36から流出する冷媒の流れは、以下の通りとなる。
<Operation example 2>
In this operation example, the electric expansion valve 70 is set to an open state (a state in which the valve opening is larger than zero) and the electromagnetic valve 74 is set to a closed state by the control device 57 (an example of a second setting). ). In this case, the refrigerant flowing out of the tank 36 is as follows.
 タンク36からガス配管42に流入した冷媒は、電磁弁74が閉状態であるためバイパス回路73を流れず、電動膨張弁43に流入する。そして、冷媒は、上述したとおり、電動膨張弁43で絞られた後、中間圧戻り配管44へ流入して電動膨張弁47を経た冷媒と混合し、中間圧戻り配管44から中間圧吸入配管26に流入する。その後、その冷媒は、インタークーラ24からの冷媒と混合し、中間圧吸入配管26から圧縮機11の高段側吸込口19へ吸い込まれる。吸入された冷媒は、第2の回転圧縮要素16により圧縮され、高温高圧のガス冷媒となる。そして、高温高圧となった冷媒は、高段側吐出口21から吐出され、高圧吐出配管27へ流入する。 The refrigerant that has flowed into the gas pipe 42 from the tank 36 flows into the electric expansion valve 43 without flowing through the bypass circuit 73 because the electromagnetic valve 74 is closed. Then, as described above, the refrigerant is throttled by the electric expansion valve 43, then flows into the intermediate pressure return pipe 44 and mixes with the refrigerant that has passed through the electric expansion valve 47, and the intermediate pressure suction pipe 26 passes through the intermediate pressure return pipe 44. Flow into. Thereafter, the refrigerant is mixed with the refrigerant from the intercooler 24 and is sucked into the high-stage suction port 19 of the compressor 11 from the intermediate pressure suction pipe 26. The sucked refrigerant is compressed by the second rotary compression element 16 and becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure refrigerant is discharged from the high-stage discharge port 21 and flows into the high-pressure discharge pipe 27.
 また、タンク36からタンク出口配管37に流入した冷媒は、スプリット熱交換器29の第2の流路29Bを通過した後、3つに分流する。 Further, the refrigerant flowing into the tank outlet pipe 37 from the tank 36 passes through the second flow path 29B of the split heat exchanger 29 and then is divided into three.
 第2の流路29Bの通過後に3つに分流した冷媒のうちの1つは、電動膨張弁39に流入する。 One of the refrigerants divided into three after passing through the second flow path 29B flows into the electric expansion valve 39.
 また、第2の流路29Bの通過後に3つに分流した冷媒のうちの1つは、液配管46へ流入し、電動膨張弁47で絞られた後、中間圧戻り配管44へ流入し、電動膨張弁43を経た冷媒と混合する。 Further, one of the refrigerants divided into three after passing through the second flow path 29B flows into the liquid pipe 46, is throttled by the electric expansion valve 47, and then flows into the intermediate pressure return pipe 44, The refrigerant is mixed with the refrigerant that has passed through the electric expansion valve 43.
 また、第2の流路29Bの通過後に分流した冷媒のうちの1つは、電動膨張弁70へ流入し、電動膨張弁70で絞られた後、スプリット熱交換器29の第1の流路29Aに流入し、そこで蒸発する。このときの吸熱作用により、第2の流路29Bを流れる冷媒の過冷却を増大させる。そして、第1の流路29Aを通過した冷媒は、分岐配管71から補助圧縮機60の吸入口64へ吸い込まれる。そして、制御装置57により補助圧縮機60の電動要素62が駆動されると、回転圧縮要素63が回転する。これにより、吸入された冷媒は、回転圧縮要素63により圧縮され、高温高圧のガス冷媒となる。そして、高温高圧となった冷媒は、吐出口65から配管72を介して高圧吐出配管27に流入し、圧縮機11の高段側吐出口21から吐出された冷媒と混合する。 In addition, one of the refrigerants branched after passing through the second flow path 29B flows into the electric expansion valve 70 and is throttled by the electric expansion valve 70, and then the first flow path of the split heat exchanger 29. Flows into 29A where it evaporates. The supercooling of the refrigerant flowing through the second flow path 29B is increased by the endothermic action at this time. Then, the refrigerant that has passed through the first flow path 29 </ b> A is sucked into the suction port 64 of the auxiliary compressor 60 from the branch pipe 71. When the electric element 62 of the auxiliary compressor 60 is driven by the control device 57, the rotary compression element 63 rotates. Thereby, the sucked refrigerant is compressed by the rotary compression element 63 and becomes a high-temperature and high-pressure gas refrigerant. The high-temperature and high-pressure refrigerant flows into the high-pressure discharge pipe 27 from the discharge port 65 via the pipe 72 and is mixed with the refrigerant discharged from the high-stage discharge port 21 of the compressor 11.
 本動作例において、制御装置57は、電動膨張弁70を開状態に制御することにより、スプリット熱交換器29の第1の流路29Aに流す液冷媒の量を調整する。ここで、本動作例における電動膨張弁70の弁開度の制御の例について説明する。 In this operation example, the control device 57 adjusts the amount of liquid refrigerant flowing through the first flow path 29A of the split heat exchanger 29 by controlling the electric expansion valve 70 to be in an open state. Here, the example of control of the valve opening degree of the electric expansion valve 70 in this operation example will be described.
 例えば、制御装置57は、まず、ショーケース4の温度に基づいて、スプリット熱交換器29の第2の流路29Bの出口の温度(以下、出口温度という。例えば、後述する図4のX3における温度)を決定する。次に、制御装置57は、出口温度より低い温度として、スプリット熱交換器29において冷媒を蒸発させる温度(以下、蒸発温度という。例えば、後述する図4のX13における温度)を決定する。そして、制御装置57は、第1の流路29Aの冷媒の温度が蒸発温度になるように電動膨張弁70の弁開度を設定する。 For example, the control device 57 first determines the temperature of the outlet of the second flow path 29B of the split heat exchanger 29 (hereinafter referred to as outlet temperature based on the temperature of the showcase 4; for example, at X3 in FIG. Temperature). Next, the control device 57 determines a temperature at which the refrigerant is evaporated in the split heat exchanger 29 (hereinafter referred to as an evaporation temperature; for example, a temperature at X13 in FIG. 4 described later) as a temperature lower than the outlet temperature. And the control apparatus 57 sets the valve opening degree of the electric expansion valve 70 so that the temperature of the refrigerant | coolant of the 1st flow path 29A may become evaporation temperature.
 次に、本動作例により得られる効果について、図4を用いて説明する。 Next, the effect obtained by this operation example will be described with reference to FIG.
 図4は、高温期の環境における冷凍装置Rの動作状態を示すP-H線図である。高温期の環境とは、例えば、外気温度が摂氏32度程度の環境(例えば、夏季)である。 FIG. 4 is a PH diagram showing an operating state of the refrigeration apparatus R in a high temperature environment. The high temperature environment is, for example, an environment where the outside air temperature is about 32 degrees Celsius (for example, summer).
 図4において、図2、図3と同一の要素については、同一符号を付している。X3からX13に向かう線は、電動膨張弁70による減圧を示している。点線L1は、電動膨張弁70にて絞られた冷媒が電動膨張弁70から流出し、補助圧縮機60による圧縮を経て高圧吐出配管27へ流入するまでの比エンタルピー/圧力を示している。 4, the same elements as those in FIGS. 2 and 3 are denoted by the same reference numerals. A line from X3 to X13 indicates pressure reduction by the electric expansion valve 70. The dotted line L1 indicates the specific enthalpy / pressure until the refrigerant throttled by the electric expansion valve 70 flows out of the electric expansion valve 70, flows through the compression by the auxiliary compressor 60, and flows into the high-pressure discharge pipe 27.
 図3と図4に示すX2からX3に向かう線から明らかなように、本動作例では、過冷却度をより多く確保することができるので、冷凍能力を確保することができる。ただし、本動作例では、中間圧が圧縮機11の排除容積比で固定されるため、例えば、外気温が高温であったり、ショーケース4の冷却条件が中温帯に設定されたりする場合に中間圧が上昇すると、保護制御(例えば、中圧カット、脱調等)が必要となる。 As is clear from the lines from X2 to X3 shown in FIGS. 3 and 4, in this operation example, a greater degree of supercooling can be ensured, so that the refrigerating capacity can be ensured. However, in this operation example, since the intermediate pressure is fixed at the excluded volume ratio of the compressor 11, for example, when the outside air temperature is high or the cooling condition of the showcase 4 is set to the middle temperature range, the intermediate pressure is intermediate. When the pressure rises, protection control (for example, medium pressure cut, step out, etc.) becomes necessary.
 (3-2)動作例1と動作例2の切替制御
 例えば、制御装置57は、ユーザにより行われる操作(動作例1と動作例2のいずれを実行するかを指示する操作)に応じて、動作例1または動作例2のいずれかを実行するように制御してもよい。
(3-2) Switching control between operation example 1 and operation example 2 For example, the control device 57 responds to an operation performed by the user (an operation to instruct which operation example 1 or operation example 2 is executed). You may control to perform either the operation example 1 or the operation example 2.
 または、例えば、制御装置57は、通常は動作例2を実行するように制御し、中間圧センサ52より検出された中間圧MPが予め設定された閾値よりも高くなった場合、動作例2から動作例1へ切り替えるように制御してもよい。これにより、保護制御を行うことなく、中間圧を低下させることができる。 Or, for example, the control device 57 normally controls to execute the operation example 2, and when the intermediate pressure MP detected by the intermediate pressure sensor 52 becomes higher than a preset threshold value, the operation example 2 You may control to switch to the operation example 1. Thereby, an intermediate pressure can be reduced, without performing protection control.
 なお、制御装置57は、外気温度やショーケース4の冷却条件等に応じて、動作例1と動作例2の切り替えを行うようにしてもよい。 Note that the control device 57 may switch between the operation example 1 and the operation example 2 in accordance with the outside air temperature, the cooling condition of the showcase 4, and the like.
 以上、動作例1および動作例2について説明した。なお、本実施形態の冷凍装置Rは、上述した動作例1により得られる効果および動作例2により得られる効果のほか、以下の効果を得ることができる。 The operation example 1 and the operation example 2 have been described above. The refrigerating apparatus R of the present embodiment can obtain the following effects in addition to the effects obtained by the operation example 1 and the operation example 2 described above.
 本実施形態の冷凍装置Rでは、ショーケース4に送る冷媒の圧力を低下させているため、配管の設計圧力を低くでき、肉厚の薄い管を使うことが可能となる。 In the refrigeration apparatus R of the present embodiment, since the pressure of the refrigerant sent to the showcase 4 is reduced, the design pressure of the piping can be lowered and a thin-walled tube can be used.
 また、本実施形態の冷凍装置Rでは、タンク36に液冷媒を保持し、その量を連続的に変えられるため、冷凍回路1を循環する冷媒の量を安定して適正量に維持できる。 Further, in the refrigeration apparatus R of the present embodiment, the liquid refrigerant is held in the tank 36 and the amount thereof can be continuously changed. Therefore, the amount of refrigerant circulating in the refrigeration circuit 1 can be stably maintained at an appropriate amount.
 また、本実施形態の冷凍装置Rでは、エコノマイザとして機能するタンク36、電動膨張弁43、47、スプリット熱交換器29を備えることにより、必要な過冷却度を確保することができる。 Moreover, in the refrigeration apparatus R of the present embodiment, the necessary supercooling degree can be ensured by including the tank 36, the electric expansion valves 43 and 47, and the split heat exchanger 29 that function as an economizer.
 本実施形態では、図1に示した冷凍装置Rの構成について説明をしたが、冷凍装置Rの構成は図1に示すものに限定されない。以下、冷凍装置Rの別の構成例について説明する。 In the present embodiment, the configuration of the refrigeration apparatus R illustrated in FIG. 1 has been described, but the configuration of the refrigeration apparatus R is not limited to that illustrated in FIG. Hereinafter, another configuration example of the refrigeration apparatus R will be described.
 (4)冷凍装置Rの別の構成例1
 図5は、図1とは別の構成を有する冷凍装置Rの冷媒回路図である。なお、図5において、図1と同一の構成要素には同一の符号を付し、以下、それらの説明は省略する。
(4) Another configuration example 1 of the refrigeration apparatus R
FIG. 5 is a refrigerant circuit diagram of a refrigeration apparatus R having a configuration different from that of FIG. In FIG. 5, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted below.
 図5に示す冷凍装置Rは、図1に示したバイパス回路73において、電磁弁74の代わりに、電動膨張弁75を備える。 5 includes an electric expansion valve 75 in place of the electromagnetic valve 74 in the bypass circuit 73 shown in FIG.
 本動作例において、制御装置57は、電動膨張弁70および電動膨張弁75を開状態(弁開度がゼロより大きい状態)に設定する(第3の設定の一例)。 In this operation example, the control device 57 sets the electric expansion valve 70 and the electric expansion valve 75 to an open state (a state where the valve opening is larger than zero) (an example of a third setting).
 電動膨張弁70の弁開度は、例えば、以下のように設定される。まず、制御装置57は、ショーケース4の温度に基づいて、スプリット熱交換器29の第2の流路29Bの出口温度(例えば、後述する図6のX3における温度)を決定する。次に、制御装置57は、出口温度より低い温度として、スプリット熱交換器29において冷媒を蒸発させる蒸発温度(例えば、後述する図6のX15における温度)を決定する。そして、制御装置57は、第1の流路29Aの冷媒の温度が蒸発温度になるように電動膨張弁70の弁開度を設定する。 The valve opening degree of the electric expansion valve 70 is set as follows, for example. First, the control device 57 determines the outlet temperature of the second flow path 29B of the split heat exchanger 29 (for example, the temperature at X3 in FIG. 6 described later) based on the temperature of the showcase 4. Next, the control device 57 determines an evaporation temperature at which the refrigerant is evaporated in the split heat exchanger 29 (for example, a temperature at X15 in FIG. 6 described later) as a temperature lower than the outlet temperature. And the control apparatus 57 sets the valve opening degree of the electric expansion valve 70 so that the temperature of the refrigerant | coolant of the 1st flow path 29A may become evaporation temperature.
 電動膨張弁75の弁開度は、例えば、以下のように設定される。制御装置57は、中間圧センサ52により検出される中間圧および補助圧縮機60から吐出される冷媒の温度(以下、吐出冷媒温度という。図示しないセンサにより検出される)に基づいて、電動膨張弁75の弁開度を設定する。例えば、制御装置57は、検出された中間圧が目標値よりも高く、かつ、検出された吐出冷媒温度が目標値よりも低い場合、電動膨張弁75を閉状態に制御する。 The valve opening degree of the electric expansion valve 75 is set as follows, for example. The control device 57 is based on the intermediate pressure detected by the intermediate pressure sensor 52 and the temperature of the refrigerant discharged from the auxiliary compressor 60 (hereinafter referred to as a discharge refrigerant temperature; detected by a sensor not shown). A valve opening of 75 is set. For example, when the detected intermediate pressure is higher than the target value and the detected discharged refrigerant temperature is lower than the target value, the control device 57 controls the electric expansion valve 75 to be closed.
 次に、本構成例の動作により得られる効果について、図6を用いて説明する。 Next, the effect obtained by the operation of this configuration example will be described with reference to FIG.
 図6は、高温期の環境における冷凍装置Rの動作状態を示すP-H線図である。高温期の環境とは、例えば、外気温度が摂氏32度程度の環境(例えば、夏季)である。 FIG. 6 is a PH diagram showing an operating state of the refrigeration apparatus R in a high temperature environment. The high temperature environment is, for example, an environment where the outside air temperature is about 32 degrees Celsius (for example, summer).
 図6において、図2、図3と同一の要素については、同一符号を付している。X3からX15に向かう線は、電動膨張弁70による減圧を示している。点線L2は、電動膨張弁70にて絞られた冷媒が電動膨張弁70から流出し、補助圧縮機60による圧縮を経て高圧吐出配管27へ流入するまでの比エンタルピー/圧力を示している。 6, the same elements as those in FIGS. 2 and 3 are denoted by the same reference numerals. A line from X3 to X15 indicates pressure reduction by the electric expansion valve 70. A dotted line L2 indicates a specific enthalpy / pressure until the refrigerant throttled by the electric expansion valve 70 flows out of the electric expansion valve 70, flows through the compression by the auxiliary compressor 60, and flows into the high-pressure discharge pipe 27.
 図3(動作例1)と図6を比較すると明らかなように、本構成例の動作では、動作例1に比べて、中間圧は高くなるが、過冷却度を確保できる。また、図4(動作例2)と図6を比較すると明らかなように、本構成例の動作では、動作例2に比べて、過冷却度は確保できないが、中間圧を低くできる。 As is clear from a comparison between FIG. 3 (Operation Example 1) and FIG. 6, in the operation of this configuration example, the intermediate pressure is higher than that in Operation Example 1, but the degree of supercooling can be ensured. Further, as apparent from a comparison between FIG. 4 (Operation Example 2) and FIG. 6, the operation of this configuration example cannot secure the degree of supercooling, but can reduce the intermediate pressure, compared to Operation Example 2.
 (5)冷凍装置Rの別の構成例2
 図7は、図1とは別の構成を有する冷凍装置Rの冷媒回路図である。なお、図7において、図1と同一の構成要素には同一の符号を付し、以下、それらの説明は省略する。
(5) Another configuration example 2 of the refrigeration apparatus R
FIG. 7 is a refrigerant circuit diagram of a refrigeration apparatus R having a configuration different from that of FIG. In FIG. 7, the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted below.
 図7に示す冷凍装置Rは、図1に示した構成に加えて、バイパス回路82および電磁弁81を備える。バイパス回路82の一端は冷媒導入配管22に接続され、バイパス回路82の他端は補助圧縮機60の吸込口64に接続されている。 The refrigeration apparatus R shown in FIG. 7 includes a bypass circuit 82 and a solenoid valve 81 in addition to the configuration shown in FIG. One end of the bypass circuit 82 is connected to the refrigerant introduction pipe 22, and the other end of the bypass circuit 82 is connected to the suction port 64 of the auxiliary compressor 60.
 また、このバイパス回路82の途中には、電磁弁81が設けられている。電磁弁81の開閉は、制御装置57により制御される。例えば、制御装置57は、外気温度(高圧側圧力HP)と電磁弁81の開閉との関係を示すデータテーブルを予め記憶しており、外気温度を推定し、上記データテーブルを参照して、電磁弁81の開閉を設定する。なお、電磁弁81の代わりに、逆止弁を設けてもよい。 Further, an electromagnetic valve 81 is provided in the middle of the bypass circuit 82. Opening and closing of the electromagnetic valve 81 is controlled by the control device 57. For example, the control device 57 stores in advance a data table indicating the relationship between the outside air temperature (high pressure side pressure HP) and the opening and closing of the electromagnetic valve 81, estimates the outside air temperature, and refers to the data table to Open / close of the valve 81 is set. A check valve may be provided instead of the solenoid valve 81.
 例えば、制御装置57は、外気温度が摂氏32度程度の場合(高温期の環境。例えば、夏季)、電磁弁81を閉状態にするとともに、圧縮機11および補助圧縮機60を駆動させる。これにより、上述した動作例1または動作例2で説明したとおり、冷媒が循環する。 For example, when the outside air temperature is about 32 degrees Celsius (high temperature environment, for example, summer), the control device 57 closes the solenoid valve 81 and drives the compressor 11 and the auxiliary compressor 60. Thereby, the refrigerant circulates as described in the operation example 1 or the operation example 2 described above.
 一方、例えば、制御装置57は、外気温度が摂氏20度以下の場合(低温期の環境。例えば、冬季)、電磁弁81を開状態にするとともに、圧縮機11を駆動させず、補助圧縮機60を駆動させる。また、制御装置57は、電動膨張弁33の弁開度を最も大きくし、かつ、電動膨張弁43、電動膨張弁47、電動膨張弁70を閉める。 On the other hand, for example, when the outside air temperature is 20 degrees Celsius or less (environment in a low temperature period, for example, in winter), the control device 57 opens the solenoid valve 81 and does not drive the compressor 11, and the auxiliary compressor 60 is driven. In addition, the control device 57 maximizes the valve opening degree of the electric expansion valve 33 and closes the electric expansion valve 43, the electric expansion valve 47, and the electric expansion valve 70.
 これにより、蒸発器41を出た冷媒は、バイパス回路82へ流入し、補助圧縮機60の吸込口64へ吸い込まれる。そして、補助圧縮機60にて圧縮された冷媒は、吐出口65から高圧吐出配管27へ吐出される。その後、冷媒は、ガスクーラ28、電動膨張弁33、タンク36、タンク出口配管37、スプリット熱交換器29の第2の流路29B、電動膨張弁39、蒸発器41の順に流れ、再びバイパス回路82へと流入する。 Thereby, the refrigerant exiting the evaporator 41 flows into the bypass circuit 82 and is sucked into the suction port 64 of the auxiliary compressor 60. Then, the refrigerant compressed by the auxiliary compressor 60 is discharged from the discharge port 65 to the high pressure discharge pipe 27. Thereafter, the refrigerant flows in the order of the gas cooler 28, the electric expansion valve 33, the tank 36, the tank outlet pipe 37, the second flow path 29B of the split heat exchanger 29, the electric expansion valve 39, and the evaporator 41, and again the bypass circuit 82. Flows into.
 冷媒がバイパス回路82を流れる場合のP-H線図を図8に示す。図8に示す各符号は、図2、図3と同様である。図8に示すように、冷媒の圧縮は、補助圧縮機60による1段のみとなる。 FIG. 8 shows a PH diagram when the refrigerant flows through the bypass circuit 82. 8 are the same as those in FIGS. 2 and 3. As shown in FIG. 8, the refrigerant is compressed only in one stage by the auxiliary compressor 60.
 以上説明したように、本構成例によれば、冷却負荷が減少する環境(低温期)の場合、二段圧縮機である圧縮機11を使用せず、補助圧縮機60のみを使用するため、消費エネルギを低減できる。 As described above, according to the present configuration example, in the environment where the cooling load is reduced (low temperature period), the compressor 11 that is the two-stage compressor is not used, and only the auxiliary compressor 60 is used. Energy consumption can be reduced.
 なお、上記バイパス回路82と電磁弁81(または逆止弁)は、図5に示す構成に追加されてもよい。 The bypass circuit 82 and the electromagnetic valve 81 (or check valve) may be added to the configuration shown in FIG.
 (6)冷凍装置Rの別の構成例3
 図9は、図1とは別の構成を有する冷凍装置Rの冷媒回路図である。なお、図9は、図1の図示を簡略化したものであり、図1と同一の構成要素には同一の符号を付し、以下、それらの説明は省略する。
(6) Another configuration example 3 of the refrigeration apparatus R
FIG. 9 is a refrigerant circuit diagram of a refrigeration apparatus R having a configuration different from that of FIG. Note that FIG. 9 is a simplified illustration of FIG. 1, and the same components as those in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted below.
 図9に示す冷凍装置Rは、図1に示した構成に加えて、圧縮機11aを備える。圧縮機11aは、圧縮機11と並列に設けられた二段圧縮機であり、圧縮機11と同様の構成を備える。 The refrigerating apparatus R shown in FIG. 9 includes a compressor 11a in addition to the configuration shown in FIG. The compressor 11 a is a two-stage compressor provided in parallel with the compressor 11 and has the same configuration as the compressor 11.
 図9に示す冷凍装置Rでは、蒸発器41からの冷媒は、圧縮機11と圧縮機11aのそれぞれに吸い込まれる。また、インタークーラ24からの冷媒と中間圧戻り配管44からの冷媒が混合した冷媒は、圧縮機11、圧縮機11aのそれぞれに吸い込まれる。 In the refrigeration apparatus R shown in FIG. 9, the refrigerant from the evaporator 41 is sucked into each of the compressor 11 and the compressor 11a. The refrigerant in which the refrigerant from the intercooler 24 and the refrigerant from the intermediate pressure return pipe 44 are mixed is sucked into the compressor 11 and the compressor 11a.
 なお、図9では、電動膨張弁39、ショーケース4、および蒸発器41のそれぞれを1つずつ設ける構成としたが、電動膨張弁39、ショーケース4、および蒸発器41のそれぞれを複数設ける構成としてもよい。例えば、1つの電動膨張弁39、1つのショーケース4、および1つの蒸発器41を一組とし、その組を並列に設ける構成にする。 In FIG. 9, the electric expansion valve 39, the showcase 4, and the evaporator 41 are provided one by one. However, the electric expansion valve 39, the showcase 4, and the evaporator 41 are provided in a plurality. It is good. For example, one electric expansion valve 39, one showcase 4, and one evaporator 41 are set as one set, and the set is provided in parallel.
 なお、上記圧縮機11aは、図5に示す構成に追加されてもよい。 The compressor 11a may be added to the configuration shown in FIG.
 (7)冷凍装置Rの別の構成例4
 図1、図5、図7、図9に示した構成では、補助圧縮機60を1つだけ設ける構成としたが、補助圧縮機60を複数設けてもよい。その場合、分岐配管71からの冷媒は、複数の補助圧縮機60のそれぞれに吸い込まれる。
(7) Another configuration example 4 of the refrigeration apparatus R
In the configuration shown in FIGS. 1, 5, 7, and 9, only one auxiliary compressor 60 is provided. However, a plurality of auxiliary compressors 60 may be provided. In that case, the refrigerant from the branch pipe 71 is sucked into each of the plurality of auxiliary compressors 60.
 以上説明したように、本実施形態では、同一の回転軸により駆動される第1の回転圧縮要素14と第2の回転圧縮要素16を有する圧縮機11(圧縮手段)と、ガスクーラ28と、電動膨張弁(主絞り手段)39と、蒸発器41とから冷媒回路1が構成され、二酸化炭素冷媒が用いられる冷凍装置Rにおいて、圧縮機11とは別に設けられた補助圧縮機60(補助圧縮手段)と、ガスクーラ28の下流側であって、電動膨張弁39の上流側の冷媒回路1に接続され、ガスクーラ28から流出した冷媒の圧力を調整する電動膨張弁33(圧力調整用絞り手段)と、電動膨張弁33の下流側であって、電動膨張弁39の上流側の冷媒回路1に接続されたタンク36と、タンク36の下流側であって、電動膨張弁39の上流側の冷媒回路1に設けられ、第1の流路29Aと第2の流路29Bを有するスプリット熱交換器29と、タンク36の第1の高さに設けられたガス配管42(第1の配管)から流出した冷媒の圧力を調整する電動膨張弁43(第1の補助絞り手段)と、第1の高さよりも低い位置に設けられたタンク出口配管37(第2の配管)から流出し、スプリット熱交換器29の第2の流路29Bを通過した後、第2の流路29Bの下流側で分流した冷媒のうちの第1の冷媒の圧力を調整する電動膨張弁47(第2の補助絞り手段)と、タンク出口配管37から流出し、スプリット熱交換器29の第2の流路29Bを通過した後、第2の流路29Bの下流側で分流した冷媒のうちの第2の冷媒の圧力を調整する電動膨張弁70(第3の補助絞り手段)と、電動膨張弁70およびスプリット熱交換器29の第1の流路29Aを経た冷媒を補助圧縮機60に吸入させる補助回路48と、電磁弁74または電動膨張弁75(開閉弁)が設けられ、ガス配管42から流出した冷媒を補助回路48におけるスプリット熱交換器29の第1の流路29Aの下流側へ流入させるバイパス回路73(第1のバイパス回路)と、電動膨張弁43により圧力が調整された冷媒と電動膨張弁47により圧力が調整された冷媒とが混合した冷媒を圧縮機11の中間圧部に吸い込ませる戻し回路80と、タンク36から流出した冷媒をスプリット熱交換器29の第2の流路29Bに流し、スプリット熱交換器29の第1の流路29Aを流れる冷媒と熱交換させた後、第2の流路29Bの下流側で分流した冷媒のうちの冷媒を電動膨張弁39に流入させる主回路38と、圧縮機11、補助圧縮機60、電動膨張弁39、電動膨張弁33、電動膨張弁43、電動膨張弁47、電動膨張弁70、および、電磁弁74または電動膨張75の動作を制御する制御装置57(制御手段)と、を備えることとした。 As described above, in this embodiment, the compressor 11 (compression means) having the first rotary compression element 14 and the second rotary compression element 16 driven by the same rotary shaft, the gas cooler 28, and the electric motor In the refrigeration apparatus R in which the refrigerant circuit 1 is configured by the expansion valve (main throttle means) 39 and the evaporator 41 and carbon dioxide refrigerant is used, an auxiliary compressor 60 (auxiliary compression means) provided separately from the compressor 11. And an electric expansion valve 33 (pressure adjusting throttle means) which is connected to the refrigerant circuit 1 downstream of the gas cooler 28 and upstream of the electric expansion valve 39 and adjusts the pressure of the refrigerant flowing out of the gas cooler 28; The tank 36 connected to the refrigerant circuit 1 downstream of the electric expansion valve 33 and upstream of the electric expansion valve 39, and the refrigerant circuit downstream of the tank 36 and upstream of the electric expansion valve 39 Set in 1 The split heat exchanger 29 having the first flow path 29A and the second flow path 29B, and the refrigerant flowing out of the gas pipe 42 (first pipe) provided at the first height of the tank 36 The electric expansion valve 43 (first auxiliary throttle means) for adjusting the pressure and the tank outlet pipe 37 (second pipe) provided at a position lower than the first height flow out of the split heat exchanger 29. An electric expansion valve 47 (second auxiliary throttle means) that adjusts the pressure of the first refrigerant of the refrigerant that has passed through the second flow path 29B and then diverted downstream of the second flow path 29B; After flowing out from the tank outlet pipe 37 and passing through the second flow path 29B of the split heat exchanger 29, the pressure of the second refrigerant out of the refrigerant divided on the downstream side of the second flow path 29B is adjusted. Electric expansion valve 70 (third auxiliary throttle means), electric expansion valve 70 and An auxiliary circuit 48 for sucking the refrigerant that has passed through the first flow path 29A of the split heat exchanger 29 into the auxiliary compressor 60 and an electromagnetic valve 74 or an electric expansion valve 75 (open / close valve) are provided and flowed out from the gas pipe 42. A bypass circuit 73 (first bypass circuit) for allowing the refrigerant to flow into the downstream side of the first flow path 29A of the split heat exchanger 29 in the auxiliary circuit 48, a refrigerant whose pressure is adjusted by the electric expansion valve 43, and electric expansion The return circuit 80 for sucking the refrigerant mixed with the refrigerant whose pressure is adjusted by the valve 47 into the intermediate pressure portion of the compressor 11, and the refrigerant flowing out of the tank 36 into the second flow path 29 </ b> B of the split heat exchanger 29. The refrigerant flows out and exchanges heat with the refrigerant flowing through the first flow path 29A of the split heat exchanger 29, and then the refrigerant out of the refrigerant divided downstream of the second flow path 29B flows into the electric expansion valve 39. The main circuit 38, the compressor 11, the auxiliary compressor 60, the electric expansion valve 39, the electric expansion valve 33, the electric expansion valve 43, the electric expansion valve 47, the electric expansion valve 70, and the electromagnetic valve 74 or the electric expansion 75. And a control device 57 (control means) for controlling the operation.
 これにより、二酸化炭素冷媒を使用する場合において、中間圧部における冷媒の吸込量(排除容積)を増加させることができ、圧縮機11における排除容積比率が決まっていても、中間圧を低下させることができる。その結果、タンク36の出口の比エンタルピーを低下させることができ、冷凍能力を確保することができる。 Thereby, in the case of using a carbon dioxide refrigerant, the refrigerant suction amount (exclusion volume) in the intermediate pressure part can be increased, and the intermediate pressure can be reduced even if the excluded volume ratio in the compressor 11 is determined. Can do. As a result, the specific enthalpy at the outlet of the tank 36 can be reduced, and the refrigerating capacity can be ensured.
 また、制御装置57は、電動膨張弁70を閉状態にし、かつ、電磁弁74を開状態にする第1の設定と、電動膨張弁70を開状態し、かつ、電磁弁74を閉状態にする第2の設定とを切り替えるようにした。 In addition, the control device 57 closes the electric expansion valve 70 and opens the electromagnetic valve 74, opens the electric expansion valve 70, and closes the electromagnetic valve 74. The second setting is switched.
 また、制御装置57は、電動膨張弁70を開状態にし、かつ、電動膨張弁75を開状態にする第3の設定を行うようにした。 Also, the control device 57 performs the third setting for opening the electric expansion valve 70 and opening the electric expansion valve 75.
 また、冷凍装置Rは、補助圧縮機60と、蒸発器41の下流側かつ圧縮機11の上流側に設けられた冷媒導入配管22とを接続するバイパス回路82(第2のバイパス回路)をさらに備え、バイパス回路82には、逆止弁、または、制御装置57により開閉が制御される電磁弁81が設けられることとした。 The refrigeration apparatus R further includes a bypass circuit 82 (second bypass circuit) that connects the auxiliary compressor 60 and the refrigerant introduction pipe 22 provided on the downstream side of the evaporator 41 and the upstream side of the compressor 11. In addition, the bypass circuit 82 is provided with a check valve or an electromagnetic valve 81 whose opening and closing is controlled by the control device 57.
 これにより、冷却負荷が減少する環境(低温期)の場合、消費エネルギを低減できる。 This makes it possible to reduce energy consumption in an environment where the cooling load is reduced (low temperature period).
 また、冷凍装置Rは、補助圧縮機60の回転数は可変であることとした。 In the refrigeration apparatus R, the rotation speed of the auxiliary compressor 60 is variable.
 また、冷凍装置Rは、複数の補助圧縮機60を備え、複数の補助圧縮機60には、補助回路48を流れた冷媒が吸い込まれることとした。 Further, the refrigeration apparatus R includes a plurality of auxiliary compressors 60, and the refrigerant flowing through the auxiliary circuit 48 is sucked into the plurality of auxiliary compressors 60.
 また、冷凍装置Rは、互いに並列に設けられた複数の圧縮機11、11aを備え、複数の圧縮機11、11aの中間圧部には、電動膨張弁43により圧力が調整された冷媒と電動膨張弁47により圧力が調整された冷媒とが混合した冷媒が吸い込まれることとした。 The refrigeration apparatus R includes a plurality of compressors 11 and 11a provided in parallel with each other, and an intermediate pressure portion of the plurality of compressors 11 and 11a is electrically operated with a refrigerant whose pressure is adjusted by an electric expansion valve 43. The refrigerant mixed with the refrigerant whose pressure is adjusted by the expansion valve 47 is sucked.
 以上本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.
 2016年2月8日出願の特願2016-022124の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。 The disclosure of the description, drawings and abstract contained in the Japanese application of Japanese Patent Application No. 2016-022124 filed on Feb. 8, 2016 is incorporated herein by reference.
 本発明は、圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成される冷凍装置に用いるのに好適である。 The present invention is suitable for use in a refrigeration apparatus in which a refrigerant circuit is constituted by a compression means, a gas cooler, a main throttle means, and an evaporator.
 R 冷凍装置
 1 冷媒回路
 3 冷凍機ユニット
 4 ショーケース
 6 ユニット出口
 7 ユニット入口
 8、9 冷媒配管
 11、11a 圧縮機
 12、61 密閉容器
 13、62 電動要素
 14 第1の回転圧縮要素
 16 第2の回転圧縮要素
 17 低段側吸込口
 18 低段側吐出口
 19 高段側吸込口
 21 高段側吐出口
 22 冷媒導入配管
 23 中間圧吐出配管
 24 インタークーラ
 26 中間圧吸入配管
 27 高圧吐出配管
 28 ガスクーラ
 29 スプリット熱交換器
 29A 第1の流路
 29B 第2の流路
 31 ガスクーラ用送風機
 32 ガスクーラ出口配管
 33 電動膨張弁(圧力調整用絞り手段)
 34 タンク入口配管
 36 タンク
 37 タンク出口配管(第3の配管)
 38 主回路
 39 電動膨張弁(主絞り手段)
 41 蒸発器
 42 ガス配管(第1の配管)
 43 電動膨張弁(第1の補助回路用絞り手段)
 44 中間圧戻り配管
 46 液配管(第2の配管)
 47 電動膨張弁(第2の補助回路用絞り手段)
 48 補助回路
 49 高圧センサ
 51 低圧センサ
 52 中間圧センサ
 53 ユニット出口センサ
 57 制御装置(制御手段)
 60 補助圧縮機
 63 回転圧縮要素
 64 吸込口
 65 吐出口
 70 電動膨張弁(第3の補助回路用絞り手段)
 71 分岐配管(第4の配管)
 72 配管
 73 バイパス回路(第1のバイパス回路)
 74、81 電磁弁
 75 電動膨張弁
 82 バイパス回路(第2のバイパス回路)
R Refrigeration apparatus 1 Refrigerant circuit 3 Refrigerator unit 4 Showcase 6 Unit outlet 7 Unit inlet 8, 9 Refrigerant piping 11, 11a Compressor 12, 61 Sealed container 13, 62 Electric element 14 First rotary compression element 16 Second Rotational compression element 17 Low stage side suction port 18 Low stage side discharge port 19 High stage side suction port 21 High stage side discharge port 22 Refrigerant introduction pipe 23 Intermediate pressure discharge pipe 24 Intercooler 26 Intermediate pressure suction pipe 27 High pressure discharge pipe 28 Gas cooler 29 Split heat exchanger 29A 1st flow path 29B 2nd flow path 31 Gas cooler blower 32 Gas cooler outlet piping 33 Electric expansion valve (throttle means for pressure adjustment)
34 Tank inlet piping 36 Tank 37 Tank outlet piping (third piping)
38 Main circuit 39 Electric expansion valve (Main throttle means)
41 Evaporator 42 Gas piping (first piping)
43 Electric expansion valve (first auxiliary circuit throttle means)
44 Intermediate pressure return piping 46 Liquid piping (second piping)
47 Electric expansion valve (second auxiliary circuit throttle means)
48 Auxiliary circuit 49 High pressure sensor 51 Low pressure sensor 52 Intermediate pressure sensor 53 Unit outlet sensor 57 Control device (control means)
60 Auxiliary compressor 63 Rotational compression element 64 Suction port 65 Discharge port 70 Electric expansion valve (third auxiliary circuit throttle means)
71 Branch piping (fourth piping)
72 Piping 73 Bypass circuit (first bypass circuit)
74, 81 Solenoid valve 75 Electric expansion valve 82 Bypass circuit (second bypass circuit)

Claims (7)

  1.  同一の回転軸により駆動される第1の回転圧縮要素と第2の回転圧縮要素を有する圧縮手段と、ガスクーラと、主絞り手段と、蒸発器とから冷媒回路が構成され、二酸化炭素冷媒が用いられる冷凍装置において、
     前記圧縮手段とは別に設けられた補助圧縮手段と、
     前記ガスクーラの下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続され、前記ガスクーラから流出した冷媒の圧力を調整する圧力調整用絞り手段と、
     前記圧力調整用絞り手段の下流側であって、前記主絞り手段の上流側の前記冷媒回路に接続されたタンクと、
     前記タンクの下流側であって、前記主絞り手段の上流側の前記冷媒回路に設けられ、第1の流路と第2の流路を有するスプリット熱交換器と、
     前記タンクの第1の高さに設けられた第1の配管から流出した冷媒の圧力を調整する第1の補助絞り手段と、
     前記第1の高さよりも低い位置に設けられた第2の配管から流出し、前記スプリット熱交換器の前記第2の流路を通過した後、前記第2の流路の下流側で分流した冷媒のうちの第1の冷媒の圧力を調整する第2の補助絞り手段と、
     前記第2の配管から流出し、前記スプリット熱交換器の前記第2の流路を通過した後、前記第2の流路の下流側で分流した冷媒のうちの第2の冷媒の圧力を調整する第3の補助絞り手段と、
     前記第3の補助絞り手段および前記スプリット熱交換器の前記第1の流路を経た冷媒を前記補助圧縮手段に吸い込ませる補助回路と、
     開閉弁が設けられ、前記第1の配管から流出した冷媒を前記補助回路における前記スプリット熱交換器の前記第1の流路の下流側へ流入させる第1のバイパス回路と、
     前記第1の補助絞り手段により圧力が調整された冷媒と前記第2の補助絞り手段により圧力が調整された冷媒とが混合した冷媒を前記圧縮手段の中間圧部に吸い込ませる戻し回路と、
     前記タンクから流出した冷媒を前記スプリット熱交換器の前記第2の流路に流し、前記スプリット熱交換器の前記第1の流路を流れる冷媒と熱交換させた後、前記第2の流路の下流側で分流した冷媒のうちの第3の冷媒を前記主絞り手段に流入させる主回路と、
     前記圧縮手段、前記補助圧縮手段、前記主絞り手段、前記圧力調整用絞り手段、前記第1の補助絞り手段、前記第2の補助絞り手段、前記第3の補助絞り手段、および、前記開閉弁の動作を制御する制御手段と、を備える、
     冷凍装置。
    A refrigerant circuit is constituted by a compression means having a first rotary compression element and a second rotary compression element driven by the same rotary shaft, a gas cooler, a main throttle means, and an evaporator, and carbon dioxide refrigerant is used. In the refrigeration apparatus
    Auxiliary compression means provided separately from the compression means;
    A pressure adjusting throttle means which is connected to the refrigerant circuit downstream of the gas cooler and upstream of the main throttle means and adjusts the pressure of the refrigerant flowing out of the gas cooler;
    A tank connected to the refrigerant circuit downstream of the pressure adjusting throttle means and upstream of the main throttle means;
    A split heat exchanger provided in the refrigerant circuit downstream of the tank and upstream of the main throttle means, and having a first flow path and a second flow path;
    First auxiliary throttle means for adjusting the pressure of the refrigerant flowing out from the first pipe provided at the first height of the tank;
    After flowing out of the second pipe provided at a position lower than the first height, passing through the second flow path of the split heat exchanger, it was divided on the downstream side of the second flow path. Second auxiliary throttle means for adjusting the pressure of the first refrigerant of the refrigerant;
    The pressure of the second refrigerant out of the refrigerant that flows out from the second pipe, passes through the second flow path of the split heat exchanger, and is divided downstream of the second flow path is adjusted. Third auxiliary throttle means for
    An auxiliary circuit that causes the auxiliary compression means to suck the refrigerant that has passed through the first flow path of the third auxiliary throttle means and the split heat exchanger;
    A first bypass circuit that is provided with an on-off valve, and causes the refrigerant that has flowed out of the first pipe to flow into the downstream side of the first flow path of the split heat exchanger in the auxiliary circuit;
    A return circuit for sucking into the intermediate pressure part of the compression means a refrigerant in which the refrigerant whose pressure is adjusted by the first auxiliary throttle means and the refrigerant whose pressure is adjusted by the second auxiliary throttle means;
    The refrigerant that has flowed out of the tank flows through the second flow path of the split heat exchanger, and after heat exchange with the refrigerant flowing through the first flow path of the split heat exchanger, the second flow path A main circuit for flowing a third refrigerant out of the refrigerant diverted on the downstream side into the main throttle means;
    The compression means, the auxiliary compression means, the main throttle means, the pressure adjusting throttle means, the first auxiliary throttle means, the second auxiliary throttle means, the third auxiliary throttle means, and the on-off valve Control means for controlling the operation of
    Refrigeration equipment.
  2.  前記開閉弁は、電磁弁であり、
     前記制御手段は、
     前記第3の補助絞り手段を閉状態にし、かつ、前記電磁弁を開状態にする第1の設定と、前記第3の補助絞り手段を開状態し、かつ、前記電磁弁を閉状態にする第2の設定とを切り替える、
     請求項1に記載の冷凍装置。
    The on-off valve is a solenoid valve;
    The control means includes
    A first setting for closing the third auxiliary throttle means and opening the electromagnetic valve; and a third setting for opening the third auxiliary throttle means and closing the electromagnetic valve. Switch to the second setting,
    The refrigeration apparatus according to claim 1.
  3.  前記開閉弁は、電動膨張弁であり、
     前記制御手段は、
     前記第3の補助絞り手段を開状態にし、かつ、前記電動膨張弁を開状態にする第3の設定を行う、
     請求項1に記載の冷凍装置。
    The on-off valve is an electric expansion valve,
    The control means includes
    A third setting for opening the third auxiliary throttle means and opening the electric expansion valve;
    The refrigeration apparatus according to claim 1.
  4.  前記補助圧縮手段と、前記蒸発器の下流側かつ前記圧縮手段の上流側に設けられた配管とを接続する第2のバイパス回路をさらに備え、
     前記第2のバイパス回路には、逆止弁、または、前記制御手段により開閉が制御される電磁弁が設けられる、
     請求項1に記載の冷凍装置。
    A second bypass circuit connecting the auxiliary compression means and a pipe provided downstream of the evaporator and upstream of the compression means;
    The second bypass circuit is provided with a check valve or an electromagnetic valve whose opening and closing is controlled by the control means.
    The refrigeration apparatus according to claim 1.
  5.  前記補助圧縮手段の回転数は可変である、
     請求項1に記載の冷凍装置。
    The rotational speed of the auxiliary compression means is variable.
    The refrigeration apparatus according to claim 1.
  6.  前記補助圧縮手段とは別に、少なくとも1つの補助圧縮手段を備え、
     前記少なくとも1つの補助圧縮手段には、
     前記補助回路を流れた冷媒が吸い込まれる、
     請求項1に記載の冷凍装置。
    Apart from the auxiliary compression means, it comprises at least one auxiliary compression means,
    The at least one auxiliary compression means includes
    The refrigerant flowing through the auxiliary circuit is sucked in,
    The refrigeration apparatus according to claim 1.
  7.  前記圧縮手段とは別に、該圧縮手段と並列に、少なくとも1つの圧縮手段を備え、
     前記少なくとも1つの圧縮手段の中間圧部には、
     前記第1の補助絞り手段により圧力が調整された冷媒と前記第2の補助絞り手段により圧力が調整された冷媒とが混合した冷媒が吸い込まれる、
     請求項1に記載の冷凍装置。
    In addition to the compression means, at least one compression means is provided in parallel with the compression means,
    In the intermediate pressure part of the at least one compression means,
    The refrigerant mixed with the refrigerant whose pressure is adjusted by the first auxiliary throttle means and the refrigerant whose pressure is adjusted by the second auxiliary throttle means is sucked.
    The refrigeration apparatus according to claim 1.
PCT/JP2017/003661 2016-02-08 2017-02-01 Refrigeration device WO2017138419A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780010059.0A CN108603697B (en) 2016-02-08 2017-02-01 Refrigerating device
JP2017566895A JP6653463B2 (en) 2016-02-08 2017-02-01 Refrigeration equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016022124 2016-02-08
JP2016-022124 2016-10-12

Publications (1)

Publication Number Publication Date
WO2017138419A1 true WO2017138419A1 (en) 2017-08-17

Family

ID=59563538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003661 WO2017138419A1 (en) 2016-02-08 2017-02-01 Refrigeration device

Country Status (3)

Country Link
JP (1) JP6653463B2 (en)
CN (1) CN108603697B (en)
WO (1) WO2017138419A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065118A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration device
WO2021065117A1 (en) 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7356049B2 (en) * 2019-09-30 2023-10-04 ダイキン工業株式会社 air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241125A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Refrigerating unit
JP2011508181A (en) * 2007-12-28 2011-03-10 ジョンソン コントロールズ テクノロジー カンパニー Vapor compression system
JP2013167386A (en) * 2012-02-15 2013-08-29 Panasonic Corp Refrigeration device
WO2014068967A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Refrigeration device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO890076D0 (en) * 1989-01-09 1989-01-09 Sinvent As AIR CONDITIONING.
JPH07190520A (en) * 1993-12-27 1995-07-28 Kobe Steel Ltd Freezer
JP2007178042A (en) * 2005-12-27 2007-07-12 Mitsubishi Electric Corp Supercritical vapor compression type refrigerating cycle and cooling and heating air conditioning facility and heat pump hot-water supply machine using it
JP6206787B2 (en) * 2012-11-29 2017-10-04 パナソニックIpマネジメント株式会社 Refrigeration equipment
JP6264688B2 (en) * 2014-02-10 2018-01-24 パナソニックIpマネジメント株式会社 Refrigeration equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008241125A (en) * 2007-03-27 2008-10-09 Sanyo Electric Co Ltd Refrigerating unit
JP2011508181A (en) * 2007-12-28 2011-03-10 ジョンソン コントロールズ テクノロジー カンパニー Vapor compression system
JP2013167386A (en) * 2012-02-15 2013-08-29 Panasonic Corp Refrigeration device
WO2014068967A1 (en) * 2012-10-31 2014-05-08 パナソニック株式会社 Refrigeration device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021065118A1 (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration device
JP2021055941A (en) * 2019-09-30 2021-04-08 ダイキン工業株式会社 Refrigeration unit
WO2021065117A1 (en) 2019-09-30 2021-04-08 ダイキン工業株式会社 Heat source unit and refrigeration device
CN114341571A (en) * 2019-09-30 2022-04-12 大金工业株式会社 Refrigerating device
US11512876B2 (en) 2019-09-30 2022-11-29 Daikin Industries, Ltd. Refrigeration apparatus

Also Published As

Publication number Publication date
CN108603697A (en) 2018-09-28
CN108603697B (en) 2020-06-05
JPWO2017138419A1 (en) 2018-11-29
JP6653463B2 (en) 2020-02-26

Similar Documents

Publication Publication Date Title
JP6292480B2 (en) Refrigeration equipment
CN106524546B (en) Refrigerating device
JP6264688B2 (en) Refrigeration equipment
JP2015148406A (en) Refrigeration device
JP2015148407A (en) Refrigeration device
JP2011133209A (en) Refrigerating apparatus
JP6653463B2 (en) Refrigeration equipment
JP6388260B2 (en) Refrigeration equipment
JP2013155972A (en) Refrigeration device
JP2018132224A (en) Binary refrigeration system
JP6206787B2 (en) Refrigeration equipment
CN111919073B (en) Refrigerating device
JP2011137557A (en) Refrigerating apparatus
JP2014159950A (en) Freezer
CN106524545B (en) Refrigerating device
JP2010060181A (en) Refrigeration system
JP6765086B2 (en) Refrigeration equipment
JP6467682B2 (en) Refrigeration equipment
JP6094859B2 (en) Refrigeration equipment
JP6653464B2 (en) Refrigeration equipment
CN105972883B (en) Refrigerator unit
JP7526926B2 (en) Refrigeration equipment
JP2022083753A (en) Refrigerating device
KR20050074133A (en) A multiple air-conditioner and the control method for the same
JP2011137556A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750143

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566895

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750143

Country of ref document: EP

Kind code of ref document: A1