WO2015096472A1 - 天线分配方法及装置 - Google Patents

天线分配方法及装置 Download PDF

Info

Publication number
WO2015096472A1
WO2015096472A1 PCT/CN2014/083043 CN2014083043W WO2015096472A1 WO 2015096472 A1 WO2015096472 A1 WO 2015096472A1 CN 2014083043 W CN2014083043 W CN 2014083043W WO 2015096472 A1 WO2015096472 A1 WO 2015096472A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission performance
antennas
antenna
terminal
less
Prior art date
Application number
PCT/CN2014/083043
Other languages
English (en)
French (fr)
Inventor
乔德礼
吴晔
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14873641.6A priority Critical patent/EP3079425B1/en
Publication of WO2015096472A1 publication Critical patent/WO2015096472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna allocation method and apparatus.
  • next generation mobile communication systems need to achieve higher spectrum utilization, thereby providing higher data rate services for a large number of users.
  • Next-generation mobile communication systems need to achieve higher spectrum utilization, thereby providing higher data rate services for a large number of users.
  • increasing the number of antennas on the base station side is widely recognized in the industry. Especially when the number of antennas is large, many antenna characteristics can be utilized, for example, correlation between channels formed by different users and base stations. Smaller, small-scale fading and thermal noise can be averaged off and so on.
  • the base station can serve multiple users with single antennas to form spatial multiplexing, that is, MU-MIMO (Multi-User Multi-Input Multi-Output), such a system. Performance such as throughput and energy efficiency can be improved.
  • MU-MIMO Multi-User Multi-Input Multi-Output
  • the precoding technique can be used to shape the beam, so that the information transmitted to a given user does not cause interference to other users in the cell, and the existing precoding technology has ZF (Zero). -Forcing, forced zero), MF (Matched-Filtering), etc.
  • ZF Zero
  • MF Melched-Filtering
  • the base station and the user first obtain channel estimation formed by all antennas and users, and then use channel estimation conjugate in precoding. The information thus sent to each user is multiplied by the channel conjugate and transmitted together. Therefore, the base station and the user need to know all the channels of the base station and the user at the time of precoding.
  • the existing antenna allocation scheme generally requires the transmitting device to acquire all channel information, and then perform antenna allocation based on different standards.
  • the standard may be: SINR (Signal and Interference to Noise Ratio), channel capacity, and the like.
  • An antenna allocation method and apparatus are provided in the embodiments of the present invention to solve the problem that the existing antenna allocation scheme affects system performance.
  • the present invention provides an antenna allocation method, including: acquiring location information of a terminal; determining, according to the location information, a reference quantity of an antenna used by the transmitting end to send data to the terminal; determining a difference in transmission performance Whether it is less than a preset transmission performance threshold, where the transmission performance difference is a difference between the transmission performance of the terminal based on the reference number of antennas and the transmission performance of the terminal based on all antennas of the transmitting end; when the transmission performance is poor When the value is not less than the preset transmission performance threshold, increase the reference quantity, and return to perform the step of determining whether the transmission performance difference is less than a preset transmission performance threshold, until the transmission performance difference is less than a preset transmission performance threshold; When the transmission performance difference is less than the preset transmission performance threshold, the increased reference quantity is determined as the target quantity; and the terminal allocates the target number of antennas at the transmitting end.
  • the location information includes: location coordinates; and determining, according to the location information, a reference of an antenna in a transmitting end for transmitting data to the terminal
  • the quantity includes: obtaining a position coordinate of the antenna of the transmitting end; calculating a distance between the terminal and the antenna according to the position coordinate of the antenna and the position coordinate of the terminal; determining a target distance interval where the distance is located; The number of antennas corresponding to the target distance interval is determined as a reference quantity according to a correspondence between the distance interval and the number of antennas.
  • the location information includes: a reference signal received quality RSRQ and/or a reference signal received power RSRP;
  • the location information determines a reference quantity of the antenna for transmitting data to the terminal in the transmitting end, including: determining a target RSRP threshold interval or a target RSRQ threshold interval where the location information is located; and corresponding to the number of antennas according to the RSRP threshold interval
  • the relationship, or the correspondence between the RSRQ threshold interval and the number of antennas determines the number of antennas corresponding to the target RSRP threshold interval or the target RSRQ threshold interval as the reference number.
  • the method when the transmission performance difference is less than a preset transmission performance threshold, the method further includes: reducing the reference a quantity; determining whether the transmission performance difference is less than a preset transmission performance threshold after reducing the reference quantity; and returning to perform the step of increasing the reference quantity by performing the foregoing decrease when the transmission performance difference is not less than the preset transmission performance threshold;
  • the transmission performance difference is less than the preset transmission performance threshold after reducing the reference quantity, it is determined whether the reduction amount of the reference quantity is less than a preset value; when the reference quantity is reduced by not less than the pre-predetermined amount
  • the step of performing the above-mentioned reduced reference quantity is returned until the reference quantity reduction amount is less than the preset value; when the reference quantity reduction amount is less than the preset value, the reduced reference quantity is determined as the target quantity.
  • the dichotomy or the golden section method is used to increase the reference quantity, and/or the dichotomy or the golden section method is used to reduce the reference quantity.
  • the allocating a target number of antennas to the terminal at the transmitting end includes: determining whether an idle antenna exists in an antenna of the transmitting end; and when there is an idle antenna, determining Whether the number of idle antennas is smaller than the target number; when the number of idle antennas is not less than the target number, selecting a target number of antennas in the idle antennas and assigning to the terminals; when the number of idle antennas is smaller than All the antennas in the idle antenna are allocated to the terminal, and the antenna is allocated to the terminal in the non-idle antenna of the transmitting end, the number of the idle antennas is allocated to the terminal The number of non-idling antennas is equal to the target number; when there is no idle antenna, selecting the mesh in the non-idling antennas of the transmitting end The number of
  • the present invention provides an antenna allocation apparatus, including: a location information acquisition unit, configured to acquire location information of a terminal, and a reference quantity determining unit, configured to determine, according to the location information, to send data to the terminal.
  • a reference quantity of the antenna configured to determine whether the transmission performance difference is less than a preset transmission performance threshold, where the transmission performance difference is a transmission performance and an antenna of the terminal based on the reference quantity The terminal is based on the difference between the transmission performances of all the antennas of the transmitting end; the first adjusting unit is configured to increase the reference quantity until the transmission performance difference when the transmission performance difference is not less than the preset transmission performance threshold
  • the first transmission performance determining unit is further configured to determine whether the transmission performance difference after the reference quantity is increased is less than a preset transmission performance threshold; the first target quantity determining unit is configured to: When the transmission performance difference is less than the preset transmission performance threshold, the increased reference quantity is determined as the target quantity; For assigning a target number of antennas of the
  • the location information includes: location coordinates;
  • the reference quantity determining unit includes: an antenna coordinate acquiring unit, configured to acquire an antenna position of the transmitting end a calculation unit configured to calculate a distance between the terminal and the antenna according to the position coordinate of the antenna and the position coordinate of the terminal;
  • the target distance interval determining unit is configured to determine a target distance interval where the distance is located a first reference quantity determining subunit, configured to determine, according to a correspondence between the distance interval and the number of antennas, an antenna number corresponding to the target distance interval as Reference quantity.
  • the location information includes: a reference signal received quality RSRQ and/or a reference signal received power RSRP; the reference quantity is determined
  • the unit includes: a target threshold interval determining unit, configured to determine a target RSRP threshold interval or a target RSRQ threshold interval in which the location information is located; and a second reference quantity determining subunit configured to correspond to an RSRP threshold interval and an antenna number according to the unit
  • the relationship, or the correspondence between the RSRQ threshold interval and the number of antennas determines the number of antennas corresponding to the target RSRP threshold interval or the target RSRQ threshold interval as the reference number.
  • the apparatus further includes: a second adjustment unit And determining, when the transmission performance difference is less than the preset transmission performance threshold, reducing the reference quantity; the second transmission performance determining unit, configured to determine whether the transmission performance difference is less than a preset transmission performance threshold after reducing the reference quantity
  • the first adjusting unit is further configured to increase the reference quantity when the transmission performance difference is not less than the preset transmission performance threshold when the reference quantity is reduced, until the transmission performance difference is less than the preset transmission performance threshold; a unit, configured to determine whether a decrease in the reference quantity is less than a preset value when the transmission performance difference is less than a preset transmission performance threshold when the reference quantity is decreased; and the second adjustment unit is further configured to reduce the reference quantity When the amount is not less than the preset value, the reference quantity is decreased until the reduction amount of the reference quantity is less than the preset value; the second target quantity determining unit is used
  • the allocating unit includes: an idle antenna determining unit, configured to determine whether an idle antenna exists, and an idle antenna number determining unit, And determining, when there is an idle antenna, whether the number of the idle antennas is smaller than the target number; and assigning a subunit, when the number of idle antennas is not less than the target number, selecting a target number of antennas in the idle antennas Giving the terminal; when the number of idle antennas is less than the target number, all antennas in the idle antenna are allocated to the terminal, and an antenna is allocated to the terminal in the non-idle antenna of the transmitting end, The number of idle antennas and the number of non-idling antennas allocated to the terminal are equal to the target number; when there is no idle antenna, selecting the target number of antennas in the non-idling antennas of the transmitting end to allocate to the terminal.
  • the antenna allocation method and apparatus provided by the present invention can allocate a target number of antennas to the terminal according to the location information of the terminal, and can perform channel directly on the allocated target number of antennas in subsequent precoding. Estimate. Compared with the prior art, in which all channel information needs to be acquired, the antenna allocation method has a target number of antennas allocated to the terminal smaller than the number of all antennas at the transmitting end, which can reduce the channel estimation workload during precoding, and reduces the allocation to the terminal. Number of antennas The amount can also reduce the operational complexity of precoding, which in turn improves system performance.
  • FIG. 1 is a schematic flowchart diagram of an antenna allocation method according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of step S102 according to an embodiment of the present disclosure
  • FIG. 3 is another schematic flowchart of step S102 according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart diagram of another antenna allocation method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of still another antenna allocation method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an antenna distribution apparatus according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a reference quantity determining unit according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another reference quantity determining unit according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another antenna distribution apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of still another antenna distribution apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of an antenna distribution apparatus according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart diagram of an antenna allocation method according to an embodiment of the present invention.
  • the antenna allocation method is applied to OFDM (Orthogonal Frequency Division Multiplexing), FDMA (Frequency Division Multiple Access), TDMA (Code Division Multiple Access), or CDMA (
  • the antenna transmitting device of the system such as Time Division Multiple Access (Time Division Multiple Access), as shown in FIG. 1, may include the following steps:
  • S101 Acquire location information of the terminal.
  • the terminal Before scheduling the terminal, the terminal may first send a control command to the terminal, and the control terminal feeds back the location information of the terminal, and receives the feedback information through the antenna to obtain the location information of the terminal.
  • the location information may include: at least one or a combination of location coordinates, RSRQ, and RSRP.
  • the location coordinate is the geographic location coordinate of the terminal, and the terminal acquires the geographic location coordinates of the terminal by using GPS or other positioning methods.
  • the relative position of the terminal based on the antenna can also be obtained according to RSRQ (Reference Signal Received Quality) or RSRP (Reference Signal Receiving Power).
  • S102 Determine, according to the location information, a reference quantity of an antenna in the transmitting end used to send data to the terminal.
  • the reference quantity determined according to the location information may be empirical data, that is, the correspondence between the location information and the reference quantity is preset, and the corresponding relationship is stored. After the location information is obtained, the corresponding reference quantity is searched for in the correspondence between the pre-stored location information and the reference number.
  • the reference quantity is at least one.
  • the location information may include: at least one of location coordinates, RSRQ, and RSRP, and each type of parameter is different, so the correspondence between each type of location information and the reference number is different. .
  • the transmission performance difference refers to a difference between a transmission performance of the terminal based on the reference number of antennas and a transmission performance of the terminal based on all antennas of the transmitting end, and the terminal is based on the transmission performance of the reference number of antennas, and The transmission performance of the terminal based on the reference number of antennas can be obtained by offline simulation.
  • the preset transmission performance threshold represents the loss of performance of the terminal antenna system. The larger the preset transmission performance threshold, the more performance loss of the terminal antenna system. That is, the more antennas that need to be allocated to the terminal at the transmitting end, the loss of the terminal antenna system can be reduced.
  • the preset transmission performance threshold may be 3 dB, so that the performance loss of the terminal antenna system is at most 1 bps/Hz.
  • step S104 When the transmission performance difference is not less than the preset transmission performance threshold, step S104 is performed; otherwise, S105 is performed.
  • the number of the reference may be implemented in a plurality of manners.
  • the dichotomy or the golden section may be adopted, where the dichotomy method is that the number of antennas added each time is the current reference quantity and the reference quantity after the last increase. Half the difference between them.
  • the number of references after the last increase may be equal to the number of all antennas at the transmitting end.
  • the initial value of the binary method or the golden section method may be set according to other methods according to the adjustment precision.
  • step S103 After the reference quantity is increased, the process returns to step S103 to continue to determine whether the transmission performance difference is less than the preset transmission performance threshold, until the transmission performance of the terminal based on the increased reference number of antennas satisfies the requirement.
  • the increased reference quantity is determined as the target quantity.
  • the reference quantity determined in step S102 may be directly determined as the target quantity.
  • S106 Allocate a target number of antennas to the terminal at the transmitting end.
  • the target number of antennas refers to that the difference between the transmission performance of the terminal based on the target number of antennas and the transmission performance of the terminal based on all antennas of the transmitting end is less than a preset transmission performance threshold, and the target The number is less than the number of all antennas at the transmitting end.
  • multiple terminals may be queued, and antennas are allocated to multiple terminals in sequence according to the queue order until the queue is empty.
  • a target number of antennas may be allocated to the terminal according to the location information of the terminal, and when performing precoding, the channel estimation may be performed directly on the allocated target number of antennas.
  • the antenna allocation method has a target number of antennas allocated to the terminal smaller than the number of all antennas at the transmitting end, which can reduce the channel estimation workload during precoding, and reduces the allocation to the terminal.
  • the number of antennas also reduces the operational complexity of precoding, which in turn improves system performance.
  • step 102 may include:
  • S1021 Acquire a position coordinate of an antenna of the transmitting end.
  • the position coordinates of the antenna can be stored in advance, or can be obtained by GPS or other positioning methods.
  • the distance between the terminal and the antenna can be calculated by triangulation.
  • S1023 Determine the target distance interval where the distance is located.
  • the area other than the antenna is divided into a plurality of distance sections in advance according to the distance, and the number of antennas corresponding to the terminal in each distance section is set in advance according to experience or other methods, and the correspondence between the distance section and the number of antennas is stored. Further, after the distance between the terminal and the antenna is calculated, the correspondence between the previously stored distance interval and the number of antennas can find the target distance interval.
  • the location coordinates of the antenna may also be acquired by the terminal, and the distance between the terminal and the antenna is calculated by the terminal, and the calculated distance is directly transmitted as position information to the antenna transmitting device, and then transmitted by the antenna.
  • the device directly determines the target distance interval in which the distance between the terminal and the antenna is located.
  • S1024 Determine the number of antennas corresponding to the target distance interval as a reference quantity.
  • the corresponding antenna reference number is preset in each distance interval, when the target distance interval in which the terminal is located is found, the reference number corresponding to the terminal can be determined at the same time.
  • step S102 may include:
  • S1025 Determine a target RSRP threshold interval or a target RSRQ threshold interval where the location information is located.
  • the RSRP threshold interval or the RSRQ threshold interval may be pre-divided, and the number of antennas allocated by the terminal within each RSRP threshold interval or RSRQ threshold interval is preset according to experience or other means.
  • S1026 Determine the number of antennas corresponding to the target RSRP threshold interval or the target RSRQ threshold interval as a reference quantity.
  • the correspondence between the RSRP threshold interval and the number of antennas may be determined according to the correspondence between the RSR threshold interval and the number of antennas.
  • the reference number of the antenna corresponding to the terminal is determined according to the location information.
  • FIG. 4 is a schematic flowchart diagram of another antenna allocation method according to an embodiment of the present invention.
  • the antenna allocation method when determining that the terminal does not satisfy the preset condition based on the transmission performance of the allocated antenna, the antenna allocation method further includes the following steps:
  • the reference number of antennas is directly allocated to the terminal according to experience, and the number of antennas may exceed the needs of the terminal.
  • the number of added antennas may exceed the needs of the terminal.
  • the number of antennas for transmitting data to the terminal can be reduced at this time.
  • the dichotomy or the golden section method can be adopted.
  • the dichotomy method is that the number of antennas reduced each time is the difference between the current reference quantity and the last reference quantity. Half of the value.
  • the reference number after the last reduction may be equal to the number of all antennas at the transmitting end.
  • the initial value of the dichotomy or golden section may be set according to other methods according to the adjustment precision.
  • S108 Determine whether the transmission performance difference is less than a preset transmission performance threshold after reducing the reference quantity.
  • step S103 This step is the same as step S103 above, and details are not described herein again.
  • the preset value can be freely set according to the accuracy of the performance requirements of the terminal antenna system.
  • the reduction of the reference quantity is less than the preset value, it is considered that the performance requirement accuracy of the terminal antenna system has been met, and no need is needed.
  • the terminal is allowed to have a certain error range based on the transmission performance of the allocated antenna and the transmission performance of the terminal based on all the antennas of the transmitting end.
  • the preset value is selected to be 2.
  • step S110 Determine the reduced reference quantity as the target quantity. And step S106 is performed to complete the process of allocating an antenna to the terminal.
  • the number of all antennas on the transmitting end is 1000
  • the preset transmission performance threshold is 3 dB
  • the preset value is 10.
  • the ideal number of antennas allocated to the terminal is 700.
  • the transmission performance difference is greater than 3 dB, so the reference number needs to be increased, the reference number is increased by the dichotomy, and the difference between 630 and 1000 is used.
  • 815 antennas can be directly allocated to the terminal, as shown in the method embodiment shown in FIG.
  • the reference quantity may be re-adjusted according to the transmission performance of the terminal based on the antenna, so that the difference in the transmission performance is less than the preset.
  • the transmission performance threshold is minimized to minimize the number of antennas allocated to the terminal to maximize the antenna system resources and increase the overall capacity of the antenna system.
  • FIG. 5 is a schematic flowchart of still another method for allocating an antenna according to an embodiment of the present invention.
  • the antenna allocation method is applied to an antenna transmitting apparatus.
  • step S106 may include the following steps:
  • S1061 Determine whether there is an idle antenna in the antenna of the transmitting end.
  • An idle antenna refers to an antenna that is not selected by other terminals in the transmitting antenna.
  • all the antennas of the transmitting end are allocated to the terminal for the first time, all the antennas at this time are idle antennas, and if the antennas are already in the transmitting end, When an antenna is assigned to one or more terminals, the antenna transmitting device records the already assigned antenna ID. Therefore, when the step is judged, the allocated antenna ID recorded in the antenna transmitting device can be directly obtained to determine whether there is an idle antenna at the transmitting end.
  • S1062 Determine whether the number of idle antennas is smaller than the target number.
  • All antennas in the idle antenna are allocated to the terminal, and an antenna is allocated to the terminal in a non-idle antenna of the transmitting end.
  • the number of idle antennas and the number of non-idle antennas allocated to the terminal are equal to the target number.
  • S1065 Select the target number of antennas to be allocated to the terminal in the non-idle antennas of the transmitting end.
  • the number of antennas for transmitting data to the terminal after allocation is equal to the target number.
  • the ID number of the antenna allocated by the terminal may be continuous or discontinuous, and in the allocation process, a loop may also be used.
  • the manner of allocation that is, the last antenna ID is considered to be continuous with the first antenna ID number, for example, the total number of antennas is 1000, the antennas that other terminals have allocated are ⁇ 1, . . . , 600 ⁇ , and step S405 is allocated.
  • the terminal can be assigned ⁇ 601,...,1000,1,...,400 ⁇ , where ⁇ 601,...,1000 ⁇ is an idle antenna, and ⁇ 1,...,400 ⁇ is a non-idle antenna.
  • the allocation antenna when the number of idle antennas is not less than the target number, the allocation antenna may be preferentially added to the terminal in the idle antenna, and when the number of idle antennas is smaller than the target number, the priority may also be preferentially in the non-idle antenna. Reduce the allocation of antennas for the terminal to ensure that the idle antennas are allocated to the terminal as much as possible.
  • the antenna allocation method provided by the embodiment of the present invention allocates an idle antenna that is not allocated to other terminals by prior analysis of the antenna to be allocated, and then allocates the allocated antennas that have been allocated to other terminals.
  • the idle antenna in either case, is guaranteed to be allocated as the target number of antennas.
  • the idle antennas are preferentially allocated, the antenna resources can be properly utilized, and the signal quality transmitted to the terminal can be improved.
  • the allocated antennas can be allocated after the idle antennas are allocated, and the antennas allocated by different terminals can be overlapped to maximize the utilization of the antenna resources. To increase the capacity of the antenna system.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for causing a Computer device (which may be a personal computer, server, or network device, etc.) performs the methods of various embodiments of the present invention All or part of the steps.
  • the foregoing storage medium includes various types of media that can store program codes, such as a read only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • FIG. 6 is a schematic structural diagram of an antenna distribution apparatus according to an embodiment of the present invention.
  • the antenna distribution device application and the antenna system, as shown in FIG. 6, may include:
  • the location information obtaining unit 11 is configured to acquire location information of the terminal.
  • a reference quantity determining unit 12 configured to determine, according to the location information, a reference quantity of an antenna used to send data to the terminal;
  • the first transmission performance determining unit 13 is configured to determine whether the transmission performance difference is less than a preset transmission performance threshold, where the transmission performance difference is that the terminal transmits performance based on the reference number of antennas and the terminal is based on a transmitting end The difference between the transmission performance of all antennas;
  • the first adjusting unit 14 is configured to increase the reference quantity when the transmission performance difference is not less than the preset transmission performance threshold.
  • the number of the reference may be implemented in multiple manners.
  • the dichotomy method is that the number of antennas added each time is half of the difference between the current reference quantity and the reference number after the last increase.
  • the reference number after the last increase may be equal to the number of all antennas at the transmitting end.
  • the initial value of the binary method may be set according to other methods according to the adjustment precision;
  • the first transmission performance determining unit 13 is further configured to determine whether the transmission performance difference after the reference quantity is increased is less than a preset transmission performance threshold
  • the first target quantity determining unit 15 is configured to determine the increased reference quantity as the target quantity when the transmission performance difference is less than the preset transmission performance threshold;
  • the allocating unit 16 is configured to allocate a target number of antennas to the terminal at the transmitting end, where the difference between the transmission performance of the terminal based on the target number of antennas and the transmission performance of all the antennas of the terminal based on the transmitting end is smaller than The default transmission performance threshold.
  • the device can reduce the channel estimation workload during precoding, and by reducing the number of antennas allocated to the terminal, the operation complexity during precoding can be reduced, thereby improving system performance.
  • the reference quantity determining unit 12 may include:
  • the antenna coordinate acquiring unit 121 is configured to acquire position coordinates of the antenna at the transmitting end;
  • the calculating unit 122 is configured to calculate a distance between the terminal and the antenna according to the position coordinate of the antenna and the position coordinate of the terminal;
  • a target distance interval determining unit 123 configured to determine a target distance interval in which the distance is located
  • the first reference quantity determining sub-unit 124 is configured to determine the number of antennas corresponding to the target distance section as the reference quantity according to the correspondence between the distance section and the number of antennas.
  • the location coordinates of the antenna may also be acquired by the terminal, and the distance between the terminal and the antenna is calculated by the terminal, and the calculated distance is directly sent to the antenna as position information, and then determined by the target distance interval.
  • Unit 123 directly determines the target distance interval in which the distance between the terminal and the antenna is located.
  • the reference quantity determining unit 12 may include:
  • the target threshold interval determining unit 125 is configured to determine a target RSRP threshold interval or a target RSRQ threshold interval where the location information is located;
  • the second reference quantity determining sub-unit 126 is configured to use the correspondence between the RSRP threshold interval and the number of antennas, or the correspondence between the RSRQ threshold interval and the number of antennas, and the target RSRP threshold interval or the target RSRQ threshold.
  • the number of antennas corresponding to the interval is determined as the reference number.
  • FIG. 9 is a schematic structural diagram of another antenna distribution apparatus according to an embodiment of the present invention. As shown in FIG. 9, on the basis of the embodiment shown in FIG. 8, the antenna distribution apparatus may further include:
  • the second adjusting unit 17 is connected to the first transmission performance determining unit 13 for reducing the reference quantity when the transmission performance difference is less than the preset transmission performance threshold; reducing the reference quantity may be performed in multiple manners
  • the dichotomy or the golden section method may be adopted, wherein the dichotomy method is that the number of antennas reduced each time is half of the difference between the current reference quantity and the last reference quantity.
  • the reference number after the last reduction may be equal to the number of all antennas at the transmitting end.
  • the initial value of the binary method may be set according to other methods according to the adjustment precision;
  • the second transmission performance determining unit 18 is configured to determine whether the transmission performance difference is less than a preset transmission performance threshold after reducing the reference quantity;
  • the first adjusting unit 14 is further configured to increase the reference quantity when the transmission performance difference is not less than a preset transmission performance threshold after reducing the reference quantity;
  • the reference quantity change judging unit 19 is configured to determine whether the decrease amount of the reference quantity is less than a preset value when the transmission performance difference is less than the preset transmission performance threshold after the reference quantity is decreased;
  • the second adjusting unit 17 is further configured to reduce the reference quantity when the amount of decrease of the reference quantity is not less than a preset value
  • the second target quantity determining unit 20 is configured to determine the reduced reference quantity as the target quantity when the amount of decrease of the reference quantity is less than the preset value.
  • the apparatus may further adjust the reference quantity according to the transmission performance of the terminal based on the antenna, so that the transmission performance is poor.
  • the value is less than the preset transmission performance threshold, the number of antennas allocated to the terminal is minimized to maximize the antenna system resources and improve the overall antenna system. capacity.
  • FIG. 10 is a schematic structural diagram of still another antenna distribution apparatus according to an embodiment of the present invention.
  • the allocating unit 16 may include:
  • the idle antenna determining unit 161 is configured to determine whether there is an idle antenna
  • the idle antenna number determining unit 162 is configured to determine, when there is an idle antenna, whether the number of idle antennas is smaller than a target number;
  • a target number of antennas are selected among the idle antennas and allocated to the terminal;
  • the number of idle antennas is less than the target number, all antennas in the idle antenna are allocated to the terminal, and an antenna is allocated to the terminal in a non-idle antenna of the transmitting end, the number of the idle antennas And the number of non-idle antennas allocated to the terminal is equal to the target number;
  • the target number of antennas are selected to be allocated to the terminal in the non-idle antennas of the transmitting end.
  • the number of allocated antennas for the terminal may be preferentially increased in the idle antenna, and when the number of idle antennas is smaller than the target number, the priority may also be prioritized in the non-idle antenna. Reduce the number of antennas allocated to the terminal to ensure that the idle antenna is allocated for terminal use.
  • the device When allocating antennas, the device preferentially allocates idle antennas that are not allocated to other terminals, and then allocates idle antennas that have been allocated to other terminals.
  • This allocation method can rationally utilize antenna resources and improve transmission to the terminal.
  • Signal quality allows antennas allocated by different terminals to overlap, maximizing the use of antenna resources and increasing the capacity of the antenna system.
  • FIG. 11 is a schematic structural diagram of an antenna distribution apparatus according to an embodiment of the present invention.
  • the antenna distribution device is applied to an antenna system, as shown in FIG. 11, the antenna distribution device includes: a receiver 1, a processor 2, and a memory 3, wherein:
  • the receiver 1 is configured to receive location information of an acquiring terminal
  • the processor 2 is configured to: determine, according to the location information, a reference quantity of an antenna used by the transmitting end to send data to the terminal; and determine whether the transmission performance difference is less than a preset transmission performance threshold, where the transmission performance is poor.
  • the value is a difference between the transmission performance of the terminal based on the reference number of antennas and the transmission performance of the terminal based on all antennas of the transmitting end; when the transmission performance difference is not less than the preset transmission performance threshold, the reference quantity is increased.
  • the terminal is allocated an increased number of reference antennas.
  • the processor 2 may further execute the program corresponding to the antenna allocation method in any of the foregoing embodiments of FIG. 2-5.
  • the steps performed by the location information acquiring unit 11 can be performed by the receiver 1, the reference quantity determining unit 12, the first transmission performance determining unit 13,
  • the steps performed by an adjustment unit 14, the allocation unit 16, the second adjustment unit 17, the second transmission performance determination unit 18, the reference number change determination unit 19, and the second target number determination unit 20 may all be performed by the processor 2,
  • the correspondence between the location area and the reference number of the antennas may be stored in the memory 3, and the transmission performance thresholds, preset values, and the like mentioned in the above embodiments may be stored.
  • the present invention is applicable to a wide variety of general purpose or special purpose computing system environments or configurations.
  • the invention may be described in the general context of computer-executable instructions executed by a computer, such as a program module.
  • program modules include routines, programs, objects, components, data structures, and the like that perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are connected through a communication network.
  • program modules can be located in both local and remote computer storage media including storage devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本发明实施例公开了一种天线分配方法及装置,该方法包括:获取终端的位置信息;根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量;判断传输性能差值是否小于预设传输性能阈值,当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量,返回执行判断传输性能差值是否小于预设传输性能阈值的步骤,直至传输性能差值小于预设传输性能阈值;当所述传输性能差值小于预设传输性能阈值时,将增加后参考数量确定为目标数量;在所述发射端为所述终端分配目标数量个天线。该天线分配方法,可以降低预编码时信道估测工作量,并且由于减少了分配给终端的天线数量,还可以降低预编码时的操作复杂度,进而提升系统性能。

Description

天线分配方法及装置
本申请要求于2013年12月26日提交中国专利局、申请号为201310731448.6、发明名称为“天线分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,特别是涉及一种天线分配方法及装置。
背景技术
随着通信技术的飞速发展,用户对数据率日益增长的要求和紧缺的频谱资源成为无线通信的巨大挑战。下一代移动通信系统需要达到更高的频谱利用率,从而为大量用户提供更高数据率的服务。在下一代蜂窝无线通信技术中,增大基站侧天线数目广泛被业界认可,特别是在天线数目很大时,有很多的天线特性可以被利用,例如:不同用户与基站形成的信道间的相关性较小,小尺度衰落及热噪声可以被平均掉等等。在大规模天线系统下,基站可以服务多个装备单天线的用户形成空间上的复用,即MU-MIMO(Multi-User Multi-Input Multi-Output,多用户多输入多输出),这样系统的吞吐量以及能量效率等性能均可得到提升。
在下行传输时,由于天线数目很大,可以利用预编码技术使得波束成型,从而使得传输给给定用户的信息不会对小区内其他用户处造成干扰,现有的预编码技术有ZF(Zero-Forcing,迫零)、MF(Matched-Filtering,匹配滤波)等,以MF为例,基站和用户首先获得所有天线与用户形成的信道估测,然后预编码时采用信道估测的共轭,这样发送给每个用户的信息与信道共轭相乘后结合在一起发送出去。所以,在预编码时基站和用户需要知道基站与用户的所有信道。
然而,现有的天线分配方案通常要求发射装置获取所有信道信息,然后基于不同的标准进行天线分配,标准可以为:SINR(Signal and Interference to Noise Ratio,信干噪比)、信道容量等。在大规模天线系统下,随着天线数目的增多,如果获取所有天线上的信道,信道估测工作量将会随之增加,占用系统资源也将增加,付出的代价将变得很大,严重影响系统性能。
发明内容
本发明实施例中提供了一种天线分配方法及装置,以解决现有的天线分配方案影响系统性能的问题。
为了解决上述技术问题,本发明公开了如下技术方案:
第一方面,本发明提供了一种天线分配方法,包括:获取终端的位置信息;根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量;判断传输性能差值是否小于预设传输性能阈值,所述传输性能差值为所述终端基于参考数量个天线的传输性能与所述终端基于所述发射端所有天线的传输性能的差值;当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量,返回执行所述判断传输性能差值是否小于预设传输性能阈值的步骤,直至所述传输性能差值小于预设传输性能阈值;当所述传输性能差值小于预设传输性能阈值时,将增加后的参考数量确定为目标数量;在所述发射端为所述终端分配目标数量个天线。
结合第一方面,在第一方面第一种可能实现的方式中,所述位置信息包括:位置坐标;所述根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量,包括:获取所述发射端的天线的位置坐标;根据所述天线的位置坐标和所述终端的位置坐标,计算所述终端与天线之间的距离;确定所述距离所在的目标距离区间;根据距离区间与天线数量之间的对应关系,将所述目标距离区间对应的天线数量确定为参考数量。
结合第一方面第一种可能的实现方式,在第一方面第二种可能实现的方式中,所述位置信息包括:参考信号接收质量RSRQ和/或参考信号接收功率RSRP;所述根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量,包括:确定所述位置信息所在的目标RSRP阈值区间或目标RSRQ阈值区间;根据RSRP阈值区间与天线数量之间的对应关系,或,RSRQ阈值区间与天线数量之间的对应关系,将所述目标RSRP阈值区间或目标RSRQ阈值区间对应的天线数量确定为参考数量。
结合第一方面第二种可能的实现方式,在第一方面第三种可能实现的方式中,当所述传输性能差值小于预设传输性能阈值时,所述方法还包括:减少所述参考数量;判断减小参考数量后传输性能差值是否小于预设传输性能阈值;当减小参考数量后传输性能差值不小于预设传输性能阈值时,返回执行上述增加所述参考数量的步骤;当减小参考数量后传输性能差值小于预设传输性能阈值时,判断参考数量的减小量是否小于预设值;当参考数量的减小量不小于预 设值时,返回执行上述减小参考数量的步骤,直至参考数量的减小量小于预设值;当参考数量的减小量小于预设值时,将减小后的参考数量确定为目标数量。
结合第一方面第三种可能的实现方式,在第一方面第四种可能实现的方式中,采用二分法或黄金分割法增加参考数量,和/或,采用二分法或黄金分割法减少参考数量。
结合第一方面、第一方面第一种可能的实现方式、第一方面第二种可能的实现方式、第一方面第三种可能的实现方式或第一方面第四种可能的实现方式,在第一方面第五种可能实现的方式中,所述在所述发射端为所述终端分配目标数量个天线,包括:判断所述发射端的天线中是否存在空闲天线;当存在空闲天线时,判断所述空闲天线的数量是否小于所述目标数量;当空闲天线的数量不小于所述目标数量时,在所述空闲天线中选择目标数量个天线并分配给所述终端;当空闲天线的数量小于所述目标数量时,将所述空闲天线中所有天线都分配给所述终端,并且在所述发射端的非空闲天线中为所述终端分配天线,所述空闲天线的数量和分配给所述终端的非空闲天线的数量等于所述目标数量;当不存在空闲天线时,在所述发射端的非空闲天线中选择所述目标数量个天线分配给所述终端。
第二方面,本发明提供了一种天线分配装置,包括:位置信息获取单元,用于获取终端的位置信息;参考数量确定单元,用于根据所述位置信息确定用于向所述终端发送数据的天线的参考数量;第一传输性能判断单元,用于判断传输性能差值是否小于预设传输性能阈值,所述传输性能差值为所述终端基于所述参考数量的天线的传输性能与所述终端基于发射端的所有天线的传输性能之间的差值;第一调整单元,用于当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量,直至传输性能差值小于预设传输性能阈值;所述第一传输性能判断单元还用于判断增加所述参考数量后的传输性能差值是否小于预设传输性能阈值;第一目标数量确定单元,用于当所述传输性能差值小于预设传输性能阈值时,将增加后的参考数量确定为目标数量;分配单元,用于在所述发射端为所述终端分配目标数量个天线。
结合第二方面,在第二方面第一种可能的实现方式中,所述位置信息包括:位置坐标;所述参考数量确定单元包括:天线坐标获取单元,用于获取所述发射端的天线的位置坐标;计算单元,用于根据所述天线的位置坐标和所述终端的位置坐标,计算所述终端与天线之间的距离;目标距离区间确定单元,用于确定所述距离所在的目标距离区间;第一参考数量确定子单元,用于根据距离区间与天线数量之间的对应关系,将所述目标距离区间对应的天线数量确定为 参考数量。
结合第二方面第一种可能的实现方式,在第二方面第二种可能的实现方式中,所述位置信息包括:参考信号接收质量RSRQ和/或参考信号接收功率RSRP;所述参考数量确定单元包括:目标阈值区间确定单元,用于确定所述位置信息所在的目标RSRP阈值区间或目标RSRQ阈值区间;第二参考数量确定子单元,用于根据的RSRP阈值区间与天线数量之间的对应关系,或,RSRQ阈值区间与天线数量之间的对应关系,将所述目标RSRP阈值区间或目标RSRQ阈值区间对应的天线数量确定为参考数量。
结合第二方面、第二方面第一种可能的实现方式或第二方面第二种可能的实现方式,在第二方面第三种可能的实现方式中,所述装置还包括:第二调整单元,用于当所述传输性能差值小于预设传输性能阈值时,减少所述参考数量;第二传输性能判断单元,用于判断减小参考数量后传输性能差值是否小于预设传输性能阈值;所述第一调整单元还用于当减小参考数量后传输性能差值不小于预设传输性能阈值时增加所述参考数量,直至传输性能差值小于预设传输性能阈值;参考数量变化判断单元,用于当减小参考数量后传输性能差值小于预设传输性能阈值时,判断参考数量的减小量是否小于预设值;所述第二调整单元还用于当参考数量的减小量不小于预设值时,减小所述参考数量,直至参考数量的减小量小于预设值;第二目标数量确定单元,用于当参考数量的减小量小于预设值时,将减小后的参考数量确定为目标数量。
结合第二方面第三种可能的实现方式,在第二方面第四种可能的实现方式中,所述分配单元包括:空闲天线判断单元,用于判断是否存在空闲天线;空闲天线数量判断单元,用于当存在空闲天线时,判断所述空闲天线的数量是否小于所述目标数量;分配子单元,当空闲天线的数量不小于所述目标数量时,所述空闲天线中选择目标数量个天线分配给所述终端;当空闲天线的数量小于所述目标数量时,将所述空闲天线中所有天线都分配给所述终端,并且在所述发射端的非空闲天线中为所述终端分配天线,所述空闲天线的数量和分配给所述终端的非空闲天线的数量等于所述目标数量;当不存在空闲天线时,在所述发射端的非空闲天线中选择所述目标数量个天线分配给所述终端。
由以上技术方案可见,本发明提供的该天线分配方法及装置,根据终端的位置信息可以为终端分配目标数量个天线,在后续进行预编码时,可以直接在分配的目标数量个天线上进行信道估测。与现有技术需要获取所有信道信息相比,该天线分配方法,分配给终端的目标数量个天线小于发射端的所有天线数量,可以降低预编码时信道估测工作量,并且由于减少了分配给终端的天线数 量,还可以降低预编码时的操作复杂度,进而提升系统性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种天线分配方法的流程示意图;
图2为本发明实施例提供的步骤S102的一种流程示意图;
图3为本发明实施例提供的步骤S102的另一种流程示意图;
图4为本发明实施例提供的另一种天线分配方法的流程示意图;
图5为本发明实施例提供的又一种天线分配方法的流程示意图;
图6为本发明实施例提供的一种天线分配装置的结构示意图;
图7为本发明实施例提供的一种参考数量确定单元的结构示意图;
图8为本发明实施例提供的另一种参考数量确定单元的结构示意图;
图9为本发明实施例提供的另一种天线分配装置的结构示意图;
图10为本发明实施例提供的又一种天线分配装置的结构示意图;
图11为本发明实施例提供的一种天线分配装置的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例中的技术方案,并使本发明实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明实施例中技术方案作进一步详细的说明。
图1为本发明实施例提供的一种天线分配方法的流程示意图。该天线分配方法应用于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用技术)、FDMA(Frequency Division Multiple Access,频分多址)、TDMA(Code Division Multiple Access,码分多址)或CDMA(Time Division Multiple Access,时分多址)等系统的天线发射装置,如图1所示,可以包括以下步骤:
S101:获取终端的位置信息。
在对终端进行调度前,可以先向终端发送控制指令,控制终端反馈终端的位置信息,通过天线接收反馈的信息就可以获取终端的位置信息。在本发明实施例中,位置信息可以包括:位置坐标、RSRQ、RSRP中的至少一种或多种组合, 其中,位置坐标是终端的地理位置坐标,终端通过GPS或其它定位方式获取到终端的地理位置坐标,另外,由于终端距离天线的距离不同,终端发送信号或接收信号的路损差异也将不同,所以根据RSRQ(Reference Signal Received Quality,参考信号接收质量)或RSRP(Reference Signal Receiving Power,参考信号接收功率)也可以得到以天线为基准的终端相对位置。
S102:根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量。
在本发明实施例中,根据位置信息确定的参考数量可以为经验数据,即预先设置位置信息与参考数量的对应关系,并将该对应关系进行存储。当获取到位置信息后,在预先存储的位置信息与参考数量的对应关系中查找相对应的参考数量。可选地,在本发明实施例中,参考数量为至少一个。
由于位置信息有多种类型,可以包括:位置坐标、RSRQ、RSRP中的至少一种,并且每种类型的参数都不相同,所以每一种类型的位置信息与参考数量的对应关系都不相同。
S103:判断传输性能差值是否小于预设传输性能阈值。
在本发明实施例中,传输性能差值是指终端基于参考数量的天线的传输性能与终端基于发射端的所有天线的传输性能之间的差值,并且终端基于参考数量的天线的传输性能,以及,终端基于参考数量个天线的传输性能,都可以通过离线仿真的方式得到,预设传输性能阈值代表着终端天线系统性能的损失程度,预设传输性能阈值越大,终端天线系统性能损失越多,即需要在发射端分配给终端的天线越多,才能减少终端天线系统的损失。在本发明实施例中,预设传输性能阈值可以为3dB,这样得到终端天线系统性能损失最大为1bps/Hz。
当所述传输性能差值不小于预设传输性能阈值时,进行步骤S104,否则,进行S105。
S104:增加所述参考数量。
增加所述参考数量可以通过多种方式实现,在本发明实施例中,可以通过二分法或黄金分割法,其中,二分法为每次增加的天线数量为当前参考数量与上次增加后参考数量之间差值的一半。在初次增加时,上次增加后的参考数量可以等于发射端的所有天线的数量,可选地,二分法或黄金分割法的初始值可以根据调节精度根据其它方式来设定。
当增加参考数量后,返回步骤S103继续判断传输性能差值是否小于预设传输性能阈值,直至终端基于增加后的参考数量个天线的传输性能满足要求。
S105:将增加后的参考数量确定为目标数量;
当增加参考数量后,对应的传输性能差值不小于预设传输性能阈值时,将增加后的参考数量确定为目标数量。
可选地,在本申请实施例中,当步骤S102中确定的参考数量对应的传输性能差值小于预设传输性能时,还可以直接将步骤S102中确定的参考数量确定为目标数量。
S106:在所述发射端为所述终端分配目标数量个天线。
在本发明实施例中,目标数量个天线是指所述终端基于所述目标数量个天线的传输性能与所述终端基于发射端所有天线的传输性能的差值小于预设传输性能阈值,并且目标数量小于发射端所有天线的数量。
在实际应用中,当需要对多个终端分配天线时,可以对多个终端进行排队,并且依据队列次序依次为多个终端分配天线,直至队列为空。
本发明实施例提供的该天线分配方法,根据终端的位置信息可以为终端分配目标数量个天线,在后续进行预编码时,可以直接在分配的目标数量个天线上进行信道估测。与现有技术需要获取所有信道信息相比,该天线分配方法,分配给终端的目标数量个天线小于发射端的所有天线数量,可以降低预编码时信道估测工作量,并且由于减少了分配给终端的天线数量,还可以降低预编码时的操作复杂度,进而提升系统性能。
在一个实施例中,当位置信息为位置坐标时,如图2所示,步骤102可以包括:
S1021:获取发射端的天线的位置坐标。
天线的位置坐标可以预先存储,也可以通过GPS或其它定位方式获取得到。
S1022:计算终端与天线之间的距离。
根据天线的位置坐标和终端的位置坐标,利用三角测量法可以计算得到终端与天线之间的距离。
S1023:确定距离所在的目标距离区间。
预先将天线以外的区域按照距离远近划分成多个距离区间,根据经验或其他方式,预先设置位于每个距离区间内终端对应的天线数量,并且将距离区间与天线数量之间的对应关系存储。进而,当计算得到终端与天线之间的距离后,在预先存储的距离区间与天线数量之间的对应关系可以查找到目标距离区间。
在本发明其他实施例中,还可以由终端获取天线的位置坐标,并且由终端计算终端与天线之间的距离,并且将计算得到的距离作为位置信息直接发送给天线发射装置,进而由天线发射装置直接确定终端与天线之间的距离所在的目标距离区间。
S1024:将所述目标距离区间对应的天线数量确定为参考数量。
由于每个距离区间都预先设置了相应的天线参考数量,所以当查找到终端所在的目标距离区间,同时就可以确定终端对应的参考数量。
在另一实施例中,当位置信息为RSRP或RSRQ时,如图3所示,步骤S102可以包括:
S1025:确定位置信息所在的目标RSRP阈值区间或目标RSRQ阈值区间。
RSRP阈值区间或RSRQ阈值区间可以预先划分,并且根据经验或其他方式,预先设置位于每个RSRP阈值去间或RSRQ阈值区间内终端所分配的天线数量。
S1026:将所述目标RSRP阈值区间或目标RSRQ阈值区间对应的天线数量确定为参考数量。
当根据位置信息确定终端所在的目标RSRP阈值区间或目标RSRQ阈值区间,就可以根据RSRP阈值区间与天线数量之间的对应关系,或,根据RSRQ阈值区间与天线数量之间的对应关系,确定与终端对应的天线的参考数量。
图4为本发明实施例提供的另一种天线分配方法的流程示意图。在图1所示实施例的基础上,当判断终端基于所分配天线的传输性能不满足预设条件时,该天线分配方法还包括以下步骤:
S107:减少参考数量。
在实际使用时,直接根据经验为终端分配参考数量个天线,有可能出现天线数量超出终端的需要,或者,在上述步骤S104中,增加后的天线数量也可能超过终端的需要。为了减少后续利用分配的天线进行预编码的复杂度,此时可以减少用于向终端发送数据的天线的数量。
减小参考数量可以通过多种方式实现,在本发明实施例中,可以通过二分法或黄金分割法,其中,二分法为每次减少的天线数量为当前参考数量与上次参考数量之间差值的一半。在初次减少时,上次减少后的参考数量可以等于发射端的所有天线的数量,可选地,二分法或黄金分割的初始值可以根据调节精度根据其它方式来设定。
S108:判断减小参考数量后传输性能差值是否小于预设传输性能阈值。
该步骤与上述步骤S103相同,在此不再赘述。
当所述传输性能差值不小于预设传输性能阈值时,返回执行步骤S104,否则,进行S109。
S109:判断参考数量的减小量是否小于预设值。
预设值可以根据对终端天线系统性能要求精度不同而自由设定,当参考数量的减小量小于预设值时,认为已经满足了终端天线系统性能要求精度,不需 要再继续减少参考数量了。即终端基于所分配的天线的传输性能与终端基于发射端所有天线的传输性能之间允许存在一定误差范围,在本发明实施例中,预设值选择为2。
当参考数量的减小量不小于预设值时,返回执行步骤S107,否则,进行S110。
S110:将减小后的参考数量确定为目标数量。并执行步骤S106,完成为终端分配天线的过程。
下面以一个虚拟案例对上述图4所示方法实施例进行说明。
发射端的所有天线数量为1000,预设传输性能阈值为3dB,预设值为10,理想状态下分配给终端的天线数量为700。一种情况下,当根据位置信息分配给终端的天线的参考数量为630时,传输性能差值大于3dB,所以需要增加参考数量,增加参考数量采用二分法,并且以630和1000的差值的一半为增加量,增加后参考数量为630+185=815,此时,可以直接将815个天线分配给终端,如图1所示的方法实施例。另外,还可以采用二分法减少参考数量,即以815和630的差值的一般为减少量,减少后参考数量为815-93=723,此时虽然预设传输性能阈值满足要求,但变化量不满足预设值要求,所以,在733的基础上仍然采用二分法减少参考数量,减少后参考数量为723-47=676,可见,减少参考数量后不满足预设传输性能阈值要求,需要再次增加参考数量。如此循环,最终确定到变化小于10的参考数量,并作为最终的目标数量。
本发明实施例提供的该天线分配方法,在传输性能差值小于预设传输性能阈值后,还可以根据终端基于天线的传输性能对参考数量进行再次调节,使得在满足传输性能差值小于预设传输性能阈值同时,尽量减少分配给终端的天线数量,以达到最大限度节省天线系统资源,提高天线系统的整体容量。
图5为本发明实施例提供的又一种天线分配方法的流程示意图,该天线分配方法应用于天线发射装置,如图5所示,在上述实施例基础上,步骤S106可以包括以下步骤:
S1061:判断所述发射端的天线中是否存在空闲天线。
空闲天线是指在发射端天线中未被其它终端所选择的天线,在将发射端所有天线第一次分配给终端时,此时所有的天线都是空闲天线,而如果已经将发射端中的天线分配给一个或多个终端时,天线发射装置会记录已经分配天线ID。因此,该步骤在判断时,可以直接获取天线发射装置内记录的已分配天线ID就可判断发射端是否存在空闲天线。
当存在空闲天线时,进行S1062;当不存在空闲天线时,进行1065。
S1062:判断空闲天线的数量是否小于目标数量。
当空闲天线的数量小于目标数量时,进行S1063;否则,进行S1064。
S1063:将所述空闲天线中所有天线都分配给所述终端,并且在所述发射端的非空闲天线中为所述终端分配天线。
空闲天线的数量和分配给所述终端的非空闲天线的数量等于所述目标数量。
S1064:在所述空闲天线中选择目标数量个天线并分配给所述终端。
S1065:在所述发射端的非空闲天线中选择所述目标数量个天线分配给所述终端。
无论分配给终端的是空闲天线还是非空闲天线,或者同时分配有空闲天线和非空闲天线,分配后,用于向终端发送数据的天线数量等于目标数量。
在本发明实施例中,在为终端分配空闲天线或非空闲天线时,终端分配到的天线的ID号可以是连续的,也可以为不连续的,另外,在分配过程中,还可以采用循环分配的方式,即认为最后的天线ID与第一个天线ID号连续,例如:,总天线的数量为1000,其它终端已经分配的天线为{1,…,600},步骤S405在分配时,可以为终端分配{601,…,1000,1,…,400},其中{601,…,1000}为空闲天线,{1,…,400}为非空闲天线。
此外,在本发明实施例中,当空闲天线数量不小于目标数量时,可以优先在空闲天线中为终端增加分配天线,并且当空闲天线的数量小于目标数量时,还可以优先在非空闲天线中为终端减少分配天线,以尽量保证将空闲天线分配给终端使用。
本发明实施例提供的该天线分配方法,在对终端进行天线分配时,通过对待分配的天线的进行分析,优先分配未被分配给其它终端的空闲天线,然后再分配已经被分配给其他终端的空闲天线,无论哪种方式都保证分配为终端目标数量个天线。这种分配方式中,优先分配空闲天线,可以合理利用天线资源,提高发送给终端的信号质量;分配空闲天线后分配非空闲天线,还可以使得不同终端分配的天线可以重叠,最大化利用天线资源,提高天线系统的容量。
通过以上的方法实施例的描述,所属领域的技术人员可以清楚地了解到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法 的全部或部分步骤。而前述的存储介质包括:只读存储器(ROM)、随机存取存储器(RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
图6为本发明实施例提供的一种天线分配装置的结构示意图。该天线分配装置应用与天线系统内,如图6所示,可以包括:
位置信息获取单元11,用于获取终端的位置信息;
参考数量确定单元12,用于根据所述位置信息确定用于向所述终端发送数据的天线的参考数量;
第一传输性能判断单元13,用于判断传输性能差值是否小于预设传输性能阈值,所述传输性能差值为所述终端基于所述参考数量的天线的传输性能与所述终端基于发射端的所有天线的传输性能之间的差值;
第一调整单元14,用于当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量;增加所述参考数量可以通过多种方式实现,在本发明实施例中,可以通过二分法或黄金分割法,其中,二分法为每次增加的天线数量为当前参考数量与上次增加后参考数量之间差值的一半。在初次增加时,上次增加后的参考数量可以等于发射端的所有天线的数量,可选地,二分法的初始值可以根据调节精度根据其它方式来设定;
另外,第一传输性能判断单元13还用于判断增加所述参考数量后的传输性能差值是否小于预设传输性能阈值;
第一目标数量确定单元15,用于当所述传输性能差值小于预设传输性能阈值时,将增加后的参考数量确定为目标数量;
分配单元16,用于在所述发射端为所述终端分配目标数量个天线,所述终端基于所述目标数量个天线的传输性能与所述终端基于发射端所有天线的传输性能的差值小于预设传输性能阈值。
该装置可以降低预编码时信道估测工作量,并且由于减少了分配给终端的天线数量,还可以降低预编码时的操作复杂度,进而提升系统性能。
在本发明一个实施例中,当位置信息为位置坐标时,如图7所示,参考数量确定单元12可以包括:
天线坐标获取单元121,用于获取发射端的天线的位置坐标;
计算单元122,用于根据天线的位置坐标和终端的位置坐标,计算终端与天线之间的距离;
目标距离区间确定单元123,用于确定所述距离所在的目标距离区间;
第一参考数量确定子单元124,用于根据距离区间与天线数量之间的对应关系,将所述目标距离区间对应的天线数量确定为参考数量。
在本发明其它实施例中,还可以由终端获取天线的位置坐标,并且由终端计算终端与天线之间的距离,并且将计算得到的距离作为位置信息直接发送给天线,进而由目标距离区间确定单元123直接确定终端与天线之间的距离所在的目标距离区间。
在本发明另一实施例中,当位置信息为RSRP或RSRQ时,如图8所示,参考数量确定单元12可以包括:
目标阈值区间确定单元125,用于确定位置信息所在的目标RSRP阈值区间或目标RSRQ阈值区间;
第二参考数量确定子单元126,用于根据的RSRP阈值区间与天线数量之间的对应关系,或,RSRQ阈值区间与天线数量之间的对应关系,将所述目标RSRP阈值区间或目标RSRQ阈值区间对应的天线数量确定为参考数量。
图9为本发明实施例提供的另一种天线分配装置的结构示意图。如图9所示,在图8所示实施例的基础上,该天线分配装置还可以包括:
第二调整单元17,与第一传输性能判断的单元13相连接,用于当所述传输性能差值小于预设传输性能阈值时,减少所述参考数量;减小参考数量可以通过多种方式实现,在本发明实施例中,可以通过二分法或黄金分割法,其中,二分法为每次减少的天线数量为当前参考数量与上次参考数量之间差值的一半。在初次减少时,上次减少后的参考数量可以等于发射端的所有天线的数量,可选地,二分法的初始值可以根据调节精度根据其它方式来设定;
第二传输性能判断单元18,用于判断减小参考数量后传输性能差值是否小于预设传输性能阈值;
所述第一调整单元14还用于减小参考数量后传输性能差值不小于预设传输性能阈值时增加所述参考数量;
参考数量变化判断单元19,用于当减小参考数量后传输性能差值小于预设传输性能阈值时,判断参考数量的减小量是否小于预设值;
所述第二调整单元17还用于当参考数量的减小量不小于预设值时,减小所述参考数量;
第二目标数量确定单元20,用于当参考数量的减小量小于预设值时,将减小后的参考数量确定为目标数量。
该装置在确定向终端发送数据的参考数量个天线后,在传输性能差值小于预设传输性能阈值后,还可以根据终端基于天线的传输性能对参考数量进行再次调节,使得在满足传输性能差值小于预设传输性能阈值同时,尽量减少分配给终端的天线数量,以达到最大限度节省天线系统资源,提高天线系统的整体 容量。
图10为本发明实施例提供的又一种天线分配装置的结构示意图。如图10所示,在本发明实施例中,分配单元16可以包括:
空闲天线判断单元161,用于判断是否存在空闲天线;
空闲天线数量判断单元162,用于当存在空闲天线时,判断空闲天线的数量是否小于目标数量;
分配子单元163,当空闲天线的数量不小于所述目标数量时,所述空闲天线中选择目标数量个天线并分配给所述终端;
当空闲天线的数量小于所述目标数量时,将所述空闲天线中所有天线都分配给所述终端,并且在所述发射端的非空闲天线中为所述终端分配天线,所述空闲天线的数量和分配给所述终端的非空闲天线的数量等于所述目标数量;
当不存在空闲天线时,在所述发射端的非空闲天线中选择所述目标数量个天线分配给所述终端。
在本发明实施例中,当空闲天线数量不小于目标数量时,可以优先在空闲天线中增加为终端分配天线的数量,并且当空闲天线的数量小于目标数量时,还可以优先在非空闲天线中减少为终端分配天线的数量,以尽量保证就空闲天线分配为终端使用。
该装置在分配天线时,优先分配未被分配给其它终端的空闲天线,然后再分配已经被分配给其他终端的空闲天线,这种分配方式,一方面可以合理利用天线资源,提高发送给终端的信号质量,另一方面可以使得不同终端分配的天线可以重叠,最大化利用天线资源,提高天线系统的容量。
图11为本发明实施例提供的一种天线分配装置的结构示意图。该天线分配装置应用于天线系统中,如图11所示,该天线分配装置包括:接收机1、处理器2和存储器3,其中:
所述接收机1用于接收获取终端的位置信息;
处理器2用于执行以下程序:根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量;判断传输性能差值是否小于预设传输性能阈值,所述传输性能差值为所述终端基于参考数量个天线的传输性能与所述终端基于发射端所有天线的传输性能的差值;当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量,返回执行判断传输性能差值是否小于预设传输性能阈值的步骤,直至传输性能差值小于预设传输性能阈值;当所述传输性能差值小于预设传输性能阈值时,在所述发射端为所述终端分配增加后参考数量个天线。
可选地,本发明实施例中,处理器2还可以执行上述图2-图5任一项实施例中的天线分配方法所对应的程序。
另外,参见上述图6-图10所述的装置实施例,其中,位置信息获取单元11所执行的步骤可以由接收机1来执行,参考数量确定单元12、第一传输性能判断单元13、第一调整单元14、分配单元16、第二调整单元17、第二传输性能判断单元18、参考数量变化判断单元19和第二目标数量确定单元20所执行的步骤都可以由处理器2来执行,存储器3内可以存储有位置区域与天线的参考数量之间的对应关系,以及,存储上述实施例中提及的传输性能阈值和预设值等。
可以理解的是,本发明可用于众多通用或专用的计算系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。
本发明可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本发明,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种天线分配方法,其特征在于,包括:
    获取终端的位置信息;
    根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量;
    判断传输性能差值是否小于预设传输性能阈值,所述传输性能差值为所述终端基于参考数量个天线的传输性能与所述终端基于所述发射端所有天线的传输性能的差值;
    当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量,返回执行所述判断传输性能差值是否小于预设传输性能阈值的步骤,直至所述传输性能差值小于预设传输性能阈值;
    当所述传输性能差值小于预设传输性能阈值时,将增加后的参考数量确定为目标数量;
    在所述发射端为所述终端分配目标数量个天线。
  2. 根据权利要求1所述的方法,其特征在于,所述位置信息包括:位置坐标;
    所述根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量,包括:
    获取所述发射端的天线的位置坐标;
    根据所述天线的位置坐标和所述终端的位置坐标,计算所述终端与天线之间的距离;
    确定所述距离所在的目标距离区间;
    根据距离区间与天线数量之间的对应关系,将所述目标距离区间对应的天线数量确定为参考数量。
  3. 根据权利要求1所述的方法,其特征在于,所述位置信息包括:参考信号接收质量RSRQ和/或参考信号接收功率RSRP;
    所述根据所述位置信息确定发射端中用于向所述终端发送数据的天线的参考数量,包括:
    确定所述位置信息所在的目标RSRP阈值区间或目标RSRQ阈值区间;
    根据RSRP阈值区间与天线数量之间的对应关系,或,RSRQ阈值区间与天线数量之间的对应关系,将所述目标RSRP阈值区间或目标RSRQ阈值区间对应的天线数量确定为参考数量。
  4. 根据权利要求3所述的方法,其特征在于,当所述传输性能差值小于预设传输性能阈值时,所述方法还包括:
    减少所述参考数量;
    判断减小参考数量后传输性能差值是否小于预设传输性能阈值;
    当减小参考数量后传输性能差值不小于预设传输性能阈值时,返回执行所述增加所述参考数量的步骤;
    当减小参考数量后传输性能差值小于预设传输性能阈值时,判断参考数量的减小量是否小于预设值;
    当参考数量的减小量不小于预设值时,返回执行所述减小参考数量的步骤,直至参考数量的减小量小于预设值;
    当参考数量的减小量小于预设值时,将减小后的参考数量确定为目标数量。
  5. 根据权利要求4所述的方法,其特征在于,采用二分法或黄金分割法增加参考数量,
    和/或,采用二分法或黄金分割法减少参考数量。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述在所述发射端为所述终端分配目标数量个天线,包括:
    判断所述发射端的天线中是否存在空闲天线;
    当存在空闲天线时,判断所述空闲天线的数量是否小于所述目标数量;
    当空闲天线的数量不小于所述目标数量时,在所述空闲天线中选择目标数量个天线分配给所述终端;
    当空闲天线的数量小于所述目标数量时,将所述空闲天线中所有天线都分配给所述终端,并且在所述发射端的非空闲天线中为所述终端分配天线,所述空闲天线的数量和分配给所述终端的非空闲天线的数量等于所述目标数量;
    当不存在空闲天线时,在所述发射端的非空闲天线中选择所述目标数量个天线分配给所述终端。
  7. 一种天线分配装置,其特征在于,包括:
    位置信息获取单元,用于获取终端的位置信息;
    参考数量确定单元,用于根据所述位置信息确定用于向所述终端发送数据的天线的参考数量;
    第一传输性能判断单元,用于判断传输性能差值是否小于预设传输性能阈值,所述传输性能差值为所述终端基于所述参考数量的天线的传输性能与所述终端基于所述发射端的所有天线的传输性能之间的差值;
    第一调整单元,用于当所述传输性能差值不小于预设传输性能阈值时,增加所述参考数量,直至传输性能差值小于预设传输性能阈值;
    所述第一传输性能判断单元还用于判断增加所述参考数量后的传输性能差值是否小于预设传输性能阈值;
    第一目标数量确定单元,用于当所述传输性能差值小于预设传输性能阈值时,将增加后的参考数量确定为目标数量;
    分配单元,用于在所述发射端为所述终端分配目标数量个天线。
  8. 根据权利要求7所述的装置,其特征在于,所述位置信息包括:位置坐标;所述参考数量确定单元包括:
    天线坐标获取单元,用于获取所述发射端的天线的位置坐标;
    计算单元,用于根据所述天线的位置坐标和所述终端的位置坐标,计算所述终端与天线之间的距离;
    目标距离区间确定单元,用于确定所述距离所在的目标距离区间;
    第一参考数量确定子单元,用于根据距离区间与天线数量之间的对应关系,将所述目标距离区间对应的天线数量确定为参考数量。
  9. 根据权利要求7所述的装置,其特征在于,所述位置信息包括:参考信号接收质量RSRQ和/或参考信号接收功率RSRP;所述参考数量确定单元包括:
    目标阈值区间确定单元,用于确定所述位置信息所在的目标RSRP阈值区间或目标RSRQ阈值区间;
    第二参考数量确定子单元,用于根据的RSRP阈值区间与天线数量之间的对应关系,或,RSRQ阈值区间与天线数量之间的对应关系,将所述目标RSRP阈值区间或目标RSRQ阈值区间对应的天线数量确定为参考数量。
  10. 根据权利要求7-9任一项所述的装置,其特征在于,所述装置还包括:
    第二调整单元,用于当所述传输性能差值小于预设传输性能阈值时,减少所述参考数量;
    第二传输性能判断单元,用于判断减小参考数量后传输性能差值是否小于预设传输性能阈值;
    所述第一调整单元还用于当减小参考数量后传输性能差值不小于预设传输性能阈值时增加所述参考数量,直至传输性能差值小于预设传输性能阈值;
    参考数量变化判断单元,用于当减小参考数量后传输性能差值小于预设传输性能阈值时,判断参考数量的减小量是否小于预设值;
    所述第二调整单元还用于当参考数量的减小量不小于预设值时,减小所述 参考数量,直至参考数量的减小量小于预设值;
    第二目标数量确定单元,用于当参考数量的减小量小于预设值时,将减小后的参考数量确定为目标数量。
  11. 根据权利要求10所述的装置,其特征在于,所述分配单元包括:
    空闲天线判断单元,用于判断是否存在空闲天线;
    空闲天线数量判断单元,用于当存在空闲天线时,判断所述空闲天线的数量是否小于所述目标数量;
    分配子单元,当空闲天线的数量不小于所述目标数量时,所述空闲天线中选择目标数量个天线分配给所述终端;
    当空闲天线的数量小于所述目标数量时,将所述空闲天线中所有天线都分配给所述终端,并且在所述发射端的非空闲天线中为所述终端分配天线,所述空闲天线的数量和分配给所述终端的非空闲天线的数量等于所述目标数量;
    当不存在空闲天线时,在所述发射端的非空闲天线中选择所述目标数量个天线分配给所述终端。
PCT/CN2014/083043 2013-12-26 2014-07-25 天线分配方法及装置 WO2015096472A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14873641.6A EP3079425B1 (en) 2013-12-26 2014-07-25 Antenna allocation method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310731448.6 2013-12-26
CN201310731448.6A CN104754716B (zh) 2013-12-26 2013-12-26 天线分配方法及装置

Publications (1)

Publication Number Publication Date
WO2015096472A1 true WO2015096472A1 (zh) 2015-07-02

Family

ID=53477476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083043 WO2015096472A1 (zh) 2013-12-26 2014-07-25 天线分配方法及装置

Country Status (4)

Country Link
EP (1) EP3079425B1 (zh)
CN (1) CN104754716B (zh)
PT (1) PT3079425T (zh)
WO (1) WO2015096472A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070956A1 (zh) * 2015-10-30 2017-05-04 华为技术有限公司 一种数据传输方法及装置
US9887746B1 (en) 2017-02-17 2018-02-06 Sprint Spectrum L.P. Optimizing LTE transmit diversity implementation based on wireless device transmit power and power headroom
CN107707288A (zh) * 2017-09-01 2018-02-16 珠海格力电器股份有限公司 一种数据传输方法及装置
CN107453768A (zh) * 2017-09-11 2017-12-08 上海斐讯数据通信技术有限公司 一种调节WiFi信号强度的方法和装置
CN110890632B (zh) 2018-09-10 2022-02-25 华为技术有限公司 调整天线半功率角的方法和装置
CN111182561A (zh) * 2018-11-12 2020-05-19 中兴通讯股份有限公司 一种天线阵列的控制方法及系统
CN111030768A (zh) * 2019-12-24 2020-04-17 普联国际有限公司 一种天线扫描方向控制方法、装置及天线系统
US11909125B2 (en) 2020-02-12 2024-02-20 Apple Inc. Wireless networks with antenna array scaling capabilities
CN112821930A (zh) * 2020-10-25 2021-05-18 泰州物族信息科技有限公司 自适应天线状态管理平台

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101742539A (zh) * 2009-12-25 2010-06-16 国网信息通信有限公司 一种无线资源配置方法和系统
CN102017454A (zh) * 2008-05-07 2011-04-13 三菱电机株式会社 无线通信网络以及无线通信网络中的天线选择方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631379B (zh) * 2009-06-19 2011-06-08 东南大学 分布式天线移动通信系统的功率分配与天线选择方法
CN102036260B (zh) * 2009-09-28 2014-10-29 中兴通讯股份有限公司 一种演进系统中发射天线配置的检测方法及装置
CN103312395B (zh) * 2012-03-15 2016-03-30 西门子公司 一种无线通信系统中天线选择方法和无线通信设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102017454A (zh) * 2008-05-07 2011-04-13 三菱电机株式会社 无线通信网络以及无线通信网络中的天线选择方法
CN101742539A (zh) * 2009-12-25 2010-06-16 国网信息通信有限公司 一种无线资源配置方法和系统

Also Published As

Publication number Publication date
EP3079425B1 (en) 2019-06-19
EP3079425A4 (en) 2016-11-30
PT3079425T (pt) 2019-08-05
EP3079425A1 (en) 2016-10-12
CN104754716A (zh) 2015-07-01
CN104754716B (zh) 2019-01-08

Similar Documents

Publication Publication Date Title
WO2015096472A1 (zh) 天线分配方法及装置
US9565570B2 (en) Capacity planning method and device for wireless broadband network
US8675580B2 (en) Method and apparatus for facilitating packet scheduling for a hybrid communication network
CN1909437A (zh) 用于蜂窝通信的自适应反馈方法
CN109150478A (zh) 信道质量反馈方法及装置
KR101319795B1 (ko) 액세스포인트 운용방법 및 액세스포인트를 이용한 무선통신 시스템
JP6635834B2 (ja) 電力制御方法および装置
EP3183932B1 (en) Method and apparatus for determining clusters of access nodes
CN106105349A (zh) 一种资源分配方法及基站控制器
Uddin Throughput performance of NOMA in WLANs with a CSMA MAC protocol
López et al. Rate control under finite blocklength for downlink cellular networks with reliability constraints
CN110139249A (zh) 基于机器类型通信设备分组的半非授权随机接入方法
Zheng et al. Open-loop communications for up-link URLLC under clustered user distribution
US11405084B1 (en) Sounding for uplink multi-user transmission beamforming in wireless networks
CN110166091B (zh) 多用户配对方法、装置及基站
CN113811010B (zh) 一种多用户mimo调度方法及设备
CN109155687A (zh) 用于确定数据流支持的传输速率的方法、用户设备和基站
WO2013008167A1 (en) Packet scheduling in a cellular communication network for the purpose of device -to -device communications
KR102465448B1 (ko) 다중 입출력 시스템에서 빔포밍을 위한 방법 및 장치
JP2017525233A (ja) ユーザーサービスモード選択方法、パイロット情報送信方法、装置及び記憶媒体
Chen et al. Large deviation delay analysis of queue-aware multi-user MIMO systems with two-timescale mobile-driven feedback
Jin et al. Stability Analysis of $ p $-Persistent Slotted CSMA Systems With Finite Population
CN104838714A (zh) 基站及用户调度方法
Huang et al. User cooperation for NOMA-based mobile edge computing
CN106506112A (zh) 反馈信道状态信息的方法和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873641

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873641

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873641

Country of ref document: EP