WO2015096762A1 - 基站天线线缆 - Google Patents

基站天线线缆 Download PDF

Info

Publication number
WO2015096762A1
WO2015096762A1 PCT/CN2014/094901 CN2014094901W WO2015096762A1 WO 2015096762 A1 WO2015096762 A1 WO 2015096762A1 CN 2014094901 W CN2014094901 W CN 2014094901W WO 2015096762 A1 WO2015096762 A1 WO 2015096762A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
shielding metal
metal layer
base station
station antenna
Prior art date
Application number
PCT/CN2014/094901
Other languages
English (en)
French (fr)
Inventor
宁明艳
王政东
孔浩
郭朝阳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015096762A1 publication Critical patent/WO2015096762A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a base station antenna cable.
  • the built-in remote electric tilt (RET) base station antenna has been more widely used in the base station.
  • the cable used in the built-in RET base station antenna requires good Electromagnetic Compatibility (EMC) and passive intermodulation (PIM) capability.
  • the cable used in the built-in RET base station antenna is a plurality of multi-core wires wrapped by a tubular outer skin, wherein the outer skin includes a copper woven mesh layer, a shield aluminum foil layer and a polyvinyl chloride (Polyvinyl) from the inside to the outside.
  • Chloride, PVC) layer, and copper woven mesh layer is also connected with a grounding terminal to reduce electromagnetic interference and improve EMC performance by grounding it, but the use of copper woven mesh has caused more serious PIM problems.
  • the invention provides a base station antenna cable to avoid the PIM deterioration problem of the base station antenna whole machine caused by the antenna cable, and to ensure the anti-electromagnetic interference performance.
  • the present invention provides a base station antenna cable, including a cable tube and at least one multi-core wire disposed in the cable tube, the cable tube including a shielding metal layer and a sheath coated on the outer side of the shielding metal layer
  • the shielding metal layer includes a metal film layer and an insulating layer respectively covering the both surfaces of the metal film layer.
  • the cable tube is composed of at least two shielding metal layers; the Nth shielding metal layer is coated on the outer side of the N-1 shielding metal layer The outer skin is coated on the outer side of the Nth layer shielding metal layer, wherein N is a positive integer and N ⁇ 2.
  • the metal film layer is an aluminum foil layer, and the two sides of the aluminum foil layer are respectively fixedly covered with the insulating layer.
  • the insulating layer and the aluminum foil layer are further bonded and fixed by an adhesive layer.
  • the shielding metal layer has a thickness of 0.07 mm and the insulating layer has a thickness of 0.015 mm.
  • the outer surface of the shielding metal layer is further covered with a plastic film, the plastic film is located in the shielding Between the metal layer and the outer skin.
  • the outer surface of each of the shielding metal layers is further coated with a plastic film
  • the plastic film coated on the outermost surface of the shielding metal layer is located between the outermost shielding metal layer and the outer skin, and the plastic film covering the outer surface of the N-1 layer of the shielding metal layer is located
  • the Nth layer is between the shielding metal layer and the N-1th layer of the shielding metal layer, wherein N is a positive integer and N ⁇ 2.
  • a seventh possible implementation of the first aspect on the inner surface of the cable tube, and in the A filling layer is further disposed between the shielding metal layer and the at least one multi-core wire.
  • the filling layer is a PVC round tube layer covering the inner side of the cable tube, and each of the multi-core wires The outer surfaces are respectively tangent to the cylindrical inner surface of the packed layer.
  • the multi-core wire includes at least one copper wire and an insulation covering the at least one copper wire.
  • the base station antenna cable provided by the present invention can shield the PIM caused by the nonlinear contact between the multi-core wires inside the cable by using the shielding metal layer covered with the insulating layer on both sides, thereby avoiding the PIM in the cable. Interfering with the base station antenna to work normally, effectively avoiding the PIM problem caused by the antenna, and the cable also has good EMC performance, ensuring its ability to resist electromagnetic interference.
  • FIG. 1 is a schematic cross-sectional structural view of a base station antenna cable according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional structural diagram of a base station antenna cable according to another embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing the shield metal layer of Figure 1 or Figure 2;
  • Fig. 4 is a cross-sectional view showing the state of use of the base station antenna cable shown in Fig. 1.
  • FIG. 1 is a schematic cross-sectional view of a base station antenna cable according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the shield metal layer of FIG. 1 or FIG.
  • the embodiment provides a base station antenna cable, including a cable tube 1 and at least one multi-core cable 2 disposed in the cable tube 1.
  • the cable tube 1 includes a shielding metal layer 11 and The outer sheath 10 is coated on the outer side of the shield metal layer 11; the shield metal layer 11 includes a metal film layer 110, and an insulating layer 112 covering the both sides of the metal thin film layer 110, respectively, and may further include an adhesive layer 113.
  • the cable tube 1 may have a cylindrical shape, and a hollow cavity is formed therein, and one or more multi-core wires 2 may pass through a cavity inside the cable tube 1; the outermost layer of the cable tube 1 is an insulating material.
  • the outer skin 10 made of PVC is a single layer or two or more layers of the shielding metal layer 11, wherein the shielding metal layer may include one or more layers; when the shielding metal layer 11 is more than two layers, the Nth layer shielding metal layer 11 is coated on the outer side of the N-1 layer shielding metal layer 11, and the outer skin 10 is wrapped on the outer side of the Nth layer shielding metal layer 11, N is a positive integer, N ⁇ 2.
  • the cable tube 1 is the first layer of the shielding metal layer 11, the second layer of the shielding metal layer 11, and the outer layer 10 from the inside to the outside, and the first layer of the shielding metal layer 11 is surrounded.
  • the second layer of the shielding metal layer 11 is sleeved outside the first layer of the shielding metal layer 11 and fixed, and the outer skin 10 is sleeved and fixed outside the second layer of the shielding metal layer 11 .
  • the cable tube 1 is the first layer of the shielding metal layer 11, the second layer of the shielding metal layer 11, the third layer of the shielding metal layer 11, and the outer layer 10 from the inside to the outside;
  • the first layer of the shielding metal layer 11 encloses the cavity, the second layer of the shielding metal layer 11 is sleeved outside the first layer of the shielding metal layer 11 and fixed, and the third layer of the shielding metal layer 11 is sleeved in the second layer of the shielding layer Metal layer 11, outer skin 10 It is provided and fixed outside the second layer of the shielding metal layer 11.
  • the number of the shielding metal layers 11 may be more.
  • the position and the connection relationship between the shielding metal layers 11 are similar to those of the above two layers and three layers.
  • the embodiment will be shielded by two layers.
  • the metal layer 11 is described in detail as an example, but is not intended to limit the technical solution of the present invention.
  • the metal thin film layer 110 in the shielding metal layer 11 may be a copper foil or an aluminum foil; the shielding metal layer 11 and the outer skin 10, and the adjacent shielding metal layer 11 may be relatively fixed by bonding or the like to form an integrated type. Cable tube 1.
  • the multi-core wire 2 may also include at least one copper wire and an insulation covering the outside of at least one copper wire, and the number of the multi-core wires 2 in each cable tube 1 may be determined according to a specific use scenario.
  • the base station antenna cable provided in this embodiment can be used for signal transmission between a base station antenna and an internal component of a RET or RET in a built-in RET base station antenna, and can of course be used in other scenarios where a signal needs to be transmitted.
  • the base station antenna cable provided in this embodiment shields the PIM caused by the nonlinear contact between the multi-core wires inside the cable by using a shielding metal layer covered with an insulating layer on both sides, thereby avoiding PIM in the cable. Interfering with the base station antenna to work normally, effectively avoiding the PIM problem caused by the antenna, and the cable also has good EMC performance, ensuring its ability to resist electromagnetic interference.
  • FIG. 2 is a schematic structural diagram of a cross section of a base station antenna cable according to another embodiment of the present invention.
  • This embodiment further adds a filling layer on the basis of the first embodiment.
  • a filling layer 14 is further disposed on the inner surface of the cable tube 1 and between the shielding metal layer 11 and the multi-core 2 . That is, the innermost layer of the cable tube 1 is the filling layer 14, and the filling layer 14 may be a PVC round tube layer covering the inner side of the cable tube 1, and each shielding metal layer 11 may be wrapped outside the filling layer 14 in turn.
  • the outer skin 10 is wrapped around the outermost shielding metal layer 11; and the outer surfaces of the respective multi-core wires are respectively tangential to the cylindrical inner surface of the filling layer 14.
  • the inner diameter of the filling layer 14 can be determined by the number and size of the multi-core wires 2 disposed therein to ensure that all the multi-core wires can be accommodated in the inner cavity enclosed by the cylindrical filling layer 14 to enable the filling layer 14 wrapped in at least two multi-core wires 2, the outer surfaces of the multi-core wires 2 are just tangent to the cylindrical inner surface of the filling layer 14, respectively, and the multi-core wires 2 are also abutted together, thereby The relative positions of the multi-core wires 2 are more certain, and the direct contact state of the different multi-core wires 2 is also more Stable to reduce the occurrence of nonlinear contact, reducing the possibility of PIM generated from the source.
  • each of the shielding metal layers 11 may be separately coated with a plastic film 13, which may be a polyethylene terephthalate (PET) film, and the PET film.
  • PET polyethylene terephthalate
  • the thickness can be 0.02 mm to prevent damage of the shield metal layer 11, further ensuring the reliability of the shielding performance.
  • the cable tube 1 is composed of an N-layer shielding metal layer, wherein N ⁇ 1, and each shielding metal layer 11 may include a metal thin film layer 110, respectively.
  • an insulating layer 112 covering the both sides of the metal thin film layer 110, that is, each of the shielding metal layers 11 may be composed of a cylindrical metal thin film layer and a surface formed on the inner surface of the cylindrical metal thin film layer 110.
  • the insulating layer 112 is composed of another insulating layer 112 formed on the outer surface of the metal thin film layer 110.
  • the metal thin film layer 110 may be an aluminum foil layer
  • the insulating layer 112 may be a polyester layer
  • the aluminum foil layer in the middle of the double-sided aluminum foil is used as the metal.
  • the film layer 110 and the polyester layers on both sides serve as the insulating layer 112.
  • the shielding metal layer is formed by using the metal thin film layer and the two insulating layers, thereby effectively improving the bending resistance of the shielding metal layer, preventing damage of the shielding metal layer during wiring or use, and effectively avoiding the antenna cable.
  • the PIM interference is generated to the base station RET as a whole, and the EMC capability of the antenna cable is ensured.
  • the shielding metal layer 11 may be a one-piece cylindrical structure, or, for the convenience of processing, a strip-shaped double-sided aluminum foil (the middle is an aluminum foil layer, and the both sides are covered with a polyester layer) may be wound.
  • a strip-shaped double-sided aluminum foil (the middle is an aluminum foil layer, and the both sides are covered with a polyester layer) may be wound.
  • Forming the metal shielding layer 11; in particular, the double-sided aluminum foil may be spirally wound on the outer side of the cylindrical filling layer 14 until the double-sided aluminum foil covers the entire filling layer 14, thereby forming the shielding metal layer 11, and further
  • the side of the double-sided aluminum foil facing the filling layer 14 is also covered with adhesive glue, so that the fixing of the shielding metal layer 11 can be completed while winding the double-sided aluminum foil; similarly, it can be outside the shielding metal layer 11 which has been wound.
  • the double-sided aluminum foil is wound again to form the next layer of the shield metal layer 11.
  • the use of the winding method to form the shielding metal layer is convenient and can significantly reduce the manufacturing cost of the base station antenna cable; in addition, due to the good bending resistance of the double-sided aluminum foil, the winding metal layer can be effectively ensured during winding.
  • the aluminum foil layer is not damaged, thereby effectively ensuring that the PIM generated inside the antenna cable of the base station is shielded inside, thereby avoiding interference to the working site of the base station antenna.
  • the insulating layer 112 and the aluminum foil layer may be bonded and fixed by the adhesive layer 113. That is, in the shielding metal layer 11, the insulating layer 112 may be respectively bonded by adhesive bonding. On both side surfaces of the metal thin film layer 110.
  • the thickness of the shield metal layer 11 is 0.07 mm
  • the thickness of the insulating layer 112 may be 0.015 mm
  • the thickness of the adhesive layer 113 may be 0.002 mm.
  • the above thickness values are examples of the specific thickness values of the present invention, which are only preferred embodiments, and those skilled in the art are directed to the determined thickness values within the allowable deviation of the values. Other thickness values are taken, and the same or similar effects can be obtained within the tolerances without departing from the scope of the technical solutions of the embodiments of the present invention.
  • the required cables of the above embodiments may be disposed in the same cable sleeve according to specific requirements (as shown in the figure). 4)) for easy installation or replacement.

Landscapes

  • Insulated Conductors (AREA)

Abstract

一种基站天线线缆。该基站天线线缆包括线缆管(1)及设置于所述线缆管内的至少一个多芯线(2),线缆管(1)包括屏蔽金属层(11)和包覆在所述屏蔽金属层外的外皮(10);屏蔽金属层(11)包括金属膜层(110)、以及分别覆盖在所述金属薄膜层(110)两侧表面的绝缘层(112)。该线缆在具备良好的EMC性能下,同时可良好规避其自身对基站天线以及其它基站系统的PIM影响。

Description

基站天线线缆
本申请要求了2013年12月25日提交的、申请号为201320863459.5、实用新型名称为“基站天线线缆”的中国申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种基站天线线缆。
背景技术
随着基站天线的频段的增多,内置远程电调系统(Remote electric tilt,RET)基站天线在基站中得到了更普遍的应用。内置RET基站天线所使用的线缆,要求具有良好的电磁兼容性(Electro Magnetic Compatibility,EMC)和抗无源互调(passive intermodulation,PIM)能力。
现有技术中,内置RET基站天线所使用的线缆为由管状外皮包裹的多个多芯线,其中,外皮由内到外依次包括铜质编织网层、屏蔽铝箔层和聚氯乙烯(Polyvinyl chloride,PVC)层,且铜质编织网层还连接有接地端子,以通过将其接地来降低电磁干扰、提升EMC性能,但是铜质编织网的使用,却引发了更严重的PIM问题。
发明内容
本发明提供一种基站天线线缆,以规避天线线缆引发的基站天线整机的PIM恶化问题,同时保证抗电磁干扰性能。
一方面,本发明提供一种基站天线线缆,包括线缆管及设置于该线缆管内的至少一个多芯线,该线缆管包括屏蔽金属层和包覆在该屏蔽金属层外侧的外皮;该屏蔽金属层包括金属膜层、以及分别覆盖在该金属薄膜层两侧表面的绝缘层。
结合第一方面,在第一方面的第一种可能的实现方式中,该线缆管由至少两层屏蔽金属层组成;第N层屏蔽金属层包覆在第N-1层屏蔽金属层外侧,该外皮包覆在该第N层屏蔽金属层外侧,其中,N为正整数,N≥2。
结合第一种可能的实现方式,在第一方面的第二种可能的实现方式中,该金属膜层为铝箔层,该铝箔层的两侧表面分别固定覆盖有该绝缘层。
结合第一种可能的实现方式,在第一方面的第三种可能的实现方式中,该绝缘层和该铝箔层之间还通过粘结胶层粘接固定。
结合第一方面的第一种或第二种可能的实现方式,在第一方面的第四种可能实现方式中,该屏蔽金属层的厚度为0.07mm,该绝缘层的厚度为0.015mm。
结合第一方面、或结合第一方面的第一种可能的实现方式,在第一方面的第五种可能实施方式中,该屏蔽金属层外表面还包覆有塑料膜,该塑料膜位于屏蔽金属层和该外皮之间。
结合第一方面、或结合第一方面的第二种或第三种可能的实现方式,在第一方面的第六种可能实施方式中,每个该屏蔽金属层外表面还包覆有塑料膜,包覆在最外层该屏蔽金属层外表面的该塑料膜位于最外层该屏蔽金属层和该外皮之间,包覆在第N-1层该屏蔽金属层外表面的该塑料膜位于第N层该屏蔽金属层和第N-1层该屏蔽金属层之间,其中,N为正整数,N≥2。
结合第一方面、或结合第一方面的第一种或第二种或第三种可能的实现方式,在第一方面的第七种可能实施方式中,在该线缆管内表面、且在该屏蔽金属层与该至少一个多芯线之间还设置有填充层。
结合第一方面的第七种可能的实现方式,在第一方面的第八种可能实施方式中,该填充层为覆盖在该线缆管内侧的PVC圆管层,且各该多芯线的外表面分别与该填充层的圆柱状的内表面相切。
结合第一方面,在第一方面的第九种可能的实现方式中,该多芯线包括至少一根铜丝,以及包覆在该至少一根铜丝外的绝缘皮。
本发明提供的基站天线线缆,通过采用由两侧均覆盖有绝缘层的屏蔽金属层,可以将各多芯线之间非线性接触引发的PIM屏蔽在线缆内部,避免线缆内的PIM干扰基站天线正常工作,有效规避了天线引发的PIM问题,而且,该线缆还具备良好EMC性能,保证了其抵抗电磁干扰的能力。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的基站天线线缆断面结构示意图;
图2为本发明另一实施例提供的基站天线线缆断面结构示意图;
图3为图1或图2中屏蔽金属层的剖切面示意图;
图4为图1所示的基站天线线缆的使用状态断面图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
实施例一
图1为本发明实施例提供的基站天线线缆断面结构示意图;图3为图1或图2中屏蔽金属层的剖切面示意图。请参照图1和图3,本实施例提供一种基站天线线缆,包括线缆管1及设置于线缆管1内的至少一个多芯线2,线缆管1包括屏蔽金属层11和包覆在屏蔽金属层11外侧的外皮10;屏蔽金属层11包括金属膜层110、以及分别覆盖在金属薄膜层110两侧表面的绝缘层112,还可包括粘结胶层113。
线缆管1可以呈圆筒状,其内部形成中空的空腔,一个或多个多芯线2可以穿设于线缆管1内部的空腔中;线缆管1最外层为绝缘材料PVC制成的外皮10,内部为单层或两层以上的屏蔽金属层11,其中屏蔽金属层可以包括一层或多层;当屏蔽金属层11为两层以上时,第N层屏蔽金属层11包覆在第N-1层屏蔽金属层11外侧,外皮10包覆在第N层屏蔽金属层11外侧,N为正整数,N≥2。
例如,当屏蔽金属层11为2层时,线缆管1由内至外依次为第1层屏蔽金属层11、第2层屏蔽金属层11及外皮10,第1层屏蔽金属层11围成上述用于容置多芯线2的空腔,第2层屏蔽金属层11套设在第一层屏蔽金属层11外并固定,外皮10则套设并固定在第2层屏蔽金属层11外。又例如,当屏蔽金属层为3层时,线缆管1由内至外依次为第1层屏蔽金属层11、第2层屏蔽金属层11、第三层屏蔽金属层11及外皮10;此时,第1层屏蔽金属层11围成上述空腔,第2层屏蔽金属层11套设在第1层屏蔽金属层11外并固定,第3层屏蔽金属层11套设在第2层屏蔽金属层11,外皮10则套 设并固定在第2层屏蔽金属层11外。
需要说明的是,屏蔽金属层11的数量可以更多,各屏蔽金属层11之间的位置和连接关系与上述2层、3层的结构类似,为便于说明,本实施例将以两层屏蔽金属层11为例进行详细说明,但并不是对本发明技术方案的限制。
屏蔽金属层11中的金属薄膜层110可以采用铜箔或铝箔;屏蔽金属层11和外皮10之间、以及相邻屏蔽金属层11之间可以采用粘接等方式相对固定,以形成一体型的线缆管1。
多芯线2也可包括至少一根铜丝,以及包覆在至少一根铜丝外的绝缘皮,而每个线缆管1内的多芯线2的数量则可以根据具体使用场景确定。
本实施例提供的基站天线线缆可用于内置RET基站天线中基站天线与RET或RET内部元件之间的信号传输,当然也可以用于其它需要传输信号的场景中。
本实施例提供的基站天线线缆,通过采用由两侧均覆盖有绝缘层的屏蔽金属层,将各多芯线之间非线性接触引发的PIM屏蔽在线缆内部,避免线缆内的PIM干扰基站天线正常工作,有效规避了天线引发的PIM问题,而且,该线缆还具备良好EMC性能,保证了其抵抗电磁干扰的能力。
实施例二
图2为本发明另一实施例提供的基站天线线缆断面结构示意图。本实施例在实施例一的基础上,还增加了填充层。请参照图2,在本实施例提供的线缆管中,在线缆管1的内表面、且在屏蔽金属层11与多芯线2之间还设置有填充层14。即,线缆管1的最内层为该填充层14,该填充层14可以为覆盖在线缆管1内侧的PVC圆管层,各屏蔽金属层11可依次包裹在该填充层14外侧,外皮10则包裹在最外侧的屏蔽金属层11外侧;同时各多芯线的外表面可分别与填充层14的圆柱状的内表面相切。
其中,该填充层14的内径可以与其内设置的多芯线2的数量和尺寸确定,以保证圆筒状的填充层14围成的内部空腔内可以容纳所有多芯线,可使填充层14包裹在至少两个多芯线2外,各多芯线2的外表面刚好分别与填充层14的圆柱状的内表面相切,同时各多芯线2之间也抵靠在一起,从而使得各多芯线2的相对位置更为确定,不同多芯线2直接的接触状态也更 稳定,以减小非线性接触的产生,从源头上降低了产生的PIM的可能。
进一步地,如图2所示,各屏蔽金属层11外还可分别包覆有塑料膜13,该塑料膜13可以为聚对苯二甲酸乙二酯(polyethylene terephthalate,PET)膜,该PET膜的厚度可以为0.02mm,防止屏蔽金属层11受损,进一步保证屏蔽性能的可靠性。
实施例三
图3为图1或图2中屏蔽金属层的剖切面示意图。本实施例以双面铝箔作为屏蔽金属层为例进一步详细说明本发明的技术方案。具体地,请参照图2和图3,在本实施例中,线缆管1有N层屏蔽金属层组成,其中N≥1,且每个屏蔽金属层11可分别包括金属薄膜层层110,以及分别覆盖在金属薄膜层110两侧表面的绝缘层112,即每个屏蔽金属层11都可以由圆筒状的金属薄膜层、和形成于该圆筒状的金属薄膜层110内侧表面的一个绝缘层112、形成于金属薄膜层110外侧表面的另一个绝缘层112组成,其中,金属薄膜层110可以为铝箔层,绝缘层112可以为聚酯层;采用双面铝箔中间的铝箔层作为金属薄膜层110、两侧的聚酯层作为绝缘层112。
本实施例通过采用中由金属薄膜层和两绝缘层形成屏蔽金属层,可以有效提高屏蔽金属层的抗折弯能力,防止在布线或使用过程中屏蔽金属层发生损坏,有效避免了天线线缆对基站RET整体产生PIM干扰,且保证了天线线缆的EMC能力。
本实施例中,屏蔽金属层11可以为一体式的圆筒状结构,或者,为了便于加工,也可以采用带状的双面铝箔(中间为铝箔层、两侧表面覆盖有聚酯层)缠绕形成金属屏蔽层11;具体而言,可以将双面铝箔以螺旋方式缠绕在筒状的填充层14外侧上,直至双面铝箔覆盖住整个填充层14即形成了屏蔽金属层11,更进一步地,还使双面铝箔朝向填充层14的一面布满粘接胶,这样在缠绕双面铝箔的同时还可完成屏蔽金属层11的固定;类似地,可以在已缠绕形成的屏蔽金属层11外侧再缠绕双面铝箔以形成下一层屏蔽金属层11。采用这种缠绕方式形成屏蔽金属层方便易行,且可以显著降低基站天线线缆的制造成本;另外,由于双面铝箔的良好抗弯折能力,还能有效保证缠绕形成屏蔽金属层的过程中铝箔层不会受损,进而有效保证了基站天线线缆内部产生的PIM被屏蔽在内部,避免对基站天线工作现场产生干扰。
进一步地,绝缘层112和铝箔层(金属薄膜层110)之间还可以通过粘结胶层113粘接固定,也就是说,屏蔽金属层11中,绝缘层112可以分别通过粘接胶粘接在金属薄膜层110两侧表面上。
优选地,当屏蔽金属层11的厚度为0.07mm时,绝缘层112的厚度可以为0.015mm,粘接胶层113的厚度可以为0.002mm。对上述厚度数值需要说明的是,本实用性新型对具体厚度数值所进行的举例,仅为优选地实施方式,所属技术领域的技术人员针对该确定的厚度数值,在该数值容许的偏差内所取其它厚度数值,且在该容许偏差内可以得到相同或相似的效果,本质未脱离本发明各实施例技术方案所保护的范围。
需要说明的是,前述各实施例提供的基站天线线缆在使用时,可以根据具体需求,将所需的数根如上实施例所述的线缆穿设于同一线缆套管中(如图4所示),以方便安装或更换。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种基站天线线缆,所述基站天线线缆包括线缆管及设置于所述线缆管内的至少一个多芯线,其特征在于,所述线缆管包括屏蔽金属层和包覆在所述屏蔽金属层外侧的外皮;所述屏蔽金属层包括金属膜层、以及分别覆盖在所述金属薄膜层两侧表面的绝缘层。
  2. 根据权利要求1所述的基站天线线缆,其特征在于,所述屏蔽金属层为至少两层;第N层屏蔽金属层包覆在第N-1层屏蔽金属层外侧,所述外皮包覆在所述第N层屏蔽金属层外侧,其中,N为正整数,N≥2。
  3. 根据权利要求1或2所述的基站天线线缆,其特征在于,所述金属膜层为铝箔层,所述铝箔层的两侧表面分别固定覆盖有所述绝缘层。
  4. 根据权利要求3所述的基站天线线缆,其特征在于,所述绝缘层和所述铝箔层之间通过粘结胶层粘接固定。
  5. 根据权利要求1或2所述的基站天线线缆,其特征在于,所述屏蔽金属层的厚度约为0.07mm,所述绝缘层的厚度约为0.015mm。
  6. 根据权利要求1所述的基站天线线缆,其特征在于,所述屏蔽金属层外表面还包覆有塑料膜,所述塑料膜位于屏蔽金属层和所述外皮之间。
  7. 根据权利要求2-3任一项所述的基站天线线缆,其特征在于,每个所述屏蔽金属层外表面还包覆有塑料膜,包覆在最外层所述屏蔽金属层外表面的所述塑料膜位于最外层所述屏蔽金属层和所述外皮之间,包覆在第N-1层所述屏蔽金属层外表面的所述塑料膜位于第N层所述屏蔽金属层和第N-1层所述屏蔽金属层之间,其中,N为正整数,N≥2。
  8. 根据权利要求1-3任一所述的基站天线线缆,其特征在于,在所述线缆管内表面、且在所述屏蔽金属层与所述至少一个多芯线之间还设置有填充层。
  9. 根据权利要求8所述的基站天线线缆,其特征在于,所述填充层为覆盖在所述线缆管内侧的聚氯乙烯PVC圆管层,且各所述多芯线的外表面分别与所述填充层的圆柱状的内表面相切。
  10. 根据权利要求1所述的基站天线线缆,其特征在于,所述多芯线包括至少一根铜丝,以及包覆在所述至少一根铜丝外的绝缘皮。
PCT/CN2014/094901 2013-12-25 2014-12-25 基站天线线缆 WO2015096762A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320863459.5 2013-12-25
CN201320863459.5U CN203812644U (zh) 2013-12-25 2013-12-25 基站天线线缆

Publications (1)

Publication Number Publication Date
WO2015096762A1 true WO2015096762A1 (zh) 2015-07-02

Family

ID=51451366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/094901 WO2015096762A1 (zh) 2013-12-25 2014-12-25 基站天线线缆

Country Status (2)

Country Link
CN (1) CN203812644U (zh)
WO (1) WO2015096762A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696176A (zh) * 2021-07-21 2021-11-26 国家石油天然气管网集团有限公司 一种输油场站防爆轮式巡检机器人远程控制装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203812644U (zh) * 2013-12-25 2014-09-03 华为技术有限公司 基站天线线缆
CN108922659A (zh) * 2018-08-16 2018-11-30 张家港特恩驰电缆有限公司 一种屏蔽带及具有其的非屏蔽线缆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201514795U (zh) * 2009-10-23 2010-06-23 天津有容蒂康通讯技术有限公司 一种移动基站防盗型电源线
CN102117678A (zh) * 2009-12-10 2011-07-06 住友电气工业株式会社 多芯电缆
CN203013294U (zh) * 2012-12-07 2013-06-19 江苏东强股份有限公司 高速铁路特种信号电缆
CN203812644U (zh) * 2013-12-25 2014-09-03 华为技术有限公司 基站天线线缆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201514795U (zh) * 2009-10-23 2010-06-23 天津有容蒂康通讯技术有限公司 一种移动基站防盗型电源线
CN102117678A (zh) * 2009-12-10 2011-07-06 住友电气工业株式会社 多芯电缆
CN203013294U (zh) * 2012-12-07 2013-06-19 江苏东强股份有限公司 高速铁路特种信号电缆
CN203812644U (zh) * 2013-12-25 2014-09-03 华为技术有限公司 基站天线线缆

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696176A (zh) * 2021-07-21 2021-11-26 国家石油天然气管网集团有限公司 一种输油场站防爆轮式巡检机器人远程控制装置

Also Published As

Publication number Publication date
CN203812644U (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
US8981216B2 (en) Cable assembly for communicating signals over multiple conductors
JP2010218741A (ja) 高速差動ケーブル
JP5999062B2 (ja) 差動信号伝送用ケーブル
JP5277661B2 (ja) 遮蔽層付きケーブル
WO2015096762A1 (zh) 基站天线线缆
US20230013560A1 (en) Electric cable
TWM572563U (zh) 芯線組及使用該芯線組的線纜
JP2006173044A (ja) 金属遮蔽電線
TWM616744U (zh) 線纜
KR101429053B1 (ko) 누설 동축 케이블
JP2012109128A (ja) レゾルバ用シールドケーブル
US20170243676A1 (en) Cable
JP2015130276A (ja) シールド電線
CN111834035A (zh) 一种具有z型屏蔽层的电缆
JP2012151049A (ja) ケーブル、及び、その製造方法
JP2008147476A (ja) シールド部材及びそのシールド部材を有したワイヤハーネス
CN107331467B (zh) 一种计算机用屏蔽电缆
JP5644894B2 (ja) 不連続導体遮蔽テープを用いた遮蔽層付きケーブル、及びそれを用いたモジュラープラグ付きコード
CN207692290U (zh) 复合金属层屏蔽材料及使用该屏蔽材料的屏蔽线缆
JP2009272210A (ja) ケーブル
JP2016213112A (ja) 多心シールドフラットケーブル
CN201048063Y (zh) 线材
JP2013008793A (ja) シールドテープ、及び、それを用いたケーブル
CN209895793U (zh) 一种z型屏蔽带及具有z型屏蔽层的电缆
TWM575179U (zh) 芯線組及使用該芯線組的線纜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875407

Country of ref document: EP

Kind code of ref document: A1