WO2015097782A1 - 制御棒及びそれを用いた軽水炉の炉心 - Google Patents
制御棒及びそれを用いた軽水炉の炉心 Download PDFInfo
- Publication number
- WO2015097782A1 WO2015097782A1 PCT/JP2013/084663 JP2013084663W WO2015097782A1 WO 2015097782 A1 WO2015097782 A1 WO 2015097782A1 JP 2013084663 W JP2013084663 W JP 2013084663W WO 2015097782 A1 WO2015097782 A1 WO 2015097782A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control rod
- water
- region
- core
- neutron
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
- G21C7/06—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
- G21C7/08—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
- G21C7/10—Construction of control elements
- G21C7/113—Control elements made of flat elements; Control elements having cruciform cross-section
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
- G21C7/06—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
- G21C7/08—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
- G21C7/10—Construction of control elements
- G21C7/103—Control assemblies containing one or more absorbants as well as other elements, e.g. fuel or moderator elements
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C7/00—Control of nuclear reaction
- G21C7/06—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section
- G21C7/08—Control of nuclear reaction by application of neutron-absorbing material, i.e. material with absorption cross-section very much in excess of reflection cross-section by displacement of solid control elements, e.g. control rods
- G21C7/10—Construction of control elements
- G21C7/11—Deformable control elements, e.g. flexible, telescopic, articulated
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the present invention relates to a control rod for a light water reactor, and more particularly, to a control rod for a light water reactor suitable for application to a core of a boiling water reactor.
- Light water breeding reactors and light water conversion reactors with densely packed fuel assemblies and reduced water-to-fuel material ratios have increased the conversion ratio of transuranium nuclides compared to conventional boiling water reactors (BWRs) .
- BWRs boiling water reactors
- the amount of generation and disappearance of transuranium nuclides during reactor operation can be made substantially the same, and the conversion ratio can be about 1.0.
- the fuel assemblies and control rods loaded in the core of the light water reactor are densely arranged with three Y-shaped control rods in three dense hexagonal fuel assemblies.
- the Y-shaped control rod includes a neutron absorber, and is inserted between fuel assemblies in the core or pulled out from the core in order to control the reactor power, as in the case of the conventional BWR.
- the Y-shaped control rod includes a follower portion made of carbon at the upper portion of the neutron absorber, that is, at the upper end portion that is first inserted into the core.
- the gap between the fuel assemblies is such that control rods can be inserted even when the channel box of the fuel assembly is deformed due to radiation irradiation during the operation of the reactor and the gap between the fuel assemblies is narrowed. Designed with allowance in mind. Therefore, if the gap between the fuel assemblies is made narrower or the thickness of the control rods is increased in order to eliminate light water, the distance between the fuel assemblies and the control rods becomes narrower, and the insertability of the control rods decreases. There are concerns.
- the present invention uses a control rod capable of improving the removal ratio of light water and increasing the conversion ratio of super uranium nuclides while ensuring the insertability of the control rod even when the gap between the fuel assemblies is narrowed, and the same It is to provide a core of a light water reactor.
- the present invention provides a control rod that is inserted or withdrawn from a core loaded with a plurality of fuel assemblies that contain a plurality of fuel rods in a channel box, the control rod comprising: a neutron absorption region; A water exclusion region, the radial width of the water exclusion region is larger than the radial width of the neutron absorption region, and the water exclusion region can be deformed corresponding to the deformation of the channel box It is characterized by being.
- the present invention also provides a fuel assembly that houses a plurality of fuel rods containing nuclear fuel material in a channel box, and a control rod that is loaded with a plurality of the fuel assemblies and is inserted or withdrawn between the plurality of fuel assemblies.
- a core of a light water reactor wherein the control rod includes a neutron absorption region and a water exclusion region, a radial width of the water exclusion region is larger than a radial width of the neutron absorption region, and The water exclusion region is configured to be deformable corresponding to the deformation of the channel box.
- a control rod and a light water reactor using the same that can improve the light water drainage and increase the conversion ratio while securing the insertion property of the control rod even when the gap between the fuel assemblies is narrowed. Can be provided.
- FIG. 2 is a cross-sectional view taken along the line AA in the neutron absorption region of the control rod shown in FIG. It is a vertical cross section of the control rod shown in FIG. It is a vertical sectional view explaining the deformation
- control rod according to embodiment 2 It is a vertical sectional view of a control rod according to embodiment 2 which is another embodiment of the present invention. It is a vertical sectional view of a control rod according to embodiment 3 which is another embodiment of the present invention. It is a vertical sectional view of a control rod according to embodiment 4 which is another embodiment of the present invention. It is a vertical sectional view of a control rod according to embodiment 5 which is another embodiment of the present invention. It is a vertical sectional view of a control rod according to embodiment 6 which is another embodiment of the present invention.
- FIG. 2 shows an overall configuration diagram of a light water conversion reactor or a light water breeding reactor (hereinafter, light water reactor) loaded with the control rod 1 of the present invention.
- the light water reactor 5 of the present invention includes the core 7 for an electric output of 1350 MW, but the output scale is not limited to this. By changing the number of fuel assemblies loaded in the core 7, light water reactors 5 of other power scales can be realized.
- a boiling water reactor (BWR) will be described as an example of the light water reactor 5.
- BWR 5 has a reactor core 7, a steam / water separator 8, and a steam dryer 9 disposed in a reactor pressure vessel 6.
- the core 7 is surrounded by a core shroud 10 in the reactor pressure vessel 6.
- the steam / water separator 8 is disposed above the core 7, and the steam dryer 9 is disposed above the steam / water separator 8.
- a plurality of internal pumps (coolant supply devices) 11 are installed at the bottom of the reactor pressure vessel 6, and an impeller of the internal pump 11 is placed in a downcomer formed between the reactor pressure vessel 6 and the core shroud 10. Be placed.
- a main steam pipe 12 and a water supply pipe 13 for supplying steam from the steam dryer 9 to the turbine 26 are connected to the reactor pressure vessel 6.
- the coolant in the downcomer is pressurized and supplied to the core 7 by the rotation of the impeller of the internal pump 11.
- the coolant supplied into the core 7 is guided into each fuel assembly 14 to be described later, and is heated by heat generated by the fission of the fissile material, and a part thereof becomes steam.
- the coolant in the gas-liquid two-phase flow state is led from the core 7 to the steam separator 8 to separate the steam.
- the water is further removed from the separated steam by the steam dryer 9.
- the steam from which moisture has been removed flows through the main steam pipe 12 and is supplied to the turbine 26, and the turbine 26 rotates.
- a generator 27 connected to the turbine 26 rotates to generate electric power.
- the steam discharged from the turbine 26 is condensed in the condenser 28 to become condensed water.
- This condensed water is introduced into the reactor pressure vessel 6 through the feed water pipe 13 by the feed water pump 29.
- the liquid coolant separated by the steam separator 8 is mixed with the condensed water supplied through the water supply pipe 13 in the downcomer, pressurized again by the internal pump 11, and supplied to the reactor core 7. Is done.
- light water, a mixture of light water and heavy water is used as the coolant.
- FIG. 3 shows a horizontal sectional view of the core 7.
- 720 dense hexagonal fuel assemblies 14 are loaded in the core 7.
- the three fuel assemblies 14 are provided with Y-shaped control rods 1 at a ratio of one, and 223 control rods 1 are disposed so as to be insertable into the core 7.
- the fuel assembly 14 is a dense hexagonal shape and the control rod 1 is a Y-shape will be described as an example.
- the present invention is not limited to this.
- the fuel assembly 14 has a rectangular shape.
- a cross-shaped control rod may be inserted in the gap between the four fuel assemblies.
- FIG. 4 is a partially enlarged view of the horizontal cross section of the core 7 shown in FIG. 3, and shows a state in which one Y-shaped control rod 1 is inserted between three dense hexagonal fuel assemblies 14.
- 331 fuel rods 16 having a diameter of 7.4 mm are arranged in a triangular lattice in a channel box 15 that is a cylindrical body having a hexagonal horizontal cross section.
- the cross section of the fuel assembly 14 has a hexagonal shape, and the gap between the fuel rods 16 is 2.9 mm.
- a plurality of fuel pellets made of nuclear fuel material are arranged in a cladding tube (not shown) of the fuel rod 16 so as to be aligned in the axial direction.
- the fuel rod 16 is directed upward from the lower end and includes a lower fuel region, an internal blanket region, an upper fuel region, and an upper blanket region.
- the inner blanket region and the upper blanket region are filled with depleted uranium, which is a residue during uranium enrichment, and the lower fuel region and the upper fuel region contain super uranium nuclides (TRU) extracted from spent nuclear fuel.
- TRU super uranium nuclides
- Fuel pellets made of nuclear fuel material are arranged.
- Ten fuel rods 16 are arranged in the outermost fuel rod row, that is, the closest portion of the channel box 15.
- the lower tie plates (not shown) of these fuel assemblies 14 are supported by a plurality of fuel support fittings provided on a core support plate (not shown) disposed at the lower end of the core 7.
- a coolant passage for guiding the coolant to the fuel assembly 14 is formed in the fuel support fitting, and an orifice installed in the fuel support fitting is disposed at the inlet of the coolant passage.
- control rod 1 has three wings extending outward from the tie rod 18 located at the center, and these three wings are arranged with an interval of 120 degrees. It has a Y-shape and is arranged so as to be positioned in the gap between the three fuel assemblies 14 arranged in a triangular lattice.
- FIG. 5 shows a horizontal section of one of the three blades constituting the control rod 1.
- One end of a sheath 20 having a U-shaped cross section is connected to the tie rod 18, and a plurality of neutron absorber tubes 19 are arranged in a row inside the sheath 20 formed of stainless steel.
- the neutron absorber tube 19 is filled with a neutron absorber such as boron carbide (B 4 C) and forms a neutron absorption region.
- B 4 C boron carbide
- a water exclusion region which will be described later, is provided above the neutron absorption region, and the radial width of the water exclusion region is larger than the radial width of the neutron absorption region.
- the water exclusion area has a structure that can be deformed by an external force.
- FIG. 5 shows a horizontal cross section in the neutron absorption region. A plurality of holes are formed in the sheath 20, and the neutron absorber tube 19 can be cooled by the coolant flowing in through the holes. Yes.
- each control rod 1 is connected to a separate control rod driving device 17 provided at the bottom of the reactor pressure vessel 6.
- the control rod driving device 17 is motor driven and can finely adjust the movement of the control rod 1 in the axial direction.
- the control rod drive unit 17 performs each operation of pulling out the control rod 1 from the core 7 and inserting the control rod 1 into the core 7.
- the control rod 1 is formed by providing the water exclusion region above the neutron absorption region, and the radial width of the water exclusion region is the radial width of the neutron absorption region.
- control rod 1 According to the embodiment of the present invention, a specific configuration of the control rod 1 according to the embodiment of the present invention will be described with reference to the drawings.
- FIG. 1 shows a vertical cross-sectional view of one blade of the control rod.
- FIG. 1 shows a BB cross-sectional view in FIG.
- the control rod 1 is provided with a water exclusion region 2 made of a substance having a lower deceleration ability than that of light water at an insertion end portion that is first inserted into the core 7.
- the water exclusion region 2 has a structure in which the radial width is larger than the width of the neutron absorption region 3 and can be deformed by a force generated between the channel box 15 and the water exclusion region 2.
- the neutron absorption region 3 includes the sheath 20 and the neutron absorber tube 19 shown in FIG. 5, but is omitted in FIG.
- a relationship of 0 ⁇ G2 / G1 ⁇ 1 is established between the gap G1 between the channel box 15 and the neutron absorption region 3 and the gap G2 between the channel box 15 and the water exclusion region 2. It is configured.
- FIG. 6 shows details of the water exclusion region 2 of the control rod 1.
- Silicon carbide particles 22 are enclosed in a container 21 made of silicon carbide (SiC) fiber material that is larger than the radial width of the neutron absorption region 3.
- Silicon carbide fiber (for example, silicon carbide fiber described in SiC Material Leaflet (Gunze Co., Ltd.)) is a material suitable for nuclear-related applications, such as high heat resistance, radiation resistance, and chemical stability. is there.
- By increasing the width in the radial direction of the water exclusion region 2 of the control rod 1 light water (coolant) existing in the gaps between the channel boxes 15 constituting the fuel assemblies 14 arranged adjacent to each other is more effectively removed. can do.
- FIG. 7 shows a state in which the gap between the boxes 15 is narrowed.
- the dotted line arrows indicate the flow of light water as the coolant.
- the channel box 15 If the channel box 15 is suddenly deformed, a part of the outer wall of the container 21 temporarily comes into contact with the deformed portion of the channel box 15, and further a force toward the container 21 (a force toward the radial center of the container 21). ). At this time, the silicon carbide particles 22 enclosed in the container 21 flow in the container 21.
- Light water as a coolant pressurized by the internal pump 11 collides with the outer wall of the container 21 and the channel box 15 substantially vertically, and a minute gap is formed between the outer wall of the container 21 and the channel box 15. Is formed, and light water flows upward.
- the water exclusion region 2 of the control rod 1 is deformed following the deformation of the channel box 15, and a minute gap can be secured between the channel box 15 and the water exclusion region 2. Therefore, according to the present embodiment, even if the gap between the fuel assemblies 14 is narrowed, the light rod water can be removed and the conversion ratio can be increased while ensuring the insertability of the control rod 1.
- the gap between adjacent fuel assemblies 14 is narrowed in order to increase the conversion ratio.
- the control rod 1 of this embodiment configured such that the radial width of the water exclusion region 2 is larger than the radial width of the neutron absorption region 3, the water exclusion property of the water exclusion region 2 is maintained.
- the gap between the fuel assemblies 14 arranged adjacent to each other can be widened. Since the gap between the neutron absorption region 3 of the control rod 1 and the fuel assembly 14 can be widened, the margin of the control rod insertion property can be increased, or the radial width of the neutron absorption region 3 of the control rod 1 can be increased. As a result, the amount of neutron absorbing material filled in the neutron absorbing material tube 19 can be increased, and the neutron absorbing ability (control rod performance) of the control rod 1 can be enhanced.
- the water exclusion region 2 of the control rod 1 is formed of the container 21 with silicon carbide fibers, but is not limited to this, and has heat resistance, pressure resistance, corrosion resistance, and the channel of the fuel assembly 14. Any material that can be deformed by the force acting between the box 15 and the control rod 1 may be used. For example, a carbon composite material may be used.
- the water exclusion region 2 is configured to enclose the silicon carbide particles 22 in the container 21 composed of silicon carbide fibers.
- the upper surface of the container 24 formed of silicon carbide fibers. The difference is that the opening 25 is provided in the container 24 and the container 24 does not need to contain the silicon carbide particles 22.
- FIG. 8 shows a vertical sectional view of the control rod 1.
- the water exclusion region 2 of the control rod 1 has a structure in which an opening 25 is provided on a part of the upper surface of a container 24 formed of a non-water-permeable silicon carbide fiber material.
- the inside of the container 24 contains light water as a coolant in the initial state.
- Light water inside the container 24 is heated and evaporated by gamma rays emitted when the fuel in the fuel assembly 14 loaded in the reactor core 7 undergoes a nuclear reaction.
- the evaporated light water is discharged out of the container 24 through a small opening 25 at the top of the container 24.
- the steam discharged out of the container 24 is introduced into the steam / water separator 8 disposed above the core 7.
- the silicon carbide fiber material does not allow light water to pass through, no new light water is supplied into the container 24, and the vapor pressure of the steam heated by gamma rays and discharged from the opening 25 as described above passes through the opening 25.
- the light water is prevented from newly flowing into the container 24, and the light water in the container 24 is eliminated. Therefore, the water-to-fuel material ratio can be reduced, the light water neutron moderation effect can be reduced, and the conversion ratio can be increased.
- the channel box 15 is deformed by neutron irradiation or the like during the operation of the reactor, and the channel box 15 constituting the fuel assembly 14 Even when the gap is narrowed, the container 24 formed of the silicon carbide fibers in the water exclusion region 2 is deformed by the force generated between the channel box 15 and the water exclusion region 2 as in the first embodiment, and the control rod 1 can be inserted.
- the present embodiment similarly to the first embodiment, even when the gap between the fuel assemblies 14 is narrowed, the insertion property of the control rod 1 can be secured, the light water can be removed, and the conversion ratio can be increased. Further, according to the present embodiment, as compared with the first embodiment, since a substance other than light water is not included in the container 24 forming the water exclusion region 2, a simple configuration can be achieved.
- FIG. 9 is a vertical sectional view of the control rod 1 according to this embodiment.
- the same components as those in FIG. 1 are denoted by the same reference numerals.
- the present embodiment is different from the first embodiment in that a solid silicon carbide structure 23 is provided in addition to the silicon carbide particles 22 in the container 21 formed of the silicon carbide fibers described in the first embodiment.
- a solid silicon carbide structure 23 is provided at the upper part of the neutron absorption region 3 in the central portion of the water exclusion region 2 in the core radial direction, and the silicon carbide structure 23 is surrounded by silicon carbide. Particles 22 are enclosed.
- the width (W1) in the radial direction of the silicon carbide structure 23 is equal to or less than the width (W2) in the radial direction of the neutron absorption region 3.
- the relationship between the radial width of the container 21 and the radial width of the neutron absorption region 3 is the same as in the first embodiment.
- the present embodiment similarly to the first embodiment, it is possible to further eliminate light water in the gap between the channel boxes 15 constituting the fuel assemblies 14 arranged adjacent to each other. Therefore, the water-to-fuel material ratio can be reduced, the light water neutron moderation effect can be reduced, and the conversion ratio can be increased. Further, since the water exclusion region 2 of the control rod 1 is made of a silicon carbide fibrous material, the channel box 15 is deformed by neutron irradiation or the like during the operation of the nuclear reactor, and the adjacent fuel assembly 14 is formed.
- the outer wall of the container 21 formed by the silicon carbide fibers in the water exclusion region 2 is deformed by the force generated between the channel box 15 and the water exclusion region 2 and is controlled. Bar 1 can be inserted.
- the deformable amount of the outer wall of the container 21 is defined by the distance between the outer peripheral surface of the solid silicon carbide structure 23 and the inner wall surface of the container 21.
- silicon carbide fiber is a non-water-permeable material
- the silicon carbide fiber forming the container 21 is rough, light water as a coolant may penetrate into the container 21.
- the structure of the present embodiment is more complicated than that of the first embodiment, since the solid silicon carbide structure 23 is arranged at the center of the water removal area 2 in the core radial direction, the water removal area It is possible to prevent light water from entering the center of 2. Therefore, the neutron moderating effect by light water can be further reduced, and the conversion ratio can be increased.
- the gap between the fuel assemblies 14 arranged adjacent to each other can be widened while maintaining the water drainability of the water drain region 2. Since the gap between the neutron absorption region 3 of the control rod 1 and the fuel assembly 14 can be widened, the margin of the control rod insertion property can be increased, or the radial width of the neutron absorption region 3 of the control rod 1 can be increased. As a result, the amount of neutron absorbing material filled in the neutron absorbing material tube 19 can be increased, and the neutron absorbing ability (control rod performance) of the control rod 1 can be enhanced.
- the solid structure disposed in the central portion of the water exclusion region 2 in the core radial direction is made of silicon carbide, but instead of this, a structure made of graphite may be used.
- the water exclusion region 2 of the control rod 1 is formed of the container 21 with silicon carbide fibers, but is not limited to this, and is provided with heat resistance, pressure resistance, and corrosion resistance, and the fuel assembly 14 Any material that can be deformed by the force acting between the channel box 15 and the control rod 1 may be used.
- a carbon composite material may be used.
- FIG. 10 is a vertical sectional view of the control rod 1 according to the present embodiment.
- the same components as those in FIG. 9 are denoted by the same reference numerals.
- the solid silicon carbide structure 23 is provided in the center of the water exclusion region 2 in the core radial direction, and the container 21 formed of silicon carbide fibers is provided so as to cover the periphery thereof.
- the present embodiment is different from the third embodiment in that the container 21 is disposed so as to face the channel box 15 constituting the fuel assembly 14.
- silicon carbide particles 22 enclosed between the outer peripheral surface of the solid silicon carbide structure 23 and the inner wall surface of the container 21 formed of silicon carbide fibers are included.
- the sealed portion is disposed so as to face either one of the two channel boxes 15 constituting the fuel assembly 14 disposed adjacently.
- the total amount of silicon carbide particles 22 enclosed in the container 21 can be halved.
- the deformable amount of the outer wall of the container 21 is limited to only the distance between the outer peripheral surface of the solid silicon carbide structure 23 and the inner wall surface of the container 21 on the side facing the one channel box 15.
- the solid silicon carbide structure 23 is disposed in the central portion of the water exclusion region 2 in the core radial direction, intrusion of light water into the central portion of the water exclusion region 2 can be prevented. . Therefore, the neutron moderating effect by light water can be further reduced, and the conversion ratio can be increased.
- the solid structure disposed in the central portion of the water exclusion region 2 in the core radial direction may be made of graphite instead of silicon carbide.
- FIG. 11 is a vertical sectional view of the control rod according to the present embodiment.
- the same components as those in FIGS. 8 and 9 are denoted by the same reference numerals.
- a solid silicon carbide structure 23 is provided above the neutron absorption region 3 and the silicon carbide particles 22 are enclosed around the silicon carbide structure 23.
- an opening 25 is provided on the upper surface of a container 24 formed of silicon carbide fibers without enclosing the carbide particles 22.
- a solid silicon carbide structure 23 is provided at the upper part of the neutron absorption region 3 in the central portion of the water exclusion region 2 in the core radial direction, and the radial width of the silicon carbide structure 23 is The width in the radial direction of the neutron absorption region 3 is set to be equal to or smaller than that.
- An opening 25 is provided in a part of the upper surface of the container 24 formed by silicon carbide fibers covering the outer periphery of the silicon carbide structure 23 so as not to overlap the upper end of the silicon carbide structure 23.
- the space between the outer peripheral surface of the silicon carbide structure 23 and the inner wall surface of the container 24 contains light water, but the fuel in the fuel assembly 14 loaded in the reactor core 7 undergoes a nuclear reaction.
- the light water in the container 24 is heated and evaporated by the gamma rays emitted during this process, and the steam is introduced into the steam-water separator 8 disposed above the core 7 through the opening 25.
- the inflow of new light water into the container 24 is suppressed, and the light water in the container 24 is excluded.
- the container 24 formed of silicon carbide fibers in the water exclusion region 2 is deformed, and the control rod 1 can be inserted.
- the container 24 forming the water exclusion region 2 does not contain substances other than light water, a simple configuration can be achieved.
- FIG. 12 shows a vertical sectional view of the control rod 1 according to the embodiment of the present invention.
- the same components as those in FIG. 11 are denoted by the same reference numerals.
- the solid silicon carbide structure 23 is provided at the center of the water exclusion region 2 in the core radial direction, and the container 24 made of silicon carbide fibers is provided so as to cover the periphery thereof.
- the present embodiment is different from the fifth embodiment in that the container 24 is disposed so as to face the channel box 15 constituting the fuel assembly 14.
- the radial width of the silicon carbide structure 23 provided on the upper part of the neutron absorption region 3 is equal to or less than the radial width of the neutron absorption region 3 and is a part of the upper surface of the container 24.
- An opening 25 is provided at a position that does not overlap the upper end of the silicon carbide structure 23.
- the deformable amount of the outer wall of the container 24 formed of silicon carbide fibers is such that the outer wall of the container 24 and the outer periphery of the silicon carbide structure 23 arranged at positions facing the one channel box 15.
- the control rod 1 can be inserted by deforming the container 24 by the force generated between the container 24 and the outer wall of the container 24.
- the same effect as in the fifth embodiment can be obtained.
- the silicon carbide structure 23 it may be made of graphite.
- this invention is not limited to the above-mentioned Example, Various modifications are included.
- the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
- a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
- SYMBOLS 1 Control rod, 2 ... Water exclusion area
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
本発明は、燃料集合体間の間隙が狭くなっても制御棒の挿入性を確保しつつ、軽水の排除性を高め、超ウラン核種の転換比を高めることができる制御棒及びそれを用いた軽水炉の炉心を提供する。複数の燃料棒16をチャンネルボックス15内に収容する燃料集合体14を複数装荷する炉心7に、挿入または引き抜かれる制御棒1は、中性子吸収領域3と水排除領域2とを備える。水排除領域2の径方向の幅は、中性子吸収領域3の径方向の幅より大きく、且つ、水排除領域2はチャンネルボックス14の変形に対応して変形可能に構成されることにより、複数のチャンネルボックス15間の軽水を排除する。
Description
本発明は、軽水炉の制御棒に係り、特に、沸騰水型原子炉の炉心に適用するのに好適な軽水炉の制御棒に関する。
燃料集合体を稠密に配置して水対燃料物質比を低減した軽水増殖炉や軽水転換炉では、従来の沸騰水型原子炉(BWR)と比較して超ウラン核種の転換比を高めている。例えば、原子炉運転時における超ウラン核種の発生量と消滅量をほぼ同一にして、転換比を約1.0とすることができる。
この炉心特性を達成するため、特許文献1に記載される軽水増殖炉や軽水転換炉(以下、軽水炉)の炉心では、六角形の水平断面を持つチャンネルボックス内に、劣化ウランに超ウラン核種を富化した燃料ペレットを封入した燃料棒を複数三角格子に配置した稠密六角形型燃料集合体を用い、燃料密度を増加させている。また、減速材と冷却材を兼ねている軽水の流量を低減し、現行のBWRよりボイド率(水と蒸気の気液二相流の中で蒸気が占める体積比率)を高めており、水対燃料物質比を小さくしている。このように水対燃料物質比を小さくすると、軽水による中性子減速効果が抑制され、高速中性子や共鳴領域の中性子が増加するため、超ウラン核種の転換を増加できる。
特許文献1では、軽水炉の炉心に装荷される燃料集合体及び制御棒を、稠密六角形型燃料集合体3体に1本の割合でY字型制御棒を密に配置している。Y字型制御棒は中性子吸収材を備えており、従来のBWRと同様に、原子炉出力を制御するために炉心中の燃料集合体間に挿入され、または炉心から引き抜かれる。そして、Y字型制御棒は、中性子吸収材の上部、すなわち、炉心に最初に挿入される上端部に炭素で構成されるフォロアー部を備えている。
軽水増殖炉や軽水転換炉は、水対燃料物質比を小さくし、軽水による中性子減速効果を抑えて、高速中性子や共鳴領域の中性子を増やすことで、超ウラン核種の転換比を高めるために、燃料集合体間の間隙を狭くする。従って、転換比をより高めるためには燃料集合体間の軽水をさらに排除する必要がある。
燃料集合体間の軽水をさらに排除する一般的な方法には、燃料集合体間の間隙をより狭くする方法、及び制御棒の厚さを大きくする方法の2つが考えられる。
しかしながら、燃料集合体間の間隙は、原子炉運転中の放射線照射などにより、燃料集合体のチャンネルボックスが変形して燃料集合体間の間隙が狭くなった場合でも、制御棒を挿入できるように余裕を考慮した設計となっている。そのため、軽水を排除するために、燃料集合体間の間隙をより狭くするか、あるいは制御棒の厚さを大きくすると、燃料集合体と制御棒の間隔が狭くなり、制御棒の挿入性が低下する懸念がある。
本発明は、燃料集合体間の間隙が狭くなっても制御棒の挿入性を確保しつつ、軽水の排除性を高め、超ウラン核種の転換比を高めることができる制御棒及びそれを用いた軽水炉の炉心を提供することにある。
上記課題を解決するため本発明は、複数の燃料棒をチャンネルボックス内に収容する燃料集合体を複数装荷する炉心に、挿入または引き抜かれる制御棒であって、前記制御棒は、中性子吸収領域と水排除領域とを備え、前記水排除領域の径方向の幅が、前記中性子吸収領域の径方向の幅より大きく、且つ、前記水排除領域は前記チャンネルボックスの変形に対応して変形可能に構成されることを特徴とする。
また、本発明は、核燃料物質を含む複数の燃料棒をチャンネルボックス内に収容する燃料集合体と、前記燃料集合体を複数装荷し、前記複数の燃料集合体間に挿入または引き抜かれる制御棒を有する軽水炉の炉心であって、前記制御棒は、中性子吸収領域と水排除領域とを備え、前記水排除領域の径方向の幅が、前記中性子吸収領域の径方向の幅より大きく、且つ、前記水排除領域は前記チャンネルボックスの変形に対応して変形可能に構成されることを特徴とする。
本発明によれば、燃料集合体間の間隙が狭くなっても制御棒の挿入性を確保しつつ、軽水の排除性を高め、転換比を高めることができる制御棒及びそれを用いた軽水炉を提供することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図2に本発明の制御棒1を装荷する軽水転換炉または軽水増殖炉(以下、軽水炉)の全体構成図を示す。本発明の軽水炉5は、電気出力1350MW用の炉心7を備えているが、出力規模はこれに限定されるものではない。炉心7に装荷された燃料集合体の体数を変更することによって、他の出力規模の軽水炉5を実現することができる。以下では、軽水炉5として沸騰水型原子炉(BWR)を例に説明する。
BWR5は、原子炉圧力容器6内に、炉心7、気水分離器8、蒸気乾燥器9を配置している。炉心7は、原子炉圧力容器6内で炉心シュラウド10によって取囲まれている。気水分離器8は炉心7の上方に配置され、蒸気乾燥器9は気水分離器8の上方に配置される。複数のインターナルポンプ(冷却材供給装置)11が原子炉圧力容器6の底部に設置され、インターナルポンプ11のインペラが原子炉圧力容器6と炉心シュラウド10との間に形成されるダウンカマ内に配置される。蒸気乾燥器9からの蒸気をタービン26へ供給する主蒸気配管12及び給水配管13が原子炉圧力容器6に接続されている。
BWR5の運転時、インターナルポンプ11のインペラの回転によってダウンカマ内の冷却材が加圧されて炉心7に供給される。炉心7内に供給された冷却材は、後述する各燃料集合体14内に導かれ、核分裂性物質の核分裂によって発生する熱で加熱されて一部が蒸気になる。気液二相流状態の冷却材は、炉心7から気水分離器8に導かれて蒸気が分離される。分離された蒸気は、蒸気乾燥器9によって水分がさらに除去される。水分が除去された蒸気は、主蒸気配管12を流れタービン26に供給され、タービン26が回転する。タービン26に連結された発電機27が回転し、電力を発生する。タービン26から排出された蒸気は、復水器28にて凝縮されて凝縮水となる。この凝縮水は給水ポンプ29により給水配管13を介して原子炉圧力容器6内に導かれる。一方、気水分離器8で分離された液体の冷却材は、給水配管13を介して供給される凝縮水とダウンカマ内で混合され、再び、インターナルポンプ11で加圧され、炉心7へ供給される。ここで、冷却材として、軽水、軽水及び重水の混合液が用いられる。
図3に炉心7の水平断面図を示す。炉心7には、例えば720体の稠密六角形型の燃料集合体14が装荷されている。3体の燃料集合体14に1本の割合でY字型の制御棒1が設けられ、223本の制御棒1が炉心7内に挿入可能に配置されている。なお、本明細書では、燃料集合体14を稠密六角形型、制御棒1をY字型の場合を例に説明するが、これに限られるものではなく、例えば、燃料集合体14を四角形状とし、4体の燃料集合体間の間隙に十字型の制御棒を挿入可能に配置するよう構成しても良い。
図4は、図3に示す炉心7の水平断面の一部拡大図であり、3体の稠密六角形型の燃料集合体14の間にY字型の制御棒1を1本挿入した状態を示している。燃料集合体14は、水平断面が六角形の筒状体であるチャンネルボックス15内に、直径7.4mmの331本の燃料棒16を三角形格子に配置している。燃料集合体14の横断面の形状は六角形をしており、燃料棒16の相互間の間隙が2.9mmである。核燃料物質によって構成された複数の燃料ペレットが、軸方向に並ぶように、燃料棒16の図示しない被覆管内に配置されている。そして、燃料棒16は、下方端より上方へ向かい、下部燃料領域、内部ブランケット領域、上部燃料領域、上部ブランケット領域を備えている。内部ブランケット領域及び上部ブランケット領域には、ウラン濃縮時の残渣である劣化ウランが充填されており、下部燃料領域及び上部燃料領域には、使用済核燃料から抽出された超ウラン核種(TRU)を含む核燃料物質からなる燃料ペレットが配されている。最外層の燃料棒列、すなわちチャンネルボックス15の最近接部には10本の燃料棒16が配置されている。
これら燃料集合体14の下部タイプレート(図示せず)は、炉心7の下端部に配置されている図示しない炉心支持板に設けられる複数の燃料支持金具に支持される。燃料集合体14に冷却材を導く冷却材通路が燃料支持金具内に形成されており、燃料支持金具に設置されたオリフィスがその冷却材通路の入口部に配置されている。
また、図4に示されるように、制御棒1は、中心に位置するタイロッド18から外側に向かって伸びる3枚の翼を有し、これら3枚の翼が120度の間隔を持って配置されY字型の形状をなし、三角格子に配置された3体の燃料集合体14の間隙に位置するよう配されている。
ここで、制御棒1を構成する翼の構造について説明する。図5に制御棒1を構成する3枚の翼のうち1つの翼の水平断面を示す。断面U字状のシース20の一端がタイロッド18に接続され、ステンレス鋼で形成されるシース20の内部には複数の中性子吸収材管19が1列に配列されている。中性子吸収材管19内には、ボロンカーバイド(B4C)等の中性子吸収材が充填されており、中性子吸収領域を形成している。この中性子吸収領域の上部には後述する水排除領域が設けられており、水排除領域の径方向の幅は中性子吸収領域の径方向幅より大となっている。水排除領域は外力により変形可能な構造となっている。図5は、中性子吸収領域における水平断面を示しており、シース20には複数の孔が形成されており、孔を介して流入する冷却材により中性子吸収材管19を冷却可能な構造となっている。
図2に示すように、それぞれの制御棒1は原子炉圧力容器6の底部に設けられた別々の制御棒駆動装置17に連結されている。制御棒駆動装置17は、モータ駆動であり、軸方向における制御棒1の移動を微調整することができる。制御棒駆動装置17が、制御棒1の炉心7からの引き抜き、及び制御棒1の炉心7への挿入の各操作を実行する。
本発明の軽水炉5の炉心7には、上述のように中性子吸収領域の上部に水排除領域を備え制御棒1を形成し、水排除領域の径方向の幅が中性子吸収領域の径方向の幅より大であり、水排除領域が外力により変形可能な構造とすることにより、複数の燃料集合体14間の間隔が狭くなっても制御棒1の挿入性を確保しつつ、軽水などの冷却材の排除性を高め転換比を高めることが可能な軽水転換炉又は軽水増殖炉等の軽水炉を実現できる。
以下、図面を用いて、本発明の実施例である制御棒1の具体的構成について説明する。
図1に制御棒の1枚の翼の垂直断面図を示す。図1は、図5におけるB―B断面図を示している。制御棒1は、炉心7に最初に挿入される挿入端部に、軽水より減速能が小さい物質で構成された水排除領域2を設けている。水排除領域2は、径方向の幅が中性子吸収領域3の幅よりも大きく、チャンネルボックス15と水排除領域2との間に生じる力によって変形し得る構造となっている。なお、中性子吸収領域3は図5に示すシース20及び中性子吸収材管19により構成されるが、図1では省略している。図1に示されるように、チャンネルボックス15と中性子吸収領域3との間隔G1、チャンネルボックス15と水排除領域2との間隔G2との間で、0<G2/G1<1の関係が成り立つよう構成されている。
制御棒1の水排除領域2の具体的構成について説明する。図6に制御棒1の水排除領域2の詳細を示す。中性子吸収領域3の径方向の幅より大きい、シリコンカーバイド(SiC)繊維材により形成された容器21の中に、シリコンカーバイド粒子22を封入する。シリコンカーバイド繊維(例えばSiC Materialリーフレット(グンゼ株式会社)に記載されているシリコンカーバイド繊維。) は耐熱温度が高く、放射線耐性があり、化学的に安定であるなど、原子力関連用途に適した素材である。制御棒1の水排除領域2の径方向の幅を大きくすることで、隣接配置された燃料集合体14を構成するチャンネルボックス15間の間隙に存在する軽水(冷却材)をより効果的に排除することができる。そのため、水対燃料物質比を低減でき、軽水の中性子減速効果を低減することができ、転換比を高めることができる。また、制御棒1の水排除領域2が繊維状の物質で構成されているため、原子炉運転中の中性子照射などによりチャンネルボックス15が変形し、隣接配置された燃料集合体14を構成するチャンネルボックス15間の間隙が狭くなった状態を図7に示す。図7において点線矢印は冷却材としての軽水の流れを示している。図7に示されるように、チャンネルボックス15が変形すると、その変形量に応じて、シリコンカーバイド繊維材により形成された容器21の外壁へ向かう力が発生する。この力は、チャンネルボックス15と容器21の外壁との間に存在する軽水を介して容器21の外壁に作用する。このとき、容器21の外壁はチャンネルボックス15より受ける力に応じて変形する。
なお、チャンネルボックス15が仮に急激に変形した場合、容器21の外壁の一部が一時的にチャンネルボックス15の変形部と接触し、更に容器21へ向かう力(容器21の径方向中心に向かう力)により変形する。このとき容器21内に封入されたシリコンカーバイド粒子22は容器21を流動する。容器21の外壁とチャンネルボックス15の接触部には、インターナルポンプ11により加圧された冷却材としての軽水が略垂直に衝突し、容器21の外壁とチャンネルボックス15との間に微小な間隙が形成され、軽水は上方へ通流する。このように、制御棒1の水排除領域2は、チャンネルボックス15の変形に追従して変形し、且つ、チャンネルボックス15と水排除領域2との間に微小な間隙を確保することができる。したがって、本実施例によれば、燃料集合体14間の間隙が狭くなっても制御棒1の挿入性を確保しつつ、軽水の排除性を高め、転換比を高めることができる。
本実施例では、隣接配置される燃料集合体14間の間隙を、転換比を高めるため、狭めた場合を想定した。中性子吸収領域3の径方向の幅よりも水排除領域2の径方向の幅が大きくなるよう構成される本実施例の制御棒1を用いることにより、水排除領域2の水排除性を維持しつつ、隣接配置される燃料集合体14間の間隙を広げることもできる。制御棒1の中性子吸収領域3と燃料集合体14間の間隙を広くできるため、制御棒挿入性の裕度を高めること、あるいは制御棒1の中性子吸収領域3の径方向の幅を大きくできる分だけ中性子吸収材管19内に充填する中性子吸収材の量を増加でき、制御棒1の中性子吸収能(制御棒の性能)を高めることもできる。
また本実施例において、制御棒1の中性子吸収領域3の周りの軽水を積極的に排除する必要はない。なぜなら、中性子吸収領域3の機能は中性子を吸収することであって、一般に中性子は軽水により減速されて熱中性子になった方がより中性子吸収領域に吸収されやすいためである。
本実施例においては、制御棒1の水排除領域2を、シリコンカーバイド繊維により容器21を形成したが、これに限られず、耐熱性、耐圧性、耐腐食性を備え、燃料集合体14のチャンネルボックス15と制御棒1の間に働く力によって変形し得る材料であれば良く、例えばカーボン複合材などを用いても良い。
次に本発明の制御棒1の第2の実施例について図8を用いて説明する。図8において図1と同一の構成要素には同一の符号を付している。実施例1では、水排除領域2をシリコンカーバイド繊維で構成される容器21内に、シリコンカーバイド粒子22を封入する構成としたが、本実施例では、シリコンカーバイド繊維で形成される容器24の上面に開口25を設け、容器24内にシリコンカーバイド粒子22を収容することを要さない構成とした点が異なる。
図8に制御棒1の垂直断面図を示す。制御棒1の水排除領域2は、非通水性のシリコンカーバイド繊維材で形成された容器24の上面の一部に開口25を備えた構造となっている。容器24の内部には、初期状態において冷却材としての軽水が含まれている。容器24内部の軽水は、炉心7内に装荷された燃料集合体14内の燃料が核反応する際に放出するガンマ線により加熱され、蒸発する。蒸発した軽水は容器24の上部の微小な開口25より容器24外に排出される。容器24外に排出された蒸気は、炉心7の上方に配置された気水分離器8へ導入される。
シリコンカーバイド繊維材は軽水を通さないため、容器24内に新たな軽水が供給されず、また、上記のようにガンマ線により加熱され開口25より排出される蒸気の蒸気圧により、開口25を介して軽水が容器24内へ新たに流入することが抑制され、容器24内の軽水は排除される。そのため、水対燃料物質比を低減でき、軽水の中性子減速効果を低減することができ、転換比を高めることができる。
また、制御棒1の水排除領域2が繊維状の物質で構成されているため、原子炉運転中の中性子照射などによりチャンネルボックス15が変形し、燃料集合体14を構成するチャンネルボックス15との間隙が狭くなった場合でも、実施例1と同様に、チャンネルボックス15と水排除領域2の間に生じる力により、水排除領域2のシリコンカーバイド繊維により形成された容器24が変形し、制御棒1を挿入することができる。
本実施例によれば、実施例1と同様に燃料集合体14間の間隙が狭くなっても制御棒1の挿入性を確保しつつ、軽水の排除性を高め、転換比を高めることができる。また、本実施例によれば、実施例1と比較し、水排除領域2を形成する容器24内に軽水以外の物質を含まないため、簡易な構成とすることができる。
図9は、本実施例に係る制御棒1の垂直断面図である。図1と同一の構成要素には同一の符号を付している。本実施例では、実施例1で説明したシリコンカーバイド繊維で形成された容器21内に、シリコンカーバイド粒子22に加え、中実のシリコンカーバイド構造体23を備えた点が実施例1と異なる。
図9に示されるように、水排除領域2の炉心径方向中心部に、中実のシリコンカーバイド構造体23を中性子吸収領域3の上部に設け、このシリコンカーバイド構造体23の周囲に、シリコンカーバイド粒子22を封入している。シリコンカーバイド構造体23の径方向の幅(W1)は、中性子吸収領域3の径方向の幅(W2)以下としている。容器21の径方向の幅と中性子吸収領域3の径方向の幅の関係は実施例1と同様である。
本実施例によれば、実施例1と同様に、隣接配置された燃料集合体14を構成するチャンネルボックス15間の間隙の軽水をより排除することができる。そのため、水対燃料物質比を低減でき、軽水の中性子減速効果を低減することができ、転換比を高めることができる。また、制御棒1の水排除領域2がシリコンカーバイド繊維状の物質で構成されているため、原子炉運転中の中性子照射などによりチャンネルボックス15が変形し、隣接配置された燃料集合体14を構成するチャンネルボックス15間の間隙が狭くなった場合でも、チャンネルボックス15と水排除領域2の間に生じる力によって、水排除領域2のシリコンカーバイド繊維により形成された容器21の外壁が変形し、制御棒1を挿入することができる。ここで、容器21の外壁の変形可能量は、中実のシリコンカーバイド構造体23の外周面と容器21の内壁面との間隔により規定される。
シリコンカーバイド繊維は非通水性の材料であるものの、仮に、容器21を形成するシリコンカーバイド繊維の目が粗い場合、容器21の内部に冷却材としての軽水が浸透する可能性がある。本実施例は、実施例1に比べて構造が複雑になるものの、水排除領域2の炉心径方向の中心部に、中実のシリコンカーバイド構造体23を配する構成であるため、水排除領域2の中心部への軽水の侵入を防止できる。そのため軽水による中性子減速効果をより低減することができ、転換比を高めることができる。
また本実施例おいても、実施例1と同様に、水排除領域2の水排除性を維持しつつ、隣接配置される燃料集合体14間の間隙を広げることもできる。制御棒1の中性子吸収領域3と燃料集合体14間の間隙を広くできるため、制御棒挿入性の裕度を高めること、あるいは制御棒1の中性子吸収領域3の径方向の幅を大きくできる分だけ中性子吸収材管19内に充填する中性子吸収材の量を増加でき、制御棒1の中性子吸収能(制御棒の性能)を高めることもできる。
なお、本実施例においては、水排除領域2の炉心径方向の中心部に配置する中実の構造体をシリコンカーバイド製としたが、これに代えて、グラファイト製の構造体としても良い。
また、本実施例においては、制御棒1の水排除領域2を、シリコンカーバイド繊維により容器21を形成したが、これに限られず、耐熱性、耐圧性、耐腐食性を備え、燃料集合体14のチャンネルボックス15と制御棒1の間に働く力によって変形し得る材料であれば良く、例えばカーボン複合材などを用いても良い。
図10は、本実施例に係る制御棒1の垂直断面図である。図9と同一の構成要素には同一の符号を付している。実施例3では、水排除領域2の炉心径方向の中心部に中実のシリコンカーバイド構造体23を設け、その周囲を覆うようにシリコンカーバイド繊維で形成された容器21を有する構成としたが、本実施例では、容器21を、燃集合体14を構成するチャンネルボックス15に対向するよう配置した点が、実施例3と異なる。
図10に示されるように、本実施例では、中実のシリコンカーバイド構造体23の外周面と、シリコンカーバイド繊維で形成された容器21の内壁面との間に封入されるシリコンカーバイド粒子22が封入される部分が、隣接配置される燃料集合体14を構成する2つのチャンネルボックス15のいずれか一方に対向するよう配置されている。
本実施例では、実施例3と比較し、容器21に封入されるシリコンカーバイド粒子22の総量を約半減できる。容器21の外壁の変形可能量は、中実のシリコンカーバイド構造体23の外周面と容器21の内壁面との間隔のうち、一方のチャンネルボックス15に対向する側の間隔のみに制限されるものの、実施例3と同様に、水排除領域2の炉心径方向中心部に中実のシリコンカーバイド構造体23を配する構成であるため、水排除領域2の中心部への軽水の侵入を防止できる。そのため、軽水による中性子減速効果をより低減することができ、転換比を高めることができる。
なお、水排除領域2の炉心径方向中心部に配置する中実の構造体を、シリコンカーバイド製に代えて、グラファイト製としても良い。
図11は、本実施例に係る制御棒の垂直断面図である。図11において、図8及び図9と同一の構成要素に同一の符号を付している。本実施例3では、中性子吸収領域3の上部に中実のシリコンカーバイド構造体23を設け、シリコンカーバイド構造体23の周囲にシリコンカーバイド粒子22を封入する構成としたが、本実施例では、シリコンカーバイド粒子22を封入することなく、シリコンカーバイド繊維で形成される容器24の上面に開口25を設けた点が実施例3と異なる。
図11に示されるように、水排除領域2の炉心径方向中心部に、中実のシリコンカーバイド構造体23を中性子吸収領域3の上部に設け、シリコンカーバイド構造体23の径方向の幅を、中性子吸収領域3の径方向の幅以下としている。シリコンカーバイド構造体23の外周部を覆うシリコンカーバイド繊維により形成される容器24の上面の一部であって、シリコンカーバイド構造体23の上端部と重ならない位置に、開口25を設けている。
初期状態において、シリコンカーバイド構造体23の外周面と容器24の内壁面との間の空間には、軽水が含まれているものの、炉心7に装荷された燃料集合体14内の燃料が核反応する際に放出するガンマ線により容器24内の軽水は加熱され蒸発し、蒸気は開口25を介して炉心7の上方に配置された気水分離器8へ導入される。実施例2において説明したように、容器24内へ新たな軽水の流入は抑制され、容器24内の軽水は排除される。そして、隣接配置された燃料集合体14を構成するチャンネルボックス15間の間隙に容器24が配されることにより、中性子に対し減速効果を有する軽水が排除され、水対燃料物質比を低減でき、転換比を高めることができる。
本実施例によれば、原子炉運転中の中性子照射などによりチャンネルボックス15が変形し、燃料集合体14を構成するチャンネルボックス15との間隙が狭くなった場合でも、実施例2と同様に、チャンネルボックス15と水排除領域2の間に生じる力により、水排除領域2のシリコンカーバイド繊維により形成された容器24が変形し、制御棒1を挿入することができる。
また、水排除領域2を形成する容器24内に軽水以外の物質を含まないため、簡易な構成とすることがでる。
図12に、本発明の実施例に係る制御棒1の垂直断面図を示す。図11と同一の構成要素には同一の符号を付している。実施例5では、水排除領域2の炉心径方向の中心部に中実のシリコンカーバイド構造体23を設け、その周囲を覆うように、シリコンカーバイド繊維で形成された容器24を有する構成としたが、本実施例では、容器24を、燃料集合体14を構成するチャンネルボックス15に対向するよう配置した点が、実施例5と異なる。
図12に示されるように、中性子吸収領域3の上部に設けるシリコンカーバイド構造体23の径方向の幅を、中性子吸収領域3の径方向の幅以下とし容器24の上面の一部であって、シリコンカーバイド構造体23の上端部と重ならない位置に開口25を設けている。
初期状態では、シリコンカーバイド構造体23の外周面と容器24の内壁との間の空間には軽水が含まれている。容器24内に含まれる軽水は中性子を減速するものの、炉心7に装荷された燃料集合体14内の燃料が核反応する際に放出するガンマ線により加熱され蒸発し、蒸気は開口25を介して気水分離器8へ導入されることにより、容器24内の軽水は排除される。実施例5と比較して、シリコンカーバイド繊維で形成された容器24の外壁の変形可能量は、一方のチャンネルボックス15に対向する位置に配置された容器24の外壁とシリコンカーバイド構造体23の外周面との間隔のみに制限されるものの、原子炉運転中の中性子照射などによりチャンネルボックス15が変形し、燃料集合体14を構成するチャンネルボックス15との間隙が狭くなった場合でも、チャンネルボックス15と容器24の外壁との間に生じる力により、容器24が変形することで制御棒1を挿入することができる。
本実施例によれば、実施例5と同様の効果を得ることができる。なお、シリコンカーバイド構造体23に代えて、グラファイト製としても良い。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。
1…制御棒,2…水排除領域,3…中性子吸収領域,5…軽水炉,6…原子炉圧力容器,7…炉心,8…気水分離器,9…蒸気乾燥器,10…炉心シュラウド,11…インターナルポンプ,12…主蒸気配管,13…給水配管,14…燃料集合体,15…チャンネルボックス,16…燃料棒,17…制御棒駆動装置,18…タイロッド,19…中性子吸収材管,20…シース,21、24…容器,22…シリコンカーバイド粒子,25…開口,26…タービン,27…発電機,28…復水器,29…給水ポンプ
Claims (11)
- 複数の燃料棒をチャンネルボックス内に収容する燃料集合体を複数装荷する炉心に、挿入または引き抜かれる制御棒であって、
前記制御棒は、中性子吸収領域と水排除領域とを備え、
前記水排除領域の径方向の幅が、前記中性子吸収領域の径方向の幅より大きく、且つ、前記水排除領域は前記チャンネルボックスの変形に対応して変形可能に構成されることを特徴とする制御棒。 - 請求項1に記載の制御棒において、
前記中性子吸収領域は、中性子吸収材が充填された中性子吸収材管よりなり、
前記水排除領域は、前記中性子吸収領域の上部に形成され、複数のシリコンカーバイド粒子を封入する繊維材により形成された容器よりなることを特徴とする制御棒。 - 請求項1に記載の制御棒において、
前記中性子吸収領域は、中性子吸収材が充填された中性子吸収材管よりなり、
前記水排除領域は、前記中性子吸収領域の上部に形成され、非通水性の繊維材により形成された容器からなり、当該容器の上面の一部に開口を有することを特徴とする制御棒。 - 請求項2に記載の制御棒において、
前記水排除領域は、前記容器内に中実の構造体を備え、前記中実の構造体の下端部と前記中性子吸収材管の上端部が接続され、前記構造体の径方向の幅が前記中性子吸収材管の径方向の幅以下とすることを特徴とする制御棒。 - 請求項3に記載の制御棒において、
前記水排除領域は、前記容器内に中実の構造体を備え、前記中実の構造体の下端部と前記中性子吸収材管の上端部が接続され、前記構造体の径方向の幅が前記中性子吸収材管の径方向の幅以下とし、前記容器の開口は、前記中実の構造体の上端面と重ならない位置に形成されることを特徴とする制御棒。 - 請求項2ないし請求項5のいずれか1項に記載の制御棒において、
前記繊維材は、シリコンカーバイド繊維またはカーボン複合材であることを特徴とする制御棒。 - 核燃料物質を含む複数の燃料棒をチャンネルボックス内に収容する燃料集合体と、前記燃料集合体を複数装荷し、前記複数の燃料集合体間に挿入または引き抜かれる制御棒を有する軽水炉の炉心であって、
前記制御棒は、中性子吸収領域と水排除領域とを備え、
前記水排除領域の径方向の幅が、前記中性子吸収領域の径方向の幅より大きく、且つ、前記水排除領域は前記チャンネルボックスの変形に対応して変形可能に構成されることを特徴とする軽水炉の炉心。 - 請求項7に記載の軽水炉の炉心において、
前記燃料集合体は、水平断面が六角形状の筒状体であるチャンネルボックス内に前記複数の燃料棒を三角格子に配置して収容し、
前記制御棒は、前記複数のチャンネルボックス間の間隙に挿入または引き抜き可能に配置され、
前記制御棒の水排除領域が、前記複数のチャンネルボックス間の間隙に挿入されることにより、前記複数のチャンネルボックス間の軽水量を低減することを特徴とする軽水炉の炉心。 - 請求項8に記載の軽水炉の炉心において、
前記複数のチャンネルボックス間の間隙に位置する前記制御棒の水排除領域は、前記燃料集合体の核反応により生じる中性子の照射による前記チャンネルボックスの変形に対応して変形することを特徴とする軽水炉の炉心。 - 請求項9に記載の軽水炉の炉心において、
前記制御棒の中性子吸収領域は、中性子吸収材が充填された中性子吸収材管よりなり、
前記制御棒の水排除領域は、前記中性子吸収領域の上部に形成され、複数のシリコンカーバイド粒子を封入する繊維材により形成された容器よりなり、
前記チャンネルボックスの変形に対応して前記容器が変形することを特徴とする軽水炉の炉心。 - 請求項9に記載の軽水炉の炉心において、
前記制御棒の中性子吸収領域は、中性子吸収材が充填された中性子吸収材管よりなり、
前記制御棒の水排除領域は、前記中性子吸収領域の上部に形成され、非通水性の繊維材により形成された容器からなり、当該容器の上面の一部に開口を有し、
前記容器内の軽水は、前記燃料集合体の核反応によるガンマ線の照射により加熱され蒸発し、前記開口を介して容器外に排出されることを特徴とする軽水炉の炉心。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/084663 WO2015097782A1 (ja) | 2013-12-25 | 2013-12-25 | 制御棒及びそれを用いた軽水炉の炉心 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/084663 WO2015097782A1 (ja) | 2013-12-25 | 2013-12-25 | 制御棒及びそれを用いた軽水炉の炉心 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015097782A1 true WO2015097782A1 (ja) | 2015-07-02 |
Family
ID=53477723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/084663 WO2015097782A1 (ja) | 2013-12-25 | 2013-12-25 | 制御棒及びそれを用いた軽水炉の炉心 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015097782A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110752044A (zh) * | 2019-11-21 | 2020-02-04 | 中国核动力研究设计院 | 一种内部通水的控制棒 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5385295A (en) * | 1977-01-05 | 1978-07-27 | Hitachi Ltd | Control rod |
JPH1123765A (ja) * | 1997-05-09 | 1999-01-29 | Toshiba Corp | 原子炉の炉心 |
JP2004257733A (ja) * | 2003-02-24 | 2004-09-16 | Toshihisa Shirakawa | 十字型制御棒沸騰水型原子炉の炉心 |
JP2011058865A (ja) * | 2009-09-08 | 2011-03-24 | Hitachi-Ge Nuclear Energy Ltd | 原子炉用制御棒 |
-
2013
- 2013-12-25 WO PCT/JP2013/084663 patent/WO2015097782A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5385295A (en) * | 1977-01-05 | 1978-07-27 | Hitachi Ltd | Control rod |
JPH1123765A (ja) * | 1997-05-09 | 1999-01-29 | Toshiba Corp | 原子炉の炉心 |
JP2004257733A (ja) * | 2003-02-24 | 2004-09-16 | Toshihisa Shirakawa | 十字型制御棒沸騰水型原子炉の炉心 |
JP2011058865A (ja) * | 2009-09-08 | 2011-03-24 | Hitachi-Ge Nuclear Energy Ltd | 原子炉用制御棒 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110752044A (zh) * | 2019-11-21 | 2020-02-04 | 中国核动力研究设计院 | 一种内部通水的控制棒 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0856852A1 (en) | Reactor core for a light water cooled reactor and control rod | |
US20180330832A1 (en) | Annular nuclear fuel pellets with discrete burnable absorber pins | |
US3809610A (en) | Nuclear fuel assembly with bypass coolant control | |
JP2018066690A (ja) | 燃料集合体及びそれを装荷する沸騰水型原子炉の炉心 | |
US3166481A (en) | Heterogeneous nuclear power reactor core structure | |
JP6503188B2 (ja) | 原子炉炉心及び燃料集合体装荷方法 | |
JP6652821B2 (ja) | 沸騰水型原子炉 | |
WO2015097782A1 (ja) | 制御棒及びそれを用いた軽水炉の炉心 | |
JP7316232B2 (ja) | 燃料集合体 | |
EP0480702B1 (en) | Nuclear fuel assembly comprising a water-by-pass tube | |
KR100898114B1 (ko) | 유로구멍에 삽입되는 돌출형 이물질여과용 지지격자 | |
JP6345481B2 (ja) | 燃料集合体、炉心、及び燃料集合体の作成方法 | |
EP3457414B1 (en) | Fuel assembly and nuclear reactor core loaded with same | |
JP4558477B2 (ja) | 沸騰水型原子炉の燃料集合体 | |
JP6965200B2 (ja) | 燃料集合体 | |
JP6670133B2 (ja) | 燃料集合体及び原子炉の炉心 | |
JP7437258B2 (ja) | 燃料集合体 | |
JP7212644B2 (ja) | 沸騰水型原子炉 | |
US10957457B2 (en) | MOX fuel assembly | |
JP5361964B2 (ja) | 原子炉の初装荷炉心 | |
KR20170060090A (ko) | 가압수형 원자로 연료 집합체 | |
JP2021012116A (ja) | 燃料集合体 | |
JP2016176719A (ja) | 正方形沸騰水型原子炉 | |
JP6238676B2 (ja) | 燃料集合体および炉心 | |
JP2020118526A (ja) | 燃料集合体および軽水炉の炉心 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13900489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13900489 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |