WO2015093403A1 - Sunlight-reflecting mirror unit, solar thermal power generation device, and method for cleaning sunlight-reflecting mirror - Google Patents

Sunlight-reflecting mirror unit, solar thermal power generation device, and method for cleaning sunlight-reflecting mirror Download PDF

Info

Publication number
WO2015093403A1
WO2015093403A1 PCT/JP2014/082975 JP2014082975W WO2015093403A1 WO 2015093403 A1 WO2015093403 A1 WO 2015093403A1 JP 2014082975 W JP2014082975 W JP 2014082975W WO 2015093403 A1 WO2015093403 A1 WO 2015093403A1
Authority
WO
WIPO (PCT)
Prior art keywords
sunlight
reflecting mirror
solar
layer
mirror
Prior art date
Application number
PCT/JP2014/082975
Other languages
French (fr)
Japanese (ja)
Inventor
工藤 一良
川邉 茂寿
篤志 齋藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015553512A priority Critical patent/JPWO2015093403A1/en
Publication of WO2015093403A1 publication Critical patent/WO2015093403A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/02Cleaning by the force of jets or sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/82Arrangements for concentrating solar-rays for solar heat collectors with reflectors characterised by the material or the construction of the reflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/20Cleaning; Removing snow
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0808Mirrors having a single reflecting layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a solar reflection mirror unit, a solar thermal power generation apparatus, and a method for cleaning a solar reflection mirror capable of maintaining high cleanliness and reflectance of the surface of the solar mirror.
  • Known solar power generation devices include solar cells that directly convert sunlight into electric power, solar thermal power generation devices that use sunlight reflecting mirrors to collect sunlight and generate the resulting heat as a medium. It has been. According to the solar thermal power generation apparatus, power can be generated regardless of day or night by storing the obtained heat. In the long term, the power generation efficiency of the solar thermal power generation device is higher than that of the solar cell, and sunlight can be used effectively.
  • Solar power generators are often used in desert areas. Dirt such as dust is likely to adhere to the sunlight reflecting mirror installed outdoors, and this dirt has been a cause of lowering the reflectivity and thus power generation efficiency.
  • dirt derived from dust in a desert area is different from normal dirt, and forms a strong sand film and adheres to the surface of the sunlight reflecting mirror. This is considered to be one of the causes that condensation occurs on the surface of the solar reflective mirror in a desert area where the temperature difference between day and night is large.
  • dust-derived substances for example, NaCl, CaCO 3 , SiO 2 etc.
  • pollutants in the atmosphere eg, SiO x etc.
  • a sunlight reflecting mirror excellent in surface antifouling properties has been studied.
  • a sunlight reflecting mirror that includes a layer containing a photocatalyst on the outermost surface of a sunlight reflecting mirror and decomposes the attached organic matter
  • a solar reflective mirror that is provided with a hydrophilic layer containing a hydrophilic polymer, a metal alkoxide compound, and colloidal silica on the surface of the solar reflective mirror so that dirt is less likely to adhere and can be easily cleaned (for example, patents).
  • Reference 2 a solar reflective mirror with excellent antifouling property against oil dust, acid rain, dirt, etc. has been proposed by forming a fluororesin thin film with excellent durability on the surface of the solar reflective mirror.
  • a fluororesin thin film with excellent durability on the surface of the solar reflective mirror.
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is a solar reflective mirror unit, a solar thermal power generation apparatus, and a solar reflective mirror cleaning method capable of maintaining high surface cleanliness and reflectivity. Is to provide.
  • the present inventors maintain high cleanliness and reflectivity of the surface of the solar reflective mirror installed in a harsh outdoor environment in the process of examining the cause of the above problems and the like. Therefore, it was thought that it was necessary to remove the dirt as soon as possible without attaching dirt to the surface.
  • the present inventors have found that this can be realized by coating the surface with a liquid film and further flowing the liquid film, and have reached the present invention.
  • a solar reflective mirror unit having a solar reflective mirror cleaning function, The contact angle with water on the surface of the solar reflective mirror is 30 ° or less
  • a solar reflective mirror comprising: cleaning means for continuously or intermittently supplying a liquid containing water to the surface of the solar reflective mirror to form a liquid film flowing on the surface. unit.
  • the solar reflective mirror unit according to any one of claims 1 to 5, further comprising a means for adjusting a flow rate of the liquid film.
  • the liquid film recovery means that has finished flowing on the surface of the sunlight reflecting mirror,
  • the solar reflective mirror unit as described in any one of to.
  • a solar thermal power generation apparatus comprising the sunlight reflecting mirror unit according to any one of items 1 to 8.
  • a method of cleaning a solar reflective mirror The contact angle with water on the surface of the solar reflective mirror is 30 ° or less
  • a method for cleaning a solar reflective mirror comprising: supplying a liquid containing water continuously or intermittently to the surface of the solar reflective mirror to form a liquid film flowing on the surface.
  • the above-mentioned means of the present invention can provide a solar reflection mirror unit, a solar thermal power generation apparatus, and a solar reflection mirror cleaning method capable of maintaining high surface cleanliness and reflectivity.
  • the sunlight reflecting mirror unit of the present invention comprises a sunlight reflecting mirror having a surface with a contact angle with water of 30 ° or less, and a cleaning means for forming a liquid film on the surface of the sunlight reflecting mirror. And This feature is a technical feature common to the inventions according to claims 1 to 10.
  • the contact angle with water on the surface of the solar reflective mirror is 20 ° or less from the viewpoint of preventing the adhesion of dirt to the surface by increasing the coating area ratio of the liquid film. . Further, when the liquid film coverage is in the range of 50 to 100%, it is possible to sufficiently prevent the adhesion of dirt.
  • the surface of the sunlight reflecting mirror contains a photocatalyst that becomes hydrophilic by sunlight.
  • the band gap of the photocatalyst is preferably in the range of 2.4 to 5.2 eV.
  • the sunlight reflecting mirror is a film-like mirror because it can be curved and used.
  • the solar reflective mirror unit of the present invention can be suitably provided in a solar thermal power generation apparatus. Thereby, power generation efficiency can be improved.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • FIG. 1 shows a schematic configuration of a sunlight reflecting mirror unit 1 according to an embodiment.
  • the sunlight reflecting mirror unit 1 includes a sunlight reflecting mirror 10 and a cleaning unit 20 as a means for cleaning the surface of the sunlight reflecting mirror 10.
  • the sunlight reflecting mirror 10 has at least a sunlight reflecting layer on a substrate.
  • the surface of the sunlight reflecting mirror 10 exhibits hydrophilicity with a contact angle with water of 30 ° or less.
  • a liquid containing water supplied by the cleaning unit 20 can be wetted and spread on the surface, and a liquid film can be formed on the surface.
  • the contact angle between the surface of the sunlight reflecting mirror 10 and water is more preferably 20 ° or less. If it is 20 ° or less, the wettability of the surface can be further increased, and the area that can be covered with the liquid film formed on the surface is expanded, so that the adhesion of dirt is prevented over a wider area and the dirt is removed. can do.
  • the cleaning unit 20 continuously or intermittently supplies a liquid containing water to the surface of the sunlight reflecting mirror 10 to form a liquid film that flows on the surface.
  • a flowing liquid film refers to an aggregate of liquid molecules in which a plurality of liquid molecules flowing on the surface are continuously arranged on the surface to form a thin film.
  • the liquid molecules may be in a two-dimensional array, or the liquid molecules may be in a three-dimensional array by overlapping, and the thickness of the liquid film is not particularly limited.
  • the adhesion of dirt to the surface of the sunlight reflecting mirror 10 can be prevented by the flowing liquid film. Moreover, the dirt adhering to the liquid film can be quickly removed from the surface, and the dirt adhering to the surface of the solar reflective mirror 10 can be washed away. Since the liquid film is formed continuously or intermittently, the dirt can be removed constantly or intermittently, and high cleanliness of the surface of the solar reflective mirror 10 can be maintained. Because of the high cleanliness, cleaning is unnecessary or less frequent cleaning is sufficient, and not only the amount of cleaning work, but also the amount of water required for cleaning, the amount of additives, and hot water cleaning can reduce heating energy and reduce the cleaning load. It can be reduced overall. In addition, the amount and frequency of use of various cleaning tools such as brushes, sponges, cloths, felts, and cleaning machines necessary for cleaning can be reduced.
  • the cleaning unit 20 includes a tank 21, a pump P, a transfer pipe 22, and a supply pipe 23.
  • the supply pipe 23 has a plurality of apertures provided at equal intervals, and is arranged along one end of the sunlight reflecting mirror 10 on the upper side in the gravity direction.
  • the cleaning unit 20 stores a liquid containing water in the tank 21, and continuously or intermittently sends the liquid from the tank 21 through the transfer pipe 22 to the supply pipe 23 by the pump P.
  • a liquid is supplied onto the surface of the sunlight reflecting mirror 10 via the surface.
  • the surface of the sunlight reflecting mirror 10 is inclined with respect to the horizontal plane, the liquid supplied on the surface flows in the gravity direction B by its own weight.
  • the cleaning unit 20 blows air from the supply pipe 23 side using a blower, increases the liquid supply pressure, etc. The liquid may be flowed.
  • the diameter and the arrangement interval of the openings of the supply pipe 23 can be adjusted so that the liquid is evenly supplied to the entire width of one end of the mirror surface on which the supply pipe 23 is arranged. For example, when the amount of liquid supplied per unit time is not large, openings having the same diameter are arranged uniformly. On the other hand, when the amount of liquid supplied per unit time is large, the diameter of the opening is increased as it is closer to the outlet than the inlet in the flow direction of the liquid in the supply pipe 23, and the interval between the holes is decreased as it is closer to the outlet.
  • the direction of the opening is preferably parallel to the mirror surface or upward with respect to the mirror surface from the viewpoint of supplying the liquid uniformly over the entire width of the mirror surface.
  • a supply pipe in which slits are provided at equal intervals over the entire width a valve such as a valve or a faucet, or a supply pipe in which valves are provided at equal intervals can also be used.
  • the liquid supply means is not limited to the supply pipe 23 as long as the liquid can be supplied over the entire width of the mirror surface.
  • an absorber 24 may be disposed near the liquid outlet from the supply pipe 23, and the liquid may be supplied to the surface of the sunlight reflecting mirror 10 through the absorber 24. . Since the liquid supplied from the supply pipe 23 is absorbed and diffused by the absorber 24, the liquid can be supplied uniformly over the entire width of the mirror surface without concentration of the liquid supply position.
  • Such an absorber 24 may be provided in four directions of the sunlight reflecting mirror 10 or may be disposed in the supply pipe 23.
  • the material of the absorber 24 is not specifically limited, For example, it can be resin, a fiber, a pulp, etc.
  • the liquid containing water used for forming the liquid film is a liquid containing water as a main component.
  • Water as a main component means that the content of water in the liquid component excluding the solid component is in the range of 30 to 100% by mass.
  • steam generated during power generation can be used in a solar thermal power generation device.
  • the water component itself contaminates the mirror surface, and there is almost no adverse effect such as a decrease in reflectivity or a decrease in power generation efficiency. Therefore, it is convenient as a liquid for cleaning the mirror surface.
  • the boiling point under atmospheric pressure is high, evaporation of the liquid film in a high temperature environment such as a desert can be suppressed.
  • the liquid containing water has water as a main component, from the viewpoint of preventing the adhesion of dirt and facilitating the removal of dirt, organic solvents, surfactants, salts, acids / bases, resins, fibers, It can also contain additives such as particulate matter. Although there is no restriction
  • Examples of the organic solvent that can contain a liquid containing water include alcohols such as methanol, ethanol, propanol, butanol, isopropyl alcohol, ethylene glycol, and propylene glycol, and hydrocarbons such as acetone and methylene chloride.
  • examples of the surfactant include anionic, cationic, amphoteric, and nonionic, specifically, anionic surfactants such as polyoxyethylene alkyl ether acetate, dodecylbenzene sulfonate, and laurate, Nonionic surfactants such as polyoxyethylene alkyl ethers are listed.
  • Examples of the salts include sodium chloride and sodium hydrogen carbonate, and examples of the acids include acetic acid and phthalic acid.
  • Examples of the resin include polyethylene glycol, polypropylene glycol, polycarboxylic acid, polyvinyl alcohol, hydroxyethyl cellulose, agar, and gelatin. With the resin, the viscosity of the liquid film can be increased, and adhesion of dirt to the surface can be prevented.
  • Examples of the fibers include nylon, polyester, acrylic, vinyl chloride, cotton, hemp, silk and the like.
  • Examples of the particulate material include inorganic particles such as silica, alumina, zirconia, and ceria, and organic particles such as crosslinked polystyrene and crosslinked polymethyl methacrylate. According to the fibers and the particulate matter, dirt can be adsorbed on the fibers or the particulate matter in the liquid film.
  • the ratio of the coating area of the liquid film to the entire surface of the sunlight reflecting mirror 10 is preferably as high as possible from the viewpoint of reducing the probability of contact between the surface and the dirt, preferably in the range of 40 to 100%, more preferably in the range of 50 to 100%. It is. In particular, if it is in the range of 50 to 100%, the surface of the solar reflective mirror 10 can be covered sufficiently with the liquid film to remove dirt, and the reflectance can be maintained higher.
  • the coating area ratio (%) of the liquid film is the product of the overall length in the length direction of the surface of the solar reflective mirror 10 and the overall length in the direction perpendicular to the length direction. And the percentage of the total area of the liquid film on the mirror surface with respect to the area of the entire mirror surface.
  • the covering area ratio of the liquid film can be adjusted by reducing the contact angle with the water on the surface of the solar light reflecting mirror 10 or changing the supply amount of liquid containing water per unit time.
  • the refractive index of the liquid film formed by the cleaning unit 20 is lower than the refractive index of the surface of the solar reflective mirror 10 from the viewpoint of concentrating solar energy and efficiently converting it into thermal energy. It is preferably higher than the refractive index of air. Thereby, the reflection by the interface of air and a liquid film can be suppressed, and the transmitted light amount to the reflection layer of the sunlight reflective mirror 10 can be increased.
  • the inclination angle of the surface of the sunlight reflecting mirror 10 with respect to the horizontal plane may be changed according to the incident direction of sunlight.
  • the same transfer pipe 22 and supply pipe 23 may be disposed at both ends of the sunlight reflecting mirror 10 in the gravity direction, and the liquid may be supplied from the transfer pipe 22 and the supply pipe 23 located on the upper side in the gravity direction.
  • the sunlight reflecting mirror unit 1 includes a collection container 30 as a means for collecting the liquid film that has finished flowing on the surface of the sunlight reflecting mirror 10, and cleans the liquid in the collected liquid film.
  • the liquid film can be formed again on the surface of the sunlight reflecting mirror 10 by being re-supplied by 20. Thereby, the collected liquid can be reused, and the cost can be reduced.
  • the sunlight reflecting mirror 10 has a small amount of rainfall in a desert or the like and water is disposed in a precious environment, the cost can be further reduced.
  • the collection container 30 for example, a semi-cylindrical collection container disposed along the other end facing the supply pipe 23 of the sunlight reflecting mirror 10 can be used.
  • the liquid film that has finished flowing on the surface of the sunlight reflecting mirror 10 is recovered and stored in the tank 21 by the recovery container 30.
  • the sunlight reflecting mirror unit 1 can also include means for adjusting the flow rate of the liquid film formed by the cleaning unit 20.
  • the surface cleanliness can be adjusted by adjusting the flow rate. For example, in an environment where much dirt is attached, the flow rate of the liquid film is increased to increase the cleanliness. In an environment where there is little adhesion of dirt, the cost required for cleaning can be reduced by reducing the flow rate of the liquid film to reduce the degree of cleaning.
  • FIG. 1 shows an example in which a control device 40 for changing the rotational speed of the pump P is provided as adjusting means, and the supply rate per unit time of the pump P is adjusted by the control device 40 to adjust the flow rate of the liquid film.
  • a control device 40 for changing the rotational speed of the pump P is provided as adjusting means, and the supply rate per unit time of the pump P is adjusted by the control device 40 to adjust the flow rate of the liquid film.
  • the flow rate of the liquid film can be adjusted, not only the control device 40 but also a tank and a valve are provided as adjusting means between the pump P and the supply pipe 23, and the flow rate of the liquid film is determined by the valve opening degree of the valve. Can also be adjusted. Even when there is no pump P, liquid can be poured into the tank and the flow rate of the liquid film can be adjusted by the valve opening.
  • the flow rate of the liquid film is similarly adjusted by adjusting the valve opening degree using the plug or valve as an adjusting means. Can also be adjusted.
  • the flow rate of the liquid film may be adjusted by using a blower as the adjusting means and blowing air from the flow direction of the liquid film or the direction opposite to the flow direction to promote or suppress the flow of the liquid film.
  • the sunlight reflecting mirror 10 can be a plate-like mirror using a glass plate, a metal plate or the like as a substrate, but is preferably a film-like mirror using a resin film as a substrate. Since the film-like mirror is highly flexible, it can be deformed into a curved surface or the like in accordance with the position where sunlight is condensed when used in a solar power generation apparatus.
  • FIG. 2 is a cross-sectional view showing a configuration example when the sunlight reflecting mirror 10 is a film-like mirror.
  • the arrow represents the incident direction A of sunlight.
  • the sunlight reflecting mirror 10 includes an anchor layer 12, a reflecting layer 13, a corrosion preventing layer 14, an adhesive layer 15, an ultraviolet absorbing layer 16 and a hydrophilic layer 17 in this order on a resin film 11. I have. Details of each layer will be described below.
  • the resin film 11 various conventionally known resin films can be used as long as the sunlight reflecting mirror 10 can be formed into a film shape.
  • the resin film 11 include cellulose ester films, polyester films, polycarbonate films, polyarylate films, polysulfone (including polyethersulfone) films, polyethylene terephthalate, polyester films such as polyethylene naphthalate, polyethylene films, Polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film , Norbornene resin fill , Polymethyl pentene film, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
  • the resin film 11 may be a film manufactured by a melt-flow method or a film manufactured by a solution-flow method.
  • the thickness of the resin film 11 can be set to a thickness corresponding to the type of resin. In general, it is preferably within the range of 10 to 400 ⁇ m, more preferably within the range of 20 to 300 ⁇ m, and even more preferably within the range of 30 to 200 ⁇ m.
  • the anchor layer 12 is provided between the resin film 11 and the reflective layer 13 in order to improve the adhesion of the reflective layer 13 to the resin film 11.
  • the anchor layer 12 can increase heat resistance and prevent the resin film 11 from being deteriorated due to heat generated when the reflective layer 13 is formed.
  • the surface of the resin film 11 can be smoothed, and it is also possible to prevent the reflectance of the reflective layer 13 from decreasing.
  • the anchor layer 12 is preferably highly transparent in order to increase the amount of light transmitted to the reflectance of the reflective layer 13.
  • the material of the anchor layer 12 is not particularly limited as long as high adhesion, heat resistance, reflectance, and transparency can be obtained.
  • a resin can be used.
  • preferable resins include polyester resins, acrylic resins, melamine resins, epoxy resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, and the like. These resins can be used alone or in combination of two or more.
  • a mixed resin of a polyester resin and a melamine resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
  • the thickness of the anchor layer 12 is preferably within a range of 0.01 to 3.00 ⁇ m, and preferably within a range of 0.1 to 1.0 ⁇ m, from the viewpoint of improving adhesion, smoothness, and reflectance. Is more preferable.
  • a method for forming the anchor layer 12 conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
  • the reflection layer 13 is provided to reflect the sunlight incident on the sunlight reflecting mirror 10. In order to prevent the resin film 11 from being deteriorated by sunlight, the reflective layer 13 is preferably disposed closer to the sunlight incident side than the resin film 11.
  • the reflectance of the reflective layer 13 is preferably 80% or more, and more preferably 90% or more.
  • the reflectance of the reflective layer 13 refers to regular reflectance.
  • metals such as aluminum, silver, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth, gold and the like can be used.
  • aluminum or silver is preferable and silver is more preferable from the viewpoint of obtaining high reflectance and corrosion resistance.
  • Two or more layers each composed mainly of aluminum and silver can be laminated to form the reflective layer 13. Thereby, the reflectance with respect to light having a wavelength in the range of about 400 to 2500 nm from the visible light region to the infrared region can be increased, and the dependency of the reflectance on the incident angle can be reduced.
  • the reflective layer 13 As a material of the reflective layer 13, from the viewpoint of improving the durability of the reflective layer 13, an alloy of two or more of the above metals may be used. Examples of such an alloy include silver alloys of silver and other metals. As another metal used for the silver alloy, gold is preferable from the viewpoint of improving moisture resistance and reflectance.
  • the ratio of the number of silver atoms to the total number of atoms of silver and other metals in the reflective layer 13 is preferably in the range of 90.0 to 99.8%.
  • the ratio of the other metal to the total number of atoms of silver and the other metal in the reflective layer 13 is preferably in the range of 0.2 to 10.0% from the viewpoint of obtaining durability.
  • the wet method is a general term for a plating method, and is a method of forming a metal film by depositing a metal from a solution.
  • the wet method there is a silver plating formation method using a silver mirror reaction.
  • the dry method is a general term for a vacuum film-forming method, and examples thereof include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion beam assisted vacuum deposition method, an ion plating method, and a sputtering method. Since the elongate resin film 11 can be used for manufacture of the sunlight reflective mirror 10, the vapor deposition method which can form the reflection layer 13 continuously by a roll-to-roll system is preferable.
  • a coating film containing a silver complex compound capable of vaporizing and leaving the ligand is formed, and the coating film is formed.
  • a method of firing can also be adopted.
  • the corrosion prevention layer 14 is provided to prevent the reflection layer 13 from being corroded.
  • the corrosion prevention layer 14 is preferably provided adjacent to the reflective layer 13. As shown in FIG. 2, one corrosion prevention layer 14 may be adjacent to one side of the reflective layer 13, and two corrosion prevention layers 14 are provided adjacent to both sides of the reflective layer 13. May be.
  • the corrosion prevention layer 14 is a layer containing, for example, a corrosion inhibitor.
  • the corrosion inhibitor preferably has an adsorptive group for silver.
  • Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole Examples thereof include compounds having a ring, copper chelate compounds, thioureas, compounds having a mercapto group, and naphthalene compounds. These corrosion inhibitors can be used alone or in combination of two or more.
  • amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium
  • Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole or a mixture thereof.
  • Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole
  • Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and mixtures thereof.
  • Examples of compounds having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof or the like can be mentioned.
  • Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl 4-formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl
  • Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
  • Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and mixtures thereof.
  • Examples of thioureas include thiourea, guanylthiourea, and mixtures thereof.
  • mercaptoacetic acid thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto
  • naphthalene compounds include thionalide.
  • the corrosion prevention layer 14 can also contain antioxidant as a corrosion inhibitor.
  • antioxidant it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant.
  • phenolic antioxidants examples include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane and 2,2′-methylenebis (4-ethyl-6-tert-butylphenol). ), Tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 ′ -Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3 ', 5'-di-t- Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl- ⁇ - (3,5-di-t-butyl-4-hydroxyphenyl) propio Triethyl glycol bis [
  • thiol antioxidant examples include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), and the like.
  • phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol diphosphite.
  • Phosphite bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite
  • Examples include 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite.
  • the corrosion prevention layer 14 can also use the said antioxidant and light stabilizer together.
  • light stabilizers that can be used in combination include hindered amine light stabilizers and nickel ultraviolet light stabilizers.
  • hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl)
  • a hindered amine light stabilizer containing only a tertiary amine is preferable.
  • bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable.
  • Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, 1 2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid are preferred.
  • nickel-based ultraviolet stabilizer examples include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4 -Hydroxybenzyl monophosphate, nickel dibutyl dithiocarbamate, etc.
  • the corrosion inhibitor preferably has a molecular weight of 800 or less. By containing such a low molecular weight corrosion inhibitor, the corrosion inhibitor can easily move to the interface with the reflective layer 13, and the corrosion prevention action is improved.
  • the content of the corrosion inhibitor in the corrosion prevention layer 14 varies depending on the corrosion inhibitor used, but is preferably in the range of 0.01 to 1.00 g / cm 3 .
  • the adhesive layer 15 is provided to improve the adhesion between the corrosion prevention layer 14 and the ultraviolet absorption layer 16.
  • the adhesive layer 15 can be formed in the same manner as the anchor layer 12 as long as high adhesiveness is obtained.
  • the ultraviolet absorption layer 16 is provided in order to prevent deterioration of each layer due to ultraviolet rays of sunlight transmitted through the hydrophilic layer 17.
  • the ultraviolet absorbing layer 16 is preferably an acrylic resin layer having an ultraviolet absorbing group or containing an ultraviolet absorber from the viewpoint of increasing the flexibility and weather resistance of the sunlight reflecting mirror 10 and reducing the weight.
  • Examples of the ultraviolet absorber that can be contained in the ultraviolet absorbing layer 16 include organic compounds such as benzophenone, benzotriazole, phenyl salicylate, triazine, and benzoate, and inorganic compounds such as titanium oxide, zinc oxide, cerium oxide, and iron oxide. Is mentioned.
  • organic compounds such as benzophenone, benzotriazole, phenyl salicylate, triazine, and benzoate
  • inorganic compounds such as titanium oxide, zinc oxide, cerium oxide, and iron oxide. Is mentioned.
  • a high molecular weight ultraviolet absorber having a molecular weight of 1000 or more.
  • the molecular weight is in the range of 1000 to 3000.
  • benzophenone ultraviolet absorber examples include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
  • benzotriazole ultraviolet absorbers examples include 2- (2'-hydroxy-5-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are LA31 manufactured by ADEKA), 2- (2H-benzotriazol-2-yl) -4,6-bis (1 -Methyl-1-phenylethyl) phenol (molecular weight 447.6; an example of a commercially available product is Tinuvin 234 manufactured by BASF Japan Ltd.).
  • phenyl salicylate ultraviolet absorber examples include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like.
  • hindered amine ultraviolet absorber examples include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
  • triazine ultraviolet absorbers examples include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4). -Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4) -Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2 -Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5- Liazine, 2,4-diphenyl-6- (2-hydroxy
  • benzoate-based ultraviolet absorber examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) manufactured by Sumitomo Chemical Co., Ltd.
  • each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary.
  • an ultraviolet absorber other than the above-described ultraviolet absorber for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, a benzophenone-based ultraviolet absorber, a triazine-based ultraviolet absorber, or the like can be contained.
  • the content of the ultraviolet absorber in the ultraviolet absorbing layer 16 is preferably in the range of 0.1 to 20.0 mass%. More preferably, it is in the range of 0.25 to 15.00% by mass, and still more preferably in the range of 0.5 to 10.0% by mass. If it is 0.1 mass% or more, adhesiveness is favorable, and if it is 20 mass% or less, weather resistance is favorable.
  • the thickness of the ultraviolet absorbing layer 16 is preferably in the range of 20 to 150 ⁇ m, more preferably in the range of 40 to 100 ⁇ m. Within this range, the transmittance of incident light can be improved, and an appropriate surface roughness can be imparted to the surface of the solar reflective mirror 10.
  • the methacrylic resin is a polymer mainly composed of methacrylic acid ester, and may be a homopolymer of methacrylic acid ester, 50% by mass or more of methacrylic acid ester, and other monomers less than 50% by mass. And a copolymer thereof.
  • methacrylic acid ester an alkyl ester of methacrylic acid is usually used.
  • PMMA polymethyl methacrylate resin
  • the methacrylic resin preferably has a glass transition temperature of 40 ° C or higher, more preferably 60 ° C or higher. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
  • the ultraviolet absorbing layer 16 can also contain the same antioxidant as the corrosion preventing layer 14. Further, a light stabilizer may be used in combination with the antioxidant.
  • the antioxidant can prevent deterioration of the acrylic resin during melt film formation. Since the antioxidant captures radicals even after film formation, deterioration of the acrylic resin layer can be prevented.
  • the hydrophilic layer 17 is provided on the outermost surface of the sunlight reflecting mirror 10. Therefore, as described above, the contact angle with water on the surface of the hydrophilic layer 17 is 30 ° or less, and preferably 20 ° or less.
  • the contact angle with water (°) was 30 seconds after 3 ⁇ L of water was dropped on the hydrophilic layer 17 in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH in accordance with JIS-R3257. It can be measured using a total of DM300 (manufactured by Kyowa Interface Chemical Co., Ltd.). It shows that hydrophilic property is so high that the measured contact angle is small.
  • the hydrophilic layer 17 can contain a hydrophilizing agent in order to make the contact angle with water on the surface 30 ° or less.
  • the hydrophilizing agent that can be used include compounds containing metal elements, such as oxides, nitrides and carbides containing metal elements such as Si, Ti, Al, Sn, Fe, Zn, Sb, and Zr. .
  • the hydrophilic layer 17 can also contain metal particles such as silica particles, alumina particles, titania particles, zirconia particles, etc., in addition to the above compounds. By using metal particles, the surface roughness is increased, the hydrophilicity is improved, and the hydrophilic layer 17 having a contact angle of 30 ° or less can be formed.
  • the hydrophilic layer 17 may contain a silicate compound, polysilazane having a Si—N bond as a basic skeleton, and the like.
  • silicate compound examples include tetrahydroxysilane, tetramethoxysilane, tetraethoxysilane, and tetraethoxyoxysilane.
  • the hydrophilic layer 17 can also be a layer containing a photocatalyst that is rendered hydrophilic by sunlight as a hydrophilizing agent.
  • a photocatalyst is a substance that, when irradiated with light having energy larger than the band gap between the conduction band and the valence band, the electrons in the valence band are excited to generate conduction electrons and holes.
  • Examples of the photocatalyst that can be contained in the hydrophilic layer 17 include anatase-type titanium oxide (band gap; 3.2 eV), rutile-type titanium oxide (band gap; 3.0 eV), and zinc oxide (band gap; 3.2 eV). , Tin oxide (band gap; 3.5 eV), tungsten oxide (band gap; 2.5 eV), potassium tantalate (band gap; 3.4 eV), strontium titanate (band gap; 3.2 eV), zirconium oxide ( Band gap; 5.0 eV), niobium oxide (band gap; 3.4 eV), and the like.
  • anatase-type titanium oxide band gap; 3.2 eV
  • rutile-type titanium oxide band gap; 3.0 eV
  • zinc oxide band gap; 3.2 eV
  • Tin oxide band gap; 3.5 eV
  • tungsten oxide band gap; 2.5 eV
  • potassium tantalate band gap; 3.4 eV
  • the actually measured bad gap may have a difference of about ⁇ 0.2 eV from the band gap described above.
  • the band gap of the photocatalyst is preferably in the range of 2.4 to 5.2 eV.
  • a photocatalyst having a band gap of 5.2 eV or less the photocatalyst can be excited by the energy of sunlight reaching the earth without being absorbed, scattered or attenuated in the atmosphere.
  • a photocatalyst of 2.4 eV or more it is possible to suppress a decrease in solar reflectance due to absorption of visible light and to suppress a decrease in power generation efficiency.
  • the hydrophilic layer 17 can contain a small amount of a platinum group metal such as Pt, Pd, Ru, Rh, Ir, Os, etc. in order to enhance the photocatalytic activity. Moreover, the hydrophilic layer 17 can contain metal particles, such as the silica particle mentioned above, an alumina particle, a titania particle, a zirconia particle, with a photocatalyst. A silicate compound, polysilazane having a Si—N bond as a basic skeleton, or the like may be used in combination.
  • a platinum group metal such as Pt, Pd, Ru, Rh, Ir, Os, etc.
  • metal particles such as the silica particle mentioned above, an alumina particle, a titania particle, a zirconia particle, with a photocatalyst.
  • a silicate compound, polysilazane having a Si—N bond as a basic skeleton, or the like may be used in combination.
  • the hydrophilic layer 17 containing a photocatalyst can be formed by applying a dispersion of photocatalyst particles by a conventionally known coating method.
  • the hydrophilic layer 17 containing a photocatalyst can be formed by a sol coating baking method, an organic titanate method, a vacuum film forming method, or the like.
  • the sol coating and baking method is a method in which anatase-type titanium oxide sol is applied by a coating method such as a gravure coating method, a reverse coating method, or a die coating method, followed by baking.
  • the organic titanate method is a method in which a coating solution obtained by partially or completely hydrolyzing an organic titanate is applied by a conventionally known coating method such as a gravure coating method and dried. By drying, hydrolysis of the organic titanate is completed to produce titanium hydroxide, and an amorphous titanium oxide layer is formed by dehydration condensation polymerization of titanium hydroxide. Thereafter, firing is performed at a temperature equal to or higher than the crystallization temperature of anatase, and amorphous titanium oxide is phase-transformed into anatase-type titanium oxide.
  • the vacuum film formation method is a method of forming an amorphous titanium oxide layer by a vacuum deposition method, a sputtering method, or the like. Thereafter, phase transition is made to anatase-type titanium oxide by firing.
  • the hydrophilic layer 17 may be a layer in which a surface treatment such as a plasma treatment or an etching treatment is performed on the surface of the substrate as long as the hydrophilic layer 17 exhibits hydrophilicity such that the contact angle with water is 30 ° or less.
  • An inorganic coat layer may be provided between the hydrophilic layer 17 and the ultraviolet absorption layer 16.
  • the inorganic coating layer can prevent an organic compound such as an acrylic resin contained in the ultraviolet absorbing layer 16 from being decomposed by the photocatalyst.
  • the material for the inorganic coating layer include a silicate compound such as tetraethoxysilane and a layer containing an alcohol such as methanol.
  • an inorganic coat layer can contain the structural component of a hydrophilic layer, or the structural component of an ultraviolet absorption layer.
  • the inorganic coat layer may be a single layer or a plurality of layers.
  • the layer thickness of the hydrophilic layer 17 is a suitable layer thickness depending on the refractive index of the hydrophilic layer 17, the contained components, the wavelength range of light used for power generation among the sunlight incident on the sunlight reflecting mirror 10, and the like. Should be selected. Since use of a wavelength range as wide as possible leads to improvement of power generation efficiency, it is preferable that the layer thickness is thin in consideration of light absorption by the hydrophilic layer 17. Since it is the extreme surface layer that expresses hydrophilicity, if it has a layer thickness of about several nanometers, hydrophilicity necessary for forming a liquid film can be expressed.
  • a layer thickness of at least about 1/2 of the particle diameter of the photocatalyst particles is necessary from the viewpoint of retention of the photocatalyst particles and prevention of falling off. If the thickness is 10 nm, a layer thickness of 5 nm or more is necessary.
  • a layer thickness for expressing the photocatalytic function that is, a layer thickness that establishes a crystal structure is required, and the photocatalyst particles are contained.
  • a layer thickness of 5 nm or more is necessary. From the above viewpoint, generally, the thickness of the hydrophilic layer 17 can be selected within a range of 5 to 300 nm.
  • the hydrophilic layer 17 can also contain a surfactant, a leveling agent, an antistatic agent and the like.
  • the surfactant is effective for smoothing the surface of the hydrophilic layer 17.
  • Specific examples of the surfactant that can be used include the same examples as the surfactant that can contain the above-described liquid containing water.
  • Leveling agents are effective in reducing small irregularities on the surface.
  • a dimethylpolysiloxane-polyoxyalkylene copolymer for example, SH190 manufactured by Toray Dow Corning Co., Ltd.
  • the antistatic agent is effective in improving the antifouling property of the film mirror.
  • the hydrophilic layer 17 has conductivity due to the antistatic agent, the electric resistance value on the surface of the film mirror unit can be reduced. Further, by forming an antistatic layer through a very thin layer between the layer adjacent to the hydrophilic layer 17 or the hydrophilic layer 17, the electrical resistance value on the surface of the film mirror unit can be reduced, and the antifouling property can be obtained. It is possible to improve.
  • the sunlight reflecting mirror 10 is not limited to the above-described layers, and may include other layers.
  • the solar reflective mirror 10 can include a hard coat layer between the ultraviolet absorbing layer 16 and the hydrophilic layer 17 in order to prevent damage to each layer.
  • a material for the hard coat layer acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like can be used. From the viewpoint of hardness and durability, a silicone resin or an acrylic resin is preferable.
  • the hard coat layer may contain additives such as the above-described corrosion inhibitors, antioxidants, light stabilizers, surfactants, leveling agents, and antistatic agents.
  • the solar thermal power generation device of the present invention may be any type of solar thermal power generation device such as a trough type, a Fresnel type, or a tower type as long as it includes the solar light reflecting mirror unit of the present invention.
  • a trough type solar thermal power generation apparatus including the solar reflective mirror unit 1 will be described.
  • FIG. 3 shows a schematic configuration of the trough type solar thermal power generation apparatus 100.
  • the solar thermal power generation apparatus 100 includes a sunlight reflecting mirror unit 1 (sunlight reflecting mirror 10 and cleaning unit 20), a support member 50, an angle adjusting unit 60, a heat storage tank 71, a heat exchanger 72, A generator 73, a heat collecting tube 80, and the like are provided.
  • the solar power generation apparatus 100 reflects sunlight by the curved sunlight reflecting mirror 10 and condenses it on the heat collecting tube 80, heats the heat medium in the heat collecting tube 80, generates steam by a heat exchanger, and generates power. I do.
  • FIG. 3 only one solar reflective mirror 10 is shown, but usually, several thousand units of solar reflective mirrors 10 are installed, and heat collecting tubes provided corresponding to the respective solar reflective mirrors 10. 80 is connected to the heat storage tank 71.
  • the support member 51 in the arc portion supports the solar light reflecting mirror 10 in a curved shape
  • the support member 52 in the string portion supports the heat collecting tube 80.
  • the arrangement positions of the sunlight reflecting mirror 10 and the heat collecting tube 80 are adjusted so that the sunlight reflected by the sunlight reflecting mirror 10 is condensed on the heat collecting tube 80.
  • a supply pipe 23 and an absorber 24 are attached to the upper end and the lower end of the sunlight reflecting mirror 10, respectively.
  • the cleaning unit 20 transfers the liquid containing water in the tank 21 to the two supply pipes 23 by the pump P, and supplies the liquid to the surface of the sunlight reflecting mirror 10 by the supply pipe 23 and the absorber 24. it can.
  • the cleaning unit 20 can also supply the liquid by only one of the supply pipe 23 and the transfer pipe 22 by providing an open valve on or both of them to open and close. Since the inclination angle of the mirror surface of the sunlight reflecting mirror 10 is adjusted according to the incident angle of sunlight, the cleaning unit 20 supplies water to the supply pipe 23 located on the upper side in the gravity direction of the two supply pipes 23. Transport liquid containing.
  • the heat collection tube 80 has a double structure of an outer tube 81 and an inner tube 82, and transfers the heat medium supplied to the inner tube 82.
  • the heat medium is heated by the sunlight reflected by the sunlight reflecting mirror 10 in the heat collecting tube 80 and then transferred to the heat storage tank 71.
  • steam is generated by the heat medium transferred from the heat storage tank 71 to the heat exchanger 72, and the generator 73 rotates the turbine with the steam to generate electric energy.
  • the outer tube 81 is preferably a transparent glass tube, and the outer surface of the inner tube 82 is preferably colored black. Further, if the space between the outer tube 81 and the inner tube 82 is a vacuum heat insulating space, loss of heat from the heat medium can be reduced.
  • the angle adjustment unit 60 adjusts the tilt angle of the mirror surface of the sunlight reflecting mirror 10 in accordance with the incident direction of sunlight so that as much sunlight as possible can be collected. Specifically, the angle adjustment unit 60 rotates around the rotation shafts 61R and 61L attached to the support members 50 at both ends in the left-right direction of the sunlight reflecting mirror 10, respectively.
  • a motor 62 and a speed reducer 63 are attached to the rotation shaft 61R, and the rotation shaft 61L is rotatably supported by a bearing 64.
  • the angle adjusting unit 60 drives the motor 63 and the speed reducer 64 by the control device 65 to control the rotation angle of the sunlight reflecting mirror 10.
  • the control device 65 acquires a sunlight detection signal by the sunlight sensor 66 attached to the support member 50, and determines the rotation angle so that the amount of sunlight is maximized.
  • Example I An anchor layer having a thickness of 0.1 ⁇ m was formed on one side of a 100 ⁇ m-thick polyethylene terephthalate film (hereinafter referred to as PET film) obtained by biaxial stretching.
  • the anchor layer is made of polyester resin Esper 9940A (Hitachi Chemical Industry Co., Ltd.), melamine resin, diisocyanate crosslinking agent tolylene diisocyanate and hexamethylene diisocyanate (Mitsui Chemicals Fine Co., Ltd.), respectively 20: 1: A resin mixed at a mass ratio of 1: 2 was applied and formed by a gravure coating method. Next, a reflective layer having a thickness of 80 nm was formed by vacuum evaporation using silver.
  • a corrosion prevention layer coating solution was applied by a gravure coating method to form a corrosion prevention layer having a thickness of 0.1 ⁇ m.
  • a coating solution 10% by mass of Tinuvin 234 (manufactured by Ciba Japan Co., Ltd.) in a resin in which Esper 9940A and tolylene diisocyanate are mixed at a resin solid content ratio (mass ratio) of 10: 2, respectively. was used as a corrosion inhibitor.
  • vinylol 92T (acrylic resin adhesive, Showa Polymer Co., Ltd.) was applied to a thickness of 0.1 ⁇ m to form an anchor layer.
  • An acrylic resin film formed by a solution casting method was laminated on the anchor layer to form an ultraviolet absorbing layer.
  • the arithmetic average roughness Ra of the surface of the ultraviolet absorbing layer was 0.1 ⁇ m, and the layer thickness was 50 ⁇ m.
  • the solar reflective mirror 1 was manufactured by coating by a die coating method so that the film thickness after drying was 80 nm.
  • a glass plate was prepared as a base material, and a reflective layer having a thickness of 80 nm was formed on one side of the glass plate using silver by vacuum deposition.
  • a corrosion prevention layer was formed on the reflective layer in the same manner as the solar light reflecting mirror 1.
  • the flat glass plate was heated to be bent above the softening point and then cooled, and a reflection layer and a corrosion prevention layer were formed outside the circumferential surface of the curved glass plate.
  • the glass plate was washed with water, and CeO 2 particles adhered to the surface of the glass plate.
  • the dirt was removed.
  • a hydrophilic layer was formed on the cleaned surface in the same manner as the sunlight reflecting mirror 1 to produce a sunlight reflecting mirror 10.
  • the solar reflective mirror is the same as the solar reflective mirror 10 except that the silica particles used in the hydrophilic layer are replaced with anatase-type titanium oxide particles as a photocatalyst. 11 was produced.
  • SE-6010 (acrylic resin adhesive, manufactured by Showa Polymer Co., Ltd.) was applied to the surface of the sunlight reflecting mirrors 1 to 9 opposite to the surface on which the anchor layer of the PET film was formed, and an adhesive having a thickness of 1 ⁇ m. A layer was formed. A metal support (aluminum plate manufactured by Sumitomo Light Metal Co., Ltd.) having a thickness of 0.5 mm was attached to the PET film via this adhesive layer. Thereafter, as shown in FIG. 3, the mirror surfaces of the sunlight reflecting mirrors 1 to 9 were curved and attached to the support member.
  • a supply pipe provided with openings having a diameter of 2 mm ⁇ at equal intervals of about 10 mm was attached to one end of each of the sunlight reflecting mirrors 1 to 9. Furthermore, after attaching a commercially available pump to the tank, a supply pipe was connected to the pump to obtain each of the sunlight reflecting mirror units 1-9.
  • the tank was charged with 100% by mass of water without additives as a liquid to be supplied.
  • the solar reflective mirror unit 2 is the same as the solar reflective mirror unit 2 except that a liquid composed of 1% by mass of ethanol and 99% by mass of water is put into the tank instead of 100% by mass of water. Thus, a sunlight reflecting mirror unit 12 was obtained.
  • the sunlight reflective mirror unit 14 was obtained like the sunlight reflective mirror unit 2 except having arrange
  • the absorber was a resin sponge, and the length of the sponge was set to a length corresponding to the entire width of one end of the mirror surface in the same manner as the supply pipe.
  • a sunlight reflecting mirror unit 21 was obtained in the same manner as the sunlight reflecting mirror unit 1 except that the sunlight reflecting mirror 1 of the sunlight reflecting mirror unit 1 was replaced with the sunlight reflecting mirror 21.
  • the solar reflective mirror unit 22 was obtained in the same manner as the solar reflective mirror unit 10 except that the solar reflective mirror 10 of the solar reflective mirror unit 10 was replaced with the solar reflective mirror 22.
  • the solar light reflecting mirror unit 23 was obtained by removing cleaning means such as a supply pipe and a pump provided in the solar light reflecting mirror unit 2.
  • Each of the sunlight reflecting mirror units 1 to 14 and 21 to 23 was installed outdoors in a desert area.
  • a liquid containing water is continuously supplied to the surfaces of the sunlight reflecting mirrors 1 to 11, 21 and 22 to form a liquid film which always flows. did.
  • a liquid containing water is intermittently supplied to the surface of the sunlight reflecting mirror 2 to intermittently form a flowing liquid curtain.
  • the surface of each of the sunlight reflecting mirrors 1 to 11 and 21 is a hydrophilic layer.
  • the surface of the sunlight reflecting mirror 22 is a glass plate.
  • the contact angle (°) with the water on the surface of each of the solar reflective mirrors 1 to 11, 21 and 22 is determined according to JIS-R3257. It measured as follows. 3 ⁇ L of water was dropped on the surface of each of the sunlight reflecting mirrors 1 to 11, 21 and 22, and the contact angle (°) was measured after 30 seconds. The contact angle was measured using a contact angle meter DM300 (manufactured by Kyowa Interface Chemical Co., Ltd.) in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
  • the solar reflective mirrors 1 to 11 and 11 to 23 of the solar reflective mirror units 1 to 14 and 21 to 23 are installed before being installed outdoors and after one month and one year after installation.
  • the reflectance (%) of 21 and 22 was measured as follows. Using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) equipped with an integrating sphere reflection accessory, the incident angle of incident light is adjusted to 5 ° with respect to the normal of the reflecting surface, and the reflection angle is 5 °. The regular reflectance (%) of was measured. From the measured values obtained, the average value within the wavelength range of 400 to 700 nm was determined as the reflectance (%) of each of the solar reflective mirrors 1 to 11, 21 and 22.
  • the ratio of the liquid film coverage (%) in each of the solar reflective mirror units 1 to 14 and 21 to 23 is measured before installation outdoors and after one month and one year after installation. ) was measured as follows.
  • the mirror surface was photographed by changing the angle in the photographing direction by 120 ° from the center (the position of the heat collecting tube 80 in FIG. 3) around the curved mirror surface.
  • the obtained plurality of images were analyzed, and the area (m 2 ) of the liquid film was obtained and added every 10 ° in the photographing direction.
  • the area of the liquid film obtained by the addition was divided by the area (m 2 ) of the mirror surface to obtain the coating area ratio (%) of the liquid film.
  • the entire mirror surface was photographed, and one image obtained was analyzed to determine the area (m 2 ) of the liquid film.
  • the area of the liquid film was divided by the area of the mirror surface (m 2 ) to obtain the liquid film coverage area ratio (%).
  • Table 1 below shows the measurement results of the contact angle (°), the reflectance (%), and the coating area ratio (%) of the liquid film.
  • the coating area ratio (%) of the liquid film of the following Table 1 has shown the range of the coating area ratio measured in one year from installation.
  • a solar thermal power generation apparatus using the solar reflective mirror units 1 to 14 and 21 to 23 was manufactured, and the contact angle and the reflectance were measured in the same manner. The same results were obtained. Further, when the contact angle and the reflectance were measured, the power generation efficiency of the solar thermal power generation apparatus was obtained. However, the solar reflective mirror units 1 to 14 showed almost no fluctuation in the power generation efficiency after one month and one year. It was. On the other hand, the solar reflective mirrors 21 to 23 showed a tendency that the power generation efficiency decreased in proportion to the passage of time.
  • Example II Using the sunlight reflecting mirror unit 2 of Example I, supply of water per unit time by a pump so that the coverage ratio (%) of the liquid film is 100%, 50%, 40%, and 10%, respectively. The amount was adjusted, and in the same manner as in Example I, the contact angle (°), the reflectance (%), and the coating film area ratio (%) were measured. Further, by using the sunlight reflecting mirror unit 14 of Example I, water per unit time by a pump so that the covering area ratio (%) of the liquid film becomes 100%, 50%, 40%, and 10%, respectively. In the same manner as in Example I, the contact angle (°), the reflectance (%), and the coating film area ratio (%) of the liquid film were measured.
  • Example III A cylindrical liquid film recovery container was provided at the other end facing the supply pipe of the sunlight reflecting mirror unit 2 of Example I to obtain a sunlight reflecting mirror unit 2a. Further, a transfer pipe for connecting the recovery container to the tank is provided so that the liquid recovered by the recovery container can be stored in the tank. A filter was provided between the tank and the transfer pipe.
  • the sunlight reflecting mirror unit 2a was installed outdoors, and a liquid containing water was continuously supplied to the surface of the sunlight reflecting mirror 2 to form a constantly flowing liquid film. Further, the liquid film was recovered by the recovery means and returned to the tank, and the liquid returned to the tank was supplied again by the supply pipe 23.
  • the present invention can be used for the purpose of improving the power generation efficiency of solar thermal power generation.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Catalysts (AREA)

Abstract

The objective of the present invention is to provide: a sunlight-reflecting mirror unit which is capable of maintaining high cleanliness and reflectance of the surface; a solar thermal power generation device; and a method for cleaning a sunlight-reflecting mirror. The present invention is a sunlight-reflecting mirror unit which has a function of cleaning a sunlight-reflecting mirror. This sunlight-reflecting mirror unit is characterized in that: the surface of the sunlight-reflecting mirror has a contact angle with water of 30° or less; and this sunlight-reflecting mirror unit is provided with a cleaning means for forming a liquid film, which flows on the surface of the sunlight-reflecting mirror, by continuously or intermittently supplying a liquid that contains water to the surface.

Description

太陽光反射ミラーユニット、太陽熱発電装置及び太陽光反射ミラーの清浄化方法Sunlight reflecting mirror unit, solar power generation device, and method for cleaning sunlight reflecting mirror
 本発明は、太陽光ミラーの表面の清浄度及び反射率を高く維持することが可能な太陽光反射ミラーユニット、太陽熱発電装置及び太陽光反射ミラーの清浄化方法に関する。 The present invention relates to a solar reflection mirror unit, a solar thermal power generation apparatus, and a method for cleaning a solar reflection mirror capable of maintaining high cleanliness and reflectance of the surface of the solar mirror.
 太陽光を用いた発電装置としては、太陽光を直接電力に変換する太陽電池、太陽光反射ミラーを用いて太陽光を集光し、得られた熱を媒体として発電する太陽熱発電装置等が知られている。
 太陽熱発電装置によれば、得られた熱を蓄熱することにより、昼夜を問わず発電が可能である。長期的に見れば、太陽熱発電装置の発電効率は太陽電池よりも高く、太陽光を有効に利用できる。
Known solar power generation devices include solar cells that directly convert sunlight into electric power, solar thermal power generation devices that use sunlight reflecting mirrors to collect sunlight and generate the resulting heat as a medium. It has been.
According to the solar thermal power generation apparatus, power can be generated regardless of day or night by storing the obtained heat. In the long term, the power generation efficiency of the solar thermal power generation device is higher than that of the solar cell, and sunlight can be used effectively.
 太陽熱発電装置は砂漠地帯で利用されることが多い。屋外に設置される太陽光反射ミラーには砂塵等の汚れが付着しやすく、この汚れが反射率、ひいては発電効率を低下させる原因となっていた。
 特に、砂漠地帯における砂塵由来の汚れは通常の汚れと異なり、強固な砂の膜を形成して太陽光反射ミラーの表面に固着する。これは、昼夜の温度差が大きい砂漠地帯において太陽光反射ミラーの表面に結露が生じることが原因の1つと考えられている。太陽光反射ミラーの表面に結露が生じると、表面上に堆積した砂塵由来の物質(例えば、NaCl、CaCO、SiO等)、大気中の汚染物質(例えば、SiO等)等が結露に溶け込んで反応し、不溶性の塩を形成する。その後、水分が蒸発し、不溶性の塩及び砂塵粒子が凝集して、強固な砂の膜を形成する。
Solar power generators are often used in desert areas. Dirt such as dust is likely to adhere to the sunlight reflecting mirror installed outdoors, and this dirt has been a cause of lowering the reflectivity and thus power generation efficiency.
In particular, dirt derived from dust in a desert area is different from normal dirt, and forms a strong sand film and adheres to the surface of the sunlight reflecting mirror. This is considered to be one of the causes that condensation occurs on the surface of the solar reflective mirror in a desert area where the temperature difference between day and night is large. When condensation occurs on the surface of the sunlight reflecting mirror, dust-derived substances (for example, NaCl, CaCO 3 , SiO 2 etc.) deposited on the surface, pollutants in the atmosphere (eg, SiO x etc.), etc. It dissolves and reacts to form an insoluble salt. Thereafter, the water evaporates and insoluble salts and dust particles aggregate to form a strong sand film.
 汚れによる反射率の低下を抑えるには、太陽光反射ミラーの表面を定期的に洗浄する必要がある。しかし、通常は広大な敷地に数千枚もの膨大な数の太陽光反射ミラーが設置されているため、洗浄作業は多大な労力及び時間を要する大変な作業であった。 ¡To suppress the decrease in reflectivity due to dirt, it is necessary to periodically clean the surface of the solar reflective mirror. However, since a large number of thousands of solar reflective mirrors are usually installed on a vast site, the cleaning work is a laborious work requiring a lot of labor and time.
 そこで、表面の防汚性に優れた太陽光反射ミラーが検討されている。
 例えば、太陽光反射ミラーの最表面に光触媒を含有する層を備えて、付着した有機物を分解する太陽光反射ミラーが提案されている(例えば、特許文献1参照)。
 太陽光反射ミラーの表面に、親水性ポリマー、金属アルコキシド化合物、コロイダルシリカを含有する親水性層を設け、汚れが付着しにくく、洗浄が容易な太陽光反射ミラーも提案されている(例えば、特許文献2参照)。
 また、太陽光反射ミラーの表面に、耐久性に優れたフッ素樹脂の薄膜を形成することによって、油塵、酸性雨、土塵等に対する防汚性に優れた太陽光反射ミラーも提案されている(例えば、特許文献3参照)。
Therefore, a sunlight reflecting mirror excellent in surface antifouling properties has been studied.
For example, there has been proposed a sunlight reflecting mirror that includes a layer containing a photocatalyst on the outermost surface of a sunlight reflecting mirror and decomposes the attached organic matter (see, for example, Patent Document 1).
There has also been proposed a solar reflective mirror that is provided with a hydrophilic layer containing a hydrophilic polymer, a metal alkoxide compound, and colloidal silica on the surface of the solar reflective mirror so that dirt is less likely to adhere and can be easily cleaned (for example, patents). Reference 2).
In addition, a solar reflective mirror with excellent antifouling property against oil dust, acid rain, dirt, etc. has been proposed by forming a fluororesin thin film with excellent durability on the surface of the solar reflective mirror. (For example, refer to Patent Document 3).
 表面の防汚性だけでなく、表面の清浄度を高める洗浄方法についても検討されている。
 例えば、ナノバブルを用いて、表面を傷つけずに固着した汚れを容易に洗浄する方法が提案されている(例えば、特許文献4参照)。
In addition to the antifouling property of the surface, a cleaning method for increasing the cleanliness of the surface has been studied.
For example, a method has been proposed in which nano-bubbles are used to easily clean dirt adhered without damaging the surface (see, for example, Patent Document 4).
 しかしながら、上記光触媒による汚れの分解速度は、砂の膜が形成される速度に比べて遅いため、屋外のような過酷な環境下ではやはり表面に汚れが堆積してしまう。
 また、親水性層によれば、降雨があると水が濡れ広がって表面から汚れが洗い流されるが、降雨の少ない砂漠地帯ではこのような自浄作用は期待できず、やはり定期的な洗浄作業が必要である。
 一方、フッ素樹脂により撥水性及び撥油性の表面を持つ太陽光反射ミラーは、降雨及び結露によって表面に水滴が付着しやすく、反射率を著しく低下させる。水滴が蒸発した後も水滴に溶け込んでいた砂塵物質等が残留して、反射率を高く維持することが難しい。
However, since the degradation rate of dirt by the photocatalyst is slower than the speed at which a sand film is formed, dirt is still deposited on the surface in a harsh environment such as outdoors.
In addition, according to the hydrophilic layer, when there is rain, the water gets wet and the dirt is washed away from the surface, but in the desert area where there is little rain, such self-cleaning action cannot be expected, and regular cleaning work is still necessary It is.
On the other hand, a sunlight reflecting mirror having a water-repellent and oil-repellent surface made of fluororesin tends to cause water droplets to adhere to the surface due to rainfall and condensation, and the reflectance is significantly reduced. Even after the water droplets evaporate, it is difficult to maintain a high reflectance because dust substances and the like dissolved in the water droplets remain.
 このように、砂漠のような過酷な屋外環境下では、単に防汚性を備えるだけでは汚れの堆積を十分に防ぐことができなかった。ナノバブルのような洗浄効果の高い洗浄方法を用いても、高い反射率を維持するためには、頻繁に洗浄作業を行う必要があり、洗浄負荷はあまり変わらなかった。 Thus, in a harsh outdoor environment such as a desert, it was not possible to sufficiently prevent the accumulation of dirt simply by providing antifouling properties. Even when a cleaning method having a high cleaning effect such as nanobubbles is used, in order to maintain a high reflectance, it is necessary to frequently perform a cleaning operation, and the cleaning load does not change much.
国際公開2011/078024号International Publication No. 2011/0778024 特開2012-8166号公報JP 2012-8166 A 実用新案登録第3149312号公報Utility Model Registration No. 3149312 特開2013-139958号公報JP 2013-139958 A
 本発明は上記問題及び状況に鑑みてなされ、その解決課題は、表面の清浄度及び反射率を高く維持することが可能な太陽光反射ミラーユニット、太陽熱発電装置及び太陽光反射ミラーの清浄化方法を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is a solar reflective mirror unit, a solar thermal power generation apparatus, and a solar reflective mirror cleaning method capable of maintaining high surface cleanliness and reflectivity. Is to provide.
 本発明者らは、上記課題を解決すべく、上記問題の原因等について検討する過程において、過酷な屋外環境下に設置される太陽光反射ミラーの表面の清浄度及び反射率を高く維持するためには、表面に汚れを付着させず、付着してもすみやかに除去する必要があると考えた。本発明者らは、表面を液膜により被覆し、さらに液膜を流動させることによってこれを実現できることを見出し、本発明に至った。 In order to solve the above problems, the present inventors maintain high cleanliness and reflectivity of the surface of the solar reflective mirror installed in a harsh outdoor environment in the process of examining the cause of the above problems and the like. Therefore, it was thought that it was necessary to remove the dirt as soon as possible without attaching dirt to the surface. The present inventors have found that this can be realized by coating the surface with a liquid film and further flowing the liquid film, and have reached the present invention.
 すなわち、本発明に係る課題は、以下の手段によって解決される。
1.太陽光反射ミラーの清浄化機能を有する太陽光反射ミラーユニットであって、
 前記太陽光反射ミラーの表面の水との接触角が、30°以下であり、
 前記太陽光反射ミラーの表面に、水を含む液体を連続的に又は間欠的に供給して、当該表面上を流動する液膜を形成する清浄化手段を備えることを特徴とする太陽光反射ミラーユニット。
That is, the subject concerning this invention is solved by the following means.
1. A solar reflective mirror unit having a solar reflective mirror cleaning function,
The contact angle with water on the surface of the solar reflective mirror is 30 ° or less,
A solar reflective mirror comprising: cleaning means for continuously or intermittently supplying a liquid containing water to the surface of the solar reflective mirror to form a liquid film flowing on the surface. unit.
2.前記太陽光反射ミラーの表面の水との接触角が、20°以下であることを特徴とする第1項に記載の太陽光反射ミラーユニット。 2. The sunlight reflecting mirror unit according to item 1, wherein a contact angle of the surface of the sunlight reflecting mirror with water is 20 ° or less.
3.前記太陽光反射ミラーの表面に、太陽光によって親水性化する光触媒を含有する親水性層が設けられていることを特徴とする第1項又は第2項に記載の太陽光反射ミラーユニット。 3. 3. The solar light reflecting mirror unit according to claim 1, wherein a hydrophilic layer containing a photocatalyst that is made hydrophilic by sunlight is provided on the surface of the solar light reflecting mirror.
4.前記光触媒のバンドギャップが、2.4~5.2eVの範囲内にあることを特徴とする第3項に記載の太陽光反射ミラーユニット。 4). 4. The solar light reflecting mirror unit according to item 3, wherein a band gap of the photocatalyst is in a range of 2.4 to 5.2 eV.
5.前記太陽光反射ミラーの全表面に対する前記液膜の被覆面積率が、50~100%の範囲内にあることを特徴とする第1項から第4項までのいずれか一項に記載の太陽光反射ミラーユニット。 5. The solar light according to any one of claims 1 to 4, wherein a covering area ratio of the liquid film with respect to the entire surface of the solar light reflecting mirror is in a range of 50 to 100%. Reflective mirror unit.
6.前記液膜の流動速度の調整手段を備えることを特徴とする第1項から第5項までのいずれか一項に記載の太陽光反射ミラーユニット。 6). The solar reflective mirror unit according to any one of claims 1 to 5, further comprising a means for adjusting a flow rate of the liquid film.
7.前記太陽光反射ミラーの表面上を流動し終えた前記液膜の回収手段を備え、
 前記清浄化手段が、前記回収手段により回収された液膜の液体を、前記太陽光反射ミラーの表面に再供給して、前記液膜を形成することを特徴とする第1項から第6項までのいずれか一項に記載の太陽光反射ミラーユニット。
7). The liquid film recovery means that has finished flowing on the surface of the sunlight reflecting mirror,
The first to sixth aspects, wherein the cleaning means re-supplyes the liquid film liquid collected by the collecting means to the surface of the sunlight reflecting mirror to form the liquid film. The solar reflective mirror unit as described in any one of to.
8.前記太陽光反射ミラーは、樹脂フィルム上に少なくとも太陽光の反射層を有するフィルム状のミラーであることを特徴とする第1項から第7項までのいずれか一項に記載の太陽光反射ミラーユニット。 8). The sunlight reflecting mirror according to any one of claims 1 to 7, wherein the sunlight reflecting mirror is a film-like mirror having at least a sunlight reflecting layer on a resin film. unit.
9.第1項から第8項までのいずれか一項に記載の太陽光反射ミラーユニットを具備することを特徴とする太陽熱発電装置。 9. A solar thermal power generation apparatus comprising the sunlight reflecting mirror unit according to any one of items 1 to 8.
10.太陽光反射ミラーの清浄化方法であって、
 前記太陽光反射ミラーの表面の水との接触角を30°以下とし、
 前記太陽光反射ミラーの表面に、水を含む液体を連続的に又は間欠的に供給して、当該表面上を流動する液膜を形成することを特徴とする太陽光反射ミラーの清浄化方法。
10. A method of cleaning a solar reflective mirror,
The contact angle with water on the surface of the solar reflective mirror is 30 ° or less,
A method for cleaning a solar reflective mirror, comprising: supplying a liquid containing water continuously or intermittently to the surface of the solar reflective mirror to form a liquid film flowing on the surface.
 本発明の上記手段により、表面の清浄度及び反射率を高く維持することが可能な太陽光反射ミラーユニット、太陽熱発電装置及び太陽光反射ミラーの清浄化方法を提供できる。 The above-mentioned means of the present invention can provide a solar reflection mirror unit, a solar thermal power generation apparatus, and a solar reflection mirror cleaning method capable of maintaining high surface cleanliness and reflectivity.
 本発明の効果の発現機構ないし作用機構は明確になっていないが、以下のように推察される。
 本発明においては、太陽光反射ミラーの表面の水との接触角を30°以下とするので、当該表面上に水を含む液体を供給したときに、表面上に液体を濡れ広がらせて液膜を形成することができる。当該液膜が連続的に又は間欠的に表面を被覆するため、汚れが表面に付着することを防止することができる。
 また、液膜が表面上を流動するため、液膜に付着した汚れを表面上からすみやかに除去することができる。液膜による被覆が部分的である場合も、表面上に付着した汚れを流動する液膜が洗い流すため、表面の清浄度を高く維持することができる。
 表面の清浄度が高く維持されるため、太陽光反射ミラーの反射率が汚れによって低下することが無く、反射率も高く維持することができる。
The expression mechanism or action mechanism of the effect of the present invention is not clear, but is presumed as follows.
In the present invention, since the contact angle of the surface of the solar reflective mirror with water is 30 ° or less, when a liquid containing water is supplied onto the surface, the liquid is wetted and spread on the surface. Can be formed. Since the liquid film covers the surface continuously or intermittently, it is possible to prevent dirt from adhering to the surface.
Further, since the liquid film flows on the surface, the dirt attached to the liquid film can be quickly removed from the surface. Even when the coating with the liquid film is partial, the liquid film flowing through the dirt adhered on the surface is washed away, so that the cleanliness of the surface can be maintained high.
Since the cleanliness of the surface is kept high, the reflectance of the sunlight reflecting mirror is not lowered by dirt, and the reflectance can be kept high.
本実施の形態に係る太陽光反射ミラーユニットの概略構成を示す正面図The front view which shows schematic structure of the sunlight reflective mirror unit which concerns on this Embodiment 本実施の形態に係る太陽光反射ミラーの構成を示す断面図Sectional drawing which shows the structure of the sunlight reflective mirror which concerns on this Embodiment 本実施の形態に係る太陽熱発電装置の構成を示す図The figure which shows the structure of the solar thermal power generation apparatus which concerns on this Embodiment.
 本発明の太陽光反射ミラーユニットは、水との接触角が30°以下の表面を有する太陽光反射ミラーと、太陽光反射ミラーの表面に液膜を形成する清浄化手段とを備えることを特徴とする。この特徴は請求項1から請求項10までの各請求項に係る発明に共通の技術的特徴である。 The sunlight reflecting mirror unit of the present invention comprises a sunlight reflecting mirror having a surface with a contact angle with water of 30 ° or less, and a cleaning means for forming a liquid film on the surface of the sunlight reflecting mirror. And This feature is a technical feature common to the inventions according to claims 1 to 10.
 本発明の実施態様としては、液膜の被覆面積率を拡大させて表面への汚れの付着を防ぐ観点から、太陽光反射ミラーの表面の水との接触角が20°以下であることが好ましい。
 また、液膜の被覆面積率が50~100%の範囲内であると、汚れの付着を十分に防ぐことができる。
As an embodiment of the present invention, it is preferable that the contact angle with water on the surface of the solar reflective mirror is 20 ° or less from the viewpoint of preventing the adhesion of dirt to the surface by increasing the coating area ratio of the liquid film. .
Further, when the liquid film coverage is in the range of 50 to 100%, it is possible to sufficiently prevent the adhesion of dirt.
 汚れの分解作用を得る観点からは、太陽光反射ミラーの表面が太陽光によって親水性化する光触媒を含有することが好ましい。
 太陽光のうち紫外線領域のなかでも短波長側の紫外光を有効利用する観点からは、光触媒のバンドギャップが2.4~5.2eVの範囲内にあることが好ましい。
From the viewpoint of obtaining the decomposition action of dirt, it is preferable that the surface of the sunlight reflecting mirror contains a photocatalyst that becomes hydrophilic by sunlight.
From the viewpoint of effectively using ultraviolet light on the short wavelength side in the ultraviolet region of sunlight, the band gap of the photocatalyst is preferably in the range of 2.4 to 5.2 eV.
 本発明の実施態様としては、コストの低減を図るため、液膜の流動速度の調整手段を備えることが好ましい。同様の観点から、液膜の回収手段を備え、清浄化手段が回収された液膜の液体を再供給することもできる。
 また、太陽光反射ミラーがフィルム状のミラーであると、曲面状に湾曲させて使用することができ、好ましい。
As an embodiment of the present invention, in order to reduce the cost, it is preferable to include means for adjusting the flow rate of the liquid film. From the same point of view, it is also possible to provide liquid film recovery means and re-supply the liquid film liquid recovered by the cleaning means.
Further, it is preferable that the sunlight reflecting mirror is a film-like mirror because it can be curved and used.
 本発明の太陽光反射ミラーユニットは、太陽熱発電装置に好適に具備され得る。これにより、発電効率を高めることができる。 The solar reflective mirror unit of the present invention can be suitably provided in a solar thermal power generation apparatus. Thereby, power generation efficiency can be improved.
 以下、本発明とその構成要素及び本発明を実施するための形態について詳細な説明をする。
 なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
Hereinafter, the present invention, its components, and modes for carrying out the present invention will be described in detail.
In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
〔太陽光反射ミラーユニット〕
 図1は、一実施の形態に係る太陽光反射ミラーユニット1の概略構成を示している。
 太陽光反射ミラーユニット1は、図1に示すように、太陽光反射ミラー10と、当該太陽光反射ミラー10の表面の清浄化手段として清浄化部20を備えている。
[Sunlight reflection mirror unit]
FIG. 1 shows a schematic configuration of a sunlight reflecting mirror unit 1 according to an embodiment.
As shown in FIG. 1, the sunlight reflecting mirror unit 1 includes a sunlight reflecting mirror 10 and a cleaning unit 20 as a means for cleaning the surface of the sunlight reflecting mirror 10.
 太陽光反射ミラー10は、基材上に少なくとも太陽光の反射層を有する。
 太陽光反射ミラー10の表面は、水との接触角が30°以下である親水性を示す。
 表面が親水性を示すことにより、清浄化部20により供給された水を含む液体を表面上に濡れ広がらせて、表面上に液膜を形成することができる。
The sunlight reflecting mirror 10 has at least a sunlight reflecting layer on a substrate.
The surface of the sunlight reflecting mirror 10 exhibits hydrophilicity with a contact angle with water of 30 ° or less.
When the surface is hydrophilic, a liquid containing water supplied by the cleaning unit 20 can be wetted and spread on the surface, and a liquid film can be formed on the surface.
 太陽光反射ミラー10の表面の水との接触角は、20°以下であることがより好ましい。
 20°以下であると、表面の濡れ性をより高めることができ、表面上に形成された液膜により表面を被覆できる面積が拡大するため、より広範囲にわたって汚れの付着を防止し、汚れを除去することができる。
The contact angle between the surface of the sunlight reflecting mirror 10 and water is more preferably 20 ° or less.
If it is 20 ° or less, the wettability of the surface can be further increased, and the area that can be covered with the liquid film formed on the surface is expanded, so that the adhesion of dirt is prevented over a wider area and the dirt is removed. can do.
〔清浄化手段〕
 清浄化部20は、太陽光反射ミラー10の表面に、水を含む液体を連続的に又は間欠的に供給して、当該表面上を流動する液膜を形成する。
 流動する液膜とは、表面上を流動する複数の液体分子が表面上に連続して並び、薄い膜状になった液体分子の集合体をいう。表面上において、液体分子が2次元状に並んだ状態であってもよいし、液体分子が重なり合って3次元状に並んだ状態であってもよく、液膜の厚さは特に限定されない。
[Cleaning means]
The cleaning unit 20 continuously or intermittently supplies a liquid containing water to the surface of the sunlight reflecting mirror 10 to form a liquid film that flows on the surface.
A flowing liquid film refers to an aggregate of liquid molecules in which a plurality of liquid molecules flowing on the surface are continuously arranged on the surface to form a thin film. On the surface, the liquid molecules may be in a two-dimensional array, or the liquid molecules may be in a three-dimensional array by overlapping, and the thickness of the liquid film is not particularly limited.
 流動する液膜により、太陽光反射ミラー10の表面への汚れの付着を防止することができる。また、液膜上に付着した汚れを表面からすみやかに除去するとともに、太陽光反射ミラー10の表面上に付着した汚れを洗い流すことができる。液膜は連続的に又は間欠的に形成されるので、常に又は断続的に汚れを除去することができ、太陽光反射ミラー10の表面の高い清浄度を維持することができる。清浄度が高いため、洗浄が不要か、少ない頻度の洗浄で足り、洗浄作業量だけでなく、洗浄に要する水量、添加剤量、温水洗浄する場合は加熱エネルギーを抑えることができ、洗浄負荷を全体的に減らすことができる。また、洗浄に必要なブラシ、スポンジ、布、フェルト等の各種の洗浄用具、洗浄機械等の使用量及び使用頻度を低減することもできる。 The adhesion of dirt to the surface of the sunlight reflecting mirror 10 can be prevented by the flowing liquid film. Moreover, the dirt adhering to the liquid film can be quickly removed from the surface, and the dirt adhering to the surface of the solar reflective mirror 10 can be washed away. Since the liquid film is formed continuously or intermittently, the dirt can be removed constantly or intermittently, and high cleanliness of the surface of the solar reflective mirror 10 can be maintained. Because of the high cleanliness, cleaning is unnecessary or less frequent cleaning is sufficient, and not only the amount of cleaning work, but also the amount of water required for cleaning, the amount of additives, and hot water cleaning can reduce heating energy and reduce the cleaning load. It can be reduced overall. In addition, the amount and frequency of use of various cleaning tools such as brushes, sponges, cloths, felts, and cleaning machines necessary for cleaning can be reduced.
 清浄化部20は、例えば、図1に示すようにタンク21、ポンプP、移送管22及び供給管23を備えて構成されている。
 供給管23は、均等な間隔で設けられた複数の開孔を有し、太陽光反射ミラー10の重力方向上側の一端に沿って配置されている。清浄化部20は、タンク21に水を含む液体を貯留し、ポンプPによりタンク21から移送管22を経て供給管23へと連続的又は間欠的に送液し、供給管23の開孔を介して太陽光反射ミラー10の表面上に液体を供給する。太陽光反射ミラー10の表面が水平面に対して傾斜している場合、表面上に供給された液体は自重により重力方向Bへ流動する。太陽光反射ミラー10の表面が水平面と平行に設置され、自重による流動が難しい場合、清浄化部20は、送風装置を用いて供給管23側から送風する、液体の供給圧力を上げる等して液体を流動させてもよい。
For example, as shown in FIG. 1, the cleaning unit 20 includes a tank 21, a pump P, a transfer pipe 22, and a supply pipe 23.
The supply pipe 23 has a plurality of apertures provided at equal intervals, and is arranged along one end of the sunlight reflecting mirror 10 on the upper side in the gravity direction. The cleaning unit 20 stores a liquid containing water in the tank 21, and continuously or intermittently sends the liquid from the tank 21 through the transfer pipe 22 to the supply pipe 23 by the pump P. A liquid is supplied onto the surface of the sunlight reflecting mirror 10 via the surface. When the surface of the sunlight reflecting mirror 10 is inclined with respect to the horizontal plane, the liquid supplied on the surface flows in the gravity direction B by its own weight. When the surface of the sunlight reflecting mirror 10 is installed in parallel with the horizontal plane and it is difficult to flow due to its own weight, the cleaning unit 20 blows air from the supply pipe 23 side using a blower, increases the liquid supply pressure, etc. The liquid may be flowed.
 なお、液体を連続的又は間欠的に送り出せるのであれば、ポンプPに代えて、シリンジ、ピストン、ロータリー、ダイアフラム等を用いることもできる。
 また、供給管23の開孔の直径及び配置間隔は、供給管23が配置されたミラー面の一端の全幅に対して液体が均等に供給されるように調整することができる。例えば、単位時間あたりの液体の供給量が多くない場合は同じ直径の開孔を均等に配置する。一方、単位時間あたりの液体の供給量が多い場合は、開孔の直径を供給管23内の液体の流れ方向の入口よりも出口に近くなるほど大きくし、開孔の間隔も出口に近くなるほど小さくする。
 開孔の向きは、ミラー面の全幅において液体を均等に供給する観点から、ミラー面と平行か、又はミラー面に対して上向きであることが好ましい。
 開孔ではなく、スリットが全幅に均等な間隔で設けられた供給管、バルブ、蛇口等の栓又は弁が等間隔で設けられた供給管等も用いることもできる。
Note that a syringe, a piston, a rotary, a diaphragm, or the like can be used in place of the pump P as long as the liquid can be sent out continuously or intermittently.
Further, the diameter and the arrangement interval of the openings of the supply pipe 23 can be adjusted so that the liquid is evenly supplied to the entire width of one end of the mirror surface on which the supply pipe 23 is arranged. For example, when the amount of liquid supplied per unit time is not large, openings having the same diameter are arranged uniformly. On the other hand, when the amount of liquid supplied per unit time is large, the diameter of the opening is increased as it is closer to the outlet than the inlet in the flow direction of the liquid in the supply pipe 23, and the interval between the holes is decreased as it is closer to the outlet. To do.
The direction of the opening is preferably parallel to the mirror surface or upward with respect to the mirror surface from the viewpoint of supplying the liquid uniformly over the entire width of the mirror surface.
Instead of an opening, a supply pipe in which slits are provided at equal intervals over the entire width, a valve such as a valve or a faucet, or a supply pipe in which valves are provided at equal intervals can also be used.
 ミラー面の全幅において液体を供給できるのであれば、液体の供給手段は、上記供給管23に限定されない。
 例えば、図1に示すように、供給管23からの液体の出口付近に吸収体24を配置し、当該吸収体24を媒介して、太陽光反射ミラー10の表面に液体を供給することもできる。供給管23から供給された液体が吸収体24に吸収されて拡散するので、液体の供給位置が集中することなく、ミラー面の全幅において均等に液体を供給することができる。
 このような吸収体24は、太陽光反射ミラー10の四方に設けられていてもよいし、供給管23の中に配置されていてもよい。
 吸収体24の材質は特に限定されず、例えば樹脂、繊維、パルプ等であることができる。
The liquid supply means is not limited to the supply pipe 23 as long as the liquid can be supplied over the entire width of the mirror surface.
For example, as shown in FIG. 1, an absorber 24 may be disposed near the liquid outlet from the supply pipe 23, and the liquid may be supplied to the surface of the sunlight reflecting mirror 10 through the absorber 24. . Since the liquid supplied from the supply pipe 23 is absorbed and diffused by the absorber 24, the liquid can be supplied uniformly over the entire width of the mirror surface without concentration of the liquid supply position.
Such an absorber 24 may be provided in four directions of the sunlight reflecting mirror 10 or may be disposed in the supply pipe 23.
The material of the absorber 24 is not specifically limited, For example, it can be resin, a fiber, a pulp, etc.
 液膜の形成に用いられる水を含む液体は、水を主成分とする液体である。水を主成分とするとは、固体成分を除く液体成分のうち、水の含有量が30~100質量%の範囲内にあることをいう。
 水は砂漠地帯では貴重な資源であるが、太陽熱発電装置において発電時に生じる蒸気を利用することができる。また、水の成分自体がミラー表面を汚染し、反射率低下や発電効率低下させる等の弊害がほとんどないため、ミラー表面を清浄化する液体として好都合である。さらに、大気圧下における沸点が高いため、砂漠等の高温環境下における液膜の蒸発を抑えることもできる。
The liquid containing water used for forming the liquid film is a liquid containing water as a main component. “Water as a main component” means that the content of water in the liquid component excluding the solid component is in the range of 30 to 100% by mass.
Although water is a valuable resource in desert areas, steam generated during power generation can be used in a solar thermal power generation device. Further, the water component itself contaminates the mirror surface, and there is almost no adverse effect such as a decrease in reflectivity or a decrease in power generation efficiency. Therefore, it is convenient as a liquid for cleaning the mirror surface. Furthermore, since the boiling point under atmospheric pressure is high, evaporation of the liquid film in a high temperature environment such as a desert can be suppressed.
 水を含む液体は、水を主成分とするのであれば、汚れの付着の防止及び汚れの除去を容易にする観点から、有機溶剤、界面活性剤、塩類、酸・塩基類、樹脂、繊維、粒子状物質等の添加剤を含有することもできる。添加剤には特に制限は無いが、水と相溶する添加剤が好ましい。 If the liquid containing water has water as a main component, from the viewpoint of preventing the adhesion of dirt and facilitating the removal of dirt, organic solvents, surfactants, salts, acids / bases, resins, fibers, It can also contain additives such as particulate matter. Although there is no restriction | limiting in particular in an additive, The additive compatible with water is preferable.
 水を含む液体が含有できる有機溶剤としては、メタノール、エタノール、プロパノール、ブタノール、イソプロピルアルコール、エチレングリコール、プロピレングリコール等のアルコール類、アセトン、塩化メチレン等の炭化水素等が挙げられる。
 界面活性剤としては、アニオン性、カチオン性、両性、非イオン性が挙げられ、具体的にはポリオキシエチレンアルキルエーテル酢酸塩、ドデシルベンゼンスルホン酸塩、ラウリル酸塩等のアニオン性界面活性剤、ポリオキシエチレンアルキルエーテル等の非イオン性界面活性剤等が挙げられる。
 塩類としては、塩化ナトリウム、炭酸水素ナトリウム等が挙げられ、酸類としては、酢酸、フタル酸等が挙げられる。
 これら添加剤により、液膜による汚れの除去を容易とし、洗浄時の洗浄力を向上させることもできる。
Examples of the organic solvent that can contain a liquid containing water include alcohols such as methanol, ethanol, propanol, butanol, isopropyl alcohol, ethylene glycol, and propylene glycol, and hydrocarbons such as acetone and methylene chloride.
Examples of the surfactant include anionic, cationic, amphoteric, and nonionic, specifically, anionic surfactants such as polyoxyethylene alkyl ether acetate, dodecylbenzene sulfonate, and laurate, Nonionic surfactants such as polyoxyethylene alkyl ethers are listed.
Examples of the salts include sodium chloride and sodium hydrogen carbonate, and examples of the acids include acetic acid and phthalic acid.
By these additives, it is possible to easily remove the dirt by the liquid film and improve the cleaning power at the time of cleaning.
 樹脂としては、ポリエチレングリコール、ポリプロピレングリコール、ポリカルボン酸、ポリビニルアルコール、ヒドロキシエチルセルロース、寒天、ゼラチン等が挙げられる。樹脂により、液膜の粘性を高めることができ、表面への汚れの付着を防止することができる。
 繊維としては、ナイロン、ポリエステル、アクリル、塩化ビニル、綿、麻、絹等が挙げられる。
 粒子状物質としては、シリカ、アルミナ、ジルコニア、セリア等の無機質粒子、架橋ポリスチレン、架橋ポリメチルメタクリレート等の有機質粒子等が挙げられる。
 繊維、粒子状物質によれば、液膜中の繊維又は粒子状物質に汚れを吸着させることができる。
Examples of the resin include polyethylene glycol, polypropylene glycol, polycarboxylic acid, polyvinyl alcohol, hydroxyethyl cellulose, agar, and gelatin. With the resin, the viscosity of the liquid film can be increased, and adhesion of dirt to the surface can be prevented.
Examples of the fibers include nylon, polyester, acrylic, vinyl chloride, cotton, hemp, silk and the like.
Examples of the particulate material include inorganic particles such as silica, alumina, zirconia, and ceria, and organic particles such as crosslinked polystyrene and crosslinked polymethyl methacrylate.
According to the fibers and the particulate matter, dirt can be adsorbed on the fibers or the particulate matter in the liquid film.
 太陽光反射ミラー10の全表面に対する液膜の被覆面積率は、表面と汚れとの接触確率を低くする観点から高いほど好ましく、好ましくは40~100%、より好ましくは50~100%の範囲内である。
 特に、50~100%の範囲内であれば、液膜により太陽光反射ミラー10の表面を十分に広く被覆して汚れを除去することができ、反射率をより高く維持することができる。
 液膜の被覆面積率(%)は、太陽光反射ミラー10の表面の長さ方向の幅全体の長さと、長さ方向に直交する方向の幅全体の長さの積でミラー面全体の面積を求め、このミラー面全体の面積に対するミラー面上の液膜の全面積の百分率により求めることができる。
 液膜の被覆面積率は、太陽光反射ミラー10の表面の水との接触角を小さくするか、水を含む液体の単位時間あたりの供給量を変えることにより、調整することができる。
The ratio of the coating area of the liquid film to the entire surface of the sunlight reflecting mirror 10 is preferably as high as possible from the viewpoint of reducing the probability of contact between the surface and the dirt, preferably in the range of 40 to 100%, more preferably in the range of 50 to 100%. It is.
In particular, if it is in the range of 50 to 100%, the surface of the solar reflective mirror 10 can be covered sufficiently with the liquid film to remove dirt, and the reflectance can be maintained higher.
The coating area ratio (%) of the liquid film is the product of the overall length in the length direction of the surface of the solar reflective mirror 10 and the overall length in the direction perpendicular to the length direction. And the percentage of the total area of the liquid film on the mirror surface with respect to the area of the entire mirror surface.
The covering area ratio of the liquid film can be adjusted by reducing the contact angle with the water on the surface of the solar light reflecting mirror 10 or changing the supply amount of liquid containing water per unit time.
 また、清浄化部20により形成される液膜の屈折率は、太陽光エネルギーを集光し、熱エネルギーへと効率的に変換する観点から、太陽光反射ミラー10の表面の屈折率よりも低く、空気の屈折率よりも高いことが好ましい。
 これにより、空気と液膜界面による反射を抑制し、太陽光反射ミラー10の反射層への透過光量を増加させることができる。
The refractive index of the liquid film formed by the cleaning unit 20 is lower than the refractive index of the surface of the solar reflective mirror 10 from the viewpoint of concentrating solar energy and efficiently converting it into thermal energy. It is preferably higher than the refractive index of air.
Thereby, the reflection by the interface of air and a liquid film can be suppressed, and the transmitted light amount to the reflection layer of the sunlight reflective mirror 10 can be increased.
 なお、太陽光の入射方向に合わせて、太陽光反射ミラー10の表面の水平面に対する傾斜角度が変更される場合がある。この場合、太陽光反射ミラー10の重力方向の両端にそれぞれ同様の移送管22及び供給管23を配置し、重力方向上側に位置する移送管22及び供給管23から液体を供給すればよい。 In addition, the inclination angle of the surface of the sunlight reflecting mirror 10 with respect to the horizontal plane may be changed according to the incident direction of sunlight. In this case, the same transfer pipe 22 and supply pipe 23 may be disposed at both ends of the sunlight reflecting mirror 10 in the gravity direction, and the liquid may be supplied from the transfer pipe 22 and the supply pipe 23 located on the upper side in the gravity direction.
〔回収手段〕
 太陽光反射ミラーユニット1は、図1に示すように、太陽光反射ミラー10の表面を流動し終えた液膜の回収手段として回収容器30を備え、回収された液膜の液体を清浄化部20により再供給して、太陽光反射ミラー10の表面上に液膜を形成することもできる。
 これにより、回収された液体を再利用することができ、コストを低減することができる。太陽光反射ミラー10が砂漠等の降雨量が少なく、水が貴重な環境に配置されている場合には、よりコストの低減が可能である。
[Recovery means]
As shown in FIG. 1, the sunlight reflecting mirror unit 1 includes a collection container 30 as a means for collecting the liquid film that has finished flowing on the surface of the sunlight reflecting mirror 10, and cleans the liquid in the collected liquid film. The liquid film can be formed again on the surface of the sunlight reflecting mirror 10 by being re-supplied by 20.
Thereby, the collected liquid can be reused, and the cost can be reduced. In the case where the sunlight reflecting mirror 10 has a small amount of rainfall in a desert or the like and water is disposed in a precious environment, the cost can be further reduced.
 回収容器30としては、例えば太陽光反射ミラー10の供給管23と対向する他端に沿って配置された、半円筒状の回収容器等を用いることができる。太陽光反射ミラー10の表面上を流動し終えた液膜は、回収容器30によってタンク21に回収され、貯留される。回収された液体中に含まれる汚れ成分を除去するため、タンク21への液体の入り口には、フィルター等を設けることが好ましい。 As the collection container 30, for example, a semi-cylindrical collection container disposed along the other end facing the supply pipe 23 of the sunlight reflecting mirror 10 can be used. The liquid film that has finished flowing on the surface of the sunlight reflecting mirror 10 is recovered and stored in the tank 21 by the recovery container 30. In order to remove dirt components contained in the collected liquid, it is preferable to provide a filter or the like at the liquid inlet to the tank 21.
〔調整手段〕
 太陽光反射ミラーユニット1は、清浄化部20により形成される液膜の流動速度の調整手段を備えることもできる。流動速度の調整により、表面の清浄度を調整することができる。
 例えば、汚れの付着が多い環境下にある場合は、液膜の流動速度を高速化し、清浄度を上げる。また、汚れの付着が少ない環境下にある場合は、液膜の流動速度を低速化して清浄化の程度を小さくすることにより、清浄化に要するコストを低減することができる。
[Adjustment means]
The sunlight reflecting mirror unit 1 can also include means for adjusting the flow rate of the liquid film formed by the cleaning unit 20. The surface cleanliness can be adjusted by adjusting the flow rate.
For example, in an environment where much dirt is attached, the flow rate of the liquid film is increased to increase the cleanliness. In an environment where there is little adhesion of dirt, the cost required for cleaning can be reduced by reducing the flow rate of the liquid film to reduce the degree of cleaning.
 図1は、調整手段としてポンプPの回転速度を変更する制御装置40を設け、当該制御装置40によりポンプPの単位時間あたりの供給量を調整して、液膜の流動速度を調整する例を示している。
 液膜の流動速度を調整できるのであれば、制御装置40に限らず、ポンプPと供給管23との間にタンクと弁を調整手段として設け、当該弁の弁開度により液膜の流動速度を調整することもできる。ポンプPが無い場合もタンクに液体を投入し、弁開度によって液膜の流動速度を調整することができる。
 なお、供給管23において液体の供給口に栓又は弁が設けられている場合は、当該栓又は弁を調整手段として用いてその弁開度を調整することにより、同様にして液膜の流動速度を調整することもできる。
 調整手段として送風装置を用いて、液膜の流動方向又は流動方向の反対方向から送風し、液膜の流動を促進又は抑制することによって、液膜の流動速度を調整してもよい。
FIG. 1 shows an example in which a control device 40 for changing the rotational speed of the pump P is provided as adjusting means, and the supply rate per unit time of the pump P is adjusted by the control device 40 to adjust the flow rate of the liquid film. Show.
If the flow rate of the liquid film can be adjusted, not only the control device 40 but also a tank and a valve are provided as adjusting means between the pump P and the supply pipe 23, and the flow rate of the liquid film is determined by the valve opening degree of the valve. Can also be adjusted. Even when there is no pump P, liquid can be poured into the tank and the flow rate of the liquid film can be adjusted by the valve opening.
In the case where a plug or valve is provided at the liquid supply port in the supply pipe 23, the flow rate of the liquid film is similarly adjusted by adjusting the valve opening degree using the plug or valve as an adjusting means. Can also be adjusted.
The flow rate of the liquid film may be adjusted by using a blower as the adjusting means and blowing air from the flow direction of the liquid film or the direction opposite to the flow direction to promote or suppress the flow of the liquid film.
 次に、太陽光反射ミラーの詳細を説明する。
〔太陽光反射ミラー〕
 太陽光反射ミラー10は、基材としてガラス板、金属板等が用いられた板状ミラーであることもできるが、基材として樹脂フィルムが用いられたフィルム状ミラーであることが好ましい。フィルム状ミラーは可撓性が高いため、太陽熱発電装置に用いる際に、太陽光を集光する位置に合わせて曲面状等に変形することができる。
Next, details of the sunlight reflecting mirror will be described.
[Sunlight reflection mirror]
The sunlight reflecting mirror 10 can be a plate-like mirror using a glass plate, a metal plate or the like as a substrate, but is preferably a film-like mirror using a resin film as a substrate. Since the film-like mirror is highly flexible, it can be deformed into a curved surface or the like in accordance with the position where sunlight is condensed when used in a solar power generation apparatus.
 図2は、太陽光反射ミラー10をフィルム状ミラーとした場合の構成例を示す断面図である。図2において、矢印は太陽光の入射方向Aを表す。
 太陽光反射ミラー10は、図2に示すように、樹脂フィルム11上に、アンカー層12、反射層13、腐食防止層14、接着層15、紫外線吸収層16及び親水性層17を、この順に備えている。
 以下、各層の詳細を説明する。
FIG. 2 is a cross-sectional view showing a configuration example when the sunlight reflecting mirror 10 is a film-like mirror. In FIG. 2, the arrow represents the incident direction A of sunlight.
As shown in FIG. 2, the sunlight reflecting mirror 10 includes an anchor layer 12, a reflecting layer 13, a corrosion preventing layer 14, an adhesive layer 15, an ultraviolet absorbing layer 16 and a hydrophilic layer 17 in this order on a resin film 11. I have.
Details of each layer will be described below.
 〔樹脂フィルム〕
 樹脂フィルム11としては、太陽光反射ミラー10をフィルム状とすることができるのであれば、従来公知の種々の樹脂フィルムを用いることができる。
 樹脂フィルム11としては、例えばセルロースエステル系フィルム、ポリエステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスルホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、セルロースジアセテートフィルム、セルローストリアセテートフィルム、セルロースアセテートプロピオネートフィルム、セルロースアセテートブチレートフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレンビニルアルコールフィルム、シンジオタクティックポリスチレン系フィルム、ポリカーボネートフィルム、ノルボルネン系樹脂フィルム、ポリメチルペンテンフィルム、ポリエーテルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素樹脂フィルム、ナイロンフィルム、ポリメチルメタクリレートフィルム、アクリルフィルム等を挙げることができる。
 なかでも、ポリカーボネート系フィルム、ポリエステル系フィルム、ノルボルネン系樹脂フィルム又はセルロースエステル系フィルムが好ましく、ポリエステル系フィルム又はセルロースエステル系フィルムがより好ましい。
[Resin film]
As the resin film 11, various conventionally known resin films can be used as long as the sunlight reflecting mirror 10 can be formed into a film shape.
Examples of the resin film 11 include cellulose ester films, polyester films, polycarbonate films, polyarylate films, polysulfone (including polyethersulfone) films, polyethylene terephthalate, polyester films such as polyethylene naphthalate, polyethylene films, Polypropylene film, cellophane, cellulose diacetate film, cellulose triacetate film, cellulose acetate propionate film, cellulose acetate butyrate film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene vinyl alcohol film, syndiotactic polystyrene film, polycarbonate film , Norbornene resin fill , Polymethyl pentene film, polyether ketone film, polyether ketone imide film, a polyamide film, a fluororesin film, a nylon film, polymethyl methacrylate film, and acrylic films.
Among these, a polycarbonate film, a polyester film, a norbornene resin film, or a cellulose ester film is preferable, and a polyester film or a cellulose ester film is more preferable.
 樹脂フィルム11は、溶融流涎法により製造されたフィルムであってもよく、溶液流涎法によって製造されたフィルムであってもよい。
 樹脂フィルム11の厚さは、樹脂の種類に応じた厚さとすることができる。一般的には、10~400μmの範囲内が好ましく、20~300μmの範囲内がより好ましく、30~200μmの範囲内がより好ましい。
The resin film 11 may be a film manufactured by a melt-flow method or a film manufactured by a solution-flow method.
The thickness of the resin film 11 can be set to a thickness corresponding to the type of resin. In general, it is preferably within the range of 10 to 400 μm, more preferably within the range of 20 to 300 μm, and even more preferably within the range of 30 to 200 μm.
 〔アンカー層〕
 アンカー層12は、樹脂フィルム11への反射層13の接着性を高めるため、樹脂フィルム11と反射層13間に設けられている。アンカー層12により、耐熱性を高めて、反射層13の形成時の発熱による樹脂フィルム11の劣化を防ぐこともできる。また、樹脂フィルム11の表面を平滑化することができ、反射層13の反射率の低下を防ぐことも可能である。
[Anchor layer]
The anchor layer 12 is provided between the resin film 11 and the reflective layer 13 in order to improve the adhesion of the reflective layer 13 to the resin film 11. The anchor layer 12 can increase heat resistance and prevent the resin film 11 from being deteriorated due to heat generated when the reflective layer 13 is formed. Moreover, the surface of the resin film 11 can be smoothed, and it is also possible to prevent the reflectance of the reflective layer 13 from decreasing.
 アンカー層12は、反射層13の反射率への透過光量を増やすため、透明性が高いことが好ましい。
 アンカー層12の材料としては、高い接着性、耐熱性、反射率及び透明性が得られるのであれば、特に制限はなく、例えば樹脂を用いることができる。好ましい樹脂としては、例えばポリエステル系樹脂、アクリル系樹脂、メラミン系樹脂、エポキシ系樹脂、ポリアミド系樹脂、塩化ビニル系樹脂、塩化ビニル酢酸ビニル共重合体系樹脂等が挙げられる。これらの樹脂は、単独で又は2種以上を組み合わせて用いることができる。なかでも、耐候性を得る観点から、ポリエステル樹脂とメラミン樹脂の混合樹脂が好ましく、さらにイソシアネート等の硬化剤を混合した熱硬化型樹脂がより好ましい。
The anchor layer 12 is preferably highly transparent in order to increase the amount of light transmitted to the reflectance of the reflective layer 13.
The material of the anchor layer 12 is not particularly limited as long as high adhesion, heat resistance, reflectance, and transparency can be obtained. For example, a resin can be used. Examples of preferable resins include polyester resins, acrylic resins, melamine resins, epoxy resins, polyamide resins, vinyl chloride resins, vinyl chloride vinyl acetate copolymer resins, and the like. These resins can be used alone or in combination of two or more. Among these, from the viewpoint of obtaining weather resistance, a mixed resin of a polyester resin and a melamine resin is preferable, and a thermosetting resin in which a curing agent such as isocyanate is further mixed is more preferable.
 アンカー層12の厚さは、密着性、平滑性及び反射率を高める観点から、0.01~3.00μmの範囲内であることが好ましく、0.1~1.0μmの範囲内であることがより好ましい。
 アンカー層12の形成方法としては、例えばグラビアコート法、リバースコート法、ダイコート法等の従来公知のコート法を使用できる。
The thickness of the anchor layer 12 is preferably within a range of 0.01 to 3.00 μm, and preferably within a range of 0.1 to 1.0 μm, from the viewpoint of improving adhesion, smoothness, and reflectance. Is more preferable.
As a method for forming the anchor layer 12, conventionally known coating methods such as a gravure coating method, a reverse coating method, and a die coating method can be used.
 〔反射層〕
 反射層13は、太陽光反射ミラー10に入射した太陽光を反射するために設けられている。
 反射層13は、樹脂フィルム11が太陽光によって劣化することを防ぐため、樹脂フィルム11よりも太陽光の入射側に配置されていることが好ましい。
 また、反射層13の反射率としては、80%以上であることが好ましく、90%以上であることがより好ましい。反射層13の反射率とは、正反射率をいう。
(Reflective layer)
The reflection layer 13 is provided to reflect the sunlight incident on the sunlight reflecting mirror 10.
In order to prevent the resin film 11 from being deteriorated by sunlight, the reflective layer 13 is preferably disposed closer to the sunlight incident side than the resin film 11.
The reflectance of the reflective layer 13 is preferably 80% or more, and more preferably 90% or more. The reflectance of the reflective layer 13 refers to regular reflectance.
 反射層13の材料としては、アルミニウム、銀、クロム、ニッケル、チタン、マグネシウム、ロジウム、プラチナ、パラジウム、スズ、ガリウム、インジウム、ビスマス、金等の金属を用いることができる。なかでも、高い反射率及び耐食性を得る観点から、アルミニウム又は銀が好ましく、銀がより好ましい。アルミニウム及び銀をそれぞれ主成分とする層を2層以上積層して、反射層13とすることもできる。これにより、可視光領域から赤外領域まで、約400~2500nmの範囲内の波長の光に対する反射率を高めることができ、反射率の入射角への依存性を低減することができる。 As the material of the reflective layer 13, metals such as aluminum, silver, chromium, nickel, titanium, magnesium, rhodium, platinum, palladium, tin, gallium, indium, bismuth, gold and the like can be used. Among these, aluminum or silver is preferable and silver is more preferable from the viewpoint of obtaining high reflectance and corrosion resistance. Two or more layers each composed mainly of aluminum and silver can be laminated to form the reflective layer 13. Thereby, the reflectance with respect to light having a wavelength in the range of about 400 to 2500 nm from the visible light region to the infrared region can be increased, and the dependency of the reflectance on the incident angle can be reduced.
 また、反射層13の材料としては、反射層13の耐久性を向上させる観点から、上記金属のうちの2種以上の合金を用いてもよい。そのような合金としては、銀と他の金属との銀合金が挙げられる。銀合金に用いる他の金属としては、耐湿性及び反射率を高める観点から、金が好ましい。
 銀合金を用いる場合、反射層13における銀と他の金属との原子数の合計に対する銀の原子数の割合は、90.0~99.8%の範囲内であることが好ましい。また、反射層13における銀と他の金属との原子数の合計に対する他の金属の割合は、耐久性を得る観点から、0.2~10.0%での範囲内にあることが好ましい。
Moreover, as a material of the reflective layer 13, from the viewpoint of improving the durability of the reflective layer 13, an alloy of two or more of the above metals may be used. Examples of such an alloy include silver alloys of silver and other metals. As another metal used for the silver alloy, gold is preferable from the viewpoint of improving moisture resistance and reflectance.
When a silver alloy is used, the ratio of the number of silver atoms to the total number of atoms of silver and other metals in the reflective layer 13 is preferably in the range of 90.0 to 99.8%. The ratio of the other metal to the total number of atoms of silver and the other metal in the reflective layer 13 is preferably in the range of 0.2 to 10.0% from the viewpoint of obtaining durability.
 反射層13の形成方法としては、湿式法又は乾式法のいずれも利用することができる。
 湿式法とは、めっき法の総称であり、溶液から金属を析出させて、金属膜を形成する方法である。湿式法の具体例としては、銀鏡反応を利用した銀めっきの形成方法が挙げられる。
 乾式法とは、真空成膜法の総称であり、例えば抵抗加熱型真空蒸着法、電子ビーム加熱型真空蒸着法、イオンビームアシスト型真空蒸着法、イオンプレーティング法、スパッター法等が挙げられる。太陽光反射ミラー10の製造には、長尺の樹脂フィルム11を用いることができるため、ロール・トゥ・ロール方式により、反射層13を連続的に形成できる蒸着法が好ましい。
As a method for forming the reflective layer 13, either a wet method or a dry method can be used.
The wet method is a general term for a plating method, and is a method of forming a metal film by depositing a metal from a solution. As a specific example of the wet method, there is a silver plating formation method using a silver mirror reaction.
The dry method is a general term for a vacuum film-forming method, and examples thereof include a resistance heating vacuum deposition method, an electron beam heating vacuum deposition method, an ion beam assisted vacuum deposition method, an ion plating method, and a sputtering method. Since the elongate resin film 11 can be used for manufacture of the sunlight reflective mirror 10, the vapor deposition method which can form the reflection layer 13 continuously by a roll-to-roll system is preferable.
 なお、銀を用いて反射層13を形成する場合には、上記湿式法及び乾式法以外に、配位子が気化及び離脱し得る銀錯体化合物を含有する塗布膜を形成し、当該塗布膜を焼成する方法を採用することもできる。 In addition, when forming the reflective layer 13 using silver, in addition to the wet method and the dry method, a coating film containing a silver complex compound capable of vaporizing and leaving the ligand is formed, and the coating film is formed. A method of firing can also be adopted.
 〔腐食防止層〕
 腐食防止層14は、反射層13の腐食を防止するために設けられている。
 腐食防止層14は、反射層13に隣接して設けられていることが好ましい。図2に示すように、1層の腐食防止層14が反射層13の片面に隣接していてもよいし、2層の腐食防止層14が反射層13の両面に隣接するように設けられていてもよい。
(Corrosion prevention layer)
The corrosion prevention layer 14 is provided to prevent the reflection layer 13 from being corroded.
The corrosion prevention layer 14 is preferably provided adjacent to the reflective layer 13. As shown in FIG. 2, one corrosion prevention layer 14 may be adjacent to one side of the reflective layer 13, and two corrosion prevention layers 14 are provided adjacent to both sides of the reflective layer 13. May be.
 腐食防止層14は、例えば腐食防止剤が含有された層である。
 腐食防止剤は、反射層13に銀が用いられている場合、銀に対する吸着性基を有することが好ましい。
 銀に対する吸着性基を有する腐食防止剤としては、アミン類及びその誘導体、ピロール環を有する化合物、トリアゾール環を有する化合物、ピラゾール環を有する化合物、チアゾール環を有する化合物、イミダゾール環を有する化合物、インダゾール環を有する化合物、銅キレート化合物類、チオ尿素類、メルカプト基を有する化合物、ナフタレン系化合物等が挙げられる。これら腐食防止剤を単独で又は2種以上を組み合わせて用いることができる。
The corrosion prevention layer 14 is a layer containing, for example, a corrosion inhibitor.
When silver is used for the reflection layer 13, the corrosion inhibitor preferably has an adsorptive group for silver.
Corrosion inhibitors having an adsorptive group for silver include amines and derivatives thereof, compounds having a pyrrole ring, compounds having a triazole ring, compounds having a pyrazole ring, compounds having a thiazole ring, compounds having an imidazole ring, indazole Examples thereof include compounds having a ring, copper chelate compounds, thioureas, compounds having a mercapto group, and naphthalene compounds. These corrosion inhibitors can be used alone or in combination of two or more.
 アミン類及びその誘導体としては、エチルアミン、ラウリルアミン、トリ-n-ブチルアミン、O-トルイジン、ジフェニルアミン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、2N-ジメチルエタノールアミン、2-アミノ-2-メチル-1,3-プロパンジオール、アセトアミド、アクリルアミド、ベンズアミド、p-エトキシクリソイジン、ジシクロヘキシルアンモニウムナイトライト、ジシクロヘキシルアンモニウムサリシレート、モノエタノールアミンベンゾエート、ジシクロヘキシルアンモニウムベンゾエート、ジイソプロピルアンモニウムベンゾエート、ジイソプロピルアンモニウムナイトライト、シクロヘキシルアミンカーバメイト、ニトロナフタレンアンモニウムナイトライト、シクロヘキシルアミンベンゾエート、ジシクロヘキシルアンモニウムシクロヘキサンカルボキシレート、シクロヘキシルアミンシクロヘキサンカルボキシレート、ジシクロヘキシルアンモニウムアクリレート、シクロヘキシルアミンアクリレート又はこれらの混合物等が挙げられる。 Examples of amines and derivatives thereof include ethylamine, laurylamine, tri-n-butylamine, O-toluidine, diphenylamine, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, monoethanolamine, diethanolamine, triethanolamine, 2N- Dimethylethanolamine, 2-amino-2-methyl-1,3-propanediol, acetamide, acrylamide, benzamide, p-ethoxychrysoidine, dicyclohexylammonium nitrite, dicyclohexylammonium salicylate, monoethanolamine benzoate, dicyclohexylammonium benzoate, diisopropyl Ammonium benzoate, diisopropylammonium nitrite Cyclohexylamine carbamate, nitronaphthalene nitrite, cyclohexylamine benzoate, dicyclohexylammonium cyclohexanecarboxylate, cyclohexylamine cyclohexane carboxylate, dicyclohexylammonium acrylate, cyclohexylamine acrylate or mixtures thereof.
 ピロール環を有する物としては、N-ブチル-2,5-ジメチルピロール、N-フェニル-2,5-ジメチルピロール、N-フェニル-3-ホルミル-2,5-ジメチルピロール、N-フェニル-3,4-ジホルミル-2,5-ジメチルピロール又はこれらの混合物等が挙げられる。 Examples of compounds having a pyrrole ring include N-butyl-2,5-dimethylpyrrole, N-phenyl-2,5-dimethylpyrrole, N-phenyl-3-formyl-2,5-dimethylpyrrole, and N-phenyl-3. , 4-diformyl-2,5-dimethylpyrrole or a mixture thereof.
 トリアゾール環を有する化合物としては、1,2,3-トリアゾール、1,2,4-トリアゾール、3-メルカプト-1,2,4-トリアゾール、3-ヒドロキシ-1,2,4-トリアゾール、3-メチル-1,2,4-トリアゾール、1-メチル-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、4-メチル-1,2,3-トリアゾール、ベンゾトリアゾール、トリルトリアゾール、1-ヒドロキシベンゾトリアゾール、4,5,6,7-テトラハイドロトリアゾール、3-アミノ-1,2,4-トリアゾール、3-アミノ-5-メチル-1,2,4-トリアゾール、カルボキシベンゾトリアゾール、2-(2′-ヒドロキシ-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-5′-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-4-オクトキシフェニル)ベンゾトリアゾール等又はこれらの混合物等が挙げられる。 Examples of the compound having a triazole ring include 1,2,3-triazole, 1,2,4-triazole, 3-mercapto-1,2,4-triazole, 3-hydroxy-1,2,4-triazole, 3- Methyl-1,2,4-triazole, 1-methyl-1,2,4-triazole, 1-methyl-3-mercapto-1,2,4-triazole, 4-methyl-1,2,3-triazole, Benzotriazole, tolyltriazole, 1-hydroxybenzotriazole, 4,5,6,7-tetrahydrotriazole, 3-amino-1,2,4-triazole, 3-amino-5-methyl-1,2,4- Triazole, carboxybenzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy) -5'-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-butylphenyl) benzotriazole, 2- (2'-hydroxy-4-octoxyphenyl) Examples thereof include benzotriazole and a mixture thereof.
 ピラゾール環を有する化合物としては、ピラゾール、ピラゾリン、ピラゾロン、ピラゾリジン、ピラゾリドン、3,5-ジメチルピラゾール、3-メチル-5-ヒドロキシピラゾール、4-アミノピラゾール又はこれらの混合物等が挙げられる。
チアゾール環を有する化合物としては、チアゾール、チアゾリン、チアゾロン、チアゾリジン、チアゾリドン、イソチアゾール、ベンゾチアゾール、2-N,N-ジエチルチオベンゾチアゾール、P-ジメチルアミノベンザルロダニン、2-メルカプトベンゾチアゾール等又はこれらの混合物等が挙げられる。
Examples of the compound having a pyrazole ring include pyrazole, pyrazoline, pyrazolone, pyrazolidine, pyrazolidone, 3,5-dimethylpyrazole, 3-methyl-5-hydroxypyrazole, 4-aminopyrazole, and mixtures thereof.
Examples of compounds having a thiazole ring include thiazole, thiazoline, thiazolone, thiazolidine, thiazolidone, isothiazole, benzothiazole, 2-N, N-diethylthiobenzothiazole, P-dimethylaminobenzallodanine, 2-mercaptobenzothiazole, etc. Or a mixture thereof or the like can be mentioned.
 イミダゾール環を有する化合物としては、イミダゾール、ヒスチジン、2-ヘプタデシルイミダゾール、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-ウンデシルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、4-フォルミルイミダゾール、2-メチル-4-フォルミルイミダゾール、2-フェニル-4-フォルミルイミダゾール、4-メチル-5-フォルミルイミダゾール、2-エチル-4-メチル-5-フォルミルイミダゾール、2-フェニル-4-メチル-4-フォルミルイミダゾール、2-メルカプトベンゾイミダゾール等又はこれらの混合物等が挙げられる。 Examples of the compound having an imidazole ring include imidazole, histidine, 2-heptadecylimidazole, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methyl Imidazole, 2-phenyl-4-methylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-undecyl Imidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 4-formylimidazole, 2-methyl-4-formylimidazole, 2-phenyl 4-formylimidazole, 4-methyl-5-formylimidazole, 2-ethyl-4-methyl-5-formylimidazole, 2-phenyl-4-methyl-4-formylimidazole, 2-mercaptobenzimidazole, etc. Or a mixture thereof or the like can be mentioned.
 インダゾール環を有する化合物としては、4-クロロインダゾール、4-ニトロインダゾール、5-ニトロインダゾール、4-クロロ-5-ニトロインダゾール等又はこれらの混合物等が挙げられる。 Examples of the compound having an indazole ring include 4-chloroindazole, 4-nitroindazole, 5-nitroindazole, 4-chloro-5-nitroindazole, and a mixture thereof.
 銅キレート化合物類としては、アセチルアセトン銅、エチレンジアミン銅、フタロシアニン銅、エチレンジアミンテトラアセテート銅、ヒドロキシキノリン銅又はこれらの混合物等が挙げられる。
 チオ尿素類としては、チオ尿素、グアニルチオ尿素又はこれらの混合物等が挙げられる。
Examples of copper chelate compounds include acetylacetone copper, ethylenediamine copper, phthalocyanine copper, ethylenediaminetetraacetate copper, hydroxyquinoline copper, and mixtures thereof.
Examples of thioureas include thiourea, guanylthiourea, and mixtures thereof.
 メルカプト基を有する化合物としては、すでに上記に記載した材料も加えれば、メルカプト酢酸、チオフェノール、1,2-エタンジオール、3-メルカプト-1,2,4-トリアゾール、1-メチル-3-メルカプト-1,2,4-トリアゾール、2-メルカプトベンゾチアゾール、2-メルカプトベンゾイミダゾール、グリコールジメルカプトアセテート、3-メルカプトプロピルトリメトキシシラン又はこれらの混合物等が挙げられる。
 ナフタレン系化合物としては、チオナリド等が挙げられる。
As a compound having a mercapto group, mercaptoacetic acid, thiophenol, 1,2-ethanediol, 3-mercapto-1,2,4-triazole, 1-methyl-3-mercapto can be used by adding the above-described materials. -1,2,4-triazole, 2-mercaptobenzothiazole, 2-mercaptobenzimidazole, glycol dimercaptoacetate, 3-mercaptopropyltrimethoxysilane, or a mixture thereof.
Examples of naphthalene compounds include thionalide.
 また、腐食防止層14は、腐食防止剤として酸化防止剤を含有することもできる。
 酸化防止剤としては、フェノール系酸化防止剤、チオール系酸化防止剤、ホスファイト系酸化防止剤を使用することが好ましい。
Moreover, the corrosion prevention layer 14 can also contain antioxidant as a corrosion inhibitor.
As the antioxidant, it is preferable to use a phenol-based antioxidant, a thiol-based antioxidant, or a phosphite-based antioxidant.
 フェノール系酸化防止剤としては、例えば1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、2,2′-メチレンビス(4-エチル-6-t-ブチルフェノール)、テトラキス-〔メチレン-3-(3′,5′-ジ-t-ブチル-4′-ヒドロキシフェニル)プロピオネート〕メタン、2,6-ジ-t-ブチル-p-クレゾール、4,4′-チオビス(3-メチル-6-t-ブチルフェノール)、4,4′-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,3,5-トリス(3′,5′-ジ-t-ブチル-4′-ヒドロキシベンジル)-S-トリアジン-2,4,6-(1H,3H,5H)トリオン、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、トリエチレングリコールビス〔3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート〕、3,9-ビス[1,1-ジ-メチル-2-〔β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕エチル]-2,4,8,10-テトラオキオキサスピロ〔5,5〕ウンデカン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン等が挙げられる。特に、フェノール系酸化防止剤としては、分子量が550以上のものが好ましい。 Examples of phenolic antioxidants include 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane and 2,2′-methylenebis (4-ethyl-6-tert-butylphenol). ), Tetrakis- [methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate] methane, 2,6-di-t-butyl-p-cresol, 4,4 ′ -Thiobis (3-methyl-6-t-butylphenol), 4,4'-butylidenebis (3-methyl-6-t-butylphenol), 1,3,5-tris (3 ', 5'-di-t- Butyl-4'-hydroxybenzyl) -S-triazine-2,4,6- (1H, 3H, 5H) trione, stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propio Triethyl glycol bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 3,9-bis [1,1-dimethyl-2- [β- (3 -T-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetraoxoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4 , 6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene and the like. In particular, the phenolic antioxidant preferably has a molecular weight of 550 or more.
 チオール系酸化防止剤としては、例えばジステアリル-3,3′-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)等が挙げられる。 Examples of the thiol antioxidant include distearyl-3,3′-thiodipropionate, pentaerythritol-tetrakis- (β-lauryl-thiopropionate), and the like.
 ホスファイト系酸化防止剤としては、例えばトリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、ジ(2,6-ジ-t-ブチルフェニル)ペンタエリスリトールジホスファイト、ビス-(2,6-ジ-t-ブチル-4-メチルフェニル)-ペンタエリスリトールジホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4′-ビフェニレン-ジホスホナイト、2,2′-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト等が挙げられる。 Examples of phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, distearyl pentaerythritol diphosphite, di (2,6-di-t-butylphenyl) pentaerythritol diphosphite. Phosphite, bis- (2,6-di-t-butyl-4-methylphenyl) -pentaerythritol diphosphite, tetrakis (2,4-di-t-butylphenyl) 4,4′-biphenylene-diphosphonite, Examples include 2,2'-methylenebis (4,6-di-t-butylphenyl) octyl phosphite.
 なお、腐食防止層14は、上記酸化防止剤と光安定剤を併用することもできる。併用できる光安定剤としては、ヒンダードアミン系の光安定剤、ニッケル系紫外線安定剤等が挙げられる。
 ヒンダードアミン系の光安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1-メチル-8-(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、1-[2-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕エチル]-4-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ〕-2,2,6,6-テトラメチルピペリジン、4-ベンゾイルオキシ-2,2、6,6-テトラメチルピペリジン、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)-1,2,3,4-ブタン-テトラカルボキシレート、トリエチレンジアミン、8-アセチル-3-ドデシル-7,7,9,9-テトラメチル-1,3,8-トリアザスピロ[4,5]デカン-2,4-ジオン等が挙げられる。
In addition, the corrosion prevention layer 14 can also use the said antioxidant and light stabilizer together. Examples of light stabilizers that can be used in combination include hindered amine light stabilizers and nickel ultraviolet light stabilizers.
Examples of hindered amine light stabilizers include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, Bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 1-methyl- 8- (1,2,2,6,6-pentamethyl-4-piperidyl) -sebacate, 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl ] -4- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] -2,2,6,6-tetramethylpiperidine, 4-benzoyloxy-2,2,6, 6-tetramethyl Piperidine, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) -1,2,3,4-butane-tetracarboxylate, triethylenediamine, 8-acetyl-3-dodecyl-7,7,9 , 9-tetramethyl-1,3,8-triazaspiro [4,5] decane-2,4-dione.
 特に、ヒンダードアミン系の光安定剤としては、3級のアミンのみを含有するヒンダードアミン系の光安定剤が好ましく、具体的にはビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、1,2,2,6,6-ペンタメチル-4-ピペリジノール/トリデシルアルコールと1,2,3,4-ブタンテトラカルボン酸との縮合物が好ましい。 In particular, as the hindered amine light stabilizer, a hindered amine light stabilizer containing only a tertiary amine is preferable. Specifically, bis (1,2,2,6,6-pentamethyl-4-piperidyl) is preferable. Sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butyl malonate, 1 2,2,6,6-pentamethyl-4-piperidinol / tridecyl alcohol and 1,2,3,4-butanetetracarboxylic acid are preferred.
 ニッケル系紫外線安定剤としては、例えば〔2,2′-チオビス(4-t-オクチルフェノレート)〕-2-エチルヘキシルアミンニッケル(II)、ニッケルコンプレックス-3,5-ジ-t-ブチル-4-ヒドロキシベンジル・リン酸モノエチレート、ニッケル・ジブチル-ジチオカーバメート等が挙げられる。 Examples of the nickel-based ultraviolet stabilizer include [2,2′-thiobis (4-t-octylphenolate)]-2-ethylhexylamine nickel (II), nickel complex-3,5-di-t-butyl-4 -Hydroxybenzyl monophosphate, nickel dibutyl dithiocarbamate, etc.
 腐食防止剤は、分子量が800以下であることが好ましい。このような低分子量の腐食防止剤を含有することにより、腐食防止剤が反射層13との界面へ容易に移動することができ、腐食防止作用が向上する。
 腐食防止層14の腐食防止剤の含有量は、使用する腐食防止剤によって異なるが、0.01~1.00g/cmの範囲内であることが好ましい。
The corrosion inhibitor preferably has a molecular weight of 800 or less. By containing such a low molecular weight corrosion inhibitor, the corrosion inhibitor can easily move to the interface with the reflective layer 13, and the corrosion prevention action is improved.
The content of the corrosion inhibitor in the corrosion prevention layer 14 varies depending on the corrosion inhibitor used, but is preferably in the range of 0.01 to 1.00 g / cm 3 .
 〔接着層〕
 接着層15は、腐食防止層14と紫外線吸収層16の接着性を高めるために設けられている。
 接着層15は、高い接着性が得られるのであれば、アンカー層12と同様にして形成することができる。
(Adhesive layer)
The adhesive layer 15 is provided to improve the adhesion between the corrosion prevention layer 14 and the ultraviolet absorption layer 16.
The adhesive layer 15 can be formed in the same manner as the anchor layer 12 as long as high adhesiveness is obtained.
 〔紫外線吸収層〕
 紫外線吸収層16は、親水性層17を透過した太陽光の紫外線による各層の劣化を防止するために設けられている。
 紫外線吸収層16は、太陽光反射ミラー10の可撓性及び耐候性を高め、軽量化を図る観点から、紫外線吸収基を有するか、紫外線吸収剤を含有するアクリル樹脂層であることが好ましい。
[UV absorbing layer]
The ultraviolet absorption layer 16 is provided in order to prevent deterioration of each layer due to ultraviolet rays of sunlight transmitted through the hydrophilic layer 17.
The ultraviolet absorbing layer 16 is preferably an acrylic resin layer having an ultraviolet absorbing group or containing an ultraviolet absorber from the viewpoint of increasing the flexibility and weather resistance of the sunlight reflecting mirror 10 and reducing the weight.
 紫外線吸収層16が含有できる紫外線吸収剤としては、例えばベンゾフェノン系、ベンゾトリアゾール系、サリチル酸フェニル系、トリアジン系、ベンゾエート系等の有機化合物、酸化チタン、酸化亜鉛、酸化セリウム、酸化鉄等の無機化合物が挙げられる。
 紫外線吸収剤のブリードアウトを低減するためには、分子量の1000以上の高分子の紫外線吸収剤を用いることが好ましい。好ましくは、分子量1000~3000の範囲内である。
Examples of the ultraviolet absorber that can be contained in the ultraviolet absorbing layer 16 include organic compounds such as benzophenone, benzotriazole, phenyl salicylate, triazine, and benzoate, and inorganic compounds such as titanium oxide, zinc oxide, cerium oxide, and iron oxide. Is mentioned.
In order to reduce the bleeding out of the ultraviolet absorber, it is preferable to use a high molecular weight ultraviolet absorber having a molecular weight of 1000 or more. Preferably, the molecular weight is in the range of 1000 to 3000.
 ベンゾフェノン系紫外線吸収剤としては、2,4-ジヒドロキシ-ベンゾフェノン、2-ヒドロキシ-4-メトキシ-ベンゾフェノン、2-ヒドロキシ-4-n-オクトキシ-ベンゾフェノン、2-ヒドロキシ-4-ドデシロキシ-ベンゾフェノン、2-ヒドロキシ-4-オクタデシロキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシ-ベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシ-ベンゾフェノン、2,2′,4,4′-テトラヒドロキシ-ベンゾフェノン等が挙げられる。 Examples of the benzophenone ultraviolet absorber include 2,4-dihydroxy-benzophenone, 2-hydroxy-4-methoxy-benzophenone, 2-hydroxy-4-n-octoxy-benzophenone, 2-hydroxy-4-dodecyloxy-benzophenone, 2- Hydroxy-4-octadecyloxy-benzophenone, 2,2'-dihydroxy-4-methoxy-benzophenone, 2,2'-dihydroxy-4,4'-dimethoxy-benzophenone, 2,2 ', 4,4'-tetra And hydroxy-benzophenone.
 ベンゾトリアゾール系紫外線吸収剤の例としては、2-(2′-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-t-ブチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-t-ブチル-5′-メチルフェニル)ベンゾトリアゾール、2,2′-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール](分子量659;市販品の例としては、ADEKA社製のLA31)、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(分子量447.6;市販品の例としてはBASFジャパン社製のチヌビン234)等が挙げられる。 Examples of benzotriazole ultraviolet absorbers include 2- (2'-hydroxy-5-methylphenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-t-butylphenyl) benzotriazole 2- (2'-hydroxy-3'-t-butyl-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [6- (2H-benzotriazol-2-yl) -4- (1, 1,3,3-tetramethylbutyl) phenol] (molecular weight 659; examples of commercially available products are LA31 manufactured by ADEKA), 2- (2H-benzotriazol-2-yl) -4,6-bis (1 -Methyl-1-phenylethyl) phenol (molecular weight 447.6; an example of a commercially available product is Tinuvin 234 manufactured by BASF Japan Ltd.).
 サリチル酸フェニル系紫外線吸収剤としては、フェニルサルチレート、2-4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート等が挙げられる。ヒンダードアミン系紫外線吸収剤としては、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート等が挙げられる。 Examples of the phenyl salicylate ultraviolet absorber include phenylsalicylate, 2-4-di-t-butylphenyl-3,5-di-t-butyl-4-hydroxybenzoate, and the like. Examples of the hindered amine ultraviolet absorber include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate.
 トリアジン系紫外線吸収剤としては、例えば2,4-ジフェニル-6-(2-ヒドロキシ-4-メトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-エトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-プロポキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ブトキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ヘキシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-オクチルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ドデシルオキシフェニル)-1,3,5-トリアジン、2,4-ジフェニル-6-(2-ヒドロキシ-4-ベンジルオキシフェニル)-1,3,5-トリアジン、〔2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシル)オキシフェノール〕(商品名チヌビン1577FF、BASFジャパン社製)、〔2-[4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール〕(商品名CYASORB UV-1164、サイテックインダストリーズ社製)等が挙げられる。 Examples of triazine ultraviolet absorbers include 2,4-diphenyl-6- (2-hydroxy-4-methoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4). -Ethoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4-propoxyphenyl) -1,3,5-triazine, 2,4-diphenyl- (2-hydroxy-4) -Butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-butoxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2 -Hydroxy-4-hexyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-octyloxyphenyl) -1,3,5- Liazine, 2,4-diphenyl-6- (2-hydroxy-4-dodecyloxyphenyl) -1,3,5-triazine, 2,4-diphenyl-6- (2-hydroxy-4-benzyloxyphenyl)- 1,3,5-triazine, [2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyl) oxyphenol] (trade name Tinuvin 1577FF, manufactured by BASF Japan Ltd.) , [2- [4,6-bis (2,4dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol] (trade name CYASORB UV-1164, Cytec Industries, Inc. Manufactured) and the like.
 また、上記ベンゾエート系紫外線吸収剤の例としては、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(分子量438.7;市販品の例としては住友化学社製のSumisorb400)等が挙げられる。 Examples of the benzoate-based ultraviolet absorber include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (molecular weight 438.7; examples of commercially available products) Sumisorb 400) manufactured by Sumitomo Chemical Co., Ltd.
 なお、上記紫外線吸収剤はそれぞれ、必要に応じてそれらの2種以上を用いることもできる。また、必要により、上記紫外線吸収剤以外の紫外線吸収剤、例えばサリチル酸誘導体、置換アクリロニトリル、ニッケル錯体、ベンゾフェノン系紫外線吸収剤、トリアジン系紫外線吸収剤等を含有させることもできる。 In addition, each of the above ultraviolet absorbers may be used in combination of two or more thereof as necessary. Further, if necessary, an ultraviolet absorber other than the above-described ultraviolet absorber, for example, a salicylic acid derivative, a substituted acrylonitrile, a nickel complex, a benzophenone-based ultraviolet absorber, a triazine-based ultraviolet absorber, or the like can be contained.
 紫外線吸収層16の紫外線吸収剤の含有量は、0.1~20.0質量%の範囲内であることが好ましい。より好ましくは0.25~15.00質量%の範囲内であり、さらに好ましくは0.5~10.0質量%の範囲内である。
 0.1質量%以上であれば密着性が良好であり、20質量%以下であれば耐候性が良好である。
The content of the ultraviolet absorber in the ultraviolet absorbing layer 16 is preferably in the range of 0.1 to 20.0 mass%. More preferably, it is in the range of 0.25 to 15.00% by mass, and still more preferably in the range of 0.5 to 10.0% by mass.
If it is 0.1 mass% or more, adhesiveness is favorable, and if it is 20 mass% or less, weather resistance is favorable.
 紫外線吸収層16の厚さは、20~150μmの範囲であることが好ましく、より好ましくは40~100μmの範囲内である。この範囲内であれば、入射光の透過率を向上させ、太陽光反射ミラー10の表面に適度な表面粗さを付与することができる。 The thickness of the ultraviolet absorbing layer 16 is preferably in the range of 20 to 150 μm, more preferably in the range of 40 to 100 μm. Within this range, the transmittance of incident light can be improved, and an appropriate surface roughness can be imparted to the surface of the solar reflective mirror 10.
 紫外線吸収層16に用いることができるアクリル樹脂としては、メタクリル樹脂が好ましい。メタクリル樹脂は、メタクリル酸エステルを主体とする重合体であり、メタクリル酸エステルの単独重合体であってもよいし、50質量%以上のメタクリル酸エステルと、50質量%未満の他の単量体との共重合体であってもよい。ここで、メタクリル酸エステルとしては、通常、メタクリル酸のアルキルエステルが用いられる。特に好ましく用いられるメタクリル樹脂は、ポリメタクリル酸メチル樹脂(PMMA)である。 As the acrylic resin that can be used for the ultraviolet absorbing layer 16, a methacrylic resin is preferable. The methacrylic resin is a polymer mainly composed of methacrylic acid ester, and may be a homopolymer of methacrylic acid ester, 50% by mass or more of methacrylic acid ester, and other monomers less than 50% by mass. And a copolymer thereof. Here, as the methacrylic acid ester, an alkyl ester of methacrylic acid is usually used. A particularly preferred methacrylic resin is polymethyl methacrylate resin (PMMA).
 メタクリル樹脂は、太陽光反射ミラー10の耐熱性を得る観点から、ガラス転移温度が40℃以上であることが好ましく、60℃以上であることがより好ましい。このガラス転移温度は、単量体の種類やその割合を調整することにより、適宜設定することができる。 From the viewpoint of obtaining heat resistance of the solar reflective mirror 10, the methacrylic resin preferably has a glass transition temperature of 40 ° C or higher, more preferably 60 ° C or higher. This glass transition temperature can be appropriately set by adjusting the type of monomer and the ratio thereof.
 紫外線吸収層16は、腐食防止層14と同様の酸化防止剤を含有することもできる。また、酸化防止剤に光安定剤を併用してもよい。酸化防止剤により、溶融成膜時のアクリル樹脂の劣化を防止することができる。成膜後も酸化防止剤がラジカルを捕捉することから、アクリル樹脂層の劣化を防止できる。 The ultraviolet absorbing layer 16 can also contain the same antioxidant as the corrosion preventing layer 14. Further, a light stabilizer may be used in combination with the antioxidant. The antioxidant can prevent deterioration of the acrylic resin during melt film formation. Since the antioxidant captures radicals even after film formation, deterioration of the acrylic resin layer can be prevented.
 〔親水性層〕
 親水性層17は、太陽光反射ミラー10の最表面に設けられている。よって、上述したように親水性層17の表面の水との接触角が30°以下であり、好ましくは20°以下である。
 水との接触角(°)は、JIS-R3257に準拠して、温度23℃、相対湿度55%RHの環境下において、親水性層17上に3μLの水を滴下して30秒後に接触角計DM300(共和界面化学社製)を用いて測定することができる。測定された接触角が小さいほど、親水性が高いことを示す。
[Hydrophilic layer]
The hydrophilic layer 17 is provided on the outermost surface of the sunlight reflecting mirror 10. Therefore, as described above, the contact angle with water on the surface of the hydrophilic layer 17 is 30 ° or less, and preferably 20 ° or less.
The contact angle with water (°) was 30 seconds after 3 μL of water was dropped on the hydrophilic layer 17 in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH in accordance with JIS-R3257. It can be measured using a total of DM300 (manufactured by Kyowa Interface Chemical Co., Ltd.). It shows that hydrophilic property is so high that the measured contact angle is small.
 親水性層17は、表面の水との接触角を30°以下とするため、親水化剤を含有することができる。
 使用できる親水化剤としては、金属元素を含む化合物が挙げられ、例えばSi、Ti、Al、Sn、Fe、Zn、Sb、Zr等の金属元素を含む酸化物、窒化物、炭化物等が挙げられる。
 より親水性を高めるため、親水性層17は、上記化合物に加えて、シリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子等の金属粒子を含有することもできる。金属粒子を用いることにより、表面粗さが大きくなり親水性が向上して、接触角が30°以下の親水性層17を形成することができる。また、表面粗さが大きいと、親水性層17の表面に汚れが接触しづらくなり、液膜が親水性層17と表面の界面に浸入して汚れを除去しやすくなる。
 また、親水性層17は、シリケート化合物、Si-N結合を基本骨格とするポリシラザン等を含有してもよい。併用できるシリケート化合物としては、例えば、テトラヒドロキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラエトキシオキシシラン等が挙げられる。
The hydrophilic layer 17 can contain a hydrophilizing agent in order to make the contact angle with water on the surface 30 ° or less.
Examples of the hydrophilizing agent that can be used include compounds containing metal elements, such as oxides, nitrides and carbides containing metal elements such as Si, Ti, Al, Sn, Fe, Zn, Sb, and Zr. .
In order to enhance the hydrophilicity, the hydrophilic layer 17 can also contain metal particles such as silica particles, alumina particles, titania particles, zirconia particles, etc., in addition to the above compounds. By using metal particles, the surface roughness is increased, the hydrophilicity is improved, and the hydrophilic layer 17 having a contact angle of 30 ° or less can be formed. Further, if the surface roughness is large, it becomes difficult for dirt to come into contact with the surface of the hydrophilic layer 17, and the liquid film penetrates into the interface between the hydrophilic layer 17 and the surface, and the dirt is easily removed.
The hydrophilic layer 17 may contain a silicate compound, polysilazane having a Si—N bond as a basic skeleton, and the like. Examples of the silicate compound that can be used in combination include tetrahydroxysilane, tetramethoxysilane, tetraethoxysilane, and tetraethoxyoxysilane.
 親水性層17は、親水化剤として、太陽光によって親水性化する光触媒を含有する層であることもできる。光触媒は、伝導帯と価電子帯間のバンドギャップよりも大きいエネルギーの光が照射されると、価電子帯中の電子が励起し、伝導電子と正孔を生成する物質である。
 光触媒を含有することにより、太陽光反射ミラー10の表面に付着した汚れの分解作用を得ることができ、さらに高い親水性も得ることができる。
The hydrophilic layer 17 can also be a layer containing a photocatalyst that is rendered hydrophilic by sunlight as a hydrophilizing agent. A photocatalyst is a substance that, when irradiated with light having energy larger than the band gap between the conduction band and the valence band, the electrons in the valence band are excited to generate conduction electrons and holes.
By containing the photocatalyst, it is possible to obtain a decomposition action of dirt attached to the surface of the sunlight reflecting mirror 10, and it is possible to obtain higher hydrophilicity.
 親水性層17が含有できる光触媒としては、例えばアナターゼ型の酸化チタン(バンドギャップ;3.2eV)、ルチル型の酸化チタン(バンドギャップ;3.0eV)、酸化亜鉛(バンドギャップ;3.2eV)、酸化スズ(バンドギャップ;3.5eV)、酸化タングステン(バンドギャップ;2.5eV)、タンタル酸カリウム(バンドギャップ;3.4eV)、チタン酸ストロンチウム(バンドギャップ;3.2eV)、酸化ジルコニウム(バンドギャップ;5.0eV)、酸化ニオブ(バンドギャップ;3.4eV)等が挙げられる。なお、光触媒のバンドギャップは、光触媒の結晶構造、精製度等によって分布を有するため、実際に測定されるバッドギャップは上述したバンドギャップと±0.2eV程度の差がある場合がある。 Examples of the photocatalyst that can be contained in the hydrophilic layer 17 include anatase-type titanium oxide (band gap; 3.2 eV), rutile-type titanium oxide (band gap; 3.0 eV), and zinc oxide (band gap; 3.2 eV). , Tin oxide (band gap; 3.5 eV), tungsten oxide (band gap; 2.5 eV), potassium tantalate (band gap; 3.4 eV), strontium titanate (band gap; 3.2 eV), zirconium oxide ( Band gap; 5.0 eV), niobium oxide (band gap; 3.4 eV), and the like. Note that since the band gap of the photocatalyst has a distribution depending on the crystal structure of the photocatalyst, the degree of purification, and the like, the actually measured bad gap may have a difference of about ± 0.2 eV from the band gap described above.
 上記光触媒のバンドギャップは、2.4~5.2eVの範囲内にあることが好ましい。
 バンドギャップが5.2eV以下の光触媒を用いることにより、大気圏で吸収、散乱又は減衰することなく、地球上に到達する太陽光のエネルギーによって光触媒を励起することができる。また、2.4eV以上の光触媒を用いることにより、可視光の吸収による太陽光の反射率の低下を抑え、発電効率の低下を抑えることができる。できるだけ短波長側の光を吸収し励起する光触媒を利用することにより、発電に主に利用される可視光の波長領域だけでなく、紫外光の波長領域の光エネルギーも利用することが可能となり、発電効率が向上する。
The band gap of the photocatalyst is preferably in the range of 2.4 to 5.2 eV.
By using a photocatalyst having a band gap of 5.2 eV or less, the photocatalyst can be excited by the energy of sunlight reaching the earth without being absorbed, scattered or attenuated in the atmosphere. In addition, by using a photocatalyst of 2.4 eV or more, it is possible to suppress a decrease in solar reflectance due to absorption of visible light and to suppress a decrease in power generation efficiency. By using a photocatalyst that absorbs and excites light on the short wavelength side as much as possible, it becomes possible to use not only the wavelength range of visible light mainly used for power generation, but also the optical energy in the wavelength range of ultraviolet light, Power generation efficiency is improved.
 親水性層17は、光触媒活性を高めるため、Pt、Pd、Ru、Rh、Ir、Os等の白金族金属を少量含有することができる。
 また、親水性層17は、光触媒とともに、上述したシリカ粒子、アルミナ粒子、チタニア粒子、ジルコニア粒子等の金属粒子を含有することができる。また、シリケート化合物、Si-N結合を基本骨格とするポリシラザン等を併用してもよい。
The hydrophilic layer 17 can contain a small amount of a platinum group metal such as Pt, Pd, Ru, Rh, Ir, Os, etc. in order to enhance the photocatalytic activity.
Moreover, the hydrophilic layer 17 can contain metal particles, such as the silica particle mentioned above, an alumina particle, a titania particle, a zirconia particle, with a photocatalyst. A silicate compound, polysilazane having a Si—N bond as a basic skeleton, or the like may be used in combination.
 光触媒を含有する親水性層17は、光触媒粒子の分散液を従来公知のコート法により塗布することにより形成することができる。
 樹脂フィルム11の耐熱性が高い場合、光触媒を含有する親水性層17は、ゾル塗布焼成法、有機チタネート法、真空成膜法等によって形成することもできる。
 ゾル塗布焼成法は、アナターゼ型酸化チタンゾルを、グラビアコート法、リバースコート法、ダイコート法等のコート法により塗布した後、焼成する方法である。
 有機チタネート法は、有機チタネートを部分的又は完全に加水分解を進行させて得られた塗布液を、グラビアコート法等の従来公知のコート法により塗布し、乾燥させる方法である。乾燥により、有機チタネートの加水分解が完結して水酸化チタンが生成し、水酸化チタンの脱水縮重合により無定型酸化チタンの層が形成される。その後、アナターゼの結晶化温度以上の温度で焼成し、無定型酸化チタンをアナターゼ型酸化チタンに相転移させる。
 真空成膜法は、真空蒸着法、スパッター法等により無定型酸化チタン層を形成する方法である。その後、焼成によりアナターゼ型酸化チタンに相転移させる。
The hydrophilic layer 17 containing a photocatalyst can be formed by applying a dispersion of photocatalyst particles by a conventionally known coating method.
When the heat resistance of the resin film 11 is high, the hydrophilic layer 17 containing a photocatalyst can be formed by a sol coating baking method, an organic titanate method, a vacuum film forming method, or the like.
The sol coating and baking method is a method in which anatase-type titanium oxide sol is applied by a coating method such as a gravure coating method, a reverse coating method, or a die coating method, followed by baking.
The organic titanate method is a method in which a coating solution obtained by partially or completely hydrolyzing an organic titanate is applied by a conventionally known coating method such as a gravure coating method and dried. By drying, hydrolysis of the organic titanate is completed to produce titanium hydroxide, and an amorphous titanium oxide layer is formed by dehydration condensation polymerization of titanium hydroxide. Thereafter, firing is performed at a temperature equal to or higher than the crystallization temperature of anatase, and amorphous titanium oxide is phase-transformed into anatase-type titanium oxide.
The vacuum film formation method is a method of forming an amorphous titanium oxide layer by a vacuum deposition method, a sputtering method, or the like. Thereafter, phase transition is made to anatase-type titanium oxide by firing.
 親水性層17は、水との接触角が30°以下となる親水性を示すのであれば、基材表面にプラズマ処理、エッチング処理等の表面処理が施された層であってもよい。 The hydrophilic layer 17 may be a layer in which a surface treatment such as a plasma treatment or an etching treatment is performed on the surface of the substrate as long as the hydrophilic layer 17 exhibits hydrophilicity such that the contact angle with water is 30 ° or less.
 なお、親水性層17と紫外線吸収層16間に、無機コート層が設けられていてもよい。親水性層17が後述する光触媒を含有する場合、無機コート層によって、紫外線吸収層16が含有するアクリル樹脂等の有機化合物が光触媒によって分解されることを防ぐことができる。
 この無機コート層の材料としては、例えばテトラエトキシシラン等のシリケート化合物、メタノール等のアルコールを含有する層等が挙げられる。また、無機コート層は、親水性層17と紫外線吸収層16の接着性を高めるため、親水性層の構成成分又は紫外線吸収層の構成成分を含有することができる。無機コート層は単層であっても複数層であってもよい。
An inorganic coat layer may be provided between the hydrophilic layer 17 and the ultraviolet absorption layer 16. When the hydrophilic layer 17 contains a photocatalyst described later, the inorganic coating layer can prevent an organic compound such as an acrylic resin contained in the ultraviolet absorbing layer 16 from being decomposed by the photocatalyst.
Examples of the material for the inorganic coating layer include a silicate compound such as tetraethoxysilane and a layer containing an alcohol such as methanol. Moreover, in order to improve the adhesiveness of the hydrophilic layer 17 and the ultraviolet absorption layer 16, an inorganic coat layer can contain the structural component of a hydrophilic layer, or the structural component of an ultraviolet absorption layer. The inorganic coat layer may be a single layer or a plurality of layers.
 親水性層17の層厚は、親水性層17の屈折率、含有成分、太陽光反射ミラー10に入射する太陽光のうち、発電に利用する光の波長範囲等に応じて、好適な層厚を選択すればよい。できるだけ広い波長範囲を利用することが発電効率の向上につながるため、親水性層17による光吸収を考慮すると、層厚は薄いことが好ましい。親水性を発現するのは極表層であるため、数nm程度の層厚があれば、液膜の形成に必要な親水性を発現することができる。
 光触媒粒子を用いて親水性層17を形成する場合は、光触媒粒子の保持及び脱落防止の観点から、少なくとも光触媒粒子の粒子径の1/2程度以上の層厚が必要であり、例えば平均粒子径が10nmであれば5nm以上の層厚が必要である。光触媒を含有する親水性層17を蒸着法、スパッター法等により形成する場合は、光触媒の機能を発現するための層厚、すなわち結晶構造が成立する層厚が必要であり、光触媒粒子を含有する場合と同様に5nm以上の層厚が必要である。
 上記の観点から、一般的には、親水性層17の層厚を、5~300nmの範囲内で選択することができる。
The layer thickness of the hydrophilic layer 17 is a suitable layer thickness depending on the refractive index of the hydrophilic layer 17, the contained components, the wavelength range of light used for power generation among the sunlight incident on the sunlight reflecting mirror 10, and the like. Should be selected. Since use of a wavelength range as wide as possible leads to improvement of power generation efficiency, it is preferable that the layer thickness is thin in consideration of light absorption by the hydrophilic layer 17. Since it is the extreme surface layer that expresses hydrophilicity, if it has a layer thickness of about several nanometers, hydrophilicity necessary for forming a liquid film can be expressed.
In the case of forming the hydrophilic layer 17 using photocatalyst particles, a layer thickness of at least about 1/2 of the particle diameter of the photocatalyst particles is necessary from the viewpoint of retention of the photocatalyst particles and prevention of falling off. If the thickness is 10 nm, a layer thickness of 5 nm or more is necessary. When the hydrophilic layer 17 containing the photocatalyst is formed by vapor deposition, sputtering, or the like, a layer thickness for expressing the photocatalytic function, that is, a layer thickness that establishes a crystal structure is required, and the photocatalyst particles are contained. As in the case, a layer thickness of 5 nm or more is necessary.
From the above viewpoint, generally, the thickness of the hydrophilic layer 17 can be selected within a range of 5 to 300 nm.
 親水性層17は、界面活性剤、レベリング剤、帯電防止剤等を含有することもできる。
 界面活性剤は、親水性層17の表面の平滑化に有効である。使用できる界面活性剤の具体例としては、前述した水を含む液体が含有できる界面活性剤と同様の例が挙げられる。
 レベリング剤は、表面の小さな凹凸低減に効果的である。レベリング剤としては、例えば、シリコーン系レベリング剤として、ジメチルポリシロキサン-ポリオキシアルキレン共重合体(例えば、東レダウコーニング(株)製のSH190)が好適である。
 帯電防止剤は、フィルムミラーの防汚性を向上させることに有効である。帯電防止剤により、親水性層17が導電性を持つことにより、フィルムミラーユニット表面の電気抵抗値を小さくすることが可能となる。また、親水性層17に隣接する層、あるいは親水性層17との間に極薄い層を介して帯電防止層を形成することによってもフィルムミラーユニット表面の電気抵抗値を小さくし、防汚性を向上させることが可能である。
The hydrophilic layer 17 can also contain a surfactant, a leveling agent, an antistatic agent and the like.
The surfactant is effective for smoothing the surface of the hydrophilic layer 17. Specific examples of the surfactant that can be used include the same examples as the surfactant that can contain the above-described liquid containing water.
Leveling agents are effective in reducing small irregularities on the surface. As the leveling agent, for example, a dimethylpolysiloxane-polyoxyalkylene copolymer (for example, SH190 manufactured by Toray Dow Corning Co., Ltd.) is suitable as the silicone leveling agent.
The antistatic agent is effective in improving the antifouling property of the film mirror. When the hydrophilic layer 17 has conductivity due to the antistatic agent, the electric resistance value on the surface of the film mirror unit can be reduced. Further, by forming an antistatic layer through a very thin layer between the layer adjacent to the hydrophilic layer 17 or the hydrophilic layer 17, the electrical resistance value on the surface of the film mirror unit can be reduced, and the antifouling property can be obtained. It is possible to improve.
 〔その他の層〕
 太陽光反射ミラー10は、上述した各層に限定されず、その他の層を備えることもできる。
 例えば、太陽光反射ミラー10は、各層の損傷を防止するため、紫外線吸収層16と親水性層17間にハードコート層を備えることもできる。
 ハードコート層の材料としては、アクリル系樹脂、ウレタン系樹脂、メラミン系樹脂、エポキシ系樹脂、有機シリケート化合物、シリコーン系樹脂等を用いることができる。硬度と耐久性の観点からは、シリコーン系樹脂又はアクリル系樹脂が好ましい。
 ハードコート層は、上述した腐食防止剤、酸化防止剤、光安定剤、界面活性剤、レベリング剤、帯電防止剤等の添加剤を含有していていもよい。
[Other layers]
The sunlight reflecting mirror 10 is not limited to the above-described layers, and may include other layers.
For example, the solar reflective mirror 10 can include a hard coat layer between the ultraviolet absorbing layer 16 and the hydrophilic layer 17 in order to prevent damage to each layer.
As a material for the hard coat layer, acrylic resin, urethane resin, melamine resin, epoxy resin, organic silicate compound, silicone resin, and the like can be used. From the viewpoint of hardness and durability, a silicone resin or an acrylic resin is preferable.
The hard coat layer may contain additives such as the above-described corrosion inhibitors, antioxidants, light stabilizers, surfactants, leveling agents, and antistatic agents.
〔太陽熱発電装置〕
 本発明の太陽熱発電装置は、本発明の太陽光反射ミラーユニットを具備するのであれば、トラフ型、フレネル型、タワー型等のいずれの型の太陽熱発電装置であってもよい。
 以下、本発明の太陽熱発電装置の一実施の形態として、上記太陽光反射ミラーユニット1を具備するトラフ型の太陽熱発電装置を説明する。
[Solar thermal power generator]
The solar thermal power generation device of the present invention may be any type of solar thermal power generation device such as a trough type, a Fresnel type, or a tower type as long as it includes the solar light reflecting mirror unit of the present invention.
Hereinafter, as an embodiment of the solar thermal power generation apparatus of the present invention, a trough type solar thermal power generation apparatus including the solar reflective mirror unit 1 will be described.
 図3は、トラフ型の太陽熱発電装置100の概略構成を示している。
 太陽熱発電装置100は、図3に示すように、太陽光反射ミラーユニット1(太陽光反射ミラー10、清浄化部20)、支持部材50、角度調整部60、蓄熱タンク71、熱交換器72、発電機73、集熱管80等を備えて構成されている。
FIG. 3 shows a schematic configuration of the trough type solar thermal power generation apparatus 100.
As shown in FIG. 3, the solar thermal power generation apparatus 100 includes a sunlight reflecting mirror unit 1 (sunlight reflecting mirror 10 and cleaning unit 20), a support member 50, an angle adjusting unit 60, a heat storage tank 71, a heat exchanger 72, A generator 73, a heat collecting tube 80, and the like are provided.
 太陽熱発電装置100は、曲面状の太陽光反射ミラー10により太陽光を反射させて集熱管80に集光し、集熱管80内の熱媒を加熱して熱交換器により蒸気を生成し、発電を行う。
 図3においては、1枚の太陽光反射ミラー10のみを示しているが、通常は数千単位の太陽光反射ミラー10が設置され、各太陽光反射ミラー10に対応して設けられた集熱管80が蓄熱タンク71に接続されている。
The solar power generation apparatus 100 reflects sunlight by the curved sunlight reflecting mirror 10 and condenses it on the heat collecting tube 80, heats the heat medium in the heat collecting tube 80, generates steam by a heat exchanger, and generates power. I do.
In FIG. 3, only one solar reflective mirror 10 is shown, but usually, several thousand units of solar reflective mirrors 10 are installed, and heat collecting tubes provided corresponding to the respective solar reflective mirrors 10. 80 is connected to the heat storage tank 71.
 弓形の支持部材50は、円弧部分の支持部材51が太陽光反射ミラー10を曲面状に支持し、弦部分の支持部材52が集熱管80を支持している。
 太陽光反射ミラー10及び集熱管80の配置位置は、太陽光反射ミラー10により反射された太陽光が集熱管80に集光するように、調整されている。
In the arcuate support member 50, the support member 51 in the arc portion supports the solar light reflecting mirror 10 in a curved shape, and the support member 52 in the string portion supports the heat collecting tube 80.
The arrangement positions of the sunlight reflecting mirror 10 and the heat collecting tube 80 are adjusted so that the sunlight reflected by the sunlight reflecting mirror 10 is condensed on the heat collecting tube 80.
 太陽熱発電装置100において、太陽光反射ミラー10の上端及び下端には、それぞれ供給管23及び吸収体24が取り付けられている。清浄化部20は、タンク21中の水を含む液体を、ポンプPにより2つの供給管23に移送し、供給管23及び吸収体24により太陽光反射ミラー10の表面に液体を供給することができる。清浄化部20は、供給管23及び移送管22のいずれか又は両方に開口弁を設けて開閉することにより、どちらか一方のみにより液体を供給することもできる。太陽光反射ミラー10のミラー面の傾斜角度は太陽光の入射角度に応じて調整されるため、清浄化部20は2つの供給管23のうち、重力方向上側に位置する供給管23に水を含む液体を移送する。 In the solar thermal power generation apparatus 100, a supply pipe 23 and an absorber 24 are attached to the upper end and the lower end of the sunlight reflecting mirror 10, respectively. The cleaning unit 20 transfers the liquid containing water in the tank 21 to the two supply pipes 23 by the pump P, and supplies the liquid to the surface of the sunlight reflecting mirror 10 by the supply pipe 23 and the absorber 24. it can. The cleaning unit 20 can also supply the liquid by only one of the supply pipe 23 and the transfer pipe 22 by providing an open valve on or both of them to open and close. Since the inclination angle of the mirror surface of the sunlight reflecting mirror 10 is adjusted according to the incident angle of sunlight, the cleaning unit 20 supplies water to the supply pipe 23 located on the upper side in the gravity direction of the two supply pipes 23. Transport liquid containing.
 集熱管80は、外管81と内管82の二重構造を有し、内管82に供給された熱媒を移送する。熱媒は、集熱管80内において、太陽光反射ミラー10により反射された太陽光により加熱された後、蓄熱タンク71へ移送される。発電時には、蓄熱タンク71から熱交換器72へと移送された熱媒により蒸気を発生させ、発電機73が蒸気によりタービンを回転させて電気エネルギーを生成する。
 太陽光の吸収率を高めるため、外管81が透明なガラス管であり、内管82の外表面が黒色に着色されていることが好ましい。また、外管81と内管82間が真空断熱空間であると、熱媒からの熱の損失を減らすことができる。
The heat collection tube 80 has a double structure of an outer tube 81 and an inner tube 82, and transfers the heat medium supplied to the inner tube 82. The heat medium is heated by the sunlight reflected by the sunlight reflecting mirror 10 in the heat collecting tube 80 and then transferred to the heat storage tank 71. During power generation, steam is generated by the heat medium transferred from the heat storage tank 71 to the heat exchanger 72, and the generator 73 rotates the turbine with the steam to generate electric energy.
In order to increase the absorption rate of sunlight, the outer tube 81 is preferably a transparent glass tube, and the outer surface of the inner tube 82 is preferably colored black. Further, if the space between the outer tube 81 and the inner tube 82 is a vacuum heat insulating space, loss of heat from the heat medium can be reduced.
 角度調整部60は、できるだけ多くの太陽光を集光できるように、太陽光の入射方向に合わせて、太陽光反射ミラー10のミラー面の傾斜角度を調整する。
 具体的には、角度調整部60は、太陽光反射ミラー10の左右方向両端の支持部材50にそれぞれ取り付けられた回転軸61R及び61Lを中心に回転させる。回転軸61Rにはモーター62及び減速機63が取り付けられ、回転軸61Lは軸受64によって回転自在に支持されている。角度調整部60は、制御装置65によりモーター63及び減速機64を駆動し、太陽光反射ミラー10の回転角度を制御する。制御装置65は、支持部材50に取り付けられた太陽光センサー66により太陽光の検出信号を取得し、太陽光の光量が最大となるように、回転角度を決定する。
The angle adjustment unit 60 adjusts the tilt angle of the mirror surface of the sunlight reflecting mirror 10 in accordance with the incident direction of sunlight so that as much sunlight as possible can be collected.
Specifically, the angle adjustment unit 60 rotates around the rotation shafts 61R and 61L attached to the support members 50 at both ends in the left-right direction of the sunlight reflecting mirror 10, respectively. A motor 62 and a speed reducer 63 are attached to the rotation shaft 61R, and the rotation shaft 61L is rotatably supported by a bearing 64. The angle adjusting unit 60 drives the motor 63 and the speed reducer 64 by the control device 65 to control the rotation angle of the sunlight reflecting mirror 10. The control device 65 acquires a sunlight detection signal by the sunlight sensor 66 attached to the support member 50, and determines the rotation angle so that the amount of sunlight is maximized.
 以下、実施例をあげて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示が用いられるが、特に断りが無い限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless there is particular notice, it represents "mass part" or "mass%".
〔実施例I〕
〔太陽光反射ミラー1〕
 2軸延伸により得られた厚さ100μmのポリエチレンテレフタレートフィルム(以下、PETフィルムという。)の片面に、厚さ0.1μmのアンカー層を形成した。アンカー層は、ポリエステル系樹脂であるエスペル9940A(日立化成工業株式会社製)、メラミン樹脂、ジイソシアネート架橋剤であるトリレンジイソシアネート及びヘキサメチレンジイソシアネート(三井化学ファイン株式会社製)を、それぞれ20:1:1:2の質量比で混合した樹脂を、グラビアコート法により塗布して形成した。
 次に、銀を用いて真空蒸着法により厚さ80nmの反射層を形成した。
Example I
[Sunlight reflection mirror 1]
An anchor layer having a thickness of 0.1 μm was formed on one side of a 100 μm-thick polyethylene terephthalate film (hereinafter referred to as PET film) obtained by biaxial stretching. The anchor layer is made of polyester resin Esper 9940A (Hitachi Chemical Industry Co., Ltd.), melamine resin, diisocyanate crosslinking agent tolylene diisocyanate and hexamethylene diisocyanate (Mitsui Chemicals Fine Co., Ltd.), respectively 20: 1: A resin mixed at a mass ratio of 1: 2 was applied and formed by a gravure coating method.
Next, a reflective layer having a thickness of 80 nm was formed by vacuum evaporation using silver.
 上記反射層上に、腐食防止層の塗布液をグラビアコート法により塗布して、厚さ0.1μmの腐食防止層を形成した。塗布液としては、エスペル9940A及びトリレンジイソシアネートをそれぞれ10:2の樹脂固形分比率(質量比)で混合した樹脂中に、樹脂固形分に対して10質量%のTinuvin234(チバ・ジャパン社製)を、腐食防止剤として添加して調製した液を用いた。 On the reflective layer, a corrosion prevention layer coating solution was applied by a gravure coating method to form a corrosion prevention layer having a thickness of 0.1 μm. As a coating solution, 10% by mass of Tinuvin 234 (manufactured by Ciba Japan Co., Ltd.) in a resin in which Esper 9940A and tolylene diisocyanate are mixed at a resin solid content ratio (mass ratio) of 10: 2, respectively. Was used as a corrosion inhibitor.
 次に、腐食防止層上に、ビニロール92T(アクリル樹脂接着剤、昭和高分子社製)を厚さ0.1μmの厚さで塗布して、アンカー層を形成した。当該アンカー層上に溶液流延法により成膜したアクリル樹脂フィルムを積層し、紫外線吸収層とした。紫外線吸収層の表面の算術平均粗さRaは0.1μmであり、層厚は50μmであった。 Next, on the corrosion prevention layer, vinylol 92T (acrylic resin adhesive, Showa Polymer Co., Ltd.) was applied to a thickness of 0.1 μm to form an anchor layer. An acrylic resin film formed by a solution casting method was laminated on the anchor layer to form an ultraviolet absorbing layer. The arithmetic average roughness Ra of the surface of the ultraviolet absorbing layer was 0.1 μm, and the layer thickness was 50 μm.
 次に、エタノール、イソプロピルアルコール及びメタノールをそれぞれ10:60:30の質量混合比で混合した溶媒中に、テトラエトキシシランを1質量%で添加して混合し、さらに1質量%の酢酸水溶液を0.3質量%添加して、無機コート層の塗布液を調製した。調製した塗布液を、ダイコート法により乾燥後の膜厚が100nmとなるように上記紫外線吸収層上に塗布し、無機コート層を形成した。さらに、当該無機コート層と同じ塗布液に平均粒径50nmのシリカ(SiO)粒子を1質量%分散させた分散液を無機コート層上に塗布し、親水性層を形成した。塗布時、乾燥後の膜厚が80nmとなるようにダイコート法により塗布し、太陽光反射ミラー1を製造した。 Next, in a solvent in which ethanol, isopropyl alcohol, and methanol are mixed at a mass mixing ratio of 10:60:30, tetraethoxysilane is added at 1% by mass, and further mixed with 1% by mass of acetic acid aqueous solution. .3% by mass was added to prepare an inorganic coating layer coating solution. The prepared coating solution was applied on the ultraviolet absorbing layer by a die coating method so that the film thickness after drying was 100 nm, thereby forming an inorganic coating layer. Further, a dispersion in which 1% by mass of silica (SiO 2 ) particles having an average particle diameter of 50 nm was dispersed in the same coating liquid as that of the inorganic coat layer was applied on the inorganic coat layer to form a hydrophilic layer. At the time of coating, the solar reflective mirror 1 was manufactured by coating by a die coating method so that the film thickness after drying was 80 nm.
〔太陽光反射ミラー2~7〕
 上記太陽光反射ミラー1の製造において、親水性層に用いられたシリカ粒子を下記表1の親水化剤の欄に示す光触媒粒子にそれぞれ代えたこと以外は、上記太陽光反射ミラー1と同様にして、各太陽光反射ミラー2~7を製造した。なお、下記表1において、酸化チタン粒子(TiO)のa型はアナターゼ型を示し、r型はルチル型を示している。
[Sunlight reflecting mirrors 2-7]
In the production of the solar reflective mirror 1, the same manner as the solar reflective mirror 1 except that the silica particles used in the hydrophilic layer were replaced with photocatalyst particles shown in the column of hydrophilizing agent in Table 1 below. Thus, each of the sunlight reflecting mirrors 2 to 7 was manufactured. In Table 1 below, the a type of the titanium oxide particles (TiO 2 ) indicates an anatase type, and the r type indicates a rutile type.
〔太陽光反射ミラー8及び9〕
 上記太陽光反射ミラー1の製造において、シリカ粒子をそれぞれ0.6及び0.8質量%分散させた分散液を用いて親水性層を形成したこと以外は、上記太陽光反射ミラー1と同様にして太陽光反射ミラー8及び9を製造した。
[Sunlight reflecting mirrors 8 and 9]
In the production of the solar reflective mirror 1, the same procedure as in the solar reflective mirror 1 except that a hydrophilic layer was formed using a dispersion in which silica particles were dispersed in an amount of 0.6 and 0.8% by mass, respectively. Thus, sunlight reflecting mirrors 8 and 9 were manufactured.
〔太陽光反射ミラー10及び11〕
 基材としてガラス板を用意し、当該ガラス板の片面に銀を用いて真空蒸着法により厚さ80nmの反射層を形成した。この反射層上に、太陽光反射ミラー1と同様にして腐食防止層を形成した。なお、ミラー面を湾曲させるため、平面状のガラス板を軟化点以上に加熱して湾曲させた後に冷却し、湾曲したガラス板の円周面の外側に反射層及び腐食防止層を形成した。
 次に、ガラス板のもう一方の片面を、CeO粒子(研磨剤)の水分散液を含ませた布で擦った後、ガラス板を水で洗い流し、ガラス板の表面に付着したCeO粒子とともに汚れを除去した。
 洗浄後の表面に、上記太陽光反射ミラー1と同様にして親水性層を形成し、太陽光反射ミラー10を製造した。
[Sunlight reflecting mirrors 10 and 11]
A glass plate was prepared as a base material, and a reflective layer having a thickness of 80 nm was formed on one side of the glass plate using silver by vacuum deposition. A corrosion prevention layer was formed on the reflective layer in the same manner as the solar light reflecting mirror 1. In order to bend the mirror surface, the flat glass plate was heated to be bent above the softening point and then cooled, and a reflection layer and a corrosion prevention layer were formed outside the circumferential surface of the curved glass plate.
Next, after rubbing the other surface of the glass plate with a cloth containing an aqueous dispersion of CeO 2 particles (abrasive), the glass plate was washed with water, and CeO 2 particles adhered to the surface of the glass plate. At the same time, the dirt was removed.
A hydrophilic layer was formed on the cleaned surface in the same manner as the sunlight reflecting mirror 1 to produce a sunlight reflecting mirror 10.
 上記太陽光反射ミラー10の製造において、親水性層に用いられたシリカ粒子を光触媒であるアナターゼ型の酸化チタン粒子に代えたこと以外は、上記太陽光反射ミラー10と同様にして太陽光反射ミラー11を製造した。 In the production of the solar reflective mirror 10, the solar reflective mirror is the same as the solar reflective mirror 10 except that the silica particles used in the hydrophilic layer are replaced with anatase-type titanium oxide particles as a photocatalyst. 11 was produced.
〔太陽光反射ミラー21及び22〕
 上記太陽光反射ミラー1の製造において、シリカ粒子を添加せずに親水性層を形成したこと以外は、太陽光反射ミラー1と同様にして太陽光反射ミラー21を製造した。
 上記太陽光反射ミラー10の製造において、親水性層を形成しなかったこと以外は、太陽光反射ミラー10と同様にして太陽光反射ミラー22を製造した。
[Sunlight reflecting mirrors 21 and 22]
In the production of the solar reflective mirror 1, the solar reflective mirror 21 was produced in the same manner as the solar reflective mirror 1 except that the hydrophilic layer was formed without adding silica particles.
In the production of the solar reflective mirror 10, the solar reflective mirror 22 was produced in the same manner as the solar reflective mirror 10, except that the hydrophilic layer was not formed.
〔太陽光反射ミラーユニット1~9〕
 上記太陽光反射ミラー1~9のPETフィルムのアンカー層が形成された面と反対側の面に、SE-6010(アクリル樹脂接着剤、昭和高分子社製)を塗布し、厚さ1μmの粘着層を形成した。この粘着層を介して、厚さ0.5mmの金属支持体(住友軽金属社製アルミ板)をPETフィルムに貼り付けた。その後、図3に示すように、太陽光反射ミラー1~9のミラー面を湾曲させて、支持部材に取り付けた。
[Sunlight reflecting mirror units 1 to 9]
SE-6010 (acrylic resin adhesive, manufactured by Showa Polymer Co., Ltd.) was applied to the surface of the sunlight reflecting mirrors 1 to 9 opposite to the surface on which the anchor layer of the PET film was formed, and an adhesive having a thickness of 1 μm. A layer was formed. A metal support (aluminum plate manufactured by Sumitomo Light Metal Co., Ltd.) having a thickness of 0.5 mm was attached to the PET film via this adhesive layer. Thereafter, as shown in FIG. 3, the mirror surfaces of the sunlight reflecting mirrors 1 to 9 were curved and attached to the support member.
 次に、各太陽光反射ミラー1~9の一端に、約10mmの均等な間隔で直径2mmφの開孔が設けられた供給管を取り付けた。さらに、タンクに市販のポンプを取り付けた後、ポンプに供給管を接続して、各太陽光反射ミラーユニット1~9を得た。タンクには、供給する液体として添加剤無しの100質量%の水を投入した。 Next, a supply pipe provided with openings having a diameter of 2 mmφ at equal intervals of about 10 mm was attached to one end of each of the sunlight reflecting mirrors 1 to 9. Furthermore, after attaching a commercially available pump to the tank, a supply pipe was connected to the pump to obtain each of the sunlight reflecting mirror units 1-9. The tank was charged with 100% by mass of water without additives as a liquid to be supplied.
〔太陽光反射ミラーユニット10及び11〕
 上記太陽光反射ミラー10及び11の腐食防止層上に、上記太陽光反射ミラーユニット1~9と同様にして粘着層を形成し、金属支持体を貼り付けた。その後、上記太陽光反射ミラーユニット1~9と同様にして、太陽光反射ミラー10及び11に支持部材を取り付け、さらに清浄化手段(供給管、ポンプ、タンク等)を設けて、太陽光反射ミラーユニット10及び11を得た。タンクには、供給する液体として添加剤無しの100質量%の水を投入した。
[Sunlight reflecting mirror units 10 and 11]
An adhesive layer was formed on the corrosion preventing layers of the solar reflective mirrors 10 and 11 in the same manner as the solar reflective mirror units 1 to 9, and a metal support was attached. Thereafter, in the same manner as the above-described sunlight reflecting mirror units 1 to 9, a supporting member is attached to the sunlight reflecting mirrors 10 and 11, and further, a cleaning means (supply pipe, pump, tank, etc.) is provided, and the sunlight reflecting mirror is provided. Units 10 and 11 were obtained. The tank was charged with 100% by mass of water without additives as a liquid to be supplied.
〔太陽光反射ミラーユニット12〕
 上記太陽光反射ミラーユニット2において、100質量%の水に代えて、1質量%のエタノールと99質量%の水からなる液体をタンクに投入したこと以外は、上記太陽光反射ミラーユニット2と同様にして太陽光反射ミラーユニット12を得た。
[Sunlight reflection mirror unit 12]
The solar reflective mirror unit 2 is the same as the solar reflective mirror unit 2 except that a liquid composed of 1% by mass of ethanol and 99% by mass of water is put into the tank instead of 100% by mass of water. Thus, a sunlight reflecting mirror unit 12 was obtained.
〔太陽光反射ミラーユニット13〕
 上記太陽光反射ミラーユニット2において、液体の供給を間欠的に行うようにポンプを設定して、太陽光反射ミラーユニット13とした。液体の供給間隔は、1時間ごとに10分間とした。
[Sunlight reflection mirror unit 13]
In the sunlight reflecting mirror unit 2, a pump was set so as to intermittently supply the liquid, and the sunlight reflecting mirror unit 13 was obtained. The liquid supply interval was 10 minutes every hour.
〔太陽光反射ミラーユニット14〕
 上記太陽光反射ミラーユニット2において、供給管の開孔部分に隣接して吸収体を配置したこと以外は、太陽光反射ミラーユニット2と同様にして太陽光反射ミラーユニット14を得た。吸収体は、樹脂製のスポンジであり、スポンジの長さは、供給管と同様にミラー面の一端の全幅に対応する長さとした。
[Sunlight reflection mirror unit 14]
In the said sunlight reflective mirror unit 2, the sunlight reflective mirror unit 14 was obtained like the sunlight reflective mirror unit 2 except having arrange | positioned the absorber adjacent to the opening part of a supply pipe | tube. The absorber was a resin sponge, and the length of the sponge was set to a length corresponding to the entire width of one end of the mirror surface in the same manner as the supply pipe.
〔太陽光反射ミラーユニット21~23〕
 上記太陽光反射ミラーユニット1の太陽光反射ミラー1を、太陽光反射ミラー21に代えたこと以外は、太陽光反射ミラーユニット1と同様にして、太陽光反射ミラーユニット21を得た。
 また、太陽光反射ミラーユニット10の太陽光反射ミラー10を、太陽光反射ミラー22に代えたこと以外は、太陽光反射ミラーユニット10と同様にして、太陽光反射ミラーユニット22を得た。
 また、太陽光反射ミラーユニット2に設けられた供給管、ポンプ等の清浄化手段を取り除いて、太陽光反射ミラーユニット23とした。
[Sunlight reflecting mirror units 21 to 23]
A sunlight reflecting mirror unit 21 was obtained in the same manner as the sunlight reflecting mirror unit 1 except that the sunlight reflecting mirror 1 of the sunlight reflecting mirror unit 1 was replaced with the sunlight reflecting mirror 21.
Moreover, the solar reflective mirror unit 22 was obtained in the same manner as the solar reflective mirror unit 10 except that the solar reflective mirror 10 of the solar reflective mirror unit 10 was replaced with the solar reflective mirror 22.
In addition, the solar light reflecting mirror unit 23 was obtained by removing cleaning means such as a supply pipe and a pump provided in the solar light reflecting mirror unit 2.
〔評価〕
 (水との接触角)
 各太陽光反射ミラーユニット1~14及び21~23を砂漠地帯の屋外に設置した。各太陽光反射ミラーユニット1~11、14及び21~23において、太陽光反射ミラー1~11、21及び22の表面に連続的に水を含む液体を供給して、常に流動する液膜を形成した。また、太陽光反射ミラーユニット13において、太陽光反射ミラー2の表面に間欠的に水を含む液体を供給して、流動する液幕を間欠的に形成した。各太陽光反射ミラー1~11及び21の表面は親水性層である。太陽光反射ミラー22の表面はガラス板である。
[Evaluation]
(Contact angle with water)
Each of the sunlight reflecting mirror units 1 to 14 and 21 to 23 was installed outdoors in a desert area. In each of the sunlight reflecting mirror units 1 to 11, 14 and 21 to 23, a liquid containing water is continuously supplied to the surfaces of the sunlight reflecting mirrors 1 to 11, 21 and 22 to form a liquid film which always flows. did. In the sunlight reflecting mirror unit 13, a liquid containing water is intermittently supplied to the surface of the sunlight reflecting mirror 2 to intermittently form a flowing liquid curtain. The surface of each of the sunlight reflecting mirrors 1 to 11 and 21 is a hydrophilic layer. The surface of the sunlight reflecting mirror 22 is a glass plate.
 設置する前と、設置から1か月後及び1年後に、各太陽光反射ミラー1~11、21及び22の表面の水との接触角(°)を、JIS-R3257に準拠して、次のようにして測定した。
 各太陽光反射ミラー1~11、21及び22の表面に3μLの水を滴下し、30秒後に接触角(°)を測定した。接触角は、温度23℃、相対湿度55%RHの環境下において、接触角計DM300(共和界面化学社製)を用いて測定した。
Before installation and one month and one year after installation, the contact angle (°) with the water on the surface of each of the solar reflective mirrors 1 to 11, 21 and 22 is determined according to JIS-R3257. It measured as follows.
3 μL of water was dropped on the surface of each of the sunlight reflecting mirrors 1 to 11, 21 and 22, and the contact angle (°) was measured after 30 seconds. The contact angle was measured using a contact angle meter DM300 (manufactured by Kyowa Interface Chemical Co., Ltd.) in an environment of a temperature of 23 ° C. and a relative humidity of 55% RH.
 (反射率)
 上記接触角の測定と並行して、屋外に設置する前と、設置から1か月後及び1年後に、各太陽光反射ミラーユニット1~14及び21~23の太陽光反射ミラー1~11、21及び22の反射率(%)を、次のようにして測定した。
 積分球反射付属装置を取り付けた分光光度計U-4000(日立製作所製)を用いて、反射面の法線に対して入射光の入射角が5°となるように調整し、反射角5°の正反射率(%)を測定した。得られた測定値から、400~700nmの波長範囲内の平均値を、各太陽光反射ミラー1~11、21及び22の反射率(%)として求めた。
(Reflectance)
In parallel with the measurement of the contact angle, the solar reflective mirrors 1 to 11 and 11 to 23 of the solar reflective mirror units 1 to 14 and 21 to 23 are installed before being installed outdoors and after one month and one year after installation. The reflectance (%) of 21 and 22 was measured as follows.
Using a spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) equipped with an integrating sphere reflection accessory, the incident angle of incident light is adjusted to 5 ° with respect to the normal of the reflecting surface, and the reflection angle is 5 °. The regular reflectance (%) of was measured. From the measured values obtained, the average value within the wavelength range of 400 to 700 nm was determined as the reflectance (%) of each of the solar reflective mirrors 1 to 11, 21 and 22.
 (液膜の被覆面積率)
 上記接触角の測定と並行して、屋外に設置する前と、設置から1か月後及び1年後に、各太陽光反射ミラーユニット1~14及び21~23における液膜の被覆面積率(%)を、次のようにして測定した。
 ミラー面が湾曲している場合、湾曲するミラー面を円周とする中心(図3における集熱管80の位置)から、撮影方向の角度を120°ずつ変えてミラー面を撮影した。得られた複数の画像を解析して撮影方向の角度10°ごとに液膜の面積(m)を求めて加算した。加算して得られた液膜の面積を、ミラー面の面積(m)で除算し、液膜の被覆面積率(%)を得た。
 ミラー面が平面である場合、ミラー面全体を撮影し、得られた1つの画像を解析して液膜の面積(m)を求めた。この液膜の面積を、ミラー面の面積(m)で除算し、液膜の被覆面積率(%)を得た。
(Liquid film coverage)
In parallel with the measurement of the contact angle, the ratio of the liquid film coverage (%) in each of the solar reflective mirror units 1 to 14 and 21 to 23 is measured before installation outdoors and after one month and one year after installation. ) Was measured as follows.
When the mirror surface is curved, the mirror surface was photographed by changing the angle in the photographing direction by 120 ° from the center (the position of the heat collecting tube 80 in FIG. 3) around the curved mirror surface. The obtained plurality of images were analyzed, and the area (m 2 ) of the liquid film was obtained and added every 10 ° in the photographing direction. The area of the liquid film obtained by the addition was divided by the area (m 2 ) of the mirror surface to obtain the coating area ratio (%) of the liquid film.
When the mirror surface was a flat surface, the entire mirror surface was photographed, and one image obtained was analyzed to determine the area (m 2 ) of the liquid film. The area of the liquid film was divided by the area of the mirror surface (m 2 ) to obtain the liquid film coverage area ratio (%).
 下記表1は、接触角(°)、反射率(%)及び液膜の被覆面積率(%)の測定結果を示している。なお、下記表1の液膜の被覆面積率(%)は、設置から1年の間に測定された被覆面積率の範囲を示している。
Figure JPOXMLDOC01-appb-T000001
Table 1 below shows the measurement results of the contact angle (°), the reflectance (%), and the coating area ratio (%) of the liquid film. In addition, the coating area ratio (%) of the liquid film of the following Table 1 has shown the range of the coating area ratio measured in one year from installation.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例に係る太陽光反射ミラーユニット21~23は、ミラー面に汚れが付着し、いずれも設置後1か月で反射率が80%付近まで低下している。洗浄せずに継続して設置すると、さらに汚れが付着し、太陽光エネルギーから熱エネルギーへの変換効率が低下し、損失が大きくなるため、好ましくない。これに対し、本発明に係る太陽光反射ミラーユニット1~14によれば、反射率の低下がほとんどみられず、設置前の清浄な状態を継続し、高い反射率を維持できていることが分かる。また、液膜の面積被覆率が50~100%の範囲内であると、特に反射率を高く維持できることが分かる。 As shown in Table 1, in the sunlight reflecting mirror units 21 to 23 according to the comparative examples, dirt is adhered to the mirror surface, and the reflectance is reduced to about 80% in one month after installation. If it is continuously installed without washing, dirt is further adhered, conversion efficiency from solar energy to heat energy is reduced, and loss is increased, which is not preferable. On the other hand, according to the sunlight reflecting mirror units 1 to 14 according to the present invention, the reflectance is hardly lowered, the clean state before the installation is continued, and the high reflectance can be maintained. I understand. It can also be seen that when the area coverage of the liquid film is in the range of 50 to 100%, the reflectance can be maintained particularly high.
 なお、上記太陽光反射ミラーユニット1~14、21~23がそれぞれ用いられた太陽熱発電装置を製造し、同様にして接触角及び反射率を測定したが、同様の結果が得られた。また、接触角及び反射率を測定した時、太陽熱発電装置の発電効率を求めたが、上記太陽光反射ミラーユニット1~14は、1か月後、1年後も発電効率の変動がほとんどなかった。一方、太陽光反射ミラー21~23は、時間の経過に比例して発電効率が下がる傾向が見られた。 A solar thermal power generation apparatus using the solar reflective mirror units 1 to 14 and 21 to 23 was manufactured, and the contact angle and the reflectance were measured in the same manner. The same results were obtained. Further, when the contact angle and the reflectance were measured, the power generation efficiency of the solar thermal power generation apparatus was obtained. However, the solar reflective mirror units 1 to 14 showed almost no fluctuation in the power generation efficiency after one month and one year. It was. On the other hand, the solar reflective mirrors 21 to 23 showed a tendency that the power generation efficiency decreased in proportion to the passage of time.
〔実施例II〕
 実施例Iの太陽光反射ミラーユニット2を用いて、液膜の被覆面積率(%)がそれぞれ100%、50%、40%及び10%となるように、ポンプにより単位時間あたりの水の供給量を調整し、実施例Iと同様にして、接触角(°)、反射率(%)及び液膜の被覆面積率(%)を測定した。
 また、実施例Iの太陽光反射ミラーユニット14を用いて、液膜の被覆面積率(%)がそれぞれ100%、50%、40%及び10%となるように、ポンプにより単位時間あたりの水の供給量を調整し、実施例Iと同様にして、接触角(°)、反射率(%)及び液膜の被覆面積率(%)を測定した。
Example II
Using the sunlight reflecting mirror unit 2 of Example I, supply of water per unit time by a pump so that the coverage ratio (%) of the liquid film is 100%, 50%, 40%, and 10%, respectively. The amount was adjusted, and in the same manner as in Example I, the contact angle (°), the reflectance (%), and the coating film area ratio (%) were measured.
Further, by using the sunlight reflecting mirror unit 14 of Example I, water per unit time by a pump so that the covering area ratio (%) of the liquid film becomes 100%, 50%, 40%, and 10%, respectively. In the same manner as in Example I, the contact angle (°), the reflectance (%), and the coating film area ratio (%) of the liquid film were measured.
 下記表2は、測定結果を示している。
Figure JPOXMLDOC01-appb-T000002
Table 2 below shows the measurement results.
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、被覆面積率が50~100%の範囲内であると、接触角及び反射率の低下を効果的に抑えられることが分かる。 As shown in Table 2, it can be seen that when the covering area ratio is in the range of 50 to 100%, the decrease in contact angle and reflectance can be effectively suppressed.
〔実施例III〕
 実施例Iの太陽光反射ミラーユニット2の供給管と対向する他端に、円筒状の液膜の回収容器を設けて、太陽光反射ミラーユニット2aを得た。さらに、回収容器により回収された液体をタンクに貯留できるように、回収容器をタンクに接続する移送管を設けた。タンクと移送管の間にはフィルターを設けた。
 太陽光反射ミラーユニット2aを屋外に設置し、太陽光反射ミラー2の表面に連続的に水を含む液体を供給して、常に流動する液膜を形成した。また、液膜を回収手段により回収してタンクに戻し、タンクに戻された液体を供給管23により再供給した。
Example III
A cylindrical liquid film recovery container was provided at the other end facing the supply pipe of the sunlight reflecting mirror unit 2 of Example I to obtain a sunlight reflecting mirror unit 2a. Further, a transfer pipe for connecting the recovery container to the tank is provided so that the liquid recovered by the recovery container can be stored in the tank. A filter was provided between the tank and the transfer pipe.
The sunlight reflecting mirror unit 2a was installed outdoors, and a liquid containing water was continuously supplied to the surface of the sunlight reflecting mirror 2 to form a constantly flowing liquid film. Further, the liquid film was recovered by the recovery means and returned to the tank, and the liquid returned to the tank was supplied again by the supply pipe 23.
 設置から1か月後及び1年後に、太陽光反射ミラー2の表面の接触角及び反射率を測定したところ、上記表1に示す太陽光反射ミラーユニット2と同様の測定結果が得られた。液体を再利用した場合も同様に清浄度及び反射率を高く維持できることが確認できた。 1 month and 1 year after installation, when the contact angle and reflectance of the surface of the solar reflective mirror 2 were measured, the same measurement results as the solar reflective mirror unit 2 shown in Table 1 were obtained. It was confirmed that the cleanliness and reflectivity can be maintained high even when the liquid is reused.
 本発明は、太陽熱発電の発電効率を向上させる用途に利用することができる。 The present invention can be used for the purpose of improving the power generation efficiency of solar thermal power generation.
1  太陽光反射ミラーユニット
10  太陽光反射ミラー
11  樹脂フィルム
12  アンカー層
13  反射層
14  腐食防止層
15  接着層
16  紫外線吸収層
17  親水性層
20  清浄化手段
21  タンク
22  移送管
P  ポンプ
23  供給管
30  回収手段
40  制御装置
100  太陽熱発電装置
50  支持部材
60  角度調整部
73  発電機
80  集熱管
DESCRIPTION OF SYMBOLS 1 Sunlight reflection mirror unit 10 Sunlight reflection mirror 11 Resin film 12 Anchor layer 13 Reflection layer 14 Corrosion prevention layer 15 Adhesion layer 16 Ultraviolet absorption layer 17 Hydrophilic layer 20 Cleaning means 21 Tank 22 Transfer pipe P Pump 23 Supply pipe 30 Recovery means 40 Control device 100 Solar power generation device 50 Support member 60 Angle adjustment unit 73 Generator 80 Heat collection tube

Claims (10)

  1.  太陽光反射ミラーの清浄化機能を有する太陽光反射ミラーユニットであって、
     前記太陽光反射ミラーの表面の水との接触角が、30°以下であり、
     前記太陽光反射ミラーの表面に、水を含む液体を連続的に又は間欠的に供給して、当該表面上を流動する液膜を形成する清浄化手段を備えることを特徴とする太陽光反射ミラーユニット。
    A solar reflective mirror unit having a solar reflective mirror cleaning function,
    The contact angle with water on the surface of the solar reflective mirror is 30 ° or less,
    A solar reflective mirror comprising: cleaning means for continuously or intermittently supplying a liquid containing water to the surface of the solar reflective mirror to form a liquid film flowing on the surface. unit.
  2.  前記太陽光反射ミラーの表面の水との接触角が、20°以下であることを特徴とする請求項1に記載の太陽光反射ミラーユニット。 The solar reflective mirror unit according to claim 1, wherein a contact angle of the surface of the solar reflective mirror with water is 20 ° or less.
  3.  前記太陽光反射ミラーの表面に、太陽光によって親水性化する光触媒を含有する親水性層が設けられていることを特徴とする請求項1又は請求項2に記載の太陽光反射ミラーユニット。 The solar light reflecting mirror unit according to claim 1 or 2, wherein a hydrophilic layer containing a photocatalyst that is made hydrophilic by sunlight is provided on a surface of the solar light reflecting mirror.
  4.  前記光触媒のバンドギャップが、2.4~5.2eVの範囲内にあることを特徴とする請求項3に記載の太陽光反射ミラーユニット。 The solar reflective mirror unit according to claim 3, wherein a band gap of the photocatalyst is in a range of 2.4 to 5.2 eV.
  5.  前記太陽光反射ミラーの全表面に対する前記液膜の被覆面積率が、50~100%の範囲内にあることを特徴とする請求項1から請求項4までのいずれか一項に記載の太陽光反射ミラーユニット。 The sunlight according to any one of claims 1 to 4, wherein a covering area ratio of the liquid film with respect to the entire surface of the sunlight reflecting mirror is in a range of 50 to 100%. Reflective mirror unit.
  6.  前記液膜の流動速度の調整手段を備えることを特徴とする請求項1から請求項5までのいずれか一項に記載の太陽光反射ミラーユニット。 The solar reflective mirror unit according to any one of claims 1 to 5, further comprising means for adjusting a flow rate of the liquid film.
  7.  前記太陽光反射ミラーの表面上を流動し終えた前記液膜の回収手段を備え、
     前記清浄化手段が、前記回収手段により回収された液膜の液体を、前記太陽光反射ミラーの表面に再供給して、前記液膜を形成することを特徴とする請求項1から請求項6までのいずれか一項に記載の太陽光反射ミラーユニット。
    The liquid film recovery means that has finished flowing on the surface of the sunlight reflecting mirror,
    7. The liquid film is formed by the cleaning means resupplying the liquid film liquid collected by the collecting means to the surface of the sunlight reflecting mirror. 8. The solar reflective mirror unit as described in any one of to.
  8.  前記太陽光反射ミラーは、樹脂フィルム上に少なくとも太陽光の反射層を有するフィルム状のミラーであることを特徴とする請求項1から請求項7までのいずれか一項に記載の太陽光反射ミラーユニット。 The solar light reflecting mirror according to any one of claims 1 to 7, wherein the solar light reflecting mirror is a film-like mirror having at least a sunlight reflecting layer on a resin film. unit.
  9.  請求項1から請求項8までのいずれか一項に記載の太陽光反射ミラーユニットを具備することを特徴とする太陽熱発電装置。 A solar thermal power generation apparatus comprising the sunlight reflecting mirror unit according to any one of claims 1 to 8.
  10.  太陽光反射ミラーの清浄化方法であって、
     前記太陽光反射ミラーの表面の水との接触角を30°以下とし、
     前記太陽光反射ミラーの表面に、水を含む液体を連続的に又は間欠的に供給して、当該表面上を流動する液膜を形成することを特徴とする太陽光反射ミラーの清浄化方法。
    A method of cleaning a solar reflective mirror,
    The contact angle with water on the surface of the solar reflective mirror is 30 ° or less,
    A method for cleaning a solar reflective mirror, comprising: supplying a liquid containing water continuously or intermittently to the surface of the solar reflective mirror to form a liquid film flowing on the surface.
PCT/JP2014/082975 2013-12-18 2014-12-12 Sunlight-reflecting mirror unit, solar thermal power generation device, and method for cleaning sunlight-reflecting mirror WO2015093403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553512A JPWO2015093403A1 (en) 2013-12-18 2014-12-12 Sunlight reflecting mirror unit, solar power generation device, and method for cleaning sunlight reflecting mirror

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-260743 2013-12-18
JP2013260743 2013-12-18

Publications (1)

Publication Number Publication Date
WO2015093403A1 true WO2015093403A1 (en) 2015-06-25

Family

ID=53402749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082975 WO2015093403A1 (en) 2013-12-18 2014-12-12 Sunlight-reflecting mirror unit, solar thermal power generation device, and method for cleaning sunlight-reflecting mirror

Country Status (2)

Country Link
JP (1) JPWO2015093403A1 (en)
WO (1) WO2015093403A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126763A (en) * 1974-08-30 1976-03-05 Hitachi Ltd SENJOSOCHI
JPS5588889U (en) * 1978-12-08 1980-06-19
JP3149312U (en) * 2008-07-03 2009-03-26 忠治 一木 Natural sunlight reflective film
JP2009198120A (en) * 2008-02-22 2009-09-03 Mitsui Eng & Shipbuild Co Ltd Hybrid solar heat power generation device
JP2010060722A (en) * 2008-09-02 2010-03-18 Asahi Kasei E-Materials Corp Light reflection mirror and method of manufacturing the same, reflector device and photovoltaic power genaration system
WO2011078024A1 (en) * 2009-12-21 2011-06-30 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and reflection device for generation of solar power
JP2012008166A (en) * 2010-06-22 2012-01-12 Konica Minolta Opto Inc Film mirror for solar thermal power generation, method for manufacturing film mirror for solar thermal power generation, and reflector for solar thermal power generation
WO2012098971A1 (en) * 2011-01-19 2012-07-26 コニカミノルタオプト株式会社 Film mirror and reflecting apparatus for solar power generation
JP2013139958A (en) * 2012-01-04 2013-07-18 Konica Minolta Inc Cleaning method for reflecting device for solar thermal power generation, solar thermal power generation system, and cleaning device for solar thermal power generation system
JP2014191264A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Film mirror

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5126763A (en) * 1974-08-30 1976-03-05 Hitachi Ltd SENJOSOCHI
JPS5588889U (en) * 1978-12-08 1980-06-19
JP2009198120A (en) * 2008-02-22 2009-09-03 Mitsui Eng & Shipbuild Co Ltd Hybrid solar heat power generation device
JP3149312U (en) * 2008-07-03 2009-03-26 忠治 一木 Natural sunlight reflective film
JP2010060722A (en) * 2008-09-02 2010-03-18 Asahi Kasei E-Materials Corp Light reflection mirror and method of manufacturing the same, reflector device and photovoltaic power genaration system
WO2011078024A1 (en) * 2009-12-21 2011-06-30 コニカミノルタオプト株式会社 Film mirror and process for production thereof, and reflection device for generation of solar power
JP2012008166A (en) * 2010-06-22 2012-01-12 Konica Minolta Opto Inc Film mirror for solar thermal power generation, method for manufacturing film mirror for solar thermal power generation, and reflector for solar thermal power generation
WO2012098971A1 (en) * 2011-01-19 2012-07-26 コニカミノルタオプト株式会社 Film mirror and reflecting apparatus for solar power generation
JP2013139958A (en) * 2012-01-04 2013-07-18 Konica Minolta Inc Cleaning method for reflecting device for solar thermal power generation, solar thermal power generation system, and cleaning device for solar thermal power generation system
JP2014191264A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Film mirror

Also Published As

Publication number Publication date
JPWO2015093403A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5747823B2 (en) Film mirror, film mirror for solar power generation and reflector for solar power generation
EP2667226B1 (en) Film mirror and reflecting apparatus for solar power generation
JP5742726B2 (en) Film mirror, method for manufacturing the same, and mirror for reflecting sunlight
WO2013015112A1 (en) Mirror for solar light reflection, reflection device for solar-heat power generation, functional film, and electrostatic charge preventing composition for outdoor use
WO2011078024A1 (en) Film mirror and process for production thereof, and reflection device for generation of solar power
WO2012057004A1 (en) Film mirror, process for manufacturing film mirror, and reflection device for solar power generation purposes
JP2013507663A (en) Concentrator for solar energy harvesting and its manufacture from polymer raw materials
WO2016152449A1 (en) Brush for cleaning sunlight reflecting mirror, and cleaning system, cleaning method and cleaning apparatus for sunlight reflecting mirror
JP2011158751A (en) Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
JP2015121806A (en) Film mirror, film mirror manufacturing method, and film mirror for sunlight collection
JP2012047861A (en) Film mirror, manufacturing method thereof, and film mirror for condensing solar light
WO2011078156A1 (en) Film mirror, method for producing same, and reflecting device for solar thermal power generator using said film mirror
WO2015133389A1 (en) Brush for cleaning sunlight-reflecting mirror, method for cleaning sunlight-reflecting mirror and cleaning apparatus for same
EP2518535A1 (en) Film mirror and process for production thereof, and reflection device for solar power generation purposes
WO2015093403A1 (en) Sunlight-reflecting mirror unit, solar thermal power generation device, and method for cleaning sunlight-reflecting mirror
WO2012057005A1 (en) Film mirror for solar power generation purposes, process for manufacturing film mirror for solar power generation purposes, and reflection device for solar power generation purposes
WO2015137241A1 (en) Brush for cleaning sunlight-reflecting mirror, method for cleaning sunlight-reflecting mirror and cleaning apparatus for same
WO2011114861A1 (en) Solar concentrating mirror, and trough solar thermal power generation device and trough solar power generation device using same
WO2014199906A1 (en) Solar reflection panel
JP2013245849A (en) Film mirror for solar power generation, method for manufacturing film mirror for solar power generation, and reflecting device for solar power generation
WO2013094577A1 (en) Film mirror, method for producing film mirror, and reflection device for solar thermal power generation
WO2011096248A1 (en) Light reflecting film for solar thermal power generation, method for producing same, and reflection device for solar thermal power generation using same
JP2011158752A (en) Film mirror, method of manufacturing the same, and reflecting apparatus for solar thermal power generation
JP2016061451A (en) Sunlight reflection mirror unit and solar heat power generation device
JP2015161826A (en) Film mirror and reflection device for solar thermal power generation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872132

Country of ref document: EP

Kind code of ref document: A1