WO2014206122A1 - 一种可控注气点注气装置、注气工艺及气化方法 - Google Patents

一种可控注气点注气装置、注气工艺及气化方法 Download PDF

Info

Publication number
WO2014206122A1
WO2014206122A1 PCT/CN2014/074200 CN2014074200W WO2014206122A1 WO 2014206122 A1 WO2014206122 A1 WO 2014206122A1 CN 2014074200 W CN2014074200 W CN 2014074200W WO 2014206122 A1 WO2014206122 A1 WO 2014206122A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasification
gas injection
oxygen
gas
channel
Prior art date
Application number
PCT/CN2014/074200
Other languages
English (en)
French (fr)
Inventor
刘刚
陈�峰
Original Assignee
新奥气化采煤有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新奥气化采煤有限公司 filed Critical 新奥气化采煤有限公司
Priority to AU2014303165A priority Critical patent/AU2014303165B2/en
Priority to US14/898,489 priority patent/US20160123128A1/en
Priority to EP14818691.9A priority patent/EP3015642A1/en
Publication of WO2014206122A1 publication Critical patent/WO2014206122A1/zh
Priority to ZA2015/09226A priority patent/ZA201509226B/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/295Gasification of minerals, e.g. for producing mixtures of combustible gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/30Specific pattern of wells, e.g. optimising the spacing of wells
    • E21B43/305Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/046Directional drilling horizontal drilling
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Definitions

  • the invention relates to the technical field of coal resource development, in particular to a gas injection device with a controlled gas injection point, a gas injection process and a gasification method.
  • the well-less underground coal gasification technology mainly uses directional drilling and reverse combustion technology to construct a gasification channel, and then injects air and oxygen/steam gasification agents for underground gasification to produce gas.
  • the advantage is that the single furnace has a large gas output; the disadvantage is that the position of the gasification combustion zone is unstable, the gasification agent leakage rate is high, and the channel is too long to increase the auxiliary auxiliary air inlet hole.
  • CRIP controlled injection point retreat gasification process
  • the injection hole is advanced, as shown in Figure 1.
  • the igniter ignites the propane nozzle with a pilot gas silane and moves on the ground.
  • the underground gasification test design of the Turin underground in Belgium uses a double-layered casing, and the coil moves inside the flexible casing.
  • the coil contains three thermocouple wires and two flammable hollow tubes.
  • One hollow tube transports triethylboron (burning in the air) and CH 4 , and the other hollow tube is filled with oxygen, and the igniter is fixed at the end of the coil.
  • the advantage of the CRIP process is that the gasification process can be effectively controlled.
  • the main disadvantage is that the process requires multiple ignitions of the coal seam at different distances in the directional well to ignite the coal seam and then gasify. Due to the discontinuous movement of the gas injection point, the gasification process is stable. The performance is poor, and the structure of the ignition gas injection device is complicated, the cost is high, the ignition process is complicated, the control is difficult, and the safety factor is low.
  • the object of the present invention is to solve a series of problems such as the multiple ignition of the retreating process of the conventional well-less underground gasification controlled injection point, the complicated device, the discontinuous movement of the gas injection point, and the poor stability of the gasification process.
  • the invention also provides a controllable gas injection point gas injection device and a gas injection process.
  • the invention is based on directional drilling and coiled tubing technology, realizes the movement of the gas injection point by using the directional drilling and the coiled tubing to cooperate, and adjusts the principle of the gasification agent injection parameter to control the reverse combustion, thereby controlling the positional movement and combustion of the flame working surface.
  • Speed the purpose of reverse combustion of underground coal seams for ignition and gasification.
  • the gas injection device comprises a directional well channel, wherein the directional well channel is provided with a coiled tubing, the coiled tubing is connected to an oxygen/oxygen-rich gas pipeline; and the coiled tubing of the coiled tubing and the directional well channel is connected to the auxiliary gasifying agent pipeline And a steam line; the starting end of the coiled tubing is provided with a gas injection well head, and a nozzle is arranged at the end.
  • the coiled tubing is sealed into the well by a blowout preventer (box).
  • box blowout preventer
  • a second object of the present invention is to provide a controlled gas injection point gasification gas injection process for transporting oxygen/oxygen-enriched gas from a coiled tubing disposed in a directional well passage, the oxygen/oxygen-rich gas
  • the auxiliary gasifying agent conveyed by the annulus between the coiled tubing and the directional well wall is uniformly mixed at the nozzle position at the end of the coiled tubing, and the mixed gasifying agent enters the predetermined gasification position of the coal seam through the directional well passage or the pore passage in the coal seam.
  • the oxygen/oxygen-enriched gas and the auxiliary gasifying agent are mixed at the nozzle position at the end of the coiled tubing, that is, in the bore or channel.
  • the gas injection position change can be realized by controlling the continuous oil pipe and the nozzle movement by the lifting and lowering actions.
  • the directional well channel of the present invention is formed by a directional drilling method.
  • Directional drilling technology is one of the most advanced drilling technologies in the world's petroleum exploration and development. It is made up of special downhole tools, measuring instruments and processes.
  • the technique of effectively controlling the well trajectory and drilling the drill bit to a predetermined target in the specific direction is currently widely used in oilfield development.
  • the use of directional drilling technology can economically and effectively develop oil and gas resources with limited ground and underground conditions, which can greatly increase oil and gas production and reduce drilling costs, and is conducive to the protection of the natural environment, with significant economic and social benefits.
  • the directional drilling method of the present invention preferably uses directional well technology, horizontal well technology, side drilling technology, radial horizontal well technology, branch well technology, cluster well technology or large displacement well technology in petroleum or coalbed methane drilling technology. Any of them.
  • the directional well channel length is greater than 10 m.
  • the directional well channel of the present invention is an unsupported channel or a supporting channel. In actual implementation, depending on factors such as coal rock and geological conditions, whether to support the channel is determined.
  • the support channel is provided with screen support and/or casing support, preferably screen support or combination of screen and casing.
  • screen support and/or casing support preferably screen support or combination of screen and casing.
  • factors such as the strength of the sheath tube, the pinch of the coal seam, and the coal seam water, which may affect the speed of the reverse combustion.
  • Different support methods can be selected.
  • the contact area of the gasifying agent with the coal seam to be ignited is increased, and the combination of the screen support or the screen + casing is generally combined.
  • the support tube material is an ablatable material, further preferably an organic material, most preferably FRP or
  • PE pipe In the implementation process, factors such as strength and combustion characteristics are considered, and organic materials such as glass steel and PE pipes are preferred.
  • the oxygen/oxygen-enriched gas is provided by a gasification agent preparation system.
  • the oxygen-rich gas is a gas mixture of oxygen and one or both of nitrogen, carbon dioxide, wherein the volume concentration of oxygen is greater than 21%.
  • the auxiliary gasifying agent is one or a mixture of at least two of nitrogen, carbon dioxide or water. Those skilled in the art can choose to consist of one or two gases depending on the gas injection requirements.
  • the nitrogen is provided by an oxygen plant; the carbon dioxide is provided by a decarburization device.
  • the auxiliary gasifying agent functions as: one, participates in the gasification underground gasification reduction reaction, such as co 2 , 3 ⁇ 40, etc.; the second and the oxygen/oxygen-rich gas The oxygen concentration of the mixed gasification agent is lowered to protect the gasification process and equipment.
  • the oxygen content in the auxiliary gasifying agent transported between the coiled tubing and the directional well wall is determined by the lower limit oxygen concentration of coal spontaneous combustion.
  • the volumetric concentration of oxygen in the auxiliary gasification agent is generally required to be less than 5%.
  • the coiled tubing and nozzle of the present invention can select the molding materials and equipment of the current oil and gas industry.
  • the coiled tubing is mainly selected from the process parameters such as oxygen concentration, pressure and flow rate of the transport gasifier, and different pressure grades, pipeline materials and diameters are selected to reduce the overall cost.
  • the pore passage in the coal seam of the present invention is formed by an artificial drilling and fracturing process, or is formed by the coal seam under the influence of combustion heat.
  • a third object of the present invention is to provide two methods for controlling a gas injection point gasification using the above gas injection process.
  • the first controllable gas injection point gasification method wherein the method moves the coiled gas to the predetermined gasification position by moving the coiled tubing in stages, and then adjusts the gas injection process parameters for reverse ignition and gasification passage processing. Gasification production.
  • the gasification method comprises the following steps:
  • the position of the gas injection point is moved to the predetermined gasification position by moving the coiled tubing in stages;
  • step 2) proceed to the next section of gasification channel processing, and complete the underground gasification of the coal seam in the predetermined area according to steps 3) and 4), and then cycle until the coal resources are gasified along the peripheral side of the directional well channel.
  • the gas injection point position segment movement distance is 10 to 150 m.
  • the flow rate of the gasifying agent during the igniting and processing of the gasification passage is controlled at 300 to 3000 square meters/hour.
  • the volume concentration of oxygen in the gasifying agent is 21 to 55%.
  • the injection point movement is judged based on the amount of coal (M), the calorific value of the gas, and the fluctuation of the composition.
  • M amount of coal
  • the calorific value of the gas the calorific value of the gas
  • the fluctuation of the composition the standard of mobile operation is determined as follows: The gasification rate of the gasification coal to be gasified coal seam is greater than 50%, and the calorific value and composition decrease by more than 20% of the normal average value. mobile.
  • the invention provides another controllable gas injection point gasification method, wherein the continuous gas pipe is continuously or intermittently lifted to realize continuous movement of the gas injection point position to a predetermined gasification position, and then the gas injection process parameters are adjusted for reverse ignition and gas. Chemical channel processing and gasification production.
  • the gasification method comprises the following steps:
  • the gas injection point is continuously moved to the predetermined gasification position by continuously or intermittently lifting the coiled tubing according to the gas injection process;
  • Step 2 The gasification agent flow rate is controlled to be greater than 2000 square / hour; preferably, the volume concentration of oxygen in the gasification agent is 21 to 95% ;
  • water vapor or water may be injected to adjust the temperature of the gasification zone and the gas quality.
  • the “may” means “capable”.
  • the moving speed of the gas injection point is judged based on the coal burning speed (m), the gas heat value and the composition fluctuation.
  • the general movement criterion for the process operation is: When the gasification rate ( ⁇ ) of the coal seam reserve (T) to be gasified in the gasification channel is greater than 50%, the calorific value and composition decrease.
  • controllable gas injection point gasification method of the present invention specifically comprises the following steps:
  • an auxiliary gasifying agent is injected into the annular space between the coiled tubing and the directional well wall to replace the channel, and then the oxygen/oxygen-rich gas is injected into the coiled tubing;
  • the oxygen/oxygen-enriched gas is sent from the nozzle through the coiled tubing, and the auxiliary gasifying agent transported with the annulus is uniformly mixed at the predetermined gasification position. After the mixing, the gasifying agent enters the predetermined pilot fire through the directional well passage or the pore passage in the coal seam.
  • the gas injection device of the present invention adopts directional drilling and coiled tubing technology to control the movement of the injection point position, and can stably adjust the gasification agent injection parameters.
  • the gas injection point can realize any distance movement in the directional well channel according to requirements, and can reduce the coal seam gasification combustion blind zone on the circumferential side of the channel, thereby effectively improving the gasification recovery rate of coal along the directional well channel.
  • the use of coiled tubing and directional wall-to-wall annulus transport auxiliary gasifier can effectively prevent spontaneous combustion of the channel coal seam and tempering of the gas injection pipeline, and form a gasification agent at the injection point (nozzle position), which can be continuously controlled.
  • the implementation process of the gasification method of the present invention does not need to set the ignition device at the gas injection point for individual ignition, but uses the control gasification agent injection parameter (oxygen concentration, flow rate, pressure) to carry out the reverse combustion of the gasification channel, and quickly ignite and process.
  • the position of the gas injection point is continuous and the stability of the gasification process is high.
  • Figure 1 is a schematic diagram of a conventional well-free CRIP technology
  • Figure 2 is a schematic view of a gasification furnace using controlled injection gasification
  • FIG. 3 is an underground gasification furnace with a supporting structure in a horizontal section of a directional well channel according to Embodiment 1;
  • FIG. 4 is a schematic diagram (planar section) of a moving gasification process of a controlled injection point in Embodiment 1;
  • 5 is an underground gasification furnace of a horizontal hole structure (without support structure) of a horizontal section of a directional well channel according to Embodiment 2.
  • 1-tubular drum 2-injection wellhead; 3-coiled tubing; 4-nozzle; 5-glass steel screen; 6-directional well channel; 7-gasification combustion zone; 8-coal top plate; 10 vertical gas wells; 11-7 bare wells.
  • a controllable gas injection point gas injection device comprises a directional well channel 6, wherein the directional well channel 6 is provided with a coiled tubing 3; the coiled tubing 3 is connected with an oxygen/oxygen-rich gas pipeline; The annulus of the coiled tubing 3 and the directional well passage 6 communicates with the auxiliary gasifying agent line and the steam line; the leading end of the coiled tubing 3 is provided with a gas injection well head 2, and a nozzle 4 is provided at the end.
  • the tubing drum 1 is used for the bearing of the coiled tubing 3.
  • a controllable gas injection point gas injection process wherein the gas injection process transports oxygen/oxygen-rich gas from a coiled tubing disposed in a directional well passage, the oxygen/oxygen-rich gas and an annulus between the coiled tubing and the directional wellbore
  • the transported auxiliary gasifying agent is uniformly mixed at the nozzle position at the end of the coiled tubing, and the mixed gasifying agent enters the predetermined gasification position of the coal seam through the directional well passage or the pore passage in the coal seam.
  • the directional well channel is formed by a directional drilling method; the directional drilling method preferably uses directional well technology, horizontal well technology, side drilling technology, and radial horizontal well technology in petroleum or coalbed methane drilling technology Any one of a technique, a branch well technique, a cluster well technique, or a large displacement well technique, the directional well channel length being greater than 10 m.
  • the pore channels in the coal seam are formed by artificial drilling, fracturing processes, or formed by coal seams under the influence of combustion heat.
  • the directional well channel is an unsupported channel or has a support channel.
  • the support channel is supported by screen support and/or casing support, preferably screen support or combination of screen and casing.
  • the support tube material is an ablatable material, further preferably an organic type material, most preferably a glass steel or PE tube.
  • the oxygen/oxygen-enriched gas is provided by a gasification agent preparation system.
  • the oxygen-rich gas is a gas mixture of oxygen and one or both of nitrogen, carbon dioxide, wherein the volume concentration of oxygen is greater than 21%.
  • the auxiliary gasifying agent is one or a mixture of at least two of nitrogen, carbon dioxide or water vapor.
  • the nitrogen is provided by an oxygen plant that is provided by a decarburization device.
  • a controllable gas injection point gasification method wherein the method moves the coiled gas to a predetermined gasification position by moving the coiled tubing in stages, and then adjusting the gas injection process parameters for reverse ignition, gasification passage processing and gas Production.
  • the gasification method comprises the following steps:
  • the position of the gas injection point is moved to the predetermined gasification position by moving the coiled tubing in stages;
  • step 2) proceed to the next section of gasification channel processing, and complete the underground gasification of the coal seam in the predetermined area according to steps 3) and 4), and then cycle until the coal resources in the peripheral side of the directional well channel are gasified and exploited.
  • the gas injection point position segment movement distance is 10 ⁇ 150 m; the gasification agent flow rate during the gasification channel ignition and processing is controlled at 300 ⁇ 3000 square/hour; the volume concentration of oxygen in the gasification agent It is 21 ⁇ 55%.
  • a controllable gas injection point gasification method wherein the continuous gas pipe is continuously or intermittently raised to realize continuous movement of the gas injection point position to a predetermined gasification position, and then the gas injection process parameters are adjusted for reverse ignition, gasification channel processing and gas Production.
  • the gasification method comprises the following steps:
  • the gas injection point is continuously moved to the predetermined gasification position by continuously or intermittently lifting the coiled tubing according to the gas injection process;
  • step 2) the gasification agent flow rate is controlled to be greater than 2000 square / hour; the volume concentration of oxygen in the gasification agent is 21 to 95%; when the volume concentration of oxygen is greater than 60%, water vapor may be injected or The water regulates the temperature and gas quality of the gasification zone.
  • controllable gas injection point gasification method of the present invention is applied to a brown coal seam having a lower degree of metamorphism. Due to the low strength of the coal seam lithology, it is easy to collapse and shrink the pores. In this example, the directional horizontal well structure supported by the FRP screen is selected. In addition to having the general advantages of the present invention, it is more advantageous for improving the drilling stability and reducing the drilling accident rate.
  • the underground gasifier has a buried depth of 255 m and a top layer of 238 m deep.
  • the coal type is Inner Mongolia brown coal.
  • the gasifier includes a directional well passage 6, a vertical gas outlet well 10, and a gasification combustion passage.
  • the directional well channel 6 has a diameter of 177.8mm, and the horizontal section of the coal seam supports the FRP screen.
  • the diameter of the glass fiber reinforced plastic screen is 139.7mm, the length is 300m, and the opening ratio is 15%.
  • the controllable gas injection point gas injection device comprises: coiled tubing 3 (diameter 66.7mm, pressure grade 6.0MPa, material: 316 stainless steel); gas injection well head 2, including: coiled tubing operation blowout prevention box (single side door type) and coiled tubing Injection head (ZRT series coiled tubing injection head); Nozzle 4 (diameter 65mm, high temperature 1200 °C).
  • the coal seam in which the directional well channel 6 of the underground gasifier is located is gasified by a gas injection device.
  • the gasification furnace gasification operation pressure is 1.5 MPa, and the synthesis gas is produced by gasification using a 02 /C0 2 gasification agent.
  • the gasifier is successfully ignited and a stable gasification combustion zone 7 is established in the vent area, the directional well channel 6 is established in the predetermined gasification coal layer by directional drilling technology, and then the gasification production of the controlled gas injection point is performed.
  • the specific process and implementation steps are as follows: (1) The coiled tubing is sent through the gas injection well head 2 along the directional well passage 6 to the predetermined gasification position A by the injection head device, and the oxygen nozzle is prevented from being directly sent into the fire zone; The coil is injected between the coiled tubing and the directional well wall to inject C0 2 to replace the channel.
  • the initial flow control is 300 ⁇ 400Nm 3 /h .
  • the gasification dose of reverse ignition and processing channel is 500 ⁇ 3000Nm 3 /h, and the oxygen concentration is 25 ⁇ 35%; (5) After the channel is ignited and processed, gradually increase the gas injection volume of the gasification agent to 4000 ⁇ 6000Nm 3 /h, oxygen concentration 60 ⁇ 70%, carry out underground gasification scale gas production; (6) When the gasification position of the gasification position is finished, determine whether to stop or reduce injection gasification according to the amount of coal, coal gas calorific value and composition of gasification And start the injection head device to move the coiled tubing 3 to move the oxygen injection point to the next predetermined gasification position B, the predetermined gasification position AB spacing 0 ⁇ 100m; (7) according to steps (2) - (4) According to steps (4) and (5), the underground gasification of the coal in the predetermined area is completed, and the circulation is continued until the coal resources in the 6-side side of the directional well channel are gasified and mined.
  • controllable gas injection point gasification method according to the present invention is applied to a lean coal seam having a high degree of metamorphism. Since the coal seam has good lithology and high strength, this embodiment selects an unoriented horizontal well structure. In addition to the general advantages of the present invention, it is more advantageous in reducing the cost of building a furnace and improving the efficiency of coal seam ignition.
  • the underground gasifier shown in Figure 5 above has a buried floor depth of 957 meters and a coal seam roof of 8 meters deep.
  • the coal type is lean coal in Shanxi.
  • the gasifier includes a directional well passage 6, a vertical outlet well 10, and a gasification combustion passage.
  • the directional well channel 6 has a diameter of 177.8 mm, and the horizontal well bare hole section 11 (the coal seam section horizontal well is an unsupported bare hole) is 200 meters long.
  • the controllable gas injection point gas injection device comprises: coiled tubing 3 (diameter 50.8mm, pressure grade 6.0MPa, material: 316 stainless steel, Jiangsu Dongtai Huaxuan Company); gas injection well head 2, including: coiled tubing operation blowout prevention box (single Side door type, Oran Oil Company), coiled tubing injection head (ZRT series coiled tubing injection head, manufacturer Yantai Jerry Company); Nozzle 4 (diameter 50mm, high temperature resistant 1200 °C,
  • the coal seam in which the directional well channel 6 of the underground gasifier is located is gasified using a gas injection device as shown in FIG.
  • the gasification operation pressure of the gasifier is 2.5 MPa, and the synthesis gas is produced by gasification using a 0 2 /C0 2 gasification agent.
  • the gasifier is successfully ignited and a stable gasification combustion zone 7 is established in the vent area, the directional well channel 6 is established in the predetermined gasification coal layer by directional drilling technology, and then the gasification production of the controlled gas injection point is performed.
  • the specific process and implementation steps are as follows: (1) The coiled tubing is sent through the gas injection well head 2 along the directional well passage 6 to the predetermined gasification position A by the injection head device, and the oxygen nozzle is prevented from being directly sent into the fire zone; orientation between the coiled tubing and borehole annulus injection C0 2 protective replacement pair of channels, an initial flow control 400 ⁇ 600Nm 3 / h; (3) through the coiled tubing degreased again slow injection of oxygen, the oxygen injected through the air nozzle ring C0 2 mixing; (4) Controlling the total amount of injected gasification agent and oxygen concentration, and gradually moving the flame working surface to a predetermined gasification position by means of reverse combustion, and simultaneously performing gasification passage processing.
  • the gasification dose of reverse ignition and processing channel is 600 ⁇ 3500Nm 3 /h, and the oxygen concentration is 25 ⁇ 55%; (5) After the channel is ignited and processed, gradually increase the gas injection volume of the gasification agent to 4000 ⁇ 7500Nm 3 /h, oxygen concentration 60 ⁇ 70%, carry out underground gasification scale gas production; (6) When the gasification position of the predetermined gasification position is over, determine whether to stop or reduce injection gasification according to the amount of coal, coal gas calorific value and composition of gasification.
  • the synthesis gas produced by the gasification method of the present invention (the composition of which is 3 ⁇ 4 , CO, CH 4 , C0 2 , 3 ⁇ 40, etc.) is transported to the ground through the vertical gas outlet well 10 and then purified to obtain 3 ⁇ 4, CO, CH. 4 main products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Air Supply (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

一种可控注气点注气装置、注气工艺及气化方法。所述注气装置包括定向井通道(6),所述定向井通道(6)中设有连续油管(3);所述连续油管(3)连通氧气/富氧气体管线;所述连续油管(3)和定向井通道(6)的环隙连通辅助气化剂管线和蒸汽管线;所述连续油管(3)的起端设有注气井头(2),末端设有喷嘴(4)。本发明基于定向钻进和连续油管技术,利用定向钻进和连续油管相配合方式实现注气点移动,同时调节气化剂注入参数控制逆向燃烧的原理,进而达到调控火焰工作面位置移动和燃烧速度,进行地下煤层的逆向燃烧引火、气化的目的。

Description

一种可控注气点注气装置、 注气工艺及气化方法 技术领域
本发明涉及煤炭资源开发技术领域, 尤其涉及一种可控注气点注气装置、 注气工艺及气化方法。
背景技术
无井式煤炭地下气化技术主要采用定向钻孔贯通和反向燃烧技术构建气化 通道, 再注入空气和氧 /蒸汽等气化剂进行地下气化生产煤气。 其优点在于单炉 产量气大; 缺点在于气化燃烧区位置不稳定、 气化剂漏失率高、 通道过长需增 加爱辅助进气孔。
针对以上问题, 美国劳伦斯 ·利弗莫尔国家实验室研究开发出受控注入点后 退气化工艺(CRIP), 通过燃烧套管的方式使注入点后退形成新的燃烧带, 如此 逐段向垂直注入孔推进, 见图 1。 点火器用引火气体硅烷点燃丙烷喷嘴, 在地面 拖曳移动。 比利时图林地下气化试验设计注入管采用双层套管, 蛇管在挠性套 管内移动。 蛇管内装三根热电偶电线和两根可燃的空心管, 一根空心管输送三 乙基硼 (遇空气即燃烧) 和 CH4, 另一根空心管注氧, 蛇管端部固定点火器。
CRIP工艺的优点是气化过程能够得到有效控制, 其主要缺点是该工艺需要 在定向井内不同距离位置多次点火引燃煤层再进行气化, 由于注气点位置移动 不连续、 气化过程稳定性差, 且点火注气装置结构复杂、 造价高, 点火过程操 作复杂, 控制难度大, 安全系数低。
发明内容
本发明的目的在于解决以往无井式地下气化受控注入点后退工艺需多次点 火且装置复杂、 注气点位置移动不连续、 气化过程稳定性差等一系列问题, 提 供一种无井式地下气化的可控注气点移动的逆向燃烧引火、 气化方法, 以达到 提高气化过程稳定控制和安全性能, 同时降低生产成本的目的。 本发明还提供 了一种可控注气点注气装置及注气工艺。
本发明基于定向钻进和连续油管技术, 利用定向钻进和连续油管相配合方 式实现注气点移动, 同时调节气化剂注入参数控制逆向燃烧的原理, 进而达到 调控火焰工作面位置移动和燃烧速度, 进行地下煤层的逆向燃烧引火、 气化的 目的。
为达此目的, 本发明采用以下技术方案:
本发明的目的之一在于提供一种可控注气点注气装置。 所述注气装置包括 定向井通道, 所述定向井通道中设有连续油管, 所述连续油管连通氧气 /富氧气 体管线; 所述连续油管和定向井通道的环隙连通辅助气化剂管线和蒸汽管线; 所述连续油管的起端设有注气井头, 末端设有喷嘴。
所述连续油管通过防喷器 (盒) 密封放至井内。
本发明的目的之二在于提供一种可控注气点气化注气工艺, 所述注气工艺 由置于定向井通道内的连续油管输送氧气 /富氧气体, 所述氧气 /富氧气体与连续 油管和定向井壁间环空输送的辅助气化剂在连续油管末端的喷嘴位置混合均 匀, 混合后的气化剂通过定向井通道或煤层内孔隙通道进入煤层预定气化位置。
所述氧气 /富氧气体和辅助气化剂在连续油管末端的喷嘴位置, 也就是钻孔 或通道内混合。
本发明所述注气过程的注气点移动控制, 可以通过提升、 下放动作控制连 续油管和喷嘴移动实现注气位置变换。
本发明所述定向井通道用定向钻进方法形成。 定向钻进技术是当今世界石 油勘探开发领域最先进的钻井技术之一, 是由特殊井下工具、 测量仪器和工艺 技术有效控制井眼轨迹, 使钻头沿着特定方向钻达地下预定目标的钻井工艺技 术, 目前在油田开发中广泛使用。 采用定向钻进技术可以使地面和地下条件受 到限制的油气资源得到经济、 有效的开发, 能够大幅度提高油气产量和降低钻 井成本, 有利于保护自然环境, 具有显著的经济效益和社会效益。
本发明所述定向钻进方法优选采用石油或煤层气钻井技术中的定向井技 术、 水平井技术、 侧钻井技术、 径向水平井技术、 分支井技术、 丛式井技术或 大位移井技术中的任意一种。 所述定向井通道长度大于 10m。
本发明所述定向井通道为无支护通道或有支护通道, 在实际实施过程中依 据煤岩、 地质条件等因素, 确定是否进行通道支护。
所述有支护通道采用筛管支护和 /或套管支护, 优选筛管支护或筛管和套管 组合支护。 在实际实施过程中需要考虑支护套管强度、 煤层夹矸、 煤层水等影 响逆向燃烧引火速度的因素, 可以选择不同支护方式。 通常为提高气化剂与待 引燃煤层接触面积, 优选筛管支护或者筛管 +套管的两种支护方式组合。
所述支护管材料为可烧蚀材料, 进一步优选有机类材料, 最优选玻璃钢或
PE管材。 实施过程中考虑强度、 燃烧特性等因素, 优选有机类材料, 如: 玻璃 钢、 PE管材等。
所述氧气 /富氧气体由气化剂制取系统提供。 所述富氧气体为氧气与氮气、 二氧化碳中的一种或两种气体形成的气体混合物, 其中氧气的体积浓度大于 21%。
所述辅助气化剂为氮气、 二氧化碳或水中的一种或至少两种的混合物。 本 领域技术人员可以依据注气需要选择由其中一种或两种气体构成。 所述氮气由 制氧装置提供; 所述二氧化碳由脱碳装置提供。 所述辅助气化剂的作用在于: 其一, 参与气化地下气化还原反应, 如 co2、 ¾0等; 其二与氧气 /富氧气体复 配降低混合气化剂氧浓度, 对气化过程和设备起保护性作用。
气化过程中需要控制连续油管和定向井壁间输送的辅助气化剂中的氧含 量, 以防止输送过程引起煤层自燃或注气管回火。 其氧浓度由煤自燃的下限氧 浓度确定。对于松散煤层厚度小于 0.5米的煤层, 一般要求辅助气化剂中氧气的 体积浓度小于 5%。
本发明所述连续油管及喷嘴可以选择目前石油天然气行业成型材料及设 备。 连续油管选用主要考虑输送气化剂氧浓度、 压力、 流量等工艺参数, 选择 不同压力等级、 管线材质和直径以降低综合成本。
本发明所述煤层内孔隙通道由人工钻进、 压裂过程形成, 或由煤层在燃烧 热作用影响情况下形成。
本发明的目的之三在于提供两种应用上述注气工艺进行可控注气点气化方 法。
第一种可控注气点气化方法, 所述方法通过分次移动连续油管实现注气点 位置分段移动至预定气化位置, 然后调整注气工艺参数进行逆向引火、 气化通 道加工及气化生产。
所述气化方法包括如下步骤:
1 ) 依据气化区可气化煤层的厚度和储量等参数, 按所述注气工艺通过分次 移动连续油管实现注气点位置分段移动至预定气化位置;
2) 调节单种气体的压力和流量, 控制注入气化剂流量、 压力和氧浓度等参 数; 用逆向燃烧方式将火焰工作面逐步移动到预定气化位置, 同时进行气化通 道加工;
3 ) 在气化通道引火、 加工完成后, 提高气化剂注气强度 (如压力、 流量、 氧浓度等参数), 强化地下煤气化过程, 进行地下气化规模产气; 4) 当预定气化位置的煤层气化工作结束时, 依据气化燃煤量、 煤气热值和 组分情况确定停止或减少注入气化剂, 并启动注入头装置移动连续油管将氧气 / 富氧气体注入点移动至下一预定气化位置;
5 ) 依据步骤 2) 再进行下一段气化通道加工, 按步骤 3 )、 4 ) 完成预定区 域煤层的地下气化, 如此循环直至将沿定向井通道周侧区域煤炭资源气化开采 步骤 1 ) 所述注气点位置分段移动距离为 10〜150m。
优选地, 所述气化通道引火和加工时的气化剂流量控制在 300〜3000 方 /小 时。
优选地, 所述气化剂中氧气的体积浓度为 21〜55%。
在本发明中, 注气点移动依据燃煤量 (M)、 煤气热值和组分波动判断。 依 据地下气化采煤实际情况, 通常工艺运行判定移动标准为: 气化通道待气化煤 层煤的气化率大于 50%, 热值和组分下降超过正常均值 20%即可进行注气点移 动。
本发明提供的另一种可控注气点气化方法, 所述方法通过连续或间歇提升 连续油管实现注气点位置连续移动至预定气化位置, 然后调整注气工艺参数进 行逆向引火、 气化通道加工及气化生产。
所述气化方法包括如下步骤:
1 ) 依据气化区可气化煤层的厚度和储量等参数, 按所述注气工艺通过连续 或间歇提升连续油管实现注气点位置连续移动至预定气化位置;
2) 调节单种气体的压力和流量, 控制注入气化剂流量、 压力和氧浓度等参 数; 用逆向燃烧方式实现连续加工气化通道和地下气化规模产气;
3 ) 随时调整注入气化剂参数, 保证煤气组分和热值处于相对稳定状态; 4) 当预定气化位置的煤层气化工作结束时, 依据气化燃煤速度、 煤气热值 和组分及可气化煤层储量情况, 控制连续油管的逆向移动速度, 直至将沿定向 井通道周侧区域煤炭资源气化开采完。
步骤 2)所述气化剂流量控制在大于 2000方 /小时; 优选地, 所述气化剂中 氧的体积浓度为 21〜95%;
优选地, 当氧气的体积浓度大于 60%时, 可注入水蒸汽或水调节气化区温 度和煤气品质。 所述 "可"表示 "能够"。
注气点的移动速度依据燃煤速度 (m)、 煤气热值和组分波动判断。 依据地 下气化采煤实际情况, 通常工艺运行判定移动标准为: 当气化通道单位长度内 待气化煤层煤储量 (T) 的气化率 (η) 大于 50%, 热值和组分下降超过正常均 值 20%即可开始注气点连续移动, 注气点移动速度 (V) 控制满足: ν=Τ*η/ηι。
本发明所述的可控注气点气化方法具体包括以下步骤:
1 )采用定向钻井技术在预定气化煤层中建立能与已有火区连通的定向井通 道;
2 )用注入头装置将连续油管和喷嘴通过注气井头沿定向井送至预定气化位 置;
3 ) 先向连续油管与定向井壁间环空注入辅助气化剂对通道进行置换保护, 再向连续油管注入氧气 /富氧气体;
4)由连续油管输送氧气 /富氧气体从喷嘴输出, 与环空输送的辅助气化剂在 预定气化位置处混合均匀, 混合后气化剂通过定向井通道或煤层内孔隙通道进 入预定引火位置;
5 )通过地面控制系统调节单种气体的压力和流量, 控制注入气化炉内的混 合气化剂压力、 流量和氧浓度等参数, 用逆向燃烧的方式将火焰工作面逐步移 动到预定气化位置, 同时进行待气化煤层气化通道加工、 地下气化生产合成气;
6) 依据气化燃煤量、 煤气热值和组分情况, 确定预定气化位置的煤层燃烧 及气化状况。 当气化煤层产气热值和组分稳定性下降时, 启动注入头装置移动 连续油管和喷嘴将氧气注入点移动至下一预定气化位置;
7) 按步骤 5 )、 6) 完成预定区域煤的地下气化, 如此循环直至将沿定向井 通道周侧区域煤炭资源气化开采完;
8)开采完后先停止连续油管的氧气 /富氧进气, 再停止套管环空的辅助气化 剂进气, 并起出定向井通道内的气化剂注入设备, 移至下一待气化区域。
与已有技术方案相比, 本发明所述注气装置采用定向钻进和连续油管技术 可控制注气点位置的移动, 并能稳定调节气化剂注入参数。
本发明所述注气工艺中, 注气点能够按需求在定向井通道内实现任意距离 移动, 可减少通道周侧煤层气化燃烧盲区, 因而可有效提升沿定向井通道煤炭 的气化回收率。 除此之外, 采用连续油管和定向井壁间环空输送辅助气化剂能 有效防止通道煤层自燃、 注气管道回火, 在注气点 (喷嘴位置) 混合形成气化 剂, 能连续控制各种气体注入参数。
本发明所述气化方法的实施过程无需在注气点设置点火装置进行单独点 火, 而是通过采用控制气化剂注入参数 (氧浓度、 流量、 压力) 进行气化通道 逆向燃烧快速引火、 加工, 注气点位置移动连续、 气化过程稳定性高。
附图说明
图 1是现有无井式 CRIP技术示意图;
图 2是采用可控注气气化的气化炉示意图;
图 3是具体实施例 1所述的定向井通道水平段有支护结构的地下气化炉; 图 4是具体实施例 1可控注气点移动气化过程示意图 (平面剖面); 图 5是具体实施例 2所述的定向井通道水平段裸孔结构 (无支护结构) 的 地下气化炉。
其中: 1-油管滚筒; 2-注气井头; 3-连续油管; 4-喷嘴; 5-玻璃钢筛管; 6- 定向井通道; 7-气化燃烧区; 8-煤层顶板; 9-煤层底板; 10-垂直出气井; 11-7 平井裸孔段。
下面对本发明进一步详细说明。 但下述的实例仅仅是本发明的简易例子, 并不代表或限制本发明的权利保护范围, 本发明的保护范围以权利要求书为准。 具体实施方式
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下:
实施例 1
一种可控注气点注气装置, 所述注气装置包括定向井通道 6, 所述定向井通 道 6中设有连续油管 3 ; 所述连续油管 3连通氧气 /富氧气体管线; 所述连续油 管 3和定向井通道 6的环隙连通辅助气化剂管线和蒸汽管线; 所述连续油管 3 的起端设有注气井头 2, 末端设有喷嘴 4。
油管滚筒 1用于所述连续油管 3的承载。
实施例 2
一种可控注气点注气工艺, 所述注气工艺由置于定向井通道内的连续油管 输送氧气 /富氧气体, 所述氧气 /富氧气体与连续油管和定向井壁间环空输送的辅 助气化剂在连续油管末端的喷嘴位置混合均匀, 混合后的气化剂通过定向井通 道或煤层内孔隙通道进入煤层预定气化位置。
所述定向井通道采用定向钻进方法形成; 所述定向钻进方法优选采用石油 或煤层气钻井技术中的定向井技术、 水平井技术、 侧钻井技术、 径向水平井技 术、 分支井技术、 丛式井技术或大位移井技术中的任意一种, 所述定向井通道 长度大于 10m。
所述煤层内孔隙通道由人工钻进、 压裂过程形成, 或由煤层在燃烧热作用 影响情况下形成。
所述定向井通道为无支护通道或有支护通道。 所述有支护通道采用筛管支 护和 /或套管支护, 优选筛管支护或筛管和套管组合支护。 所述支护管材料为可 烧蚀材料, 进一步优选有机类材料, 最优选玻璃钢或 PE管材。
所述氧气 /富氧气体由气化剂制取系统提供。 所述富氧气体为氧气与氮气、 二氧化碳中的一种或两种气体形成的气体混合物, 其中氧气的体积浓度大于 21%。
所述辅助气化剂为氮气、 二氧化碳或水蒸汽中的一种或至少两种的混合物。 所述氮气由制氧装置提供, 所述二氧化碳由脱碳装置提供。
实施例 3
一种可控注气点气化方法, 所述方法通过分次移动连续油管实现注气点位 置分段移动至预定气化位置, 然后调整注气工艺参数进行逆向引火、 气化通道 加工及气化生产。
所述气化方法包括如下步骤:
1 ) 依据气化区可气化煤层的厚度和储量等参数, 按所述注气工艺通过分次 移动连续油管实现注气点位置分段移动至预定气化位置;
2) 调节单种气体的压力和流量, 控制注入气化剂流量、 压力和氧浓度等参 数; 用逆向燃烧方式将火焰工作面逐步移动到预定气化位置, 同时进行气化通 道加工;
3 ) 在气化通道引火、 加工完成后, 提高气化剂注气强度, 强化地下煤气化 过程, 进行地下气化规模产气;
4) 当预定气化位置的煤层气化工作结束时, 依据气化燃煤量、 煤气热值和 组分情况确定停止或减少注入气化剂, 并启动注入头装置移动连续油管将氧气 / 富氧气体注入点移动至下一预定气化位置;
5 ) 依据步骤 2) 再进行下一段气化通道加工, 按步骤 3 )、 4 ) 完成预定区 域煤层的地下气化, 如此循环直至将沿定向井通道周侧区域煤炭资源气化开采 其中, 步骤 1 )所述注气点位置分段移动距离为 10〜150m; 所述气化通道引 火和加工时的气化剂流量控制在 300〜3000方 /小时;所述气化剂中氧气的体积浓 度为 21〜55%。
实施例 4
一种可控注气点气化方法, 所述方法通过连续或间歇提升连续油管实现注 气点位置连续移动至预定气化位置, 然后调整注气工艺参数进行逆向引火、 气 化通道加工及气化生产。
所述气化方法包括如下步骤:
1 ) 依据气化区可气化煤层的厚度和储量等参数, 按所述注气工艺通过连续 或间歇提升连续油管实现注气点位置连续移动至预定气化位置;
2) 调节单种气体的压力和流量, 控制注入气化剂流量、 压力和氧浓度等参 数; 用逆向燃烧方式实现连续加工气化通道和地下气化规模产气;
3 ) 随时调整注入气化剂参数, 保证煤气组分和热值处于相对稳定状态;
4) 当预定气化位置的煤层气化工作结束时, 依据气化燃煤速度、 煤气热值 和组分及可气化煤层储量情况, 控制连续油管的逆向移动速度, 直至将沿定向 井通道周侧区域煤炭资源气化开采完。 其中, 步骤 2)所述气化剂流量控制在大于 2000方 /小时; 所述气化剂中氧 气的体积浓度为 21〜95%; 当氧气的体积浓度大于 60%时, 可注入水蒸汽或水调 节气化区温度和煤气品质。
具体实施例 1
本实施例是将本发明所述的可控注气点气化方法应用于变质程度较低的褐 煤煤层上。 由于煤层岩性强度低, 容易坍塌、 缩孔, 本实施例选择了有玻璃钢 筛管支护的定向水平井结构。 除具有本发明的普遍优点外, 其更有利于提高钻 孔稳定性、 降低钻孔事故率。
如图 3所示地下气化炉, 煤层底板 9埋深 255米, 煤层顶板 8深 238米, 煤种为内蒙褐煤。气化炉包括定向井通道 6、垂直出气井 10及气化燃烧通道等。 定向井通道 6直径为 177.8mm, 煤层水平段支护玻璃钢筛管 5直径为 139.7mm、 长 300米, 开孔率 15%。 可控注气点注气装置包括: 连续油管 3 (直径 66.7mm、 压力等级 6.0MPa、 材质: 316不锈钢); 注气井头 2, 包括: 连续油管作业防喷 盒 (单侧门式) 和连续油管注入头 (ZRT系列连续油管注入头); 喷嘴 4 (直径 65mm, 耐高温 1200 °C )。
在该实施例中, 如图 4所示采用注气装置对地下气化炉定向井通道 6所处 煤层进行气化。气化炉气化运行压力 1.5MPa,采用 02/C02气化剂气化生产合成 气。 当气化炉成功点火并在出气孔区域建立稳定气化燃烧区 7后, 采用定向钻 进技术在预定气化煤层中建立定向井通道 6, 再进行可控注气点气化生产。具体 工艺及实施步骤如下: (1 ) 用注入头装置将连续油管通过注气井头 2沿定向井 通道 6送至预定气化位置 A处, 氧气喷嘴避免直接送入火区; (2) 先向连续油 管与定向井壁间环空注入 C02对通道进行置换保护, 流量初始控制 300〜400Nm3/h; (3 ) 再向经过脱脂的连续油管缓慢注入氧气, 通过氧气喷嘴与 环空注入的 C02混合; (4) 控制注入气化剂总量和氧浓度, 通过逆向燃烧的方 式将火焰工作面逐步移动到预定气化位置, 同时进行气化通道加工。 逆向引火 和加工通道气化剂量 500〜3000Nm3/h, 氧浓度 25〜35%; ( 5 ) 在通道引火、 加工 完成后, 逐步提高气化剂注气量至 4000〜6000Nm3/h, 氧浓度 60〜70%, 进行地 下气化规模产气; (6 ) 当预定气化位置气化工作结束时, 依据气化燃煤煤量、 产气热值和组分情况确定停止或减少注入气化剂, 并启动注入头装置移动连续 油管 3 将氧气注入点移动至下一预定气化位置 B, 预定气化位置 A-B 间距 0〜100m; (7 ) 依据步骤 (2 ) - (4) 再进行气化通道加工, 依据步骤 (4)、 (5 ) 完成预定区域煤的地下气化, 如此循环直至将沿定向井通道 6周侧区域煤炭资 源气化开采完。
实施例 2
本实施例是将本发明所述的可控注气点气化方法应用于在变质程度较高的 贫煤煤层上。 由于煤层岩性好、 强度高, 本实施例选择了无支护的定向水平井 结构。 除具有本发明的普遍优点外, 其更有利于降低建炉成本、 提高煤层引火 效率。
现有如上图 5所示地下气化炉, 煤层底板 9埋深 957米, 煤层顶板 8深 950 米, 煤种为山西贫煤。 气化炉包括定向井通道 6、 垂直出气井 10及气化燃烧通 道等。 定向井通道 6直径为 177.8mm, 水平井裸孔段 11 (煤层段水平井为无支 护裸孔) 长 200米。 可控注气点注气装置包括: 连续油管 3 (直径 50.8mm、 压 力等级 6.0MPa、 材质: 316不锈钢, 江苏东台华轩公司); 注气井头 2, 包括: 连续油管作业防喷盒 (单侧门式, 奥兰石油公司)、 连续油管注入头 (ZRT系列 连续油管注入头, 厂家烟台杰瑞公司); 喷嘴 4 (直径 50mm, 耐高温 1200°C, 在该实施例中, 如附图 5所示采用注气装置对地下气化炉定向井通道 6所 处煤层进行气化。气化炉气化运行压力 2.5MPa,采用 02/C02气化剂气化生产合 成气。 当气化炉成功点火并在出气孔区域建立稳定气化燃烧区 7后, 采用定向 钻进技术在预定气化煤层中建立定向井通道 6, 再进行可控注气点气化生产。具 体工艺及实施步骤如下: (1 ) 用注入头装置将连续油管通过注气井头 2沿定向 井通道 6送至预定气化位置 A处, 氧气喷嘴避免直接送入火区; (2) 先向连续 油管与定向井壁间环空注入 C02对通道进行置换保护, 流量初始控制 400〜600Nm3/h; (3 ) 再向经过脱脂的连续油管缓慢注入氧气, 通过氧气喷嘴与 环空注入的 C02混合; (4) 控制注入气化剂总量和氧浓度, 通过逆向燃烧的方 式将火焰工作面逐步移动到预定气化位置, 同时进行气化通道加工。 逆向引火 和加工通道气化剂量 600〜3500Nm3/h, 氧浓度 25〜55%; (5 ) 在通道引火、 加工 完成后, 逐步提高气化剂注气量至 4000〜7500Nm3/h, 氧浓度 60〜70%, 进行地 下气化规模产气; (6) 当预定气化位置气化工作结束时, 依据气化燃煤煤量、 产气热值和组分情况确定停止或减少注入气化剂, 并启动注入头装置移动连续 油管 3将氧气注入点移动至下一预定气化位置 B,预定气化位置 A〜B间距 0〜40 米; (7) 依据步骤 (2) - (4) 再进行气化通道加工, 依据步骤 (4)、 (5 ) 完成 预定区域煤的地下气化, 如此循环直至将沿定向井通道周侧区域煤炭资源气化 开采完。
通过本发明所述气化方法产出的合成气 (其成分为 ¾、 CO、 CH4、 C02、 ¾0等)通过垂直出气井 10运送到地面后经过净化处理, 得到以 ¾、 CO、 CH4 为主的产物。
申请人声明, 本发明通过上述实施例来说明本发明的详细结构特征以及注 气、 气化方法, 但本发明并不局限于上述详细结构特征以及注气、 气化方法, 即不意味着本发明必须依赖上述详细结构特征以及注气、 气化方法才能实施。 所属技术领域的技术人员应该明了, 对本发明的任何改进, 对本发明所选用部 件的等效替换以及辅助部件的增加、 具体方式的选择等, 均落在本发明的保护 范围和公开范围之内。

Claims

WO 2014/206122 权 利 要 求 书 PCT/CN2014/074200
1、一种可控注气点注气装置,其特征在于,所述注气装置包括定向井通道, 所述定向井通道中设有连续油管; 所述连续油管连通氧气 /富氧气体管线; 所述 连续油管和定向井通道的环隙连通辅助气化剂管线和蒸汽管线; 所述连续油管 的起端设有注气井头, 末端设有喷嘴。
2、 一种应用如权利要求 1所述注气装置的注气工艺, 其特征在于, 所述注 气工艺由置于定向井通道内的连续油管输送氧气 /富氧气体, 所述氧气 /富氧气体 与连续油管和定向井壁间环空输送的辅助气化剂在连续油管末端的喷嘴位置混 合均匀, 混合后的气化剂通过定向井通道或煤层内孔隙通道进入煤层预定气化 位置。
3、 如权利要求 2所述的注气工艺, 其特征在于, 所述定向井通道采用定向 钻进方法形成; 所述定向钻进方法优选采用石油或煤层气钻井技术中的定向井 技术、 水平井技术、 侧钻井技术、 径向水平井技术、 分支井技术、 丛式井技术 或大位移井技术中的任意一种; 优选地, 所述定向井通道长度大于 10m;
优选地, 所述煤层内孔隙通道由人工钻进、 压裂过程形成, 或由煤层在燃 烧热作用影响情况下形成。
4、 如权利要求 2或 3所述的注气工艺, 其特征在于, 所述定向井通道为无 支护通道或有支护通道;
优选地, 所述有支护通道采用筛管支护和 /或套管支护, 优选筛管支护或筛 管和套管组合支护;
优选地, 所述支护管材料为可烧蚀材料, 进一步优选有机类材料, 最优选 玻璃钢或 PE管材;
优选地, 所述氧气 /富氧气体由气化剂制取系统提供; 优选地, 所述富氧气 体为氧气与氮气、 二氧化碳中的一种或两种气体形成的气体混合物, 其中氧气 的体积浓度大于 21%;
优选地, 所述辅助气化剂为氮气、 二氧化碳或水中的一种或至少两种的混 合物; 优选地, 所述氮气由制氧装置提供; 优选地, 所述二氧化碳由脱碳装置 提供。
5、 一种应用如权利要求 1所述注气装置进行可控注气点气化方法, 其特征 在于, 所述方法通过分次移动连续油管实现注气点位置分段移动至预定气化位 置, 然后调整注气工艺参数进行逆向引火、 气化通道加工及气化生产。
6、 如权利要求 5所述的气化方法, 其特征在于, 所述气化方法包括如下步 骤:
1 ) 依据气化区可气化煤层的厚度和储量等参数, 按所述注气工艺通过分次 移动连续油管实现注气点位置分段移动至预定气化位置;
2) 调节单种气体的压力和流量, 控制注入气化剂流量、 压力和氧浓度等参 数; 用逆向燃烧方式将火焰工作面逐步移动到预定气化位置, 同时进行气化通 道加工;
3 ) 在气化通道引火、 加工完成后, 提高气化剂注气强度, 强化地下煤气化 过程, 进行地下气化规模产气;
4) 当预定气化位置的煤层气化工作结束时, 依据气化燃煤量、 煤气热值和 组分情况确定停止或减少注入气化剂, 并启动注入头装置移动连续油管将氧气 / 富氧气体注入点移动至下一预定气化位置;
5 ) 依据步骤 2) 再进行下一段气化通道加工, 按步骤 3 )、 4) 完成预定区 域煤层的地下气化, 如此循环直至将沿定向井通道周侧区域煤炭资源气化开采
7、 如权利要求 6所述的气化方法, 其特征在于, 步骤 1 ) 所述注气点位置 分段移动距离为 10〜150m;
优选地, 所述气化通道引火和加工时的气化剂流量控制在 300〜3000 方 /小 时;
优选地, 所述气化剂中氧气的体积浓度为 21〜55%。
8、 一种应用如权利要求 1所述注气装置的可控注气点气化方法, 其特征在 于, 所述方法通过连续或间歇提升连续油管实现注气点位置连续移动至预定气 化位置, 然后调整注气工艺参数进行逆向引火、 气化通道加工及气化生产。
9、 如权利要求 8所述的气化方法, 其特征在于, 所述气化方法包括如下步 骤:
1 ) 依据气化区可气化煤层的厚度和储量等参数, 按所述注气工艺通过连续 或间歇提升连续油管实现注气点位置连续移动至预定气化位置;
2) 调节单种气体的压力和流量, 控制注入气化剂流量、 压力和氧浓度等参 数; 用逆向燃烧方式实现连续加工气化通道和地下气化规模产气;
3 ) 随时调整注入气化剂参数, 保证煤气组分和热值处于相对稳定状态;
4) 当预定气化位置的煤层气化工作结束时, 依据气化燃煤速度、 煤气热值 和组分及可气化煤层储量情况, 控制连续油管的逆向移动速度, 直至将沿定向 井通道周侧区域煤炭资源气化开采完。
10、 如权利要求 9所述的气化方法, 其特征在于, 步骤 2)所述气化剂流量 控制在大于 2000方 /小时; 优选地, 所述气化剂中氧气的体积浓度为 21〜95%; 优选地, 当氧气的体积浓度大于 60%时, 可注入水蒸汽或水调节气化区温 度和煤气品质。
PCT/CN2014/074200 2013-06-26 2014-03-27 一种可控注气点注气装置、注气工艺及气化方法 WO2014206122A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2014303165A AU2014303165B2 (en) 2013-06-26 2014-03-27 Gas injection apparatus with controllable gas injection point, gas injection process, and gasification method
US14/898,489 US20160123128A1 (en) 2013-06-26 2014-03-27 Gas injection apparatus with controllable gas injection point, gas injection process, and gasification method
EP14818691.9A EP3015642A1 (en) 2013-06-26 2014-03-27 Gas injection apparatus with controllable gas injection point, gas injection process, and gasification method
ZA2015/09226A ZA201509226B (en) 2013-06-26 2015-12-18 Gas injection apparatus with controllable gas injection point, gas injection process, and gasification method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310260123.4A CN104251133B (zh) 2013-06-26 2013-06-26 一种可控注气点注气装置、注气工艺及气化方法
CN201310260123.4 2013-06-26

Publications (1)

Publication Number Publication Date
WO2014206122A1 true WO2014206122A1 (zh) 2014-12-31

Family

ID=52140979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074200 WO2014206122A1 (zh) 2013-06-26 2014-03-27 一种可控注气点注气装置、注气工艺及气化方法

Country Status (6)

Country Link
US (1) US20160123128A1 (zh)
EP (1) EP3015642A1 (zh)
CN (1) CN104251133B (zh)
AU (1) AU2014303165B2 (zh)
WO (1) WO2014206122A1 (zh)
ZA (1) ZA201509226B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107558978A (zh) * 2017-08-28 2018-01-09 新疆国利衡清洁能源科技有限公司 稠油开采系统及方法
CN107701165A (zh) * 2016-08-08 2018-02-16 新疆国利衡清洁能源科技有限公司 一种分离控制注气点装置及其控制方法
CN111173491A (zh) * 2020-03-09 2020-05-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN115539009A (zh) * 2022-10-17 2022-12-30 安徽理工大学 一种用于测量煤炭地下气化效率的试验系统及方法
CN115539009B (zh) * 2022-10-17 2024-05-31 安徽理工大学 一种用于测量煤炭地下气化效率的试验系统及方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104806285A (zh) * 2015-03-25 2015-07-29 宁夏煤炭勘察工程公司 基于地面水平井的煤矿采空区瓦斯治理方法
CN105041275A (zh) * 2015-06-30 2015-11-11 西南石油大学 一种注减氧空气降低采油井伴生气氧浓度的采油方法
CN106150472B (zh) * 2016-08-28 2019-05-17 中为(上海)能源技术有限公司 用于煤炭地下气化工艺的接合管注入系统及操作方法
JP6713409B2 (ja) * 2016-11-18 2020-06-24 株式会社三井E&Sホールディングス ガスハイドレート回収装置およびガスハイドレート回収方法
WO2018170830A1 (zh) * 2017-03-23 2018-09-27 陈信平 注高温空气增产煤层气的方法
CN107654222A (zh) * 2017-08-28 2018-02-02 新疆国利衡清洁能源科技有限公司 化石能源开采方法及系统
CN108518211B (zh) * 2018-03-29 2024-01-30 中为(上海)能源技术有限公司 用于煤炭地下气化工艺的氧化剂混合注入系统及操作方法
CN108729916A (zh) * 2018-07-17 2018-11-02 国氢能源科技有限公司 一种地下气化炉煤层点火装置及后退重复点火气化方法
CN110821544A (zh) * 2018-08-14 2020-02-21 柴乔森 矿井内自点火煤孔煤层气化炉式采区
CN109779600B (zh) * 2019-02-27 2023-08-01 中国矿业大学 地下热-气联产气化设备、煤田火区前沿治理系统和方法
CN110821463A (zh) * 2019-11-15 2020-02-21 中煤地质集团有限公司北京地质调查分公司 一种煤层气热采增产方法
CN110939424B (zh) * 2019-11-27 2022-04-12 西安物华巨能爆破器材有限责任公司 一种无井式煤炭地下气化点火方法
CN112855111B (zh) * 2019-11-28 2023-04-25 中国石油天然气股份有限公司 电加热煤层地下气化系统及方法
CN111425179A (zh) * 2020-03-20 2020-07-17 北京国利衡清洁能源科技(集团)有限公司 一种新型点火装置及输送系统
CN111677489B (zh) * 2020-06-02 2021-08-31 中国矿业大学 一种可提高煤炭地下气化效率的多层复合喷嘴装置及其使用方法
CN114439453A (zh) * 2020-10-30 2022-05-06 中国石油天然气股份有限公司 一种原煤原位气化制氢采氢井网和方法
CN112253076B (zh) * 2020-11-26 2021-08-31 福州大学 一种地下硫铁矿的化学开采方法
CN112523733B (zh) * 2020-11-26 2022-11-04 河南省煤层气开发利用有限公司 一种煤层气与煤气化联采区域消突方法
CN112796726B (zh) * 2021-02-03 2022-03-25 西南石油大学 一种用于煤层气井储层裂缝扩展的井下燃爆装置及方法
CN115773098A (zh) * 2021-09-08 2023-03-10 中国石油天然气股份有限公司 煤层和油层叠合区地下煤制气与提高油层采收率的联合开采方法
CN113781889B (zh) * 2021-10-11 2023-01-24 山东科技大学 适应变综掘面的多瓦斯产生、喷射及闭合一体仿真系统
CN113653470B (zh) * 2021-10-21 2022-04-29 西南石油大学 煤层原位制氢和煤层气开发一体化方法及结构
CN114215601B (zh) * 2021-12-31 2024-01-26 北京派创石油技术服务有限公司 利用废弃油井制造氢气的方法
CN114718543A (zh) * 2022-04-19 2022-07-08 山东科技大学 一种实现煤炭地下气化移动注气的管路切断装置及方法
CN116904229A (zh) * 2023-07-28 2023-10-20 中国矿业大学(北京) 煤层等离子点火系统和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092052A (en) * 1977-04-18 1978-05-30 In Situ Technology, Inc. Converting underground coal fires into commercial products
CN101382064A (zh) * 2008-09-04 2009-03-11 乌兰察布新奥气化采煤技术有限公司 煤炭地下强制氧化点火技术
CN102477857A (zh) * 2010-11-30 2012-05-30 新奥气化采煤有限公司 一种煤炭地下气化贯通方法
CN102635346A (zh) * 2012-04-13 2012-08-15 北京大学 煤炭地下气化移动式点火系统
CA2827011A1 (en) * 2011-02-18 2012-08-23 Linc Energy Ltd Igniting an underground coal seam in an underground coal gasification process, ucg

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356866A (en) * 1980-12-31 1982-11-02 Mobil Oil Corporation Process of underground coal gasification
US4436153A (en) * 1981-12-31 1984-03-13 Standard Oil Company In-situ combustion method for controlled thermal linking of wells
US4422505A (en) * 1982-01-07 1983-12-27 Atlantic Richfield Company Method for gasifying subterranean coal deposits
CN1055332C (zh) * 1995-03-15 2000-08-09 柴兆喜 拉管注气点后退式煤层气化方法
CN1061733C (zh) * 1996-06-27 2001-02-07 柴兆喜 换管注气点后退式煤层气化方法
RU2293845C2 (ru) * 2005-03-30 2007-02-20 Открытое акционерное общество "Промгаз" Способ регулирования состава газа подземной газификации углей
CN100351492C (zh) * 2005-04-05 2007-11-28 大雁煤业有限责任公司 地下气化炉调整控制系统
CN101382065B (zh) * 2008-09-04 2012-05-02 乌兰察布新奥气化采煤技术有限公司 无井式地下气化工艺
CN102486085B (zh) * 2010-12-01 2015-06-17 新奥气化采煤有限公司 一种用于含碳有机质地下气化的气化剂输配系统及工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092052A (en) * 1977-04-18 1978-05-30 In Situ Technology, Inc. Converting underground coal fires into commercial products
CN101382064A (zh) * 2008-09-04 2009-03-11 乌兰察布新奥气化采煤技术有限公司 煤炭地下强制氧化点火技术
CN102477857A (zh) * 2010-11-30 2012-05-30 新奥气化采煤有限公司 一种煤炭地下气化贯通方法
CA2827011A1 (en) * 2011-02-18 2012-08-23 Linc Energy Ltd Igniting an underground coal seam in an underground coal gasification process, ucg
CN102635346A (zh) * 2012-04-13 2012-08-15 北京大学 煤炭地下气化移动式点火系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107701165A (zh) * 2016-08-08 2018-02-16 新疆国利衡清洁能源科技有限公司 一种分离控制注气点装置及其控制方法
CN107558978A (zh) * 2017-08-28 2018-01-09 新疆国利衡清洁能源科技有限公司 稠油开采系统及方法
CN111173491A (zh) * 2020-03-09 2020-05-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN111173491B (zh) * 2020-03-09 2023-09-19 山东科技大学 一种地下气化炉的预控结构、气化炉及气化方法
CN115539009A (zh) * 2022-10-17 2022-12-30 安徽理工大学 一种用于测量煤炭地下气化效率的试验系统及方法
CN115539009B (zh) * 2022-10-17 2024-05-31 安徽理工大学 一种用于测量煤炭地下气化效率的试验系统及方法

Also Published As

Publication number Publication date
CN104251133B (zh) 2018-02-23
EP3015642A1 (en) 2016-05-04
AU2014303165A1 (en) 2016-01-21
CN104251133A (zh) 2014-12-31
ZA201509226B (en) 2019-12-18
US20160123128A1 (en) 2016-05-05
AU2014303165B2 (en) 2016-09-22

Similar Documents

Publication Publication Date Title
WO2014206122A1 (zh) 一种可控注气点注气装置、注气工艺及气化方法
CN103437748B (zh) 煤炭地下气化炉、以及煤炭地下气化方法
CN102477857B (zh) 一种煤炭地下气化贯通方法
CN104563991B (zh) 一种煤炭地下气化炉的气化方法
CN208702397U (zh) 一种煤炭地下气化注气钻孔装置
CN208564527U (zh) 一种多方位u型对接井构建的煤地下气化炉
CN107939370A (zh) 一种条带式煤炭地下气化系统及生产方法
CN110159245A (zh) 分布式注排气通道窄条带煤炭地下气化炉生产系统及方法
CN104632177B (zh) 一种无井式煤炭地下气化系统及工艺
US20140000878A1 (en) Method for shortening an injection pipe for underground coal gasification
CN106150471B (zh) 用于煤炭地下气化工艺的对接式气化炉与操作方法
CN113914846A (zh) 一种应用双羽状水平井改善煤炭地下气化气腔发育的方法
CN104314549B (zh) 煤层地下气化方法
Miller et al. Proposed air injection recovery of cold-produced heavy oil reservoirs
CN104712305B (zh) 一种地下气化炉及气化方法
CN104594873A (zh) 煤炭地下气化炉及气化方法
CN109707356B (zh) 一种油页岩原位开采井下点火加热装置及加热方法
US20140000873A1 (en) Sacrificial liner linkages for auto-shortening an injection pipe for underground coal gasification
RU2383728C1 (ru) Способ подземной газификации
CN205990906U (zh) 用于煤炭地下气化工艺的对接式气化炉
CN206053927U (zh) 用于煤炭地下气化过程的氧化剂注入设备
CN208669290U (zh) 由多层u型对接井组构成的煤炭地下气化通道
CN114382444A (zh) 一种联合co2气体埋存的天然气水合物开采系统及方法
CN106437673B (zh) 用于煤炭地下气化工艺的线性气化炉与操作方法
CN115773098A (zh) 煤层和油层叠合区地下煤制气与提高油层采收率的联合开采方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14818691

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14898489

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014818691

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014303165

Country of ref document: AU

Date of ref document: 20140327

Kind code of ref document: A