WO2015093749A1 - Polyimide film and manufacturing method therefor - Google Patents

Polyimide film and manufacturing method therefor Download PDF

Info

Publication number
WO2015093749A1
WO2015093749A1 PCT/KR2014/011634 KR2014011634W WO2015093749A1 WO 2015093749 A1 WO2015093749 A1 WO 2015093749A1 KR 2014011634 W KR2014011634 W KR 2014011634W WO 2015093749 A1 WO2015093749 A1 WO 2015093749A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
polyimide film
fluorine
average
less
Prior art date
Application number
PCT/KR2014/011634
Other languages
French (fr)
Korean (ko)
Inventor
조성일
이길남
김성원
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201480068818.5A priority Critical patent/CN106062049B/en
Publication of WO2015093749A1 publication Critical patent/WO2015093749A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • a polyimide (PI) resin is a high heat-resistant resin prepared by solution polymerization of an aromatic acid dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, and then imidization by ring dehydration at high temperature.
  • Polyimide resins are widely used in electrical / electronic materials, space / aviation and telecommunications because of their excellent mechanical and thermal dimensional stability and chemical stability. In particular, since polyimide resins have high insulation performance, they are widely used in printed circuit boards and the like as components and members requiring reliability.
  • the polyimide resin used in them has a high dielectric constant, particularly as an electrical characteristic for high frequency. Anger is required.
  • Korean Patent No. 0859275 disperses a dispersible compound in a polyimide resin precursor solution and then forms a film using the dispersion, and extracts the dispersible compound from the film. It is disclosed to prepare a porous polyimide resin by removing and porousizing the same.
  • the porous polyimide resin prepared by the above method has a limit in implementing a thin polyimide film because it has pores of a micro unit size.
  • the present invention to achieve the above object, Polyimide resin; And primary particles having an average particle diameter of 300 nm or less, and secondary particles having an average particle diameter of 10 mm or less and an average porosity specific gravity of 1.2 g / ml or less, having primary pores of which the primary particles are concaved and having an average diameter of 300 nm or less. It provides a polyimide film comprising a.
  • the present invention also provides a polyimide precursor, an imidization conversion liquid, and primary particles having an average particle diameter of 300 nm or less, and the primary particles having pores with an average diameter of 300 nm or less, having an average particle diameter of 10 or less and an average apparent specific gravity of 1.2.
  • a method for producing the polyimide film comprising imidating and then mixing fluorine-based particles composed of secondary particles of g / ml or less.
  • Figure 1 shows a SEM picture of the fluorine-based primary particles applied for the implementation of the present invention.
  • Figure 2 shows a SEM photograph of the secondary particles formed by coarse fluorine-based primary particles applied for the implementation of the present invention.
  • Figure 3 shows a cross-sectional SEM photograph of a polyimide film (prepared in Example 1) prepared by applying the secondary particles formed by forming the fluorine-based primary particles for the implementation of the present invention.
  • the polyimide film of the present invention is a polyimide resin; And primary particles having an average particle diameter of 300 nm or less, and secondary particles having an average particle diameter of 10 / m or less and an average specific gravity of 1.2 g / ml or less, having primary pores of which the primary particles are concaved and having an average diameter of 300 nm or less. Particles, characterized in that the fluorine-based particles are preferably uniformly dispersed in the polyimide resin.
  • the polyimide film of the present invention has a polyimide precursor, an imidization conversion liquid, and primary particles having an average particle diameter of 300 nm or less, and the primary particles having pores with an average diameter of 300 nm or less, having an average particle diameter of 10 or less and an average. It is prepared by mixing the fluorine-based particles composed of secondary particles having a specific gravity of 1.2 g / ml or less and then performing an imidization process.
  • the method for producing the fluorine-based particles used in the present invention is not particularly limited as long as it can be produced by implementing the above-mentioned parameters.
  • the primary particles constituting the fluorine-based particles may have an average particle diameter of 50 to 300 nm
  • the secondary particles have an average particle diameter of 3 to 10 and pores of an average diameter of 50 to 300 mm 3 and 0.4 to 1.2 It may have an average apparent specific gravity of g / ml.
  • the fluorine-based particles added to implement the dielectric constant of the polyimide is
  • Fluorine resins having a melting point of 200 ° C. or higher are preferred, and specific examples thereof include polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA) and It may be at least one selected from the group consisting of fluorinated ethylene propylene (FEP).
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy
  • FEP fluorinated ethylene propylene
  • the polyimide film of the present invention may include the fluorine-based particles in an amount of 5 to 40% by weight, preferably 10 to 30% by weight, based on the total weight of the film.
  • the fluorine-based particles having the above characteristics are included in the above content range, the dielectric constant characteristics of the polyimide film to be implemented may be exhibited by preventing the degradation of the fluorine-based particles due to the high temperature of the polyimide film manufacturing process. By adding a large amount of particles, the mechanical strength of the polyimide film can be maintained.
  • the polyimide precursor used in the present invention can be used as long as it can be a polyimide resin by imidization, preferably a polyamic acid obtained by copolymerizing an acid dianhydride component and a diamine component in a conventional manner. .
  • the acid dianhydride component and the diamine component may be appropriately selected from those commonly used.
  • biphenylcarboxylic dianhydride or derivatives thereof, pyromellitic dianhydride or derivatives thereof, and the like may be used as the acid dianhydride component, and phenylenediamine or a derivative thereof, diaminophenyl ether or the like may be used as the diamine component. Its derivatives and the like can be used.
  • the imidization conversion liquid used in the present invention may be used as long as it is a material commonly used to cause chemical curing, and may be three mixed solutions such as a dehydrating agent, a catalyst, and a polar organic solvent. More specifically, the imidization conversion liquid may be a dehydrating agent such as acetic dianhydride; Tertiary amine catalysts such as pyridine, betapicolin and isoquinoline; And a polar organic solvent such as N-methylpyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMAc).
  • NMP N-methylpyrrolidone
  • DMF dimethylformamide
  • DMAc dimethylacetamide
  • the imidization conversion solution may be used in an amount of 30 to 70 parts by weight based on 100 parts by weight of the polyimide precursor, but may vary depending on the type of polyimide precursor and the thickness of the polyimide film to be produced.
  • the polyimide film of the present invention may be prepared by conventional methods known in the art as follows.
  • the acid dianhydride component and the diamine component are copolymerized in an organic solvent to obtain a polyamic acid solution.
  • the organic solvent is generally an aprotic polar solvent, such as ⁇ , ⁇ '-dimethylformamide, ⁇ , ⁇ ' —dimethylacetamide, N-methyl-blood as the amide solvent. Redon, or a combination thereof may be used.
  • a filler may be added to the polyamic acid solution in order to improve various properties such as the slidability, thermal conductivity, conductivity, and corona resistance of the polyimide film.
  • layering agents include, but are not limited to, silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
  • an imidization conversion solution containing a dehydrating agent, a catalyst, and a polar organic solvent was added and mixed firstly, and primary particles having an average particle diameter of 300 nm or less and the primary particles were condensed and averaged.
  • the fluorine-based particles composed of secondary particles having a pore diameter of 300 nm or less and an average particle diameter of 10 // m or less and an average apparent specific gravity of 1.2 g / ml or less are added and then mixed.
  • the timing of adding the imidization conversion liquid and the fluorine particles may proceed simultaneously without time difference, and may be added in a dispersion liquid dispersed in a polar organic solvent when the bloso particles are added.
  • This mixed solution is applied to a support (eg, glass plate, aluminum foil, circulating stainless belt, stainless drum, etc.), and then imidized to obtain a desired polyimide film.
  • the desired polyimide film can be obtained by chemically partially imidating the polyamic acid coating layer formed on the support by primary heat treatment and then completely imidating it by secondary heat treatment.
  • Primary heat treatment for chemical partial imidization may be performed at 100 to 200 ° C. for 5 to 15 minutes
  • secondary heat treatment for complete imidization may be performed at 250 to 850 ° C. for 5 to 15 minutes. .
  • the polyamic acid film subjected to the first heat treatment of the chemical partial imidization state may be separated from the support and subjected to the second heat treatment, and the residual force in the film generated in the film forming process may be removed by heat treatment under a constant tension during the second heat treatment.
  • the polyimide film according to the present invention prepared as described above is 2.3 to 1 ⁇ z
  • the polyimide film of the present invention containing fluorine-based particles uniformly in the film is relatively compared to the polyimide film produced by applying the fluorine monomer
  • the low coefficient of linear expansion can be realized, and the fluorine-based particles do not directly protrude on the surface of the film to realize high adhesion of the film, which can be applied to FPCB materials such as copper foil laminates and reinforcement plates.
  • the polyimide film of the present invention uniformly includes fluorine-based particles having pores of a specific size in the film, thereby exhibiting electrical characteristics of the single fluorine particles, and at the same time embodying a porous form due to the pores to express a lower dielectric constant. It can be used in the manufacture of electrical and electronic devices and components, such as a printed circuit board that requires a low dielectric constant.
  • fluorine-based particles having pores and capable of achieving the required average specific specific gravity fluorine-based particles in the product are prevented from sinking due to the application of fluorine particles having high specific gravity. It is advantageous in that the particles can be uniformly distributed and there is no need to add a separate dispersant to improve dispersibility.
  • the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples. Production Example 1 Preparation of Polyamic Acid Solution
  • DMF dimethylformamide
  • ODA diaminophenyl ether
  • PMDA pyromellitic dianhydride
  • Example 1 fluorine particle application polyimide film production 100 g of the polyamic acid polymerization solution obtained in Preparation Example 1 was mixed with 45 g of the imidization conversion solution obtained in Preparation Example 2, and then applied to a stainless plate, dried for 3 minutes by hot air in a 120 ° C. oven, and then the film was removed from the stainless plate. Fixed with.
  • Example 2 fluorine particle application polyimide film manufacture
  • a polyimide film having an average thickness of 25 was obtained in the same manner as in Example 1, except that 45 g of the imidization conversion solution obtained in Production Example 3 was used instead of the imidization conversion solution obtained in Production Example 2.
  • Comparative Examples 1 and 2 Manufacture of Polyimide Films Applying Fluorine Particles with Different Particle Sizes and Mole Density
  • a polyimide film having an average thickness of 25 / was obtained in the same manner as in Example 1 except that 45 g of the imidization conversion solution obtained in Production Example 4 or 5 was used instead of the imidization conversion solution obtained in Production Example 2. Comparative Examples 3 and 4: Manufacture of Polyimide Film without Fluorine Particles
  • a polyimide film having an average thickness of 25 was obtained in the same manner as in Example 1, except that 45 g of the imidization conversion solution obtained in Production Example 6 or 7 was used instead of the imidization conversion solution obtained in Production Example 2. Corona treatment of the film
  • Corona treatment was performed on the polyimide films prepared in Examples 1 to 2 and Comparative Examples 1 to 4 using a corona discharge treatment apparatus (model names AGI: 060M, 063M, manufactured by Kasuga Denki Co., Ltd.) at the 4 kW output. Carried out.
  • Test Example 1 Determination of Average Particle Size and Average Diameter of Pore
  • the average particle diameter and average diameter of pores of the primary particles of the fluorine-based particles used for the present invention can be obtained from a scanning electron microscope FE-SEM (JEOL (zeol)). Using the model JSM-6700F), images of 200 primary particles and pores were randomly selected from the SEM image, and their size was measured to calculate an average. The measured values are shown in Table 1 below, and SEM pictures of the fluorine-based primary particles are shown in FIG. 1.
  • Test Example 2 Measurement of Average Particle Size of Secondary Particles
  • the average particle diameter of the secondary particles of the fluorine-based particles used for the present invention was measured using a laser diffraction particle size analyzer (Laser Difactact Particle Size Analyzer, SHIMADZU, Model SALD-2201). The measured values are shown in Table 1 below, and SEM images of secondary particles formed by condensation of fluorine-based primary particles are shown in FIG. 2.
  • Test Example 3 Measurement of average apparent specific gravity of secondary particles
  • the average apparent specific gravity of the secondary particles of the fluorine-based particles used for the present invention was measured using a volume densi ty meter and a density cup (Dens i ty cup, YASUDA, model 536, 558). The measured values are shown in Table 1 below.
  • Test Example 4 Measurement of permittivity and dielectric loss tangent
  • the polyimide film prepared in Examples 1 to 2 and Comparative Examples 1 to 4 was cut to a width of 5 mm X length 16 mm and TA thermal analysis apparatus (Thermal mechani cal apparatus)
  • the coefficient of thermal expansion (CTE) was measured using a Q400. Samples were heated at a rate of 10 ° C./min from 30 ° C. to 420 ° C., and coefficients of thermal expansion were obtained within the range of 50 ° C. to 200 ° C.
  • the measured coefficient of thermal expansion (linear expansion coefficient) is shown in Table 1 below.
  • Test Example 6 Adhesion Measurement
  • Bonding sheet (lmi l, Epoxy type, Hanwha L & C product) was placed between the polyimide film prepared in Examples 1 to 2 and Comparative Examples 1 to 4 and copper foil (2 / 3oz, Iljin Materials).
  • the protective film was placed and heated to 180 ° C., and then thermally compressed at a pressure of 3 Mpa for 30 minutes. Then, the pressure was released to further cure in an oven at 200 ° C. for 30 minutes to obtain a flexible substrate. After the obtained flexible substrate was cut to a width of 5 mm and cut, the adhesive force was measured by a 90 ° wheel test of the IPC TM 659 2.4.9D method. The measured adhesive values are shown in Table 1 below.
  • the polyimide films of Examples 1 and 2 of the present invention can express a low dielectric constant compared to the polyimide films of Comparative Examples 1 to 4 while showing excellent physical properties. Therefore, the polyimide film of the present invention It can be usefully used for the production of electrical and electronic devices and components such as printed circuit boards requiring low dielectric constant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention relates to a polyimide film and a manufacturing method therefor, and the polyimide film of the present invention, comprising: a polyimide resin; and fluorine-based particles including first particles having a mean particle diameter of at most 300 nm and second particles containing pores having a mean diameter of at most 300 nm by agglomerating first particles, and having a mean particle diameter of at most 10 µm and a mean apparent specific gravity of at most 1.2 g/ml, can be effectively used for manufacturing electric/electronic devices such as a printed circuit board requiring a low dielectric constant and components by having excellent physical properties and simultaneously expressing a lower dielectric constant.

Description

명세서  Specification
폴리이미드 필름 및 이의 제조방법 발명의 분야 본 발명은 우수한 물성을 갖는 저유전율 폴리이미드 필름 및 이의 제조방법에 관한 것이다. 발명의 배경 일반적으로 폴리이미드 (PI ) 수지라 함은 방향족 산 이무수물과 방향족 디아민 또는 방향족 디이소시아네이트를 용액중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환탈수시켜 이미드화하여 제조되는 고내열 수지를 일컫는다.  FIELD OF THE INVENTION The present invention relates to a low dielectric constant polyimide film having excellent physical properties and a method for producing the same. Background Art of the Invention Generally, a polyimide (PI) resin is a high heat-resistant resin prepared by solution polymerization of an aromatic acid dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, and then imidization by ring dehydration at high temperature. Refers to.
폴리이미드 수지는 기계적 및 열적 치수 안정성, 및 화학적 안정성이 우수하여 전기 /전자 재료, 우주 /항공 및 전기통신 분야에 넓게 이용되고 있다. 특히, 폴리이미드 수지는 높은 절연 성능을 갖기 때문에 신뢰성이 필요한 부품 및 부재로서 인쇄 회로기판 등에 널리 웅용되고 있다.  Polyimide resins are widely used in electrical / electronic materials, space / aviation and telecommunications because of their excellent mechanical and thermal dimensional stability and chemical stability. In particular, since polyimide resins have high insulation performance, they are widely used in printed circuit boards and the like as components and members requiring reliability.
최근 고도 정보화 추세에 따라 대량의 정보를 축적하고 이러한 정보를 고속으로 처리하고 고속으로 전달하기 위한 전자기기에 있어서, 이들에 사용되는 폴리이미드 수지에도 고성능화, 특히 고주파화에 대웅하는 전기적 특성으로서 저유전율화가 요구되고 있다.  In accordance with the recent trend of high informatization, in the electronic device for accumulating a large amount of information, processing such information at high speed, and delivering it at high speed, the polyimide resin used in them has a high dielectric constant, particularly as an electrical characteristic for high frequency. Anger is required.
이러한 폴리이미드 수지의 저유전율화의 시도로서, 예컨대 대한민국 특허 제 0859275 호는 폴리이미드 수지 전구체 용액 중에 분산성 화합물을 분산시킨 후 이 분산액을 이용하여 피막을 형성하고, 상기 피막으로부터 분산성 화합물을 추출하여 제거하여 다공질화함으로써 다공질 폴리이미드 수지를 제조하는 것을 개시하고 있다. 그러나, 상기 방법에 의해 제조된 다공질 폴리이미드 수지는 마이크로 단위의 크기의 기공을 가지기 때문에 박막의 폴리이미드 필름을 구현하는 데에 한계가 있었다. 발명의 요약 따라서, 본 발명의 목적은 우수한 물성을 가지며 나노 크기의 기공을 갖는 저유전율 폴리이미드 필름 및 이의 제조방법을 제공하는 것이다. As an attempt to lower the dielectric constant of such a polyimide resin, for example, Korean Patent No. 0859275 disperses a dispersible compound in a polyimide resin precursor solution and then forms a film using the dispersion, and extracts the dispersible compound from the film. It is disclosed to prepare a porous polyimide resin by removing and porousizing the same. However, the porous polyimide resin prepared by the above method has a limit in implementing a thin polyimide film because it has pores of a micro unit size. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a low dielectric constant polyimide film having excellent physical properties and having nano-sized pores and a method for producing the same.
상기 목적을 달성하기 위하여 본 발명은, 폴리이미드 수지; 및 평균 입경 300nm 이하의 1차 입자와, 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10卿 이하 및 평균 걸보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 포함하는 폴리이미드 필름을 제공한다.  The present invention to achieve the above object, Polyimide resin; And primary particles having an average particle diameter of 300 nm or less, and secondary particles having an average particle diameter of 10 mm or less and an average porosity specific gravity of 1.2 g / ml or less, having primary pores of which the primary particles are concaved and having an average diameter of 300 nm or less. It provides a polyimide film comprising a.
본 발명은 또한, 폴리이미드 전구체, 이미드화 변환액, 및 평균 입경 300nm 이하의 1차 입자와, 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10 이하 및 평균 겉보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 흔합한 후 이미드화하는 것을 포함하는, 상기 폴리이미드 필름의 제조방법을 제공한다. 도면의 간단한설명 본 발명의 상기 및 다른 목적과 특징들은 첨부된 도면과 함께 하기 본 발명의 설명으로부터 명확해 질 것이다.  The present invention also provides a polyimide precursor, an imidization conversion liquid, and primary particles having an average particle diameter of 300 nm or less, and the primary particles having pores with an average diameter of 300 nm or less, having an average particle diameter of 10 or less and an average apparent specific gravity of 1.2. Provided is a method for producing the polyimide film, comprising imidating and then mixing fluorine-based particles composed of secondary particles of g / ml or less. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects and features of the present invention will become apparent from the following description of the invention in conjunction with the accompanying drawings.
도 1은 본 발명의 구현을 위해 적용한 불소계 1차 입자의 SEM 사진을 나타낸 것이다.  Figure 1 shows a SEM picture of the fluorine-based primary particles applied for the implementation of the present invention.
도 2는 본 발명의 구현을 위해 적용한 불소계 1차 입자가 웅집하여 형성된 2차 입자의 SEM사진을 나타낸 것이다. 도 3은 본 발명의 구현을 위해 불소계 1차 입자가 웅집하여 형성된 2차 입자를 적용하여 제조한 (실시예 1에서 제조된) 폴리이미드 필름의 단면 SEM 사진을 나타낸 것이다. 발명의 상세한설명 이하, 본 발명에 대해서 보다 상세하게 설명한다. Figure 2 shows a SEM photograph of the secondary particles formed by coarse fluorine-based primary particles applied for the implementation of the present invention. Figure 3 shows a cross-sectional SEM photograph of a polyimide film (prepared in Example 1) prepared by applying the secondary particles formed by forming the fluorine-based primary particles for the implementation of the present invention. DETAILED DESCRIPTION OF THE INVENTION Hereinafter, the present invention will be described in more detail.
본 발명의 폴리이미드 필름은 폴리이미드 수지; 및 평균 입경 300nm 이하의 1차 입자와, 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10/ m 이하 및 평균 걸보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 포함하는 것을 특징으로 하며, 상기 불소계 입자는 바람직하게는 상기 폴리이미드 수지에 균일하게 분산되어 있다.  The polyimide film of the present invention is a polyimide resin; And primary particles having an average particle diameter of 300 nm or less, and secondary particles having an average particle diameter of 10 / m or less and an average specific gravity of 1.2 g / ml or less, having primary pores of which the primary particles are concaved and having an average diameter of 300 nm or less. Particles, characterized in that the fluorine-based particles are preferably uniformly dispersed in the polyimide resin.
이러한 본 발명의 폴리이미드 필름은 폴리이미드 전구체, 이미드화 변환액, 및 평균 입경 300nm 이하의 1차 입자와, 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10 이하 및 평균 걸보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 흔합한 후 이미드화 공정을 수행함으로써 제조된다.  The polyimide film of the present invention has a polyimide precursor, an imidization conversion liquid, and primary particles having an average particle diameter of 300 nm or less, and the primary particles having pores with an average diameter of 300 nm or less, having an average particle diameter of 10 or less and an average. It is prepared by mixing the fluorine-based particles composed of secondary particles having a specific gravity of 1.2 g / ml or less and then performing an imidization process.
본 발명에 사용되는 불소계 입자를 제조하는 방법은 상기에 언급한 파라미터를 구현하여 제조될 수 있으면, 그 방법에 대해서는 특별히 제한되지 아니한다 .  The method for producing the fluorine-based particles used in the present invention is not particularly limited as long as it can be produced by implementing the above-mentioned parameters.
바람직하게는, 상기 불소계 입자를 구성하는 1차 입자는 50 내지 300nm의 평균 입경을 가질 수 있고, 2차 입자는 3 내지 10 의 평균 입경 및 50 내지 300皿의 평균 직경의 기공을 갖고 0.4 내지 1.2g/ml의 평균 겉보기 비중을 가질 수 있다.  Preferably, the primary particles constituting the fluorine-based particles may have an average particle diameter of 50 to 300 nm, the secondary particles have an average particle diameter of 3 to 10 and pores of an average diameter of 50 to 300 mm 3 and 0.4 to 1.2 It may have an average apparent specific gravity of g / ml.
폴리이미드의 유전율 특성을 구현하기 위해 첨가하는 상기 불소계 입자는 The fluorine-based particles added to implement the dielectric constant of the polyimide is
200 °C 이상의 융점을 갖는 불소계 수지가 바람직하며, 이의 구체적인 예로는 폴리테트라플루오로에틸렌 (PTFE), 퍼플루오로알콕시 (PFA) 및 불소화된 ( f luor inated) 에틸렌프로필렌 (FEP)으로 이루어진 군으로부터 선택되는 1종 이상일 수 있다. Fluorine resins having a melting point of 200 ° C. or higher are preferred, and specific examples thereof include polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA) and It may be at least one selected from the group consisting of fluorinated ethylene propylene (FEP).
본 발명의 폴리이미드 필름은 상기 불소계 입자를 필름 총 중량 기준으로 5 내지 40 중량 %, 바람직하게는 10 내지 30 중량 %의 양으로 포함할 수 있다. 상기 특징을 갖는 블소계 입자를 상기의 함량 범위로 포함하는 경우 폴리이미드 필름의 제조공정의 고온에 의한 불소계 입자의 특성 저하를 방지하여 구현하고자 하는 폴리이미드 필름의 유전율 특성을 나타낼 수 있고, 또한 불소계 입자의 다량 첨가에 의해 폴리이미드 필름의 기계적 강도를 유지할 수 있다. 본 발명에 사용되는 폴리이미드 전구체는 이미드화에 의해 폴리이미드 수지가 될 수 있는 것이라면 무엇이든 사용할 수 있으며, 바람직하게는 산 이무수물 성분과 디아민 성분을 통상적인 방법으로 공중합하여 얻어진 폴리아믹산일 수 있다.  The polyimide film of the present invention may include the fluorine-based particles in an amount of 5 to 40% by weight, preferably 10 to 30% by weight, based on the total weight of the film. When the fluorine-based particles having the above characteristics are included in the above content range, the dielectric constant characteristics of the polyimide film to be implemented may be exhibited by preventing the degradation of the fluorine-based particles due to the high temperature of the polyimide film manufacturing process. By adding a large amount of particles, the mechanical strength of the polyimide film can be maintained. The polyimide precursor used in the present invention can be used as long as it can be a polyimide resin by imidization, preferably a polyamic acid obtained by copolymerizing an acid dianhydride component and a diamine component in a conventional manner. .
상기 산 이무수물 성분 및 상기 디아민 성분은 각각 통상적으로 사용되는 것 중에서 적절히 선택될 수 있다.  The acid dianhydride component and the diamine component may be appropriately selected from those commonly used.
구체적으로, 산 이무수물 성분으로는 비페닐카르복실산 이무수물 또는 그 유도체, 피로멜리트산 이무수물 또는 그 유도체 등을 사용할 수 있고, 디아민 성분으로는 페닐렌디아민 또는 그 유도체, 디아미노페닐에테르 또는 그 유도체 등을 사용할 수 있다.  Specifically, biphenylcarboxylic dianhydride or derivatives thereof, pyromellitic dianhydride or derivatives thereof, and the like may be used as the acid dianhydride component, and phenylenediamine or a derivative thereof, diaminophenyl ether or the like may be used as the diamine component. Its derivatives and the like can be used.
본 발명에 사용되는 이미드화 변환액은 화학적 경화를 일으키기 위해 통상적으로 사용되는 물질이면 무엇이든 사용할 수 있으며, 이는 탈수제, 촉매 및 극성 유기용제 등 3종의 흔합 용액일 수 있다. 보다 구체적으로, 이미드화 변환액은 아세트산 이무수물과 같은 탈수제; 피리딘, 베타피콜린 및 이소퀴놀린과 같은 3급 아민류 촉매; 및 N-메틸피롤리돈 (NMP) , 디메틸포름아미드 (DMF) 및 디메틸아세트아미드 (DMAc)와 같은 극성 유기용제를 포함하는 흔합 용액일 수 있다. 상기 이미드화 변환액은 폴리이미드 전구체 100 중량부를 기준으로 30 내지 70 중량부의 양으로 사용될 수 있으나, 폴리이미드 전구체의 종류 및 제조되는 폴리이미드 필름의 두께 등에 의하여 달라질 수 있다. The imidization conversion liquid used in the present invention may be used as long as it is a material commonly used to cause chemical curing, and may be three mixed solutions such as a dehydrating agent, a catalyst, and a polar organic solvent. More specifically, the imidization conversion liquid may be a dehydrating agent such as acetic dianhydride; Tertiary amine catalysts such as pyridine, betapicolin and isoquinoline; And a polar organic solvent such as N-methylpyrrolidone (NMP), dimethylformamide (DMF), and dimethylacetamide (DMAc). The imidization conversion solution may be used in an amount of 30 to 70 parts by weight based on 100 parts by weight of the polyimide precursor, but may vary depending on the type of polyimide precursor and the thickness of the polyimide film to be produced.
보다 구체적인 일례로서, 본 발명의 폴리이미드 필름은 다음과 같은 당업계에 공지된 통상적인 방법으로 제조될 수 있다.  As a more specific example, the polyimide film of the present invention may be prepared by conventional methods known in the art as follows.
먼저, 유기용매 중에서 산 이무수물 성분과 디아민 성분을 공중합 반웅시켜 폴리아믹산 용액을 얻는다. 이때, 상기 유기용매는 일반적으로 아미드계 용매로서 비양성자성 극성 용매 (aprot i c solvent ) , 예를 들어 Ν,Ν ' -디메틸포름아미드, Ν ,Ν '—디메틸아세트아미드, N-메틸 -피를리돈, 또는 이들의 흔합물을 사용할 수 있다.  First, the acid dianhydride component and the diamine component are copolymerized in an organic solvent to obtain a polyamic acid solution. In this case, the organic solvent is generally an aprotic polar solvent, such as Ν, Ν '-dimethylformamide, Ν, Ν' —dimethylacetamide, N-methyl-blood as the amide solvent. Redon, or a combination thereof may be used.
이때, 폴리이미드 필름의 접동성, 열전도성, 도전성, 내코로나성과 같은 여러 가지 특성을 개선하기 위해 폴리아믹산 용액에 충전제를 첨가할 수도 있다. 사용될 수 있는 층전제의 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있으나, 이에 제한되지 않는다.  In this case, a filler may be added to the polyamic acid solution in order to improve various properties such as the slidability, thermal conductivity, conductivity, and corona resistance of the polyimide film. Examples of layering agents that may be used include, but are not limited to, silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
상기에서 얻어진 폴리아믹산 용액에, 탈수제, 촉매 및 극성 유기용제를 포함하는 이미드화 변환액을 첨가하여 1차 흔합하고, 여기에 평균 입경 300nm 이하의 1차 입자와, 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10//m 이하 및 평균 겉보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 첨가한 후 흔합한다.  To the polyamic acid solution obtained above, an imidization conversion solution containing a dehydrating agent, a catalyst, and a polar organic solvent was added and mixed firstly, and primary particles having an average particle diameter of 300 nm or less and the primary particles were condensed and averaged. The fluorine-based particles composed of secondary particles having a pore diameter of 300 nm or less and an average particle diameter of 10 // m or less and an average apparent specific gravity of 1.2 g / ml or less are added and then mixed.
이때, 이미드화 변환액과 불소계 입자의 투입 시점은 시차를 두지 않고 동시에 진행하여도 무방하며, 또한 블소계 입자를 투입함에 있어서 극성 유기용제에 분산한 분산액 상태로 투입해도 무방하다.  At this time, the timing of adding the imidization conversion liquid and the fluorine particles may proceed simultaneously without time difference, and may be added in a dispersion liquid dispersed in a polar organic solvent when the bloso particles are added.
이 흔합액을 지지체 (예컨대 유리판, 알루미늄박, 순환 스테인레스 벨트, 스테인레스 드럼 등)에 도포한 후 이미드화하여 목적하는 폴리이미드 필름을 얻을 수 있다. 상기 지지체 상에 형성된 폴리아믹산 코팅층을 1차 열처리에 의해 화학적으로 부분 이미드화시킨 후 2차 열처리에 의해 완전히 이미드화 시킴으로써 목적하는 폴리이미드 필름을 얻을 수 있다. 화학적 부분 이미드화를 위한 1차 열처리는 100 내지 200°C에서 5 내지 15분 동안 수행할 수 있고, 완전 이미드화를 위한 2차 열처리는 250 내지 850°C에서 5 내지 15분 동안 수행할 수 있다. 이때 1차 열처리된 화학적 부분 이미드화 상태의 폴리아믹산 필름을 지지체로부터 분리하여 2차 열처리할 수 있으며, 2차 열처리시 일정한 장력 하에서 열처리함으로써 제막 과정에서 발생한 필름 내부의 잔류웅력을 제거할 수 있다. This mixed solution is applied to a support (eg, glass plate, aluminum foil, circulating stainless belt, stainless drum, etc.), and then imidized to obtain a desired polyimide film. The desired polyimide film can be obtained by chemically partially imidating the polyamic acid coating layer formed on the support by primary heat treatment and then completely imidating it by secondary heat treatment. Primary heat treatment for chemical partial imidization may be performed at 100 to 200 ° C. for 5 to 15 minutes, and secondary heat treatment for complete imidization may be performed at 250 to 850 ° C. for 5 to 15 minutes. . In this case, the polyamic acid film subjected to the first heat treatment of the chemical partial imidization state may be separated from the support and subjected to the second heat treatment, and the residual force in the film generated in the film forming process may be removed by heat treatment under a constant tension during the second heat treatment.
이와 같이 제조된 본 발명에 따른 폴리이미드 필름은 1腿 z에서 2.3 내지 The polyimide film according to the present invention prepared as described above is 2.3 to 1 腿 z
2.9의 낮은 유전율을 갖는다. Has a low dielectric constant of 2.9.
또한, 필름의 열팽창계수는 폴리이미드 바니쉬 (varni sh)의 특성에 의존하기 때문에, 불소계 입자를 필름 내에 균일하게 포함한 본 발명의 폴리이미드 필름은 불소계 단량체를 적용하여 제작한 폴리이미드 필름에 비해 상대적으로 낮은 선팽창계수를 구현할 수 있고, 또한 불소계 입자가 필름의 표면에 직접적으로 돌출되지 않아 필름의 높은 접착력을 구현할 수 있어 동박 적층제나 보강판 등의 FPCB 소재로 적용이 가능하다.  In addition, since the coefficient of thermal expansion of the film depends on the characteristics of the polyimide varnish (varni sh), the polyimide film of the present invention containing fluorine-based particles uniformly in the film is relatively compared to the polyimide film produced by applying the fluorine monomer The low coefficient of linear expansion can be realized, and the fluorine-based particles do not directly protrude on the surface of the film to realize high adhesion of the film, which can be applied to FPCB materials such as copper foil laminates and reinforcement plates.
본 발명의 폴리이미드 필름은 특정 크기의 기공을 갖는 불소계 입자를 필름 내에 균일하게 포함함으로써, 불소 단일 입자가 갖는 전기적 특성을 나타냄과 동시에, 기공에 기인하여 다공성 형태를 구현하여 보다 낮은 유전율을 발현할 수 있어, 저유전율이 요구되는 인쇄 회로기판 등의 전기 /전자 기기 및 부품의 제조에 유용하게 사용될 수 있다. 또한 기공을 갖고 이를 통해 요구하는 수준의 평균 겉보기 비중을 구현할 수 있는 불소계 입자를 선택적으로 사용함으로써, 일반적으로 높은 비중을 갖는 불소 입자를 적용할 경우 야기되는 입자의 가라앉음 현상을 방지하여 제품 내에 불소계 입자를 균일하게 분포시킬 수 있고, 또한 분산성을 개선하기 위해 별도의 분산제를 첨가할 필요가 없다는 장점이 있다. 이하에서, 본 발명을 실시예를 들어 상세히 설명하나, 하기 실시예에 의해 본 발명이 한정되는 것은 아니다. 제조예 1 : 폴리아믹산 용액의 제조 The polyimide film of the present invention uniformly includes fluorine-based particles having pores of a specific size in the film, thereby exhibiting electrical characteristics of the single fluorine particles, and at the same time embodying a porous form due to the pores to express a lower dielectric constant. It can be used in the manufacture of electrical and electronic devices and components, such as a printed circuit board that requires a low dielectric constant. In addition, by selectively using fluorine-based particles having pores and capable of achieving the required average specific specific gravity, fluorine-based particles in the product are prevented from sinking due to the application of fluorine particles having high specific gravity. It is advantageous in that the particles can be uniformly distributed and there is no need to add a separate dispersant to improve dispersibility. Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited by the following Examples. Production Example 1 Preparation of Polyamic Acid Solution
0.5L 반웅기에 디메틸포름아미드 (DMF) 320g을 넣고 온도를 20°C로 설정한 다음, 디아미노페닐에테르 (ODA) 27.59g을 투입하여 용해시킨 뒤에 피로멜리트산 이무수물 (PMDA)을 20.03g씩 2회 투입 후 용해하였다. 용해가 끝나면, 여기에 페닐렌디아민 (pPDA) 3.97g을 투입하여 30분간 반웅시킨 후에 용액을 샘플링하여 분자량을 측정하였다. 이 후 반웅이 끝나면 반웅기의 온도를 30°C로 승온한 뒤에 pPDA l.OOg을 투입하여 [디아민] / [산 이무수물]의 몰비를 1:1로 맞추었다. 원료 투입을 완료하면 40°C에서 2시간 동안 층분히 반웅시켜 폴리아믹산 용액을 얻었다. 제조예 2 : 불소 입자가 첨가된 이미드화 변환액의 제조 (1) Into a 0.5L reactor, 320 g of dimethylformamide (DMF) was added and the temperature was set at 20 ° C. Then, 27.59 g of diaminophenyl ether (ODA) was added to dissolve and 20.03 g of pyromellitic dianhydride (PMDA) was dissolved. Dissolved after adding twice each. After dissolving, 3.97 g of phenylenediamine (pPDA) was added thereto and reacted for 30 minutes, and then the solution was sampled to measure molecular weight. After the reaction was completed, the temperature of the reaction was raised to 30 ° C, and then pPDA l.OOg was added to adjust the molar ratio of [diamine] / [acid dianhydride] to 1: 1. When the input of the raw material was completed, the reaction mixture was heated at 40 ° C. for 2 hours to obtain a polyamic acid solution. Production Example 2: Preparation of imidization conversion liquid containing fluorine particles (1)
이미드 경화용 촉매로서 이소퀴놀린 (끓는점 242°C) 4.5g, 탈수제로서 아세트산 무수물 17.0g, 및 극성 유기용제로서 디메틸포름아미드 (DMF) 17.0g에 폴리테트라플루오로에틸렌 (PTFE) 분산액 9.3g (삼일물산 SS-5000CR, 1차 입자의 평균 입경: 200ηιΐι, 2차 입자의 평균 입경, 기공, 평균 겉보기 비중: 10 , 200nm, 0.6g/ml, PTFE 고형분 30%)을 섞어 교반하여 불소 입자가 첨가된 이미드화 변환액 46.9g을 얻었다. 제조예 3 : 불소 입자가 첨가된 이미드화 변환액의 제조 (2) 4.5 g of isoquinoline (boiling point 242 ° C) as a catalyst for curing imide, 17.0 g of acetic anhydride as dehydrating agent, and 9.3 g of polytetrafluoroethylene (PTFE) dispersion in 17.0 g of dimethylformamide (DMF) as a polar organic solvent SAMIL CORP. SS-5000CR, average particle diameter of primary particles: 200ηιΐι, average particle diameter of secondary particles, pores, average apparent specific gravity: 10, 200nm, 0.6g / ml, PTFE solids 30%) 46.9 g of the obtained imidization conversion liquid was obtained. Production Example 3 Preparation of Imidization Conversion Liquid Containing Fluorine Particles (2)
이미드 경화용 촉매로서 이소퀴놀린 (끓는점 242°C) 4.5g, 탈수제로서 아세트산 무수물 17. Og, 및 극성 유기용제로서 DMF 14.9g에 PTFE 분산액 12.3g (삼일물산 SS-5000CR, 1차 입자의 평균 입경: 200nm, 2차 입자의 평균 입경, 기공, 평균 겉보기 비중: 10/ , 200nm , 0.6g/ml , PTFE 고형분 30%)을 섞어 교반하여 불소 입자가 첨가된 이미드화 변환액 48.7g을 얻었다. 제조예 4 : 불소 입자가 첨가된 이미드화 변환액의 제조 (3) 4.5 g of isoquinoline (boiling point 242 ° C) as a catalyst for imide curing, 17.Og of acetic anhydride as dehydrating agent, and 12.3 g of PTFE dispersion (14.3 g of tribasic acid SS-5000CR, primary particles) in 14.9 g of DMF as a polar organic solvent Particle size: 200nm, average particle diameter of secondary particles , Pore, average apparent specific gravity: 10 /, 200 nm, 0.6 g / ml, PTFE solid content 30%), followed by stirring to obtain 48.7 g of an imidized conversion solution containing fluorine particles. Production Example 4 Preparation of Imidization Conversion Solution Added with Fluorine Particles (2006.01)
이미드 경화용 촉매로서 이소퀴놀린 (끓는점 242°C ) 4.5g , 탈수제로서 아세트산 무수물 17. Og , 및 극성 유기용제로서 DMF 22.6g에 밀링한 PTFE 입자 2.8g(DAIKIN사 제품, 평균 입경 22;隱, 평균 겉보기 비중 0.4g/ml )을 섞어 교반하여 불소 입자가 첨가된 이미드화 변환액 46.9g을 얻었다. 제조예 5 : 불소 입자가 첨가된 이미드화 변환액의 제조 (4) 4.5 g of isoquinoline (boiling point 242 ° C) as the imide curing catalyst, 17.Og of acetic anhydride as the dehydrating agent, and 2.8 g of PTFE particles milled to 22.6 g of DMF as the polar organic solvent (DAIKIN Co., average particle diameter 22; And average apparent specific gravity of 0.4 g / ml) were mixed and stirred to obtain 46.9 g of an imidized conversion solution containing fluorine particles. Production Example 5: Preparation of imidization conversion liquid containing fluorine particles (4)
이미드 경화용 촉매로서 이소퀴놀린 (끓는점 242°C ) 4.5g , 탈수제로서 아세트산 무수물 17. Og, 및 극성 유기용제로서 DMF 23.5g에 밀링한 PTFE 입자 3.7g(DAIKIN사 제품, 평균 입경 22 , 평균 걸보기 비중 0.4g/ml )을 섞어 교반하여 불소 입자가 첨가된 이미드화 변환액 48.7g을 얻었다. 제조예 6 : 불소 입자를 첨가하지 않은 이미드화 변환액의 제조 ( 1) 4.5 g of isoquinoline (boiling point 242 ° C) as a catalyst for curing imide, 17.Og of acetic anhydride as a dehydrating agent, and 3.7 g of PTFE particles milled to 23.5 g of DMF as a polar organic solvent (DAIKIN, average particle diameter 22, average Step specific gravity 0.4 g / ml) was mixed and stirred to obtain 48.7 g of an imidization conversion solution containing fluorine particles. Production Example 6: Preparation of imidization conversion liquid without addition of fluorine particles (1)
이미드 경화용 촉매로서 이소퀴놀린 (끓는점 242°C ) 4.5g , 탈수제로서 아세트산 무수물 17. Og , 및 극성 유기용제로서 DMF 23.5g을 섞어 교반하여 이미드화 변환액 45g을 얻었다. 제조예 7 : 불소 입자를 첨가하지 않은 이미드화 변환액의 제조 (2) 4.5 g of isoquinoline (boiling point 242 ° C) as an imide curing catalyst, 17.Og of acetic anhydride as a dehydrating agent, and 23.5 g of DMF as a polar organic solvent were mixed and stirred to obtain 45 g of imidized conversion solution. Production Example 7: Preparation of imidization conversion liquid without addition of fluorine particles (2)
이미드 경화용 촉매로서 베타피콜린 (끓는점 144°C )4.4g, 탈수제로서 아세트산 무수물 16.7g, 및 극성 유기용제로서 DMF 23. 1g을 섞어 교반하여 이미드화 변환액 4 을 얻었다. 실시예 1 : 불소 입자 적용 폴리이미드 필름 제조 제조예 1에서 얻은 폴리아믹산 중합 용액 100g에 제조예 2에서 얻은 이미드화 변환액 45g을 섞은 후 스테인레스 판에 도포하고, 120°C 오븐에서 열풍으로 3분간 건조한 후 필름을 스테인레스 판으로부터 떼어내어 프레임 핀으로 고정하였다. 필름이 고정된 프레임을 45CTC에서 7분간 열처리한 후에 필름을 떼어내 평균 두께 2 /m의 폴리이미드 필름을 얻었다. 제조된 폴리이미드 필름의 단면 SEM사진을 도 3에 나타내었다. 실시예 2 : 불소 입자 적용 폴리이미드 필름 제조 4.4 g of beta picoline (boiling point 144 ° C.) as an imide curing catalyst, 16.7 g of acetic anhydride as a dehydrating agent, and 23. 1 g of DMF as a polar organic solvent were mixed and stirred to obtain an imidized conversion solution 4. Example 1: fluorine particle application polyimide film production 100 g of the polyamic acid polymerization solution obtained in Preparation Example 1 was mixed with 45 g of the imidization conversion solution obtained in Preparation Example 2, and then applied to a stainless plate, dried for 3 minutes by hot air in a 120 ° C. oven, and then the film was removed from the stainless plate. Fixed with. After heat-treating the frame to which the film was fixed for 7 minutes at 45 CTC, the film was removed and the polyimide film of average thickness 2 / m was obtained. A cross-sectional SEM photograph of the prepared polyimide film is shown in FIG. 3. Example 2: fluorine particle application polyimide film manufacture
제조예 2에서 얻은 이미드화 변환액 대신에 제조예 3에서 얻은 이미드화 변환액 45g을 사용한 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 평균 두께 25 의 폴리이미드 필름을 얻었다. 비교예 1 및 2 : 입자 크기 및 걸보기 밀도가 다른 불소 입자 적용 폴리이미드 필름 제조  A polyimide film having an average thickness of 25 was obtained in the same manner as in Example 1, except that 45 g of the imidization conversion solution obtained in Production Example 3 was used instead of the imidization conversion solution obtained in Production Example 2. Comparative Examples 1 and 2: Manufacture of Polyimide Films Applying Fluorine Particles with Different Particle Sizes and Mole Density
제조예 2에서 얻은 이미드화 변환액 대신에 제조예 4 또는 5에서 얻은 이미드화 변환액 45g을 사용한 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 평균 두께 25/ 의 폴리이미드 필름을 얻었다. 비교예 3 및 4 : 불소 입자 미적용 폴리이미드 필름 제조  A polyimide film having an average thickness of 25 / was obtained in the same manner as in Example 1 except that 45 g of the imidization conversion solution obtained in Production Example 4 or 5 was used instead of the imidization conversion solution obtained in Production Example 2. Comparative Examples 3 and 4: Manufacture of Polyimide Film without Fluorine Particles
제조예 2에서 얻은 이미드화 변환액 대신에 제조예 6 또는 7에서 얻은 이미드화 변환액 45g을 사용한 것을 제외하고는, 실시예 1과 동일한 공정을 수행하여 평균 두께 25 의 폴리이미드 필름을 얻었다. 필름의 코로나 처리  A polyimide film having an average thickness of 25 was obtained in the same manner as in Example 1, except that 45 g of the imidization conversion solution obtained in Production Example 6 or 7 was used instead of the imidization conversion solution obtained in Production Example 2. Corona treatment of the film
실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 폴리이미드 필름에 대하여 코로나 방전 처리 장치 (모델명 AGI : 060M , 063M, 카스가덴끼 (春日電機)사 제조)를 이용하여 상기 4kW 출력으로 코로나 처리를 실시했다. 시험예 1 : 1차 입자의 평균 입경 및 기공의 평균 직경 측정 본 발명을 위해 사용한 불소계 입자의 1차 입자의 평균 입경 및 기공의 평균 직경은 주사전자현미경 FE-SEM(JEOL (제올)로부터 입수 가능한 모델 JSM-6700F)을 사용하여 관찰하여, SEM 이미지에서 랜덤으로 200개의 1차 입자 및 기공의 이미지를 선택하고, 그 크기를 측정하여 평균을 계산하였다. 측정된 값을 하기 표 1에 나타내고, 불소계 1차 입자의 SEM사진을 도 1에 나타내었다. 시험예 2 : 2차 입자의 평균 입경 측정 Corona treatment was performed on the polyimide films prepared in Examples 1 to 2 and Comparative Examples 1 to 4 using a corona discharge treatment apparatus (model names AGI: 060M, 063M, manufactured by Kasuga Denki Co., Ltd.) at the 4 kW output. Carried out. Test Example 1 Determination of Average Particle Size and Average Diameter of Pore The average particle diameter and average diameter of pores of the primary particles of the fluorine-based particles used for the present invention can be obtained from a scanning electron microscope FE-SEM (JEOL (zeol)). Using the model JSM-6700F), images of 200 primary particles and pores were randomly selected from the SEM image, and their size was measured to calculate an average. The measured values are shown in Table 1 below, and SEM pictures of the fluorine-based primary particles are shown in FIG. 1. Test Example 2 Measurement of Average Particle Size of Secondary Particles
본 발명을 위해 사용한 불소계 입자의 2차 입자의 평균 입경은 레이저 회절 입자크기 측정기 (Laser Di f fract ion Part i c le Si ze Analyzer , SHIMADZU사, 모델 SALD-2201)를 사용하여 측정하였다. 측정된 값을 하기 표 1에 나타내고, 불소계 1차 입자가 웅집하여 형성된 2차 입자의 SEM사진을 도 2에 나타내었다. 시험예 3 : 2차 입자의 평균 겉보기 비중 측정  The average particle diameter of the secondary particles of the fluorine-based particles used for the present invention was measured using a laser diffraction particle size analyzer (Laser Difactact Particle Size Analyzer, SHIMADZU, Model SALD-2201). The measured values are shown in Table 1 below, and SEM images of secondary particles formed by condensation of fluorine-based primary particles are shown in FIG. 2. Test Example 3: Measurement of average apparent specific gravity of secondary particles
본 발명을 위해 사용한 불소계 입자의 2차 입자의 평균 겉보기 비중은 부피 밀도 측정기 (Volume densi ty meter )와 밀도 컵 (Dens i ty cup , YASUDA사, 모델 536 , 558)을 사용하여 측정하였다. 측정된 값을 하기 표 1에 나타내었다. 시험예 4 : 유전율 및 유전정접 측정  The average apparent specific gravity of the secondary particles of the fluorine-based particles used for the present invention was measured using a volume densi ty meter and a density cup (Dens i ty cup, YASUDA, model 536, 558). The measured values are shown in Table 1 below. Test Example 4 Measurement of permittivity and dielectric loss tangent
상기 실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 폴리이미드 필름의 1MHz 유전율 및 유전정접을 Lacerta사의 DS-6000을 이용하여 측정하였다. 측정된 유전율 및 유전정접 값을 하기 표 1에 나타내었다. 시험예 5 : 열팽창계수 (선팽창계수) 측정  The 1 MHz dielectric constant and dielectric loss tangent of the polyimide films prepared in Examples 1 to 2 and Comparative Examples 1 to 4 were measured using Lacerta's DS-6000. The measured permittivity and dielectric loss tangent values are shown in Table 1 below. Test Example 5 Measurement of the coefficient of thermal expansion (linear expansion coefficient)
상기 실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 폴리이미드 필름을 폭 5隱 X길이 16隱로 잘라 TA사 열분석장치 (Thermal mechani cal apparatus) Q400을 이용해 열팽창계수 (Coef f icient of thermal expansion, CTE) 값을 측정하였다. 샘플을 30°C에서 420°C까지 10°C /분의 속도로 가열하였고, 열팽창계수 값은 50°C 에서 200°C 범위 내에서 구하였다. 측정된 열팽창계수 (선팽창계수) 값을 하기 표 1에 나타내었다. 시험예 6 : 접착력 측정 The polyimide film prepared in Examples 1 to 2 and Comparative Examples 1 to 4 was cut to a width of 5 mm X length 16 mm and TA thermal analysis apparatus (Thermal mechani cal apparatus) The coefficient of thermal expansion (CTE) was measured using a Q400. Samples were heated at a rate of 10 ° C./min from 30 ° C. to 420 ° C., and coefficients of thermal expansion were obtained within the range of 50 ° C. to 200 ° C. The measured coefficient of thermal expansion (linear expansion coefficient) is shown in Table 1 below. Test Example 6 : Adhesion Measurement
상기 실시예 1 내지 2 및 비교예 1 내지 4에서 제조된 폴리이미드 필름과 동박 (2/3oz , 일진소재제품) 사이에 본딩 쉬트 (lmi l , Epoxy type , 한화 L&C제품)를 놓고 위, 아래에 보호용 필름을 놓고 180°C로 승온한 뒤 30분간 3Mpa의 압력으로 열압착한 후, 압력을 해소하여 추가로 200°C 오븐에서 30분간 후경화하여 연성기판을 얻었다. 얻어진 연성기판을 5隱 폭으로 잘라 재단한 후에 IPC TM 659 2.4.9D 방법의 90° Wheel test를 통하여 접착력을 측정하였다. 측정된 접착력 값을 하기 표 1에 나타내었다. Bonding sheet (lmi l, Epoxy type, Hanwha L & C product) was placed between the polyimide film prepared in Examples 1 to 2 and Comparative Examples 1 to 4 and copper foil (2 / 3oz, Iljin Materials). The protective film was placed and heated to 180 ° C., and then thermally compressed at a pressure of 3 Mpa for 30 minutes. Then, the pressure was released to further cure in an oven at 200 ° C. for 30 minutes to obtain a flexible substrate. After the obtained flexible substrate was cut to a width of 5 mm and cut, the adhesive force was measured by a 90 ° wheel test of the IPC TM 659 2.4.9D method. The measured adhesive values are shown in Table 1 below.
【표 11  Table 11
Figure imgf000012_0001
Figure imgf000012_0001
상기 표 1의 결과로부터, 본 발명의 실시예 1 및 2의 폴리이미드 필름은 우수한 물성을 나타내면서도 비교예 1 내지 4의 폴리이미드 필름에 비해 낮은 유전율을 발현할 수 있음을 알 수 있다. 따라서, 본 발명의 폴리이미드 필름은 저유전율이 요구되는 인쇄 회로기판 등의 전기 /전자 기기 및 부품의 제조에 유용하게 사용될 수 있다. From the results of Table 1, it can be seen that the polyimide films of Examples 1 and 2 of the present invention can express a low dielectric constant compared to the polyimide films of Comparative Examples 1 to 4 while showing excellent physical properties. Therefore, the polyimide film of the present invention It can be usefully used for the production of electrical and electronic devices and components such as printed circuit boards requiring low dielectric constant.

Claims

허청구범위: 청구항 1. 폴리이미드 수지 ; 및 평균 입경 300nm 이하의 1차 입자과 , 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10 이하 및 평균 겉보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 포함하는 폴리이미드 필름. 청구항 2. 제 1 항에 있어서, 상기 불소계 입자가 50 내지 300nm의 평균 입경을 갖는 1차 입자, 및 3 내지 10 의 평균 입경 및 0.4 내지 1.2g/ml의 평균 겉보기 비중을 가지면서 50 내지 300nm의 평균 직경을 갖는 기공을 갖는 2차 입자로 구성되고, 필름 총 중량 기준으로 5 내지 40 중량 %의 양으로 포함되는 것을 특징으로 하는 폴리이미드 필름. 청구항 3. 제 1 항에 있어서, 상기 불소계 입자가 200°C 이상의 융점을 갖는 블소계 수지인 것을 특징으로 하는 폴리이미드 필름. 청구항 4. 제 3 항에 있어서, 상기 불소계 수지가 폴리테트라플루오로에틸렌 (PTFE) , 퍼플루오로알콕시 (PFA) 및 불소화된 ( f luor inated) 에틸렌프로필렌 (FEP)으로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 폴리이미드 필름. 청구항 5. 제 1 항에 있어서, 상기 폴리이미드 필름이 1MHz에서 2.3 내지 2.9의 낮은 유전율을 갖는'것을 특징으로 하는 폴리이미드 필름. 청구항 6. 폴리이미드 전구체, 이미드화 변환액, 및 평균 입경 300nm 이하의 1차 입자와, 그 1차 입자가 웅집되어 평균 직경 300nm 이하의 기공을 갖는, 평균 입경 10 이하 및 평균 겉보기 비중 1.2g/ml 이하의 2차 입자로 구성된 불소계 입자를 흔합한 후 이미드화하는 것을 포함하는, 제 1 항 내지 제 5 항 중 어느 한 항의 폴리이미드 필름의 제조방법. Claims: Claim 1. Polyimide resin; And fluorine-based particles composed of primary particles having an average particle diameter of 300 nm or less and secondary particles having an average particle diameter of 10 or less and an average apparent specific gravity of 1.2 g / ml or less, having primary pores of which the primary particles are concaved and having an average diameter of 300 nm or less. Polyimide film. 2. The method according to claim 1, wherein the fluorine-based particles have a primary particle having an average particle diameter of 50 to 300 nm, and an average particle diameter of 3 to 10 and an average apparent specific gravity of 0.4 to 1.2 g / ml. Polyimide film comprising a secondary particle having pores having an average diameter, it comprises in an amount of 5 to 40% by weight based on the total weight of the film. 3. The polyimide film of claim 1, wherein the fluorine-based particle is a fluorine-based resin having a melting point of 200 ° C. or higher. 4. The method of claim 3, wherein the fluorine resin is selected from the group consisting of polytetrafluoroethylene (PTFE), perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). The polyimide film characterized by the above. 5. The polyimide film of claim 1 wherein the polyimide film has a low dielectric constant of 2.3 to 2.9 at 1 MHz. 6. A polyimide precursor, an imidization conversion liquid, and primary particles having an average particle diameter of 300 nm or less, and the primary particles having pores having an average diameter of 300 nm or less, having an average particle diameter of 10 or less and an average apparent specific gravity of 1.2 g / Fluorine system consisting of up to 2 ml of secondary particles The manufacturing method of the polyimide film of any one of Claims 1-5 which imides after mixing particle | grains.
PCT/KR2014/011634 2013-12-18 2014-12-01 Polyimide film and manufacturing method therefor WO2015093749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201480068818.5A CN106062049B (en) 2013-12-18 2014-12-01 Kapton and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0158268 2013-12-18
KR20130158268A KR101503332B1 (en) 2013-12-18 2013-12-18 Polyimide film and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2015093749A1 true WO2015093749A1 (en) 2015-06-25

Family

ID=53027802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011634 WO2015093749A1 (en) 2013-12-18 2014-12-01 Polyimide film and manufacturing method therefor

Country Status (4)

Country Link
KR (1) KR101503332B1 (en)
CN (1) CN106062049B (en)
TW (1) TWI661004B (en)
WO (1) WO2015093749A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101728100B1 (en) * 2015-01-21 2017-04-18 에스케이씨코오롱피아이 주식회사 Method for preparation of polyimide film using porous particles and polyimide film having low permittivity
KR20190025072A (en) * 2017-08-02 2019-03-11 에스케이씨코오롱피아이 주식회사 Method for preparation of polyimide film using fumed silica particles and polyimide film having low permittivity
US10941294B2 (en) 2017-12-05 2021-03-09 Industrial Technology Research Institute Resin composition
KR102069709B1 (en) * 2018-01-22 2020-01-23 에스케이씨코오롱피아이 주식회사 High Thermal Conductive Polyimide Film Comprising At Least Two Kinds of Fillers
KR102334124B1 (en) * 2019-11-22 2021-12-03 피아이첨단소재 주식회사 Low Dielectric Polyimide Composite Powder and Method for Preparing the Same
KR102441706B1 (en) 2020-11-12 2022-09-07 한국화학연구원 Low dielectric polyimide resin and its manufacturing method
KR102306950B1 (en) * 2021-02-05 2021-09-29 최유경 Polyimide film, method of manufacturing the same, and flexible printed circuit board
CN113248773B (en) * 2021-05-17 2022-07-08 上海瑞暨新材料科技有限公司 Polyimide porous membrane and preparation method thereof
EP4386041A1 (en) * 2021-08-13 2024-06-19 LG Electronics Inc. Composite polyimide substrate, composite polyimide composition, and printed circuit board using same
KR102550250B1 (en) * 2022-12-02 2023-06-30 (주)상아프론테크 Low dielectric film for high speed communication and Copper clad laminate containing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067072A (en) * 1995-11-09 1999-08-16 이노우에 노리유끼 METHOD FOR PREPARING POLYTETRIFLUOROETHYLENE FINE POWDER AND USE THEREOF
JP2005246793A (en) * 2004-03-04 2005-09-15 Nitto Denko Corp Method for producing shaped polyimide film
JP2006232996A (en) * 2005-02-24 2006-09-07 Toray Ind Inc Molding material of polyimide resin, molded product using the same and material recycling method for polyimide
JP2007030501A (en) * 2005-06-21 2007-02-08 Ist Corp Polyimide composite film and its manufacturing process
JP2010043134A (en) * 2008-08-08 2010-02-25 Nitto Denko Corp Polyimide tubular article and its preparation
KR20130027442A (en) * 2011-09-07 2013-03-15 주식회사 엘지화학 Flexible metal laminate containing fluoropolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1890838B (en) * 2003-12-08 2012-08-29 松下电器产业株式会社 Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
CA2616253C (en) * 2005-07-22 2012-04-17 Krosaki Harima Corporation Carbon-containing refractory, production method thereof, and pitch-containing refractory raw material
CN101831175A (en) * 2010-04-01 2010-09-15 辽宁科技大学 Colorless and transparent polyimide nano-composite material membrane and preparation method thereof
US9462688B2 (en) * 2011-09-07 2016-10-04 Lg Chem, Ltd. Flexible metal laminate containing fluoropolymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990067072A (en) * 1995-11-09 1999-08-16 이노우에 노리유끼 METHOD FOR PREPARING POLYTETRIFLUOROETHYLENE FINE POWDER AND USE THEREOF
JP2005246793A (en) * 2004-03-04 2005-09-15 Nitto Denko Corp Method for producing shaped polyimide film
JP2006232996A (en) * 2005-02-24 2006-09-07 Toray Ind Inc Molding material of polyimide resin, molded product using the same and material recycling method for polyimide
JP2007030501A (en) * 2005-06-21 2007-02-08 Ist Corp Polyimide composite film and its manufacturing process
JP2010043134A (en) * 2008-08-08 2010-02-25 Nitto Denko Corp Polyimide tubular article and its preparation
KR20130027442A (en) * 2011-09-07 2013-03-15 주식회사 엘지화학 Flexible metal laminate containing fluoropolymer

Also Published As

Publication number Publication date
TWI661004B (en) 2019-06-01
KR101503332B1 (en) 2015-03-18
CN106062049A (en) 2016-10-26
CN106062049B (en) 2019-05-03
TW201529729A (en) 2015-08-01

Similar Documents

Publication Publication Date Title
WO2015093749A1 (en) Polyimide film and manufacturing method therefor
JP6865687B2 (en) Method for manufacturing polyimide film using particles with pores and polyimide film with low dielectric constant
CN101168598B (en) Method for preparing ultra-thick polyimide film with high heat conductivity and low thermal expansion coefficient
JP5665846B2 (en) Thermally conductive polyimide film and thermal conductive laminate using the same
CN111295411B (en) Polyimide film with improved surface quality and method for preparing same
KR102317327B1 (en) Polyimide film and manufacturing method thereof
CN109689745B (en) High-heat-dissipation graphene-polyimide composite film with insulating property and preparation method thereof
JP7024225B2 (en) Polyimide laminated film and method for manufacturing polyimide laminated film
WO2022085619A1 (en) Non-thermoplastic polyimide film, multilayer polyimide film, and metal-clad laminated plate
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
CN114616269B (en) Polyimide film with low dielectric property and preparation method thereof
TW202235524A (en) Aqueous dispersion and method for producing same
JP7375193B2 (en) Highly elastic and highly heat-resistant polyimide film and its manufacturing method
JP2001294815A (en) Aqueous dispersion for forming low-dielectric constant insulation film, the resultant low-dielectric constant insulation film, and electronic component
JP5362752B2 (en) Polyamic acid composition, polyimide, polyimide film and method for producing them
WO2015122626A1 (en) Polyimide film
CN113501984B (en) Graphene in-situ modified polyimide film and preparation method thereof
JP2008106138A (en) Polyimide film and method for producing the same
JP2008251900A (en) Laminate used for flexible substrate and its manufacturing method
JP2004342541A (en) Low dielectric constant polyimide foam
JP2002284907A (en) Heat-resistant polymer film
KR101763873B1 (en) Flexible metal laminate
JP2022190407A (en) Polyimide porous membrane and method for producing the same
TW202300572A (en) Porous polyimide film
JP2006137868A (en) Polyimide film and flexible circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14873016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14873016

Country of ref document: EP

Kind code of ref document: A1