WO2015093610A1 - 印刷装置、印刷ヘッド、及び印刷方法 - Google Patents

印刷装置、印刷ヘッド、及び印刷方法 Download PDF

Info

Publication number
WO2015093610A1
WO2015093610A1 PCT/JP2014/083795 JP2014083795W WO2015093610A1 WO 2015093610 A1 WO2015093610 A1 WO 2015093610A1 JP 2014083795 W JP2014083795 W JP 2014083795W WO 2015093610 A1 WO2015093610 A1 WO 2015093610A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning direction
main scanning
nozzle
sub
nozzle rows
Prior art date
Application number
PCT/JP2014/083795
Other languages
English (en)
French (fr)
Inventor
大西 勝
Original Assignee
株式会社ミマキエンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミマキエンジニアリング filed Critical 株式会社ミマキエンジニアリング
Priority to EP14871426.4A priority Critical patent/EP3085535A4/en
Priority to US15/104,980 priority patent/US20160311220A1/en
Publication of WO2015093610A1 publication Critical patent/WO2015093610A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/145Arrangement thereof
    • B41J2/15Arrangement thereof for serial printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J19/00Character- or line-spacing mechanisms
    • B41J19/14Character- or line-spacing mechanisms with means for effecting line or character spacing in either direction
    • B41J19/142Character- or line-spacing mechanisms with means for effecting line or character spacing in either direction with a reciprocating print head printing in both directions across the paper width
    • B41J19/147Colour shift prevention

Definitions

  • the present invention relates to a printing apparatus, a print head, and a printing method.
  • Patent Document 1 discloses a configuration in which a favorable print result can be obtained without requiring high assembly accuracy of an inkjet head when printing is performed using a so-called line head.
  • serial printing is widely performed in which an inkjet head performs a main scanning operation (scanning operation) in a predetermined main scanning direction.
  • ink droplets ejected from nozzles fly in the atmosphere and reach a medium. For this reason, for example, when the ink droplets in flight are affected by the surrounding air current, the landing positions of the ink droplets may be shifted.
  • the ink jet head when printing is performed in the serial method, the ink jet head is configured to eject ink droplets while moving, so that ink droplets are ejected in a state where the air is flowing relative to the ink jet head.
  • a nozzle row in which a large number of nozzles are usually arranged in the sub-scanning direction orthogonal to the main scanning direction is formed.
  • ink droplets ejected from the nozzles of the inkjet head a change in the air flow accompanying the ejection operation also occurs. For this reason, the ink droplets ejected from the respective nozzles are also affected by the airflow generated by ejection of the ink droplets from the surrounding nozzles during the flight.
  • the central nozzle is sandwiched between other nozzles on both sides in the sub-scanning direction.
  • the nozzle at the end of the nozzle row there are other nozzles only on one side in the sub-scanning direction. Therefore, in the case of the nozzle at the end of the nozzle row, a difference tends to occur in the influence of the airflow received on one side and the other side in the sub-scanning direction. As a result, flying bends are likely to occur in the ink droplets ejected from the nozzles at the end of the nozzle row.
  • some of the nozzles near the end of the nozzle row are set as dummy nozzles that do not eject ink droplets, and the nozzles near the end of the nozzle row Regarding the area to be printed, it is also conceivable to perform printing a plurality of times by a plurality of main scanning operations or a plurality of inkjet heads.
  • this configuration for example, even when a deviation occurs in the landing positions of the ink droplets ejected from the nozzles at the end, the influence of the deviation can be averaged. Thereby, it is possible to suppress a decrease in printing quality.
  • An advantage of some aspects of the invention is that it provides a printing apparatus, a print head, and a printing method that can solve the above-described problems.
  • the present invention has the following configuration.
  • (Configuration 1) A printing apparatus that performs printing by an inkjet method, and ejects ink droplets while moving in a main scanning direction set in advance, and a head portion having a nozzle row in which a plurality of nozzles that eject ink droplets are arranged.
  • a main scanning drive unit that causes the head unit to perform a main scanning operation.
  • the head unit includes three or more nozzle rows in which a plurality of nozzles aligned in the main scanning direction are aligned in the sub-scanning direction orthogonal to the main scanning direction.
  • each nozzle row is arranged by shifting the positions of the adjacent nozzle rows in the main scanning direction and the ends in the sub scanning direction. Is done.
  • the number of nozzle rows is preferably 4 or more.
  • the position of the end of each nozzle row is shifted by an integral multiple of the resolution pitch of the final printed matter, for example, in the sub-scanning direction.
  • the final printed material is, for example, a printed material that has been printed by the printing apparatus.
  • the position of the end in the sub-scanning direction is, for example, the position of a predetermined one end in the sub-scanning direction.
  • Three or more nozzle rows are nozzle rows that eject ink droplets of the same color, for example.
  • the head unit includes, for example, an inkjet head having three or more nozzle rows.
  • the head unit may be a composite head composed of a plurality of inkjet heads, for example. In this case, each inkjet head has, for example, one or a plurality of nozzle rows.
  • ink droplets are ejected from the nozzles of a plurality of nozzle rows to an area through which the head portion passes in the medium. Therefore, if constituted in this way, for example, the discharge characteristics of a plurality of nozzle rows can be appropriately averaged.
  • the position of each nozzle row is shifted in the sub-scanning direction. Therefore, for example, the position in the sub-scanning direction of the nozzle at the end of one nozzle row is close to the nozzles other than the end, not the nozzle at the end in the adjacent nozzle row.
  • the landing positions of the ink droplets by the nozzles at the respective ends of the plurality of nozzle rows are shifted in the sub-scanning direction.
  • the landing positions of the ink droplets corresponding to the nozzles at the ends of the respective nozzle rows can be appropriately dispersed in the sub-scanning direction.
  • this makes it possible to appropriately average the influence of the deviation even when a deviation occurs in the landing positions of the ink droplets ejected from the nozzles at the end. Therefore, with this configuration, for example, even when a landing position of an ink droplet ejected from a nozzle at the end of a nozzle row is shifted, banding or the like can be appropriately prevented. Thereby, it is possible to appropriately suppress a decrease in printing quality.
  • the influence of the nozzles at the end of the nozzle row can be appropriately dispersed without setting some of the nozzles in the nozzle row as dummy nozzles. Therefore, with this configuration, for example, printing can be performed using nozzles in the nozzle row more efficiently.
  • the number of nozzle rows is preferably about 3 to 5 rows (for example, 4 rows).
  • a configuration using a plurality of nozzle rows arranged in the sub-scanning direction is a configuration that looks similar to the above configuration. For example, in order to perform printing at a higher resolution than the interval (pitch) in which nozzles are arranged in each nozzle row. In addition, a configuration in which two nozzle rows are used and the position of the nozzle in each nozzle row is shifted by a half pitch in the sub-scanning direction is also conceivable.
  • the positional deviation in the sub-scanning direction between the first row and the second row is as follows.
  • the positional deviation between the first row and the third row is larger. More specifically, this shift is a zigzag shift.
  • This zigzag shift may be a shift such as a zigzag, sine wave, or triangular wave.
  • the landing positions of the ink droplets corresponding to the nozzles at the ends of the nozzle rows can be more visually compared with a case where the positions are shifted so that the ends of the nozzle rows are aligned on a straight line.
  • each nozzle row In each nozzle row, the same number of nozzles are arranged in the sub-scanning direction, and three or more nozzle rows shift the positions of the end nozzles in each nozzle row in the sub-scanning direction, Arranged side by side in the main scanning direction.
  • the position of the nozzle at the end of each nozzle row can be appropriately shifted. Accordingly, for example, even when a landing position of ink droplets ejected from the nozzles at the end of the nozzle row is shifted, it is possible to more appropriately suppress a decrease in printing quality.
  • the head unit has four or more nozzle rows arranged in the main scanning direction. According to this configuration, for example, even when a deviation occurs in the landing positions of the ink droplets ejected from the nozzles at the end, the influence of the deviation can be more appropriately averaged. Thereby, it is possible to more appropriately suppress a decrease in printing quality.
  • the magnitude of the shift of the end position in the sub-scanning direction is larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function.
  • the size of the shift between the position of the end of each nozzle row in the sub-scanning direction and the position of the end of each other nozzle row in the sub-scanning direction is all Greater than the distance determined from the spatial frequency corresponding to the peak value of the visual transfer function. According to this configuration, for example, by sufficiently shifting the position of the nozzle at the end of each nozzle row, it is possible to appropriately prevent the influence of the nozzles at the end of the nozzle row from being perceived in an overlapping manner. Thereby, for example, it is possible to more appropriately suppress a decrease in printing quality.
  • each nozzle row a plurality of nozzles are arranged in the sub-scanning direction at a constant nozzle interval, and the position of each nozzle in the sub-scanning direction is the position in the other nozzle row.
  • the position of any nozzle is shifted from the position in the sub-scanning direction, and the printing apparatus performs printing with a resolution in the sub-scanning direction that is higher than the resolution corresponding to the nozzle interval in one nozzle row.
  • printing at a resolution higher than the nozzle interval can be appropriately performed. Thereby, for example, high quality printing can be performed more appropriately.
  • a print head that performs a main scanning operation for ejecting ink droplets while moving in a preset main scanning direction, and includes a plurality of nozzles that eject ink droplets A plurality of nozzle rows arranged in the main scanning direction and arranged in the sub-scanning direction orthogonal to the main scanning direction are provided, and three or more nozzle rows are arranged in the main scanning direction.
  • each nozzle row is arranged by shifting the position of the end in the sub-scanning direction from the nozzle row adjacent in the main scanning direction. If comprised in this way, the effect similar to the structure 1 can be acquired, for example.
  • a printing method for performing printing by an inkjet method using a head portion having a nozzle row in which a plurality of nozzles for ejecting ink droplets are arranged, and ejecting ink droplets while moving in a preset main scanning direction.
  • the head portion performs the main scanning operation, and the head portion has three or more nozzle rows in which a plurality of nozzles aligned in the main scanning direction are arranged in the sub-scanning direction orthogonal to the main scanning direction.
  • the nozzle rows are arranged side by side in the main scanning direction, and each nozzle row is arranged by shifting the position of the end in the sub scanning direction from the adjacent nozzle row in the main scanning direction. If comprised in this way, the effect similar to the structure 1 can be acquired, for example.
  • a printing apparatus that performs printing by an inkjet method, and ejects ink droplets while moving in a preset main scanning direction, with a head portion having a nozzle row in which a plurality of nozzles that eject ink droplets are arranged.
  • a main scanning drive unit that causes the head unit to perform a main scanning operation.
  • the head unit includes two or more nozzle rows in which a plurality of nozzles aligned in the main scanning direction are aligned in the sub-scanning direction orthogonal to the main scanning direction. Two or more nozzle rows are arranged side by side in the main scanning direction, and each nozzle row is arranged by shifting the positions of the adjacent nozzle rows in the main scanning direction and the end positions in the sub scanning direction. For the nozzle rows adjacent in the main scanning direction, the magnitude of the shift of the end position in the sub-scanning direction is larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function.
  • a print head that performs a main scanning operation of ejecting ink droplets while moving in a preset main scanning direction, and includes a plurality of nozzles that eject ink droplets
  • a plurality of nozzle rows arranged in the main scanning direction and arranged in the sub-scanning direction perpendicular to the main scanning direction are provided, and two or more nozzle rows are arranged in the main scanning direction.
  • each nozzle row is arranged by shifting the position of the end in the sub-scanning direction with respect to the nozzle row adjacent in the main scanning direction, and the nozzle row adjacent in the main scanning direction is arranged in the sub-scanning direction.
  • the magnitude of the shift of the end position is larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function. If comprised in this way, the effect similar to the structure 12 can be acquired, for example.
  • a printing method for performing printing by an ink jet method which uses a head portion having a nozzle row in which a plurality of nozzles for ejecting ink droplets are arranged, and ejects ink droplets while moving in a preset main scanning direction.
  • the head unit performs the main scanning operation, and the head unit has two or more nozzle rows in which a plurality of nozzles aligned in the main scanning direction are arranged in the sub-scanning direction orthogonal to the main scanning direction.
  • the nozzle rows are arranged side by side in the main scanning direction, and each nozzle row is arranged by shifting the position of the end in the sub scanning direction from the adjacent nozzle row in the main scanning direction.
  • the magnitude of the shift of the end position in the sub-scanning direction is larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function. If comprised in this way, the effect similar to the structure 12 can be acquired, for example.
  • FIG. 1 is a diagram illustrating an example of a printing apparatus 10 according to an embodiment of the present invention.
  • FIGS. 1A and 1B are a front view and a top view illustrating an example of a configuration of a main part of the printing apparatus 10. It is a figure explaining the inkjet head 150 used in this example.
  • FIG. 2A shows an example of the configuration of the inkjet head 150.
  • FIG. 2B is a graph showing the visual transfer function. It is a figure which shows an example of the mode of the inkjet head 150 at the time of main scanning operation
  • FIG. 5 is a diagram illustrating an example of a state of the inkjet head 150 during a main scanning operation when three nozzle rows 202-1 to 20-4 are used.
  • FIG. 5 is a diagram showing an example of how nozzles are arranged in nozzle rows 202-1 to 202-1.
  • FIG. 10 is a diagram illustrating another example of how the nozzles are arranged in the nozzle rows 202-1 to 202-1.
  • FIG. 6 is a diagram illustrating an example of how ink dots are formed on a medium when an inkjet head 150 having four nozzle rows 202-1 to 20-4 is used.
  • FIG. 7A shows an example of the configuration of the inkjet head 150.
  • FIG. 7B shows an example of the arrangement of ink dots formed on the medium.
  • FIG. 6 is a diagram illustrating an example of how ink dots are formed on a medium when an inkjet head 150 having three nozzle rows 202-1 to 20-3 is used.
  • FIG. 8A shows an example of the configuration of the inkjet head 150.
  • FIG. 8B shows an example of how the ink dots formed on the medium are arranged. It is a figure which shows the structure of the modification of the head part.
  • FIG. 9A shows an example of the configuration of a modified example of the head unit 12.
  • FIG. 9B shows an example of the configuration of a further modified example of the head unit 12.
  • FIG. 1 shows an example of a printing apparatus 10 according to an embodiment of the present invention.
  • FIGS. 1A and 1B are a front view and a top view illustrating an example of a configuration of a main part of the printing apparatus 10.
  • the printing apparatus 10 is an inkjet printer that performs printing by an inkjet method, and includes a head unit 12, a main scanning drive unit 14, a sub-scanning drive unit 16, a platen 18, and a control unit 20.
  • the head unit 12 is a part having a nozzle row in which a plurality of nozzles that eject ink droplets are arranged, and performs printing on the medium 50 by ejecting ink droplets onto the medium 50 to be printed.
  • the head unit 12 is configured by an inkjet head 150 in which nozzle rows are formed.
  • the head part 12 may be comprised by the some inkjet head 150, for example.
  • the head unit 12 when color printing is performed by the printing apparatus 10, the head unit 12 includes a plurality of inkjet heads 150 that eject ink droplets of different colors (for example, CMYK ink droplets). Moreover, you may have the some inkjet head 150 about the same color.
  • CMYK ink droplets for example, CMYK ink droplets
  • the main scanning drive unit 14 is configured to cause the head unit 12 to perform a main scanning operation of ejecting ink droplets while moving in a preset main scanning direction (Y direction in the drawing).
  • the main scanning drive unit 14 includes a carriage 102 and a guide rail 104.
  • the carriage 102 holds the head unit 12 in a state where the nozzle row faces the medium 50.
  • the guide rail 104 is a rail that guides the movement of the carriage 102 in the main scanning direction, and moves the carriage 102 in the main scanning direction in accordance with an instruction from the control unit 20.
  • the sub-scanning drive unit 16 is configured to cause the head unit 12 to perform a sub-scanning operation that moves relative to the medium 50 in the sub-scanning direction (X direction in the drawing) orthogonal to the main scanning direction.
  • the sub-scanning drive unit 16 is a roller that transports the medium 50, and causes the head unit 12 to perform a sub-scanning operation by transporting the medium 50 between main scanning operations.
  • the configuration of the printing apparatus 10 is, for example, a configuration in which the sub-scanning operation is performed by moving the head unit 12 side with respect to the medium 50 whose position is fixed without conveying the medium 50 (for example, X ⁇ It is also possible to use a Y table type machine.
  • the sub-scanning driving unit 16 for example, a driving unit that moves the head unit 12 by moving the guide rail 104 in the sub-scanning direction can be used.
  • the platen 18 is a table-like member on which the medium 50 is placed, and supports the medium 50 so as to face the head portion 12.
  • the control unit 20 is a CPU of the printing apparatus 10, for example, and controls the operation of each unit of the printing apparatus 10 according to an instruction from the host PC, for example. With the above configuration, the printing apparatus 10 performs printing on the medium 50.
  • the printing apparatus 10 may have the same or similar configuration as a known inkjet printer.
  • the printing apparatus 10 may further include a configuration for fixing the ink to the medium 50 according to the type of ink to be used. More specifically, for example, when an ink that is cured by irradiation with ultraviolet rays, such as an ultraviolet curable ink or a solvent UV ink, is used, the printing apparatus 10 may further include an ultraviolet light source (for example, a UVLED).
  • the printing apparatus 10 may further include a heater that heats the medium 50.
  • the head unit 12 when color printing is performed by the printing apparatus 10, the head unit 12 includes a plurality of inkjet heads 150 that eject ink droplets of different colors.
  • the positions in the sub-scanning direction (X direction) are aligned and arranged in the main scanning direction (Y direction).
  • the ink jet head 150 for each color ejects ink droplets to the same region of the medium 50 in each main scanning operation.
  • the inkjet heads 150 of the respective colors may be arranged with the positions in the sub-scanning direction shifted, for example. More specifically, for example, the inkjet heads 150 for each color may be arranged side by side in the sub-scanning direction so that the positions in the sub-scanning direction do not overlap. In this case, the ink jet head 150 for each color ejects ink droplets to different areas on the medium 50 in each main scanning operation. In addition, for the same region on the medium 50, ink droplets of respective colors are ejected in different main scanning operations with a sub-scanning operation interposed therebetween. Thereby, the inkjet head 150 of each color prints with respect to each area
  • FIG. 2 is a diagram illustrating the ink jet head 150 used in this example.
  • FIG. 2A shows an example of the configuration of the inkjet head 150.
  • the inkjet head 150 shown in FIG. 2A is an inkjet head for one color, and has a plurality of nozzle rows 202-1 to 20-4 that eject ink droplets of the same color.
  • the nozzle row direction in which the nozzles are arranged in each of the plurality of nozzle rows 202-1 to 20-4 is the sub-scanning direction (X direction). Therefore, in each of the plurality of nozzle arrays 202-1 to 202-1, a plurality of nozzles aligned in the main scanning direction (Y direction) are arranged in the sub-scanning direction.
  • each of the nozzle rows 202-1 to 202-1 the same number of nozzles are arranged in the sub-scanning direction.
  • the lengths of the nozzle rows 202-1 to 20-4 in the sub-scanning direction become the same constant length L determined according to the number of nozzles.
  • the nozzle rows 202-1 to 204-1 are arranged side by side in the main scanning direction by shifting the positions of the nozzles at the ends of the nozzle rows in the sub scanning direction.
  • the nozzle rows 202-1 to 202-1 to 4-4 are arranged side by side in the main scanning direction in a state where the positions of the ends in the sub scanning direction are shifted from the adjacent nozzle rows in the main scanning direction.
  • the way of shifting the positions of the ends of the nozzle rows 202-1 to 20-4 is a zigzag shape in which the position in the sub-scanning direction is alternately shifted back and forth for each nozzle row.
  • the deviation may be a deviation such as a jagged shape, a sine wave shape, or a triangular wave shape.
  • this misalignment is performed, for example, when any three nozzle rows arranged in the main scanning direction continuously from the nozzle rows 202-1 to 4 are selected.
  • the position of the end of the first row and the second row is determined for each nozzle row in the sub-scanning direction.
  • the shift is such that the shift is larger than the shift in position between the first row and the third row. Further, this relationship is valid not only when the first to third columns are selected along the direction from left to right in the figure but also when selected along the direction from right to left. More specifically, this relationship indicates, for example, the magnitude (absolute value) of the shift amount in the sub-scanning direction of the nozzle row position, as shown in the drawing, for each of the nozzle rows 202-1 to 20-4.
  • the magnitude of the shift amount is X12, X13, X23, X24, X34, X14, etc., X12> X13, X23> X24, X34> X24, X23> X13, etc. are established.
  • each of the plurality of nozzle arrays 202-1 to 202-1 to 4 repeatedly ejects ink droplets in a cycle of a constant cycle.
  • the nozzle array 202-1 at one end in the main scanning direction is adjacent to the area on the medium where the ink droplets are ejected by the nozzle array 202-4 at the other end. Ink droplets are discharged. Therefore, when considering such a cycle, it is considered that the nozzle row 202-1 and the nozzle row 202-4 are substantially adjacent to each other in the operation of the inkjet head 150. Therefore, considering this point, it is preferable to set the magnitude X14 of the deviation so that, for example, X14> X34, X14> X12, and the like are satisfied.
  • the printing apparatus 10 performs printing using, for example, all the nozzles in each of the nozzle rows 202-1 to 202-1.
  • Printing using all nozzles means, for example, using all nozzles as necessary according to the image to be printed without setting dummy nozzles that do not eject ink droplets.
  • the width in the sub-scanning direction of the area to be printed in one main scanning operation is set wider without narrowing the width as in the case of setting the dummy nozzle. be able to. Further, for example, it is possible to appropriately prevent banding and the like from occurring while preventing a decrease in printing speed. This also makes it possible to appropriately perform high quality printing.
  • the positions of the ends of the nozzle rows 202-1 to 204-1 are shifted in the sub-scanning direction. Therefore, for example, the positions of the nozzles at the end in each of the nozzle arrays 202-1 to 20-4 in the sub-scanning direction are close to the nozzles other than the end, not the nozzles at the end in the adjacent nozzle array. Further, the landing positions of the ink droplets by the nozzles at the respective ends of the nozzle rows 202-1 to 20-4 are shifted in the sub-scanning direction.
  • the dots adjacent to the dots formed by the nozzles at the ends of each of the nozzle rows 202-1 to 20-4 are the other nozzle rows. It is formed by nozzles other than the end at. Therefore, during the printing operation, the ink dots formed by the nozzles at the respective ends of the nozzle rows 202-1 to 20-4 are not aligned in the main scanning direction.
  • the landing positions of the ink droplets corresponding to the nozzles at the respective ends of the nozzle rows 202-1 to 20-4 can be appropriately dispersed in the sub-scanning direction.
  • this makes it possible to appropriately average the influence of the deviation even when a deviation occurs in the landing positions of the ink droplets ejected from the nozzles at the end. Therefore, according to this example, for example, even when the landing positions of ink droplets ejected from the nozzles at the ends of each of the nozzle arrays 202-1 to 20-4 are shifted, it is possible to appropriately suppress a decrease in print quality. Can do.
  • the first row, the second row, and the third row of nozzle rows that are three rows of nozzles that are continuously arranged along the main scanning direction are the first row and the third row.
  • the displacement of the end position in the sub-scanning direction from the two rows is larger than the displacement of the end positions of the first row and the third row. If comprised in this way, the position of the nozzle of the end in each nozzle row can be shifted appropriately, for example.
  • the landing positions of the ink droplets corresponding to the nozzles at the ends of the nozzle rows are appropriately dispersed in a state that is difficult to visually identify Can be made. Therefore, according to this example, for example, it is possible to more appropriately average the influence of deviation. Accordingly, for example, even when a landing position of ink droplets ejected from the nozzles at the end of the nozzle row is shifted, it is possible to more appropriately suppress a decrease in printing quality.
  • the magnitude of the deviation between adjacent nozzle rows is set in consideration of, for example, a visual transfer function.
  • the visual transfer function is a function that represents the sensitivity of human visual recognition to spatial frequencies.
  • FIG. 2 (b) is a graph showing the visual transfer function.
  • the visual transfer function (VTF: visual transfer) illustrated on page 173 of Inkjet (supervised by Masahiko Fujii), a digital print technology book edited by the Imaging Society of Japan. function).
  • the waveform of the visual transfer function has a sensitivity peak (maximum sensitivity value of the human eye indicated by the spatial frequency) at a predetermined spatial frequency position.
  • the magnitude of the shift of the end position in the sub-scanning direction is expressed as the peak value of the visual transfer function. It is larger than the distance obtained from the spatial frequency corresponding to.
  • the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function is a wavelength corresponding to the spatial frequency at which the sensitivity is peaked in the visual transfer function.
  • ink droplets are ejected from the plurality of nozzle arrays 202-1 to 20-4 arranged in the main scanning direction. Therefore, according to this example, by performing one main scanning operation, for example, ink droplets can be ejected in the same manner as performing four main scanning operations with only one nozzle row. Accordingly, for example, printing can be performed in the same manner as when the main scanning operation is performed by the number of passes corresponding to the number of nozzle rows by the multi-pass method by one main scanning operation.
  • a plurality of dots arranged in the main scanning direction can be shared by the plurality of nozzle rows 202-1 to 202-4.
  • the interval in the main scanning direction can be increased for the ink dots to be formed by one nozzle. Therefore, according to this example, even when the moving speed of the inkjet head 150 during the main scanning operation is increased, for example, ink dots can be appropriately formed by the nozzles of the nozzle rows 202-1 to 202-1. . This also makes it possible to perform higher-speed printing, for example.
  • FIG. 3 is a diagram showing an example of the state of the inkjet head 150 during the main scanning operation.
  • the state of the inkjet head 150 that sequentially moves in the main scanning direction while ejecting ink droplets is in one main scanning operation.
  • a part of the situation is equivalently shown by arranging a plurality of inkjet heads 150 side by side in the main scanning direction.
  • Each of the plurality of inkjet heads 150 in the figure indicates the position of the inkjet head 150 at a different timing during the main scanning operation, and the inkjet head 150 at a timing corresponding to each cycle of ejecting ink droplets at a constant cycle. Indicates the position.
  • a plurality of nozzle rows 202-1 to 20-4 in the inkjet head 150 are shown.
  • the ink jet head 150 sequentially moves to the right side in the figure at a constant speed. Therefore, the direction toward the right side in the figure can be considered as a time axis. That is, this drawing shows the positions of the nozzles that eject ink droplets in time series, and does not show only the actual spatial arrangement of the inkjet head 150. Further, for convenience of illustration, the specific arrangement of the nozzle rows 202-1 to 204-1 is partially different from the specific configuration shown in FIG. In addition, each of the nozzle arrays 202-1 to 20-4 is drawn with a different halftone pattern or the like so that it can be easily distinguished from each other.
  • the nozzle rows 202-1 to 20-4 are arranged by shifting the positions of the adjacent nozzle rows in the main scanning direction and the ends in the sub scanning direction.
  • each of the nozzle arrays 202-1 to 202-1-4 moves in the main scanning direction, and in each cycle of ejecting ink droplets, the nozzle arrays 202-1 to 20-4 shown side by side in the drawing. Ink droplets are ejected at each position.
  • each of the nozzle arrays 202-1 to 202-1 to 4 ejects ink droplets to an area of a certain length L by shifting the position of the end in the sub-scanning direction.
  • the nozzle row 202-1 at one end in the main scanning direction is the ink droplet from the nozzle row 202-4 at the other end in the main scanning direction.
  • Ink droplets are ejected to an area adjacent to the area where the ink is ejected.
  • the position at which the nozzle at the end of the nozzle row discharges ink droplets is shifted in each cycle according to the position of each of the nozzle rows 202-1 to 202-1.
  • the distance between the positions where the ink droplets are ejected by the nozzles at the ends of each of the nozzle arrays 202-1 to 20-4 is, for example, the distances indicated as B, C, and D in the drawing.
  • the nozzles at the end of one nozzle row are separated by a distance indicated by A in the drawing in the main scanning direction. Discharge.
  • the spatial frequency corresponding to the peak value of the visual transfer function for the distances indicated as B to D in the figure It is preferable to make it larger than the distance obtained from the above. If comprised in this way, it can prevent appropriately that the influence of the nozzle of the end of a some nozzle row perceives, for example. Thereby, for example, it is possible to more appropriately suppress a decrease in printing quality.
  • the distances B to D shown in the figure correspond to the distances of the ink dots actually formed on the medium.
  • the necessary conditions are defined by the positions of the nozzle rows 202-1 to 20-4 rather than the distance between the formed dots. Therefore, in this case, for example, the positions in the sub-scanning direction of the nozzles at the ends of the plurality of nozzle rows 202-1 to 20-4 in the inkjet head 150 are made larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function. It is possible. With this configuration, for example, the position of the end nozzle in each of the plurality of nozzle arrays 202-1 to 202-1 can be appropriately and sufficiently shifted.
  • the position of the end of each nozzle row in the sub-scanning direction and the position of the end of each other nozzle row in the sub-scanning direction As for the magnitude of the deviation, it is preferable that both be larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function.
  • the magnitude of the deviation from the end position in the sub-scanning direction between the nozzle rows is, for example, a distance of 200 ⁇ m or more. If constituted in this way, it is thought that the position of the nozzle of the end in each of a plurality of nozzle rows can be shifted appropriately and sufficiently.
  • each of the nozzle arrays 202-1 to 202-1 to 4 repeatedly ejects ink droplets at a constant cycle. Therefore, the ink dots formed by the nozzles at the ends of each of the nozzle arrays 202-1 to 20-4 are arranged in the main scanning direction at a constant interval as shown as the distance A in the drawing. In this case, it is preferable that the interval be larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function. In other words, the interval in the main scanning direction of the ink dots formed on the medium by each of the nozzle arrays 202-1 to 20-4 during the main scanning operation is made larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function. It is preferable.
  • FIG. 4 shows an example of the state of the ink jet head 150 during the main scanning operation in the case where three nozzle rows 202-1 to 20-3 are used.
  • the inkjet head 150 during the main scanning operation performs the same or similar operation as that described with reference to FIG. 3 except that the number of nozzle rows is different. Therefore, in this case as well, as in the case described with reference to FIG. 2, for example, the distances indicated as A to C in the figure are larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function. It is preferable to do. In practice, this distance may be, for example, 200 ⁇ m or more. Even in such a configuration, it is possible to appropriately prevent the influence of the nozzles at the ends of the respective nozzle rows from being perceived in an overlapping manner. Thereby, for example, it is possible to more appropriately suppress a decrease in printing quality.
  • the number of nozzle rows is, for example, more, for example, 5 or more. Furthermore, for example, if the position of each nozzle row is sufficiently shifted as described above, the number of nozzle rows in the inkjet head 150 may be set to two, for example. In these cases as well, for example, it is possible to more appropriately suppress, for example, a decrease in print quality by appropriately preventing the influence of the nozzles at the ends of each nozzle row from being perceived in an overlapping manner.
  • FIG. 5 is a diagram showing an example of how the nozzles are arranged in the nozzle arrays 202-1 to 202-1, and shows an example of how the nozzles are arranged in the inkjet head 150 described with reference to FIGS.
  • each of the nozzle rows 202-1 to 202-1 to 4 is composed of a plurality of nozzles 302 arranged in the sub-scanning direction at a constant nozzle interval. Further, in each of the nozzle rows 202-1 to 202-4, the position of each nozzle 302 in the sub-scanning direction is shifted from the position of any nozzle 302 in the other nozzle row in the sub-scanning direction. Also, with this configuration, the printing apparatus 10 (see FIG. 1) performs printing at a resolution higher than the resolution corresponding to the nozzle interval in one nozzle row in the sub-scanning direction.
  • the plurality of nozzles 302 are arranged in the sub-scanning direction at a constant interval d.
  • the position of the nozzle 302 in each of the nozzle arrays 202-1 to 20-4 is a position where the position in the sub-scanning direction is shifted by d / 4 with respect to the nozzle 302 of the adjacent nozzle array. More specifically, in this example, the positions of the nozzles 302 in each of the two adjacent nozzle rows correspond to the nozzles 302 on the left side in the drawing in the nozzle row on the right side in the drawing. The position of the nozzle 302 is shifted by d / 4 downward in the figure.
  • the corresponding nozzle is a nozzle having the closest position in the sub-scanning direction. Therefore, when all the nozzles 302 of the plurality of nozzle rows 202-1 to 20-4 are viewed together, the interval between the nozzles 302 in the sub-scanning direction is d / 4. Accordingly, the printing apparatus 10 performs printing at a resolution corresponding to the nozzle interval of d / 4 with respect to the resolution in the sub-scanning direction. In this way, in this example, printing is performed with a resolution higher than the nozzle interval d in one nozzle row. Therefore, according to this example, it is possible to perform printing with high quality more appropriately, for example.
  • FIG. 6 shows another example of how the nozzles are arranged in the nozzle arrays 202-1 to 202-1. Except as described below, the configuration denoted by the same reference numerals as in FIG. 5 in FIG. 6 has the same or similar features as the configuration in FIG.
  • each of the nozzle rows 202-1 to 204-1 shown in FIG. 6 a plurality of nozzles 302 are arranged in the sub-scanning direction at a constant interval d, similarly to the configuration shown in FIG.
  • the positional deviation of the nozzles 302 between two adjacent nozzle rows is different from the configuration shown in FIG. More specifically, in the configuration shown in FIG. 6, the magnitude of the position shift of the corresponding nozzle 302 between two adjacent nozzle rows is d / 2.
  • the positions of the corresponding nozzles 302 are aligned in the sub-scanning direction with respect to two nozzle rows with one nozzle row in between.
  • the printing apparatus 10 performs printing at a resolution corresponding to the nozzle interval of d / 2 with respect to the resolution in the sub-scanning direction.
  • the positional relationship of the nozzles 302 between the nozzle rows 202-1 to 20-4 can be other than the configuration shown in FIGS.
  • FIG. 7 shows an example of how the ink dots are formed on the medium when the inkjet head 150 having four nozzle rows 202-1 to 20-4 is used. Except as described below, the configuration denoted by the same reference numerals as in FIGS. 1 to 6 in FIG. 7 has the same or similar features as the configurations in FIGS.
  • FIG. 7A shows an example of the configuration of the inkjet head 150.
  • the inkjet head 150 has a plurality of nozzle arrays 202-1 to 202-1 to 20-4 arranged in such a manner that the positions of the ends in the sub-scanning direction are shifted from each other, as in the configuration described with reference to FIGS.
  • the plurality of nozzles 302 are arranged in the sub-scanning direction.
  • the position of each nozzle 302 in the sub-scanning direction is the sub-scan of any nozzle 302 in the other nozzle array.
  • FIG. 7B is a diagram showing an example of how the dots of ink formed on the medium are arranged.
  • the state of the ink jet head 150 during the main scanning operation and the nozzle arrays 202-1 to 20-4 are used on the medium.
  • the state of the inkjet head 150 during the main scanning operation is an equivalent state of the inkjet head 150 during the main scanning operation, for example, as in FIG.
  • FIG. 7B the positions of the ink dots formed on the medium by the respective nozzle rows 202-1 to 20-4 with respect to the squares corresponding to the pixels of the image drawn on the medium, Each is filled with a different pattern of shading.
  • the distances indicated as A to D in the figure are set larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function.
  • This distance may be, for example, a distance of 200 ⁇ m or more.
  • the resolution pitch in the sub-scanning direction of the entire inkjet head 150 is 1 ⁇ 4 of the nozzle interval in each nozzle row. Therefore, if configured in this way, for example, as in the case described with reference to FIG. 5 and the like, it is possible to appropriately perform printing at a resolution higher than the nozzle interval in one nozzle row. Thereby, for example, high quality printing can be performed more appropriately.
  • FIG. 8 shows an example of how the dots of ink formed on the medium are arranged when the inkjet head 150 having three nozzle rows 202-1 to 20-3 is used. Except as described below, the configuration denoted by the same reference numerals as in FIGS. 1 to 7 in FIG. 8 has the same or similar features as the configurations in FIGS.
  • FIG. 8A shows an example of the configuration of the inkjet head 150.
  • FIG. 8B is a diagram showing an example of how the dots of ink formed on the medium are arranged. Together with the state of the ink jet head 150 during the main scanning operation, each nozzle row 202-1 to 3 is used on the medium. An example of the positions of the ink dots formed in FIG.
  • the distances indicated as A to C in the figure are set larger than the distance obtained from the spatial frequency corresponding to the peak value of the visual transfer function.
  • This distance may be, for example, a distance of 200 ⁇ m or more.
  • the resolution pitch in the sub-scanning direction of the entire inkjet head 150 is 1/3 of the nozzle interval in each nozzle row. Therefore, in this case as well, for example, similarly to the case described with reference to FIGS. 5 and 7 and the like, it is possible to appropriately perform printing at a resolution higher than the nozzle interval in one nozzle row. Thereby, for example, high quality printing can be performed more appropriately.
  • FIG. 9 shows a configuration of a modified example of the head unit 12. Except as described below, the configuration denoted by the same reference numerals as those in FIGS. 1 to 8 in FIG. 9 has the same or similar features as the configurations in FIGS.
  • FIG. 9A shows an example of a configuration of a modified example of the head unit 12.
  • the ink jet head 150 for each color in the head unit 12 has a plurality of nozzle rows 202-1 to 202-4 similarly to the configuration shown in FIG. Further, the positions of the plurality of nozzle arrays 202-1 to 202-1 to 4 are shifted in a zigzag manner in the sub-scanning direction.
  • the shape of the nozzle surface on which the nozzle rows 202-1 to 20-4 are formed in the inkjet head 150 is one side in the sub-scanning direction in accordance with how the nozzle rows 202-1 to 20-4 are displaced.
  • the side and the other side are parallelograms inclined with respect to the main scanning direction.
  • the shape of the nozzle surface may be, for example, a diamond shape.
  • a plurality of nozzle rows 202-1 to 20-4 whose positions are shifted in the sub-scanning direction can be arranged more efficiently.
  • the quality of the printing is also improved. The decrease can be appropriately suppressed. Thereby, for example, high-quality printing can be appropriately performed.
  • one inkjet head 150 in which a plurality of nozzle arrays 202-1 to 20-4 are formed is mainly used as an inkjet head for one color (for example, any one of CMYK colors) in the head unit 12.
  • one color for example, any one of CMYK colors
  • a plurality of inkjet heads 150 may be used for one color.
  • FIG. 9B is a diagram illustrating an example of a configuration of a further modification of the head unit 12, and illustrates an example of a configuration in the case where a plurality of inkjet heads 150 are used for one color.
  • a composite head composed of a plurality of inkjet heads 150-1 to 150-4 arranged in the main scanning direction is used as an inkjet head for one color.
  • the plurality of ink jet heads 150-1 to 150-4 are ink jet heads having the same configuration, and are arranged side by side in the main scanning direction in a zigzag manner with their positions in the sub scanning direction shifted. Further, each of the plurality of inkjet heads 150-1 to 150-4 has a nozzle row 202-1 to 20-4 in which the same number of nozzles are arranged.
  • a plurality of nozzle rows 202-1 to 20-4 for the same color are arranged in the same manner as in the case shown in FIG. Therefore, also in this modification, for example, even when a landing position of ink droplets ejected from the nozzles at the end of the nozzle row is shifted, it is possible to appropriately suppress a decrease in printing quality. Thereby, for example, high-quality printing can be appropriately performed.
  • the nozzle rows of each inkjet head may be a plurality of rows. Even when configured in this manner, for example, high-quality printing can be appropriately performed as in the configurations described above.
  • the printing apparatus 10 may perform printing using a plurality of colors of ink.
  • the same or similar configuration as that described with reference to FIGS. 2 to 7 can be used for the inkjet head and the nozzle row that eject ink droplets of the respective colors.
  • the end position in the plurality of nozzle rows for the same color may be different for each color. More specifically, for example, for each color of CMYK ink, how to shift the end position in a plurality of nozzle rows for that color is different from how to shift the end position in a plurality of nozzle rows for other colors. It is possible to make them different. With this configuration, for example, even when a landing position of ink droplets ejected from the nozzles at the end of the nozzle row is shifted, it is possible to more appropriately suppress a decrease in printing quality. Further, for example, if necessary, the same or similar configuration as described with reference to FIGS. 2 to 7 may be used for only some colors.
  • the present invention can be suitably used for a printing apparatus, for example.
  • DESCRIPTION OF SYMBOLS 10 ... Printing apparatus, 12 ... Head part, 14 ... Main scanning drive part, 16 ... Sub-scanning drive part, 18 ... Platen, 20 ... Control part, 50 ... Medium , 102 ... carriage, 104 ... guide rail, 150 ... ink jet head, 202 ... nozzle row, 302 ... nozzle

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

 ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下を適切に抑えることを課題とする。 解決手段として、インクジェット方式で印刷を行う印刷装置(10)であって、インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部(12)と、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作をヘッド部(12)に行わせる主走査駆動部(14)とを備え、ヘッド部(12)は、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を3列以上有し、3列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設される。

Description

印刷装置、印刷ヘッド、及び印刷方法
 本発明は、印刷装置、印刷ヘッド、及び印刷方法に関する。
 従来、インクジェット方式で印刷を行うインクジェットプリンタが広く用いられている(例えば、特許文献1参照。)。特許文献1には、いわゆるラインヘッドを用いて印刷をする場合について、インクジェットヘッドの高い組み立て精度を要求することなく、好適な印字結果を得ることができるとする構成が開示されている。また、従来、インクジェットプリンタにより印刷を行う方法として、所定の主走査方向への主走査動作(スキャン動作)をインクジェットヘッドに行わせるシリアル方式での印刷が広く行われている。
特開2005-193654号公報
 インクジェットプリンタにおいて、ノズルから吐出されたインク滴は、大気中を飛翔して、媒体(メディア)へ到達する。そのため、例えば飛翔中のインク滴が周囲の気流の影響を受けると、インク滴の着弾位置にずれが生じる場合がある。
 また、特に、シリアル方式で印刷を行う場合、インクジェットヘッドが移動しつつインク滴を吐出する構成となるため、インクジェットヘッドに対して相対的に大気が流れている状態でインク滴を吐出することになる。更に、シリアル方式において用いるインクジェットヘッドには、通常、主走査方向と直交する副走査方向へ多数のノズルが並ぶノズル列が形成されている。また、インクジェットヘッドのノズルからインク滴を吐出した場合、吐出の動作に伴う気流の変化も生じる。そのため、それぞれのノズルから吐出されるインク滴は、飛翔中に、周囲のノズルからのインク滴の吐出により生じる気流の影響も受けることになる。
 また、ノズル列において、中央部のノズルは、副走査方向における両側を他のノズルに挟まれている。一方、ノズル列の端のノズルの場合、副走査方向における一方の側にしか他のノズルが存在しない。そのため、ノズル列の端のノズルの場合、副走査方向における一方側と他方側とで受ける気流の影響に差が生じやすい。また、その結果、ノズル列の端のノズルから吐出されたインク滴においては、飛翔曲がり等が生じやすくなる。
 また、シリアル方式で印刷を行う場合、通常、例えば媒体の搬送等を行う副走査動作を合間に挟んで繰り返し主走査動作を行う。そのため、ノズル列の端のノズルで印刷を行う箇所も、主走査動作の回数に応じて多くなる。また、その結果、シリアル方式で印刷を行うインクジェットプリンタにおいては、ノズル列の端のノズルから吐出するインク滴について、着弾位置のずれ等の影響が生じやすくなる場合がある。また、例えば高解像度での印刷を行う場合、この影響により、印刷の品質が低下する場合もある。具体的には、例えば、端のノズルから吐出されるインク滴の着弾位置のずれにより、バンディング等が生じ、印刷の品質が低下すること等が考えられる。
 ここで、このような問題点に対しては、例えば、ノズル列の端部近傍の一部のノズルについて、インク滴を吐出しないダミーノズルに設定し、かつ、ノズル列の端部近傍のノズルで印刷をすべき領域については、複数回の主走査動作や複数のインクジェットヘッドにより、複数回重ねて印刷を行うこと等も考えられる。このように構成すれば、例えば、端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、ずれの影響を平均化することができる。また、これにより、印刷の品質の低下を抑えることができる。
 しかし、このような構成を用いた場合、ノズル列中の一部のノズルをダミーノズルに設定することにより、各回の主走査動作で使用できるノズルの数が減少することになる。また、これにより、一回の主走査動作で印刷を行う領域の副走査方向における幅も狭くなる。そして、その結果、この場合、ダミーノズルを設定する範囲の幅に応じて、印刷速度が低下することになる。
 そのため、従来、印刷の品質の低下を抑える構成として、より適切な構成が望まれていた。そこで、本発明は、上記の課題を解決できる印刷装置、印刷ヘッド、及び印刷方法を提供することを目的とする。
 上記の課題を解決するために、本発明は、以下の構成を有する。
 (構成1)インクジェット方式で印刷を行う印刷装置であって、インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部と、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作をヘッド部に行わせる主走査駆動部とを備え、ヘッド部は、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を3列以上有し、3列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設される。ノズル列の列数は、好ましくは、4列以上である。また、それぞれのノズル列の端の位置は、例えば、副走査方向において、最終印刷物の解像度ピッチの整数倍だけずらされる。この場合、最終印刷物とは、例えば、印刷装置による印刷が完了した印刷物のことである。
 ノズル列について、副走査方向における端の位置とは、例えば、副走査方向における所定の一方側の端の位置である。3列以上のノズル列は、例えば、同一の色のインク滴を吐出するノズル列である。また、ヘッド部は、例えば、3列以上のノズル列を有するインクジェットヘッドを有する。ヘッド部は、例えば、複数のインクジェットヘッドにより構成される複合ヘッドであってもよい。この場合、それぞれのインクジェットヘッドは、例えば、一又は複数のノズル列を有する。
 このように構成した場合、例えば、各回の主走査動作において、媒体においてヘッド部が通過する領域に対し、複数のノズル列のノズルからインク滴を吐出することになる。そのため、このように構成すれば、例えば、複数のノズル列の吐出特性を適切に平均化することができる。また、この構成においては、それぞれのノズル列の位置が副走査方向においてずれている。そのため、例えば一のノズル列の端のノズルの副走査方向における位置は、隣のノズル列における端のノズルではなく、端以外のノズルに近くなる。また、その結果、複数のノズル列のそれぞれの端のノズルによるインク滴の着弾位置は、副走査方向にずれることになる。
 そのため、このように構成した場合、それぞれのノズル列の端のノズルに対応するインク滴の着弾位置を、副走査方向において適切に分散させることができる。また、これにより、例えば、端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、ずれの影響を適切に平均化することができる。そのため、このように構成すれば、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、バンディング等が生じることを適切に防ぐことができる。また、これにより、印刷の品質の低下を適切に抑えることができる。
 また、このように構成した場合、例えば、ノズル列中の一部のノズルをダミーノズルに設定することなく、ノズル列の端のノズルの影響を適切に分散させることができる。そのため、このように構成すれば、例えば、ノズル列中のノズルをより効率的に使用して印刷を行うこともできる。
 尚、ノズル列の数について、印刷の品質を高める観点では、列数を多くする方が好ましいとも言える。しかし、この場合、ヘッド部の構成が大きくなるという問題も生じる。そのため、実用上、ノズル列の列数は、3~5列程度(例えば4列)が好ましいと考えられる。
 また、副走査方向に並ぶ複数列のノズル列を用いる構成について、上記の構成と一見似ている構成として、例えば、各ノズル列においてノズルが並ぶ間隔(ピッチ)よりも高解像度の印刷を行うために、2列のノズル列を用い、かつ、各ノズル列におけるノズルの位置を副走査方向において半ピッチ分ずらす構成等も考えられる。しかし、このような構成のみでは、例えば、ノズル列の端の位置のずれ方が小さいため、いずれかのノズル列における端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合、ずれの影響を十分に平均化することは難しいと考えられる。これに対し、構成1のように構成すれば、例えば、ずれの影響をより適切に平均化することができる。
 (構成2)3列以上のノズル列から主走査方向に連続して並ぶいずれの3列のノズル列を選んだ場合にも、選んだ3列のノズル列について、主走査方向に沿って順番に第1列、第2列、第3列とした場合、それぞれのノズル列の副走査方向における端の位置について、第1列と第2列との位置のずれが、第1列と第3列との位置のずれよりも大きくなっている。
 この構成において、主走査方向に沿って連続して並ぶ第1列、第2列、及び第3列のノズル列について、第1列と第2列との副走査方向における位置のずれは、第1列と第3列との位置のずれよりも大きくなっている。このずれ方は、より具体的に、ジグザグ状のずれである。このジグザグ状のずれは、例えば、ギザ状、正弦波状、又は三角波状等のずれであってよい。このように構成すれば、例えば、それぞれのノズル列の端が直線上に揃うように位置をずらす場合等と比べ、ノズル列の端のノズルに対応するインク滴の着弾位置について、より視覚的に識別し難い状態で分散させることができる。また、これにより、ずれの影響をより適切に平均化することができる。また、これにより、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下をより適切に抑えることができる。
 (構成3)それぞれのノズル列において、同数の複数のノズルが副走査方向へ並んでおり、3列以上のノズル列は、それぞれのノズル列における端のノズルの副走査方向における位置をずらして、主走査方向へ並んで配設される。
 このように構成すれば、例えば、それぞれのノズル列における端のノズルの位置を、適切にずらすことができる。また、これにより、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下をより適切に抑えることができる。
 (構成4)ヘッド部は、主走査方向に並ぶ4列以上のノズル列を有する。このように構成すれば、例えば、端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、ずれの影響をより適切に平均化することができる。また、これにより、印刷の品質の低下をより適切に抑えることができる。
 (構成5)主走査方向において隣接するノズル列について、副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きい。このように構成すれば、例えば、隣接するノズル列の端のノズルの位置を十分にずらすことにより、隣接するノズル列の端のノズルの影響が重なって知覚されることをより適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 (構成6)3列以上のノズル列において、それぞれのノズル列の副走査方向における端の位置と、他のそれぞれのノズル列の副走査方向における端の位置とのずれの大きさは、いずれも、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きい。このように構成すれば、例えば、それぞれのノズル列の端のノズルの位置を十分にずらすことにより、ノズル列の端のノズルの影響が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 (構成7)主走査動作時にそれぞれのノズル列により媒体上に形成するインクのドットの主走査方向における間隔は、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きい。このように構成すれば、例えば、一のノズル列により媒体上に形成するドットの間隔を十分に大きくすることにより、端のノズルにより主走査方向へ並べて形成するドットの状態が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 (構成8)媒体に対して印刷を行う印刷動作時において、それぞれのノズル列における全てのノズルを使用して印刷を行う。このように構成すれば、例えば、一回の主走査動作で印刷を行う領域の副走査方向における幅について、ダミーノズルを設定する場合のように幅を狭くすることなく、より広い幅を設定することができる。また、これにより、例えば、印刷速度の低下を防ぎつつ、高い品質での印刷をより適切に行うことができる。
 (構成9)それぞれのノズル列において、複数のノズルは、一定のノズル間隔で副走査方向において並んでおり、それぞれのノズル列について、それぞれのノズルの副走査方向における位置は、他のノズル列におけるいずれのノズルの副走査方向における位置ともずれており、印刷装置は、副走査方向における解像度について、一のノズル列におけるノズル間隔に対応する解像度よりも高い解像度で印刷を行う。
 このように構成すれば、例えば、ノズル間隔よりも高い解像度での印刷を適切に行うことができる。また、これにより、例えば、高い品質での印刷をより適切に行うことができる。
 (構成10)インクジェット方式で印刷を行う印刷装置において、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を行う印刷ヘッドであって、インク滴を吐出するノズルが複数個並ぶノズル列であり、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を3列以上備え、3列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設される。このように構成すれば、例えば、構成1と同様の効果を得ることができる。
 (構成11)インクジェット方式で印刷を行う印刷方法であって、インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部を用い、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作をヘッド部に行わせ、ヘッド部は、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を3列以上有し、3列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設される。このように構成すれば、例えば、構成1と同様の効果を得ることができる。
 (構成12)インクジェット方式で印刷を行う印刷装置であって、インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部と、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作をヘッド部に行わせる主走査駆動部とを備え、ヘッド部は、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を2列以上有し、2列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設され、主走査方向において隣接するノズル列について、副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きい。
 このように構成した場合、例えば、隣接するノズル列の端の位置について、ずれの大きさを十分に大きくすることにより、隣接するノズル列の端のノズルの影響が重なって知覚されることをより適切に防ぐことができる。そのため、このように構成すれば、例えばノズル列の列数が2列の場合であっても、構成1と同様の効果を得ることができる。
 (構成13)インクジェット方式で印刷を行う印刷装置において、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を行う印刷ヘッドであって、インク滴を吐出するノズルが複数個並ぶノズル列であり、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を2列以上備え、2列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設され、主走査方向において隣接するノズル列について、副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きい。このように構成すれば、例えば、構成12と同様の効果を得ることができる。
 (構成14)インクジェット方式で印刷を行う印刷方法であって、インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部を用い、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作をヘッド部に行わせ、ヘッド部は、主走査方向における位置を揃えた複数のノズルが主走査方向と直交する副走査方向へ並ぶノズル列を2列以上有し、2列以上のノズル列は、主走査方向へ並んで配設され、かつ、それぞれのノズル列は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設され、主走査方向において隣接するノズル列について、副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きい。このように構成すれば、例えば、構成12と同様の効果を得ることができる。
 本発明によれば、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下を適切に抑えることができる。
本発明の一実施形態に係る印刷装置10の一例を示す図である。図1(a)、(b)は、印刷装置10の要部の構成の一例を示す正面図及び上面図である 本例において用いるインクジェットヘッド150について説明をする図である。図2(a)は、インクジェットヘッド150の構成の一例を示す。図2(b)は、視覚伝達関数を示すグラフである。 主走査動作時のインクジェットヘッド150の様子の一例を示す図である。 3列のノズル列202-1~4を用いる場合について、主走査動作時のインクジェットヘッド150の様子の一例を示す図である。 ノズル列202-1~4におけるノズルの並び方の一例を示す図である。 ノズル列202-1~4におけるノズルの並び方の他の例を示す図である。 4列のノズル列202-1~4を有するインクジェットヘッド150を用いる場合について、媒体上に形成されるインクのドットの並び方の一例を示す図である。図7(a)は、インクジェットヘッド150の構成の一例を示す。図7(b)は、媒体上に形成されるインクのドットの並び方の一例を示す。 3列のノズル列202-1~3を有するインクジェットヘッド150を用いる場合について、媒体上に形成されるインクのドットの並び方の一例を示す図である。図8(a)は、インクジェットヘッド150の構成の一例を示す。図8(b)は、媒体上に形成されるインクのドットの並び方の一例を示す。 ヘッド部12の変形例の構成を示す図である。図9(a)は、ヘッド部12の変形例の構成の一例を示す。図9(b)は、ヘッド部12の更なる変形例の構成の一例を示す。
 以下、本発明に係る実施形態を、図面を参照しながら説明する。図1は、本発明の一実施形態に係る印刷装置10の一例を示す。図1(a)、(b)は、印刷装置10の要部の構成の一例を示す正面図及び上面図である。本例において、印刷装置10は、インクジェット方式で印刷を行うインクジェットプリンタであり、ヘッド部12、主走査駆動部14、副走査駆動部16、プラテン18、及び制御部20を備える。
 ヘッド部12は、インク滴を吐出するノズルが複数個並ぶノズル列を有する部分であり、印刷対象の媒体(メディア)50へインク滴を吐出することにより、媒体50への印刷を行う。本例において、ヘッド部12は、ノズル列が形成されたインクジェットヘッド150により構成されている。
 尚、ヘッド部12は、例えば、複数のインクジェットヘッド150により構成されてよい。例えば、印刷装置10によりカラー印刷を行う場合、ヘッド部12は、それぞれ異なる色のインク滴(例えば、CMYKの各色のインク滴)を吐出する複数のインクジェットヘッド150を有する。また、同一色について、複数のインクジェットヘッド150を有してもよい。ヘッド部12及びインクジェットヘッド150の構成については、後に更に詳しく説明をする。
 主走査駆動部14は、予め設定された主走査方向(図中のY方向)へ移動しつつインク滴を吐出する主走査動作をヘッド部12に行わせる構成である。本例において、主走査駆動部14は、キャリッジ102及びガイドレール104を有する。キャリッジ102は、ノズル列と媒体50と対向させた状態でヘッド部12を保持する。ガイドレール104は、主走査方向へのキャリッジ102の移動をガイドするレールであり、制御部20の指示に応じて、主走査方向へキャリッジ102を移動させる。
 副走査駆動部16は、主走査方向と直交する副走査方向(図中のX方向)へ媒体50に対して相対的に移動する副走査動作をヘッド部12に行わせる構成である。本例において、副走査駆動部16は、媒体50を搬送するローラであり、主走査動作の合間に媒体50を搬送することにより、ヘッド部12に副走査動作を行わせる。
 尚、印刷装置10の構成としては、例えば、媒体50の搬送を行わずに、位置を固定した媒体50に対してヘッド部12の側を動かすことで副走査動作を行う構成(例えば、X-Yテーブル型機)を用いることも考えられる。この場合、副走査駆動部16としては、例えば、ガイドレール104を副走査方向へ移動させることでヘッド部12を移動させる駆動部等を用いることができる。
 プラテン18は、媒体50を載置する台状部材であり、ヘッド部12と対向させて媒体50を支持する。制御部20は、例えば印刷装置10のCPUであり、例えばホストPCの指示に応じて、印刷装置10の各部の動作を制御する。以上の構成により、印刷装置10は、媒体50に対し、印刷を行う。
 尚、上記及び以下において説明をする点以外について、印刷装置10は、公知のインクジェットプリンタと同一又は同様の構成を有してよい。例えば、印刷装置10は、使用するインクの種類に応じて、インクを媒体50に定着させるための構成を更に備えてよい。より具体的に、例えば、紫外線硬化型インクやソルベントUVインク等のように、紫外線の照射により硬化するインクを用いる場合、印刷装置10は、紫外線光源(例えばUVLED等)を更に備えてよい。また、溶媒を蒸発させることが必要なインク(例えばソルベントインク、ラテックスインク、ソルベントUVインク、水性インク等)を用いる場合、印刷装置10は、媒体50を加熱するヒータ等を更に備えてよい。
 続いて、ヘッド部12及びインクジェットヘッド150の構成について、更に詳しく説明をする。上記においても説明をしたように、印刷装置10によりカラー印刷を行う場合、ヘッド部12は、それぞれ異なる色のインク滴を吐出する複数のインクジェットヘッド150を有する。この場合、各色のインクジェットヘッド150の配置については、例えば、副走査方向(X方向)の位置を揃えて、主走査方向(Y方向)へ並べて配設すること等が考えられる。また、この場合、各回の主走査動作において、各色用のインクジェットヘッド150は、媒体50における同じ領域へインク滴を吐出する。
 また、各色のインクジェットヘッド150は、例えば、副走査方向における位置をずらして配設されてもよい。より具体的に、例えば、各色のインクジェットヘッド150は、副走査方向における位置が重ならないように、副走査方向へ並べて配設されてもよい。この場合、各回の主走査動作において、各色用のインクジェットヘッド150は、媒体50におけるそれぞれ異なる領域へインク滴を吐出する。また、媒体50における同じ領域に対しては、間に副走査動作を挟んだ異なる回の主走査動作において、それぞれの色のインク滴を吐出する。これにより、各色のインクジェットヘッド150は、媒体50の各領域に対し、色毎に順次印刷を行う色順次の方式により、印刷を行う。また、各色のインクジェットヘッド150は、上記以外の構成で配設されてもよい。
 続いて、各色のインクジェットヘッド150の構成について、更に詳しく説明をする。図2は、本例において用いるインクジェットヘッド150について説明をする図である。図2(a)は、インクジェットヘッド150の構成の一例を示す。
 図2(a)に示したインクジェットヘッド150は、1色用のインクジェットヘッドであり、同一色のインク滴を吐出する複数のノズル列202-1~4を有する。また、本例において、複数のノズル列202-1~4のそれぞれにおいてノズルが並ぶノズル列方向は、副走査方向(X方向)である。そのため、複数のノズル列202-1~4のそれぞれにおいては、主走査方向(Y方向)における位置を揃えた複数のノズルが副走査方向へ並んでいる。
 また、ノズル列202-1~4のそれぞれにおいては、同数のノズルが副走査方向へ並んでいる。これにより、ノズル列202-1~4のそれぞれの副走査方向における長さは、ノズルの数に応じて決まる一定の同じ長さLになる。また、本例において、ノズル列202-1~4は、それぞれのノズル列における端のノズルの副走査方向における位置をずらして、主走査方向へ並んで配設される。これにより、ノズル列202-1~4は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらした状態で、主走査方向へ並んで配設される。
 また、ノズル列202-1~4の端の位置のずれ方は、例えば、図に示すように、副走査方向の位置をノズル列毎に交互に前後へずらすジグザグ状である。このずれ方は、より具体的に、例えば、ギザ状、正弦波状、又は三角波状等のずれであってよい。また、本例において、このずれ方は、例えば、ノズル列202-1~4から主走査方向に連続して並ぶいずれの3列のノズル列を選んだ場合にも、選んだ3列のノズル列について、主走査方向に沿って順番に第1列、第2列、第3列とした場合、それぞれのノズル列の副走査方向における位置について、第1列と第2列との端の位置のずれが、第1列と第3列との位置のずれよりも大きくなっているようなずれ方である。また、この関係は、第1~3列について、例えば、図中の左から右へ向かう方向に沿って選んだ場合に限らず、右から左へ向かう方向に沿って選んだ場合にも成り立つ。また、より具体的に、この関係は、例えば、ノズル列の位置の副走査方向におけるずれ量の大きさ(絶対値)について、図中に示すように、ノズル列202-1~4のそれぞれの間のずれ量の大きさをX12、X13、X23、X24、X34、X14等とした場合、X12>X13、X23>X24、X34>X24、X23>X13等が成り立つことである。
 また、主走査動作時において、複数のノズル列202-1~4のそれぞれは、一定の周期のサイクルで、インク滴を繰り返し吐出する。そして、2回目以降のサイクルにおいて、主走査方向における一方の端にあるノズル列202-1は、他方の端にあるノズル列202-4によりインク滴が吐出された媒体上の領域と隣接する領域へインク滴を吐出する。そのため、このようなサイクルを考慮した場合、インクジェットヘッド150の動作上、ノズル列202-1とノズル列202-4とは、実質的に隣接しているとも考えられる。そのため、この点を考慮し、ずれの量の大きさX14についても、例えば、X14>X34、X14>X12等が成り立つように設定することが好ましい。
 以上の構成により、本例の印刷装置10(図1参照)では、例えば、印刷動作時における各回の主走査動作において、媒体50においてヘッド部が通過する領域に対し、複数のノズル列202-1~4のノズルからインク滴を吐出する。そのため、本例によれば、先ず、例えば、複数のノズル列の吐出特性を適切に平均化することができる。
 また、印刷動作時において、印刷装置10は、例えば、ノズル列202-1~4のそれぞれにおける全てのノズルを使用して印刷を行う。全てのノズルを使用して印刷を行うとは、例えば、インク滴を吐出しないダミーノズルを設定することなく、印刷する画像に合わせて、必要に応じて全てのノズルを使用することである。このように構成すれば、例えば、一回の主走査動作で印刷を行う領域の副走査方向における幅について、ダミーノズルを設定する場合のように幅を狭くすることなく、より広い幅を設定することができる。また、これにより、例えば、印刷速度の低下を防ぎつつ、バンディング等が生じることを適切に防ぐことができる。また、これにより、高い品質での印刷を適切に行うことができる。
 また、この構成において、ノズル列202-1~4のそれぞれの端の位置は、副走査方向においてずれている。そのため、例えばノズル列202-1~4のそれぞれにおける端のノズルの副走査方向における位置は、隣のノズル列における端のノズルではなく、端以外のノズルに近くなる。また、ノズル列202-1~4のそれぞれの端のノズルによるインク滴の着弾位置は、副走査方向にずれることになる。これにより、例えば、印刷動作時に主走査方向へ並べて形成されるインクのドットについて、例えばノズル列202-1~4のそれぞれにおける端のノズルにより形成されるドットの隣のドットは、他のノズル列における端以外のノズルにより形成されることになる。従って、印刷動作時において、ノズル列202-1~4のそれぞれの端のノズルにより形成されるインクのドットが主走査方向に並ぶことはない。
 そのため、本例においては、ノズル列202-1~4のそれぞれの端のノズルに対応するインク滴の着弾位置を、副走査方向において適切に分散させることができる。また、これにより、例えば、端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、ずれの影響を適切に平均化することができる。そのため、本例によれば、例えば、ノズル列202-1~4のそれぞれにおける端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下を適切に抑えることができる。
 また、上記のように、本例において、主走査方向に沿って連続して並ぶ3列のノズル列である第1列、第2列、及び第3列のノズル列について、第1列と第2列との副走査方向における端の位置のずれは、第1列と第3列との端の位置のずれよりも大きくなっている。このように構成すれば、例えば、それぞれのノズル列における端のノズルの位置を、適切にずらすことができる。また、それぞれのノズル列の端が直線上に揃うように位置をずらす場合等と比べ、ノズル列の端のノズルに対応するインク滴の着弾位置について、視覚的により識別し難い状態で適切に分散させることができる。そのため、本例によれば、例えば、ずれの影響をより適切に平均化することができる。また、これにより、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下をより適切に抑えることができる。
 また、本例において、隣接するノズル列間のずれの大きさは、例えば、視覚伝達関数を考慮して設定されている。視覚伝達関数とは、空間周波数に対する人間の視覚認識の感度を表す関数である。図2(b)は、視覚伝達関数を示すグラフであり、日本画像学会編の書籍であるデジタルプリント技術 インクジェット(藤井雅彦監修)の第173頁に図示されている視覚伝達関数(VTF:visual transfer function)を示す。
 グラフからわかるように、視覚伝達関数の波形は、所定の空間周波数の位置に感度のピーク(空間周波数で示した人間の目の感度最大値)を有する。そして、このような波形の視覚伝達関数に対応して、本例においては、主走査方向において隣接するノズル列について、副走査方向における端の位置のずれの大きさを、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きくしている。この場合、視覚伝達関数のピーク値に対応する空間周波数から求まる距離とは、視覚伝達関数において感度のピークとなる空間周波数に対応する波長である。
 このように構成すれば、例えば、隣接するノズル列の端のノズルの位置を十分にずらすことにより、隣接するノズル列の端のノズルの影響が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 また、上記のとおり、本例においては、各回の主走査動作において、主走査方向に並ぶ複数のノズル列202-1~4からインク滴を吐出する。そのため、本例によれば、例えば、1回の主走査動作を行うことにより、一のノズル列のみで4回の主走査動作を行うのと同様にインク滴を吐出することができる。また、これにより、例えば、1回の主走査動作により、マルチパス方式でノズル列の数分のパス数の主走査動作を行うのと同様の印刷を行うことができる。
 尚、このように、本例においては、1回の主走査動作により、マルチパス方式でノズル列の数分のパス数の主走査動作を行うのと同様の印刷を行うことができる。また、本例においても、更に、マルチパス方式での印刷を行ってもよい。例えば、4個のノズル列202-1~4を用いて、2回又は4回の印刷パスでの印刷を行うこと等も考えられる。このように構成すれば、例えば、一のノズル列のみで8回又は16回の主走査動作を行うのと同様にインク滴を吐出することができる。また、これにより、例えば、より高品質な印刷を適切に行うことができる。
 また、本例の場合、印刷すべき画像の各画素を構成するインクのドットについて、主走査方向に並ぶ複数のドットを複数のノズル列202-1~4で分担して形成することができる。そして、この場合、一のノズル列のみを用いる場合と比べ、一のノズルで形成すべきインクのドットについて、主走査方向における間隔を大きくすることができる。そのため、本例によれば、例えば主走査動作時のインクジェットヘッド150の移動速度をより高速にした場合にも、ノズル列202-1~4のそれぞれのノズルにより、インクのドットを適切に形成できる。また、これにより、例えば、より高速な印刷を行うこと等も可能になる。
 続いて、本例におけるノズル列202-1~4の構成と、視覚伝達関数のピーク値に対応する空間周波数との関係について、更に詳しく説明をする。上記においては、主に、インクジェットヘッド150におけるノズル列202-1~4の配置について説明をした。しかし、印刷物において、観察者が知覚するのは、ノズル列202-1~4そのものではなく、ノズル列202-1~4により行われた印刷の結果である。そこで、ノズル列202-1~4により行われた印刷の結果について、図面を用いて説明をする。
 図3は、主走査動作時のインクジェットヘッド150の様子の一例を示す図であり、インク滴を吐出しつつ主走査方向へ順次移動するインクジェットヘッド150の様子について、1回の主走査動作中の一部の様子を、主走査方向へ複数のインクジェットヘッド150を並べて図示することで等価的に示す。図中の複数のインクジェットヘッド150のそれぞれは、主走査動作中の異なるタイミングにおけるインクジェットヘッド150の位置を示しており、一定の周期でインク滴を吐出する各回のサイクルに対応するタイミングにおけるインクジェットヘッド150の位置を示す。また、複数のインクジェットヘッド150のそれぞれとして、より具体的に、インクジェットヘッド150における複数のノズル列202-1~4を示す。
 尚、図示した場合において、インクジェットヘッド150は、一定の速度で、図中の右側へ順次移動する。そのため、図中の右側へ向かう方向は、時間軸と考えることもできる。すなわち、この図は、インク滴を吐出するノズルの位置を時系列に並べたものであり、実際のインクジェットヘッド150の空間的な配置のみを示しているわけではない。また、図示の便宜上、ノズル列202-1~4の具体的な配置は、図2に示した具体的な構成と一部を異ならせている。また、ノズル列202-1~4のそれぞれについて、互いにを区別をしやすいように網掛け模様等を異ならせて描いている。
 図2等を用いて説明をしたように、本例のインクジェットヘッド150において、ノズル列202-1~4は、主走査方向において隣接するノズル列と副走査方向における端の位置をずらして配設されている。また、主走査動作において、ノズル列202-1~4のそれぞれは、主走査方向へ移動しつつ、インク滴を吐出する各回のサイクルにおいて、図中に並べて示したノズル列202-1~4のそれぞれの位置で、インク滴を吐出する。これにより、ノズル列202-1~4のそれぞれは、副走査方向における端の位置をずらして、一定の長さLの領域に対し、インク滴を吐出する。また、図から分かるように、2回目以降の各回の吐出のサイクルにおいて、主走査方向における一方の端のノズル列202-1は、主走査方向における他方の端のノズル列202-4がインク滴を吐出した領域の隣の領域に、インク滴を吐出する。
 そして、この場合、ノズル列202-1~4のそれぞれの位置に応じて、各回のサイクルでノズル列の端のノズルがインク滴を吐出する位置もずれる。これにより、例えば、ノズル列202-1~4のそれぞれにおける端のノズルでインク滴を吐出する位置間の距離は、例えば、図中にB、C、Dとして示す距離になる。また、連続する2回のサイクルのそれぞれにおいて、一のノズル列(例えば、ノズル列202-1)の端のノズルは、主走査方向において図中にAとして示した距離を開けて、インク滴を吐出する。
 ここで、本例におけるノズル列202-1~4の端の位置のずれ方について、印刷時の主走査動作の様子を等価的に示した図3の様子で表現した場合、印刷時に隣り合うノズル列の端部同士の距離の平均値が、1つ置いたノズル列の端部までの距離の平均値よりも小さい状態であるとも言える。このように構成すれば、例えば、ノズル列における端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、ずれの影響を適切に平均化することができる。また、これにより、印刷の品質の低下を適切に抑えることができる。
 また、ノズル列202-1~4の端の位置のずれ方について、より具体的には、例えば、図中にB~D等として示した距離について、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きくすることが好ましい。このように構成すれば、例えば、複数のノズル列の端のノズルの影響が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 ここで、図中に示した距離B~D等は、媒体上に実際に形成されるインクのドットの距離に対応している。しかし、例えばインクジェットヘッド150の設計においては、必要な条件について、形成されるドット間の距離ではなく、ノズル列202-1~4の位置により規定することがより好ましい。そのため、この場合、例えば、インクジェットヘッド150における複数のノズル列202-1~4の端のノズルの副走査方向における位置について、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きくすることが考えられる。このように構成すれば、例えば、複数のノズル列202-1~4のそれぞれにおける端のノズルの位置を適切かつ十分にずらすことができる。また、より具体的には、例えば、複数のノズル列202-1~4において、それぞれのノズル列の副走査方向における端の位置と、他のそれぞれのノズル列の副走査方向における端の位置とのずれの大きさについて、いずれも、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きくすることが好ましい。
 また、実用上、ノズル列間の副走査方向における端の位置とのずれの大きさは、例えば、200μm以上の距離にすることも考えれられる。このように構成すれば、複数のノズル列のそれぞれにおける端のノズルの位置を適切かつ十分にずらすことができると考えられる。
 また、上記においても説明をしたように、主走査動作時において、ノズル列202-1~4のそれぞれは、一定の周期で、繰り返しインク滴を吐出する。そのため、ノズル列202-1~4のそれぞれにおける端のノズルにより形成されるインクのドットは、図中に距離Aとして示すような一定の間隔で、主走査方向に並ぶことになる。そして、この場合、この間隔についても、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きくすることが好ましい。すなわち、主走査動作時にノズル列202-1~4のそれぞれにより媒体上に形成するインクのドットの主走査方向における間隔について、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きくすることが好ましい。
 このように構成すれば、例えば、一のノズル列により媒体上に形成するドットの間隔を十分に大きくすることにより、端のノズルにより主走査方向へ並べて形成するドットの状態が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 ここで、図2及び図3においては、4列のノズル列202-1~4を用いる場合について、ノズル列202-1~4の構成と、視覚伝達関数のピーク値に対応する空間周波数との関係を説明した。しかし、上記において説明をした関係は、ノズル列の本数が異なる場合にも、同一又は同様である。そこで、この点について、更に詳しく説明をする。
 図4は、3列のノズル列202-1~3を用いる場合について、主走査動作時のインクジェットヘッド150の様子の一例を示す。この場合、主走査動作時のインクジェットヘッド150は、ノズル列の本数が異なる以外は、図3を用いて説明した場合と同一又は同様の動作を行う。そのため、この場合も、図2を用いて説明をした場合と同様に、例えば、図中にA~Cとして示した距離等について、視覚伝達関数のピーク値に対応する空間周波数から求まる距離より大きくすることが好ましい。また、実用上、この距離は、例えば200μm以上としてもよい。このように構成した場合も、それぞれのノズル列における端のノズルの影響が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 また、ノズル列の本数は、例えば、更に多く、例えば5本以上であってもよい。更に、例えば、上記のようにそれぞれのノズル列の位置を十分にずらすのであれば、インクジェットヘッド150におけるノズル列の本数について、例えば2本にすることも考えられる。これらの場合も、それぞれのノズル列における端のノズルの影響が重なって知覚されることを適切に防ぐことにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 続いて、ノズル列202-1~4におけるノズルの並び方について、更に詳しく説明をする。図5は、ノズル列202-1~4におけるノズルの並び方の一例を示す図であり、図1~4を用いて説明をしたインクジェットヘッド150におけるノズルの並び方の一例を示す。
 本例において、ノズル列202-1~4のそれぞれは、一定のノズル間隔で副走査方向へ並ぶ複数のノズル302により構成される。また、ノズル列202-1~4のそれぞれにおいて、それぞれのノズル302の副走査方向における位置は、他のノズル列におけるいずれのノズル302の副走査方向における位置ともずれている。また、この構成により、印刷装置10(図1参照)は、副走査方向における解像度について、一のノズル列におけるノズル間隔に対応する解像度よりも高い解像度で印刷を行う。
 例えば、図5に示すように、ノズル列202-1~4のそれぞれにおいて、複数のノズル302は、一定の間隔dで、副走査方向へ並ぶ。また、ノズル列202-1~4のそれぞれにおけるノズル302の位置は、隣接するノズル列のノズル302に対して、副走査方向における位置がd/4ずれた位置にある。より具体的に、本例において、隣接する2個のノズル列のそれぞれにおけるノズル302の位置は、図中で左側にあるノズル列のノズル302に対し、図中で右側にあるノズル列における対応するノズル302の位置が、図中の下側へd/4ずれた構成になっている。この場合、対応するノズルとは、副走査方向における位置が最も近いノズルのことである。そのため、複数のノズル列202-1~4の全てのノズル302をまとめて見た場合、副走査方向におけるノズル302の間隔は、d/4になっている。また、これにより、印刷装置10は、副走査方向における解像度について、d/4のノズル間隔に対応する解像度で印刷を行う。このようにして、本例においては、一のノズル列におけるノズル間隔dよりも高い解像度での印刷を行う。そのため、本例によれば、例えば、高い品質での印刷をより適切に行うことができる。
 また、ノズル列202-1~4間のノズル302の位置関係は、上記以外の位置関係にすることもできる。図6は、ノズル列202-1~4におけるノズルの並び方の他の例を示す。尚、以下に説明をする点を除き、図6において図5と同じ符号を付した構成は、図5における構成と同一又は同様の特徴を有する。
 図6に示したノズル列202-1~4のそれぞれにおいても、複数のノズル302は、図5に示した構成と同様に、一定の間隔dで、副走査方向へ並ぶ。一方、隣接する2個のノズル列の間でのノズル302の位置のずれ方は、図5に示した構成とは異なる。より具体的に、図6に示した構成では、隣接する2個のノズル列の間で、対応するノズル302の位置のずれの大きさは、d/2になっている。また、間に一のノズル列を挟む2個のノズル列について、対応するノズル302の位置は、副走査方向において揃っている。そのため、複数のノズル列202-1~4の全てのノズル302をまとめて見た場合、副走査方向におけるノズル302の間隔は、d/2になっている。また、これにより、印刷装置10は、副走査方向における解像度について、d/2のノズル間隔に対応する解像度で印刷を行う。
 このように構成した場合も、例えば、一のノズル列におけるノズル間隔よりも高い解像度での印刷を適切に行うことができる。また、これにより、例えば、高い品質での印刷をより適切に行うことができる。
 尚、ノズル列202-1~4間のノズル302の位置関係は、図5、6等に示した構成以外の位置関係にすることもできる。例えば、複数のノズル列202-1~4の全てについて、対応するノズル302の位置を副走査方向において揃えること等も考えられる。このように構成した場合も、例えば、図2等に関連して説明をしたように、高い品質での印刷を適切に行うことができる。
 ここで、図5等を用いて説明をしたノズルの並び方に関連して、媒体上に形成されるインクのドットの並び方について、更に詳しく説明をする。図7は、4列のノズル列202-1~4を有するインクジェットヘッド150を用いる場合について、媒体上に形成されるインクのドットの並び方の一例を示す。尚、以下に説明をする点を除き、図7において図1~6と同じ符号を付した構成は、図1~6における構成と同一又は同様の特徴を有する。
 図7(a)は、インクジェットヘッド150の構成の一例を示す。この構成において、インクジェットヘッド150は、図2及び図5等を用いて説明をした構成と同様に、副走査方向における端の位置を互いにずらして配設された複数のノズル列202-1~4を有する。また、複数のノズル列202-1~4においては、副走査方向へ複数のノズル302が並んでいる。また、図5を用いて説明をした構成と同様に、ノズル列202-1~4のそれぞれにおいて、それぞれのノズル302の副走査方向における位置は、他のノズル列におけるいずれのノズル302の副走査方向における位置ともずれている。より具体的に、この構成において、例えば、ノズル列202-1~4のそれぞれにおけるノズルの並びの間隔をdとした場合、ノズル列202-1~4のそれぞれにおけるノズル302の位置は、隣接するノズル列のノズル302に対して、副走査方向における位置がd/4ずれた位置にある。
 図7(b)は、媒体上に形成されるインクのドットの並び方の一例を示す図であり、主走査動作時のインクジェットヘッド150の様子と共に、それぞれのノズル列202-1~4により媒体上に形成されるインクのドットの位置の一例を示す。この場合、主走査動作時のインクジェットヘッド150の様子とは、例えば図3等と同様に、主走査動作時のインクジェットヘッド150を等価的に示した様子である。また、図7(b)においては、媒体上に描かれる画像の各画素に対応するマス目に対し、それぞれのノズル列202-1~4により媒体上に形成されるインクのドットの位置を、それぞれ異なるパターンの網掛けで塗りつぶしている。
 また、この構成においても、図中にA~D等として示した距離は、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きく設定されている。この距離は、例えば200μm以上の距離であってよい。このように構成すれば、ノズル列202-1~4のそれぞれにおける端のノズルにより形成されるドットの状態が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 また、この場合、図から明らかなように、インクジェットヘッド150の全体での副走査方向における解像度のピッチは、各ノズル列におけるノズルの間隔の1/4になる。そのため、このように構成すれば、例えば、図5等を用いて説明をした場合と同様に、一のノズル列におけるノズル間隔よりも高い解像度での印刷を適切に行うことができる。また、これにより、例えば、高い品質での印刷をより適切に行うことができる。
 また、このような高い解像度の印刷は、ノズル列の数を4以外にした場合にも可能である。図8は、3列のノズル列202-1~3を有するインクジェットヘッド150を用いる場合について、媒体上に形成されるインクのドットの並び方の一例を示す。尚、以下に説明をする点を除き、図8において図1~7と同じ符号を付した構成は、図1~7における構成と同一又は同様の特徴を有する。
 図8(a)は、インクジェットヘッド150の構成の一例を示す。図8(b)は、媒体上に形成されるインクのドットの並び方の一例を示す図であり、主走査動作時のインクジェットヘッド150の様子と共に、それぞれのノズル列202-1~3により媒体上に形成されるインクのドットの位置の一例を示す。
 この構成においても、図中にA~C等として示した距離は、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きく設定されている。この距離は、例えば200μm以上の距離であってよい。このように構成すれば、ノズル列202-1~3のそれぞれにおける端のノズルにより形成されるドットの状態が重なって知覚されることを適切に防ぐことができる。また、これにより、例えば、印刷の品質の低下をより適切に抑えることができる。
 また、この場合、図から明らかなように、インクジェットヘッド150の全体での副走査方向における解像度のピッチは、各ノズル列におけるノズルの間隔の1/3になる。そのため、この場合も、例えば、図5及び図7等を用いて説明をした場合と同様に、一のノズル列におけるノズル間隔よりも高い解像度での印刷を適切に行うことができる。また、これにより、例えば、高い品質での印刷をより適切に行うことができる。
 続いて、ヘッド部12(図1参照)の構成について、変形例を説明する。図9は、ヘッド部12の変形例の構成を示す。尚、以下に説明をする点を除き、図9において図1~8と同じ符号を付した構成は、図1~8における構成と同一又は同様の特徴を有する。
 図9(a)は、ヘッド部12の変形例の構成の一例を示す。本変形例において、ヘッド部12における各色用のインクジェットヘッド150は、図2等を用いて示した構成と同様に、複数のノズル列202-1~4を有する。また、複数のノズル列202-1~4のそれぞれの位置は、副走査方向へジグザグ状にずれている。
 また、本変形例において、インクジェットヘッド150におけるノズル列202-1~4が形成されているノズル面の形状は、ノズル列202-1~4の位置のずれ方に合わせて、副走査方向における一方側及び他方側が主走査方向に対して傾いた平行四辺形状になっている。ノズル面の形状は、例えば菱形状であってもよい。
 このように構成すれば、例えば、副走査方向に位置をずらした複数のノズル列202-1~4を、より効率的に配置できる。また、この場合も、図1~6を用いて説明をした構成等と同様に、例えばノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下を適切に抑えることができる。また、これにより、例えば、高い品質での印刷を適切に行うことができる。
 続いて、ヘッド部12の更なる変形例について、説明をする。以上においては、主に、ヘッド部12における一の色用(例えば、CMYKの各色のいずれか)のインクジェットヘッドとして、複数のノズル列202-1~4が形成された一のインクジェットヘッド150を用いる場合の構成について説明をした。しかし、ヘッド部12において、一の色用に複数のインクジェットヘッド150を用いてもよい。
 図9(b)は、ヘッド部12の更なる変形例の構成の一例を示す図であり、一の色用に複数のインクジェットヘッド150を用いる場合の構成の一例を示す。図に示すように、本変形例のヘッド部12においては、一の色用のインクジェットヘッドとして、主走査方向に並ぶ複数のインクジェットヘッド150-1~4から構成される複合ヘッドを用いる。複数のインクジェットヘッド150-1~4は、同一の構成のインクジェットヘッドであり、ジグザグ状に副走査方向の位置をずらして、主走査方向に並べて配設される。また、複数のインクジェットヘッド150-1~4のそれぞれは、同じ数のノズルが並ぶノズル列202-1~4のそれぞれを有する。
 このような構成においても、ヘッド部12において、同一の色用の複数のノズル列202-1~4が、図2等に示した場合と同様に並ぶ。そのため、本変形例においても、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下を適切に抑えることができる。また、これにより、例えば、高い品質での印刷を適切に行うことができる。
 尚、一の色用のインクジェットヘッドとして、複数のインクジェットヘッドを用いる場合においても、それぞれのインクジェットヘッドが有するノズル列を、複数列にしてもよい。このように構成した場合も、上記において説明をした各構成と同様に、例えば、高い品質での印刷を適切に行うことができる。
 また、上記においては、ヘッド部12の構成に関し、主に、1色のインク滴を吐出する部分について説明をした。しかし、印刷装置10(図1参照)においては、複数の色のインクを用いて印刷を行ってもよい。この場合、例えば、それぞれの色のインク滴を吐出するインクジェットヘッドやノズル列について、図2~7を用いて説明をした構成と同一又は同様の構成を用いることができる。
 また、この場合、同一色用の複数のノズル列における端の位置のずれ方について、色毎に異ならせてもよい。より具体的には、例えば、CMYKインクの各色について、その色用の複数のノズル列における端の位置のずれ方を、他のそれぞれの色用の複数のノズル列における端の位置のずれ方と異ならせること等が考えられる。このように構成すれば、例えば、ノズル列の端のノズルから吐出されるインク滴の着弾位置にずれが生じた場合も、印刷の品質の低下をより適切に抑えることができる。また、例えば、必要に応じて、一部の色についてのみ、図2~7を用いて説明をした構成と同一又は同様の構成を用いてもよい。
 以上、本発明を実施形態を用いて説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
 本発明は、例えば印刷装置に好適に用いることができる。
10・・・印刷装置、12・・・ヘッド部、14・・・主走査駆動部、16・・・副走査駆動部、18・・・プラテン、20・・・制御部、50・・・媒体、102・・・キャリッジ、104・・・ガイドレール、150・・・インクジェットヘッド、202・・・ノズル列、302・・・ノズル

Claims (14)

  1.  インクジェット方式で印刷を行う印刷装置であって、
     インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部と、
     予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を前記ヘッド部に行わせる主走査駆動部と
    を備え、
     前記ヘッド部は、前記主走査方向における位置を揃えた複数の前記ノズルが前記主走査方向と直交する副走査方向へ並ぶ前記ノズル列を3列以上有し、
     前記3列以上の前記ノズル列は、前記主走査方向へ並んで配設され、かつ、それぞれの前記ノズル列は、前記主走査方向において隣接する前記ノズル列と前記副走査方向における端の位置をずらして配設されることを特徴とする印刷装置。
  2.  前記3列以上の前記ノズル列から前記主走査方向に連続して並ぶいずれの3列のノズル列を選んだ場合にも、選んだ前記3列のノズル列について、前記主走査方向に沿って順番に第1列、第2列、第3列とした場合、それぞれの前記ノズル列の前記副走査方向における端の位置について、前記第1列と前記第2列との位置のずれが、前記第1列と前記第3列との位置のずれよりも大きくなっていることを特徴とする請求項1に記載の印刷装置。
  3.  それぞれの前記ノズル列において、同数の複数の前記ノズルが前記副走査方向へ並んでおり、
     前記3列以上のノズル列は、それぞれの前記ノズル列における端の前記ノズルの前記副走査方向における位置をずらして前記主走査方向へ並んで配設されることを特徴とする請求項1に記載の印刷装置。
  4.  前記ヘッド部は、前記主走査方向に並ぶ4列以上の前記ノズル列を有することを特徴とする請求項1に記載の印刷装置。
  5.  前記主走査方向において隣接する前記ノズル列について、前記副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きいことを特徴とする請求項1から4のいずれかに記載の印刷装置。
  6.  前記3列以上のノズル列において、それぞれの前記ノズル列の前記副走査方向における端の位置と、他のそれぞれの前記ノズル列の前記副走査方向における端の位置とのずれの大きさは、いずれも、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きいことを特徴とする請求項5に記載の印刷装置。
  7.  前記主走査動作時にそれぞれの前記ノズル列により媒体上に形成するインクのドットの前記主走査方向における間隔は、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きいことを特徴とする請求項1から4のいずれかに記載の印刷装置。
  8.  媒体に対して印刷を行う印刷動作時において、それぞれの前記ノズル列における全ての前記ノズルを使用して印刷を行うことを特徴とする請求項1から4のいずれかに記載の印刷装置。
  9.  それぞれの前記ノズル列において、複数の前記ノズルは、一定のノズル間隔で前記副走査方向において並んでおり、
     それぞれの前記ノズル列について、それぞれの前記ノズルの前記副走査方向における位置は、他の前記ノズル列におけるいずれの前記ノズルの前記副走査方向における位置ともずれており、
     前記印刷装置は、前記副走査方向における解像度について、一の前記ノズル列における前記ノズル間隔に対応する解像度よりも高い解像度で印刷を行うことを特徴とする請求項1から4のいずれかに記載の印刷装置。
  10.  インクジェット方式で印刷を行う印刷装置において、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を行う印刷ヘッドであって、
     インク滴を吐出するノズルが複数個並ぶノズル列であり、前記主走査方向における位置を揃えた複数の前記ノズルが前記主走査方向と直交する副走査方向へ並ぶ前記ノズル列を3列以上備え、
     前記3列以上の前記ノズル列は、前記主走査方向へ並んで配設され、かつ、それぞれの前記ノズル列は、前記主走査方向において隣接する前記ノズル列と前記副走査方向における端の位置をずらして配設されることを特徴とする印刷ヘッド。
  11.  インクジェット方式で印刷を行う印刷方法であって、
     インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部を用い、
     予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を前記ヘッド部に行わせ、
     前記ヘッド部は、前記主走査方向における位置を揃えた複数の前記ノズルが前記主走査方向と直交する副走査方向へ並ぶ前記ノズル列を3列以上有し、
     前記3列以上の前記ノズル列は、前記主走査方向へ並んで配設され、かつ、それぞれの前記ノズル列は、前記主走査方向において隣接する前記ノズル列と前記副走査方向における端の位置をずらして配設されることを特徴とする印刷方法。
  12.  インクジェット方式で印刷を行う印刷装置であって、
     インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部と、
     予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を前記ヘッド部に行わせる主走査駆動部と
    を備え、
     前記ヘッド部は、前記主走査方向における位置を揃えた複数の前記ノズルが前記主走査方向と直交する副走査方向へ並ぶ前記ノズル列を2列以上有し、
     前記2列以上の前記ノズル列は、前記主走査方向へ並んで配設され、かつ、それぞれの前記ノズル列は、前記主走査方向において隣接する前記ノズル列と前記副走査方向における端の位置をずらして配設され、
     前記主走査方向において隣接する前記ノズル列について、前記副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きいことを特徴とする印刷装置。
  13.  インクジェット方式で印刷を行う印刷装置において、予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を行う印刷ヘッドであって、
     インク滴を吐出するノズルが複数個並ぶノズル列であり、前記主走査方向における位置を揃えた複数の前記ノズルが前記主走査方向と直交する副走査方向へ並ぶ前記ノズル列を2列以上備え、
     前記2列以上の前記ノズル列は、前記主走査方向へ並んで配設され、かつ、それぞれの前記ノズル列は、前記主走査方向において隣接する前記ノズル列と前記副走査方向における端の位置をずらして配設され、
     前記主走査方向において隣接する前記ノズル列について、前記副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きいことを特徴とする印刷ヘッド。
  14.  インクジェット方式で印刷を行う印刷方法であって、
     インク滴を吐出するノズルが複数個並ぶノズル列を有するヘッド部を用い、
     予め設定された主走査方向へ移動しつつインク滴を吐出する主走査動作を前記ヘッド部に行わせ、
     前記ヘッド部は、前記主走査方向における位置を揃えた複数の前記ノズルが前記主走査方向と直交する副走査方向へ並ぶ前記ノズル列を2列以上有し、
     前記2列以上の前記ノズル列は、前記主走査方向へ並んで配設され、かつ、それぞれの前記ノズル列は、前記主走査方向において隣接する前記ノズル列と前記副走査方向における端の位置をずらして配設され、
     前記主走査方向において隣接する前記ノズル列について、前記副走査方向における端の位置のずれの大きさは、視覚伝達関数のピーク値に対応する空間周波数から求まる距離よりも大きいことを特徴とする印刷方法。
PCT/JP2014/083795 2013-12-20 2014-12-19 印刷装置、印刷ヘッド、及び印刷方法 WO2015093610A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14871426.4A EP3085535A4 (en) 2013-12-20 2014-12-19 Printing apparatus, print head, and printing method
US15/104,980 US20160311220A1 (en) 2013-12-20 2014-12-19 Printing apparatus, print head, and printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-263697 2013-12-20
JP2013263697A JP6356417B2 (ja) 2013-12-20 2013-12-20 印刷装置、印刷ヘッド、及び印刷方法

Publications (1)

Publication Number Publication Date
WO2015093610A1 true WO2015093610A1 (ja) 2015-06-25

Family

ID=53402948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083795 WO2015093610A1 (ja) 2013-12-20 2014-12-19 印刷装置、印刷ヘッド、及び印刷方法

Country Status (4)

Country Link
US (1) US20160311220A1 (ja)
EP (1) EP3085535A4 (ja)
JP (1) JP6356417B2 (ja)
WO (1) WO2015093610A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193654A (ja) 2003-12-09 2005-07-21 Brother Ind Ltd インクジェットヘッド及びインクジェットヘッドのノズルプレート
JP2009149010A (ja) * 2007-12-21 2009-07-09 Seiko Epson Corp 液体噴射ヘッドおよびプリンタ
JP2010201826A (ja) * 2009-03-04 2010-09-16 Ricoh Co Ltd 画像形成装置
JP2013256075A (ja) * 2012-06-13 2013-12-26 Fujifilm Corp インクジェット記録装置及びその制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6513905B2 (en) * 2000-03-31 2003-02-04 Encad, Inc. Nozzle cross talk reduction in an ink jet printer
JP4619611B2 (ja) * 2002-07-04 2011-01-26 セイコーエプソン株式会社 逆順に配列された2組のノズル群セットを利用した双方向印刷
JP2004223912A (ja) * 2003-01-23 2004-08-12 Seiko Epson Corp インクジェットヘッドのインク吸引方法および吸引装置、並びにインクジェットプリンタ
EP1541354B1 (en) * 2003-12-09 2008-11-26 Brother Kogyo Kabushiki Kaisha Inkjet head and nozzle plate of inkjet head
JP5824919B2 (ja) * 2011-07-05 2015-12-02 セイコーエプソン株式会社 流体噴射装置、及び、流体噴射方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005193654A (ja) 2003-12-09 2005-07-21 Brother Ind Ltd インクジェットヘッド及びインクジェットヘッドのノズルプレート
JP2009149010A (ja) * 2007-12-21 2009-07-09 Seiko Epson Corp 液体噴射ヘッドおよびプリンタ
JP2010201826A (ja) * 2009-03-04 2010-09-16 Ricoh Co Ltd 画像形成装置
JP2013256075A (ja) * 2012-06-13 2013-12-26 Fujifilm Corp インクジェット記録装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3085535A4

Also Published As

Publication number Publication date
US20160311220A1 (en) 2016-10-27
EP3085535A4 (en) 2017-01-25
EP3085535A1 (en) 2016-10-26
JP2015120246A (ja) 2015-07-02
JP6356417B2 (ja) 2018-07-11

Similar Documents

Publication Publication Date Title
JP4026652B2 (ja) インクジェット記録装置及びインクジェット記録方法
JP6590473B2 (ja) 立体物造形装置及び立体物造形方法
US20160082653A1 (en) Three-dimensional object forming device and three-dimensional object forming method
JP6416660B2 (ja) インクジェット記録装置及びインクジェット記録方法
WO2015178280A1 (ja) 印刷装置及び印刷方法
US10596822B2 (en) Printing apparatus and printing method
JP6434817B2 (ja) 印刷装置及び印刷方法
JP5776348B2 (ja) 画像形成装置及び画像形成方法
JP7210187B2 (ja) 液体吐出装置及び液体吐出方法
US20160214380A1 (en) Printing device and printing method
JP6356417B2 (ja) 印刷装置、印刷ヘッド、及び印刷方法
US8888239B2 (en) Inkjet printer
US8926039B2 (en) Printing device and printing method
JP2016135559A (ja) インクジェットプリンタ
JP2020019163A (ja) 印刷装置及び印刷方法
JP6317141B2 (ja) 印刷装置及び印刷方法
WO2015137479A1 (ja) 印刷装置及び印刷方法
JP4958997B2 (ja) インクジェット記録方法およびインクジェット記録装置
US20190061369A1 (en) Printing device and printing method
JP2014180804A (ja) 画像記録方法
JP2020026055A (ja) インクジェットプリンターおよび印刷方法
JP2014061608A (ja) 紫外線照射装置及びインク硬化制御装置
JP2013223973A (ja) カラー画像形成装置
JP2018176610A (ja) インクジェットプリンタ及び印刷方法
JP2008080596A (ja) 印刷装置及び印刷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15104980

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014871426

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871426

Country of ref document: EP