WO2015096278A1 - 一种用于集装箱的检查系统 - Google Patents

一种用于集装箱的检查系统 Download PDF

Info

Publication number
WO2015096278A1
WO2015096278A1 PCT/CN2014/072496 CN2014072496W WO2015096278A1 WO 2015096278 A1 WO2015096278 A1 WO 2015096278A1 CN 2014072496 W CN2014072496 W CN 2014072496W WO 2015096278 A1 WO2015096278 A1 WO 2015096278A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
inspection system
radiation source
driving device
container
Prior art date
Application number
PCT/CN2014/072496
Other languages
English (en)
French (fr)
Inventor
孙尚民
喻卫丰
宋李卫
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Priority to BR112015030528A priority Critical patent/BR112015030528A2/pt
Publication of WO2015096278A1 publication Critical patent/WO2015096278A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays

Definitions

  • the invention relates to an inspection system for a container. Background technique
  • the large-scale container inspection system of the prior art has the following structure: in the inspection channel of the shielding ray, a radiation source is provided, the radiation source generates high-energy X-rays; and an array detector is provided, which is capable of receiving X-rays passing through the container A dedicated drag device that is arranged to drag a vehicle carrying the container through the inspection channel. When the container passes through the detection channel, the radiation source provides X-rays to inspect the container.
  • the above inspection system is relatively large, and the inspection channel requires at least 60 meters, and the outer two ends occupy at least 40 meters each.
  • the above system has the disadvantages of large area of civil engineering, high cost of system engineering, difficulty in maintenance, and inability to achieve random inspections in different places.
  • Chinese Patent Publication No. CN101911103A discloses a container inspection system for inspecting a shipping container, comprising: at least one detecting device inside the shipping container; a computer communication network including for receiving from the An electronic communication tool for at least one comparison data set of at least one detection device, the data set being selected from the group consisting of an initial data set, a destination data set, and an optional one or more temporary data sets; responsive to the at least one comparison a tool of the data set for determining an inspection failure status of the transportation container; and means for responding to the receipt of the inspection failure status to indicate to the user that a further inspection of the transportation container is required.
  • the present invention provides an inspection system for a container, comprising: a radiation source providing X-rays for scanning a container; a detector for receiving from said X-rays emitted by the radiation source; inspection system main body, the radiation source and detector being disposed on the inspection system main body; wherein the inspection system main body is sized to facilitate inspection of the container.
  • the inspection system body is a mobile vehicle body.
  • the moving body includes a frame, the frame being arranged to adjust a height according to a height of the container; the detector comprises a lateral detector arm and a longitudinal detector arm, the lateral detector arm being disposed on the frame of a lateral upper portion, the longitudinal detecting arm being disposed on one longitudinal side of the frame; the radiation source being disposed on the other longitudinal side of the frame.
  • a mobile driving device configured to drive the moving body motion
  • a radiation source driving device and a detector driving device wherein the radiation source driving device and the detector driving device respectively drive the The radiation source and detector move in the height direction of the frame.
  • a radiation source biasing drive and a detector biasing drive are further included that respectively drive the radiation source and the detector to be deflected at a small angle along the center of rotation such that the X-rays are angled with the container.
  • the moving vehicle body includes a frame; the detector is a longitudinal detector disposed on one longitudinal side of the frame, and the radiation source is disposed in another longitudinal direction of the frame Side, the container is located between the two longitudinal sides during the inspection.
  • a mobile driving device configured to drive the moving body motion
  • a radiation source driving device and a detector driving device wherein the radiation source driving device and the detector driving device respectively drive the The radiation source and detector move in the height direction of the frame.
  • a radiation source biasing drive and a detector biasing drive are further included that respectively drive the radiation source and the detector to be deflected at a small angle along the center of rotation such that the X-rays are angled with the container.
  • the frame is extendable in the longitudinal direction to the highest container in the stack, whereby the inspection system is capable of inspecting the highest container.
  • the moving vehicle body includes a frame; the moving vehicle body further includes a lifting device, the lifting device is disposed to move the container along a height direction of the frame; a detector disposed on one longitudinal side of the frame, the lateral detector extending in a direction perpendicular to a height direction of the frame, the radiation source being disposed on another longitudinal side of the frame, during the inspection process
  • the container is located between the two longitudinal sides.
  • the frame is provided with a slide rail, the slide rail extends in the direction of the lateral detector, and the lateral detector is arranged to move along the slide rail.
  • a mobile driving device configured to drive the moving body motion
  • a radiation source driving device and a detector driving device wherein the radiation source driving device and the detector driving device respectively drive the The radiation source and detector move, and the detector drive drives the lateral detector to move along the slide.
  • the length of the lateral detector is arranged to receive X-rays transmitted through the length of the entire container.
  • the length of the lateral detector is arranged to receive X-rays transmitted through half the length of the container.
  • the radiation source driving device is arranged to rotate at a fixed angle.
  • the radiation source has a target or two targets that generate X-rays.
  • the source of radiation produces single energy X-rays or dual energy X-rays.
  • Figure 1 is a schematic view of the dock and the freight yard showing the containers to be inspected placed at the dock and the freight yard.
  • Figure 2 is a front elevational view of an embodiment of the inspection system of the present invention.
  • Figure 3 is a side view of the inspection system of Figure 2:
  • Figure 4 is a plan view of the inspection system of Figure 2;
  • Figure 5 is a schematic view of the inspection system of Figure 2 scanning a container
  • Figure 6 is a schematic view of the inspection system of Figure 2 scanning a container
  • Figure 7 is a schematic view of the imaging system of the inspection system of Figure 2 in a normal position to scan the container;
  • Figure 8 is a schematic view of the inspection system of the inspection system of Figure 2 after scanning the container after a small angle deflection;
  • Figure 9 is a view of the present invention A front view of yet another embodiment of the system;
  • Figure 10 is a schematic view of the inspection system of Figure 9 scanning a container
  • Figure 11 is a schematic view of the imaging system of the inspection system of Figure 9 scanning the container in a normal position
  • Figure 12 is a schematic view of the imaging system of the inspection system of Figure 9 after scanning the container after a small angle deflection
  • Figure 13 is a view of the present invention
  • a front view of another embodiment of the system
  • Figure 14 is a front elevational view showing still another embodiment of the inspection system of the present invention.
  • Figure 15 is a side elevational view of the inspection system of Figure 13;
  • Figure 16 is a plan view of the inspection system of Figure 13;
  • Figure 17 is a plan view of the inspection system of Figure 14;
  • Figure 18 is a side elevational view showing a modification of the inspection system of Figure 13;
  • Figure 19 is a plan view of the inspection system of Figure 18;
  • Figure 20 is a schematic illustration of the inspection system of Figure 19;
  • Figure 21 is a schematic view of the inspection system of Figure 19 scanning a container
  • Figure 22 is a schematic view of the inspection system of Figure 19 scanning a container
  • Figure 23 is a schematic view of the inspection system of Figure 13 scanning a container
  • Figure 24 is a schematic view of the inspection system of Figure 13 scanning a container
  • Figure 25 is a schematic view of the inspection system of Figure 13 scanning the assembly system
  • Figure 26 is a schematic illustration of the inspection system of Figure 13;
  • Figure 27 is a schematic illustration of the inspection system of Figure 14.
  • Figure 1 is a schematic illustration of a dock and a freight yard showing the containers to be inspected placed at the docks and yards.
  • the container to be inspected is indicated by reference numeral 116.
  • the inspection system of the prior art cannot perform convenient, rapid, and batch inspection of the containers under the above conditions.
  • an inspection system in accordance with the present invention includes: a radiation source 112 that provides X-rays for scanning a container 116; And for inspecting a system main body, the radiation source 112 and the detector are disposed on the main body of the inspection system; wherein the main body of the inspection system is sized to facilitate Check the container.
  • the inspection system is a mobile inspection system or a fixed inspection system, and the size of the inspection system main body can be traversed from the container, thereby facilitating inspection of the container. More specifically, as shown in FIGS.
  • FIG. 4 and 5 which respectively show a schematic diagram of a container inspection by a fixed inspection system and a mobile inspection system, wherein FIG. 4 shows a fixed inspection system, which can be utilized.
  • the vehicle drives the container through the inspection system; and
  • Figure 5 shows the mobile inspection system that allows the inspection system to be traversed from the container.
  • the radiation source 112 may be an accelerator to provide X-rays, and other forms of radiation sources may be employed; the detectors herein are lateral detector arms 102 and longitudinal detectors.
  • the arm 105 is constructed, and other forms of detectors can also be used.
  • the radiation source 112 has one or two targets that generate X-rays. Radiation source 112 can produce single energy X-rays or dual energy X-rays.
  • the radiation source shown in Figure 20 has a single target point, and the radiation source shown in Figure 26 has dual targets.
  • the inspection system body is a moving vehicle body. As shown in FIG. 2, it includes a travel driving device 115, as shown in FIG. 3, which includes a traveling wheel 114; both drive the inspection system to move, thereby checking the system phase Movement of the container 116 causes the container 116 to be inspected within the scanning space 119.
  • the moving body includes a frame, the frame is configured to adjust a height according to a height of the container; the detector includes a lateral detector arm 102 and a longitudinal detector arm 105, the lateral detection The arm is disposed at a lateral upper portion of the frame, the longitudinal detecting arm is disposed at one longitudinal side of the frame; and the radiation source 112 is disposed at another longitudinal side of the frame.
  • the inspection system includes a detector driving device.
  • the detector driving device includes a detector arm lifting driving device 103 and a detector arm deflection driving device 104, which respectively drive the detector arm to lift and lower.
  • the deflection system; the inspection system further includes a radiation source driving device, which may include a radiation source lifting driving device 111 and a radiation source deflection driving device 109, respectively for driving the radiation source to be lifted and lowered and deflected at a small angle along the center of the rotation, such that X The rays are at an angle to the container.
  • the inspection system further includes other components: an operation room 101, a speed sensor 117, a position sensor 118, a collimator 110, a control cabinet 108, a radiation detection system 113, and a tank number identification system 106, which can be used by those skilled in the art.
  • the above-described members are suitably disposed, and those skilled in the art can also provide other members according to actual needs, and improve the illustrated structure. The above changes are not deviated from the scope of the invention.
  • the above-described radiation detecting system 113 can be used to detect whether there is radiation in the container; the box number identification system 106 can identify the box number.
  • a shielding layer may be disposed in the operation room 101 for shielding X-rays to protect the operator from X-ray damage; the operator may control the inspection system in the operation room or remotely control by remote control. .
  • Figure 5 is a schematic view of the inspection system of Figure 2 scanning the container
  • Figure 6 is a schematic illustration of the inspection system of Figure 2 scanning the container.
  • the vehicle drives the container 116 to pass the inspection system for inspection.
  • the inspection system according to the present invention is mobile, and the inspection system moves through the container to inspect the container 116.
  • FIG. 7 is a schematic view of the imaging system of the inspection system of FIG. 2 scanning the container in a normal position
  • FIG. 8 is a schematic diagram of scanning the container after the imaging system of the inspection system of FIG. 2 is deflected at a small angle, for clarity of illustration, 7 and FIG. 8 omits part of the structure of the inspection system.
  • the radiation source 112 and the detector arms 102, 105 scan the container at a position that does not rotate relative to the center of rotation.
  • the radiation source 112 and the detector arms 102, 105 scan the container at a position that is rotated a small angle relative to the center of rotation, at which position the suspect object is transmitted from different angles to avoid miss detection.
  • Figure 9 is a front elevational view of still another embodiment of the inspection system of the present invention, as shown in Figure 9, which differs from the embodiment illustrated in Figure 2 in that it is used to carry a multi-layered container Scan, for example, from layer I to layer VI.
  • the same reference numerals as in the embodiment of Fig. 2 denote the same components.
  • it includes only the longitudinal detector 105, and does not include the lateral detector 102.
  • the detector is a longitudinal detector 105 disposed on one longitudinal side of the frame of the inspection system, and the radiation source 112 is disposed on the other longitudinal side of the frame during the inspection.
  • the container is located between the two longitudinal sides.
  • the inspection system can inspect the container in batches, that is, perform scanning of the containers of the first to sixth layers during the movement of the radiation source and the detector from the lower portion to the upper portion. .
  • Figure 10 is a schematic illustration of the inspection system of Figure 9 scanning a container by scanning the containers of different layers by moving the radiation source and detector to different heights.
  • the frame of the inspection system can be extended in the height direction to the highest container in the container stack so that the inspection system can inspect the highest container.
  • FIG. 11 is a schematic view of the imaging system of the inspection system of FIG. 9 scanning the container in a normal position
  • FIG. 12 is a view showing the container of the inspection system of FIG. Schematic diagram of the scan.
  • the radiation source 112 and detector arm 105 scan the container at a position that is not rotated relative to the center of rotation.
  • the radiation source 112 and the detector arm 105 scan the container at a position rotated a small angle with respect to the center of rotation, and at this position, the suspicious objects are transmitted from different angles to avoid miss detection.
  • 13 and 14 are front views of still another embodiment of the inspection system of the present invention. 13 and 14 differ in that the radiation source 112 of Fig. 13 is in the retracted position and the radiation source 112 in Fig. 14 is in the extended position.
  • the inspection system further includes a lifting device 122, which is arranged to move the container in the height direction of the frame;
  • the detector is a lateral detector 102 disposed on one longitudinal side of the frame.
  • the lateral detector extends in a direction perpendicular to the height direction of the frame, and the radiation source 112 is disposed in the The other longitudinal side of the frame, the container is located between the two longitudinal sides during the inspection.
  • Figure 17 shows a version of this embodiment
  • Figure 18 shows another version of the embodiment, showing that the length of the lateral detector 102 is set to receive the length of the entire container. X Rays.
  • Figure 18 shows that the length of the lateral detector 102 is set to receive X-rays that are transmitted through half the length of the container.
  • Figures 15-17, 23-27 illustrate an inspection system having a lateral detector 102 that is configured to receive X-rays that are transmitted throughout the length of the container.
  • the radiation source is retracted.
  • Position, in Figures 17, 24, 25, 27, the radiation source is in the extended position.
  • Figures 26 and 27 use a dual-target radiation source, and Figures 23-25 use a single-target radiation source.
  • FIGS 18-22 illustrate an inspection system having a length of the lateral detector 102 configured to receive X-rays transmitted through a half container length.
  • the radiation source is in the retracted position
  • the radiation source is in the extended position.
  • Figures 20, 21, and 22 use a single target radiation source.
  • the frame of the inspection system is provided with a slide rail 124 extending in the direction of the lateral detector 103, the lateral detector 103 being arranged to move along the slide rail 124.
  • the inspection system also includes a radiation source drive and a detector drive 123 that drives the detector drive to drive the lateral detector to move along the slide.
  • the radiation source driving device includes a radiation source translation driving device 125 and a rotation driving device 126 for respectively driving the radiation source to translate or rotate at a fixed angle.
  • the radiation source 112 provides an X-ray 121 to scan the container 116.
  • the lifting and lowering operations are performed on the container 116 by the lifting device 122, thereby achieving a complete scanning of the container.
  • FIG. 20-27 which shows the scanning of the container with the radiation source in the retracted position and the extended position; it shows an embodiment of a lateral detector arm of different lengths; it shows that the radiation source has a single Different embodiments of targets and multiple targets.
  • the length of the lateral detector arm 102 is configured to receive X-rays transmitted through the length of half of the container.
  • half of the container 116 is scanned first.
  • the positions of the horizontal detector arm 102 and the radiation source 112 are adjusted.
  • the other half of the container is scanned, thereby completing the entire scan of the container.
  • Figures 23-25 illustrate schematic views of the container for scanning the deformed structure of the radiation source and lateral detector arms.
  • the above scanning process can also complete the scanning of the other half of the container in the descending process by completing the scanning of the container in the ascending process of the container.
  • Those skilled in the art can appropriately change the above structure and scanning mode according to actual work needs.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种用于集装箱(116)的检査系统,包括:辐射源(112),其提供用于对集装箱(116)进行扫描的X射线;探测器,其用于接收从所述辐射源(112)发射的X射线;检査系统主体,所述辐射源(112)和探测器设置于所述检査系统主体上;其中,所述检査系统主体的大小设置成便于对集装箱(116)进行检査。

Description

一种用于集装箱的检查系统
技术领域
本发明涉及一种用于集装箱的检査系统。 背景技术
现有技术中的大型集装箱检査系统具有如下结构: 在屏蔽射线的检查通道内, 设 置有辐射源, 该辐射源产生高能 X射线; 设置有阵列探测器, 其能够接收穿过集装箱 的 X射线; 专用的拖动设备, 其设置成将装有集装箱的车辆拖过检査通道。 在集装箱 从检测通道通过时, 辐射源提供 X射线对集装箱进行检査。 上述检查系统比较庞大, 其检査通道至少需要 60米, 外部两端占地长度至少各 40米。 上述系统存在着土建工 程占地面积大, 系统工程造价高、 不易维修、 不能实现异地随机检査等缺点。
中国专利文献 CN101911103A披露了一种用于检査运输用集装箱的集装箱检査系 统, 其包括, 至少一个探测装置, 其在所述运输用集装箱的内部; 计算机通信网络, 其包括用于接收来自所述至少一个探测装置的至少一个比较数据集的电子通信工具, 所述数据集选自由初始数据集、 目的数据集和可选择的一个或多个临时数据集组成的 组; 响应所述至少一个比较数据集的工具, 用于确定所述运输用集装箱的检査失败状 态; 以及响应所述检查失败状态的接收以向使用者表明需要对所述运输用集装箱进行 进一步的检查的工具。
上述设备都不能方便、 高效的对码头或货场的集装箱进行批量检査。 发明内容
为了克服现有技术中存在的问题, 本发明提出一种用于集装箱的检查系统, 其包 括: 辐射源, 其提供用于对集装箱进行扫描的 X射线; 探测器, 其用于接收从所述辐 射源发射的 X射线;检査系统主体,所述辐射源和探测器设置于所述检査系统主体上; 其中, 所述检查系统主体的大小设置成便于对集装箱进行检査。
优选地, 所述检查系统主体为移动车体。
优选地,所述移动车体包括框架,所述框架设置成根据集装箱的高度来调整高度; 所述探测器包括横向探测器臂和纵向探测器臂, 所述横向探测器臂设置于所述框架的 横向上部, 所述纵向探测臂设置于所述框架的一个纵向侧部; 所述辐射源设置于所述 框架的另外一个纵向侧部。
优选地,还包括移动驱动装置,所述移动驱动装置设置成驱动所述移动车体运动; 以及辐射源驱动装置和探测器驱动装置, 所述辐射源驱动装置和探测器驱动装置分别 驱动所述辐射源和探测器沿所述框架高度方向移动。
优选地, 还包括辐射源偏置驱动装置和探测器偏置驱动装置, 其分别驱动辐射源 和探测器沿回转中心小角度偏转, 使得 X射线与所述集装箱成角度。
根据本发明的又一实施方式,所述移动车体包括框架;所述探测器为纵向探测器, 其设置在所述框架的一个纵向侧, 所述辐射源设置在所述框架的另一个纵向侧, 在检 查过程中, 所述集装箱位于两个纵向侧之间。
优选地,还包括移动驱动装置,所述移动驱动装置设置成驱动所述移动车体运动; 以及辐射源驱动装置和探测器驱动装置, 所述辐射源驱动装置和探测器驱动装置分别 驱动所述辐射源和探测器沿所述框架高度方向移动。
优选地, 还包括辐射源偏置驱动装置和探测器偏置驱动装置, 其分别驱动辐射源 和探测器沿回转中心小角度偏转, 使得 X射线与所述集装箱成角度。
优选地,所述框架在纵向方向能够延伸达到集装箱堆中的最高处的集装箱,从而, 所述检查系统能够对最高处的集装箱进行检查。
根据本发明的又一实施方式, 所述移动车体包括框架; 所述移动车体还包括起吊 装置, 所述起吊装置设置成使集装箱沿所述框架的高度方向移动; 所述探测器为横向 探测器, 其设置在所述框架的一个纵向侧, 所述横向探测器延伸的方向与所述框架的 高度方向垂直, 所述辐射源设置在所述框架的另一个纵向侧, 在检査过程中, 所述集 装箱位于两个纵向侧之间。
优选地, 所述框架上设置有滑轨, 所述滑轨沿所述横向探测器方向延伸, 所述横 向探测器设置成沿所述滑轨移动。
优选地,还包括移动驱动装置,所述移动驱动装置设置成驱动所述移动车体运动; 以及辐射源驱动装置和探测器驱动装置, 所述福射源驱动装置和探测器驱动装置分别 驱动所述辐射源和探测器移动, 所述探测器驱动装置驱动所述横向探测器沿着所述滑 轨移动。
优选地, 所述横向探测器的长度设置成能够接收透射过整个集装箱长度的 X射 线。 优选地, 所述横向探测器的长度设置成能够接收透射过半个集装箱长度的 X射 线。
优选地, 所述辐射源驱动装置设置成按固定角度旋转。
优选地, 所述辐射源具有产生 X射线的一个靶点或两个靶点。
优选地, 所述辐射源产生单能 X射线或双能 X射线。
根据本发明所提供的检査系统, 其可以实现对码头和货场的集装箱进行方便、 快 速、 批量的检查。 附图说明
图 1是码头和货场的示意图, 示出在码头和货场放置了待检査的集装箱。
图 2是本发明的检査系统的一种实施方式的主视图;
图 3是图 2的检查系统的侧视图:
图 4是图 2的检查系统的俯视图;
图 5是图 2的检查系统对集装箱进行扫描的示意图;
图 6是图 2的检查系统对集装箱进行扫描的示意图;
图 7是图 2的检查系统的成像系统处于正常位置对集装箱进行扫描的示意图; 图 8是图 2的检查系统的成像系统小角度偏转后对集装箱进行扫描的示意图; 图 9是本发明的检査系统的又一实施方式的主视图;
图 10是图 9的检查系统对集装箱进行扫描的示意图;
图 11是图 9的检查系统的成像系统处于正常位置对集装箱进行扫描的示意图; 图 12是图 9的检查系统的成像系统小角度偏转后对集装箱进行扫描的示意图; 图 13是本发明的检査系统的再一实施方式的主视图;
图 14是本发明的检査系统的再一实施方式的主视图;
图 15是图 13的检查系统的侧视图;
图 16是图 13的检査系统的俯视图;
图 17是图 14的检査系统的俯视图;
图 18是图 13的检查系统的变形的侧视图;
图 19是图 18的检査系统的俯视图;
图 20是图 19的检査系统的示意图;
图 21是图 19的检査系统对集装箱进行扫描的示意图; 图 22是图 19的检查系统对集装箱进行扫描的示意图;
图 23是图 13的检査系统对集装箱进行扫描的示意图;
图 24是图 13的检查系统对集装箱进行扫描的示意图;
图 25是图 13的检査系统对集装系进行扫描的示意图;
图 26是图 13的检查系统的示意图;
图 27是图 14的检査系统的示意图。 具体实施方式 图 1是码头和货场的示意图, 示出在码头和货场放置了待检査的集装箱。 其中, 待检査集装箱以附图标记 116表示。 从附图 1中可以看出, 为了节省放置空间, 集装 箱之间的距离很小, 因此, 现有技术中的检查系统不能对上述条件下的集装箱进行方 便、 快速、 批量的检查。
图 2是本发明的检査系统的一种实施方式的主视图, 如图 2所示, 根据本发明的 检查系统包括: 辐射源 112, 其提供用于对集装箱 116进行扫描的 X射线; 探测器, 其用于接收从所述辐射源 112发射的 X射线; 检查系统主体, 所述辐射源 112和探测 器设置于所述检查系统主体上; 其中, 所述检查系统主体的大小设置成便于对集装箱 进行检查。 SP, 如图 2所示, 检査系统为移动式检査系统或固定式检査系统, 所述检 査系统主体的大小可以从集装箱跨过, 从而, 便于对集装箱进行检查。 更明显的, 如 图 4和 5所示, 其分别示出了固定式检査系统和移动式检査系统对集装箱进行检査的 示意图, 其中, 图 4示出了固定式检查系统, 可以利用车辆带动集装箱通过所述检查 系统; 而图 5示出了移动式检査系统, 可以使检査系统从集装箱处跨过。
如图 2-4所示, 根据本发明的检查系统, 其辐射源 112可以是加速器以提供 X射 线, 也可以采用其他形式的辐射源; 这里的探测器为横向探测器臂 102和纵向探测器 臂 105构成, 也可以釆用其他形式的探测器。
根据本发明的实施方式, 辐射源 112具有产生 X射线的一个靶点或两个靶点。辐 射源 112可以产生单能 X射线或双能 X射线。 例如, 附图 20示出了的辐射源具有单 靶点, 附图 26示出了的辐射源具有双靶点。
如图 2所示, 所述检査系统主体为移动车体。 如图 2所示, 其包括行走驱动装 置 115, 如图 3所示, 其包括行走轮 114; 两者驱动检查系统移动, 从而, 检査系统相 对于集装箱 116运动, 使得集装箱 116在扫描空间 119内被检査。
如图 2-4所示, 所述移动车体包括框架, 所述框架设置成根据集装箱的高度来调 整高度; 所述探测器包括横向探测器臂 102和纵向探测器臂 105, 所述横向探测器臂 设置于所述框架的横向上部, 所述纵向探测臂设置于所述框架的一个纵向侧部; 所述 辐射源 112设置于所述框架的另外一个纵向侧部。
如图 2-3所示, 所述检査系统包括探测器驱动装置, 具体的, 探测器驱动装置包 括探测器臂升降驱动装置 103和探测器臂偏转驱动装置 104, 其分别驱动探测器臂升 降以及偏转; 所述检査系统还包括辐射源驱动装置, 其可以包括辐射源升降驱动装置 111和辐射源偏转驱动装置 109,其分别用于驱动辐射源升降以及沿回转中心小角度偏 转, 使得 X射线与集装箱成角度。
根据本发明的检查系统, 还包括其他构件: 操作室 101、 速度传感器 117、 位置 传感器 118、 准直器 110、 控制柜 108、 放射物检测系统 113以及箱号识别系统 106, 本领域技术人员可以合适的设置上述构件, 并且, 本领域技术人员也可以根据实际需 要, 设置其他构件, 并且, 对图示的结构进行改进。 上述变化, 都没有脱离本发明的 范围。
比如, 上述放射物检测系统 113可以用于检测集装箱内是否具有放射物; 箱号识 别系统 106可以对箱号进行识别。
操作室 101内可以设置屏蔽层,其用于对 X射线进行屏蔽, 从而保护操作人员防 止受到 X射线的伤害; 操作人员可以在操作室内对检查系统进行控制, 也可通过遥控 的方式进行远程控制。
图 5是图 2的检查系统对集装箱进行扫描的示意图; 图 6是图 2的检查系统对集 装箱进行扫描的示意图。 如图 5所示, 根据本发明的检查系统固定设置, 车辆带动集 装箱 116通过检查系统以进行检查。如图 6所示, 根据本发明的检查系统是移动式的, 检查系统移动通过集装箱处, 以对集装箱 116进行检査。
图 7是图 2的检查系统的成像系统处于正常位置对集装箱进行扫描的示意图; 图 8是图 2的检査系统的成像系统小角度偏转后对集装箱进行扫描的示意图, 为了图示 清楚, 图 7和图 8省略了检査系统的部分结构。 如图 7所示, 辐射源 112和探测器臂 102、 105在没有相对于回转中心旋转的位置对集装箱进行扫描。 如图 8所示, 辐射源 112和探测器臂 102、 105在相对于回转中心旋转小角度的位置对集装箱进行扫描, 处 于该位置时, 对可疑物体从不同角度透射避免漏检。 图 9是本发明的检査系统的又一实施方式的主视图, 参见附图 9所示, 其与图 2 所示出的实施方式不同之处在于, 其用于对设置多层的集装箱进行扫描, 例如, 从第 I层到第 VI层。 在该实施方式中, 与图 2中的实施方式相同的附图标记表示相同的组 件。与图 2所示的实施方式不同,根据图 9所示的实施方式,其只包括纵向探测器 105, 而不包括横向探测器 102。
具体的, 如图 9所示, 所述探测器为纵向探测器 105, 其设置在检查系统的框架 的一个纵向侧, 所述辐射源 112设置在框架的另一个纵向侧, 在检査过程中, 所述集 装箱位于两个纵向侧之间。
如图 9所示, 根据本发明的检查系统可以批量地对集装箱进行检查, 即, 在辐射 源和探测器从下部向上部移动的过程中, 执行对第 I层到第 VI层的集装箱的扫描。
图 10是图 9的检查系统对集装箱进行扫描的示意图, 通过将辐射源和探测器移 动到不同的高度, 从而对不同层的集装箱进行扫描。 检查系统的框架在高度方向能够 延伸达到集装箱堆中的最高处的集装箱, 从而, 所述检查系统能够对最高处的集装箱 进行检査。
与图 2所示的实施方式相同, 图 11是图 9的检查系统的成像系统处于正常位置 对集装箱进行扫描的示意图;图 12是图 9的检査系统的成像系统小角度偏转后对集装 箱进行扫描的示意图。 如图 11所示, 辐射源 112和探测器臂 105在没有相对于回转中 心旋转的位置对集装箱进行扫描。如图 12所示, 辐射源 112和探测器臂 105在相对于 回转中心旋转小角度的位置对集装箱进行扫描, 处于该位置时, 对可疑物体从不同角 度透射避免漏检。
图 13和 14是本发明的检査系统的再一实施方式的主视图。 图 13和图 14不同之 处在于, 图 13中的辐射源 112处于缩回位置, 图 14中的辐射源 112处于伸出位置。
与图 2所示出的实施方式不同之处在于, 如图 13-17所示, 检査系统还包括起吊 装置 122, 所述起吊装置 122设置成使集装箱沿所述框架的高度方向移动; 所述探测 器为横向探测器 102, 其设置在框架的一个纵向侧, 如图 13和 15所示, 横向探测器 延伸的方向与所述框架的高度方向垂直, 所述辐射源 112设置在所述框架的另一个纵 向侧, 在检查过程中, 所述集装箱位于两个纵向侧之间。
在该实施方式中, 与图 2中的实施方式相同的附图标记表示相同的组件。
图 17示出了该实施方式的一种形式, 图 18示出了该实施方式的另外一种形式, 图 Π示出了所述横向探测器 102的长度设置成能够接收透射过整个集装箱长度的 X 射线。图 18示出了所述横向探测器 102的长度设置成能够接收透射过半个集装箱长度 的 X射线。
图 15-17、 图 23-27示出了的检查系统, 其横向探测器 102的长度设置成能够接 收透射过整个集装箱长度的 X射线, 在图 16、 23、 26中, 辐射源处于缩回位置, 在 图 17、 24、 25、 27中, 辐射源处于伸出位置。 图 26和图 27采用双靶点辐射源, 图 23-25采用单靶点辐射源。
图 18-22示出了的检查系统, 其所述横向探测器 102的长度设置成能够接收透射 过半个集装箱长度的 X射线。 在图 20中, 辐射源处于缩回位置, 在图 21、 22中, 辐 射源处于伸出位置。 图 20、 21、 22采用单靶点辐射源。
如图 13-14所示, 检査系统的框架上设置有滑轨 124, 所述滑轨沿所述横向探测 器 103方向延伸, 所述横向探测器 103设置成沿所述滑轨 124移动。 检查系统还包括 辐射源驱动装置和探测器驱动装置 123, 其驱动所述探测器驱动装置驱动所述横向探 测器沿着所述滑轨移动。 具体的, 辐射源驱动装置包括辐射源平移驱动装置 125和旋 转驱动装置 126, 其分别用于驱动辐射源平移或者按固定角度旋转。
如图 14所示, 辐射源 112提供 X射线 121对集装箱 116进行扫描, 在扫描过程 中, 通过起吊装置 122对集装箱 116执行提升和下降操作, 从而, 实现对集装箱的完 整的扫描。
如图 20-27所示, 其示出了辐射源处于缩回位置以及伸出位置对集装箱的扫描; 其示出了不同长度的横向探测器臂的实施方式; 其示出了辐射源具有单靶点和多靶点 的不同的实施方式。
如图 20-21所示, 所述横向探测器臂 102的长度设置成能够接收透射过半个集装 箱长度的 X射线。 如图 20所示, 扫描过程中, 先对集装箱 116的一半进行扫描, 如 图 21所示, 完成如图 20所示的扫描步骤之后, 调整横探测器臂 102和辐射源 112的 位置, 对集装箱另外的一半进行扫描, 从而, 完成对集装箱的整个的扫描。
类似的, 图 23-25示出了, 对于辐射源和横向探测器臂的变形结构对集装箱进行 扫描的示意图。 上述扫描过程, 也可以通过在集装箱的上升过程完成半个集装箱的扫 描,在下降过程完成另外半个集装箱的扫描。本领域技术人员可以根据实际工作需要, 对上述结构和扫描方式进行适当改变。
根据图 26-27所示出的实施方式, 由于其辐射源采用双靶点的形式, 执行集装箱 的一次上升或者一次下降过程就完成了对整个长度的集装箱扫描检査。 虽然本总体发明构思的一些实施例己被显示和说明, 本领域普通技术人员将理 解, 在不背离本总体发明构思的原则和精神的情况下, 可对这些实施例做出改变, 本 发明的范围以权利要求和它们的等同物限定。

Claims

1. 一种用于集装箱的检査系统, 包括:
辐射源, 其提供用于对集装箱进行扫描的 X射线;
探测器, 其用于接收从所述辐射源发射的 X射线;
检查系统主体, 所述辐射源和探测器设置于所述检査系统主体上;
其中, 所述检査系统主体的大小设置成便于对集装箱进行检査。
2. 根据权利要求 1所述的用于所述集装箱的检査系统,其中,所述检查系统主体 为移动车体。
3. 根据权利要求 2所述的检査系统, 其中,
所述移动车体包括框架, 所述框架设置成根据集装箱的高度来调整高度; 所述探测器包括横向探测器臂和纵向探测器臂, 所述横向探测器臂设置于所述框 架的横向上部, 所述纵向探测臂设置于所述框架的一个纵向侧部;
所述辐射源设置于所述框架的另外一个纵向侧部。
4. 根据权利要求 3所述的检査系统, 其中,
还包括移动驱动装置, 所述移动驱动装置设置成驱动所述移动车体运动; 以及辐 射源驱动装置和探测器驱动装置, 所述辐射源驱动装置和探测器驱动装置分别驱动所 述辐射源和探测器沿所述框架高度方向移动。
5. 根据权利要求 3所述的检査系统, 其中,
还包括辐射源偏置驱动装置和探测器偏置驱动装置, 其分别驱动辐射源和探测器 沿回转中心小角度偏转, 使得 X射线与所述集装箱成角度。
6. 根据权利要求 2所述的检查系统, 其中,
所述移动车体包括框架:
所述探测器为纵向探测器, 其设置在所述框架的一个纵向侧, 所述辐射源设置在 所述框架的另一个纵向侧, 在检查过程中, 所述集装箱位于两个纵向侧之间。
7. 根据权利要求 6所述的检査系统, 其中,
还包括移动驱动装置, 所述移动驱动装置设置成驱动所述移动车体运动; 以及辐 射源驱动装置和探测器驱动装置, 所述辐射源驱动装置和探测器驱动装置分别驱动所 述辐射源和探测器沿所述框架高度方向移动。
8. 根据权利要求 6所述的检查系统, 其中, 还包括辐射源偏置驱动装置和探测器偏置驱动装置, 其分别驱动辐射源和探测器 沿回转中心小角度偏转, 使得 X射线与所述集装箱成角度。
9. 根据权利要求 6所述的检査系统, 其中,
所述框架在纵向方向能够延伸达到集装箱堆场中的最高处的集装箱位置, 从而, 所述检查系统能够对叠放在集装箱堆场中的最高处的集装箱进行检査。
10. 根据权利要求 2所述的检査系统, 其中,
所述移动车体包括框架;
所述移动车体还包括起吊装置,所述起吊装置设置成使集装箱沿所述框架的高度 方向移动;
所述探测器为横向探测器, 其设置在所述框架的一个纵向侧, 所述横向探测器延 伸的方向与所述框架的高度方向垂直, 所述辐射源设置在所述框架的另一个纵向侧, 在检査过程中, 所述集装箱位于两个纵向侧之间。
11. 根据权利要求 10所述的检査系统, 其中,
所述框架上设置有滑轨, 所述滑轨沿所述横向探测器方向延伸, 所述横向探测器 设置成沿所述滑轨移动。
12. 根据权利要求 10所述的检查系统, 其中,
还包括移动驱动装置, 所述移动驱动装置设置成驱动所述移动车体运动; 以及辐 射源驱动装置和探测器驱动装置, 所述辐射源驱动装置和探测器驱动装置分别驱动所 述辐射源和探测器移动,
其中, 所述探测器驱动装置驱动所述横向探测器沿着所述滑轨移动。
13. 根据权利要求 10所述的检查系统, 其中,
所述横向探测器的长度设置成能够接收透射过整个集装箱长度的 X射线。
14. 根据权利要求 10所述的检査系统, 其中,
所述横向探测器的长度设置成能够接收透射过半个集装箱长度的 X射线。
15. 根据权利要求 12所述的检查系统, 其中,
所述辐射源驱动装置设置成驱动辐射源按固定角度旋转。
16, 根据权利要求 1所述的检查系统, 其中,
所述辐射源具有产生 X射线的一个靶点或两个靶点。
17. 根据权利要求 1所述的检査系统, 其中,
所述辐射源产生单能 X射线或双能 X射线。
PCT/CN2014/072496 2013-12-26 2014-02-25 一种用于集装箱的检查系统 WO2015096278A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112015030528A BR112015030528A2 (pt) 2013-12-26 2014-02-25 sistema de inspeção para contêiner

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310739122.8 2013-12-26
CN201310739122 2013-12-26
CN201410031016.9A CN104749649B (zh) 2013-12-26 2014-01-22 一种用于集装箱的检查系统
CN201410031016.9 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015096278A1 true WO2015096278A1 (zh) 2015-07-02

Family

ID=53477435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072496 WO2015096278A1 (zh) 2013-12-26 2014-02-25 一种用于集装箱的检查系统

Country Status (3)

Country Link
CN (1) CN104749649B (zh)
BR (1) BR112015030528A2 (zh)
WO (1) WO2015096278A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106290419A (zh) * 2016-08-31 2017-01-04 同方威视技术股份有限公司 可移动分体式检查系统及方法
CN106185226B (zh) * 2016-09-29 2019-05-03 同方威视技术股份有限公司 用于集装物检查系统的检测通道的组合输送装置、及集装物检查系统
CN106526687A (zh) * 2016-12-15 2017-03-22 同方威视技术股份有限公司 用于集装箱的可移动式射线检查系统和检查方法
CN109407162B (zh) * 2018-12-24 2024-04-02 同方威视技术股份有限公司 检查系统及成像方法
CN109521481A (zh) 2019-01-04 2019-03-26 同方威视技术股份有限公司 检查装置
CN109597138A (zh) * 2019-01-04 2019-04-09 清华大学 一种物品检测装置
CN109521480A (zh) * 2019-01-04 2019-03-26 同方威视科技(北京)有限公司 辐射检查设备和辐射检查方法
CN113552641B (zh) * 2020-04-02 2023-10-10 同方威视技术股份有限公司 辐射检查设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2410260Y (zh) * 2000-03-01 2000-12-13 清华大学 可拆装组合的移动式集装箱检测装置
CN1295247A (zh) * 1999-11-05 2001-05-16 清华同方股份有限公司 移动式集装箱检测系统的可折叠式探测器扫描臂装置
CN1304037A (zh) * 1999-12-17 2001-07-18 清华同方股份有限公司 移动式集装箱检测系统的门框式扫描车
JP2008298509A (ja) * 2007-05-30 2008-12-11 Ihi Corp モバイル放射線検査装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6058158A (en) * 1997-07-04 2000-05-02 Eiler; Peter X-ray device for checking the contents of closed cargo carriers
CN2383067Y (zh) * 1999-06-28 2000-06-14 宋世鹏 一种新型的集装箱探测设备
US7762760B2 (en) * 2004-06-24 2010-07-27 Paceco Corp. Method of operating a cargo container scanning crane
CN203705662U (zh) * 2013-12-26 2014-07-09 同方威视技术股份有限公司 一种用于集装箱的检查系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1295247A (zh) * 1999-11-05 2001-05-16 清华同方股份有限公司 移动式集装箱检测系统的可折叠式探测器扫描臂装置
CN1304037A (zh) * 1999-12-17 2001-07-18 清华同方股份有限公司 移动式集装箱检测系统的门框式扫描车
CN2410260Y (zh) * 2000-03-01 2000-12-13 清华大学 可拆装组合的移动式集装箱检测装置
JP2008298509A (ja) * 2007-05-30 2008-12-11 Ihi Corp モバイル放射線検査装置

Also Published As

Publication number Publication date
CN104749649B (zh) 2019-02-22
CN104749649A (zh) 2015-07-01
BR112015030528A2 (pt) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2015096278A1 (zh) 一种用于集装箱的检查系统
US9989668B2 (en) Inspection system for container
US9897716B2 (en) Vehicle-mounted inspection system
KR102208231B1 (ko) 뮤온 검출기 어레이 스테이션들
CN101071110B (zh) 一种基于螺旋扫描立体成像的货物安全检查方法
JP5081766B2 (ja) 航空貨物コンテナにおける密輸品を調査する装置
JP6401603B2 (ja) X線透視イメージングシステム
CN203705662U (zh) 一种用于集装箱的检查系统
EP3032287B1 (en) Vehicle mounted mobile container or vehicle inspection system
RU2390761C1 (ru) Установка для обнаружения контрабанды в авиационных грузовых контейнерах
EP3236294A2 (en) Container ct inspection system
WO2018121079A1 (zh) 安检设备及方法
CN105301669A (zh) 安检设备和射线探测方法
WO2015051665A1 (zh) 对飞机进行检查的系统和方法
US20120257717A1 (en) Small mobile x-ray scanning system
TWI309298B (zh)
CN205861580U (zh) 射线检查系统
CN205593945U (zh) 集装箱ct检查系统
US8687764B2 (en) Robotic sensor
CN205374342U (zh) 安检设备
CN106053499A (zh) 射线检查系统和射线检查方法
WO2024032342A1 (zh) 嫌疑物品定位系统和定位方法
CN116224457A (zh) 多射线源检查设备和检查方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873272

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015030528

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015030528

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151204

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112015030528

Country of ref document: BR

Kind code of ref document: A2

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE REIVINDICADA; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA CITADA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE, SE FOR O CASO.

ENP Entry into the national phase

Ref document number: 112015030528

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151204