WO2015096290A1 - 一种地下气化点火方法 - Google Patents

一种地下气化点火方法 Download PDF

Info

Publication number
WO2015096290A1
WO2015096290A1 PCT/CN2014/074202 CN2014074202W WO2015096290A1 WO 2015096290 A1 WO2015096290 A1 WO 2015096290A1 CN 2014074202 W CN2014074202 W CN 2014074202W WO 2015096290 A1 WO2015096290 A1 WO 2015096290A1
Authority
WO
WIPO (PCT)
Prior art keywords
directional drilling
vertical
ignition
coal
well
Prior art date
Application number
PCT/CN2014/074202
Other languages
English (en)
French (fr)
Inventor
陈�峰
刘洪涛
Original Assignee
新奥气化采煤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥气化采煤有限公司 filed Critical 新奥气化采煤有限公司
Priority to EP14873128.4A priority Critical patent/EP3088660A1/en
Priority to US15/032,661 priority patent/US20160251950A1/en
Publication of WO2015096290A1 publication Critical patent/WO2015096290A1/zh
Priority to ZA2016/02967A priority patent/ZA201602967B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling

Definitions

  • the invention relates to a underground gasification ignition method, which is suitable for the field of underground coal gasification and the like.
  • Underground coal gasification The process of converting underground coal into a combustible gas by in situ reaction through a thermochemical reaction.
  • a clean coal technology it has significant technical advantages in mining inferior coal seams, deeper coal seams, thin coal seams, and "three under” (under water, under buildings, down road) coal crushing, etc., especially suitable for "rich coal, less Oil, gas shortage, China's energy national conditions.
  • the underground coal gasification technology has economic and social benefits such as low investment, short construction period and environmental friendliness, and is highly concerned by the international coal industry. In recent years, as the energy situation has become increasingly tense, research institutes and related companies have invested in the development of underground coal gasification technology, which has led to rapid development.
  • gasification furnace ignition and passage through and processing is a very important process.
  • the channel is processed by air fire penetration method, hydraulic fracturing method and power penetration method, and the penetration speed is slow.
  • the existing underground gasifier ignition is mainly to first create a vertical well, then ignite in a vertical well, first establish a fire zone at the bottom of the vertical well, and then create a directional drilling. Since the fire zone has been formed, the directional drilling is actually hot. In the state of processing, after the directional drilling is finished, the passage of the fire is carried out. Since only the vertical well is processed during the ignition, the vertical well penetration speed is slow, the channel processing time is long, and the flame moving speed is slow, resulting in ignition efficiency. low.
  • an object of the present invention is to provide a method for underground coal gasification ignition, in particular to a method for underground gasification ignition, the method comprising the following steps:
  • the invention firstly constructs a directional drilling and vertical well to construct an underground gasifier, and then fractures the coal seam in the gasifier in a cold state and ignites in a vertical well at the end of the directional drilling.
  • the method has the advantages of high ignition efficiency and fast penetration speed.
  • step (4) is performed: after the fire source is formed, the air inlet and outlet are switched, and the gasification channel is fired.
  • the ingress and egress holes in the step (4) are switched to switch the ignition vertical well out.
  • a fire source is considered to be formed when the coal volume is 0.5 square.
  • the number of vertical wells is one, and the step (3) is ignited in a vertical well at the end of the directional drilling, and the directional drilling is out.
  • the number of vertical wells is at least two.
  • the step (3) ignites in one of the vertical wells at the end of the directional drilling, and at least one of the remaining vertical wells exits while maintaining pressure on the directional drilling.
  • the holding pressure in the step (3) is such that the pressure is maintained at 0.3 to 1.0 MPa.
  • the coal is lignite, and the vertical distance of the vertical well from the directional drilling channel is 2 to 10 meters.
  • the coal is bituminous coal
  • the vertical distance of the vertical well from the directional drilling channel is 1 to 5 meters.
  • the gasification agent is an oxygen-containing gas for ignition
  • the oxygen-containing gas has an oxygen concentration of 21%.
  • the present invention has the following beneficial effects:
  • the invention firstly constructs a directional drilling and vertical well to construct an underground gasification furnace; pre-penetrates the coal seam by a cold fracturing method; and ignites in a vertical well at the end of the directional drilling.
  • the method of the present invention has the advantages of high ignition efficiency and fast penetration speed.
  • FIG. 1 is a flow chart showing the process of the ignition method of the first embodiment.
  • Figure 2 is a side view of the ignition process of the specific embodiment 1.
  • Fig. 3 is a plan view showing the ignition through process of the first embodiment.
  • Figure 4 is a side view of the ignition process of the specific embodiment 2.
  • Fig. 5 is a plan view showing the ignition through process of the second embodiment.
  • Fig. 6 is a flow chart showing the process of the ignition method of the third embodiment.
  • Figure 7 is a side view showing the ignition process of the specific embodiment 3.
  • Fig. 8 is a plan view showing the ignition through process of the third embodiment.
  • Fig. 9 is a flow chart showing the process of the ignition method of the fourth embodiment.
  • Figure 10 is a side view showing the ignition process of a specific embodiment 4.
  • Figure 11 is a plan view showing the ignition through process of the fourth embodiment.
  • an underground gasification ignition method includes the following steps:
  • the invention firstly constructs a directional drilling and a vertical well to construct an underground gasification furnace; pre-penetrates the coal seam by a cold fracturing method; and ignites in a vertical well at the end of the directional drilling.
  • the present invention first establishes a gasification furnace consisting of directional drilling and vertical wells, and performs vertical well ignition after cold fracturing, first establishing directional drilling and fracturing, and since the horizontal passage has been formed, the fracturing efficiency can be improved. After the fracturing channel is ignited, the penetration speed will be accelerated. Due to the faster moving speed of the flame working surface, the ignition efficiency is improved, and since the industrial gasifier is mostly constructed by directional drilling, it is beneficial to the subsequent directional drilling to construct the gasifier. Running.
  • the present invention also overcomes the shortcomings of the prior art that the fire zone is first established in the vertical well bottom, and then the directional drilling is processed in the hot state, and the through process is greatly affected by the directional drilling process.
  • step (3) is followed by step (4):
  • the air inlet and outlet are switched, and the gasification channel is fired.
  • the inlet and outlet ports are switched in the step (4) to switch the ignition vertical well outlet.
  • a fire source is considered to be formed when the coal volume is 0.5 square.
  • the step (4) of the invention adds a reliable control method based on the prior art, and judges whether the fire source is formed from the coal outlet quantity of the gas outlet, so as to switch the intake hole in time to prevent the partial channel from being over-wide and causing the collapse of the coal seam roof. .
  • the step (3) ignites in a vertical well at the end of the directional drilling, and directional drilling out.
  • step (3) uses vertical well ignition, directional drilling out of gas, and when the coal volume is 0.5 square, the fire source is considered to be formed, then the inlet and outlet holes are switched, and the directional drilling intake is changed to vertical well out. gas.
  • the step (3) ignites one of the vertical wells at the end of the directional drilling, and at least one of the remaining vertical wells is out of gas, and at the same time, the directional drilling is maintained.
  • step (3) uses one of the vertical wells to ignite, and the other vertical well exits.
  • the fire source is considered to be formed, and the inlet and outlet holes are switched, according to the ignition hole.
  • the position is switched to directional drilling or primary gas outflow vertical well airing vertical well gas outlet, the purpose of which is to process the gasification channel for firepower to make the gasification channel penetrate.
  • step (3) first selects any one of the vertical wells for ignition, and at least one of the remaining vertical wells is out.
  • the coal volume is 0.5 square
  • the fire source is formed, then the air inlet and outlet are taken.
  • the switching can be switched to the directional drilling, the auxiliary well or the original gas well inlet according to the position of the ignition hole, and the vertical gas is discharged from the vertical well, and the purpose is to process the gasification passage for the fire power to make the gasification passage pass through.
  • the auxiliary well is a vertical well other than the vertical well of the step (3) and the vertical well other than the original gas well.
  • Step (3) of the present invention performs pressure-holding treatment on the directional drilling during the vertical well ignition through process, on the one hand, prevents the clogging phenomenon from being used in time after the completion of the directional drilling, and on the other hand, the pressure holding of the directional drilling can effectively control the groundwater. Influx.
  • the number of vertical wells is at least one, for example, one, two, three, four, five, six or seven.
  • the vertical well has a diameter of 200 to 400 mm, and the aperture is, for example, 220 mm, 240 mm, 260 mm > 280 mm, 300 mm > 320 mm > 340 mm > 360 mm or 380 mm.
  • the bottom of the casing of the vertical well is 1 to 2 meters away from the bottom of the coal seam.
  • the directional drilling channel is unsupported or has a support channel with screen support.
  • the directional drilling channel has a length of 70 to 150 meters, such as 80 meters, 90 meters, 100 meters, 110 meters, 120 meters, 130 meters or 140 meters.
  • the directional drilling has a pore diameter of 100 to 250 mm, for example, 110 mm, 120 mm, 140 mm, 160 mm, 180mm, 200mm > 220mm > 240mm or 245mm.
  • the vertical well of the present invention is not directly connected with the directional drilling.
  • the vertical distance of the vertical well from the directional drilling channel is 2 to 10 meters, for example, 3 meters, 4 meters, 5 meters, 6 meters, 7 meters, 8 Meters or 9 meters
  • the vertical distance of the vertical well from the directional drilling channel is 1 ⁇ 5 meters, such as 1.5 meters, 2 meters, 2.5 meters, 3 meters, 3.5 meters, 4 meters or 4.5 meters.
  • the fracturing method is any one of hydraulic fracturing, high pressure air infiltration, blasting or chemical liquid breaking.
  • the vertical well ignition mode is any one of electric ignition, solid fuel ignition, or coke ignition.
  • the gasification agent used for ignition is an oxygen-containing gas, and the oxygen-containing gas has an oxygen concentration of 21%, for example, 25%.
  • the holding pressure in the step (3) is such that the pressure is maintained at 0.3 to 1.0 MPa, for example, 0.4 MPa, 0.5 MPa,
  • the holding pressure can achieve pressure holding by continuously injecting air into the directional drilling.
  • An underground gasification ignition method includes the following steps:
  • One vertical well is ignited, the other vertical well is vented, and the directional drilling is maintained during the vertical well ignition through;
  • An underground gasification ignition method includes the following steps:
  • An underground gasification ignition method includes the following steps:
  • An underground gasification ignition method includes the following steps:
  • An underground gasification ignition method includes the following steps:
  • Embodiment 1 proposes a process for igniting ignition in a lignite coal seam by using one directional well and one vertical well, which has the advantages of high fracturing efficiency, good drainage effect of the gasifier, and high ignition efficiency, and is underground.
  • the industrial application of the gasifier provides excellent pre-conditions.
  • this embodiment is mainly divided into several processes.
  • the thickness of the coal seam is 10 meters, the directional drilling hole is 150mm, and the channel is unsupported.
  • the horizontal distance is 150m.
  • the vertical well has a bore diameter of 250 mm, which is located on the side of the directional drilling hole.
  • the bottom of the casing is about 2m away from the bottom of the coal seam, and the vertical distance from the directional drilling channel is 10m;
  • the vertical well is used as a solid fuel for the ignition well, and air is selected as the gasifying agent.
  • the directional drilling is used to vent the gas, and the fire source is cultivated.
  • the coal source is used to determine whether the fire source is formed.
  • Embodiment 2 proposes a process for igniting a directional drilling and a vertical well in a bituminous coal seam.
  • the method has the advantages of high fracturing efficiency, good drainage effect of the gasifier, and high ignition efficiency, and can
  • the industrial application of underground gasifiers provides excellent pre-conditions.
  • this embodiment is mainly divided into several processes.
  • the thickness of the coal seam is 10 meters, the directional drilling hole is 150mm, and the channel is unsupported.
  • the horizontal distance is 120m.
  • the vertical well bore 300mm is located on the side of the directional drilling line.
  • the bottom of the casing is about 2m away from the coal seam floor, and the vertical distance from the directional drilling channel is 5m .
  • Embodiment 3 proposes a process for igniting one directional drilling and three vertical wells in a lignite coal seam, which has high fracturing efficiency, good drainage effect of the gasifier, high ignition efficiency, and vertical well penetration speed.
  • the quick advantage is conducive to the subsequent directional drilling to build the operation of the gasifier.
  • this embodiment is mainly divided into several processes.
  • the thickness of the coal seam is 10 meters
  • the directional drilling hole is 150mm
  • the channel is selected without support.
  • the protection channel has a horizontal distance of 150m.
  • the vertical wells are distributed on both sides of the directional drilling.
  • the bottom of the casing is about 2m away from the bottom of the coal seam.
  • the diameters of the wells 1#, 2# and 3# are 350mm, 350mm, 200mm, respectively.
  • the vertical distances are 8m, 10m, 10m, and the horizontal distances of 1# wells 2# and 3# are 30m and 10m respectively;
  • the 1# ignition well stops the intake air, and the 3# vertical well intake, 1# vertical well exit.
  • Embodiment 4 proposes a process for igniting one directional drilling and two vertical wells in a bituminous coal seam, which has high fracturing efficiency, good drainage effect of the gasifier, high ignition efficiency, and vertical well penetration speed.
  • the quick advantage is conducive to the subsequent directional drilling to build the operation of the gasifier.
  • this embodiment is mainly divided into several processes.

Abstract

一种地下气化点火方法,包括如下步骤:打造定向钻井和垂直井构建地下气化炉;用冷态压裂的方法对煤层进行预贯通;在定向钻井末端的垂直井中点火。

Description

一种地下气化点火方法 技术领域
本发明涉及一种地下气化点火方法, 适用于煤炭地下气化等领域。
背景技术
煤炭地下气化 (underground coal gasification) 将地下煤炭通过热化学反应 在原地转化为可燃气体的过程。 作为一项洁净煤技术, 在开采劣质煤层、 较深 煤层、 薄煤层以及 "三下" (水体下、 建筑物下、 路下) 压煤等具有显著技术 优势, 特别适用于 "富煤、 少油、 缺气" 的我国能源国情。 煤炭地下气化技术 具有投资少、 建设周期短、 环境友好等经济和社会效益, 受到国际煤炭行业的 高度关注。 近年来, 随着能源形势的日趋紧张, 科研院所和相关企业都投入了 煤炭地下气化技术的开发, 使之得到了快速的发展。
在煤炭地下气化技术应用过程中, 气化炉点火与通道的贯通与加工是一个 非常重要的过程。 目前的地下气化工艺过程, 通道的加工多采用空气火力渗透 法、 水力压裂法和电力贯通法, 贯通速度较慢。
已有的地下气化炉点火主要为首先打造垂直井, 然后在垂直井中点火, 首 先在垂直井的井底建立火区, 然后打造定向钻井, 由于火区已形成, 定向钻井 实际上是在热态下进行加工, 定向钻井结束加工后, 对其通道进行火力贯通, 由于点火时只加工了垂直井, 因此火区形成时垂直井贯通速度慢, 通道加工时 间长, 火焰移动速度慢造成点火效率低。
发明内容
针对已有技术的缺点, 本发明的目的在于提供一种煤炭地下气化点火方 法, 具体涉及一种地下气化点火方法, 所述方法包括如下步骤:
( 1 ) 打造定向钻井和垂直井构建地下气化炉; (2) 用冷态压裂的方法对煤层进行预贯通;
(3 )在定向钻井末端的垂直井中点火。 本发明首先打造定向钻井和垂直井 构建地下气化炉, 然后在冷态下对气化炉中煤层进行压裂, 在定向钻井末端的 垂直井中点火。 该方法具有点火效率高且贯通速度快的优势。
以下作为本发明优选的技术方案, 但不作为本发明提供的技术方案的限制, 通过以下技术方案, 可以更好的达到和实现本发明的技术目的和有益效果。
任选地, 在本发明提供的技术方案的基础上, 步骤 (3 ) 后进行步骤 (4): 当火源形成后, 进行进出气孔切换, 火力加工气化通道。
任选地, 在本发明提供的技术方案的基础上, 所述步骤 (4) 中进行进出气 孔切换为切换点火垂直井出气。
任选地, 在本发明提供的技术方案的基础上, 所述步骤 (4) 中当燃煤体积 0.5方时认为火源形成。
优选地, 在本发明提供的技术方案的基础上, 垂直井的数量为 1个, 所述步骤 (3 ) 在定向钻井末端的垂直井中点火, 定向钻井出气。 优选地, 在本发明提供的技术方案的基础上, 垂直井的数量为至少 2个,
所述步骤 (3 )在定向钻井末端的其中 1个垂直井中点火, 剩余垂直井中的 至少一个出气, 同时对定向钻井进行保压。 优选地, 在本发明提供的技术方案 的基础上, 步骤 (3 ) 所述的保压为使压力保持在 0.3〜1.0MPa。
优选地, 在本发明提供的技术方案的基础上, 所述煤为褐煤, 垂直井距离 定向钻井通道的垂直距离为 2〜10米。
优选地, 在本发明提供的技术方案的基础上, 所述煤为烟煤, 垂直井距离 定向钻井通道的垂直距离为 1〜5米。
优选地, 在本发明提供的技术方案的基础上, 点火使用气化剂为含氧气体, 所述含氧气体的氧气浓度 21%。
与已有技术相比, 本发明具有如下有益效果:
本发明首先打造定向钻井和垂直井构建地下气化炉; 用冷态压裂的方法对 煤层进行预贯通; 在定向钻井末端的垂直井中点火。 本发明所述方法具有点火 效率高且贯通速度快的优势。
附图说明
图 1是具体实施例 1的点火方法工艺流程图。
图 2是具体实施例 1点火过程侧视图。
图 3是具体实施例 1点火贯通过程俯视图。
图 4是具体实施例 2点火过程侧视图。
图 5是具体实施例 2点火贯通过程俯视图。
图 6是具体实施例 3的点火方法工艺流程图。
图 7是具体实施例 3点火过程侧视图。
图 8是具体实施例 3点火贯通过程俯视图。
图 9是具体实施例 4的点火方法工艺流程图。
图 10是具体实施例 4点火过程侧视图。
图 11是具体实施例 4点火贯通过程俯视图。
具体实施方式
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下:
在本发明的一种典型的实施方式中, 一种地下气化点火方法, 包括如下步 骤:
( 1 ) 打造定向钻井和垂直井构建地下气化炉; (2) 用冷态压裂的方法对煤层进行预贯通;
(3 )在定向钻井末端的垂直井中点火。 本发明首先打造定向钻井和垂直井 构建地下气化炉; 用冷态压裂的方法对煤层进行预贯通; 在定向钻井末端的垂 直井中点火。 而且, 本发明首先建立由定向钻井和垂直井组成的气化炉, 冷态 压裂后进行垂直井点火, 先建立定向钻井后压裂, 由于已经形成了水平通道因 此可以使得压裂效率提高、 经过压裂的通道点火后, 贯通速度会加快, 由于火 焰工作面移动速度加快, 使得点火效率提高, 并且由于现在工业性气化炉多由 定向钻井构建, 因此有利于后续定向钻井构建气化炉的运行。
另外, 本发明还克服了已有技术先在垂直井井底建立火区, 然后定向钻井 在热态下进行加工, 贯通过程受定向钻井加工影响较大的缺点。
根据本发明, 步骤 (3 ) 后进行步骤 (4):
当火源形成后, 进行进出气孔切换, 火力加工气化通道。 根据本发明, 所 述步骤 (4) 中进行进出气孔切换为切换点火垂直井出气。
根据本发明, 所述步骤 (4) 中当燃煤体积 0.5方时认为火源形成。
本发明步骤 (4)在已有技术的基础上增加了可靠的控制方法, 从煤气出口 燃煤量判断火源是否形成, 以便及时进行进气孔的切换, 防止局部通道过宽造 成煤层顶板塌陷。
根据本发明, 当垂直井的数量为 1个时,
所述步骤 (3 ) 在定向钻井末端的垂直井进行点火, 定向钻井出气。
当垂直井数量为 1个时, 步骤 (3 ) 利用垂直井点火, 定向钻井出气, 当燃 煤体积 0.5方时认为火源形成, 则进行进出气孔的切换, 改为定向钻井进气, 垂直井出气。
根据本发明, 当垂直井的数量为至少 2个时, 所述步骤 (3 )在定向钻井末端的其中 1个垂直井进行点火, 剩余垂直井中 的至少一个出气, 同时对定向钻井进行保压。
垂直井的数量为 2个时, 步骤 (3 ) 利用其中 1个垂直井点火, 另一垂直井 出气, 当燃煤体积 0.5方时认为火源形成, 则进行进出气孔的切换, 可根据点 火孔的位置切换为定向钻井或原出气垂直井进气点火垂直井出气, 其目的均是 为火力加工气化通道, 以使气化通道贯通。
垂直井的数量为至少 3个时, 步骤 (3 ) 首先选择其中的任意一个垂直井进 行点火, 剩余垂直井中的至少 1个出气, 当燃煤体积 0.5方时认为火源形成, 则进行进出气孔的切换, 可根据点火孔的位置切换为定向钻井、 辅助井或原出 气井进气, 点火垂直井出气, 其目的均是为火力加工气化通道, 以使气化通道 贯通。 所述辅助井即除步骤 (3 ) 点火的垂直井和原出气井以外的垂直井。
本发明步骤 (3 ) 在垂直井点火贯通过程中对定向钻井进行保压处理, 一方 面防止定向钻井完工后不及时使用出现堵塞现象, 另一方面对定向钻井进行保 压可以有效地控制地下水的涌入。
所述垂直井的数量为至少 1个, 例如 1个、 2个、 3个、 4个、 5个、 6个或 7个 。
所述垂直井的孔径为 200〜400mm, 所述孔径例如为 220mm、 240mm, 260mm > 280mm、 300mm > 320mm > 340mm > 360mm或 380mm。
所述垂直井的套管底部距离煤层底板为 1〜2米。
所述定向钻井的通道为无支护或者采用有筛管支护的有支护通道。
所述定向钻井通道长度为 70〜150米, 例如 80米、 90米、 100米、 110米、 120米、 130米或 140米。
所述定向钻井的孔径为 100〜250mm,例如 110mm、 120mm、 140mm、 160mm、 180mm、 200mm > 220mm > 240mm或 245mm。
本发明垂直井与定向钻井不直接连接, 所述煤为褐煤时, 垂直井距离定向 钻井通道的垂直距离为 2〜10米, 例如 3米、 4米、 5米、 6米、 7米、 8米或 9 米, 所述煤为烟煤时, 垂直井距离定向钻井通道的垂直距离为 1〜5米, 例如 1.5 米、 2米、 2.5米、 3米、 3.5米、 4米或 4.5米。
所述压裂方法为水力压裂、 高压空气渗透、 爆破法或化学液破碎法中的任 意一种。
所述垂直井点火方式为电点火、 固体燃料点火或焦炭点火中的任意一种。 点火使用气化剂为含氧气体,所述含氧气体的氧气浓度 21%,例如 25%、
30%、 40%、 50%、 60%、 70%、 80%、 90%或 100%。
步骤(3 )所述的保压为使压力保持在 0.3〜1.0MPa, 例如 0.4MPa、 0.5MPa、
0.6MPa、 0.7MPa、 0.8MPa或 0.9MPa, 所述保压可以通过对定向钻井持续进气 以实现保压。
以下将结合具体实施方式和具体实施例来进一步说明本发明的有益效果。 具体实施方式 1
一种地下气化点火方法, 包括如下步骤:
( 1 ' ) 打造定向钻井和垂直井构建地下气化炉, 垂直井的数量为 1个; (2' ) 用冷态压裂的方法对煤层进行预贯通;
(3 ' ) 在定向钻井末端的垂直井中点火,
(4' ) 当燃煤体积 0.5方时认为火源形成, 切换定向钻井进气, 垂直井出 (Γ) 打造定向钻井和垂直井构建地下气化炉, , 垂直井的数量为 2个; (2')用冷态压裂的方法对煤层进行预贯通; (3')在定向钻井末端的其中
1 个垂直井进行点火, 另一垂直井出气, 垂直井点火贯通过程中对定向钻井进 行保压;
(4') 当燃煤体积 0.5方时认为火源形成, 根据点火孔位置切换为定向钻 井进气, 点火垂直井出气, 火力加工气化通道。
具体实施方式 3
一种地下气化点火方法, 包括如下步骤:
(Γ) 打造定向钻井和垂直井构建地下气化炉, , 垂直井的数量为 2个; (2') 用冷态压裂的方法对煤层进行预贯通;
(3')在定向钻井末端的其中 1个垂直井进行点火, 另一垂直井出气, 垂直 井点火贯通过程中对定向钻井进行保压;
(4') 当燃煤体积 0.5方时认为火源形成, 根据点火孔位置切换为原出气 垂直井进气, 点火垂直井出气, 火力加工气化通道。
具体实施方式 5
一种地下气化点火方法, 包括如下步骤:
(Γ)打造定向钻井和垂直井构建地下气化炉, 垂直井的数量为至少 3个; (2') 用冷态压裂的方法对煤层进行预贯通;
(3')在定向钻井末端的其中 1个垂直井中进行点火, 剩余垂直井中的至少 1个出气, 垂直井点火贯通过程中对定向钻井进行保压;
(4') 当燃煤体积 0.5方时认为火源形成, 根据点火孔位置切换为定向钻 井进气, 点火垂直井出气, 火力加工气化通道。
具体实施方式 6 一种地下气化点火方法, 包括如下步骤:
(Γ)打造定向钻井和垂直井构建地下气化炉, 垂直井的数量为至少 3个; (2') 用冷态压裂的方法对煤层进行预贯通;
(3')在定向钻井末端的其中 1个垂直井中进行点火, 剩余垂直井中的至少 1个出气, 垂直井点火贯通过程中对定向钻井进行保压;
(4') 当燃煤体积 0.5方时认为火源形成, 根据点火孔位置切换为原出气 垂直井进气, 点火垂直井出气, 火力加工气化通道;
具体实施方式 7
一种地下气化点火方法, 包括如下步骤:
(Γ)打造定向钻井和垂直井构建地下气化炉, 垂直井的数量为至少 3个; (2') 用冷态压裂的方法对煤层进行预贯通;
(3')在定向钻井末端的其中 1个垂直井中进行点火, 剩余垂直井中的至少 1个出气, 垂直井点火贯通过程中对定向钻井进行保压;
(4') 火源形成后, 根据点火孔位置切换为辅助井进气, 点火垂直井出气, 火力加工气化通道;
具体实施例 1
具体实施例 1提出一种在褐煤煤层中利用 1个定向井和 1个垂直井配合点 火的工艺方法, 该方法具有压裂效率高、 气化炉排水效果好, 点火效率高的优 势, 为地下气化炉的工业化应用提供了优质的前置条件。
根据图 1〜图 3, 本实施例主要分为几个过程。
(1)在褐煤煤层中建立由 1个定向井及定向钻井末端沿线附近 1个垂直井 组成的地下气化炉, 煤层厚度 10米, 定向钻井孔径 150mm, 通道选用无支护 通道, 水平距离 150m, 垂直井孔径 250mm, 其位于定向钻井孔沿线的侧面, 套管底部距离煤层底板 2m左右, 距离定向钻井通道的垂直距离为 10m;
(2 )采用高压空气渗透的方法对地下气化炉进行冷态压裂, 贯通定向钻井 和垂直井之间通道;
(3 )垂直井作为点火井下放固体燃料, 选用空气作为气化剂, 定向钻井出 气, 培育火源, 由煤气出口燃煤量判断火源是否形成;
(4 ) 当燃煤体积达到 0.5方时认为火源形成, 进出气孔进行切换, 改由定 向钻井进气, 垂直井出气, 逆向引火贯通气化通道。
具体实施例 2
具体实施例 2提出一种在烟煤煤层中利用 1个定向钻井和 1个垂直井配合 点火的工艺方法, 该方法具有压裂效率高、 气化炉排水效果好, 点火效率高的 优势, 能够为地下气化炉的工业化应用提供了优质的前置条件。
根据图 4〜图 5, 本实施例主要分为几个过程。
( 1 )在烟煤煤层中建立由 1个定向钻井及定向钻井末端沿线附近 1个垂直 井组成的地下气化炉, 煤层厚度 10米, 定向钻井孔径 150mm, 通道选用无支 护通道, 水平距离 120m, 垂直井孔径 300mm位于定向钻井沿线的侧面, 套管 底部距离煤层底板 2m左右, 距离定向钻井通道的垂直距离为 5m;
(2 )采用化学液破碎法对地下气化炉进行冷态压裂, 贯通定向钻井和垂直 井之间通道;
(3 )垂直井作为点火井下放焦炭点火, 选用 35%的富氧空气作为气化剂, 定向钻井出气, 培育火源, 由煤气出口燃煤量判断火源是否形成;
(4 ) 当燃煤体积达到 0.5方时认为火源形成, 进出气孔进行切换, 改由定 向钻井进气, 垂直井出气, 逆向引火贯通气化通道。
具体实施例 3 具体实施例 3提出一种在褐煤煤层中利用 1个定向钻井和 3个垂直井配合 点火的工艺方法, 该方法具有压裂效率高、 气化炉排水效果好, 点火效率高、 垂直井贯通速度快的优势, 有利于后续定向钻井构建气化炉的运行。
根据图 6〜图 8, 本实施例主要分为几个过程。
( 1 ) 在褐煤煤层中建立由 1 个定向钻井及定向钻井末端沿线附近 1#、 2# 和 3#垂直井组成的地下气化炉, 煤层厚度 10米, 定向钻井孔径 150mm, 通道 选用无支护通道, 水平距离 150m, 垂直井分布于定向钻井沿线的两侧, 套管底 部距离煤层底板 2m 左右, 1#、 2#、 3#井的孔径分别为 350mm、 350mm, 200mm, 距离定向钻井通道的垂直距离分别为 8m、 10m、 10m, 1#井距离 2#和 3#井的水平距离分别为 30m、 10m;
(2 )采用高压空气渗透的方法对地下气化炉进行冷态压裂, 贯通定向钻井 和垂直井之间通道;
(3 )定向钻井持续进气保压, 1#垂直井点火, 气化剂选择空气, 2#垂直井 出气, 培育火源, 当煤气出口燃煤量达到 1方时, 判断火源已经形成;
(4 ) 火源形成后, 1#点火井停止进气, 改由 3#垂直井进气, 1#垂直井出 具体实施例 4
具体实施例 4提出一种在烟煤煤层中利用 1个定向钻井和 2个垂直井配合 点火的工艺方法, 该方法具有压裂效率高、 气化炉排水效果好, 点火效率高、 垂直井贯通速度快的优势, 有利于后续定向钻井构建气化炉的运行。
根据图 9〜图 11, 本实施例主要分为几个过程。
( 1 ) 在烟煤煤层中建立由 1个定向钻井及定向钻井末端沿线附近 1#和 2# 垂直井组成的地下气化炉, 煤层厚度 10米, 定向钻井孔径 150mm, 通道内设 置筛管支护, 水平距离 120m, 垂直井分布于定向钻井沿线的两侧, 套管底部距 离煤层底板 2m左右, 1#和 2#井的孔径均为 250mm, 距离定向钻井通道的垂直 距离均为 5m, 两垂直井间距离为 25米;
(2 ) 对地下气化炉进行冷态压裂, 贯通定向钻井和垂直井之间通道;
(3 )定向钻井持续进气保压, 2#垂直井采用焦炭点火, 气化剂选择 30%的 富氧空气, 1#垂直井出气, 培育火源, 由煤气出口燃煤量判断火源是否形成;
(4 ) 当燃煤体积达到 0.5 方时认为火源形成, 火源形成后, 2#点火井停止进 气, 改由定向钻井进气, 进行逆向引火; 定向钻井持续进气, 为延长气化通道 长度, 将出气井切换至 2#井。
申请人声明, 本发明通过上述实施例来说明本发明的详细方法, 但本发明 并不局限于上述详细方法, 即不意味着本发明必须依赖上述详细方法才能实 施。 所属技术领域的技术人员应该明了, 对本发明的任何改进, 对本发明产品 各原料的等效替换及辅助成分的添加、 具体方式的选择等, 均落在本发明的保 护范围和公开范围之内。

Claims

权 利 要 求 书
1、 一种地下气化点火方法, 其特征在于, 所述方法包括如下步骤:
( 1 ) 打造定向钻井和垂直井构建地下气化炉;
(2 ) 用冷态压裂的方法对煤层进行预贯通;
(3 ) 在定向钻井末端的垂直井中点火。
2、 如权利要求 1 所述的方法, 其特征在于, 步骤 (3 ) 后进行步骤 (4): 当火源形成后, 进行进出气孔切换, 火力加工气化通道。
3、 如权利要求 2所述的方法, 其特征在于, 所述进出气孔切换为切换点火 垂直井出气。
4、 如权利要求 2所述的方法, 其特征在于, 当燃煤体积 0.5方时认为火 源形成。
5、 如权利要求 1所述的方法, 其特征在于, 垂直井的数量为 1个, 所述步 骤 (3 ) 在定向钻井末端的垂直井中点火, 定向钻井出气。
6、 如权利要求 1所述的方法, 其特征在于, 垂直井的数量为至少 2个, 所 述步骤 (3 )在定向钻井末端的其中 1个垂直井中点火, 剩余垂直井中的至少一 个出气, 同时对定向钻井进行保压。
7、 如权利要求 6 所述的方法, 其特征在于, 所述保压为使压力保持在 0.3〜1.0MPa。
8、 如权利要求 1所述的方法, 其特征在于, 所述煤为褐煤, 垂直井距离定 向钻井通道的垂直距离为 2〜10米。
9、 如权利要求 1所述的方法, 其特征在于, 所述煤为烟煤, 垂直井距离定 向钻井通道的垂直距离为 1〜5米。
10、 如权利要求 1所述的方法, 其特征在于, 点火使用气化剂为含氧气体, 所述含氧气体的氧气浓度 21%。
PCT/CN2014/074202 2013-12-23 2014-03-27 一种地下气化点火方法 WO2015096290A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP14873128.4A EP3088660A1 (en) 2013-12-23 2014-03-27 Underground gasification ignition method
US15/032,661 US20160251950A1 (en) 2013-12-23 2014-03-27 Underground gasification ignition method
ZA2016/02967A ZA201602967B (en) 2013-12-23 2016-05-04 Underground gasification ignition method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310717057.9A CN103726818A (zh) 2013-12-23 2013-12-23 一种地下气化点火方法
CN201310717057.9 2013-12-23

Publications (1)

Publication Number Publication Date
WO2015096290A1 true WO2015096290A1 (zh) 2015-07-02

Family

ID=50451085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074202 WO2015096290A1 (zh) 2013-12-23 2014-03-27 一种地下气化点火方法

Country Status (5)

Country Link
US (1) US20160251950A1 (zh)
EP (1) EP3088660A1 (zh)
CN (1) CN103726818A (zh)
WO (1) WO2015096290A1 (zh)
ZA (1) ZA201602967B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227947A (zh) * 2017-07-24 2017-10-03 新疆国利衡清洁能源科技有限公司 一种地下气化炉及其施工法以及煤炭地下气化方法
CN113914847A (zh) * 2021-10-22 2022-01-11 西南石油大学 一种应用压裂技术改善煤炭地下气化气腔发育的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10669823B2 (en) * 2016-10-31 2020-06-02 Baker Hughes, A Ge Company, Llc System and method for downhole ignition detection
CN107083948A (zh) * 2017-06-16 2017-08-22 新疆国利衡清洁能源科技有限公司 一种煤炭地下气化炉炉身结构及构建方法
CN111963137B (zh) * 2019-05-20 2022-11-04 中国石油天然气股份有限公司 一种巨厚煤层地下气化方法
CN112127866B (zh) * 2019-06-25 2022-08-30 中国石油天然气股份有限公司 一种利用煤炭地下气化技术开发深层煤层的工艺
CN112177586B (zh) * 2020-09-26 2022-09-16 陕西省煤田地质集团有限公司 一种杂卤石原位焙烧开采方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034139C1 (ru) * 1992-02-04 1995-04-30 Горно-техническое бюро "Штейгер" Способ подземной газификации угля
RU2298093C1 (ru) * 2006-04-19 2007-04-27 Открытое акционерное общество "Промгаз" Способ огневой фильтрационной сбойки скважин
UA35883U (uk) * 2008-04-22 2008-10-10 Национальный горный университет Спосіб запалювання вугільного пласта при підземній газифікації
CN101315026A (zh) * 2008-07-01 2008-12-03 李文军 一种煤炭地下气化系统及其生产工艺
CN103422848A (zh) * 2013-09-06 2013-12-04 新奥气化采煤有限公司 煤炭地下气化方法及注浆装置
CN103437748A (zh) * 2013-09-04 2013-12-11 新奥气化采煤有限公司 煤炭地下气化炉、以及煤炭地下气化方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933447A (en) * 1974-11-08 1976-01-20 The United States Of America As Represented By The United States Energy Research And Development Administration Underground gasification of coal
US4296809A (en) * 1980-07-21 1981-10-27 Gulf Research & Development Company In situ gasification of bituminous coal
US4422505A (en) * 1982-01-07 1983-12-27 Atlantic Richfield Company Method for gasifying subterranean coal deposits
US4476932A (en) * 1982-10-12 1984-10-16 Atlantic Richfield Company Method of cold water fracturing in drainholes
US4589491A (en) * 1984-08-24 1986-05-20 Atlantic Richfield Company Cold fluid enhancement of hydraulic fracture well linkage
US4648450A (en) * 1985-11-27 1987-03-10 Amoco Corporation Method of producing synthesis gas by underground gasification of coal using specific well configuration
US4662443A (en) * 1985-12-05 1987-05-05 Amoco Corporation Combination air-blown and oxygen-blown underground coal gasification process
RU2209305C2 (ru) * 2000-04-13 2003-07-27 Ухтинский государственный технический университет Способ подземной газификации и дегазации углей (варианты)
US7513304B2 (en) * 2003-06-09 2009-04-07 Precision Energy Services Ltd. Method for drilling with improved fluid collection pattern
US7051809B2 (en) * 2003-09-05 2006-05-30 Conocophillips Company Burn assisted fracturing of underground coal bed
US7264049B2 (en) * 2004-05-14 2007-09-04 Maguire James Q In-situ method of coal gasification
US7735554B2 (en) * 2007-03-29 2010-06-15 Texyn Hydrocarbon, Llc System and method for recovery of fuel products from subterranean carbonaceous deposits via an electric device
US20100276139A1 (en) * 2007-03-29 2010-11-04 Texyn Hydrocarbon, Llc System and method for generation of synthesis gas from subterranean coal deposits via thermal decomposition of water by an electric torch
CN101680284B (zh) * 2007-05-15 2013-05-15 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
RO126048A2 (ro) * 2008-02-13 2011-02-28 Archon Technologies Ltd. Procedeu modificat pentru extracţia hidrocarburilor, care utilizează combustia in situ
CN101864942A (zh) * 2010-03-23 2010-10-20 邓惠荣 立井水平井富氧自然点火、电点火远程自动控制技术
CN102418476A (zh) * 2011-10-24 2012-04-18 国鼎(大连)投资有限公司 深层煤炭和煤层气联合开采技术
AU2012101716A4 (en) * 2011-12-23 2013-01-10 Linc Energy Ltd Underground coal gasification in thick coal seams

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2034139C1 (ru) * 1992-02-04 1995-04-30 Горно-техническое бюро "Штейгер" Способ подземной газификации угля
RU2298093C1 (ru) * 2006-04-19 2007-04-27 Открытое акционерное общество "Промгаз" Способ огневой фильтрационной сбойки скважин
UA35883U (uk) * 2008-04-22 2008-10-10 Национальный горный университет Спосіб запалювання вугільного пласта при підземній газифікації
CN101315026A (zh) * 2008-07-01 2008-12-03 李文军 一种煤炭地下气化系统及其生产工艺
CN103437748A (zh) * 2013-09-04 2013-12-11 新奥气化采煤有限公司 煤炭地下气化炉、以及煤炭地下气化方法
CN103422848A (zh) * 2013-09-06 2013-12-04 新奥气化采煤有限公司 煤炭地下气化方法及注浆装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107227947A (zh) * 2017-07-24 2017-10-03 新疆国利衡清洁能源科技有限公司 一种地下气化炉及其施工法以及煤炭地下气化方法
CN113914847A (zh) * 2021-10-22 2022-01-11 西南石油大学 一种应用压裂技术改善煤炭地下气化气腔发育的方法

Also Published As

Publication number Publication date
US20160251950A1 (en) 2016-09-01
CN103726818A (zh) 2014-04-16
ZA201602967B (en) 2017-07-26
EP3088660A1 (en) 2016-11-02

Similar Documents

Publication Publication Date Title
WO2015096290A1 (zh) 一种地下气化点火方法
WO2014206122A1 (zh) 一种可控注气点注气装置、注气工艺及气化方法
CN102477857B (zh) 一种煤炭地下气化贯通方法
CN103670357B (zh) 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法
CN101382065B (zh) 无井式地下气化工艺
WO2014176932A1 (zh) 油页岩原位竖井压裂化学干馏提取页岩油气的方法及工艺
CN110145294B (zh) 一种煤田火区压煤地下原位气化方法
CN104563991B (zh) 一种煤炭地下气化炉的气化方法
CN102758603A (zh) 一种超稠油油藏sagd开采后期注空气开采方法
CN112483063B (zh) 一种地下隔层式煤炭原位气化开采系统及其构造方法
CN106089171B (zh) 一种利用火烧煤层辅助造缝开采煤层气的方法
CN108301811A (zh) 一种低渗透性煤层瓦斯高效抽采方法
CN107575185A (zh) 一种在井下利用冷热交替作用抽采煤层气的方法
CN102587883B (zh) 煤炭地下气化炉熄炉方法
CN109339788A (zh) 一种控制地下煤自燃并开发利用的方法
Wang et al. Semi‐industrial tests on enhanced underground coal gasification at Zhong‐Liang‐Shan coal mine
CN106150471B (zh) 用于煤炭地下气化工艺的对接式气化炉与操作方法
CN106089177A (zh) 一种高效煤炭地下气化炉及其构建方法
CN103742120B (zh) 一种地下气化贯通方法
CN206053930U (zh) 用于煤炭地下气化工艺的线性气化炉
CN111963137B (zh) 一种巨厚煤层地下气化方法
CN108661695A (zh) 一种低渗透性煤层高效注水方法
CN107024012B (zh) 一种页岩气完气井再利用供热装置
CN206299400U (zh) 本层抽采钻孔防尘阻燃结构
CN106437673B (zh) 用于煤炭地下气化工艺的线性气化炉与操作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873128

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15032661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014873128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014873128

Country of ref document: EP