WO2015093342A1 - Method for producing conductive film, conductive film, organic electronic element and touch panel - Google Patents

Method for producing conductive film, conductive film, organic electronic element and touch panel Download PDF

Info

Publication number
WO2015093342A1
WO2015093342A1 PCT/JP2014/082514 JP2014082514W WO2015093342A1 WO 2015093342 A1 WO2015093342 A1 WO 2015093342A1 JP 2014082514 W JP2014082514 W JP 2014082514W WO 2015093342 A1 WO2015093342 A1 WO 2015093342A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
polyester resin
acid
conductive film
film
Prior art date
Application number
PCT/JP2014/082514
Other languages
French (fr)
Japanese (ja)
Inventor
中村 和明
松村 智之
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015553489A priority Critical patent/JPWO2015093342A1/en
Publication of WO2015093342A1 publication Critical patent/WO2015093342A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the present invention relates to a method for producing a conductive film and a conductive film.
  • the present invention relates to an organic electronic element, a touch panel, and the like that are provided with a conductive film manufactured by the manufacturing method. More specifically, the present invention relates to a method for producing a conductive film that suppresses substrate deformation and is excellent in transparency, conductivity, and surface roughness, a conductive film, an organic electronic device, and a touch panel.
  • a transparent electrode has been formed by forming a complex oxide of indium-tin (hereinafter also referred to as “ITO”) on a transparent resin film substrate such as glass or a transparent plastic film by a vacuum deposition method or a sputtering method.
  • ITO indium-tin
  • ITO transparent electrodes have been mainly used. However, since indium used in ITO is a rare metal and its price has been rising in recent years, a de-ITO transparent electrode is desired. In addition, with the increase in display screen size and productivity, a roll-to-roll production technology using a flexible substrate (flexible transparent substrate) such as a resin substrate is desired. Therefore, a de-ITO transparent electrode is desired.
  • a manufacturing method using a wet coating method has been studied in place of a dry coating method with low productivity such as a vacuum deposition method and a sputtering method that have been conventionally used.
  • a dispersion containing a conductive material such as a conductive polymer compound represented by 3,4-polyethylenedioxythiophene polysulfonate (PEDOT / PSS) is used as a transparent resin.
  • PEDOT / PSS 3,4-polyethylenedioxythiophene polysulfonate
  • a method has been developed in which a transparent electrode is produced by a wet coating method in which a conductive layer is formed by directly coating on a film substrate and drying by heating.
  • a transparent electrode production technique using the roll-to-roll method described above is desired.
  • the substrate is deformed during heat drying (low heat resistance in the resin film itself) and the performance of the device is deteriorated. From the above problem, a new drying method for the applied conductive polymer compound is desired.
  • Patent Document 2 focuses on efficiently drying the solvent in the coating film, and does not consider prevention of deformation due to infrared absorption of the substrate itself, No mention is made of infrared drying when a transparent resin film substrate is used. Further, Patent Document 2 does not mention the relationship between the polyester resin contained in the electrode material paste and the solvent as an infrared irradiation effect. From the above, in a transparent electrode using a conductive polymer compound on a resin film, a technique capable of removing water in the conductive layer without damaging the substrate has been strongly desired. .
  • a water dispersible conductive polymer compound such as PEDOT / PSS and a polyester resin are used in order to achieve both conductivity and transmittance.
  • Compositions containing have been developed.
  • the binder resin a hydrophilic binder resin has been studied from the viewpoint of compatibility with the water-dispersible conductive polymer compound.
  • a resin film such as PET has been used as the base material.
  • the hydroxy group-containing binder resin known to be compatible with PEDOT / PSS undergoes a dehydration reaction and crosslinks between polymer chains under acidic conditions, but crosslinks when dried at low temperatures. Defects occur.
  • the crosslinking reaction proceed during storage and water is generated, but also the transparency, conductivity and arithmetic average roughness (hereinafter referred to as “surface”) of the conductive film and the conductive film due to the water remaining in the film.
  • surface the transparency, conductivity and arithmetic average roughness
  • JP 2009-178897 A Japanese Patent No. 4790092
  • the present invention has been made in view of the above-described problems and situations, and the problem to be solved is a method for producing a conductive film that suppresses deformation of the substrate and is excellent in transparency, conductivity, and surface roughness, and conductivity. Is to provide a film. Moreover, it is providing the organic electronic element and touch panel excellent in the light emission uniformity and lifetime by providing an organic electronic element and a touch panel with the electroconductive film produced with the said manufacturing method.
  • the present inventor uses, as a constituent component, a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within a predetermined range in the process of examining the cause of the above-described problem.
  • a polymer conductive layer is formed by using a polyester resin and irradiating infrared rays having a ratio of the spectral radiance of wavelength 5.8 ⁇ m to the spectral radiance of wavelength 3.0 ⁇ m being a predetermined value or less.
  • the inventors have found that it is possible to obtain a conductive film that suppresses deformation and is excellent in transparency, conductivity, and surface roughness, and has reached the present invention. That is, the said subject which concerns on this invention is solved by the following means.
  • a method for producing a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate At least the following steps (A) and (B):
  • the polyester resin contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within a range of 1 to 15 mol%, and further,
  • the method for producing a conductive film is characterized by performing infrared irradiation in which the ratio of the spectral radiance at a wavelength of 5.8 ⁇ m to the spectral radiance at a wavelength of 3.0 ⁇ m is 5% or less.
  • a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate The polyester resin is produced through at least the following steps (A) and (B), and comprises a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio in the range of 1 to 15 mol%.
  • An organic electronic device comprising a conductive film manufactured by the method for manufacturing a conductive film according to Item 1 or 2 or an electrode of the conductive film according to Item 3.
  • a touch panel comprising a conductive film manufactured by the method for manufacturing a conductive film according to Item 1 or 2 or the conductive film according to Item 3 as an electrode.
  • the present invention it is possible to provide a method for producing a conductive film and a conductive film that are excellent in transparency, conductivity, and surface roughness while suppressing deformation of the substrate. Moreover, the organic electronic element and touch panel which were excellent in the light emission uniformity and lifetime can be provided by providing an organic electronic element and a touch panel with the electroconductive film produced with the said manufacturing method.
  • a polymer emulsion is known as a binder resin having a small interaction with a solvent such as water.
  • polyester emulsions, acrylic emulsions, polyurethane emulsions, etc. are not only introduced with many ester groups and urethane groups, which are hydrophilic sites, in the polymer main chain and side chains, but also in solvents such as water.
  • hydrophilic groups such as sulfonic acid, carboxylic acid, hydroxy group, and ammonium are present.
  • the hydrophilic group in the polymer is hydrogen-bonded to a water-bondable solvent such as water or a polar solvent
  • the present inventor hardly releases water by heat drying at a low temperature for a short time. It was ascertained that the performance of the employed conductive film and the organic electronic device using the conductive film deteriorated. That is, in order to improve the drying property of the conductive film at a low temperature and in a short time, the present inventor directly imparts energy to a hydrogen-bondable solvent such as water or a polar solvent, and the hydrophilic group in the polymer. It has been found that it is indispensable to impart energy capable of breaking the hydrogen bond between the solvent and the solvent capable of hydrogen bonding.
  • the present inventor constructed a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within the range of 1 to 15 mol%.
  • a polyester resin as a component was employed, and further, a polymer conductive layer was formed by irradiating infrared rays having a spectral radiance ratio of 5.8 ⁇ m with respect to a spectral radiance of wavelength 3.0 ⁇ m of 5% or less.
  • the hydration and adsorbing solvent capable of hydrogen bonding can be separated from the polymer.
  • the conductive film manufactured by the manufacturing method of the present invention is compatible with both transparency and conductivity of the conductive film without deformation of the base material, and excellent in surface roughness, and further at high temperature, high Even after an environmental test in a humidity environment, it can have both high conductivity, transparency and good surface roughness.
  • the manufacturing method of the electroconductive film of this invention is excellent in the light emission uniformity and lifetime with which the electroconductive film excellent in stability and the said electroconductive film were equipped by suppressing generation
  • An organic electronic device and a touch panel can be provided.
  • Sectional drawing which shows schematic structure of an electroconductive film
  • the top view which shows an example of the pattern shape of the metal conductive layer of an electroconductive film
  • the top view which shows another example of the pattern shape of the metal conductive layer of an electroconductive film
  • the top view which shows another example of the pattern shape of the metal conductive layer of an electroconductive film
  • the top view which shows another example of the pattern shape of the metal conductive layer of an electroconductive film
  • Sectional drawing which shows schematic structure of wavelength control infrared heater Sectional drawing which shows the modification of the wavelength control infrared heater of FIG.
  • Sectional drawing which shows schematic structure of organic EL element Schematic top view which shows a transparent resin film base material for demonstrating an example of the manufacturing method of an organic EL element
  • Schematic plan view illustrating a process for forming a metal conductive layer in an example of a method for manufacturing an organic EL element
  • the method for producing a conductive film of the present invention is a method for producing a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate, wherein at least the above steps (A) and step (B), and the polyester resin contains at least a dicarboxylic acid having an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within the range of 1 to 15 mol% as a constituent component. Furthermore, in the step (B), infrared irradiation is performed in which the ratio of the spectral radiance at a wavelength of 5.8 ⁇ m to the spectral radiance at a wavelength of 3.0 ⁇ m is 5% or less. This feature is a technical feature common to the inventions according to claims 1 to 5.
  • At least a gas barrier layer is provided on the transparent resin film substrate in advance from the viewpoint of manifesting the effects of the present invention.
  • the conductive film of the present invention is a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate, and at least the step (A).
  • the polyester resin, which is produced through the step (B) contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio in the range of 1 to 15 mol%.
  • the step (B) is characterized in that infrared radiation is performed such that the ratio of the spectral radiance of the wavelength 5.8 ⁇ m to the spectral radiance of the wavelength 3.0 ⁇ m is 5% or less. preferable.
  • the conductive film produced by the production method of the present invention can be suitably used as an electrode for a touch panel and an organic electronic element. Thereby, the touch panel and organic electronic element which were excellent in the light emission uniformity and lifetime can be provided.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the method for producing a conductive film of the present invention has at least the following steps (A) and (B), and the polyester resin contains 1 to 15 mol% of an aromatic dicarboxylic acid having at least a sulfonic acid group.
  • step (B) the ratio of the spectral radiance at a wavelength of 5.8 ⁇ m to the spectral radiance at a wavelength of 3.0 ⁇ m is 5%.
  • the following infrared irradiation is performed.
  • the method for producing a conductive film of this embodiment is preferably a production method having an aspect mainly including the steps shown in the following steps 1 to 4.
  • the constituent elements and methods used in the steps 1 to 4 will be described in detail later.
  • polyester resin manufacturing process In the polyester resin production process, first, an aromatic dicarboxylic acid component having at least a sulfonic acid group, an alcohol component, and a catalyst (for example, potassium titanium oxalate) are prepared and put into a reactor to prepare a solution. The transesterification reaction is completed by raising the temperature of this solution while stirring and mixing in an atmospheric pressure and nitrogen atmosphere. Next, after gradually reducing the pressure of this solution, the polycondensation reaction is advanced by maintaining this reduced pressure state to obtain a polyester resin. At this time, the molecular weight of the polyester resin is controlled by increasing the degree of vacuum as necessary.
  • a catalyst for example, potassium titanium oxalate
  • the extent to which the dicarboxylic acid constituting the obtained polyester resin contains at least an aromatic dicarboxylic acid having a sulfonic acid group is determined based on the polyester resin, for example, ICP (Inductively Coupled Plasma) emission analyzer. Or by ion chromatography or by measuring the acid value or the like.
  • ICP Inductively Coupled Plasma
  • polyester resin, water and organic solvent for example, isopropyl alcohol
  • aqueous solvent by placing them in a container and keeping them at a temperature in the range of 80 to 95 ° C. with stirring. Can be obtained.
  • Step 2 Preparation of polymer conductive layer forming composition
  • a conductive polymer compound and a polyester resin are mixed, and after mixing a non-conductive polymer compound with this mixture, water is added to the polymer conductive layer.
  • a forming composition is prepared.
  • the coating process of the polymer conductive layer is a step (step (A)) in which an aqueous dispersion containing a conductive polymer compound and a polyester resin is applied on the transparent resin film substrate.
  • step (A) specifically, a polymer conductive layer is coated on the transparent resin film substrate having gas barrier properties using the above-described composition for forming a polymer conductive layer (see FIG. 6C).
  • the coating process of a polymer conductive layer may form the metal conductive layer which consists of a metal fine wire pattern on a transparent resin film base material, and may coat a polymer conductive layer on it (FIG. 6B). reference).
  • step (B) This drying process is a step (step (B)) in which the polymer conductive layer is formed by irradiating the aqueous dispersion applied on the transparent resin film substrate with infrared rays.
  • step (B) specifically, drying is performed by irradiating with infrared rays having a ratio of the spectral radiance of wavelength 5.8 ⁇ m to the spectral radiance of wavelength 3.0 ⁇ m of 5% or less.
  • a polymer conductive layer can be formed and a conductive film having a polymer conductive layer can be formed.
  • the conductive film has a polymer conductive layer containing at least a conductive polymer compound and a polyester resin.
  • a conductive film is produced by applying a dispersion containing a conductive polymer compound and a polyester resin onto a transparent resin film substrate and drying it.
  • the conductive film 1 includes a transparent resin film substrate 2, a metal conductive layer 4, and a polymer conductive layer 3, and can be used as a transparent electrode.
  • the metal conductive layer 4 is a fine line pattern of metal particles formed on the transparent resin film substrate 2.
  • the thin line pattern in the metal conductive layer 4 may be formed in a stripe shape as shown in FIGS. 2A to 2C, or may be formed in a mesh shape (lattice, mesh shape) as shown in FIG. 2D.
  • the polymer conductive layer 3 is formed on the transparent resin film substrate 2 on which the metal conductive layer 4 is formed.
  • the polymer conductive layer 3 is formed flush and covers the surface of the metal conductive layer 4 and the surface of the transparent resin film substrate 2 exposed from between the metal conductive layers 4.
  • the conductive film 1 may have a configuration in which the metal conductive layer 4 is omitted. However, as described above, the conductive film 1 includes the metal conductive layer 4 and is laminated by laminating the polymer conductive layer 3 on the metal conductive layer 4. It has resistance and uniform sheet resistance.
  • the polymer conductive layer of the present invention contains at least a polyester resin.
  • the polyester resin contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a proportion within the range of 1 to 15 mol% (hereinafter also referred to as “ratio of aromatic dicarboxylic acid”). Further, it can be dispersed in an aqueous solvent.
  • colloidal particles made of a polyester resin are dispersed without being aggregated in the aqueous solvent.
  • the size (average particle diameter) of the colloidal particles is generally in the range of 0.001 to 1 ⁇ m (1 to 1000 nm).
  • the size (average particle diameter) of the colloidal particles of the polymer dispersible in the aqueous solvent is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm, like the colloidal particles of the conductive polymer compound. More preferably, it is in the range of 5 to 100 nm.
  • the particle size of the colloidal particles of the polyester resin dispersible in the aqueous solvent is 500 nm or less, the haze and smoothness (surface roughness) of the polymer conductive layer 3 produced by applying the dispersion to the transparent resin film substrate 2 are obtained. (Ra)) is improved.
  • the colloidal particle of the polyester resin dispersible in the aqueous solvent is 1 nm or more, the aggregation of the colloidal particles of the polyester resin can be suppressed, so that the dispersibility of the dispersion does not deteriorate.
  • the polymer conductive layer 3 Haze and smoothness surface roughness (Ra)
  • the size of the colloidal particles is more preferably in the range of 3 to 300 nm, and still more preferably in the range of 5 to 100 nm. .
  • the average particle size of the particles is 5 nm or more, the particles are prevented from aggregating with each other, so that the dispersion stability does not deteriorate, and as a result, the concern that the coated surface becomes non-uniform can be avoided.
  • the thickness is 100 nm or less, not only the compatibility with the conductive polymer compound can be prevented from being deteriorated, but also the haze of the coating film can be improved, and the fear of causing the performance deterioration as an optical film can be avoided.
  • the size of the colloidal particles can be measured with a light scattering photometer.
  • the aqueous solvent is not only pure water (including distilled water and deionized water) but also an aqueous solution containing acid, alkali, salt, etc., a water-containing organic solvent, or a hydrophilic organic solvent.
  • the aqueous solvent include pure water (including distilled water and deionized water), alcohol solvents such as methanol and ethanol, and mixed solvents of water and alcohol.
  • a polyester resin dispersible in an aqueous solvent can be stably dispersed in an aqueous solvent. Therefore, an anionic substituent such as a sulfonic acid or a carboxylic acid, a nonionic substituent such as a hydroxy group, an ammonium salt in a polymer. Contains a dissociative group of a hydrophilic group such as a cationic substituent of the structure. These dissociable groups are introduced in order to maintain dispersion stability in an aqueous solvent. However, since these dissociable groups are hydrophilic and disadvantageous for drying, it is necessary to minimize the introduction rate.
  • the ratio of the aromatic dicarboxylic acid is larger than 15 mol%, moisture in the coating film cannot be sufficiently removed in drying after the coating film is formed, and as a result, the water resistance of the resin coating film is reduced. Not only does it significantly reduce performance as a conductive film, but also increases the electrode surface resistance and dark spots when manufacturing organic electroluminescent devices (organic EL devices) using these conductive films. , Resulting in significant performance degradation such as current leakage.
  • the ratio of the aromatic dicarboxylic acid is less than 1 mol%, the hydrophilicity of the polyester is lowered, and as a result, the dispersion of the polyester resin in water is lowered, and the particle size of the colloidal particles of the polyester resin is increased. .
  • the particle size of the colloidal particles is large, the haze of the conductive film is increased as described above, so that the optical performance and the surface roughness are deteriorated.
  • the performance of the organic EL element or touch panel provided with the conductive film Becomes a factor of deterioration.
  • the ratio of the aromatic dicarboxylic acid is more preferably in the range of 2 to 10 mol%, and still more preferably in the range of 3 to 5 mol%.
  • aromatic dicarboxylic acid component having at least a sulfonic acid group examples include 5-sodium sulfoisophthalic acid (SIPA-Na), 5-sodium sulfoterephthalic acid (STPA-Na), and 5-potassium sulfoisophthalic acid (SIPA).
  • SIPA-Na 5-sodium sulfoisophthalic acid
  • STPA-Na 5-sodium sulfoterephthalic acid
  • SIPA 5-potassium sulfoisophthalic acid
  • the addition amount of the monomer of the aromatic dicarboxylic acid component having a sulfonic acid group as an acid component constituting the polyester resin should be suppressed as much as possible. Addition of various additives such as an emulsifier for emulsifying and dispersing the powder should be avoided.
  • the acid component of the polyester resin is an aromatic dicarboxylic acid component among all the acid components.
  • the aromatic dicarboxylic acid component is 50 mol% or more, the concern that the water resistance of the resin film is lowered can be avoided.
  • hardness, solvent resistance, workability and the like are improved in addition to water resistance.
  • aromatic dicarboxylic acid component examples include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 3-tert-butylisophthalic acid, diphenic acid, and the like. These aromatic dicarboxylic acid components may be used alone or in combination of two or more. Particularly preferred aromatic dicarboxylic acid components are industrially produced in large quantities and inexpensive, so terephthalic acid (for example, dimethyl terephthalic acid) and isophthalic acid (for example, dimethyl isophthalic acid). .).
  • a saturated aliphatic dicarboxylic acid component (oxalic acid, oxalic acid, as long as the ratio of the aromatic dicarboxylic acid component described above is satisfied, and the glass transition temperature is within the above range.
  • the alcohol component for synthesizing the polyester resin according to the present invention is not particularly limited.
  • an aliphatic glycol component ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol) 1,4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1, 9-nonanediol, 2-ethyl-2-butylpropanediol, etc.), alicyclic glycol components (1,4-cyclohexanedimethanol, etc.), ethylene oxide adducts of bisphenols (bisphenol A) (diethylene glycol, triethylene glycol, Dipropylene Coal, 2,2-bis [4- (hydroxyethoxy) phenyl] propane), ethylene
  • ethylene glycol is inexpensive because it is industrially mass-produced, and has various balances of performance such as improved solvent resistance and weather resistance of the resin coating. , Diethylene glycol, triethylene glycol, neopentyl glycol, 1,6-hexanediol.
  • the constituent components of the polyester resin according to the present invention may be copolymerized with a monocarboxylic acid component, a monoalcohol component, a hydroxycarboxylic acid component, etc., for example, lauric acid, myristic acid, palmitic acid, stearin Acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid, cyclohexane acid, 4-hydroxyphenyl stearic acid, stearyl alcohol, 2-phenoxyethanol, ⁇ -caprolactone, lactic acid, ⁇ -hydroxybutyric acid or and ethylene oxide adducts of p-hydroxybenzoic acid.
  • a tri- or higher functional polyoxycarboxylic acid component may be copolymerized, and examples thereof include malic acid, glyceric acid, citric acid, and tartaric acid.
  • the polyester resin that can be dispersed in the aqueous solvent in the present invention is prepared by first producing a polyester resin, and then using this polyester to make an aqueous solvent dispersion.
  • a method for producing a polyester resin for example, it can be produced by polycondensing one or more of the above-described acid components and one or more of the alcohol components by a known method. All the monomer components or their low polymers are reacted in an inert atmosphere within a range of 180 to 260 ° C. and 2.5 to 10 hours to carry out an esterification reaction, followed by 130 Pa or less in the presence of a condensation polymerization catalyst. And a method of obtaining a polyester resin by proceeding a condensation polymerization reaction at a temperature in the range of 220 to 280 ° C. under reduced pressure until a desired molecular weight is reached.
  • the polycondensation catalyst for polyester is not particularly limited, and known compounds such as zinc acetate and antimony trioxide are used.
  • Examples of a method for imparting a desired acid value to the polyester resin include a method in which an acid component is further added after the above condensation polymerization reaction and a depolymerization reaction is performed in an inert atmosphere.
  • a method for imparting a desired acid value to the polyester resin a method in which an acid component of an anhydride is further added after the above-described polycondensation reaction and an addition reaction is performed with the hydroxy group of the polyester resin in an inert atmosphere is used.
  • the melt viscosity during production becomes very high, and the polyester resin may not be discharged, so care must be taken.
  • the above-described trifunctional or higher carboxylic acid is preferable.
  • a trifunctional or higher functional carboxylic acid By using a trifunctional or higher functional carboxylic acid, a desired acid value can be imparted while suppressing a decrease in the molecular weight of the polyester resin due to depolymerization.
  • aromatic carboxylic acid components trimellitic acid, trimellitic anhydride, pyromellitic acid, and pyromellitic anhydride are particularly preferable.
  • the number average molecular weight of the polyester resin is 10,000 or more, it is possible to avoid the concern that the resin film does not become brittle and the adhesion to the base material and the durability are insufficient. For this reason, in order to further improve the adhesion and durability of the resin coating to the substrate, the number average molecular weight of the polyester resin is more preferably 10,000 or more. Moreover, the number average molecular weight of the polyester resin is preferably 100,000 or less, more preferably 20000 or less, from the viewpoint of ease of production.
  • the polyester resin aqueous dispersion is a liquid material in which the above-described polyester resin is dispersed in an aqueous medium.
  • the aqueous medium is a medium composed of a liquid containing water, and may contain additives such as an organic solvent, an antiseptic, an antifoaming agent, and a basic compound.
  • the content of the polyester resin in the aqueous polyester resin dispersion is preferably in the range of 5 to 50% by mass, and more preferably in the range of 15 to 40% by mass.
  • the content of the polyester resin is within 50% by mass, aggregation of the dispersed polyester resin can be suppressed, and the dispersion stability of the polyester resin tends to be improved.
  • the content rate of the practical polyester resin in this embodiment is 5 mass% or more.
  • the polyester resin content in the aqueous polyester resin dispersion is more preferably 15 to 40% by mass.
  • the pH of the aqueous polyester resin dispersion is not particularly limited, but is preferably 5 or more and less than 8 at room temperature.
  • the water is not particularly limited and includes distilled water, ion exchange water, city water, industrial water, and the like, but it is preferable to use distilled water or ion exchange water.
  • the polyester resin is charged into an aqueous solvent and heated and stirred.
  • the carboxy group at the terminal of the polyester resin is at least partially or entirely using a basic compound. Examples thereof include a method of dispersing in an aqueous medium by neutralization and a method of using a surfactant as a dispersant.
  • the production method includes a step of dissolving a polyester resin in an organic solvent (dissolution step), and a step of dispersing a resin solution (solution) dissolved in the organic solvent in water (phase inversion emulsification).
  • phase inversion emulsification a method of performing the three steps of removing the organic solvent (desolvation step) from the obtained contents (dispersion).
  • a method of adding to an aqueous solvent and stirring with heating is preferably used.
  • the present invention provides a wavelength 5 for a spectral radiance of 3.0 ⁇ m. Irradiation with an infrared ray having a spectral radiance ratio of 8 ⁇ m is 5% or less. In general, infrared refers to light radiation that is longer than the wavelength of visible radiation.
  • the ratio of the spectral radiance at a wavelength of 5.8 ⁇ m to the spectral radiance at a wavelength of 3.0 ⁇ m is preferably 3% or less, more preferably 1% or less, and even more preferably 0. .5% or less.
  • the aqueous solvent preferably used in the liquid composition for forming the polymer conductive layer of the present invention has a strong absorption wavelength due to OH stretching vibration in the vicinity of about 3.0 ⁇ m, and is preferably used for the transparent resin film substrate of the present invention.
  • the obtained polyester resin film has almost no absorption wavelength in the infrared wavelength region near 3.0 ⁇ m, but preferably has a strong absorption wavelength in the infrared wavelength region of 5.8 ⁇ m or more.
  • infrared heater for example, an infrared heater as described in Japanese Patent No. 4790092 can be preferably used. Below, the infrared heater preferably used for this invention is demonstrated.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the wavelength control infrared heater.
  • FIG. 4 is a cross-sectional view showing a modification of the wavelength control infrared heater of FIG.
  • the external appearance of the infrared heater 20 has a cylindrical shape, and as shown in FIG. 3, the filament 22, the protective tube 24, and the filters 26 and 28 are mainly arranged concentrically in this order.
  • the filters 26 and 28 have a function of absorbing infrared rays having a wavelength of 3.5 ⁇ m or more, and the materials of the filters 26 and 28 include quartz glass and borosilicate crown glass, from the viewpoint of heat resistance and thermal shock resistance. Quartz glass is preferred.
  • the infrared heater 20 has a function of absorbing infrared rays having a wavelength of 3.5 ⁇ m or more.
  • the filters 26 and 28 themselves absorb infrared rays having a wavelength of 3.5 ⁇ m or more, and are heated by the filament 22 to become a high temperature. Therefore, the filters 26 and 28 themselves become infrared radiators and emit long-wave infrared rays.
  • a refrigerant for example, cooling air
  • the cooling function reduces the surface temperature of the filters 26, 28. , 28 can suppress secondary radiation.
  • the polymer conductive layer can be dried without deforming the transparent resin film substrate 2 by selectively irradiating the object to be dried with infrared rays having a wavelength of 3.0 ⁇ m which is an absorption region of the aqueous solvent. .
  • the thickness and the number of the filters 26 and 28 can be appropriately selected and changed according to the necessary infrared spectrum.
  • As a cooling function as above-mentioned, it can cool by making a filter into a hollow double or multiple lamination, and letting air flow through the hollow part in between.
  • the shape of the filters 26 and 28 may cover the entire columnar filament 22 concentrically.
  • the reflection plate 32 covers the three directions of the filament 22 (and the protective tube 24).
  • the filters 26 and 28 may be arranged in parallel plates on the infrared radiation surface side.
  • cooling air is allowed to flow in opposite directions between the hollow portions between the filters.
  • the cooling air on the discharge side may be discharged out of the system, or may be used as part of hot air used in the drying process.
  • the temperature of the filament 22 of the infrared heater 20 is preferably 800 ° C. or more, and preferably 3000 ° C. or less from the viewpoint of heat resistance of the filament 22 from the viewpoint of achieving both drying properties and prevention of deformation of the substrate.
  • the radiation energy in the wavelength region corresponding to the absorption of these aqueous solvents can be increased, and the filament temperature can be appropriately selected and changed depending on the desired coating and drying conditions.
  • the filament temperature can be measured, for example, using a radiation thermometer.
  • the surface temperature of the outermost filter 28 disposed on the object to be dried is preferably 200 ° C. or less, and more preferably 150 ° C. or less, from the viewpoint of suppressing secondary radiation due to its own infrared absorption. This can be adjusted by flowing air between the filters stacked in layers.
  • the drying zone is composed (covered) with a material having high infrared reflectivity, whereby infrared rays that are not absorbed by the object to be dried can be used with high efficiency.
  • the wavelength control infrared heater 20 is connected to a cooling mechanism 40 for circulating (circulating) the refrigerant in the hollow portion 30, and the cooling mechanism 40 and the filament 22 are connected to a control device. 45 is connected. In such a control circuit, the control device 45 controls the amount of refrigerant flowing into the hollow portion 30 by the cooling mechanism 40, the heat generation temperature of the filament 22, and the like.
  • the preheating treatment method is not particularly limited, and examples thereof include an electric furnace such as a hot plate, a box furnace, and a conveyor furnace, a near infrared heater, a middle infrared heater, a far infrared heater, hot air, hot air, and microwaves. These may be used alone or in combination.
  • the ratio of the spectral radiance at a wavelength of 5.8 ⁇ m to the spectral radiance at a wavelength of 3.0 ⁇ m can be obtained, for example, by the following method.
  • the spectral radiation spectrum of the infrared heater can be obtained by multiplying the black body radiation spectrum calculated according to Planck's radiation law by the spectral emissivity of the infrared heater.
  • a spectral radiance value at a wavelength of 3.0 ⁇ m and a spectral radiance value at a wavelength of 5.8 ⁇ m are read from the obtained spectral radiance spectrum, and a spectral radiance of a wavelength of 5.8 ⁇ m with respect to a spectral radiance of a wavelength of 3.0 ⁇ m is read.
  • the ratio can be calculated as a percentage.
  • conductive refers to a state in which electricity flows, and a sheet resistance value measured by a method in accordance with JIS K 7194 “Resistivity Test Method by 4-Probe Method of Conductive Plastic” is 1 ⁇ . It means lower than 10 8 ⁇ / ⁇ .
  • the conductive polymer compound that is a polymer having conductivity is preferably a conductive polymer compound having a cationic ⁇ -conjugated conductive polymer and a polyanion.
  • a conductive polymer compound can be easily obtained by chemical oxidative polymerization of a precursor monomer that forms a cationic ⁇ -conjugated conductive polymer, which will be described later, in the presence of an appropriate oxidizing agent and an oxidation catalyst, and a polyanion, which will be described later. Can be manufactured.
  • the cationic ⁇ -conjugated conductive polymer is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, and polyacetylenes.
  • a chain conductive polymer compound of polyfurans, polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes or polythiazyl compounds can be used.
  • polythiophenes or polyanilines are preferable, and polyethylenedioxythiophene is more preferable from the viewpoints of conductivity, transparency, stability, and the like.
  • a precursor monomer used for forming a cationic ⁇ -conjugated conductive polymer has a ⁇ -conjugated system in the molecule, and the main monomer even when polymerized by the action of an appropriate oxidizing agent.
  • a ⁇ -conjugated system is formed in the chain.
  • precursor monomers include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
  • the precursor monomer examples include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptyl
  • the polyanion used in the conductive polymer compound is substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted. It is desirable that the polyester or any of these copolymers be composed of a structural unit having an anionic group and a structural unit having no anionic group.
  • This polyanion is a solubilized polymer that solubilizes a cationic ⁇ -conjugated conductive polymer compound in a solvent.
  • the anion group of the polyanion functions as a dopant for the cationic ⁇ -conjugated conductive polymer compound, and improves the conductivity and heat resistance of the cationic ⁇ -conjugated conductive polymer compound.
  • the polyanion is used in an excess amount with respect to the cationic ⁇ -conjugated conductive polymer compound, so that the dispersibility of the conductive polymer compound particles composed of the cationic ⁇ -conjugated conductive polymer compound and the polyanion and It also has a function of improving film formability.
  • the anion group of the polyanion may be a functional group that can cause chemical oxidation doping to the cationic ⁇ -conjugated conductive polymer compound.
  • a mono-substituted sulfate group, a mono-substituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable from the viewpoint of ease of production and stability.
  • the anionic group is more preferably a sulfo group, a monosubstituted sulfate group or a carboxy group from the viewpoint of the doping effect of the functional group on the cationic ⁇ -conjugated conductive polymer compound.
  • polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . Moreover, these homopolymers may be sufficient as a polyanion, and 2 or more types of copolymers may be sufficient as it.
  • the polyanion may further have F (fluorine atom) in the compound.
  • F fluorine atom
  • Specific examples of such a polyanion include Nafion (manufactured by Dupont) containing a perfluorosulfonic acid group, and Flemion (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group.
  • the polyanion when a compound having a sulfonic acid group is used as the polyanion, after the polymer conductive layer 3 is formed by coating and drying by an infrared heater, the mixture is further heated and dried within a range of 100 to 120 ° C. for 5 minutes or more. You may irradiate a microwave, near-infrared light, etc., after processing. In some cases, heat drying may be omitted, and only irradiation with microwaves, near infrared light, or the like may be performed.
  • polystyrene sulfonic acid polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethylsulfonic acid or polyacrylic acid butylsulfonic acid is preferable.
  • the polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units from the viewpoint of dispersibility of the conductive polymer compound, and from 50 to 10,000 from the viewpoint of solvent solubility and conductivity. The range of is more preferable.
  • Examples of the polyanion production method include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and an anionic group-containing polymerizable monomer. And the like.
  • Examples of the method for producing a polyanion by polymerization of an anion group-containing polymerizable monomer include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidation polymerization or radical polymerization in the presence of an oxidizing agent or a polymerization catalyst. . Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, and this is kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent or a polymerization catalyst is dissolved in the solvent is added to the solvent in advance. React. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent.
  • a polymerizable monomer having no anionic group may be copolymerized with the anionic group-containing polymerizable monomer.
  • the obtained polymer is a salt of a polyanion, it is preferably transformed into a polyanion acid.
  • methods for transforming polyanion salts into polyanionic acids include ion exchange methods using ion exchange resins, dialysis methods, ultrafiltration methods, etc. Among these, ultrafiltration is used because it is easy to work with. The method is preferred.
  • the ratio of the cationic ⁇ -conjugated conductive polymer contained in the conductive polymer compound to the polyanion constituting the conductive polymer compound that is, the value of the mass ratio of the polyanion to the cationic ⁇ -conjugated conductive polymer is From the viewpoint of conductivity and dispersibility, the range of 0.5 to 25 is preferable.
  • the value of the mass ratio of the polyanion to the cationic ⁇ -conjugated conductive polymer is 25 or less, in addition to improving the conductivity, moisture retained by the hydrophilic polyanion or the conductive polymer compound The amount is reduced, and the storage stability of the conductive film and the organic EL element using the conductive film is improved.
  • the mass ratio of the polyanion to the cationic ⁇ -conjugated conductive polymer is 0. Within the range of 5 to 25 is preferable.
  • Examples of a method for adjusting the mass ratio of the polyanion to the cationic ⁇ -conjugated conductive polymer to a desired value include a method of adjusting the amount of polyanion used when the conductive polymer compound is synthesized. In this method, if the amount of polyanion is a value of a mass ratio of 1.0 or less with respect to the cationic ⁇ -conjugated conductive polymer, the conductive polymer compound particles tend to be large. Other polymer compounds can be used in combination during compound synthesis.
  • the polymer compound that can be used in combination is not particularly limited as long as the conductive polymer compound particles are stabilized and the transmittance and conductivity are not deteriorated, but polyacrylic such as 2-hydroxyethyl acrylate or an aqueous solvent may be used.
  • An aqueous dispersion polymer such as a dispersible polymer is preferred.
  • water in commercially available PEDOT / PSS is removed by drying, azeotropic removal with toluene or pulverized by a known method such as freeze-drying, and then washed with water to remove PSS, while removing PSS by ultrafiltration. A method of replacing with water can be used.
  • oxidizing agent used for obtaining a conductive polymer compound according to the present invention by chemically oxidatively polymerizing a precursor monomer that forms a cationic ⁇ -conjugated conductive polymer in the presence of a polyanion For example, J. et al. Am. Soc. 85, 454 (1963), and any oxidizing agent suitable for oxidative polymerization of pyrrole.
  • oxidants include, for practical reasons, inexpensive and easy-to-handle oxidants such as iron (III) salts (eg FeCl 3 , Fe (ClO 4 ) 3 , organic acids and inorganic acids containing organic residues).
  • Iron (III) salt hydrogen peroxide, potassium dichromate, alkali persulfate (eg potassium persulfate, sodium persulfate), ammonium, alkali perborate, potassium permanganate or copper salts (eg boron tetrafluoride) It is preferable to use (acid copper).
  • alkali persulfate eg potassium persulfate, sodium persulfate
  • ammonium alkali perborate
  • potassium permanganate or copper salts eg boron tetrafluoride
  • copper salts eg boron tetrafluoride
  • metal ions for example, iron ions, cobalt ions, nickel ions, molybdenum ions, vanadium ions
  • persulfate, iron (III) salts of inorganic acids including organic acids, or iron (III) salts of inorganic acids including organic residues has great application advantages.
  • iron (III) salts of inorganic acids containing organic residues include iron (III) salts of sulfuric acid half esters of alkanols within the range of 1 to 20 carbon atoms (eg lauryl sulfate), 1 to 20 carbon atoms.
  • Alkyl sulfonic acids within the range eg methane, dodecane sulfonic acid
  • carboxylic acids with an aliphatic carbon number in the range of 1-20 eg 2-ethylhexyl carboxylic acid
  • aliphatic perfluorocarboxylic acids eg trifluoroacetic acid, Fluorooctanoic acid
  • aliphatic dicarboxylic acids eg oxalic acid
  • especially aromatic, optionally substituted alkyl sulfonic acids having 1 to 20 carbon atoms eg benzenecene sulfonic acid, p-toluenesulfonic acid, dodecylbenzene
  • Fe (III) salt of sulfonic acid eg methane, dodecane sulfonic acid
  • a commercially available material can also be preferably used as such a conductive polymer compound.
  • a conductive polymer compound (abbreviated as PEDOT / PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is available as a Clevios series from Helios, PEDOT / PSS 483095 from Aldrich, 560596, commercially available from Nagase Chemtex as the Denatron series.
  • Polyaniline is commercially available from Nissan Chemical Industries as the ORMECON series.
  • such an agent can also be preferably used as the conductive polymer compound.
  • the conductive polymer compound may contain an organic compound as the second dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable.
  • Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, ⁇ -butyrolactone, and the like.
  • Examples of the ether group-containing compound include diethylene glycol monoethyl ether.
  • Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
  • the aqueous dispersion containing the conductive polymer compound and the polyester resin according to the present invention is a liquid in which the conductive polymer compound and the polyester resin dispersible in the aqueous solvent are dispersed in the aqueous solvent.
  • the dispersion according to the present invention is preferably transparent, and is not particularly limited as long as it is a medium for forming a film.
  • the dispersion may be a surfactant (emulsifier) or It is preferable not to contain a plasticizer or the like that controls the film formation temperature.
  • the pH of the dispersion according to the present invention at room temperature is not particularly problematic as long as desired conductivity is obtained, but is preferably in the range of 0.1 to 7.0, more preferably in the range of 0.3 to 5.0. Is within.
  • the pH of the dispersion is 0.1 or more, more preferably 0.3 or more, the polymer can be suitably prevented from being decomposed during drying.
  • the pH of the dispersion is 7.0 or less, more preferably 5.0 or less, the sheet resistance value of the conductive film is deteriorated due to a decrease in the function of the dopant by preventing neutralization of PEDOT / PSS. It can prevent suitably.
  • the pH at room temperature of the dispersion of the polyester resin dispersible in the aqueous solvent used for the production of the conductive film 1 of the present invention is the compatibility with the conductive polymer compound solution to be separately compatible, the polyester dispersible in the aqueous solvent From the viewpoint of the conductivity of the mixed liquid (dispersion) of the resin and the conductive polymer compound, it is preferably in the range of 0.1 to 11.0, more preferably in the range of 3.0 to 9.0. More preferably, it is within the range of 4.0 to 7.0.
  • an organic solvent may be added to the dispersion.
  • the organic solvent is not particularly limited as long as a desired surface tension can be obtained, but a monovalent, divalent or polyvalent alcohol solvent is preferable.
  • the boiling point of the organic solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower. If the boiling point of the organic solvent is 200 ° C. or lower, more preferably 150 ° C. or lower, the residual solvent in the film can be suitably reduced in short-time drying.
  • the size (average particle size) of the conductive polymer compound and the polyester resin after the dispersion treatment contained in the dispersion according to the present invention is preferably in the range of 1 to 100 nm, more preferably 3 to 80 nm. Within the range, more preferably within the range of 5 to 50 nm.
  • the size of the conductive polymer compound and polyester resin particles in the dispersion is 100 nm or less, haze and smoothness of the polymer conductive layer 3 produced by applying the dispersion to the transparent resin film substrate 2. (Surface roughness (Ra)) is improved, and further the performance of the organic EL element is improved. If the size of the particles in the dispersion is 1 nm or more, the occurrence of aggregation between the particles is suppressed and the dispersibility of the dispersion is improved. As a result, the haze and smoothness of the polymer conductive layer 3 are improved. To do.
  • the size of the particles in the dispersion is more preferably 3 to 80 nm, and further preferably 5 to 50 nm. Moreover, even if the average particle size is controlled, if the film forming temperature of the polyester resin that can be dispersed in the aqueous solvent used is too high, the film shape remains without being formed within the drying temperature, and the average roughness of the film surface remains. Therefore, it is desirable to control the film formation temperature.
  • Preparation of dispersion containing conductive polymer compound and polyester resin Preparation of a dispersion having an average particle size within a desired range is performed by mixing a conductive polymer compound and a polyester resin, and then adding the mixture to an aqueous solvent, and using a homogenizer, an ultrasonic disperser (US disperser), a ball mill, or the like. It can be carried out by using a dispersion technique, a reverse osmosis membrane, an ultrafiltration membrane, a particle classification using a microfiltration membrane, or the like. Dispersion techniques using a homogenizer, an ultrasonic disperser (US disperser), a ball mill, etc. all tend to increase particles at high temperatures. Therefore, the temperature during the dispersion operation is preferably ⁇ 10 to 50 ° C. It is within the range, and more preferably within the range of 0 to 30 ° C.
  • the temperature of the dispersion liquid tends to be high, and there is a concern that the conjugated system of the conductive polymer compound is broken by heat and causes performance deterioration.
  • the temperature exceeds 50 ° C.
  • the particle diameter tends to be small, but there is a concern that the sheet resistance value of the polymer conductive layer 3 generated by the dispersion liquid increases.
  • an organic solvent is contained in an aqueous solvent, even when the temperature is 0 ° C. or lower (for example, ⁇ 10 ° C. or higher and 0 ° C.
  • the dispersion operation can be suitably performed as long as the solvent does not solidify. It is. Further, since the dispersion is water-rich, the viscosity increases at 0 ° C. or lower, and a load is applied to the stirring. Further, if the temperature is 30 degrees or more, the solvent evaporates, and the dispersion concentration tends to fluctuate. As a result, there is a concern that the performance of the conductive film 1 is affected. Classification is not particularly limited as long as a membrane to be used is selected as necessary.
  • polyester resin particles and the conductive polymer compound particles dispersible in the aqueous solvent in the dispersion according to the present invention are in a state in which the respective particles are dispersed independently, and the particle sizes are the respective particle sizes.
  • particles having different compositions may be agglomerated. Further, particles having different compositions may be partially mixed during the dispersion operation, or may be completely mixed to form particles.
  • the amount (solid content) of the polyester resin dispersible in the aqueous solvent according to the present invention is preferably in the range of 50 to 5000% by mass, more preferably 100 to 5000%, based on the solid content of the conductive polymer compound. It is within the range of 3500% by mass, and more preferably within the range of 200 to 2000% by mass.
  • the reason why the amount of the polyester resin dispersible in the aqueous solvent is preferably in the range of 50 to 5000% by mass with respect to the conductive polymer compound is that the transmittance is 50% by mass or more.
  • the conductive polymer compound absorbs light in the visible light region, so in order to improve the transmittance, the conductive polymer compound should be reduced as much as possible within a range that does not decrease the conductivity.
  • 5000 This is because if the content is less than or equal to mass%, suitable conductivity can be obtained without the ratio of the conductive polymer compound becoming too small.
  • the amount of the polyester resin dispersible in the aqueous solvent is within the range of 100 to 3500 mass% with respect to the conductive polymer compound. More preferably, it is more preferably in the range of 200 to 2000 mass% with respect to the conductive polymer compound.
  • the particle size measurement method of the dispersion according to the present invention is not particularly limited, but is preferably a dynamic light scattering method, a laser diffraction method or an image imaging method, and more preferably a dynamic light scattering method. Since the particle diameter of the polyester resin particles and the conductive polymer compound particles that can be dispersed in an aqueous solvent becomes unstable due to dilution, a concentrated particle size measuring machine that can be measured as it is without diluting the solvent is preferable. . Examples of such a thick particle size analyzer include a thick particle size analyzer (manufactured by Otsuka Electronics Co., Ltd.), a zeta sizer nano series (manufactured by Malvern) and the like.
  • Fine particles may be added to the dispersion according to the present invention. Such fine particles are preferably used by replacing a polyester resin dispersible in an aqueous solvent constituting the polymer conductive layer from the viewpoint of reducing the drying load and suppressing the thickness of the polymer conductive layer.
  • the amount of the fine particles used is preferably in the range of 25 to 75% by mass with respect to the polyester resin dispersible in the aqueous solvent, more preferably 30 to 60% by mass with respect to the conductive polymer compound. Is within the range.
  • the reason that the amount of the polymer dispersible in the aqueous solvent is preferably in the range of 25 to 75% by mass with respect to the conductive polymer is that the drying load can be reduced if the amount is 25% by mass or more.
  • the film physical properties of the polymer conductive layer are improved if it is sufficient and 75% by mass or less.
  • the amount of fine particles used is 25 to 75% by mass in terms of solid content with respect to the polyester resin dispersible in an aqueous solvent. More preferably within the range.
  • the dispersion liquid may contain a polymer dispersible in an aqueous solvent in addition to the conductive polymer compound and the polyester resin.
  • dissociable groups used in polymers dispersible in aqueous solvents include anionic groups (sulfonic acid and its salts, carboxylic acid and its salts, phosphoric acid and its salts, etc.), cationic groups (ammonium salts, etc.), etc. Is mentioned.
  • the dissociable group is not particularly limited, but an anionic group is preferable from the viewpoint of compatibility with the conductive polymer solution.
  • the amount of the dissociable group is not particularly limited as long as the polymer dispersible in the aqueous solvent is dispersible in the aqueous solvent, and is preferably as small as possible because the drying load is reduced appropriately in the process.
  • the counter species (cation, anion) used for the anionic group and the cationic group are not particularly limited, but the performance of the organic EL device including the conductive film 1 and the conductive film 1 is laminated. From the viewpoint, it is preferably hydrophobic and in a small amount.
  • the main skeletons of polymers dispersible in aqueous solvents are polyethylene-polyvinyl alcohol (PVA), polyethylene-polyvinyl acetate, polyethylene-polyurethane, polyethylene-polyacrylic acid, polyethylene-polymethacrylic acid, polybutadiene, polybutadiene-polystyrene, polyolefin Copolymer, polyamide (nylon), polyvinylidene chloride, polyester, polyester-urethane, polyester-acrylate, polyacrylate, polyacrylate copolymer, polymethacrylate, polymethacrylate copolymer, polyacrylate-polyester, polyacrylate-polystyrene , Polyvinyl acetate, polyurethane-polycarbonate, polyurethane-polyether, polyurethane-polyester, polyurethane Polyacrylates, polyamides, polyacrylic - silica, polyacrylic - polystyrene - silica
  • the main skeleton having no absorption at 2.5 to 3.0 ⁇ m can be converted into a polymer having an absorption at 2.5 to 3.0 ⁇ m by means of copolymerization, block or grafting.
  • polyurethane-polycarbonate, polyamide, polyester-urethane, and polyacryl-polystyrene-silica are preferred.
  • the aqueous dispersion for forming the polymer conductive layer contains a polar solvent, so that the composition can be stably maintained without impairing the dispersion stability of the polymer that can be dispersed in the aqueous solvent, and stable by the ink jet method. Discharged.
  • polar solvent those having a dielectric constant of 25 or more, preferably 30 or more, more preferably 40 or more can be used.
  • polar solvents examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, glycerin, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and the like.
  • Propylene glycol, ethylene glycol, and dimethyl sulfoxide are particularly preferable from the viewpoints of dry removal by an infrared heater, stability of the composition, dischargeability in ink jet printing, and conductivity of the polymer conductive layer.
  • the addition amount of the polar solvent can be determined from the viewpoint of the stability of the composition, and is preferably in the range of 5 to 40% with respect to the total mass of the composition. If it is 5% or more, the stabilizing effect of the composition is improved, and if it is 40% or less, the surface tension of the composition is not too high and the wettability to the substrate is improved.
  • the dielectric constant of the solvent can be measured, for example, using a liquid dielectric constant meter Model-871 (manufactured by Nippon Lucas).
  • the transparent resin film substrate 2 in the present embodiment is a plate-like body that can carry the polymer conductive layer 3 and the metal conductive layer 4 (hereinafter collectively referred to as “conductive layers 3 and 4”), and is conductive.
  • the total light transmittance in the visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 is 80% or more. Are preferably used.
  • the transparent resin film substrate 2 is preferably made of a material that is excellent in flexibility, has a sufficiently low dielectric loss coefficient, and has a microwave absorption smaller than that of the conductive layers 3 and 4.
  • a transparent resin film base material 2 although a resin substrate, a resin film, etc. are mentioned suitably, it is preferable to use a transparent resin film base material from a viewpoint of performance, such as lightness and a softness
  • the transparent resin film substrate means a total light transmittance in a visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (a test method for the total light transmittance of a plastic-transparent material). It means 50% or more.
  • the transparent resin film substrate 2 that can be preferably used is not particularly limited, and the material, shape, structure, thickness, and the like can be appropriately selected from known materials.
  • the transparent resin film substrate include polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, and modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, and cyclic olefins.
  • Polyolefin resin films such as polyvinyl resins, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, Examples include polycarbonate (PC) resin film, polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, etc. Kill.
  • PEEK polyether ether ketone
  • PSF polysulfone
  • PES polyether sulfone
  • PC polycarbonate
  • PC polyamide resin film
  • polyimide resin film acrylic resin film
  • TAC triacetyl cellulose
  • Any resin film having a total light transmittance of 80% or more is preferably used as a film substrate used as the transparent resin film substrate 2 of the present invention.
  • a film substrate from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film or a polycarbonate film is preferable.
  • a biaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene naphthalate film is more preferred.
  • the transparent resin film substrate 2 used in the present invention can be subjected to a surface treatment or an easy-adhesion layer in order to ensure wettability and adhesion of the coating liquid (dispersion).
  • the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
  • the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer.
  • the easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
  • an inorganic coating, an organic coating, or a hybrid coating of both may be formed on the front or back surface of the transparent resin film substrate.
  • the transparent resin film substrate on which such a coating is formed has a water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 of 1 ⁇ .
  • the gas barrier film is preferably 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / High gas barrier property with m 2 ⁇ 24h ⁇ atm or less, water vapor transmission rate (25 ⁇ 0.5 ° C, relative humidity (90 ⁇ 2)% RH) 1x10 -3 g / (m 2 ⁇ 24h) or less A film is preferred.
  • a material for forming a gas barrier film formed on the front or back surface of a transparent resin film substrate in order to obtain a high gas barrier film it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • Any material can be used.
  • silicon oxide, silicon dioxide, silicon nitride or the like can be used.
  • An organic electronic device such as an organic EL device easily deteriorates in performance when a small amount of moisture or oxygen is present inside the device.
  • it is effective to form a gas barrier layer having a high shielding ability against moisture and oxygen on the transparent resin film substrate. It is.
  • the composition and structure of the gas barrier layer and the formation method thereof there is no particular limitation on the composition and structure of the gas barrier layer and the formation method thereof, and a film made of an inorganic compound such as silica can be formed by vacuum deposition or CVD.
  • the gas barrier layer can be formed by applying and drying a coating solution containing a polysilazane compound and then oxidizing (modifying) it by ultraviolet irradiation in a nitrogen atmosphere containing oxygen and water vapor.
  • any appropriate method can be selected as a method for applying the polysilazane compound.
  • a coating method flow coating method, cast film forming method, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, curtain coating method, spray coating method
  • various coating methods such as a doctor coating method, various coating methods such as a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, and an ink jet printing can be used.
  • a gravure printing method, a flexographic printing method, an offset printing method, a screen printing method, or an ink jet printing method it is preferable to use a gravure printing method, a flexographic printing method, an offset printing method, a screen printing method, or an ink jet printing method.
  • the polysilazane used in the present embodiment is a polymer having a silicon-nitrogen bond, such as SiO 2 made of Si—N, Si—H, N—H, etc., Si 3 N 4 and both intermediate solid solutions SiOxNy, etc. It is a ceramic precursor inorganic polymer.
  • the resin substrate is ceramicized at a relatively low temperature to be modified to silica, and the one represented by the following general formula (1) is preferable. Can be used.
  • R 1 , R 2 and R 3 represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
  • R 1 , R 2 , and R 3 are hydrogen atoms
  • any of R 1 , R 2 , and R 3 is an alkyl group, alkenyl group, cycloalkyl group, aryl group, An alkylsilyl group, an alkylamino group or an alkoxy group
  • Perhydropolysilazane, in which all of R 1 , R 2 , and R 3 are hydrogen atoms, is particularly preferred because of the denseness of the resulting gas barrier film.
  • the gas barrier layer may be a single layer or may have a laminated structure of two or more layers. When it has a laminated structure, it may be a laminated structure of an inorganic compound, or may be formed as a hybrid film of an inorganic compound and an organic compound. A stress relaxation layer may be sandwiched between the gas barrier layers. Whether it is a single layer or a laminated layer, the thickness of one gas barrier layer is preferably in the range of 30 to 1000 nm, more preferably in the range of 30 to 500 nm, and particularly preferably in the range of 90 to 500 nm. When the thickness is 30 nm or more, the uniformity of the layer thickness is improved, and excellent gas barrier performance is obtained. When the thickness is 1000 nm or less, cracks due to bending are rarely abruptly entered, and an increase in internal stress during film formation can be suppressed, and generation of defects can be prevented.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 is 1 ⁇ 10 ⁇ It is preferably 3 g / (m 2 ⁇ 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 ⁇ 10 ⁇ 3 ml / m 2 ⁇ 24 h ⁇ atm.
  • the surface of the transparent resin film substrate can be pretreated with a silane coupling agent or the like in order to improve the adhesion with the transparent resin film substrate.
  • a conductive film 1 As shown in FIG. 1, a conductive film 1 according to an embodiment of the present invention is a conductive layer (polymer conductive layer 3 in FIG. 1) containing a conductive polymer compound and a polymer dispersible in an aqueous solvent. In addition, it has a conductive layer (metal conductive layer 4 in FIG. 1) containing a metal material formed in a pattern on the transparent resin film substrate 2.
  • the metal material is not particularly limited as long as it has conductivity, and may be an alloy in addition to a metal such as gold, silver, copper, iron, nickel, or chromium.
  • the shape of the metal material is preferably metal fine particles or metal nanowires, and the metal material is preferably silver from the viewpoint of conductivity.
  • the metal conductive layer 4 according to the present invention is formed on the transparent resin film substrate 2 so as to exhibit a pattern shape having an opening.
  • An opening is a part which does not have a metal material on the transparent resin film base material 2, and is a translucent window part.
  • limiting in particular in a pattern shape For example, it is preferable that they are stripe shape, mesh shape, or random mesh shape.
  • the ratio of the openings to the entire surface of the conductive film 1, that is, the opening ratio is preferably 80% or more from the viewpoint of transparency.
  • the aperture ratio is the ratio of the entire portion of the surface of the transparent resin film substrate 2 excluding the light-impermeable conductive portion (metal conductive layer 4). For example, when the light-impermeable conductive portion is striped or meshed, the aperture ratio of the striped pattern having a line width of 100 ⁇ m and a line interval of 1 mm is about 90%.
  • the line width of the pattern is preferably within the range of 10 to 200 ⁇ m from the viewpoint of transparency and conductivity. If the line width of the pattern is 10 ⁇ m or more, desired conductivity is obtained, and if the line width of the pattern is 200 ⁇ m or less, desired transparency is obtained.
  • the pattern height is preferably in the range of 0.1 to 10 ⁇ m. If the pattern height is 0.1 ⁇ m or more, desired conductivity can be obtained, and if the height of the thin line is 10 ⁇ m or less, current leakage and functional layer thickness distribution in the formation of an organic electronic device. Defects are prevented.
  • a conventionally well-known method can be utilized. For example, it can be formed by forming a metal layer on the entire surface of the transparent resin film substrate 2 and subjecting the metal layer to a known photolithography method. Specifically, a metal layer is formed on the entire surface of the transparent resin film substrate 2 using one or more physical or chemical forming methods such as printing, vapor deposition, sputtering, plating, or the like, or a metal foil After being laminated on the transparent resin film substrate 2 with an adhesive, the metal conductive layer 4 processed into a desired stripe shape or mesh shape can be obtained by etching using a known photolithography method.
  • the metal species is not particularly limited as long as it can be energized, and copper, iron, cobalt, gold, silver, and the like can be used. From the viewpoint of conductivity, silver or copper is preferable, and silver is more preferable. It is.
  • a method of printing an ink containing metal fine particles in a desired shape by screen printing, a method of applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, or a plating treatment, or a silver salt A method using photographic technology can be listed.
  • a technique using silver salt photographic technology can be implemented with reference to, for example, [0076]-[0112] of JP-A-2009-140750 and examples.
  • a method for performing a plating process by gravure printing of the catalyst ink can be implemented with reference to, for example, Japanese Patent Application Laid-Open No. 2007-281290.
  • a random network structure for example, as described in JP-T-2005-530005, a random network structure of conductive fine particles is spontaneously formed by coating and drying a liquid containing metal fine particles. Techniques for forming can be used.
  • a coating solution (dispersion) containing metal nanowires is applied and dried to form a random network structure of metal nanowires.
  • Techniques to form are available.
  • the metal nanowire refers to a fibrous structure having a metal element as a main component.
  • the metal nanowire in the present invention means a large number of fibrous structures having a minor axis from the atomic scale to the nm size.
  • the average length is preferably 3 ⁇ m or more, and more preferably in the range of 3 to 500 ⁇ m. If the length of the metal nanowire is 500 ⁇ m or less, one wire spreads well and is arranged without overlapping with other wires, and as a result, the thickness of the metal conductive layer 4 is suppressed, and a thin film is achieved. And the transmittance is improved. Moreover, if the length of metal nanowire is 3 micrometers or more, the contact of metal nanowire will increase and desired sheet resistance value and transmittance
  • the relative standard deviation of the length is preferably 40% or less. This is because if the relative standard deviation of the length is 40% or less, the sheet resistance value of the metal conductive layer 4 is prevented from being reduced in uniformity and film thickness unevenness.
  • the average minor axis of the metal nanowire is preferably in the range of 10 to 300 nm, and more preferably in the range of 30 to 200 nm.
  • the relative standard deviation of the minor axis is preferably 20% or less. This is because if the relative standard deviation of the minor axis is 20% or less, the occurrence of unevenness in the thickness of the metal conductive layer 4 can be suppressed, and the occurrence of uneven brightness in the organic EL element can be suppressed.
  • the basis weight of the metal nanowire is preferably in the range of 0.02 to 0.5 g / m 2 . If the basis weight of the metal nanowire is 0.02 g / m 2 or more, a desired sheet resistance value is obtained, and if the basis weight is 0.5 g / m 2 or less, a desired sheet resistance value and transmittance are obtained. It is done.
  • the basis weight of the metal nanowires is more preferably 0.03 to 0.2 g / m 2 from the viewpoint of sheet resistance and transmittance.
  • metal used for the metal nanowire examples include copper, iron, cobalt, gold, silver and the like, and silver is preferable from the viewpoint of conductivity.
  • the main metal and one or more other metals May be included in any proportion.
  • limiting in particular in the manufacturing method of metal nanowire For example, well-known methods, such as a liquid phase method and a gaseous-phase method, can be used.
  • limiting in particular in a specific manufacturing method A well-known manufacturing method can be used. For example, as a method for producing silver nanowires, Adv. Mater.
  • the surface specific resistance of the thin wire portion (metal conductive layer 4) formed from a metal material is preferably 100 ⁇ / ⁇ or less, and more preferably 20 ⁇ / ⁇ or less from the viewpoint of increasing the area.
  • the surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the thin wire portion (metal conductive layer 4) formed from a metal material is subjected to heat treatment within a range that does not damage the transparent resin film substrate 2. As a result, fusion between the metal fine particles and the metal nanowires proceeds, and the fine wire portion formed from the metal material becomes highly conductive.
  • the method for producing the conductive film of the present invention includes at least Step (A): Step of applying an aqueous dispersion containing a conductive polymer compound and a polyester resin on a transparent resin film substrate Step (B): For the aqueous dispersion applied on the transparent resin film substrate And forming a polymer conductive layer by performing infrared irradiation.
  • an aqueous dispersion containing the above-described conductive polymer compound and a polyester resin is applied onto the transparent resin film substrate 2 and heated and dried. Formed by.
  • the conductive film 1 has a fine line pattern formed from a metal material as the metal conductive layer 4, the above-described coating solution is applied onto the transparent resin film substrate 2 on which the fine line pattern formed from the metal material is formed. Then, the polymer conductive layer 3 is formed by heating and drying using an infrared heater.
  • the polymer conductive layer 3 only needs to be electrically connected to the metal fine line pattern which is the metal conductive layer 4, and may completely cover the patterned metal fine line pattern. A part thereof may be covered or may be in contact with the fine metal wire pattern.
  • an aqueous dispersion (coating liquid) containing a conductive polymer compound and a polyester resin is not limited to printing methods such as gravure printing, flexographic printing, and screen printing, but also roll coating, bar coating, Use any of the coating methods such as dip coating, spin coating, casting, die coating, blade coating, bar coating, gravure coating, curtain coating, spray coating, doctor coating, and inkjet. Can do.
  • a method for producing a conductive film 1 in which a part of the metal conductive layer 4 is coated or in contact with a polymer conductive layer 3 containing a conductive polymer compound and a polymer dispersible in an aqueous solvent As a method for producing a conductive film 1 in which a part of the metal conductive layer 4 is coated or in contact with a polymer conductive layer 3 containing a conductive polymer compound and a polymer dispersible in an aqueous solvent, The above-mentioned transparent resin film is formed by forming the metal conductive layer 4 on the film by the method described above, and further forming the polymer conductive layer 3 containing the conductive polymer compound and the polyester resin by the method described later and laminating them. The method of transferring to the base material 2 is mentioned.
  • the non-conductive portion (opening portion) of the fine metal wire pattern contains a conductive polymer compound and a polymer dispersible in an aqueous solvent by a known method such as an inkjet method.
  • examples thereof include a method for forming the polymer conductive layer 3.
  • the polymer conductive layer 3 containing a conductive polymer compound and a polymer dispersible in an aqueous solvent contains a conductive polymer compound having a polyanion mass ratio of 0.5 to 25 to the cationic ⁇ -conjugated polymer. Is preferred. Thereby, high electroconductivity, high transparency, and strong film
  • the dry layer thickness of the polymer conductive layer 3 is preferably in the range of 30 to 2000 nm from the viewpoint of surface smoothness and transparency, and more preferably 100 nm or more from the viewpoint of conductivity. From the viewpoint of surface smoothness of 1, the thickness is more preferably 200 nm or more. In addition, the thickness of the polymer conductive layer after drying is more preferably 1000 nm or less from the viewpoint of transparency.
  • the polymer conductive layer 3 is formed by applying an aqueous dispersion (coating liquid) containing a conductive polymer compound and a polyester resin, and then applying infrared irradiation.
  • aqueous dispersion coating liquid
  • other drying processes can be performed.
  • the heat drying process in the temperature of the range which does not damage the transparent resin film base material 2 and the conductive layers 3 and 4 can be used together, for example, 80 Heat drying treatment can be performed within a range of ⁇ 120 ° C. for 10 seconds to 10 minutes. This heat drying treatment may be performed before or after the drying treatment by infrared irradiation.
  • the coating liquid described above contains, as additives, plasticizers, stabilizers (antioxidants, antioxidants, etc.), surfactants, dissolution accelerators, polymerization inhibitors, colorants (dyes, pigments, etc.) and the like. May be. Furthermore, from the viewpoint of improving workability such as coating properties, the coating liquid described above is a solvent (for example, water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons). Or other organic solvents).
  • a solvent for example, water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons. Or other organic solvents).
  • Ry and Ra representing the smoothness of the surface of the polymer conductive layer 3 which is a conductive layer are
  • the conductive film 1 according to the present invention has a surface smoothness of the polymer conductive layer 3 that is a conductive layer of Ry ⁇ 50 nm, and the surface of the polymer conductive layer 3 that is a conductive layer. It is preferable that the smoothness of Ra ⁇ 10 nm.
  • a commercially available atomic force microscope (AFM) can be used for the measurement of Ry and Ra.
  • the measurement can be performed by the following method.
  • AFM SPI3800N probe station and SPA400 multifunctional unit as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface.
  • scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan XY 20 ⁇ m and Z 2 ⁇ m is used.
  • the cantilever is a silicon cantilever SI-DF20 manufactured by Hitachi High-Tech Science Co., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 ⁇ 80 ⁇ m is measured at a scanning frequency of 1 Hz.
  • the value of Ry is more preferably 50 nm or less, and further preferably 40 nm or less, from the viewpoint of improving conductivity.
  • the value of Ra is more preferably 10 nm or less, and further preferably 5 nm or less, from the viewpoint of improving conductivity.
  • the conductive film 1 preferably has a total light transmittance of 60% or more, more preferably 70% or more, and further preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the electrical resistance value of the polymer conductive layer 3 which is a conductive layer in the conductive film 1 of the present invention is preferably 1000 ⁇ / ⁇ or less as a sheet resistance value from the viewpoint of performance improvement, and is 100 ⁇ / ⁇ or less. More preferably.
  • the sheet resistance value may be 50 ⁇ / ⁇ or less from the viewpoint of performance improvement when applied to a current-driven optoelectronic device.
  • it is 10 ⁇ / ⁇ or less. That is, when the sheet resistance value is 10 3 ⁇ / ⁇ or less, the conductive film 1 can preferably function as an electrode in various optoelectronic devices.
  • the sheet resistance value described above can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method using conductive plastic 4-probe method) or the like, and using a commercially available surface resistivity meter. It can be easily measured.
  • An organic EL device is characterized by including a conductive film 1 as an electrode, and includes an organic layer including an organic light emitting layer and a conductive film 1.
  • the organic EL device according to the embodiment of the present invention preferably includes the conductive film 1 as an anode, and the organic light-emitting layer and the cathode are arbitrarily selected from materials, configurations, and the like generally used for organic EL devices. Things can be used.
  • anode / organic light emitting layer / cathode As an element structure of the organic EL element, anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / Various configurations such as electron transport layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. Things can be mentioned.
  • the light emitting material or doping material that can be used in the organic light emitting layer includes anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bis.
  • an organic light emitting layer is manufactured by well-known methods, such as vapor deposition, application
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm and more preferably 0.5 to 200 nm from the viewpoint of light emission efficiency.
  • the organic EL element of the present invention can be used for a self-luminous display, a liquid crystal backlight, illumination, and the like. Since the organic EL device of the present invention can uniformly emit light without unevenness, it is preferably used for illumination.
  • the conductive film 1 of the present invention has both high conductivity and transparency, and various optoelectronic devices such as liquid crystal display elements, organic light emitting elements, inorganic electroluminescent elements, electronic paper, organic solar cells, inorganic solar cells, and electromagnetic waves. It can be suitably used in fields such as shields and touch panels. Among these, it can use especially preferably as a transparent electrode of the organic EL element and organic thin-film solar cell element by which the smoothness of the surface of an electroconductive film is calculated
  • the organic EL element 50 includes a conductive film 51 (transparent electrode) including a transparent resin film substrate 52, a metal conductive layer 54, and a polymer conductive layer 55.
  • An extraction electrode 53 is formed on the side edge of the transparent resin film substrate 52 of the conductive film 51. The extraction electrode 53 is in contact with the metal conductive layer 54 and the polymer conductive layer 55, and is electrically connected to these members.
  • An organic functional layer 56 is formed on the polymer conductive layer 55 of the conductive film 51.
  • the organic functional layer 56 includes a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like.
  • a counter electrode 57 is formed on the organic functional layer 56.
  • the counter electrode 57 is an electrode facing the conductive film 51 and has a polarity opposite to that of the conductive film 51.
  • the organic EL element 50 is sealed by a sealing member 58 with a part of the extraction electrode 53 exposed, and the sealing member 58 covers and protects the conductive film 51 and the organic functional layer 56.
  • FIGS. 6A to 6F are schematic plan views for explaining a method of manufacturing an organic EL element.
  • a method for manufacturing the organic EL element 50 will be described with reference to FIGS. 6A to 6F.
  • a fine line pattern of metal particles is formed on a transparent resin film substrate 52 (FIG. 6A) to form a metal conductive layer 54 (FIG. 6B).
  • a certain composition containing an aqueous dispersion containing a conductive polymer compound and a polyester resin is prepared, and the composition is ink-jet printed on the metal conductive layer 54 and dried with infrared rays of the present invention.
  • the polymer conductive layer 55 is formed, and the metal conductive layer 54 is covered with the polymer conductive layer 55 (FIG. 6C).
  • an organic functional layer 56 including a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like is formed on the polymer conductive layer 55 (conductive film 51) (FIG. 6D).
  • the counter electrode 57 is formed so as to cover the extraction electrode 53 and the organic functional layer 56 (FIG. 6E), and these are sealed by the sealing member 58 so as to completely cover the conductive film 51 and the organic functional layer 56.
  • the member is sealed (FIG. 6F).
  • the organic EL element 50 is manufactured through the above steps.
  • the conductive film according to the embodiment of the present invention has both high conductivity and transparency, and various optoelectronics such as a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, electronic paper, an organic solar cell, and an inorganic solar cell. It can be suitably used in the fields of devices, electromagnetic wave shields, touch panels and the like. Among these, it can use especially preferably as an electroconductive film of the organic EL element and organic thin-film solar cell element by which the smoothness of the surface of an electroconductive film is calculated
  • the organic electronic element for example, organic EL element
  • the organic electronic element which concerns on this invention can be made to light-emit uniformly, it is preferable to use it for an illumination use, a self-light-emitting display, a backlight for liquid crystals, It can be used for lighting or the like.
  • the touch panel according to the present invention is flexible and has low resistance, it can be used for curved surface and large area applications, such as ATMs of financial institutions such as banks, vending machines and ticket vending machines. It can be used in a wide variety of fields, mainly for digital information devices such as mobile phones, personal digital assistants (PDAs), digital audio players, portable game machines, copiers, fax machines, car navigation systems, etc. .
  • polyester resin P-1 dispersible in aqueous solvent 138.6 parts of dimethyl terephthalic acid, 26.0 parts of dimethylisophthalic acid, 46.9 parts of sodium dimethylisophthalic acid, 99.3 parts of ethylene glycol, 21.2 parts of diethylene glycol, 23.1,6-hexanediol. 6 parts and 0.1 part of a catalyst (potassium titanium oxalate) were prepared.
  • the polyester resin When the obtained polyester resin was analyzed with an ICP emission spectrometer, the polyester resin had a ratio of 15 mol% of aromatic dicarboxylic acid having at least a sulfonic acid group (the ratio is shown in Tables 1 and 2 as “ It was confirmed that the dicarboxylic acid contained in “the ratio” is used as a constituent component.
  • polyester resin P-1 dispersible in an aqueous solvent was obtained.
  • polyester resin P-2 dispersible in aqueous solvent A polyester resin that can be dispersed in the aqueous solvent, except that it is changed to 146.7 parts of dimethylterephthalic acid, 27.5 parts of dimethylisophthalic acid, and 31.2 parts of sodium dimethylisophthalic acid 5-sulfonate, which are charged as acid components.
  • a polyester resin P-2 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin contains a dicarboxylic acid containing at least 10 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-3 dispersible in aqueous solvent A polyester resin that can be dispersed in the aqueous solvent, except for changing to 153.2 parts of dimethylterephthalic acid, 28.7 parts of dimethylisophthalic acid, and 18.7 parts of sodium dimethylisophthalic acid 5-sulfonate charged as acid components.
  • a polyester resin P-3 dispersible in an aqueous solvent was obtained in the same manner as P-1.
  • the polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least a 6 mol% aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-4 dispersible in aqueous solvent A polyester resin that can be dispersed in the aqueous solvent, except that it is changed to 154.9 parts of dimethyl terephthalic acid, 29.0 parts of dimethyl isophthalic acid, and 15.6 parts of sodium dimethylisophthalic acid 5-sulfonate which are charged as acid components.
  • a polyester resin P-4 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least 5 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-5 dispersible in aqueous solvent A polyester resin that can be dispersed in the aqueous solvent, except for changing to 158.1 parts of dimethyl terephthalic acid, 29.6 parts of dimethyl isophthalic acid, and 9.4 parts of sodium dimethylisophthalic acid 5-sulfonate charged as acid components
  • a polyester resin P-5 dispersible in an aqueous solvent was obtained in the same manner as P-1.
  • the polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least 3 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-6 dispersible in aqueous solvent A polyester resin that can be dispersed in the aqueous solvent, except that 159.7 parts of dimethylterephthalic acid, 30.0 parts of dimethylisophthalic acid, and 6.2 parts of sodium dimethylisophthalic acid are added as acid components.
  • a polyester resin P-6 dispersible in an aqueous solvent was obtained in the same manner as P-1.
  • the polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin contains a dicarboxylic acid containing at least 2 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-7 dispersible in aqueous solvent The polyester resin P dispersible in the aqueous solvent, except for changing to 161.4 parts of dimethyl terephthalic acid, 30.3 parts of dimethyl isophthalic acid, and 3.1 parts of sodium dimethylisophthalic acid, which are charged as acid components.
  • a polyester resin P-7 dispersible in an aqueous solvent was obtained in the same manner as in Example-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin contains a dicarboxylic acid containing at least 1 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-8 dispersible in aqueous solvent Comparison Changed to 130.4 parts of dimethyl terephthalic acid, 24.5 parts of dimethyl isophthalic acid, and 62.5 parts of sodium dimethylisophthalic acid 5-sulfonate, which are charged as acid components Except that, polyester resin P-8 dispersible in aqueous solvent was obtained in the same manner as polyester resin P-1 dispersible in aqueous solvent. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least 20 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
  • polyester resin P-9 dispersible in aqueous solvent Comparison To 161.7 parts of dimethyl terephthalic acid, 30.3 parts of dimethyl isophthalic acid and 2.5 parts of sodium dimethyl isophthalic acid 5-sulfonate charged as acid components, respectively A polyester resin P-9 dispersible in an aqueous solvent was obtained in the same manner as the polyester resin P-1 dispersible in an aqueous solvent, except for the change. When the polyester resin was analyzed by an ICP emission analyzer of the obtained polyester resin, the polyester resin has a dicarboxylic acid containing at least 0.8 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. It was confirmed.
  • the polyester resin is composed of a dicarboxylic acid containing at least 0 mol% of an aromatic dicarboxylic acid having a sulfonic acid group. It was confirmed.
  • Water-soluble polyacrylic resin P-11 Comparative 500 parts of MeOH was added to the reaction vessel, heated to reflux for 10 minutes, and then cooled to room temperature under nitrogen. 200 parts of acrylamide, 34.3 parts of sodium acrylate, and 5.1 parts of AIBN were added and heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was added dropwise to 3000 parts of methyl ethyl ketone and stirred for 1 hour. After decantation of methyl ethyl ketone, the polymer was washed with 100 parts of methyl ethyl ketone three times, dissolved in pure water, and transferred to a volumetric flask. Water-soluble polyacrylic resin P-11 was obtained by adding pure water to a concentration of 25%.
  • Inkjet printing was controlled by an inkjet evaluation apparatus EB150 (manufactured by Konica Minolta) using a desktop robot Shotmaster-300 (manufactured by Musashi Engineering) equipped with an ink jet head (manufactured by Konica Minolta).
  • Tables 1 and 2 The drying methods in Tables 1 and 2 are as follows.
  • HP Conductive heat transfer drying with hot plate (MH-180CS, manufactured by ASONE CORPORATION)
  • IR-1 Radiant heat transfer drying with an infrared heater (1000 W / color temperature 2500 K, manufactured by USHIO INC.)
  • IR-2 Radiation heat transfer drying with an infrared heater (the IR irradiation device IR-1 has an air cooling mechanism in a quartz glass double tube with reference to Japanese Patent No. 4790092, see FIG. 3) The distance between the sample and the infrared heaters IR-1 and IR-2 was 100 mm.
  • the HP temperature in Tables 1 and 2 is the heating temperature (set temperature) of the hot plate.
  • the filament temperatures in Tables 1 and 2 were measured with a non-contact thermometer (IR-AHS manufactured by Chino Co., Ltd.) with the emissivity of the tungsten filament being 0.39. The output of the infrared heater was adjusted so that
  • FIG. 8 shows the spectral radiance with and without the quartz glass filter.
  • the dotted line indicates the spectral radiance without the filter
  • the solid line indicates the spectral radiance with the filter.
  • the spectral radiance from the wavelength of 1 ⁇ m to almost 3 ⁇ m is the same regardless of the presence or absence of the filter. .
  • the ratio of the spectral radiance at a wavelength of 5.8 ⁇ m to the spectral radiance at a wavelength of 3.0 ⁇ m in Table 1 and Table 2 was determined by the following method.
  • the temperature of the standard blackbody furnace (M390, manufactured by Mikron) was adjusted to the measured filament temperature of the infrared heater, and FT-IR (FT / IR-4100, manufactured by JASCO Corporation) was used.
  • the radiation output of the infrared heater was measured at a measurement wave number of 7800 to 350 cm ⁇ 1 , a resolution of 4 cm ⁇ 1 , and the number of integrations of 32 times to obtain the spectral emissivity of the infrared heater.
  • a black body radiation spectrum at the same temperature as that of the standard black body furnace was obtained and multiplied by the spectral emissivity of the infrared heater to obtain a spectral radiation spectrum of the infrared heater.
  • the spectral radiance value at a wavelength of 3.0 ⁇ m and the spectral radiance value at a wavelength of 5.8 ⁇ m are read from the spectral radiation spectrum of the obtained infrared heater, and the wavelength of 5.8 ⁇ m with respect to the spectral radiance of a wavelength of 3.0 ⁇ m is read.
  • the ratio of spectral radiance was calculated as a percentage.
  • Sheet resistance value (surface resistance) Based on JIS K 7194: 1994, the sheet resistance value was measured using a resistivity meter (Loresta GP (MCP-T610 type): manufactured by Mitsubishi Chemical Analytech Co., Ltd.).
  • the sheet resistance value is preferably 1000 ⁇ / ⁇ or less after the forced deterioration treatment. In order to increase the area of the organic electronic device, the sheet resistance value is preferably 30 ⁇ / ⁇ or less after the forced deterioration treatment. Evaluation criteria: Samples evaluated as 1000 ⁇ / ⁇ or less after forced deterioration treatment pass the present invention.
  • Example 2 In the method for producing a conductive film of Example 1, a metal conductive layer is formed on a gas barrier surface on a transparent resin film substrate having gas barrier properties by the following method, and a polymer conductive layer is formed on the metal conductive layer. Except for the formation of, conductive films TC-201 to TC-256 having a metal conductive layer were manufactured in the same manner as the conductive film manufacturing method of Example 1. In the production of the conductive films TC-201 to TC-256, the binder resin, conductive polymer compound, metal conductive layer, drying method, HP temperature, filament temperature, spectral radiance ratio and drying time are shown in Table 5 and Table 6 was used.
  • a copper mesh is prepared as a metal conductive layer by the following method, and patterned with a metal fine particle removing liquid BF, which will be described later, to form a copper (copper) mesh substrate.
  • the catalyst ink JISD-7 manufactured by Morimura Chemical Co. containing palladium nanoparticles is used, and the CAB-O-JET300 self-dispersion type carbon black solution manufactured by Cabot is used, and the carbon black ratio to the catalyst ink becomes 10.0% by mass.
  • Surfynol 465 (Nisshin Chemical Industry Co., Ltd.) was further added to prepare a conductive ink having a surface tension at 25 ° C.
  • Conductive ink as an ink jet recording head has a pressure applying means and an electric field applying means, and has a nozzle diameter of 25 ⁇ m, a driving frequency of 12 kHz, a number of nozzles of 128, a nozzle density of 180 dpi (dpi is 1 inch, ie, 2.54 cm)
  • a grid-shaped conductive mesh having a line width of 10 ⁇ m, a dried film thickness of 0.5 ⁇ m, and a line interval of 300 ⁇ m is formed on the base material , Dried.
  • a high-speed electroless copper plating solution CU-5100 manufactured by Meltex soaked at a temperature of 55 ° C. for 10 minutes, washed and electroless-plated to produce a metal conductive layer having a plating thickness of 3 ⁇ m. did.
  • conductive film samples TC-227 to TC-229, TC-232 to TC-234, and TC-237 to TC dried using infrared rays of the present invention are comparative samples TC-201 to TC-226, TC-230, TC-231, TC-235, TC-236, TC-247 to TC-251, TC- With respect to 255 and TC-256, all of the drying property, substrate stability, transparency, sheet resistance value, and surface roughness of the coating film were excellent.
  • Example 3 Organic EL elements OEL-301 to OEL-356 were manufactured as organic electronic elements as described below. (31) Production of Organic EL Element (Sample) Using the conductive films TC-201 to TC-256 produced in Example 2, the corresponding organic EL element samples OEL-301 to OEL- 356 was produced.
  • an organic functional layer (a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer) was formed as follows.
  • the organic functional layer was formed by vapor deposition.
  • Each of the vapor deposition crucibles in a commercially available vacuum vapor deposition apparatus was filled with the optimum amount of the constituent material of each layer for device fabrication.
  • As the evaporation crucible a crucible made of a resistance heating material made of molybdenum or tungsten was used.
  • the light emitting layer was provided in the following procedure. On the formed hole transport layer, Compound 2, Compound 3 and Compound 2 so that the following Compound 2 has a concentration of 13% by mass, the following Compound 3 is 3.7% by mass, and the following Compound 5 is 83.3% by mass. 5 was co-evaporated at a deposition rate of 0.1 nm / second to form a green-red phosphorescent layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm (see FIG. 6D).
  • the compound 4 and the compound 5 were co-deposited at a deposition rate of 0.1 nm / second so that the following compound 4 had a concentration of 10.0% by mass and the compound 5 had a concentration of 90.0% by mass, and the emission maximum wavelength was 471 nm.
  • a blue phosphorescent layer having a thickness of 15 nm was formed (see FIG. 6D).
  • the adhesive was cured by heat treatment to form a sealing film, and organic EL elements OEL-301 to OEL-356 were produced.
  • a two-component epoxy compounded resin manufactured by Three Bond Co., Ltd.
  • 2016B and 2103 was blended at a ratio of 100: 3.
  • the formed electron transport layer was sealed with a flexible sealing member in which polyethylene terephthalate was used as a base material and Al 2 O 3 was deposited in a thickness of 300 nm (see FIG. 6F). Specifically, after applying an adhesive and pasting a flexible sealing member, the adhesive was cured by heat treatment and sealed.
  • “Organic EL elements OEL-301 to OEL-356” were prepared by using the polymer conductive layer and Al that had come out of the sealing member as external extraction terminals of the transparent electrode (anode, anode) and cathode (cathode), respectively.
  • Luminescence uniformity was obtained by applying a direct current voltage to the organic EL element using a KEITHLEY source measure unit 2400 type.
  • the organic EL elements OEL-301 to OEL-356 that emitted light at 1000 cd / m 2 , each light emission luminance unevenness was observed with a 50 ⁇ microscope.
  • the organic EL elements OEL-301 to OEL-356 were heated in an oven at 60% RH and 80 ° C. for 2 hours, and then conditioned again in the environment of 23 ⁇ 3 ° C. and 55 ⁇ 3% RH for 1 hour or more. After (forced deterioration treatment), the emission uniformity was observed in the same manner.
  • the obtained organic EL device was continuously emitted at an initial luminance of 5000 cd / m 2 , the voltage was fixed, and the time until the luminance was reduced by half was determined.
  • An organic EL element having an anode electrode made of ITO was produced by the same method as described above, the ratio to this was determined, and evaluated according to the following criteria.
  • the light emission lifetime is preferably 100% or more, and more preferably 150% or more. ⁇ : 150% or more ⁇ : 100% or more and less than 150% ⁇ : 80% or more and less than 100% ⁇ : less than 80%
  • organic EL elements OEL-301 to OEL-326, OEL-330, OEL-331, OEL-335, OEL-336, OEL-347 to OEL-351, OEL of comparative examples are shown.
  • -355 and OEL-356 after the forced deterioration treatment, the light emission uniformity is significantly deteriorated and the lifetime is short, whereas the organic EL elements OEL-327 to OEL-329, OEL-332 to OEL-334 of the present invention, It can be seen that OEL-337 to OEL-346 and OEL-352 to OEL-354 have stable emission uniformity and excellent durability (high life) even after heating.
  • Example 4 ⁇ Production of touch panel> Using the conductive films TC-101 to TC-155 and TC-201 to TC-256 produced in Examples 1 and 2, the touch panel 101 shown in FIG. 9 was assembled by the following method.
  • the touch panel 101 includes a lower electrode 110, an upper electrode 120, and a thermosetting type dot spacer 130 provided therebetween.
  • the lower electrode 110 is a touch panel glass ITO (sputtering film product), and includes a touch panel glass 111 and an ITO film 112 provided on the touch panel glass 111.
  • the upper electrode 120 has any one of the conductive films TC-101 to TC-155 and TC-201 to TC-256 in the above-described embodiments, and includes a transparent resin film substrate 121, a polymer conductive layer 122, .
  • the touch panel 101 is assembled by making the ITO film 112 of the lower electrode 110 and the polymer conductive layer 122 of the upper electrode 120 face each other and interposing a thermosetting type dot spacer 130 to form a panel with an interval of 7 ⁇ m. It was.
  • the resistance measuring machine was attached to the upper electrode 120 and the lower electrode 110 of the assembled touch panel 101, the center of the touch panel 101 was pushed by hand, and the resistance value was measured 1000 times.
  • the present invention is suitable for providing a method for producing a conductive film and a conductive film that are excellent in transparency, conductivity, and surface roughness while suppressing deformation of the substrate. Moreover, this invention is suitable for providing the organic electronic element and touch panel which were excellent in the light emission uniformity and lifetime by providing an organic electronic element and a touch panel with the electroconductive film produced with the said manufacturing method.

Abstract

An objective of the present invention is to provide: a method for producing a conductive film that is suppressed in deformation of a base and has excellent transparency, electrical conductivity and surface roughness; and a conductive film. Another objective of the present invention is to provide an organic electronic element and a touch panel, each of which is provided with a conductive film that is produced by the above-described production method. A method for producing a conductive film according to the present invention is characterized by comprising at least a step (A) and a step (B), and is also characterized by a polyester resin which contains, as a constituent, a dicarboxylic acid that contains an aromatic dicarboxylic acid having at least a sulfonic acid group at a ratio within the range of 1-15% by mole. This method for producing a conductive film is further characterized in that irradiation of infrared light, which has a ratio of the spectral radiance of the wavelength of 5.8 μm relative to the spectral radiance of the wavelength of 3.0 μm of 5% or less, is carried out in the step (B).

Description

導電性フィルムの製造方法、導電性フィルム、有機電子素子及びタッチパネルManufacturing method of conductive film, conductive film, organic electronic device, and touch panel
 本発明は、導電性フィルムの製造方法及び導電性フィルムに関する。また、当該製造方法により製造された、導電性フィルムを備えていることを特徴とする有機電子素子及びタッチパネル等に関する。より詳しくは、基材変形を抑制するとともに透明性、導電性及び表面粗さに優れた導電性フィルムの製造方法、導電性フィルム、有機電子素子及びタッチパネルに関する。 The present invention relates to a method for producing a conductive film and a conductive film. In addition, the present invention relates to an organic electronic element, a touch panel, and the like that are provided with a conductive film manufactured by the manufacturing method. More specifically, the present invention relates to a method for producing a conductive film that suppresses substrate deformation and is excellent in transparency, conductivity, and surface roughness, a conductive film, an organic electronic device, and a touch panel.
 近年、薄型TV需要の高まりに伴い、液晶、プラズマ、有機エレクトロルミネッセンス(以下、「有機EL」とも記載する。)、フィールドエミッション等、各種方式のディスプレイ技術が開発されている。これら表示方式の異なるいずれのディスプレイにおいても、透明電極は必須の構成技術となっている。また、テレビ以外でも、タッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子においても、透明電極は欠くことのできない技術要素となっている。
 従来、透明電極は、ガラスや透明なプラスチックフィルム等の透明樹脂フィルム基材上に、インジウム-スズの複合酸化物(以下、「ITO」とも記載する。)膜を真空蒸着法やスパッタリング法で成膜したITO透明電極が主に使用されてきた。しかし、ITOに用いられているインジウムはレアメタルであり、かつ近年価格が高騰していることから、脱ITO透明電極が望まれている。また、ディスプレイの大画面化、生産性向上に伴い、樹脂基板などのフレキシブル基板(可撓性の透明基板)を用いたロール・トゥ・ロール(roll to roll)の生産技術が所望されていることからも、脱ITO透明電極が望まれている。
In recent years, with increasing demand for thin TVs, various types of display technologies such as liquid crystal, plasma, organic electroluminescence (hereinafter also referred to as “organic EL”), field emission, and the like have been developed. In any of these displays having different display methods, the transparent electrode is an essential constituent technology. In addition to televisions, transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
Conventionally, a transparent electrode has been formed by forming a complex oxide of indium-tin (hereinafter also referred to as “ITO”) on a transparent resin film substrate such as glass or a transparent plastic film by a vacuum deposition method or a sputtering method. Filmed ITO transparent electrodes have been mainly used. However, since indium used in ITO is a rare metal and its price has been rising in recent years, a de-ITO transparent electrode is desired. In addition, with the increase in display screen size and productivity, a roll-to-roll production technology using a flexible substrate (flexible transparent substrate) such as a resin substrate is desired. Therefore, a de-ITO transparent electrode is desired.
 ITO透明電極に代わる透明電極を製造するに際し、従来用いられてきた真空蒸着法、スパッタリング法等といった生産性の低い乾式塗布法に代えて、湿式塗布法による製造方法が検討されている。例えば、特許文献1に記載されているように、3,4-ポリエチレンジオキシチオフェンポリスルホネート(PEDOT/PSS)に代表される導電性高分子化合物等の導電性材料を含む分散液を、透明樹脂フィルム基材上に直接塗布し、加熱乾燥して、導電層を形成する湿式塗布法により透明電極を製造する方法が開発されている。
 しかし、この導電性高分子化合物を用いた透明電極を有機電子素子(有機EL素子、有機太陽電池等)に適用した場合、乾燥が不十分であることに起因する導電層中の残存水分や、基板であるPET(ポリエチレンテレフタレート)に含まれる水分により、例えば、有機EL素子発光時におけるダークスポットの発生、素子寿命の劣化等、有機電子素子の性能を劣化させる懸念がある。
In manufacturing a transparent electrode that replaces the ITO transparent electrode, a manufacturing method using a wet coating method has been studied in place of a dry coating method with low productivity such as a vacuum deposition method and a sputtering method that have been conventionally used. For example, as described in Patent Document 1, a dispersion containing a conductive material such as a conductive polymer compound represented by 3,4-polyethylenedioxythiophene polysulfonate (PEDOT / PSS) is used as a transparent resin. A method has been developed in which a transparent electrode is produced by a wet coating method in which a conductive layer is formed by directly coating on a film substrate and drying by heating.
However, when a transparent electrode using this conductive polymer compound is applied to an organic electronic device (organic EL device, organic solar cell, etc.), residual moisture in the conductive layer due to insufficient drying, The moisture contained in the substrate PET (polyethylene terephthalate) may cause deterioration of the performance of the organic electronic device, for example, generation of dark spots at the time of light emission of the organic EL device, deterioration of device lifetime, and the like.
 一方、有機電子素子の大面積化及び生産性向上に伴い、上述のロール・トゥ・ロール方式での透明電極の生産技術が所望されている。特に、樹脂フィルム上に導電性高分子化合物を用いた透明電極を有機電子素子に適用する場合には、加熱乾燥時の基材変形(樹脂フィルム自体における低耐熱性)及び前記した素子の性能劣化の問題から、塗布した導電性高分子化合物に対する新たな乾燥方法が望まれている。
 また、加熱乾燥以外の乾燥法として、アルミニウムや銅等の金属シート上に電極材、バインダー樹脂(例えば、PVDF(ポリフッ化ビニリデン))、導電剤及び溶媒を混練した電極材ペーストを塗布した後、溶剤の乾燥を3.5μm以上の遠赤外線領域をカットした近赤外線ヒーターを用いる方法が提案されている(例えば、特許文献2参照。)。
 しかし、特許文献1に記載の方法では、PET上に形成された導電層を基材(透明樹脂フィルム基材)が変形しない140℃1分という加熱条件で乾燥するが、当該加熱条件によれば透明電極の性能が低下するという問題があった。これは、塗布液に用いられている溶液の乾燥が不十分でポリマー導電層中に水分が残存し、透明電極としての性能劣化を引き起こすためである。また、これらポリマー導電層やPETに含まれている水分の影響により、これらの電極を用いて有機EL素子を製造した場合、電極表面抵抗(シート抵抗値)の増加、電流リークといった著しい性能低下をもたらすという問題もある。
On the other hand, with the increase in area and productivity of organic electronic devices, a transparent electrode production technique using the roll-to-roll method described above is desired. In particular, when a transparent electrode using a conductive polymer compound on a resin film is applied to an organic electronic device, the substrate is deformed during heat drying (low heat resistance in the resin film itself) and the performance of the device is deteriorated. From the above problem, a new drying method for the applied conductive polymer compound is desired.
As a drying method other than heat drying, after applying an electrode material paste kneaded with an electrode material, a binder resin (for example, PVDF (polyvinylidene fluoride)), a conductive agent, and a solvent on a metal sheet such as aluminum or copper, A method of using a near-infrared heater in which the far-infrared region of 3.5 μm or more is cut is proposed for solvent drying (see, for example, Patent Document 2).
However, in the method described in Patent Document 1, the conductive layer formed on PET is dried under a heating condition of 140 ° C. for 1 minute at which the base material (transparent resin film base material) is not deformed. There was a problem that the performance of the transparent electrode deteriorated. This is because the solution used for the coating solution is insufficiently dried and moisture remains in the polymer conductive layer, causing deterioration of performance as a transparent electrode. In addition, due to the influence of moisture contained in these polymer conductive layers and PET, when organic EL elements are produced using these electrodes, significant performance degradation such as increase in electrode surface resistance (sheet resistance value) and current leakage is caused. There is also the problem of bringing about.
 また、特許文献2に記載の方法は、塗膜中の溶媒を効率的に乾燥することに主眼が置かれたものであり、基材自体の赤外線吸収による変形防止を考慮したものではなく、とりわけ透明樹脂フィルム基材を用いた場合の赤外線乾燥について言及されていない。また、特許文献2には、赤外線照射効果として、電極材ペーストに含まれるポリエステル樹脂と溶剤との関係についても言及されていない。
 以上のことから、樹脂フィルム上に導電性高分子化合物を用いた透明電極においては、基材にダメージを与えずに、導電層中の水を除去することができる技術が、強く望まれていた。
In addition, the method described in Patent Document 2 focuses on efficiently drying the solvent in the coating film, and does not consider prevention of deformation due to infrared absorption of the substrate itself, No mention is made of infrared drying when a transparent resin film substrate is used. Further, Patent Document 2 does not mention the relationship between the polyester resin contained in the electrode material paste and the solvent as an infrared irradiation effect.
From the above, in a transparent electrode using a conductive polymer compound on a resin film, a technique capable of removing water in the conductive layer without damaging the substrate has been strongly desired. .
 また、従来導電性フィルムにおいて、基材上に導電層を形成する塗布液としては、導電性及び透過率を両立させるために、PEDOT/PSS等の水分散性導電性高分子化合物とポリエステル樹脂とを含有する組成物が開発されてきた。
 バインダー樹脂としては、水分散性導電性高分子化合物との相溶性の観点から、親水性のバインダー樹脂が検討されてきた。近年、基材が高いフレキシブル性を有することが望まれていることから、PET等の樹脂フィルムを基材として使用されている。
Moreover, in a conventional conductive film, as a coating liquid for forming a conductive layer on a substrate, a water dispersible conductive polymer compound such as PEDOT / PSS and a polyester resin are used in order to achieve both conductivity and transmittance. Compositions containing have been developed.
As the binder resin, a hydrophilic binder resin has been studied from the viewpoint of compatibility with the water-dispersible conductive polymer compound. In recent years, since it is desired that the base material has high flexibility, a resin film such as PET has been used as the base material.
 しかし、樹脂フィルムを基材として使用した場合、フィルムの変形を避ける観点から、ガラス基板を基材として使用した場合と比べて、乾燥温度を低くする必要がある。また、PEDOT/PSSと相溶することが知られているヒドロキシ基含有バインダー樹脂は、酸性条件下でヒドロキシ基が脱水反応を起こしポリマー鎖間で架橋するが、低温で乾燥させた場合には架橋不良が起こる。その結果、保存中に架橋反応が進行し水が発生するばかりか、膜中に残存する水の影響で導電性フィルム及び導電性フィルムの透明性、導電性及び算術平均粗さ(以下、「表面粗さ」ともいう。)が悪化し、ひいては、当該導電性フィルムを用いた素子の性能(発光均一性及び発光寿命など)が著しく劣化する懸念があった。 However, when a resin film is used as a base material, it is necessary to lower the drying temperature as compared with the case where a glass substrate is used as a base material from the viewpoint of avoiding deformation of the film. In addition, the hydroxy group-containing binder resin known to be compatible with PEDOT / PSS undergoes a dehydration reaction and crosslinks between polymer chains under acidic conditions, but crosslinks when dried at low temperatures. Defects occur. As a result, not only does the crosslinking reaction proceed during storage and water is generated, but also the transparency, conductivity and arithmetic average roughness (hereinafter referred to as “surface”) of the conductive film and the conductive film due to the water remaining in the film. There is a concern that the performance (emission uniformity, emission lifetime, etc.) of the device using the conductive film is significantly deteriorated.
特開2009-178897号公報JP 2009-178897 A 特許第4790092号公報Japanese Patent No. 4790092
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、基材変形を抑制するとともに透明性、導電性及び表面粗さに優れた導電性フィルムの製造方法及び導電性フィルムを提供することである。また、上記製造方法で作製された導電性フィルムを有機電子素子及びタッチパネルに備えさせることで、発光均一性及び寿命に優れた有機電子素子及びタッチパネルを提供することである。 The present invention has been made in view of the above-described problems and situations, and the problem to be solved is a method for producing a conductive film that suppresses deformation of the substrate and is excellent in transparency, conductivity, and surface roughness, and conductivity. Is to provide a film. Moreover, it is providing the organic electronic element and touch panel excellent in the light emission uniformity and lifetime by providing an organic electronic element and a touch panel with the electroconductive film produced with the said manufacturing method.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、少なくともスルホン酸基を有する芳香族ジカルボン酸を所定の範囲内の比率で含有するジカルボン酸を構成成分とするポリエステル樹脂を使用し、さらに、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、所定値以下である赤外線を照射することでポリマー導電層を形成すれば、基材変形を抑制するとともに透明性、導電性及び表面粗さに優れた導電性フィルムを得ることが可能となることを見いだし本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
In order to solve the above-mentioned problems, the present inventor uses, as a constituent component, a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within a predetermined range in the process of examining the cause of the above-described problem. If a polymer conductive layer is formed by using a polyester resin and irradiating infrared rays having a ratio of the spectral radiance of wavelength 5.8 μm to the spectral radiance of wavelength 3.0 μm being a predetermined value or less, The inventors have found that it is possible to obtain a conductive film that suppresses deformation and is excellent in transparency, conductivity, and surface roughness, and has reached the present invention.
That is, the said subject which concerns on this invention is solved by the following means.
 1.透明樹脂フィルム基材上に、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有する導電性フィルムの製造方法であって、
 少なくとも下記ステップ(A)及びステップ(B)を有し、かつ、
 前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、
 下記ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を行うことを特徴とする導電性フィルムの製造方法。
 ステップ(A):前記導電性高分子化合物と前記ポリエステル樹脂とを含有する水系分散液を前記透明樹脂フィルム基材上に塗布するステップ
 ステップ(B):前記透明樹脂フィルム基材上に塗布した前記水系分散液に対して、前記赤外線の照射を行うことによって前記ポリマー導電層を形成するステップ
1. A method for producing a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate,
At least the following steps (A) and (B):
The polyester resin contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within a range of 1 to 15 mol%, and further,
In the following step (B), the method for producing a conductive film is characterized by performing infrared irradiation in which the ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm is 5% or less.
Step (A): A step of applying an aqueous dispersion containing the conductive polymer compound and the polyester resin on the transparent resin film substrate Step (B): The step of applying on the transparent resin film substrate Forming the polymer conductive layer by irradiating the aqueous dispersion with the infrared rays;
 2.前記透明樹脂フィルム基材上に、あらかじめ少なくともガスバリアー層を備えることを特徴とする第1項に記載の導電性フィルムの製造方法。 2. The method for producing a conductive film according to item 1, wherein at least a gas barrier layer is provided in advance on the transparent resin film substrate.
 3.透明樹脂フィルム基材上に、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有する導電性フィルムであって、
 少なくとも下記ステップ(A)及びステップ(B)を経て製造され、かつ
 前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、
 当該ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を施されたことを特徴とする導電性フィルム。
 ステップ(A):前記導電性高分子化合物と前記ポリエステル樹脂とを含有する水系分散液を前記透明樹脂フィルム基材上に塗布するステップ
 ステップ(B):前記透明樹脂フィルム基材上に塗布した前記水系分散液に対して、前記赤外線の照射を行うことによって前記ポリマー導電層を形成するステップ
3. A conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate,
The polyester resin is produced through at least the following steps (A) and (B), and comprises a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio in the range of 1 to 15 mol%. Ingredients, and
In the step (B), a conductive film characterized by being irradiated with infrared rays having a ratio of the spectral radiance of a wavelength of 5.8 μm to the spectral radiance of a wavelength of 3.0 μm of 5% or less.
Step (A): A step of applying an aqueous dispersion containing the conductive polymer compound and the polyester resin on the transparent resin film substrate Step (B): The step of applying on the transparent resin film substrate Forming the polymer conductive layer by irradiating the aqueous dispersion with the infrared rays;
 4.第1項若しくは第2項に記載の導電性フィルムの製造方法によって製造された導電性フィルム又は第3項に記載の導電性フィルムを電極として備えていることを特徴とする有機電子素子。 4. An organic electronic device comprising a conductive film manufactured by the method for manufacturing a conductive film according to Item 1 or 2 or an electrode of the conductive film according to Item 3.
 5.第1項若しくは第2項に記載の導電性フィルムの製造方法によって製造された導電性フィルム又は第3項に記載の導電性フィルムを電極として備えていることを特徴とするタッチパネル。 5. A touch panel comprising a conductive film manufactured by the method for manufacturing a conductive film according to Item 1 or 2 or the conductive film according to Item 3 as an electrode.
 本発明の上記手段により、基材変形を抑制するとともに透明性、導電性及び表面粗さに優れた導電性フィルムの製造方法及び導電性フィルムを提供することができる。また、上記製造方法で作製された導電性フィルムを有機電子素子及びタッチパネルに備えさせることで、発光均一性及び寿命に優れた有機電子素子及びタッチパネルを提供することができる。 By the above-mentioned means of the present invention, it is possible to provide a method for producing a conductive film and a conductive film that are excellent in transparency, conductivity, and surface roughness while suppressing deformation of the substrate. Moreover, the organic electronic element and touch panel which were excellent in the light emission uniformity and lifetime can be provided by providing an organic electronic element and a touch panel with the electroconductive film produced with the said manufacturing method.
 本発明の効果の発現機構・作用機構については、明確にはなっていないが、以下のように推察している。 The expression mechanism / action mechanism of the effect of the present invention is not clear, but is presumed as follows.
 本発明者は、上記問題を解決するために、従来の導電性フィルムにおいては、バインダー樹脂の主骨格と水との相互作用を低減する必要があると推測した。
 水等の溶剤との相互作用が小さいバインダー樹脂として、ポリマーエマルジョンが知られている。ポリマーエマルジョンのうち、ポリエステルエマルジョン、アクリルエマルジョン、ポリウレタンエマルジョン等には、ポリマー主鎖及び側鎖に親水性部位であるエステル基及びウレタン基が多く導入されているばかりでなく、水等の溶剤への分散性を高めるために、スルホン酸、カルボン酸、ヒドロキシ基、アンモニウム等の親水性基が存在する。本発明者は、ポリマー中の親水性基が、水、極性溶剤等の水素結合可能な溶剤と水素結合するので、低温かつ短時間の加熱乾燥では水を放出しにくく、このため、当該ポリマーを採用した導電性フィルム及び導電性フィルムを用いた有機電子素子の性能が劣化することを突き止めた。すなわち、本発明者は、低温かつ短時間での導電性フィルムの乾燥性を向上させるためには、水、極性溶剤等の水素結合可能な溶剤に直接エネルギーを付与し、ポリマー中の親水性基と水素結合可能な溶剤との水素結合を切断しうるエネルギーを付与することが必要不可欠となることを見いだした。
In order to solve the above problem, the present inventor speculated that in the conventional conductive film, it is necessary to reduce the interaction between the main skeleton of the binder resin and water.
A polymer emulsion is known as a binder resin having a small interaction with a solvent such as water. Among the polymer emulsions, polyester emulsions, acrylic emulsions, polyurethane emulsions, etc. are not only introduced with many ester groups and urethane groups, which are hydrophilic sites, in the polymer main chain and side chains, but also in solvents such as water. In order to enhance dispersibility, hydrophilic groups such as sulfonic acid, carboxylic acid, hydroxy group, and ammonium are present. Since the hydrophilic group in the polymer is hydrogen-bonded to a water-bondable solvent such as water or a polar solvent, the present inventor hardly releases water by heat drying at a low temperature for a short time. It was ascertained that the performance of the employed conductive film and the organic electronic device using the conductive film deteriorated. That is, in order to improve the drying property of the conductive film at a low temperature and in a short time, the present inventor directly imparts energy to a hydrogen-bondable solvent such as water or a polar solvent, and the hydrophilic group in the polymer. It has been found that it is indispensable to impart energy capable of breaking the hydrogen bond between the solvent and the solvent capable of hydrogen bonding.
 しかしながら、従来、透明樹脂フィルム基材が変形しない温度において、導電性フィルムの表面からの熱伝導で塗液を乾燥させる加熱乾燥が行われている。この加熱乾燥では、当該導電性フィルムから水和、吸着している水や極性溶剤等の水素結合可能な溶剤を厳密に脱離させることは難しく、結果として溶剤が導電性フィルム中に残留し、ひいては、導電性フィルム及び当該導電性フィルムを用いた有機電子素子及びタッチパネルの諸性能を劣化させてしまう、という問題が生じる。 However, conventionally, heat drying is performed in which the coating liquid is dried by heat conduction from the surface of the conductive film at a temperature at which the transparent resin film substrate does not deform. In this heat drying, it is difficult to rigorously remove the hydrogen-bondable solvent such as water and polar solvent that is hydrated and adsorbed from the conductive film, and as a result, the solvent remains in the conductive film, As a result, the problem that the performance of the electroconductive film and the organic electronic element using the said electroconductive film and a touch panel will deteriorate will arise.
 本発明者は、前記した従来技術の問題を解決すべく、さらに鋭意検討した結果、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするポリエステル樹脂を採用し、さらに、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線を照射しポリマー導電層を形成した。これにより、導電性フィルムの表面から熱伝導で塗布液を乾燥させる加熱乾燥と異なり、水、極性溶剤等の水素結合可能な溶剤(水系溶剤)に直接エネルギーを付与することができることを見いだした。その結果、透明プラスチック等の樹脂製基材が変形しない従来の低温加熱乾燥では実現することができなかった、導電性ポリマーの親水性基部分に存在する水系溶剤を好適に除去することが可能な本発明に至った。 As a result of further diligent studies to solve the above-described problems of the prior art, the present inventor constructed a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within the range of 1 to 15 mol%. A polyester resin as a component was employed, and further, a polymer conductive layer was formed by irradiating infrared rays having a spectral radiance ratio of 5.8 μm with respect to a spectral radiance of wavelength 3.0 μm of 5% or less. As a result, it has been found that energy can be directly applied to a hydrogen bondable solvent (aqueous solvent) such as water or polar solvent, unlike heat drying in which the coating liquid is dried by heat conduction from the surface of the conductive film. As a result, it is possible to suitably remove the aqueous solvent present in the hydrophilic group portion of the conductive polymer, which could not be realized by conventional low-temperature heat drying in which a resin base material such as transparent plastic is not deformed. The present invention has been reached.
 すなわち、本発明は、上記構成を有することで、水和、吸着している水素結合可能な溶剤のポリマーからの離脱を可能にした。
 これにより、本発明の製造方法で製造された導電性フィルムは、基材が変形することなく、導電性フィルムの透明性と導電性とを両立し、かつ表面粗さに優れ、さらに高温、高湿度環境下における環境試験後でも高い導電性と透明性及び良好な表面粗さを併せ持つことができる。また、本発明の導電性フィルムの製造方法は、ポリエステル樹脂由来の水の発生を抑制することで、安定性の優れた導電性フィルム及び当該導電性フィルムが備えられた発光均一性及び寿命に優れた有機電子素子及びタッチパネルを提供できる。
That is, according to the present invention, by having the above-described configuration, the hydration and adsorbing solvent capable of hydrogen bonding can be separated from the polymer.
Thereby, the conductive film manufactured by the manufacturing method of the present invention is compatible with both transparency and conductivity of the conductive film without deformation of the base material, and excellent in surface roughness, and further at high temperature, high Even after an environmental test in a humidity environment, it can have both high conductivity, transparency and good surface roughness. Moreover, the manufacturing method of the electroconductive film of this invention is excellent in the light emission uniformity and lifetime with which the electroconductive film excellent in stability and the said electroconductive film were equipped by suppressing generation | occurrence | production of the water derived from a polyester resin. An organic electronic device and a touch panel can be provided.
導電性フィルムの概略構成を示す断面図Sectional drawing which shows schematic structure of an electroconductive film 導電性フィルムの金属導電層のパターン形状の一例を示す平面図The top view which shows an example of the pattern shape of the metal conductive layer of an electroconductive film 導電性フィルムの金属導電層のパターン形状の他の一例する平面図The top view which shows another example of the pattern shape of the metal conductive layer of an electroconductive film 導電性フィルムの金属導電層のパターン形状の他の一例する平面図The top view which shows another example of the pattern shape of the metal conductive layer of an electroconductive film 導電性フィルムの金属導電層のパターン形状の他の一例する平面図The top view which shows another example of the pattern shape of the metal conductive layer of an electroconductive film 波長制御赤外線ヒーターの概略構成を示す断面図Sectional drawing which shows schematic structure of wavelength control infrared heater 図3の波長制御赤外線ヒーターの変形例を示す断面図Sectional drawing which shows the modification of the wavelength control infrared heater of FIG. 有機EL素子の概略構成を示す断面図Sectional drawing which shows schematic structure of organic EL element 有機EL素子の製造方法の一例を説明するための、透明樹脂フィルム基材を示す概略的な平面図Schematic top view which shows a transparent resin film base material for demonstrating an example of the manufacturing method of an organic EL element 有機EL素子の製造方法の一例で、金属導電層の形成工程を説明する概略的な平面図Schematic plan view illustrating a process for forming a metal conductive layer in an example of a method for manufacturing an organic EL element 有機EL素子の製造方法の一例で、ポリマー導電層の形成工程を説明する概略的な平面図Schematic plan view for explaining the process of forming a polymer conductive layer as an example of a method for producing an organic EL element 有機EL素子の製造方法の一例で、有機機能層の形成工程を説明する概略的な平面図Schematic plan view illustrating an organic functional layer forming step in an example of a method for manufacturing an organic EL element 有機EL素子の製造方法の一例で、対電極の形成工程を説明する概略的な平面図Schematic plan view illustrating a process of forming a counter electrode in an example of a method for manufacturing an organic EL element 有機EL素子の製造方法の一例で、封止部材による封止工程を説明する概略的な平面図Schematic plan view for explaining a sealing process by a sealing member in an example of a method for manufacturing an organic EL element 石英ガラスフィルターの赤外線透過率を示すグラフGraph showing infrared transmittance of quartz glass filter 石英ガラスフィルターの有無による分光放射輝度を示すグラフGraph showing spectral radiance with and without quartz glass filter タッチパネルの一例の断面図Cross section of an example of a touch panel
 本発明の導電性フィルムの製造方法は、透明樹脂フィルム基材上に、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有する導電性フィルムの製造方法であって、少なくとも上記ステップ(A)及びステップ(B)を有し、かつ、前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、上記ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を行うことを特徴とする。
 この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。
The method for producing a conductive film of the present invention is a method for producing a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate, wherein at least the above steps (A) and step (B), and the polyester resin contains at least a dicarboxylic acid having an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within the range of 1 to 15 mol% as a constituent component. Furthermore, in the step (B), infrared irradiation is performed in which the ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm is 5% or less.
This feature is a technical feature common to the inventions according to claims 1 to 5.
 本発明の実施態様としては、本発明の効果発現の観点から、前記透明樹脂フィルム基材上に、あらかじめ少なくともガスバリアー層を備えることが好ましい。これにより、透明樹脂フィルム基材を通して導電性フィルムの内部に水分や酸素が拡散することを防止する効果が得られる。 As an embodiment of the present invention, it is preferable that at least a gas barrier layer is provided on the transparent resin film substrate in advance from the viewpoint of manifesting the effects of the present invention. Thereby, the effect which prevents a water | moisture content and oxygen from diffusing inside a conductive film through a transparent resin film base material is acquired.
 さらに、本発明の導電性フィルムとしては、透明樹脂フィルム基材上に、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有する導電性フィルムであって、少なくとも上記ステップ(A)及びステップ(B)を経て製造され、かつ前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、当該ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を施されたことを特徴とすることが好ましい。これにより、基材変形を抑制するとともに透明性、導電性及び表面粗さに優れた導電性フィルムを提供できる。 Furthermore, the conductive film of the present invention is a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate, and at least the step (A). And the polyester resin, which is produced through the step (B), contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio in the range of 1 to 15 mol%. Further, the step (B) is characterized in that infrared radiation is performed such that the ratio of the spectral radiance of the wavelength 5.8 μm to the spectral radiance of the wavelength 3.0 μm is 5% or less. preferable. Thereby, while suppressing a base-material deformation | transformation, the electroconductive film excellent in transparency, electroconductivity, and surface roughness can be provided.
 本発明の製造方法で製造された導電性フィルムは、タッチパネル及び有機電子素子の電極として好適に採用できる。これにより、発光均一性及び寿命に優れたタッチパネル及び有機電子素子を提供できる。 The conductive film produced by the production method of the present invention can be suitably used as an electrode for a touch panel and an organic electronic element. Thereby, the touch panel and organic electronic element which were excellent in the light emission uniformity and lifetime can be provided.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 (導電性フィルムの製造方法)
 本発明の導電性フィルムの製造方法は、少なくとも下記ステップ(A)及びステップ(B)を有し、かつ、前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、下記ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を行うことを特徴とする。
(Method for producing conductive film)
The method for producing a conductive film of the present invention has at least the following steps (A) and (B), and the polyester resin contains 1 to 15 mol% of an aromatic dicarboxylic acid having at least a sulfonic acid group. In the following step (B), the ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm is 5%. The following infrared irradiation is performed.
 ステップ(A):前記導電性高分子化合物と前記ポリエステル樹脂とを含有する水系分散液を前記透明樹脂フィルム基材上に塗布するステップ
 ステップ(B):前記透明樹脂フィルム基材上に塗布した前記水系分散液に対して、前記赤外線の照射を行うことによって前記ポリマー導電層を形成するステップ
Step (A): A step of applying an aqueous dispersion containing the conductive polymer compound and the polyester resin on the transparent resin film substrate Step (B): The step of applying on the transparent resin film substrate Forming the polymer conductive layer by irradiating the aqueous dispersion with the infrared rays;
 以下において、本実施形態の導電性フィルムの製造方法の典型的例について説明をする。
 本実施形態の導電性フィルムの製造方法は、主に下記工程1~4に示す工程を含む態様の製造方法であることが好ましい。なお、各工程1~4に用いられる各構成要素、手法については、後に詳述する。
Below, the typical example of the manufacturing method of the electroconductive film of this embodiment is demonstrated.
The method for producing a conductive film of this embodiment is preferably a production method having an aspect mainly including the steps shown in the following steps 1 to 4. The constituent elements and methods used in the steps 1 to 4 will be described in detail later.
 (工程1:ポリエステル樹脂製造工程)
 ポリエステル樹脂製造工程では、まず、少なくともスルホン酸基を有する芳香族ジカルボン酸成分、アルコール成分及び触媒(例えば、シュウ酸チタンカリウム)を用意し、反応器に入れて溶液を調製する。この溶液を常圧、窒素雰囲気中で撹拌混合しつつ昇温させることで、エステル交換反応を完了させる。
 次に、この溶液を徐々に減圧した後、この減圧状態を保持することで重縮合反応を進行させ、ポリエステル樹脂を得る。この際、必要に応じて減圧度を高めることでポリエステル樹脂の分子量をコントロールする。
 得られたポリエステル樹脂を構成するジカルボン酸が、少なくともスルホン酸基を有する芳香族ジカルボン酸をどの程度含有するかは、当該ポリエステル樹脂を、例えば、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分析装置やイオンクロマトグラフィーで解析したり、酸価等を測定することにより解析したりすることで知ることができる。
(Process 1: Polyester resin manufacturing process)
In the polyester resin production process, first, an aromatic dicarboxylic acid component having at least a sulfonic acid group, an alcohol component, and a catalyst (for example, potassium titanium oxalate) are prepared and put into a reactor to prepare a solution. The transesterification reaction is completed by raising the temperature of this solution while stirring and mixing in an atmospheric pressure and nitrogen atmosphere.
Next, after gradually reducing the pressure of this solution, the polycondensation reaction is advanced by maintaining this reduced pressure state to obtain a polyester resin. At this time, the molecular weight of the polyester resin is controlled by increasing the degree of vacuum as necessary.
The extent to which the dicarboxylic acid constituting the obtained polyester resin contains at least an aromatic dicarboxylic acid having a sulfonic acid group is determined based on the polyester resin, for example, ICP (Inductively Coupled Plasma) emission analyzer. Or by ion chromatography or by measuring the acid value or the like.
 得られたポリエステル樹脂、水や有機溶媒(例えば、イソプロピルアルコール。)を、容器内に入れ、これらを撹拌しながら80~95℃の範囲内の温度下に保持することで、水系溶剤に分散可能なポリエステル樹脂を得ることができる。 The obtained polyester resin, water and organic solvent (for example, isopropyl alcohol) can be dispersed in an aqueous solvent by placing them in a container and keeping them at a temperature in the range of 80 to 95 ° C. with stirring. Can be obtained.
 (工程2:ポリマー導電層形成用組成物の調製工程)
 このポリマー導電層形成用組成物の調製工程では、導電性高分子化合物と、ポリエステル樹脂とを混合し、この混合物に、非導電性高分子化合物を混合した後、水を加えることでポリマー導電層形成用組成物を調製する。
(Step 2: Preparation of polymer conductive layer forming composition)
In the preparation process of this composition for forming a polymer conductive layer, a conductive polymer compound and a polyester resin are mixed, and after mixing a non-conductive polymer compound with this mixture, water is added to the polymer conductive layer. A forming composition is prepared.
 (工程3:ポリマー導電層の塗設工程)
 このポリマー導電層の塗設工程は、導電性高分子化合物とポリエステル樹脂とを含有する水系分散液を透明樹脂フィルム基材上に塗布するステップ(ステップ(A))である。
 ステップ(A)では、具体的には、ガスバリアー性を有する透明樹脂フィルム基材上に、前述のポリマー導電層形成用組成物を用いて、ポリマー導電層を塗設する(図6C参照)。
 なお、ポリマー導電層の塗設工程は、透明樹脂フィルム基材上に、金属細線パターンからなる金属導電層を形成し、その上にポリマー導電層を塗設するものであってもよい(図6B参照)。
(Process 3: Polymer conductive layer coating process)
The coating process of the polymer conductive layer is a step (step (A)) in which an aqueous dispersion containing a conductive polymer compound and a polyester resin is applied on the transparent resin film substrate.
In step (A), specifically, a polymer conductive layer is coated on the transparent resin film substrate having gas barrier properties using the above-described composition for forming a polymer conductive layer (see FIG. 6C).
In addition, the coating process of a polymer conductive layer may form the metal conductive layer which consists of a metal fine wire pattern on a transparent resin film base material, and may coat a polymer conductive layer on it (FIG. 6B). reference).
 (工程4:乾燥処理工程)
 この乾燥処理は、透明樹脂フィルム基材上に塗布した水系分散液に対して、赤外線の照射を行うことによってポリマー導電層を形成するステップ(ステップ(B))である。
 ステップ(B)では、具体的には、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射をすることで、乾燥処理をする。
 これにより、ポリマー導電層を形成し、ポリマー導電層を有する導電性フィルムを形成できる。
(Process 4: Drying process)
This drying process is a step (step (B)) in which the polymer conductive layer is formed by irradiating the aqueous dispersion applied on the transparent resin film substrate with infrared rays.
In step (B), specifically, drying is performed by irradiating with infrared rays having a ratio of the spectral radiance of wavelength 5.8 μm to the spectral radiance of wavelength 3.0 μm of 5% or less.
Thereby, a polymer conductive layer can be formed and a conductive film having a polymer conductive layer can be formed.
 次に、本発明の導電性フィルムの製造方法に用いられる各構成要素、手法について、詳述する。 Next, each component and method used in the method for producing a conductive film of the present invention will be described in detail.
 〔導電性フィルム〕
 導電性フィルムは、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有している。かかる導電性フィルムは、導電性高分子化合物とポリエステル樹脂とを含有する分散液を、透明樹脂フィルム基材上に塗布して乾燥させることによって製造される。
 図1に示すように、導電性フィルム1は、透明樹脂フィルム基材2と、金属導電層4と、ポリマー導電層3と、を備えており、透明電極として使用可能である。
[Conductive film]
The conductive film has a polymer conductive layer containing at least a conductive polymer compound and a polyester resin. Such a conductive film is produced by applying a dispersion containing a conductive polymer compound and a polyester resin onto a transparent resin film substrate and drying it.
As shown in FIG. 1, the conductive film 1 includes a transparent resin film substrate 2, a metal conductive layer 4, and a polymer conductive layer 3, and can be used as a transparent electrode.
 金属導電層4は、透明樹脂フィルム基材2上に形成された金属粒子の細線パターンである。金属導電層4における細線パターンは、図2A~Cに示すようにストライプ状に形成されてもよいし、図2Dに示すようにメッシュ状(格子、網目状)に形成されてもよい。 The metal conductive layer 4 is a fine line pattern of metal particles formed on the transparent resin film substrate 2. The thin line pattern in the metal conductive layer 4 may be formed in a stripe shape as shown in FIGS. 2A to 2C, or may be formed in a mesh shape (lattice, mesh shape) as shown in FIG. 2D.
 ポリマー導電層3は、金属導電層4が形成された透明樹脂フィルム基材2上に形成されている。ポリマー導電層3は、面一的に形成されており、金属導電層4の表面及び金属導電層4間から露出する透明樹脂フィルム基材2の表面を被覆している。 The polymer conductive layer 3 is formed on the transparent resin film substrate 2 on which the metal conductive layer 4 is formed. The polymer conductive layer 3 is formed flush and covers the surface of the metal conductive layer 4 and the surface of the transparent resin film substrate 2 exposed from between the metal conductive layers 4.
 導電性フィルム1は、金属導電層4が省略される構成であってもよいが、前記したように金属導電層4を備え、ポリマー導電層3を金属導電層4上に積層することで、低抵抗かつ均一な面抵抗を有するようになる。 The conductive film 1 may have a configuration in which the metal conductive layer 4 is omitted. However, as described above, the conductive film 1 includes the metal conductive layer 4 and is laminated by laminating the polymer conductive layer 3 on the metal conductive layer 4. It has resistance and uniform sheet resistance.
 〔ポリエステル樹脂〕
 本発明のポリマー導電層は、少なくともポリエステル樹脂を含むものである。
 当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率(以下、「芳香族ジカルボン酸の比率」とも記載する。)で含有するジカルボン酸を構成成分とするものであり、さらに、水系溶剤に分散可能である。
[Polyester resin]
The polymer conductive layer of the present invention contains at least a polyester resin.
The polyester resin contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a proportion within the range of 1 to 15 mol% (hereinafter also referred to as “ratio of aromatic dicarboxylic acid”). Further, it can be dispersed in an aqueous solvent.
 ここで、本実施形態において、「水系溶剤に分散可能」とは、水系溶剤中に凝集せずにポリエステル樹脂からなるコロイド粒子が分散している状況であることをいう。コロイド粒子の大きさ(平均粒径)は、一般的に0.001~1μm(1~1000nm)の範囲内程度である。水系溶剤に分散可能なポリマーのコロイド粒子の大きさ(平均粒径)は、導電性高分子化合物のコロイド粒子と同様、好ましくは1~500nmの範囲内であり、より好ましくは5~300nmの範囲内であり、さらに好ましくは5~100nmの範囲内である。 Here, in the present embodiment, “dispersible in an aqueous solvent” means a state in which colloidal particles made of a polyester resin are dispersed without being aggregated in the aqueous solvent. The size (average particle diameter) of the colloidal particles is generally in the range of 0.001 to 1 μm (1 to 1000 nm). The size (average particle diameter) of the colloidal particles of the polymer dispersible in the aqueous solvent is preferably in the range of 1 to 500 nm, more preferably in the range of 5 to 300 nm, like the colloidal particles of the conductive polymer compound. More preferably, it is in the range of 5 to 100 nm.
 水系溶剤に分散可能なポリエステル樹脂のコロイド粒子の粒径が500nm以下であると、分散液を透明樹脂フィルム基材2へ塗布することによって生成されるポリマー導電層3のヘイズ及び平滑性(表面粗さ(Ra))が向上する。 When the particle size of the colloidal particles of the polyester resin dispersible in the aqueous solvent is 500 nm or less, the haze and smoothness (surface roughness) of the polymer conductive layer 3 produced by applying the dispersion to the transparent resin film substrate 2 are obtained. (Ra)) is improved.
 また、水系溶剤に分散可能なポリエステル樹脂のコロイド粒子が1nm以上であると、ポリエステル樹脂のコロイド粒子同士の凝集を抑制できるため、分散液の分散性が低下せず、その結果、ポリマー導電層3のヘイズ及び平滑性(表面粗さ(Ra))が向上する。ポリマー導電層3を成膜する際の平滑性を高めるためには、コロイド粒子の大きさは、3~300nmの範囲内であることがより好ましく、5~100nmの範囲内であることがさらに好ましい。粒子の平均粒径が5nm以上であると粒子同士が凝集することを抑制するため、分散安定性が劣化せず、その結果塗布面が不均一になる懸念を回避できる。 Further, when the colloidal particle of the polyester resin dispersible in the aqueous solvent is 1 nm or more, the aggregation of the colloidal particles of the polyester resin can be suppressed, so that the dispersibility of the dispersion does not deteriorate. As a result, the polymer conductive layer 3 Haze and smoothness (surface roughness (Ra)) are improved. In order to improve the smoothness when the polymer conductive layer 3 is formed, the size of the colloidal particles is more preferably in the range of 3 to 300 nm, and still more preferably in the range of 5 to 100 nm. . When the average particle size of the particles is 5 nm or more, the particles are prevented from aggregating with each other, so that the dispersion stability does not deteriorate, and as a result, the concern that the coated surface becomes non-uniform can be avoided.
 また、100nm以下であると導電性高分子化合物との相溶性が劣化することを抑制できるだけでなく、塗布膜のヘイズが向上し、光学フィルムとしての性能劣化を生じる懸念を回避できる。かかるコロイド粒子の大きさについては、光散乱光度計により測定することができる。 Further, when the thickness is 100 nm or less, not only the compatibility with the conductive polymer compound can be prevented from being deteriorated, but also the haze of the coating film can be improved, and the fear of causing the performance deterioration as an optical film can be avoided. The size of the colloidal particles can be measured with a light scattering photometer.
 また、前記水系溶剤とは、純水(蒸留水、脱イオン水を含む)のみならず、酸、アルカリ、塩等を含む水溶液、含水の有機溶剤又は親水性の有機溶剤である。水系溶剤としては、純水(蒸留水、脱イオン水を含む)、メタノール、エタノール等のアルコール系溶剤、水とアルコールとの混合溶剤等が挙げられる。 The aqueous solvent is not only pure water (including distilled water and deionized water) but also an aqueous solution containing acid, alkali, salt, etc., a water-containing organic solvent, or a hydrophilic organic solvent. Examples of the aqueous solvent include pure water (including distilled water and deionized water), alcohol solvents such as methanol and ethanol, and mixed solvents of water and alcohol.
 一般的に、水系溶剤に分散可能なポリエステル樹脂は、水系溶剤に安定に分散させるため、ポリマー中に、スルホン酸、カルボン酸等のアニオン性置換基、ヒドロキシ基等のノニオン性置換基、アンモニウム塩構造のカチオン性置換基等の親水性基の解離性基を含有する。これらの解離性基は、水系溶剤への分散安定を保つために導入されている。
 しかし、これらの解離性基は親水性であり、乾燥に対しては不利になるため導入率を最小限にとどめる必要がある。
Generally, a polyester resin dispersible in an aqueous solvent can be stably dispersed in an aqueous solvent. Therefore, an anionic substituent such as a sulfonic acid or a carboxylic acid, a nonionic substituent such as a hydroxy group, an ammonium salt in a polymer. Contains a dissociative group of a hydrophilic group such as a cationic substituent of the structure. These dissociable groups are introduced in order to maintain dispersion stability in an aqueous solvent.
However, since these dissociable groups are hydrophilic and disadvantageous for drying, it is necessary to minimize the introduction rate.
 本実施形態では、芳香族ジカルボン酸の比率が、15モル%より大きいと塗膜形成後の乾燥において、塗膜中の水分を十分に除去することができず、その結果樹脂被膜の耐水性が大きく低下し、導電性フィルムとしてのとしての性能劣化を引き起こすばかりか、これらの導電性フィルムを用いた有機エレクトロルミネッセンス素子(有機EL素子)を製造した際、電極表面抵抗の増加、ダークスポットの発生、電流リークといった著しい性能低下をもたらす。 In this embodiment, if the ratio of the aromatic dicarboxylic acid is larger than 15 mol%, moisture in the coating film cannot be sufficiently removed in drying after the coating film is formed, and as a result, the water resistance of the resin coating film is reduced. Not only does it significantly reduce performance as a conductive film, but also increases the electrode surface resistance and dark spots when manufacturing organic electroluminescent devices (organic EL devices) using these conductive films. , Resulting in significant performance degradation such as current leakage.
 また、芳香族ジカルボン酸の比率が、1モル%未満であるとポリエステルの親水性が低下し、その結果、ポリエステル樹脂の水への分散が下がり、上記ポリエステル樹脂のコロイド粒子の粒径が大きくなる。コロイド粒子の粒径が大きいと、上述のように導電性フィルムのヘイズが高くなるため、光学性能、表面粗さが劣化し、ひいては、当該導電性フィルムが備えられた有機EL素子やタッチパネルの性能が劣化する要因となる。乾燥性と水への分散性との観点から、芳香族ジカルボン酸の比率は、2~10モル%の範囲内がより好ましく、更に好ましくは3~5モル%の範囲内である。 Further, when the ratio of the aromatic dicarboxylic acid is less than 1 mol%, the hydrophilicity of the polyester is lowered, and as a result, the dispersion of the polyester resin in water is lowered, and the particle size of the colloidal particles of the polyester resin is increased. . When the particle size of the colloidal particles is large, the haze of the conductive film is increased as described above, so that the optical performance and the surface roughness are deteriorated. As a result, the performance of the organic EL element or touch panel provided with the conductive film Becomes a factor of deterioration. From the viewpoint of drying properties and dispersibility in water, the ratio of the aromatic dicarboxylic acid is more preferably in the range of 2 to 10 mol%, and still more preferably in the range of 3 to 5 mol%.
 本発明に係る少なくともスルホン酸基を有する芳香族ジカルボン酸成分としては、5-ナトリウムスルホイソフタル酸(SIPA-Na)、5-ナトリウムスルホテレフタル酸(STPA-Na)、5-カリウムスルホイソフタル酸(SIPA-K)、5-カリウムスルホテレフタル酸(STPA-K)、5-リチウムスルホイソフタル酸(SIPA-Li)、5-リチウムスルホテレフタル酸(STPA-Li)、3,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸ナトリウム(SIPG-Na)、2,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸ナトリウム(STPG-Na)、3,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸カリウム(SIPG-K)、3,5-ジ(カルボ-β-ヒドロキシエトキシ)ベンゼンスルホン酸リチウム(SIPGLi)、5-ナトリウムスルホイソフタル酸ジメチル(SIPM-Na)、5-ナトリウムスルホテレフタル酸ジメチル(STPM-Na)、5-カリウムスルホイソフタル酸ジメチル(SIPM-K)、5-リチウムスルホイソフタル酸ジメチル(SIPM-Li)、5-スルホン酸ナトリウムジメチルイソフタル酸等が挙げられる。 Examples of the aromatic dicarboxylic acid component having at least a sulfonic acid group according to the present invention include 5-sodium sulfoisophthalic acid (SIPA-Na), 5-sodium sulfoterephthalic acid (STPA-Na), and 5-potassium sulfoisophthalic acid (SIPA). -K), 5-potassium sulfoterephthalic acid (STPA-K), 5-lithium sulfoisophthalic acid (SIPA-Li), 5-lithium sulfoterephthalic acid (STPA-Li), 3,5-di (carbo-β- Hydroxyethoxy) benzene sulfonate sodium (SIPG-Na), 2,5-di (carbo-β-hydroxyethoxy) benzene sulfonate sodium (STPG-Na), 3,5-di (carbo-β-hydroxyethoxy) benzene Potassium sulfonate (SIPG-K), 3,5-di (carbo-) -Hydroxyethoxy) lithium benzenesulfonate (SIPGLi), dimethyl 5-sodium sulfoisophthalate (SIMM-Na), dimethyl 5-sodium sulfoterephthalate (STPM-Na), dimethyl 5-potassium sulfoisophthalate (SIMM-K) Dimethyl 5-lithium sulfoisophthalate (SIPM-Li), sodium 5-sulfonate dimethylisophthalate and the like.
 本発明に係るポリエステル樹脂の水性分散体においては、ポリエステル樹脂を構成する酸成分として、前記したスルホン酸基を有する芳香族ジカルボン酸成分のモノマーの添加量をできるだけ抑えるべきであり、また、ポリエステル樹脂を乳化分散させるための乳化剤等の各種添加剤の添加も控えるべきである。 In the aqueous dispersion of the polyester resin according to the present invention, the addition amount of the monomer of the aromatic dicarboxylic acid component having a sulfonic acid group as an acid component constituting the polyester resin should be suppressed as much as possible. Addition of various additives such as an emulsifier for emulsifying and dispersing the powder should be avoided.
 ポリエステル樹脂の酸成分は、全酸成分のうち、少なくとも50モル%以上が芳香族ジカルボン酸成分であることが好ましい。芳香族ジカルボン酸成分が50モル%以上である場合には、樹脂被膜の耐水性が低下する懸念を回避できる。また、芳香族ジカルボン酸成分の割合が多いポリエステル樹脂では、耐水性の他に、硬度、耐溶媒性、加工性等が向上する。 It is preferable that at least 50 mol% or more of the acid component of the polyester resin is an aromatic dicarboxylic acid component among all the acid components. When the aromatic dicarboxylic acid component is 50 mol% or more, the concern that the water resistance of the resin film is lowered can be avoided. In addition, in a polyester resin having a large proportion of the aromatic dicarboxylic acid component, hardness, solvent resistance, workability and the like are improved in addition to water resistance.
 芳香族ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、無水フタル酸、2,6-ナフタレンジカルボン酸、3-tert-ブチルイソフタル酸、ジフェン酸等が挙げられる。これらの芳香族ジカルボン酸成分は、単独で用いられてもよく、2種類以上で併用されてもよい。
 特に好適に用いられる芳香族ジカルボン酸成分としては、工業的に多量に生産されており、安価であること等から、テレフタル酸(例えば、ジメチルテレフタル酸。)や、イソフタル酸(例えば、ジメチルイソフタル酸。)が挙げられる。
Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, phthalic anhydride, 2,6-naphthalenedicarboxylic acid, 3-tert-butylisophthalic acid, diphenic acid, and the like. These aromatic dicarboxylic acid components may be used alone or in combination of two or more.
Particularly preferred aromatic dicarboxylic acid components are industrially produced in large quantities and inexpensive, so terephthalic acid (for example, dimethyl terephthalic acid) and isophthalic acid (for example, dimethyl isophthalic acid). .).
 本発明に係るポリエステル樹脂の構成成分としては、前記した芳香族ジカルボン酸成分の割合を満たす程度、また、前記したガラス転移温度の範囲内となるならば、飽和脂肪族ジカルボン酸成分(シュウ酸、コハク酸、無水コハク酸、アジピン酸、アゼライン酸、セバシン酸、ドデカン二酸、アイコサン二酸、水添ダイマー酸等)、不飽和脂肪族ジカルボン酸成分(フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、ダイマー酸等)、脂環式ジカルボン酸成分(1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、2,5-ノルボルネンジカルボン酸又はこれらの無水物、テトラヒドロフタル酸又はその無水物等)等が用いられる。また、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、トリメシン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)、1,2,3,4-ブタンテトラカルボン酸等といった3官能以上のカルボン酸成分もポリエステル樹脂の構成成分として使用可能である。 As a constituent component of the polyester resin according to the present invention, a saturated aliphatic dicarboxylic acid component (oxalic acid, oxalic acid, as long as the ratio of the aromatic dicarboxylic acid component described above is satisfied, and the glass transition temperature is within the above range. Succinic acid, succinic anhydride, adipic acid, azelaic acid, sebacic acid, dodecanedioic acid, aicosane diacid, hydrogenated dimer acid, etc.), unsaturated aliphatic dicarboxylic acid components (fumaric acid, maleic acid, maleic anhydride, itacone) Acid, itaconic anhydride, citraconic acid, citraconic anhydride, dimer acid, etc.), alicyclic dicarboxylic acid components (1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 2 , 5-norbornene dicarboxylic acid or their anhydride, tetrahydrophthalic acid or its anhydride, etc.) It is used. Also, trimellitic acid, pyromellitic acid, benzophenone tetracarboxylic acid, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, trimesic acid, ethylene glycol bis (anhydrotrimellitate), glycerol tris (anhydro) Trifunctional or higher carboxylic acid components such as 1,2,3,4-butanetetracarboxylic acid can also be used as a component of the polyester resin.
 本発明に係るポリエステル樹脂を合成するためのアルコール成分としては、特に限定されないが、例えば、脂肪族グリコール成分(エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,9-ノナンジオール、2-エチル-2-ブチルプロパンジオール等)、脂環式グリコール成分(1,4-シクロヘキサンジメタノール等)、ビスフェノール類(ビスフェノールA)のエチレンオキシド付加体(ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、2,2-ビス[4-(ヒドロキシエトキシ)フェニル]プロパン等)、ビスフェノール類(ビスフェノールS)のエチレンオキシド付加体(ビス[4-(ヒドロキシエトキシ)フェニル]スルホン等)、エーテル結合含有グリコール成分(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等)等が挙げられる。また、グリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の3官能以上のアルコール成分も使用可能である。 The alcohol component for synthesizing the polyester resin according to the present invention is not particularly limited. For example, an aliphatic glycol component (ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol) 1,4-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1, 9-nonanediol, 2-ethyl-2-butylpropanediol, etc.), alicyclic glycol components (1,4-cyclohexanedimethanol, etc.), ethylene oxide adducts of bisphenols (bisphenol A) (diethylene glycol, triethylene glycol, Dipropylene Coal, 2,2-bis [4- (hydroxyethoxy) phenyl] propane), ethylene oxide adducts of bisphenols (bisphenol S) (bis [4- (hydroxyethoxy) phenyl] sulfone, etc.), ether bond-containing glycol components (Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc.). Also, trifunctional or higher functional alcohol components such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol can be used.
 特に好適に用いられるアルコール成分としては、工業的に量産されているので安価であり、しかも樹脂被膜の耐溶剤性及び耐候性が向上する等、諸性能にバランスがとれていることから、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ネオペンチルグリコール、1,6-ヘキサンジオールが挙げられる。 As an alcohol component that is particularly suitably used, ethylene glycol is inexpensive because it is industrially mass-produced, and has various balances of performance such as improved solvent resistance and weather resistance of the resin coating. , Diethylene glycol, triethylene glycol, neopentyl glycol, 1,6-hexanediol.
 また、本発明に係るポリエステル樹脂の構成成分には、モノカルボン酸成分、モノアルコール成分、ヒドロキシカルボン酸成分等が共重合されていてもよく、例として、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、リノレン酸、安息香酸、p-tert-ブチル安息香酸、シクロヘキサン酸、4-ヒドロキシフェニルステアリン酸、ステアリルアルコール、2-フェノキシエタノール、ε-カプロラクトン、乳酸、β-ヒドロキシ酪酸又はp-ヒドロキシ安息香酸のエチレンオキシド付加体等が挙げられる。また、3官能以上のポリオキシカルボン酸成分が共重合されていてもよく、例として、リンゴ酸、グリセリン酸、クエン酸、酒石酸等が挙げられる。 The constituent components of the polyester resin according to the present invention may be copolymerized with a monocarboxylic acid component, a monoalcohol component, a hydroxycarboxylic acid component, etc., for example, lauric acid, myristic acid, palmitic acid, stearin Acid, oleic acid, linoleic acid, linolenic acid, benzoic acid, p-tert-butylbenzoic acid, cyclohexane acid, 4-hydroxyphenyl stearic acid, stearyl alcohol, 2-phenoxyethanol, ε-caprolactone, lactic acid, β-hydroxybutyric acid or and ethylene oxide adducts of p-hydroxybenzoic acid. Further, a tri- or higher functional polyoxycarboxylic acid component may be copolymerized, and examples thereof include malic acid, glyceric acid, citric acid, and tartaric acid.
 続いて、ポリエステル樹脂の製造方法について説明する。本発明における水系溶剤に分散可能なポリエステル樹脂は、まずポリエステル樹脂を製造後、このポリエステルを用い水系溶剤分散体にする。ポリエステル樹脂を製造する方法としては、例えば、前記した酸成分の1種類以上とアルコール成分の1種類以上とを、公知の方法により、縮重合させることにより製造することができる。全モノマー成分又はその低重合体を不活性雰囲気下で180~260℃、2.5~10時間の範囲内で反応させてエステル化反応を行い、続いて、縮重合触媒の存在下、130Pa以下の減圧下に220~280℃の範囲内の温度で、所望の分子量に達するまで縮重合反応を進めて、ポリエステル樹脂を得る方法等が挙げられる。 Subsequently, a method for producing a polyester resin will be described. The polyester resin that can be dispersed in the aqueous solvent in the present invention is prepared by first producing a polyester resin, and then using this polyester to make an aqueous solvent dispersion. As a method for producing a polyester resin, for example, it can be produced by polycondensing one or more of the above-described acid components and one or more of the alcohol components by a known method. All the monomer components or their low polymers are reacted in an inert atmosphere within a range of 180 to 260 ° C. and 2.5 to 10 hours to carry out an esterification reaction, followed by 130 Pa or less in the presence of a condensation polymerization catalyst. And a method of obtaining a polyester resin by proceeding a condensation polymerization reaction at a temperature in the range of 220 to 280 ° C. under reduced pressure until a desired molecular weight is reached.
 ポリエステルの縮重合触媒としては、特に限定されることなく、酢酸亜鉛、三酸化アンチモン等の公知の化合物が用いられる。
 ポリエステル樹脂に所望の酸価を付与する方法として、前記した縮重合反応の後に、酸成分をさらに添加し、不活性雰囲気下、解重合反応を行う方法等が挙げられる。
 また、ポリエステル樹脂に所望の酸価を付与する方法として、前記した縮重合反応の後に、無水物の酸成分をさらに添加し、不活性雰囲気下、ポリエステル樹脂のヒドロキシ基と付加反応する方法を用いることもできるが、かかる方法では、製造途中の溶融粘度が非常に高くなり、ポリエステル樹脂を払い出せなくなることがあるので、注意が必要である。
The polycondensation catalyst for polyester is not particularly limited, and known compounds such as zinc acetate and antimony trioxide are used.
Examples of a method for imparting a desired acid value to the polyester resin include a method in which an acid component is further added after the above condensation polymerization reaction and a depolymerization reaction is performed in an inert atmosphere.
In addition, as a method for imparting a desired acid value to the polyester resin, a method in which an acid component of an anhydride is further added after the above-described polycondensation reaction and an addition reaction is performed with the hydroxy group of the polyester resin in an inert atmosphere is used. However, in such a method, the melt viscosity during production becomes very high, and the polyester resin may not be discharged, so care must be taken.
 解重合反応又は付加反応で用いる酸成分としては、前記した3官能以上のカルボン酸が好ましい。3官能以上のカルボン酸を使用することにより、特に、解重合によるポリエステル樹脂の分子量低下を抑制しながら、所望の酸価を付与することができる。3官能以上のカルボン酸としては、芳香族のカルボン酸成分であるトリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸が特に好ましい。 As the acid component used in the depolymerization reaction or addition reaction, the above-described trifunctional or higher carboxylic acid is preferable. By using a trifunctional or higher functional carboxylic acid, a desired acid value can be imparted while suppressing a decrease in the molecular weight of the polyester resin due to depolymerization. As the trifunctional or higher functional carboxylic acid, aromatic carboxylic acid components trimellitic acid, trimellitic anhydride, pyromellitic acid, and pyromellitic anhydride are particularly preferable.
 なお、ポリエステル樹脂の数平均分子量が10000以上である場合には、樹脂被膜が脆くならず、基材への密着性及び耐久性が不足する懸念を回避できる。このため、樹脂被膜の基材への密着性及び耐久性をさらに高めるためには、ポリエステル樹脂の数平均分子量は、10000以上であることがより好ましい。また、ポリエステル樹脂の数平均分子量は、製造の容易性の観点から、100000以下であることが好ましく、20000以下であることがより好ましい。 In addition, when the number average molecular weight of the polyester resin is 10,000 or more, it is possible to avoid the concern that the resin film does not become brittle and the adhesion to the base material and the durability are insufficient. For this reason, in order to further improve the adhesion and durability of the resin coating to the substrate, the number average molecular weight of the polyester resin is more preferably 10,000 or more. Moreover, the number average molecular weight of the polyester resin is preferably 100,000 or less, more preferably 20000 or less, from the viewpoint of ease of production.
 続いて、ポリエステル樹脂から水系溶剤に分散されたポリエステル樹脂(以下、「ポリエステル樹脂水性分散体」ともいう。)を製造する方法について説明する。
 本発明において、ポリエステル樹脂水性分散体とは、前記したポリエステル樹脂が、水性媒体中に分散されてなる液状物である。ここで、水性媒体とは、水を含む液体からなる媒体であり、有機溶媒、防腐剤、消泡剤、塩基性化合物等の添加剤を含んでいてもよい。
Subsequently, a method for producing a polyester resin dispersed in an aqueous solvent from the polyester resin (hereinafter also referred to as “polyester resin aqueous dispersion”) will be described.
In the present invention, the polyester resin aqueous dispersion is a liquid material in which the above-described polyester resin is dispersed in an aqueous medium. Here, the aqueous medium is a medium composed of a liquid containing water, and may contain additives such as an organic solvent, an antiseptic, an antifoaming agent, and a basic compound.
 本実施形態において、ポリエステル樹脂水性分散体におけるポリエステル樹脂の含有率は、5~50質量%の範囲内が好ましく、15~40質量%の範囲内であることがより好ましい。ポリエステル樹脂の含有率が50質量%以内であると、分散していたポリエステル樹脂の凝集を抑制でき、ポリエステル樹脂の分散の安定性が向上する傾向にある。
 なお、本実施形態における実用的なポリエステル樹脂の含有率は、5質量%以上である。ポリエステル樹脂の分散の安定性を向上させるとともにポリエステルの硬化を実用的に発揮するためには、ポリエステル樹脂水性分散体におけるポリエステル樹脂の含有率は、15~40質量%であることがより好ましい。
In the present embodiment, the content of the polyester resin in the aqueous polyester resin dispersion is preferably in the range of 5 to 50% by mass, and more preferably in the range of 15 to 40% by mass. When the content of the polyester resin is within 50% by mass, aggregation of the dispersed polyester resin can be suppressed, and the dispersion stability of the polyester resin tends to be improved.
In addition, the content rate of the practical polyester resin in this embodiment is 5 mass% or more. In order to improve the dispersion stability of the polyester resin and practically exhibit the curing of the polyester, the polyester resin content in the aqueous polyester resin dispersion is more preferably 15 to 40% by mass.
 本発明において、ポリエステル樹脂水性分散体のpHは、特に限定されないが、室温において、5以上8未満であることが好ましい。pHが8未満であると酸性を示す導電性高分子化合物との混合で、ポリエステル樹脂水性分散体が凝集する懸念がなく、均一な水性分散体としては得られなくなる懸念を回避できる。
 水については特に制限されず、蒸留水、イオン交換水、市水、工業用水等が挙げられるが、蒸留水又はイオン交換水を使用することが好ましい。
In the present invention, the pH of the aqueous polyester resin dispersion is not particularly limited, but is preferably 5 or more and less than 8 at room temperature. When the pH is less than 8, there is no concern that the polyester resin aqueous dispersion aggregates due to mixing with the conductive polymer compound that exhibits acidity, and the concern that the uniform aqueous dispersion cannot be obtained can be avoided.
The water is not particularly limited and includes distilled water, ion exchange water, city water, industrial water, and the like, but it is preferable to use distilled water or ion exchange water.
 本発明におけるポリエステル樹脂水性分散体の製造方法としては、前記ポリエステル樹脂を水系溶剤へ投入し加熱撹拌する方法、ポリエステル樹脂の末端にあるカルボキシ基を、塩基性化合物を用いて、少なくとも一部又は全部中和することで水性媒体に分散させる方法、分散剤として界面活性剤を用いる方法が挙げられる。また、当該製造方法としては、他にも、ポリエステル樹脂を有機溶媒に溶解させる工程(溶解工程)、次に、有機溶媒に溶解した樹脂溶液(溶解液)を水に分散させる工程(転相乳化工程)、さらに、得られた内容物(分散液)から、有機溶媒を除去する工程(脱溶媒工程)の3工程を行う方法(「転相乳化」)等が挙げられる。
 なお、転相乳化では、工程適性の観点から、水系溶剤へ投入し加熱撹拌する方法が好適に用いられる。
As the method for producing the polyester resin aqueous dispersion in the present invention, the polyester resin is charged into an aqueous solvent and heated and stirred. The carboxy group at the terminal of the polyester resin is at least partially or entirely using a basic compound. Examples thereof include a method of dispersing in an aqueous medium by neutralization and a method of using a surfactant as a dispersant. In addition, the production method includes a step of dissolving a polyester resin in an organic solvent (dissolution step), and a step of dispersing a resin solution (solution) dissolved in the organic solvent in water (phase inversion emulsification). Step), and further, a method (“phase inversion emulsification”) of performing the three steps of removing the organic solvent (desolvation step) from the obtained contents (dispersion).
In the phase inversion emulsification, from the viewpoint of process suitability, a method of adding to an aqueous solvent and stirring with heating is preferably used.
 〔赤外線照射〕
 本発明は、透明樹脂フィルム基材上に塗布した前記水系分散液に対して、前記赤外線の照射を行うことによって前記ポリマー導電層を形成するステップにおいて、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を行うことを特徴とする。
 一般に、赤外線とは可視放射の波長より長い光放射のことをいう。
 本実施形態において、上記波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率は、3%以下であるのが好ましく、1%以下であるのがより好ましく、さらに好ましくは0.5%以下である。
[Infrared irradiation]
In the step of forming the polymer conductive layer by irradiating the aqueous dispersion applied on the transparent resin film substrate with the infrared rays, the present invention provides a wavelength 5 for a spectral radiance of 3.0 μm. Irradiation with an infrared ray having a spectral radiance ratio of 8 μm is 5% or less.
In general, infrared refers to light radiation that is longer than the wavelength of visible radiation.
In the present embodiment, the ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm is preferably 3% or less, more preferably 1% or less, and even more preferably 0. .5% or less.
 本発明のポリマー導電層を形成するための液状組成物に好ましく用いられる水系溶剤が、約3.0μm付近にOH伸縮振動による強い吸収波長を持ち、また本発明の透明樹脂フィルム基材に好ましく用いられるポリエステル樹脂フィルムは、3.0μm付近の赤外線波長域にはほとんど吸収波長を持たないが、5.8μm以上の赤外線波長域に強い吸収波長を有していることが好ましい。
 このような水系溶剤及び透明樹脂フィルム基材を採用し、本発明に係る赤外線を照射することにより、透明樹脂フィルム基材にダメージを与えることをより抑えることができ、また、より効率よくポリマー導電層を乾燥することが可能である。すなわち、ポリマー導電層から水、ヒドロキシ基を有する溶剤や添加剤をより効率よく除去することが可能となる。その結果、高湿度環境下における環境試験後でも高い導電性と透明性及び良好な表面粗さを有するポリマー導電層が得られる。さらには、本発明の製造方法により製造した透明電極を有機EL素子やタッチパネルに用いることで、有機EL素子の発光均一性及び寿命の向上、タッチパネルの経時での抵抗値低下抑制といった効果を得ることができる。
The aqueous solvent preferably used in the liquid composition for forming the polymer conductive layer of the present invention has a strong absorption wavelength due to OH stretching vibration in the vicinity of about 3.0 μm, and is preferably used for the transparent resin film substrate of the present invention. The obtained polyester resin film has almost no absorption wavelength in the infrared wavelength region near 3.0 μm, but preferably has a strong absorption wavelength in the infrared wavelength region of 5.8 μm or more.
By adopting such an aqueous solvent and a transparent resin film substrate and irradiating infrared rays according to the present invention, it is possible to further suppress damage to the transparent resin film substrate, and more efficiently polymer conductive. It is possible to dry the layer. That is, it becomes possible to more efficiently remove water and a solvent or additive having a hydroxy group from the polymer conductive layer. As a result, it is possible to obtain a polymer conductive layer having high conductivity, transparency and good surface roughness even after an environmental test under a high humidity environment. Furthermore, by using the transparent electrode manufactured by the manufacturing method of the present invention for an organic EL element or a touch panel, an effect of improving the light emission uniformity and life of the organic EL element and suppressing a decrease in resistance value over time of the touch panel is obtained. Can do.
 本発明における赤外線の照射の方法については、特に限定はないが、赤外線ヒーターで行うのが好ましい。赤外線ヒーターとしては、例えば、特許第4790092号に記載されているような、赤外線ヒーターを好ましく用いることができる。
 以下に、本発明に好ましく用いられる赤外線ヒーターについて説明する。
Although there is no limitation in particular about the method of infrared irradiation in this invention, It is preferable to carry out with an infrared heater. As the infrared heater, for example, an infrared heater as described in Japanese Patent No. 4790092 can be preferably used.
Below, the infrared heater preferably used for this invention is demonstrated.
 (赤外線ヒーター)
 図3は、波長制御赤外線ヒーターの概略構成を示す断面図である。図4は、図3の波長制御赤外線ヒーターの変形例を示す断面図である。
 赤外線ヒーター20は外観が円柱状を有しており、図3に示すとおり、主にフィラメント22、保護管24及びフィルター26、28がこの順に同心円状に配置された構成を有している。フィルター26、28は、波長3.5μm以上の赤外線を吸収する機能を有し、フィルター26、28の材質としては、石英ガラス、ホウケイ酸クラウンガラスなどがあり、耐熱性、耐熱衝撃性の点から石英ガラスが好ましい。
(Infrared heater)
FIG. 3 is a cross-sectional view showing a schematic configuration of the wavelength control infrared heater. FIG. 4 is a cross-sectional view showing a modification of the wavelength control infrared heater of FIG.
The external appearance of the infrared heater 20 has a cylindrical shape, and as shown in FIG. 3, the filament 22, the protective tube 24, and the filters 26 and 28 are mainly arranged concentrically in this order. The filters 26 and 28 have a function of absorbing infrared rays having a wavelength of 3.5 μm or more, and the materials of the filters 26 and 28 include quartz glass and borosilicate crown glass, from the viewpoint of heat resistance and thermal shock resistance. Quartz glass is preferred.
 赤外線ヒーター20は、波長3.5μm以上の赤外線を吸収する機能を有している。詳しくは、フィルター26、28自体は、波長3.5μm以上の赤外線を吸収するため、フィラメント22により加熱され高温となるため、自身が赤外線の放射体となり、長波長の赤外線を放射する。
 しかし、赤外線ヒーター20では、フィルター26、28の間の中空部30で冷媒(例えば冷却空気)が流通するようになっており、その冷却機能によりフィルター26、28の表面温度を低下させ、フィルター26、28が発する2次放射を抑制することができるようになっている。
 その結果、波長3.5μm以上の赤外線放射が減少し、主に透明樹脂フィルム基材2に吸収領域のある波長5.8μm以上の遠赤外線放射を大幅に低減することができる。そして、被乾燥物には、水系溶剤の吸収領域である波長3.0μmの赤外線を選択的に照射することで、透明樹脂フィルム基材2を変形させることなくポリマー導電層を乾燥させることができる。
The infrared heater 20 has a function of absorbing infrared rays having a wavelength of 3.5 μm or more. Specifically, the filters 26 and 28 themselves absorb infrared rays having a wavelength of 3.5 μm or more, and are heated by the filament 22 to become a high temperature. Therefore, the filters 26 and 28 themselves become infrared radiators and emit long-wave infrared rays.
However, in the infrared heater 20, a refrigerant (for example, cooling air) flows through the hollow portion 30 between the filters 26, 28, and the cooling function reduces the surface temperature of the filters 26, 28. , 28 can suppress secondary radiation.
As a result, infrared radiation having a wavelength of 3.5 μm or more is reduced, and far infrared radiation having a wavelength of 5.8 μm or more, which mainly has an absorption region in the transparent resin film substrate 2, can be significantly reduced. Then, the polymer conductive layer can be dried without deforming the transparent resin film substrate 2 by selectively irradiating the object to be dried with infrared rays having a wavelength of 3.0 μm which is an absorption region of the aqueous solvent. .
 フィルター26、28の厚さ及び枚数は、必要な赤外線スペクトルにより、適宜選択・変更することができる。
 冷却機能としては、上記のとおり、フィルターを中空で二重又は多重積層し、間の中空部分に空気を流すことで冷却できる。
 フィルター26、28の形状は、上記のとおり、円柱状のフィラメント22全体を同心円状に覆ってもよいし、図4に示すとおり、フィラメント22(及び保護管24)の3方向を反射板32で被覆し、赤外線の放射面側にフィルター26、28を平行板状に配置してもよい。
The thickness and the number of the filters 26 and 28 can be appropriately selected and changed according to the necessary infrared spectrum.
As a cooling function, as above-mentioned, it can cool by making a filter into a hollow double or multiple lamination, and letting air flow through the hollow part in between.
As described above, the shape of the filters 26 and 28 may cover the entire columnar filament 22 concentrically. As shown in FIG. 4, the reflection plate 32 covers the three directions of the filament 22 (and the protective tube 24). The filters 26 and 28 may be arranged in parallel plates on the infrared radiation surface side.
 フィルター26、28に加えさらに別のフィルターを配置する多重構造とする場合、冷却用の空気を、フィルター間の中空部同士で互いに逆方向に流すことが冷却効率の点から好ましい。また、排出側の冷却用空気は、系外に排出してもよいし、乾燥工程で使用する熱風の一部として利用してもよい。 In the case of a multiple structure in which another filter is arranged in addition to the filters 26 and 28, it is preferable from the viewpoint of cooling efficiency that cooling air is allowed to flow in opposite directions between the hollow portions between the filters. Further, the cooling air on the discharge side may be discharged out of the system, or may be used as part of hot air used in the drying process.
 乾燥性と基材変形防止との両立の観点から、赤外線ヒーター20のフィラメント22の温度は800℃以上が好ましく、フィラメント22の耐熱性の点から3000℃以下とすることが好ましい。フィラメント温度に応じて、これら水系溶剤の吸収に相当する波長域の輻射エネルギーを増加させることができ、フィラメント温度は所望の塗布、乾燥条件によって、適宜選択・変更することができる。フィラメント温度は、例えば、放射温度計を用いて測定することができる。 The temperature of the filament 22 of the infrared heater 20 is preferably 800 ° C. or more, and preferably 3000 ° C. or less from the viewpoint of heat resistance of the filament 22 from the viewpoint of achieving both drying properties and prevention of deformation of the substrate. Depending on the filament temperature, the radiation energy in the wavelength region corresponding to the absorption of these aqueous solvents can be increased, and the filament temperature can be appropriately selected and changed depending on the desired coating and drying conditions. The filament temperature can be measured, for example, using a radiation thermometer.
 被乾燥物側に配置される最外側のフィルター28の表面温度は、自身の赤外線吸収による2次放射を抑制する観点から、200℃以下とすることが好ましく、150℃以下とすることがさらに好ましく、これは二重又は多重に積層されたフィルター間に空気を流すことで調整できる。 The surface temperature of the outermost filter 28 disposed on the object to be dried is preferably 200 ° C. or less, and more preferably 150 ° C. or less, from the viewpoint of suppressing secondary radiation due to its own infrared absorption. This can be adjusted by flowing air between the filters stacked in layers.
 また、乾燥工程では、その乾燥ゾーンを赤外線反射性の高い材料で構成(被覆)することにより、被乾燥物に吸収されなかった赤外線を高効率で利用できる。
 なお、図3及び図4に示すとおり、波長制御赤外線ヒーター20には中空部30で冷媒を流通(循環)させるための冷却機構40が接続され、さらに冷却機構40とフィラメント22とには制御装置45が接続されている。かかる制御回路において、制御装置45により、冷却機構40による中空部30への冷媒の流通量やフィラメント22の発熱温度などが制御される。
Further, in the drying step, the drying zone is composed (covered) with a material having high infrared reflectivity, whereby infrared rays that are not absorbed by the object to be dried can be used with high efficiency.
As shown in FIGS. 3 and 4, the wavelength control infrared heater 20 is connected to a cooling mechanism 40 for circulating (circulating) the refrigerant in the hollow portion 30, and the cooling mechanism 40 and the filament 22 are connected to a control device. 45 is connected. In such a control circuit, the control device 45 controls the amount of refrigerant flowing into the hollow portion 30 by the cooling mechanism 40, the heat generation temperature of the filament 22, and the like.
 また、本発明の透明樹脂フィルム基材の変形が生じない程度であれば、本発明の赤外線照射工程前に、別途、予備加熱処理工程を有していてもよい。
 予備加熱処理方法としては、特に限定はなく、ホットプレート、ボックス炉、コンベア炉のような電気炉や、近赤外線ヒーター、中赤外線ヒーター、遠赤外線ヒーター、温風、熱風、マイクロ波等が挙げられ、これら単独でもよいし組み合わせてもよい。
Moreover, if it is a grade which does not produce the deformation | transformation of the transparent resin film base material of this invention, you may have a preheating process separately before the infrared irradiation process of this invention.
The preheating treatment method is not particularly limited, and examples thereof include an electric furnace such as a hot plate, a box furnace, and a conveyor furnace, a near infrared heater, a middle infrared heater, a far infrared heater, hot air, hot air, and microwaves. These may be used alone or in combination.
 本発明における赤外線において、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率は、例えば、以下の方法により求めることができる。 In the infrared ray according to the present invention, the ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm can be obtained, for example, by the following method.
 平成17年度遠赤外ヒーターの放射エネルギーを簡易的に評価する方法の調査研究報告書(社団法人 日本機械工業連合会、社団法人 遠赤外線協会著)、FTIR TALK LETTER vol.13(株式会社 島津製作所著)等に記載の方法を参考にして、まず赤外線ヒーターからの放射出力と、赤外線ヒーターのフィラメント温度と同温度にした標準黒体炉からの放射出力を、FT-IR(フーリエ変換赤外分光光度計)で測定することで赤外線ヒーターの分光放射率を求める。 2005 Survey and Research Report on Methods for Easily Evaluating Radiant Energy of Far Infrared Heaters (Japan Machinery Federation, Far Infrared Association), FTIR TALK LETTER vol. 13 (Shimadzu Corporation), etc., referring to the radiation output from the infrared heater and the radiation output from the standard blackbody furnace at the same temperature as the filament temperature of the infrared heater. The spectral emissivity of the infrared heater is determined by measuring with a Fourier transform infrared spectrophotometer.
 次いで、プランクの放射則にしたがって計算した黒体放射スペクトルに、赤外線ヒーターの分光放射率を乗ずることで、赤外線ヒーターの分光放射スペクトルが得られる。得られた分光放射スペクトルから、波長3.0μmにおける分光放射輝度の値と、波長5.8μmにおける分光放射輝度の値を読み取り、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率を百分率で計算し、求めることができる。 Next, the spectral radiation spectrum of the infrared heater can be obtained by multiplying the black body radiation spectrum calculated according to Planck's radiation law by the spectral emissivity of the infrared heater. A spectral radiance value at a wavelength of 3.0 μm and a spectral radiance value at a wavelength of 5.8 μm are read from the obtained spectral radiance spectrum, and a spectral radiance of a wavelength of 5.8 μm with respect to a spectral radiance of a wavelength of 3.0 μm is read. The ratio can be calculated as a percentage.
 〔導電性高分子化合物〕
 本発明において、「導電性」とは、電気が流れる状態を指し、JIS K 7194の「導電性プラスチックの4探針法による抵抗率試験方法」に準拠した方法で測定したシート抵抗値が1×10Ω/□よりも低いことをいう。
[Conductive polymer compound]
In the present invention, “conductive” refers to a state in which electricity flows, and a sheet resistance value measured by a method in accordance with JIS K 7194 “Resistivity Test Method by 4-Probe Method of Conductive Plastic” is 1 ×. It means lower than 10 8 Ω / □.
 本発明において、導電性を有するポリマーである導電性高分子化合物とは、カチオン性π共役系導電性高分子とポリアニオンとを有してなる導電性高分子化合物であることが望ましい。こうした導電性高分子化合物は、後記するカチオン性π共役系導電性高分子を形成する前駆体モノマーを、適切な酸化剤及び酸化触媒と後記するポリアニオンとの存在下で化学酸化重合することによって容易に製造することができる。 In the present invention, the conductive polymer compound that is a polymer having conductivity is preferably a conductive polymer compound having a cationic π-conjugated conductive polymer and a polyanion. Such a conductive polymer compound can be easily obtained by chemical oxidative polymerization of a precursor monomer that forms a cationic π-conjugated conductive polymer, which will be described later, in the presence of an appropriate oxidizing agent and an oxidation catalyst, and a polyanion, which will be described later. Can be manufactured.
 (カチオン性π共役系導電性高分子)
 本発明において、カチオン性π共役系導電性高分子としては、特に限定されず、ポリチオフェン(基本のポリチオフェンを含む、以下同様)類、ポリピロール類、ポリインドール類、ポリカルバゾール類、ポリアニリン類、ポリアセチレン類、ポリフラン類、ポリパラフェニレンビニレン類、ポリアズレン類、ポリパラフェニレン類、ポリパラフェニレンサルファイド類、ポリイソチアナフテン類又はポリチアジル類の鎖状導電性高分子化合物を利用することができる。カチオン性π共役系導電性高分子としては、導電性、透明性、安定性等の観点から、ポリチオフェン類又はポリアニリン類が好ましく、ポリエチレンジオキシチオフェンがより好ましい。
(Cationic π-conjugated conductive polymer)
In the present invention, the cationic π-conjugated conductive polymer is not particularly limited, and includes polythiophenes (including basic polythiophenes, the same applies hereinafter), polypyrroles, polyindoles, polycarbazoles, polyanilines, and polyacetylenes. A chain conductive polymer compound of polyfurans, polyparaphenylene vinylenes, polyazulenes, polyparaphenylenes, polyparaphenylene sulfides, polyisothianaphthenes or polythiazyl compounds can be used. As the cationic π-conjugated conductive polymer, polythiophenes or polyanilines are preferable, and polyethylenedioxythiophene is more preferable from the viewpoints of conductivity, transparency, stability, and the like.
 (カチオン性π共役系導電性高分子前駆体モノマー)
 本発明において、カチオン性π共役系導電性高分子の形成に用いられる前駆体モノマーとは、分子内にπ共役系を有し、適切な酸化剤の作用によって高分子化した際にもその主鎖にπ共役系が形成されるものである。かかる前駆体モノマーとしては、例えば、ピロール類及びその誘導体、チオフェン類及びその誘導体、アニリン類及びその誘導体等が挙げられる。
(Cationic π-conjugated conductive polymer precursor monomer)
In the present invention, a precursor monomer used for forming a cationic π-conjugated conductive polymer has a π-conjugated system in the molecule, and the main monomer even when polymerized by the action of an appropriate oxidizing agent. A π-conjugated system is formed in the chain. Examples of such precursor monomers include pyrroles and derivatives thereof, thiophenes and derivatives thereof, anilines and derivatives thereof, and the like.
 前駆体モノマーの具体例としては、ピロール、3-メチルピロール、3-エチルピロール、3-n-プロピルピロール、3-ブチルピロール、3-オクチルピロール、3-デシルピロール、3-ドデシルピロール、3,4-ジメチルピロール、3,4-ジブチルピロール、3-カルボキシルピロール、3-メチル-4-カルボキシルピロール、3-メチル-4-カルボキシエチルピロール、3-メチル-4-カルボキシブチルピロール、3-ヒドロキシピロール、3-メトキシピロール、3-エトキシピロール、3-ブトキシピロール、3-ヘキシルオキシピロール、3-メチル-4-ヘキシルオキシピロール、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-オクチルチオフェン、3-デシルチオフェン、3-ドデシルチオフェン、3-オクタデシルチオフェン、3-ブロモチオフェン、3-クロロチオフェン、3-ヨードチオフェン、3-シアノチオフェン、3-フェニルチオフェン、3,4-ジメチルチオフェン、3,4-ジブチルチオフェン、3-ヒドロキシチオフェン、3-メトキシチオフェン、3-エトキシチオフェン、3-ブトキシチオフェン、3-ヘキシルオキシチオフェン、3-ヘプチルオキシチオフェン、3-オクチルオキシチオフェン、3-デシルオキシチオフェン、3-ドデシルオキシチオフェン、3-オクタデシルオキシチオフェン、3,4-ジヒドロキシチオフェン、3,4-ジメトキシチオフェン、3,4-ジエトキシチオフェン、3,4-ジプロポキシチオフェン、3,4-ジブトキシチオフェン、3,4-ジヘキシルオキシチオフェン、3,4-ジヘプチルオキシチオフェン、3,4-ジオクチルオキシチオフェン、3,4-ジデシルオキシチオフェン、3,4-ジドデシルオキシチオフェン、3,4-エチレンジオキシチオフェン、3,4-プロピレンジオキシチオフェン、3,4-ブテンジオキシチオフェン、3-メチル-4-メトキシチオフェン、3-メチル-4-エトキシチオフェン、3-カルボキシチオフェン、3-メチル-4-カルボキシチオフェン、3-メチル-4-カルボキシエチルチオフェン、3-メチル-4-カルボキシブチルチオフェン、アニリン、2-メチルアニリン、3-イソブチルアニリン、2-アニリンスルホン酸、3-アニリンスルホン酸等が挙げられる。 Specific examples of the precursor monomer include pyrrole, 3-methylpyrrole, 3-ethylpyrrole, 3-n-propylpyrrole, 3-butylpyrrole, 3-octylpyrrole, 3-decylpyrrole, 3-dodecylpyrrole, 3, 4-dimethylpyrrole, 3,4-dibutylpyrrole, 3-carboxylpyrrole, 3-methyl-4-carboxylpyrrole, 3-methyl-4-carboxyethylpyrrole, 3-methyl-4-carboxybutylpyrrole, 3-hydroxypyrrole 3-methoxypyrrole, 3-ethoxypyrrole, 3-butoxypyrrole, 3-hexyloxypyrrole, 3-methyl-4-hexyloxypyrrole, thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3 -Butylthiophene, 3-hexyl Offene, 3-heptylthiophene, 3-octylthiophene, 3-decylthiophene, 3-dodecylthiophene, 3-octadecylthiophene, 3-bromothiophene, 3-chlorothiophene, 3-iodothiophene, 3-cyanothiophene, 3-phenyl Thiophene, 3,4-dimethylthiophene, 3,4-dibutylthiophene, 3-hydroxythiophene, 3-methoxythiophene, 3-ethoxythiophene, 3-butoxythiophene, 3-hexyloxythiophene, 3-heptyloxythiophene, 3- Octyloxythiophene, 3-decyloxythiophene, 3-dodecyloxythiophene, 3-octadecyloxythiophene, 3,4-dihydroxythiophene, 3,4-dimethoxythiophene, 3,4-diethoxythio , 3,4-dipropoxythiophene, 3,4-dibutoxythiophene, 3,4-dihexyloxythiophene, 3,4-diheptyloxythiophene, 3,4-dioctyloxythiophene, 3,4-didecyl Oxythiophene, 3,4-didodecyloxythiophene, 3,4-ethylenedioxythiophene, 3,4-propylenedioxythiophene, 3,4-butenedioxythiophene, 3-methyl-4-methoxythiophene, 3- Methyl-4-ethoxythiophene, 3-carboxythiophene, 3-methyl-4-carboxythiophene, 3-methyl-4-carboxyethylthiophene, 3-methyl-4-carboxybutylthiophene, aniline, 2-methylaniline, 3- Isobutylaniline, 2-anilinesulfonic acid, 3-anili Sulfonic acid and the like.
 (ポリアニオン)
 本発明において、導電性高分子化合物に用いられるポリアニオンは、置換又は未置換のポリアルキレン、置換又は未置換のポリアルケニレン、置換又は未置換のポリイミド、置換又は未置換のポリアミド、置換又は未置換のポリエステル及びこれらの共重合体のいずれかであって、アニオン基を有する構成単位とアニオン基を有さない構成単位とからなるものであることが望ましい。
(Polyanion)
In the present invention, the polyanion used in the conductive polymer compound is substituted or unsubstituted polyalkylene, substituted or unsubstituted polyalkenylene, substituted or unsubstituted polyimide, substituted or unsubstituted polyamide, substituted or unsubstituted. It is desirable that the polyester or any of these copolymers be composed of a structural unit having an anionic group and a structural unit having no anionic group.
 このポリアニオンは、カチオン性π共役系導電性高分子化合物を溶媒に可溶化させる可溶化高分子である。また、ポリアニオンのアニオン基は、カチオン性π共役系導電性高分子化合物に対するドーパントとして機能して、カチオン性π共役系導電性高分子化合物の導電性及び耐熱性を向上させる。また、ポリアニオンは、カチオン性π共役系導電性高分子化合物に対し過剰量が用いられることで、カチオン性π共役系導電性高分子化合物とポリアニオンとからなる導電性高分子化合物粒子の分散性及び成膜性を向上させる機能も有している。 This polyanion is a solubilized polymer that solubilizes a cationic π-conjugated conductive polymer compound in a solvent. The anion group of the polyanion functions as a dopant for the cationic π-conjugated conductive polymer compound, and improves the conductivity and heat resistance of the cationic π-conjugated conductive polymer compound. In addition, the polyanion is used in an excess amount with respect to the cationic π-conjugated conductive polymer compound, so that the dispersibility of the conductive polymer compound particles composed of the cationic π-conjugated conductive polymer compound and the polyanion and It also has a function of improving film formability.
 ポリアニオンのアニオン基としては、カチオン性π共役系導電性高分子化合物への化学酸化ドープが起こりうる官能基であればよい。かかるアニオン基としては、製造の容易さ及び安定性の観点から、一置換硫酸エステル基、一置換リン酸エステル基、リン酸基、カルボキシ基、スルホ基等が好ましい。さらに、かかるアニオン基としては、官能基のカチオン性π共役系導電性高分子化合物へのドープ効果の観点から、スルホ基、一置換硫酸エステル基又はカルボキシ基がより好ましい。 The anion group of the polyanion may be a functional group that can cause chemical oxidation doping to the cationic π-conjugated conductive polymer compound. As such an anion group, a mono-substituted sulfate group, a mono-substituted phosphate group, a phosphate group, a carboxy group, a sulfo group and the like are preferable from the viewpoint of ease of production and stability. Further, the anionic group is more preferably a sulfo group, a monosubstituted sulfate group or a carboxy group from the viewpoint of the doping effect of the functional group on the cationic π-conjugated conductive polymer compound.
 ポリアニオンの具体例としては、ポリビニルスルホン酸、ポリスチレンスルホン酸、ポリアリルスルホン酸、ポリアクリル酸エチルスルホン酸、ポリアクリル酸ブチルスルホン酸、ポリ-2-アクリルアミド-2-メチルプロパンスルホン酸、ポリイソプレンスルホン酸、ポリビニルカルボン酸、ポリスチレンカルボン酸、ポリアリルカルボン酸、ポリアクリルカルボン酸、ポリメタクリルカルボン酸、ポリ-2-アクリルアミド-2-メチルプロパンカルボン酸、ポリイソプレンカルボン酸、ポリアクリル酸等が挙げられる。また、ポリアニオンは、これらの単独重合体であってもよいし、2種以上の共重合体であってもよい。 Specific examples of polyanions include polyvinyl sulfonic acid, polystyrene sulfonic acid, polyallyl sulfonic acid, polyacrylic acid ethyl sulfonic acid, polyacrylic acid butyl sulfonic acid, poly-2-acrylamido-2-methylpropane sulfonic acid, polyisoprene sulfone. Acid, polyvinyl carboxylic acid, polystyrene carboxylic acid, polyallyl carboxylic acid, polyacryl carboxylic acid, polymethacryl carboxylic acid, poly-2-acrylamido-2-methylpropane carboxylic acid, polyisoprene carboxylic acid, polyacrylic acid and the like. . Moreover, these homopolymers may be sufficient as a polyanion, and 2 or more types of copolymers may be sufficient as it.
 また、ポリアニオンは、化合物内にさらにF(フッ素原子)を有するものであってもよい。かかるポリアニオンとして、具体的には、パーフルオロスルホン酸基を含有するナフィオン(Dupont社製)、カルボン酸基を含有するパーフルオロ型ビニルエーテルからなるフレミオン(旭硝子社製)等を挙げることができる。 Further, the polyanion may further have F (fluorine atom) in the compound. Specific examples of such a polyanion include Nafion (manufactured by Dupont) containing a perfluorosulfonic acid group, and Flemion (manufactured by Asahi Glass Co., Ltd.) made of perfluoro vinyl ether containing a carboxylic acid group.
 これらのうち、ポリアニオンとしてスルホン酸基を有する化合物を用いた場合には、塗布及び赤外線ヒーターによる乾燥によってポリマー導電層3を形成した後に、さらに100~120℃の範囲内で5分以上の加熱乾燥処理を施してからマイクロ波、近赤外光等の照射をしてもよい。また、場合によっては加熱乾燥処理を省きマイクロ波、近赤外光等の照射のみでもよい。 Among these, when a compound having a sulfonic acid group is used as the polyanion, after the polymer conductive layer 3 is formed by coating and drying by an infrared heater, the mixture is further heated and dried within a range of 100 to 120 ° C. for 5 minutes or more. You may irradiate a microwave, near-infrared light, etc., after processing. In some cases, heat drying may be omitted, and only irradiation with microwaves, near infrared light, or the like may be performed.
 さらに、スルホン酸を有する化合物の中でも、ポリスチレンスルホン酸、ポリイソプレンスルホン酸、ポリアクリル酸エチルスルホン酸又はポリアクリル酸ブチルスルホン酸が好ましい。
 ポリアニオンの重合度は、導電性高分子化合物の分散性の観点からは、モノマー単位が10~100000個の範囲内であることが好ましく、溶媒溶解性及び導電性の観点からは、50~10000個の範囲内がより好ましい。
Furthermore, among the compounds having sulfonic acid, polystyrene sulfonic acid, polyisoprene sulfonic acid, polyacrylic acid ethylsulfonic acid or polyacrylic acid butylsulfonic acid is preferable.
The polymerization degree of the polyanion is preferably in the range of 10 to 100,000 monomer units from the viewpoint of dispersibility of the conductive polymer compound, and from 50 to 10,000 from the viewpoint of solvent solubility and conductivity. The range of is more preferable.
 ポリアニオンの製造方法としては、例えば、酸を用いてアニオン基を有しないポリマーにアニオン基を直接導入する方法、アニオン基を有しないポリマーをスルホ化剤によりスルホン酸化する方法、アニオン基含有重合性モノマーの重合により製造する方法等が挙げられる。 Examples of the polyanion production method include a method of directly introducing an anionic group into a polymer having no anionic group using an acid, a method of sulfonating a polymer having no anionic group with a sulfonating agent, and an anionic group-containing polymerizable monomer. And the like.
 アニオン基含有重合性モノマーの重合によってポリアニオンを製造する方法としては、溶媒中、アニオン基含有重合性モノマーを、酸化剤又は重合触媒の存在下で、酸化重合又はラジカル重合によって製造する方法が挙げられる。
 具体的には、所定量のアニオン基含有重合性モノマーを溶媒に溶解させ、これを一定温度に保ち、それにあらかじめ溶媒に所定量の酸化剤又は重合触媒を溶解した溶液を添加し、所定時間で反応させる。その反応により得られたポリマーは、溶媒によって一定の濃度に調整される。
Examples of the method for producing a polyanion by polymerization of an anion group-containing polymerizable monomer include a method for producing an anion group-containing polymerizable monomer in a solvent by oxidation polymerization or radical polymerization in the presence of an oxidizing agent or a polymerization catalyst. .
Specifically, a predetermined amount of the anionic group-containing polymerizable monomer is dissolved in a solvent, and this is kept at a constant temperature, and a solution in which a predetermined amount of an oxidizing agent or a polymerization catalyst is dissolved in the solvent is added to the solvent in advance. React. The polymer obtained by the reaction is adjusted to a certain concentration by the solvent.
 なお、この製造方法において、アニオン基含有重合性モノマーにアニオン基を有さない重合性モノマーを共重合させてもよい。
 また、得られたポリマーがポリアニオンの塩である場合には、ポリアニオンの酸に変質させることが好ましい。ポリアニオンの塩をポリ陰イオン酸に変質させる方法としては、イオン交換樹脂を用いたイオン交換法、透析法、限外ろ過法等が挙げられ、これらの中でも、作業が容易な点から限外ろ過法が好ましい。
In this production method, a polymerizable monomer having no anionic group may be copolymerized with the anionic group-containing polymerizable monomer.
Further, when the obtained polymer is a salt of a polyanion, it is preferably transformed into a polyanion acid. Examples of methods for transforming polyanion salts into polyanionic acids include ion exchange methods using ion exchange resins, dialysis methods, ultrafiltration methods, etc. Among these, ultrafiltration is used because it is easy to work with. The method is preferred.
 導電性高分子化合物に含まれるカチオン性π共役系導電性高分子と導電性高分子化合物を構成するポリアニオンとの比率、すなわち、カチオン性π共役系導電性高分子に対するポリアニオンの質量比の値は、導電性及び分散性の観点から、0.5~25の範囲内が好ましい。 The ratio of the cationic π-conjugated conductive polymer contained in the conductive polymer compound to the polyanion constituting the conductive polymer compound, that is, the value of the mass ratio of the polyanion to the cationic π-conjugated conductive polymer is From the viewpoint of conductivity and dispersibility, the range of 0.5 to 25 is preferable.
 カチオン性π共役系導電性高分子に対するポリアニオンの質量比の値が25以下であれば、導電性が向上するのに加えて、親水性であるポリアニオン又は導電性高分子化合物が保持している水分量が少なくなり、導電性フィルム及び導電性フィルムを用いた有機EL素子等の保存性が向上する。 If the value of the mass ratio of the polyanion to the cationic π-conjugated conductive polymer is 25 or less, in addition to improving the conductivity, moisture retained by the hydrophilic polyanion or the conductive polymer compound The amount is reduced, and the storage stability of the conductive film and the organic EL element using the conductive film is improved.
 また、質量比の値が0.5以上であれば、ドーパントの増加に伴い、導電性高分子化合物の抵抗が低くなるのに加えて、保護コロイドとして作用しているポリアニオンの効果が強まり粒子の安定性が向上し、粒径が抑えられる。
 このように、導電性、粒子安定性、導電性フィルム及び導電性フィルムを用いた有機エレクトロルミネッセンス素子等の保存性の観点から、カチオン性π共役系導電性高分子に対するポリアニオンの質量比は、0.5~25の範囲内が好ましい。
In addition, if the mass ratio is 0.5 or more, the resistance of the conductive polymer compound decreases as the dopant increases, and the effect of the polyanion acting as a protective colloid becomes stronger. Stability is improved and particle size is suppressed.
As described above, from the viewpoint of preservability of the electroconductivity, particle stability, conductive film, and organic electroluminescence device using the conductive film, the mass ratio of the polyanion to the cationic π-conjugated conductive polymer is 0. Within the range of 5 to 25 is preferable.
 カチオン性π共役系導電性高分子に対するポリアニオンの質量比を所望の値にする方法としては、導電性高分子化合物合成時に使用するポリアニオン量を調節する方法が挙げられる。
 この方法において、ポリアニオン量をカチオン性π共役系導電性高分子に対して1.0以下の質量比の値とすれば、導電性高分子化合物粒子が大きくなる傾向があるため、導電性高分子化合物合成時に他の高分子化合物を併用することができる。併用可能な高分子化合物としては、導電性高分子化合物粒子を安定化し、かつ、透過率及び導電性を劣化させなければ特に限定はないが、2-ヒドロキシエチルアクリレート等のポリアクリル又は水系溶剤に分散可能なポリマー等の水系分散ポリマーが好ましい。
 また、市販のPEDOT/PSS中の水を乾燥除去、トルエンで共沸除去又は凍結乾燥等公知の方法で粉末化した後に、水洗し、PSSを除去する方法、限外ろ過によりPSSを除去しながら水で置換する方法等が利用可能である。
Examples of a method for adjusting the mass ratio of the polyanion to the cationic π-conjugated conductive polymer to a desired value include a method of adjusting the amount of polyanion used when the conductive polymer compound is synthesized.
In this method, if the amount of polyanion is a value of a mass ratio of 1.0 or less with respect to the cationic π-conjugated conductive polymer, the conductive polymer compound particles tend to be large. Other polymer compounds can be used in combination during compound synthesis. The polymer compound that can be used in combination is not particularly limited as long as the conductive polymer compound particles are stabilized and the transmittance and conductivity are not deteriorated, but polyacrylic such as 2-hydroxyethyl acrylate or an aqueous solvent may be used. An aqueous dispersion polymer such as a dispersible polymer is preferred.
In addition, water in commercially available PEDOT / PSS is removed by drying, azeotropic removal with toluene or pulverized by a known method such as freeze-drying, and then washed with water to remove PSS, while removing PSS by ultrafiltration. A method of replacing with water can be used.
 カチオン性π共役系導電性高分子を形成する前駆体モノマーをポリ陰イオンの存在下で化学酸化重合して、本発明に係る導電性高分子化合物を得る際に使用される酸化剤としては、例えば、J.Am.Soc.,85、454(1963)に記載されるピロールの酸化重合に適する、いずれかの酸化剤が挙げられる。
 かかる酸化剤としては、実際的な理由のために、安価かつ取り扱いやすい酸化剤、例えば鉄(III)塩(例えばFeCl、Fe(ClO、有機酸及び有機残基を含む無機酸の鉄(III)塩)、過酸化水素、重クロム酸カリウム、過硫酸アルカリ(例えば過硫酸カリウム、過硫酸ナトリウム)、アンモニウム、過ホウ酸アルカリ、過マンガン酸カリウム又は銅塩(例えば四フッ化ホウ酸銅)を用いることが好ましい。加えて、酸化剤として、随時触媒量の金属イオン(例えば鉄イオン、コバルトイオン、ニッケルイオン、モリブデンイオン、バナジウムイオン)の存在下における空気又は酸素も使用することができる。これらの中でも、過硫酸塩、有機酸を含む無機酸の鉄(III)塩又は有機残基を含む無機酸の鉄(III)塩の使用が腐食性でないために大きな応用上の利点を有する。
As an oxidizing agent used for obtaining a conductive polymer compound according to the present invention by chemically oxidatively polymerizing a precursor monomer that forms a cationic π-conjugated conductive polymer in the presence of a polyanion, For example, J. et al. Am. Soc. 85, 454 (1963), and any oxidizing agent suitable for oxidative polymerization of pyrrole.
Such oxidants include, for practical reasons, inexpensive and easy-to-handle oxidants such as iron (III) salts (eg FeCl 3 , Fe (ClO 4 ) 3 , organic acids and inorganic acids containing organic residues). Iron (III) salt), hydrogen peroxide, potassium dichromate, alkali persulfate (eg potassium persulfate, sodium persulfate), ammonium, alkali perborate, potassium permanganate or copper salts (eg boron tetrafluoride) It is preferable to use (acid copper). In addition, air or oxygen in the presence of catalytic amounts of metal ions (for example, iron ions, cobalt ions, nickel ions, molybdenum ions, vanadium ions) can be used as an oxidizing agent. Among these, the use of persulfate, iron (III) salts of inorganic acids including organic acids, or iron (III) salts of inorganic acids including organic residues has great application advantages.
 有機残基を含む無機酸の鉄(III)塩の例としては、炭素数1~20の範囲内のアルカノールの硫酸半エステルの鉄(III)塩(例えばラウリル硫酸)、炭素数1~20の範囲内のアルキルスルホン酸(例えばメタン、ドデカンスルホン酸)、脂肪族炭素数1~20の範囲内のカルボン酸(例えば2-エチルヘキシルカルボン酸)、脂肪族パーフルオロカルボン酸(例えばトリフルオロ酢酸、パーフルオロオクタノン酸)、脂肪族ジカルボン酸(例えばシュウ酸)、殊に芳香族の、随時炭素数1~20のアルキル置換されたスルホン酸(例えばベンゼセンスルホン酸、p-トルエンスルホン酸、ドデシルベンゼンスルホン酸のFe(III)塩)が挙げられる。 Examples of iron (III) salts of inorganic acids containing organic residues include iron (III) salts of sulfuric acid half esters of alkanols within the range of 1 to 20 carbon atoms (eg lauryl sulfate), 1 to 20 carbon atoms. Alkyl sulfonic acids within the range (eg methane, dodecane sulfonic acid), carboxylic acids with an aliphatic carbon number in the range of 1-20 (eg 2-ethylhexyl carboxylic acid), aliphatic perfluorocarboxylic acids (eg trifluoroacetic acid, Fluorooctanoic acid), aliphatic dicarboxylic acids (eg oxalic acid), especially aromatic, optionally substituted alkyl sulfonic acids having 1 to 20 carbon atoms (eg benzenecene sulfonic acid, p-toluenesulfonic acid, dodecylbenzene) Fe (III) salt of sulfonic acid).
 こうした導電性高分子化合物としては、市販の材料も好ましく利用することができる。
 例えば、ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸とからなる導電性高分子化合物(PEDOT/PSSと略す)が、ヘレオス社からCleviosシリーズとして、Aldrich社からPEDOT/PSSの483095、560596として、Nagase Chemtex社からDenatronシリーズとして市販されている。また、ポリアニリンが、日産化学工業社からORMECONシリーズとして市販されている。本発明において、こうした剤も導電性高分子化合物として好ましく用いることができる。
A commercially available material can also be preferably used as such a conductive polymer compound.
For example, a conductive polymer compound (abbreviated as PEDOT / PSS) composed of poly (3,4-ethylenedioxythiophene) and polystyrenesulfonic acid is available as a Clevios series from Helios, PEDOT / PSS 483095 from Aldrich, 560596, commercially available from Nagase Chemtex as the Denatron series. Polyaniline is commercially available from Nissan Chemical Industries as the ORMECON series. In the present invention, such an agent can also be preferably used as the conductive polymer compound.
 導電性高分子化合物は、第2ドーパントとして有機化合物を含有してもよい。本発明で用いることができる有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、ヒドロキシ基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物等が挙げられる。前記ヒドロキシ基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリン等が挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。 The conductive polymer compound may contain an organic compound as the second dopant. There is no restriction | limiting in particular in the organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably. The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxy group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxy group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable.
 前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトン等が挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル等が挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシド等が挙げられる。これらは、1種単独で使用されてもよいし、2種以上が併用されてもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種が用いられることが好ましい。 Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, γ-butyrolactone, and the like. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol is preferably used.
 〔導電性高分子化合物とポリエステル樹脂とを含有する水系分散液〕
 本発明に係る導電性高分子化合物とポリエステル樹脂とを含有する水系分散液は、導電性高分子化合物と上述の水系溶剤に分散可能なポリエステル樹脂とが水系溶剤中に分散された液である。
[Aqueous dispersion containing conductive polymer compound and polyester resin]
The aqueous dispersion containing the conductive polymer compound and the polyester resin according to the present invention is a liquid in which the conductive polymer compound and the polyester resin dispersible in the aqueous solvent are dispersed in the aqueous solvent.
 本発明に係る分散液は、透明であることが好ましく、フィルムを形成する媒体であれば、特に限定されない。また、透明導電性フィルム1表面へのブリードアウト、有機電子素子を積層した場合の素子性能に問題がなければ特に限定はないが、分散液は、ミセル形成を補助する界面活性剤(乳化剤)や成膜温度をコントロールする可塑剤等を含まないことが好ましい。 The dispersion according to the present invention is preferably transparent, and is not particularly limited as long as it is a medium for forming a film. In addition, there is no particular limitation as long as there is no problem in the device performance when the bleed-out to the surface of the transparent conductive film 1 and the organic electronic device are laminated, but the dispersion may be a surfactant (emulsifier) or It is preferable not to contain a plasticizer or the like that controls the film formation temperature.
 本発明に係る分散液の室温におけるpHは、所望の導電性が得られれば特に問題ないが、0.1~7.0の範囲内が好ましく、より好ましくは0.3~5.0の範囲内である。分散液のpHが0.1以上、より好ましくは0.3以上であれば、乾燥時におけるポリマーの分解を好適に防ぐことができる。また、分散液のpHが7.0以下、より好ましくは5.0以下であれば、PEDOT/PSSの中和を防ぐことによって、ドーパントの機能低下に伴う導電性フィルムのシート抵抗値の劣化を好適に防ぐことができる。 The pH of the dispersion according to the present invention at room temperature is not particularly problematic as long as desired conductivity is obtained, but is preferably in the range of 0.1 to 7.0, more preferably in the range of 0.3 to 5.0. Is within. When the pH of the dispersion is 0.1 or more, more preferably 0.3 or more, the polymer can be suitably prevented from being decomposed during drying. Further, if the pH of the dispersion is 7.0 or less, more preferably 5.0 or less, the sheet resistance value of the conductive film is deteriorated due to a decrease in the function of the dopant by preventing neutralization of PEDOT / PSS. It can prevent suitably.
 本発明の導電性フィルム1の製造に用いる水系溶剤に分散可能なポリエステル樹脂の分散液の室温におけるpHは、別途相溶させる導電性高分子化合物溶液との相溶性、水系溶剤に分散可能なポリエステル樹脂と導電性高分子化合物との混合液(分散液)の導電性の観点から、好ましくは0.1~11.0の範囲内であり、より好ましくは3.0~9.0の範囲内であり、さらに好ましくは4.0~7.0の範囲内である。 The pH at room temperature of the dispersion of the polyester resin dispersible in the aqueous solvent used for the production of the conductive film 1 of the present invention is the compatibility with the conductive polymer compound solution to be separately compatible, the polyester dispersible in the aqueous solvent From the viewpoint of the conductivity of the mixed liquid (dispersion) of the resin and the conductive polymer compound, it is preferably in the range of 0.1 to 11.0, more preferably in the range of 3.0 to 9.0. More preferably, it is within the range of 4.0 to 7.0.
 本発明に係る分散液の表面張力をコントロールするために、分散液に有機溶剤を添加してもよい。
 有機溶剤は、所望の表面張力が得られれば特に限定されないが、一価、二価又は多価のアルコール系溶剤が好ましい。有機溶剤の沸点は、好ましくは200℃以下であり、より好ましくは150℃以下である。有機溶剤の沸点が200℃以下、より好ましくは150℃以下であれば、短時間乾燥において膜中の残存溶媒を好適に低減させることができる。
In order to control the surface tension of the dispersion according to the present invention, an organic solvent may be added to the dispersion.
The organic solvent is not particularly limited as long as a desired surface tension can be obtained, but a monovalent, divalent or polyvalent alcohol solvent is preferable. The boiling point of the organic solvent is preferably 200 ° C. or lower, more preferably 150 ° C. or lower. If the boiling point of the organic solvent is 200 ° C. or lower, more preferably 150 ° C. or lower, the residual solvent in the film can be suitably reduced in short-time drying.
 本発明に係る分散液に含有される分散処理後の導電性高分子化合物及びポリエステル樹脂の大きさ(平均粒径)は、好ましくは1~100nmの範囲内であり、より好ましくは3~80nmの範囲内であり、さらに好ましくは5~50nmの範囲内である。 The size (average particle size) of the conductive polymer compound and the polyester resin after the dispersion treatment contained in the dispersion according to the present invention is preferably in the range of 1 to 100 nm, more preferably 3 to 80 nm. Within the range, more preferably within the range of 5 to 50 nm.
 分散液内の導電性高分子化合物及びポリエステル樹脂の粒子の大きさが100nm以下であれば、分散液を透明樹脂フィルム基材2へ塗布することによって生成されるポリマー導電層3のヘイズ及び平滑性(表面粗さ(Ra))が向上し、さらには有機EL素子の性能が向上する。また分散液内の上記粒子の大きさが1nm以上であれば、粒子同士の凝集の発生が抑えられて分散液の分散性が向上し、その結果、ポリマー導電層3のヘイズ及び平滑性が向上する。
 成膜する際の平滑性を高めるためには、分散液内の上記粒子の大きさは、3~80nmであることがより好ましく、5~50nmであることがさらに好ましい。
 また、平均粒径をコントロールしても、使用している水系溶剤に分散可能なポリエステル樹脂の成膜温度が高すぎると乾燥温度内では成膜せずに粒子形状が残り膜表面の平均粗さを劣化させることがあるため、成膜温度もコントロールすることが望ましい。
If the size of the conductive polymer compound and polyester resin particles in the dispersion is 100 nm or less, haze and smoothness of the polymer conductive layer 3 produced by applying the dispersion to the transparent resin film substrate 2. (Surface roughness (Ra)) is improved, and further the performance of the organic EL element is improved. If the size of the particles in the dispersion is 1 nm or more, the occurrence of aggregation between the particles is suppressed and the dispersibility of the dispersion is improved. As a result, the haze and smoothness of the polymer conductive layer 3 are improved. To do.
In order to improve the smoothness during film formation, the size of the particles in the dispersion is more preferably 3 to 80 nm, and further preferably 5 to 50 nm.
Moreover, even if the average particle size is controlled, if the film forming temperature of the polyester resin that can be dispersed in the aqueous solvent used is too high, the film shape remains without being formed within the drying temperature, and the average roughness of the film surface remains. Therefore, it is desirable to control the film formation temperature.
 (導電性高分子化合物とポリエステル樹脂とを含有する分散液の調製)
 平均粒径を所望の範囲とする分散液の調製は、導電性高分子化合物とポリエステル樹脂とを混合した後、水系溶剤に投入し、ホモジナイザー、超音波分散機(US分散機)、ボールミル等を用いた分散技術、逆浸透膜、限外ろ過膜、精密ろ過膜を用いた粒子の分級等を用いることで行うことができる。ホモジナイザー、超音波分散機(US分散機)、ボールミル等を用いた分散技術は、いずれも高温になると粒子の増大が起こりやすくなるため、分散操作中の温度は、好ましくは-10~50℃の範囲内であり、より好ましくは0~30℃の範囲内である。
(Preparation of dispersion containing conductive polymer compound and polyester resin)
Preparation of a dispersion having an average particle size within a desired range is performed by mixing a conductive polymer compound and a polyester resin, and then adding the mixture to an aqueous solvent, and using a homogenizer, an ultrasonic disperser (US disperser), a ball mill, or the like. It can be carried out by using a dispersion technique, a reverse osmosis membrane, an ultrafiltration membrane, a particle classification using a microfiltration membrane, or the like. Dispersion techniques using a homogenizer, an ultrasonic disperser (US disperser), a ball mill, etc. all tend to increase particles at high temperatures. Therefore, the temperature during the dispersion operation is preferably −10 to 50 ° C. It is within the range, and more preferably within the range of 0 to 30 ° C.
 ポリマーを切断するような大きな剪断力による分散操作の場合には、分散液の温度が高くなる傾向があり、導電性高分子化合物の共役系が熱により寸断され、性能劣化を引き起こす懸念がある。その結果、温度が50℃を超える場合には、粒径は小さくなる傾向にあるが、分散液によって生成されるポリマー導電層3のシート抵抗値が上昇してしまう懸念がある。また、水系溶媒中に有機溶媒が含有される場合には、0℃以下(例えば、-10度以上0℃以下)であっても、溶媒が凝固しなければ好適に分散操作を行うことが可能である。また、分散液は水リッチであるため、0℃以下では粘度上昇が起こり、撹拌に負荷がかかってしまう。また、30度以上では溶媒の蒸発が起こり、分散液の濃度変動が起きやすく、その結果、導電性フィルム1の性能に影響をきたす懸念がある。分級は、必要に応じて使用する膜を選択すれば特に限定されない。 In the case of a dispersion operation with a large shearing force that cuts the polymer, the temperature of the dispersion liquid tends to be high, and there is a concern that the conjugated system of the conductive polymer compound is broken by heat and causes performance deterioration. As a result, when the temperature exceeds 50 ° C., the particle diameter tends to be small, but there is a concern that the sheet resistance value of the polymer conductive layer 3 generated by the dispersion liquid increases. Further, when an organic solvent is contained in an aqueous solvent, even when the temperature is 0 ° C. or lower (for example, −10 ° C. or higher and 0 ° C. or lower), the dispersion operation can be suitably performed as long as the solvent does not solidify. It is. Further, since the dispersion is water-rich, the viscosity increases at 0 ° C. or lower, and a load is applied to the stirring. Further, if the temperature is 30 degrees or more, the solvent evaporates, and the dispersion concentration tends to fluctuate. As a result, there is a concern that the performance of the conductive film 1 is affected. Classification is not particularly limited as long as a membrane to be used is selected as necessary.
 本発明に係る分散液中の水系溶剤に分散可能なポリエステル樹脂の粒子と導電性高分子化合物の粒子とは、各々の粒子が独立に分散されて状態になっていて粒径が各々の粒径の和になっていてもよく、組成の異なる粒子同士が凝集していてもよい。また、分散操作中に組成の異なる粒子同士が一部混合した状態になっていてもよく、完全に混合して粒子を形成していてもよい。 The polyester resin particles and the conductive polymer compound particles dispersible in the aqueous solvent in the dispersion according to the present invention are in a state in which the respective particles are dispersed independently, and the particle sizes are the respective particle sizes. Or particles having different compositions may be agglomerated. Further, particles having different compositions may be partially mixed during the dispersion operation, or may be completely mixed to form particles.
 本発明に係る水系溶剤に分散可能なポリエステル樹脂の使用量(固形分)は、導電性高分子化合物の固形分に対して好ましくは50~5000質量%の範囲内であり、より好ましくは100~3500質量%の範囲内であり、さらに好ましくは200~2000質量%の範囲内である。
 ここで、水系溶剤に分散可能なポリエステル樹脂の使用量が導電性高分子化合物に対して50~5000質量%の範囲内であることがより好ましい理由は、50質量%以上であれば、透過率の向上効果が十分となり(導電性高分子化合物は可視光領域の光を吸収するため、透過率を向上させるためには導電性を低下させない範囲で導電性高分子化合物をできるだけ減らしたい)、5000質量%以下であれば、導電性高分子化合物の比率が小さくなりすぎずに好適な導電性が得られるためである。
 このように、透過率の向上効果を得るとともに導電性の低下を防ぐためには、水系溶剤に分散可能なポリエステル樹脂の使用量は、導電性高分子化合物に対して100~3500質量%の範囲内であることがより好ましく、導電性高分子化合物に対して200~2000質量%の範囲内であることがさらに好ましい。
The amount (solid content) of the polyester resin dispersible in the aqueous solvent according to the present invention is preferably in the range of 50 to 5000% by mass, more preferably 100 to 5000%, based on the solid content of the conductive polymer compound. It is within the range of 3500% by mass, and more preferably within the range of 200 to 2000% by mass.
Here, the reason why the amount of the polyester resin dispersible in the aqueous solvent is preferably in the range of 50 to 5000% by mass with respect to the conductive polymer compound is that the transmittance is 50% by mass or more. (The conductive polymer compound absorbs light in the visible light region, so in order to improve the transmittance, the conductive polymer compound should be reduced as much as possible within a range that does not decrease the conductivity.) 5000 This is because if the content is less than or equal to mass%, suitable conductivity can be obtained without the ratio of the conductive polymer compound becoming too small.
As described above, in order to obtain the effect of improving the transmittance and prevent the decrease in conductivity, the amount of the polyester resin dispersible in the aqueous solvent is within the range of 100 to 3500 mass% with respect to the conductive polymer compound. More preferably, it is more preferably in the range of 200 to 2000 mass% with respect to the conductive polymer compound.
 本発明に係る分散液の粒径測定法は、特に限定されないが、好ましくは動的光散乱法、レーザー回折法又は画像イメージング法であり、より好ましくは動的光散乱法である。水系溶剤に分散可能なポリエステル樹脂の粒子及び導電性高分子化合物の粒子は、希釈により粒径が不安定になるため、溶剤希釈せずにそのままの状態で測定できる濃厚系粒径測定機が好ましい。かかる濃厚系粒径測定機としては、濃厚系粒径アナライザー(大塚電子社製)、ゼータサイザーナノシリーズ(Malvern社製)等が挙げられる。 The particle size measurement method of the dispersion according to the present invention is not particularly limited, but is preferably a dynamic light scattering method, a laser diffraction method or an image imaging method, and more preferably a dynamic light scattering method. Since the particle diameter of the polyester resin particles and the conductive polymer compound particles that can be dispersed in an aqueous solvent becomes unstable due to dilution, a concentrated particle size measuring machine that can be measured as it is without diluting the solvent is preferable. . Examples of such a thick particle size analyzer include a thick particle size analyzer (manufactured by Otsuka Electronics Co., Ltd.), a zeta sizer nano series (manufactured by Malvern) and the like.
 本発明に係る分散液には、微粒子が添加されてもよい。かかる微粒子は、乾燥負荷低減、ポリマー導電層の厚さ抑制の観点から、ポリマー導電層を構成する水系溶剤に分散可能なポリエステル樹脂の置き換えで使用されることが好ましい。微粒子の使用量は、好ましくは水系溶剤に分散可能なポリエステル樹脂に対して固形分質量で25~75質量%の範囲内であり、より好ましくは導電性高分子化合物に対して30~60質量%の範囲内である。
 ここで、水系溶剤に分散可能なポリマーの使用量が導電性高分子に対して25~75質量%の範囲内であることが好ましい理由は、25質量%以上であれば、乾燥負荷低減効果が十分となり、75質量%以下であれば、ポリマー導電層の膜物性が向上するためである。このように、乾燥負荷低減効果を得るとともにポリマー導電層の膜物性低下を防ぐためには、微粒子の使用量が、水系溶剤に分散可能なポリエステル樹脂に対して固形分質量で25~75質量%の範囲内であることがより好ましい。
Fine particles may be added to the dispersion according to the present invention. Such fine particles are preferably used by replacing a polyester resin dispersible in an aqueous solvent constituting the polymer conductive layer from the viewpoint of reducing the drying load and suppressing the thickness of the polymer conductive layer. The amount of the fine particles used is preferably in the range of 25 to 75% by mass with respect to the polyester resin dispersible in the aqueous solvent, more preferably 30 to 60% by mass with respect to the conductive polymer compound. Is within the range.
Here, the reason that the amount of the polymer dispersible in the aqueous solvent is preferably in the range of 25 to 75% by mass with respect to the conductive polymer is that the drying load can be reduced if the amount is 25% by mass or more. This is because the film physical properties of the polymer conductive layer are improved if it is sufficient and 75% by mass or less. As described above, in order to obtain a drying load reduction effect and prevent a decrease in film physical properties of the polymer conductive layer, the amount of fine particles used is 25 to 75% by mass in terms of solid content with respect to the polyester resin dispersible in an aqueous solvent. More preferably within the range.
 上記分散液は、導電性高分子化合物及びポリエステル樹脂の他に水系溶剤に分散可能なポリマーを含有しても良い。水系溶剤に分散可能なポリマーに使用される解離性基としては、アニオン性基(スルホン酸及びその塩、カルボン酸及びその塩、リン酸及びその塩等)、カチオン性基(アンモニウム塩等)等が挙げられる。かかる解離性基は、特に限定はされないが、導電性高分子溶液との相溶性の観点から、アニオン性基が好ましい。解離性基の量は、水系溶剤に分散可能なポリマーが水系溶剤に分散可能であればよく、可能な限り少ない方が工程適性的に乾燥負荷が低減されるため、好ましい。
 また、アニオン性基、カチオン性基に使用されるカウンター種(陽イオン、陰イオン)は、特に限定されないが、導電性フィルム1及び導電性フィルム1を備える有機EL素子を積層した場合の性能の観点から、疎水性で少量であることが好ましい。
The dispersion liquid may contain a polymer dispersible in an aqueous solvent in addition to the conductive polymer compound and the polyester resin. Examples of dissociable groups used in polymers dispersible in aqueous solvents include anionic groups (sulfonic acid and its salts, carboxylic acid and its salts, phosphoric acid and its salts, etc.), cationic groups (ammonium salts, etc.), etc. Is mentioned. The dissociable group is not particularly limited, but an anionic group is preferable from the viewpoint of compatibility with the conductive polymer solution. The amount of the dissociable group is not particularly limited as long as the polymer dispersible in the aqueous solvent is dispersible in the aqueous solvent, and is preferably as small as possible because the drying load is reduced appropriately in the process.
In addition, the counter species (cation, anion) used for the anionic group and the cationic group are not particularly limited, but the performance of the organic EL device including the conductive film 1 and the conductive film 1 is laminated. From the viewpoint, it is preferably hydrophobic and in a small amount.
 水系溶剤に分散可能なポリマーの主骨格としては、ポリエチレン-ポリビニルアルコール(PVA)、ポリエチレン-ポリ酢酸ビニル、ポリエチレン-ポリウレタン、ポリエチレン-ポリアクリル酸、ポリエチレン-ポリメタクリル酸、ポリブタジエン、ポリブタジエン-ポリスチレン、ポリオレフィン共重合体、ポリアミド(ナイロン)、ポリ塩化ビニリデン、ポリエステル、ポリエステル-ウレタン、ポリエステル-アクリレート、ポリアクリレート、ポリアクリレート共重合体、ポリメタクリレート、ポリメタクリレート共重合体、ポリアクリレート-ポリエステル、ポリアクリレート-ポリスチレン、ポリ酢酸ビニル、ポリウレタン-ポリカーボネート、ポリウレタン-ポリエーテル、ポリウレタン-ポリエステル、ポリウレタン-ポリアクリレート、ポリアミド、ポリアクリル-シリカ、ポリアクリル-ポリスチレン-シリカ、シリコーン、シリコーン-ポリウレタン、シリコーン-ポリアクリレート、ポリフッ化ビニリデン-ポリアクリレート、ポリフルオロオレフィン-ポリビニルエーテル等が挙げられる。これらのうち2.5~3.0μmに吸収を持たない主骨格は共重合、ブロックやグラフト化の手段により、2.5~3.0μmに吸収を有するポリマーへ変換することができる。これらの中では、ポリウレタン-ポリカーボネート、ポリアミド、ポリエステル-ウレタン、ポリアクリル-ポリスチレン-シリカが好ましい。 The main skeletons of polymers dispersible in aqueous solvents are polyethylene-polyvinyl alcohol (PVA), polyethylene-polyvinyl acetate, polyethylene-polyurethane, polyethylene-polyacrylic acid, polyethylene-polymethacrylic acid, polybutadiene, polybutadiene-polystyrene, polyolefin Copolymer, polyamide (nylon), polyvinylidene chloride, polyester, polyester-urethane, polyester-acrylate, polyacrylate, polyacrylate copolymer, polymethacrylate, polymethacrylate copolymer, polyacrylate-polyester, polyacrylate-polystyrene , Polyvinyl acetate, polyurethane-polycarbonate, polyurethane-polyether, polyurethane-polyester, polyurethane Polyacrylates, polyamides, polyacrylic - silica, polyacrylic - polystyrene - silica, silicone, silicone - polyurethane, silicone - polyacrylate, polyvinylidene fluoride - polyacrylates, fluoroolefin - polyvinyl ether. Of these, the main skeleton having no absorption at 2.5 to 3.0 μm can be converted into a polymer having an absorption at 2.5 to 3.0 μm by means of copolymerization, block or grafting. Of these, polyurethane-polycarbonate, polyamide, polyester-urethane, and polyacryl-polystyrene-silica are preferred.
 市販品としては、スーパーフレックス130(ポリウレタン-ポリエーテル、第一工業製薬社製)、スーパーフレックス210、スーパーフレックス620(ポリウレタン-ポリエステル、第一工業製薬社製)、スーパーフレックス126、スーパーフレックス150、スーパーフレックス170、スーパーフレックス300(ポリウレタン-ポリエステル-ポリエーテル、第一工業製薬社製)、スーパーフレックス420、スーパーフレックス460、スーパーフレックス470、スーパーフレックス650(ポリウレタン-ポリカーボネート、第一工業製薬社製)、ペスレジンWAC-14、WAC-17XC(ウレタン変性ポリエステル、高松油脂社製)モビニール8020、モビニール8030(アクリル修飾コロイダルシリカ、日本合成化学社製)、モビニール8055A(アクリル-スチレン修飾コロイダルシリカ、日本合成化学社製)を用いることができる。また、水系溶剤に分散可能なポリマーは、前記したものを1種含有するものであってもよく、複数種含有するものであってもよい。 Commercially available products include Superflex 130 (polyurethane-polyether, manufactured by Daiichi Kogyo Seiyaku), Superflex 210, Superflex 620 (polyurethane-polyester, manufactured by Daiichi Kogyo Seiyaku), Superflex 126, Superflex 150, Superflex 170, Superflex 300 (polyurethane-polyester-polyether, manufactured by Daiichi Kogyo Seiyaku), Superflex 420, Superflex 460, Superflex 470, Superflex 650 (Polyurethane-polycarbonate, manufactured by Daiichi Kogyo Seiyaku) Pesresin WAC-14, WAC-17XC (urethane-modified polyester, manufactured by Takamatsu Yushi Co., Ltd.) Mobile 8020, Mobile 8030 (acrylic modified colloidal silica, It can be used styrene-modified colloidal silica, manufactured by Nippon Synthetic Chemical Industry Co.) - manufactured by the Gosei Kagaku Co.), Mowinyl 8055A (acrylic. In addition, the polymer dispersible in the aqueous solvent may contain one kind of those described above, or may contain a plurality of kinds.
 (極性溶媒)
 ポリマー導電層を形成するための水系分散液は、極性溶媒を含有することにより、水系溶剤に分散可能なポリマーの分散安定性を損なうことなく、当該組成物を安定に保ち、インクジェット方式により安定して吐出される。
 極性溶媒としては、誘電率が25以上のものを、好ましくは30以上、より好ましくは40以上のものを用いることができる。このような極性溶媒としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオール、ペンタンジオール、グリセリン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジメチルスルホキシドなどを挙げることができる。赤外線ヒーターによる乾燥除去性、組成物の安定性、インクジェット印刷における吐出性、さらにはポリマー導電層の導電性等の観点から、プロピレングリコール、エチレングリコール、ジメチルスルホキシドが特に好ましい。
 極性溶媒の添加量は、組成物の安定性の観点から決めることができ、組成物の総質量に対し、5~40%の範囲内であることが好ましい。5%以上で組成物の安定化効果が向上し、40%以下では組成物の表面張力が高すぎず、基板に対する濡れ性が向上する。
 溶媒の誘電率は、例えば、液体用誘電率計Model-871(日本ルフト社製)を用いて測定することができる。
(Polar solvent)
The aqueous dispersion for forming the polymer conductive layer contains a polar solvent, so that the composition can be stably maintained without impairing the dispersion stability of the polymer that can be dispersed in the aqueous solvent, and stable by the ink jet method. Discharged.
As the polar solvent, those having a dielectric constant of 25 or more, preferably 30 or more, more preferably 40 or more can be used. Examples of such polar solvents include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, butanediol, pentanediol, glycerin, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylsulfoxide, and the like. be able to. Propylene glycol, ethylene glycol, and dimethyl sulfoxide are particularly preferable from the viewpoints of dry removal by an infrared heater, stability of the composition, dischargeability in ink jet printing, and conductivity of the polymer conductive layer.
The addition amount of the polar solvent can be determined from the viewpoint of the stability of the composition, and is preferably in the range of 5 to 40% with respect to the total mass of the composition. If it is 5% or more, the stabilizing effect of the composition is improved, and if it is 40% or less, the surface tension of the composition is not too high and the wettability to the substrate is improved.
The dielectric constant of the solvent can be measured, for example, using a liquid dielectric constant meter Model-871 (manufactured by Nippon Luft).
 (透明樹脂基材)
 本実施形態における透明樹脂フィルム基材2は、ポリマー導電層3及び金属導電層4(以下、これらをまとめて「導電層3、4」ともいう。)を担持しうる板状体であり、導電性フィルム1を得るためには、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が80%以上のものが好ましく用いられる。
(Transparent resin base material)
The transparent resin film substrate 2 in the present embodiment is a plate-like body that can carry the polymer conductive layer 3 and the metal conductive layer 4 (hereinafter collectively referred to as “ conductive layers 3 and 4”), and is conductive. In order to obtain the conductive film 1, the total light transmittance in the visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (Plastics—Testing method of total light transmittance of transparent material) is 80% or more. Are preferably used.
 透明樹脂フィルム基材2は、フレキシブル性に優れており、誘電損失係数が十分小さくて、マイクロ波の吸収が導電層3、4よりも小さい材質であるものが好ましい。
 また、透明樹脂フィルム基材2としては、例えば、樹脂基板、樹脂フィルム等が好適に挙げられるが、軽量性と柔軟性といった性能の観点及び生産性の観点から透明樹脂フィルム基材を用いることが好ましい。本発明において、透明樹脂フィルム基材とは、JIS K 7361-1:1997(プラスチック-透明材料の全光線透過率の試験方法)に準拠した方法で測定した可視光波長領域における全光線透過率が50%以上のものをいう。
The transparent resin film substrate 2 is preferably made of a material that is excellent in flexibility, has a sufficiently low dielectric loss coefficient, and has a microwave absorption smaller than that of the conductive layers 3 and 4.
Moreover, as a transparent resin film base material 2, although a resin substrate, a resin film, etc. are mentioned suitably, it is preferable to use a transparent resin film base material from a viewpoint of performance, such as lightness and a softness | flexibility, and productivity. preferable. In the present invention, the transparent resin film substrate means a total light transmittance in a visible light wavelength region measured by a method in accordance with JIS K 7361-1: 1997 (a test method for the total light transmittance of a plastic-transparent material). It means 50% or more.
 好ましく用いることができる透明樹脂フィルム基材2には特に制限はなく、その材料、形状、構造、厚さ等については公知のものの中から適宜選択することができる。かかる透明樹脂フィルム基材としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができる。 The transparent resin film substrate 2 that can be preferably used is not particularly limited, and the material, shape, structure, thickness, and the like can be appropriately selected from known materials. Examples of the transparent resin film substrate include polyester resin films such as polyethylene terephthalate (PET), polyethylene naphthalate, and modified polyester, polyethylene (PE) resin films, polypropylene (PP) resin films, polystyrene resin films, and cyclic olefins. Polyolefin resin films such as polyvinyl resins, vinyl resin films such as polyvinyl chloride and polyvinylidene chloride, polyether ether ketone (PEEK) resin films, polysulfone (PSF) resin films, polyether sulfone (PES) resin films, Examples include polycarbonate (PC) resin film, polyamide resin film, polyimide resin film, acrylic resin film, triacetyl cellulose (TAC) resin film, etc. Kill.
 前記した全光線透過率が80%以上である樹脂フィルムであれば、本発明の透明樹脂フィルム基材2として用いられるフィルム基材として好ましく用いられる。かかるフィルム基材としては、透明性、耐熱性、取り扱いやすさ、強度及びコストの観点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム又はポリカーボネートフィルムが好ましく、二軸延伸ポリエチレンテレフタレートフィルム又は二軸延伸ポリエチレンナフタレートフィルムがより好ましい。 Any resin film having a total light transmittance of 80% or more is preferably used as a film substrate used as the transparent resin film substrate 2 of the present invention. As such a film substrate, from the viewpoint of transparency, heat resistance, ease of handling, strength and cost, a biaxially stretched polyethylene terephthalate film, a biaxially stretched polyethylene naphthalate film, a polyethersulfone film or a polycarbonate film is preferable. A biaxially stretched polyethylene terephthalate film or a biaxially stretched polyethylene naphthalate film is more preferred.
 本発明に用いられる透明樹脂フィルム基材2には、塗布液(分散液)の濡れ性及び接着性を確保するために、表面処理を施したり易接着層を設けたりすることができる。
 例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。
 また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
The transparent resin film substrate 2 used in the present invention can be subjected to a surface treatment or an easy-adhesion layer in order to ensure wettability and adhesion of the coating liquid (dispersion).
For example, the surface treatment includes surface activation treatment such as corona discharge treatment, flame treatment, ultraviolet treatment, high frequency treatment, glow discharge treatment, active plasma treatment, and laser treatment.
Examples of the easy adhesion layer include polyester, polyamide, polyurethane, vinyl copolymer, butadiene copolymer, acrylic copolymer, vinylidene copolymer, and epoxy copolymer. The easy adhesion layer may be a single layer, but may be composed of two or more layers in order to improve adhesion.
 また、透明樹脂フィルム基材の表面又は裏面には、無機物の被膜、有機物の被膜又はこれらの両者のハイブリッド被膜が形成されていてもよい。かかる被膜が形成された透明樹脂フィルム基材は、JIS K 7129-1992に準拠した方法で測定した水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のガスバリアー性フィルムであることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定した酸素透過度が、1×10-3ml/m・24h・atm以下、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下の高ガスバリアー性フィルムであることが好ましい。 In addition, an inorganic coating, an organic coating, or a hybrid coating of both may be formed on the front or back surface of the transparent resin film substrate. The transparent resin film substrate on which such a coating is formed has a water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 of 1 ×. The gas barrier film is preferably 10 −3 g / (m 2 · 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 ml / High gas barrier property with m 2 · 24h · atm or less, water vapor transmission rate (25 ± 0.5 ° C, relative humidity (90 ± 2)% RH) 1x10 -3 g / (m 2 · 24h) or less A film is preferred.
 高ガスバリアー性フィルムとするために透明樹脂フィルム基材の表面又は裏面に形成されるガスバリアー膜を形成する材料としては、水分、酸素等といった素子の劣化をもたらすものの侵入を抑制する機能を有する材料であればよい。かかる材料として、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。さらにガスバリアー膜の脆弱性を改良するために、これら無機層と有機材料から形成される層の積層構造を持たせることがより好ましい。無機層及び有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 As a material for forming a gas barrier film formed on the front or back surface of a transparent resin film substrate in order to obtain a high gas barrier film, it has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. Any material can be used. As such a material, for example, silicon oxide, silicon dioxide, silicon nitride or the like can be used. Furthermore, in order to improve the brittleness of the gas barrier film, it is more preferable to have a laminated structure of these inorganic layers and layers formed from organic materials. Although there is no restriction | limiting in particular about the lamination order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 《ガスバリアー層》
 有機EL素子などの有機電子素子(後述参照)は、素子内部に微量の水分や酸素が存在すると容易に性能劣化が生ずる。透明樹脂フィルム基材には、当該透明樹脂フィルム基材を通して素子内部に水分や酸素が拡散することを防止するため、水分や酸素に対して高い遮蔽能を有するガスバリアー層を形成することが有効である。
《Gas barrier layer》
An organic electronic device (see below) such as an organic EL device easily deteriorates in performance when a small amount of moisture or oxygen is present inside the device. In order to prevent moisture and oxygen from diffusing inside the device through the transparent resin film substrate, it is effective to form a gas barrier layer having a high shielding ability against moisture and oxygen on the transparent resin film substrate. It is.
 ガスバリアー層の組成や構造及びその形成方法には特に制限はなく、シリカ等の無機化合物による膜を真空蒸着やCVD法により形成することができる。また、ポリシラザン化合物を含有する塗布液を塗布乾燥後、酸素及び水蒸気を含む窒素雰囲気下で紫外線照射により酸化処理(改質処理)してガスバリアー層を形成することもできる。 There is no particular limitation on the composition and structure of the gas barrier layer and the formation method thereof, and a film made of an inorganic compound such as silica can be formed by vacuum deposition or CVD. Alternatively, the gas barrier layer can be formed by applying and drying a coating solution containing a polysilazane compound and then oxidizing (modifying) it by ultraviolet irradiation in a nitrogen atmosphere containing oxygen and water vapor.
 ポリシラザン化合物の塗布方法は、任意の適切な方法を選択することができる。例えば、塗工方法として、フローコート法、流延成膜法、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、カーテンコート法、スプレーコート法、ドクターコート法等の各種印刷方法に加えて、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷等の各種塗布法を用いることができる。
 ガスバリアー層をパターン状に形成することが好ましい場合には、グラビア印刷法、フレキソ印刷法、オフセット印刷、スクリーン印刷法、インクジェット印刷法を用いることが好ましい。
Any appropriate method can be selected as a method for applying the polysilazane compound. For example, as a coating method, flow coating method, cast film forming method, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, curtain coating method, spray coating method In addition to various printing methods such as a doctor coating method, various coating methods such as a gravure printing method, a flexographic printing method, an offset printing, a screen printing method, and an ink jet printing can be used.
When it is preferable to form the gas barrier layer in a pattern, it is preferable to use a gravure printing method, a flexographic printing method, an offset printing method, a screen printing method, or an ink jet printing method.
 なお、本実施形態で用いられるポリシラザンとは、ケイ素-窒素結合を持つポリマーで、Si-N、Si-H、N-H等からなるSiO、Si及び両方の中間固溶体SiOxNy等のセラミック前駆体無機ポリマーである。
 樹脂基板を用いる場合には、特開平8-112879号公報に記載されているように比較的低温でセラミック化してシリカに変性するものがよく、下記一般式(1)で表されるものを好ましく用いることができる。
The polysilazane used in the present embodiment is a polymer having a silicon-nitrogen bond, such as SiO 2 made of Si—N, Si—H, N—H, etc., Si 3 N 4 and both intermediate solid solutions SiOxNy, etc. It is a ceramic precursor inorganic polymer.
When using a resin substrate, as described in JP-A-8-112879, it is preferable that the resin substrate is ceramicized at a relatively low temperature to be modified to silica, and the one represented by the following general formula (1) is preferable. Can be used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、R、R、Rは、水素原子、アルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基を表す。
 パーヒドロポリシラザンは、R、R、Rの全てが水素原子であり、オルガノポリシラザンは、R、R、Rのいずれかがアルキル基、アルケニル基、シクロアルキル基、アリール基、アルキルシリル基、アルキルアミノ基又はアルコキシ基である。得られるガスバリアー膜としての緻密性から、R、R、Rの全てが水素原子であるパーヒドロポリシラザンが特に好ましい。
In the general formula (1), R 1 , R 2 and R 3 represent a hydrogen atom, an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, an alkylsilyl group, an alkylamino group or an alkoxy group.
In perhydropolysilazane, all of R 1 , R 2 , and R 3 are hydrogen atoms, and in organopolysilazane, any of R 1 , R 2 , and R 3 is an alkyl group, alkenyl group, cycloalkyl group, aryl group, An alkylsilyl group, an alkylamino group or an alkoxy group; Perhydropolysilazane, in which all of R 1 , R 2 , and R 3 are hydrogen atoms, is particularly preferred because of the denseness of the resulting gas barrier film.
 ガスバリアー層は1層でもよいが、2層以上の積層構造を有していてもよい。積層構造を有する場合には、無機化合物の積層構造であってもよいし、無機化合物と有機化合物のハイブリッド被膜として形成してもよい。またガスバリアー層の間に応力緩和層を挟んでもよい。
 単層の場合でも積層した場合でも一つのガスバリアー層の厚さは、30~1000nmの範囲内が好ましく、更に好ましくは30~500nmの範囲内、特に好ましくは90~500nmの範囲内である。30nm以上とすると層厚の均一性が良好となり、優れたガスバリアー性能が得られる。1000nm以下にすると、屈曲によるクラックが急激に入ることが極めて少なくなり、成膜時の内部応力の増大をとどめて、欠陥の生成を防止することができる。
The gas barrier layer may be a single layer or may have a laminated structure of two or more layers. When it has a laminated structure, it may be a laminated structure of an inorganic compound, or may be formed as a hybrid film of an inorganic compound and an organic compound. A stress relaxation layer may be sandwiched between the gas barrier layers.
Whether it is a single layer or a laminated layer, the thickness of one gas barrier layer is preferably in the range of 30 to 1000 nm, more preferably in the range of 30 to 500 nm, and particularly preferably in the range of 90 to 500 nm. When the thickness is 30 nm or more, the uniformity of the layer thickness is improved, and excellent gas barrier performance is obtained. When the thickness is 1000 nm or less, cracks due to bending are rarely abruptly entered, and an increase in internal stress during film formation can be suppressed, and generation of defects can be prevented.
 ガスバリアー層のガスバリアー性としては、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましく、さらには、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/m・24h・atm以下(1atmは、1.01325×10Paである)、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが好ましい。 As the gas barrier property of the gas barrier layer, the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured by a method according to JIS K 7129-1992 is 1 × 10 It is preferably 3 g / (m 2 · 24 h) or less, and the oxygen permeability measured by a method according to JIS K 7126-1987 is 1 × 10 −3 ml / m 2 · 24 h · atm. Below (1 atm is 1.01325 × 10 5 Pa), water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) is 1 × 10 −3 g / (m 2 · 24h) or less.
 ガスバリアー層を形成する前に、透明樹脂フィルム基材との接着性を向上するために、シランカップリング剤などを用いて透明樹脂フィルム基材の表面に前処理を施すこともできる。 Before the gas barrier layer is formed, the surface of the transparent resin film substrate can be pretreated with a silane coupling agent or the like in order to improve the adhesion with the transparent resin film substrate.
 (金属導電層)
 図1に示すように、本発明の実施形態に係る導電性フィルム1は、導電性高分子化合物と水系溶剤に分散可能なポリマーとを含有する導電性層(図1のポリマー導電層3)の他に、透明樹脂フィルム基材2上にパターン状に形成された金属材料を含有する導電性層(図1の金属導電層4)を有する。
(Metal conductive layer)
As shown in FIG. 1, a conductive film 1 according to an embodiment of the present invention is a conductive layer (polymer conductive layer 3 in FIG. 1) containing a conductive polymer compound and a polymer dispersible in an aqueous solvent. In addition, it has a conductive layer (metal conductive layer 4 in FIG. 1) containing a metal material formed in a pattern on the transparent resin film substrate 2.
 この金属材料としては、導電性を有するものであれば、特に制限はなく、例えば、金、銀、銅、鉄、ニッケル、クロム等の金属の他に合金でもよい。特に、後述のようにパターンの形成のしやすさの観点から金属材料の形状は、金属微粒子又は金属ナノワイヤであることが好ましく、金属材料は、導電性の観点から銀であることが好ましい。 The metal material is not particularly limited as long as it has conductivity, and may be an alloy in addition to a metal such as gold, silver, copper, iron, nickel, or chromium. In particular, from the viewpoint of ease of pattern formation as described later, the shape of the metal material is preferably metal fine particles or metal nanowires, and the metal material is preferably silver from the viewpoint of conductivity.
 本発明に係る金属導電層4は、導電性フィルム1を構成するために、開口部を有するパターン状を呈するように透明樹脂フィルム基材2上に形成される。開口部は、透明樹脂フィルム基材2上に金属材料を有さない部分であり透光性窓部である。パターン形状には特に制限はないが、例えば、ストライプ状、メッシュ状又はランダムな網目状であることが好ましい。
 導電性フィルム1全体の面に対して開口部が占める割合、すなわち、開口率は、透明性の観点から80%以上であることが好ましい。
In order to constitute the conductive film 1, the metal conductive layer 4 according to the present invention is formed on the transparent resin film substrate 2 so as to exhibit a pattern shape having an opening. An opening is a part which does not have a metal material on the transparent resin film base material 2, and is a translucent window part. Although there is no restriction | limiting in particular in a pattern shape, For example, it is preferable that they are stripe shape, mesh shape, or random mesh shape.
The ratio of the openings to the entire surface of the conductive film 1, that is, the opening ratio is preferably 80% or more from the viewpoint of transparency.
 開口率とは、透明樹脂フィルム基材2の面において、光不透過の導電部(金属導電層4)を除く部分が全体に占める割合である。例えば、光不透過の導電部がストライプ状又はメッシュ状である場合、線幅100μm、線間隔1mmのストライプ状パターンの開口率は、約90%である。 The aperture ratio is the ratio of the entire portion of the surface of the transparent resin film substrate 2 excluding the light-impermeable conductive portion (metal conductive layer 4). For example, when the light-impermeable conductive portion is striped or meshed, the aperture ratio of the striped pattern having a line width of 100 μm and a line interval of 1 mm is about 90%.
 パターンの線幅は、透明性及び導電性の観点から、10~200μmの範囲内が好ましい。
 パターンの線幅が10μm以上であれば、所望の導電性が得られ、またパターンの線幅が200μm以下であれば、所望の透明性が得られる。
 パターンの高さは、0.1~10μmの範囲内が好ましい。パターンの高さが0.1μm以上であれば、所望の導電性が得られ、また細線の高さが10μm以下であれば、有機電子デバイスの形成において、電流リークや機能層の厚さの分布不良が防止される。
The line width of the pattern is preferably within the range of 10 to 200 μm from the viewpoint of transparency and conductivity.
If the line width of the pattern is 10 μm or more, desired conductivity is obtained, and if the line width of the pattern is 200 μm or less, desired transparency is obtained.
The pattern height is preferably in the range of 0.1 to 10 μm. If the pattern height is 0.1 μm or more, desired conductivity can be obtained, and if the height of the thin line is 10 μm or less, current leakage and functional layer thickness distribution in the formation of an organic electronic device. Defects are prevented.
 ストライプ状又はメッシュ状の金属導電層4を形成する手法としては、特に、制限はなく、従来公知な手法が利用できる。例えば、透明樹脂フィルム基材2上の全面に金属層を形成し、金属層に公知のフォトリソ法を施すことによって形成できる。
 具体的には、透明樹脂フィルム基材2上の全面に、印刷、蒸着、スパッタ、めっき等の1又は2以上の物理的又は化学的形成手法を用いて金属層を形成する、若しくは、金属箔を接着剤で透明樹脂フィルム基材2に積層した後、公知のフォトリソ法を用いて、エッチングすることにより、所望のストライプ状又はメッシュ状に加工された金属導電層4を得ることができる。
 金属種としては、通電可能であれば特に制限されず、銅、鉄、コバルト、金、銀等を用いることができるが、導電性の観点から、好ましくは銀又は銅であり、より好ましくは銀である。
There is no restriction | limiting in particular as a method of forming the stripe-shaped or mesh-shaped metal conductive layer 4, A conventionally well-known method can be utilized. For example, it can be formed by forming a metal layer on the entire surface of the transparent resin film substrate 2 and subjecting the metal layer to a known photolithography method.
Specifically, a metal layer is formed on the entire surface of the transparent resin film substrate 2 using one or more physical or chemical forming methods such as printing, vapor deposition, sputtering, plating, or the like, or a metal foil After being laminated on the transparent resin film substrate 2 with an adhesive, the metal conductive layer 4 processed into a desired stripe shape or mesh shape can be obtained by etching using a known photolithography method.
The metal species is not particularly limited as long as it can be energized, and copper, iron, cobalt, gold, silver, and the like can be used. From the viewpoint of conductivity, silver or copper is preferable, and silver is more preferable. It is.
 別な手法としては、金属微粒子を含有するインクをスクリーン印刷により所望の形状に印刷する手法、メッキ可能な触媒インクをグラビア印刷又はインクジェット方式で所望の形状に塗布した後にメッキ処理する手法又は銀塩写真技術を応用した方法が挙げられる。
 銀塩写真技術を応用した手法については、例えば、特開2009-140750号公報の[0076]-[0112]及び実施例を参考にして実施可能である。また、触媒インクをグラビア印刷してメッキ処理する手法については、例えば、特開2007-281290号公報を参考にして実施可能である。
As another method, a method of printing an ink containing metal fine particles in a desired shape by screen printing, a method of applying a plating catalyst ink to a desired shape by gravure printing or an ink jet method, or a plating treatment, or a silver salt A method using photographic technology can be listed.
A technique using silver salt photographic technology can be implemented with reference to, for example, [0076]-[0112] of JP-A-2009-140750 and examples. Further, a method for performing a plating process by gravure printing of the catalyst ink can be implemented with reference to, for example, Japanese Patent Application Laid-Open No. 2007-281290.
 また、ランダムな網目構造としては、例えば、特表2005-530005号公報に記載されているように、金属微粒子を含有する液を塗布乾燥することにより、自発的に導電性微粒子の無秩序な網目構造を形成する手法が利用可能である。 Further, as a random network structure, for example, as described in JP-T-2005-530005, a random network structure of conductive fine particles is spontaneously formed by coating and drying a liquid containing metal fine particles. Techniques for forming can be used.
 また、別な手法として、例えば、特表2009-505358号公報に記載されているように、金属ナノワイヤを含有する塗布液(分散液)を塗布乾燥することで、金属ナノワイヤのランダムな網目構造を形成する手法が利用可能である。
 金属ナノワイヤとは、金属元素を主要な構成要素とする繊維状構造体のことをいう。特に、本発明における金属ナノワイヤとは、原子スケールからnmサイズの短径を有する多数の繊維状構造体を意味する。
As another technique, for example, as described in JP-T-2009-505358, a coating solution (dispersion) containing metal nanowires is applied and dried to form a random network structure of metal nanowires. Techniques to form are available.
The metal nanowire refers to a fibrous structure having a metal element as a main component. In particular, the metal nanowire in the present invention means a large number of fibrous structures having a minor axis from the atomic scale to the nm size.
 金属ナノワイヤとしては、一つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、3~500μmの範囲内であることがより好ましい。
 金属ナノワイヤの長さが500μm以下であれば、一本のワイヤがうまく広がって他のワイヤと重ならずに配置され、その結果、金属導電層4の厚さが抑えられ、薄膜化が達成されるとともに透過率が向上する。
 また、金属ナノワイヤの長さが3μm以上であれば、金属ナノワイヤ同士の接点が増加し、金属ナノワイヤの添加量を抑えつつ、所望のシート抵抗値及び透過率が得られる。
 併せて、長さの相対標準偏差は、40%以下であることが好ましい。これは、長さの相対標準偏差が40%以下であれば、金属導電層4のシート抵抗値の均一性低下及び膜厚ムラが防止されるためである。
As the metal nanowire, in order to form a long conductive path with one metal nanowire, the average length is preferably 3 μm or more, and more preferably in the range of 3 to 500 μm.
If the length of the metal nanowire is 500 μm or less, one wire spreads well and is arranged without overlapping with other wires, and as a result, the thickness of the metal conductive layer 4 is suppressed, and a thin film is achieved. And the transmittance is improved.
Moreover, if the length of metal nanowire is 3 micrometers or more, the contact of metal nanowire will increase and desired sheet resistance value and transmittance | permeability will be obtained, suppressing the addition amount of metal nanowire.
In addition, the relative standard deviation of the length is preferably 40% or less. This is because if the relative standard deviation of the length is 40% or less, the sheet resistance value of the metal conductive layer 4 is prevented from being reduced in uniformity and film thickness unevenness.
 また、平均短径には特に制限はないが、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。
 したがって、金属ナノワイヤの平均短径は、10~300nmの範囲内であることが好ましく、30~200nmの範囲内であることがより好ましい。併せて、短径の相対標準偏差は20%以下であることが好ましい。これは、短径の相対標準偏差が20%以下であれば、金属導電層4の厚さにムラが発生することを抑えられるとともに、有機EL素子の輝度ムラの発生を抑えられるためである。
Moreover, although there is no restriction | limiting in particular in an average breadth, it is preferable that it is small from a transparency viewpoint, and the larger one is preferable from a conductive viewpoint.
Therefore, the average minor axis of the metal nanowire is preferably in the range of 10 to 300 nm, and more preferably in the range of 30 to 200 nm. In addition, the relative standard deviation of the minor axis is preferably 20% or less. This is because if the relative standard deviation of the minor axis is 20% or less, the occurrence of unevenness in the thickness of the metal conductive layer 4 can be suppressed, and the occurrence of uneven brightness in the organic EL element can be suppressed.
 金属ナノワイヤの目付け量は、0.02~0.5g/mの範囲内が好ましい。金属ナノワイヤの目付け量が0.02g/m以上であれば、所望のシート抵抗値が得られ、目付け量が0.5g/m以下であれば、所望のシート抵抗値及び透過率が得られる。金属ナノワイヤの目付け量は、シート抵抗値及び透過率の観点から、0.03~0.2g/mがより好ましい。 The basis weight of the metal nanowire is preferably in the range of 0.02 to 0.5 g / m 2 . If the basis weight of the metal nanowire is 0.02 g / m 2 or more, a desired sheet resistance value is obtained, and if the basis weight is 0.5 g / m 2 or less, a desired sheet resistance value and transmittance are obtained. It is done. The basis weight of the metal nanowires is more preferably 0.03 to 0.2 g / m 2 from the viewpoint of sheet resistance and transmittance.
 金属ナノワイヤに用いられる金属としては、銅、鉄、コバルト、金、銀等が挙げられるが、導電性の観点から銀が好ましい。また、金属は単一で用いてもよいが、導電性と安定性(金属ナノワイヤの硫化耐性、酸化耐性及びマイグレーション耐性)を両立するために、主成分となる金属と1種類以上の他の金属を任意の割合で含んでもよい。
 金属ナノワイヤの製造方法には特に制限はなく、例えば、液相法、気相法等の公知の手法を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。
 例えば、銀ナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837、Chem.Mater.,2002,14,4736~4745、金ナノワイヤの製造方法としては特開2006-233252号公報等、銅ナノワイヤの製造方法としては特開2002-266007号公報等、コバルトナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。
 特に、前記した文献に開示された銀ナノワイヤの製造方法は、水溶液中で簡便に銀ナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に好ましく適用することができる。
Examples of the metal used for the metal nanowire include copper, iron, cobalt, gold, silver and the like, and silver is preferable from the viewpoint of conductivity. In addition, although a single metal may be used, in order to achieve both conductivity and stability (sulfuration resistance, oxidation resistance and migration resistance of metal nanowires), the main metal and one or more other metals May be included in any proportion.
There is no restriction | limiting in particular in the manufacturing method of metal nanowire, For example, well-known methods, such as a liquid phase method and a gaseous-phase method, can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used.
For example, as a method for producing silver nanowires, Adv. Mater. , 2002, 14, 833-837, Chem. Mater. 2002, 14, 4736-4745, a method for producing gold nanowires is disclosed in Japanese Patent Application Laid-Open No. 2006-233252, a method for producing copper nanowires is disclosed in Japanese Patent Application Laid-Open No. 2002-266007, and the like. Reference can be made to 2004-149871.
In particular, the method for producing silver nanowires disclosed in the above-mentioned literature can easily produce silver nanowires in an aqueous solution, and the electrical conductivity of silver is the highest among metals, so it is preferably applied to the present invention. can do.
 また、金属材料から形成される細線部(金属導電層4)の表面比抵抗は、大面積化という観点から、100Ω/□以下であることが好ましく、20Ω/□以下であることがより好ましい。
 表面比抵抗は、例えば、JIS K6911、ASTM D257等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。
Further, the surface specific resistance of the thin wire portion (metal conductive layer 4) formed from a metal material is preferably 100Ω / □ or less, and more preferably 20Ω / □ or less from the viewpoint of increasing the area.
The surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
 また、金属材料から形成される細線部(金属導電層4)は、透明樹脂フィルム基材2にダメージを与えない範囲で加熱処理を施されることが好ましい。これにより、金属微粒子や金属ナノワイヤ同士の融着が進み、金属材料から形成される細線部が高導電化する。 Further, it is preferable that the thin wire portion (metal conductive layer 4) formed from a metal material is subjected to heat treatment within a range that does not damage the transparent resin film substrate 2. As a result, fusion between the metal fine particles and the metal nanowires proceeds, and the fine wire portion formed from the metal material becomes highly conductive.
 (水系分散液の塗布、加熱、乾燥)
 本発明の導電性フィルムの製造方法は、少なくとも、
 ステップ(A):導電性高分子化合物とポリエステル樹脂とを含有する水系分散液を透明樹脂フィルム基材上に塗布するステップ
 ステップ(B):透明樹脂フィルム基材上に塗布した水系分散液に対して、赤外線の照射を行うことによってポリマー導電層を形成するステップのステップを有する。
 具体的には、本発明の導電性フィルムの製造方法では、前記した導電性高分子化合物とポリエステル樹脂とを含有する水系分散液を、透明樹脂フィルム基材2上に塗布し、加熱、乾燥することによって形成される。導電性フィルム1が金属導電層4として金属材料から形成される細線パターンを有する場合は、この金属材料から形成される細線パターンが形成された透明樹脂フィルム基材2上に前記した塗布液を塗布し、赤外線ヒーターを用いて加熱、乾燥することによってポリマー導電層3が形成される。ここで、ポリマー導電層3は、金属導電層4である金属細線パターンと電気的に接続されていればよく、パターン形成された金属細線パターンを完全に被覆してもよいし、金属細線パターンの一部を被覆してもよいし、金属細線パターンに接触していてもよい。
(Application of aqueous dispersion, heating, drying)
The method for producing the conductive film of the present invention includes at least
Step (A): Step of applying an aqueous dispersion containing a conductive polymer compound and a polyester resin on a transparent resin film substrate Step (B): For the aqueous dispersion applied on the transparent resin film substrate And forming a polymer conductive layer by performing infrared irradiation.
Specifically, in the method for producing a conductive film of the present invention, an aqueous dispersion containing the above-described conductive polymer compound and a polyester resin is applied onto the transparent resin film substrate 2 and heated and dried. Formed by. When the conductive film 1 has a fine line pattern formed from a metal material as the metal conductive layer 4, the above-described coating solution is applied onto the transparent resin film substrate 2 on which the fine line pattern formed from the metal material is formed. Then, the polymer conductive layer 3 is formed by heating and drying using an infrared heater. Here, the polymer conductive layer 3 only needs to be electrically connected to the metal fine line pattern which is the metal conductive layer 4, and may completely cover the patterned metal fine line pattern. A part thereof may be covered or may be in contact with the fine metal wire pattern.
 導電性高分子化合物とポリエステル樹脂とを含有する水系分散液(塗布液)の塗布は、グラビア印刷法、フレキソ印刷法、スクリーン印刷法等の印刷方法に加えて、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、インクジェット法等の塗布法のいずれかを用いることができる。 Application of an aqueous dispersion (coating liquid) containing a conductive polymer compound and a polyester resin is not limited to printing methods such as gravure printing, flexographic printing, and screen printing, but also roll coating, bar coating, Use any of the coating methods such as dip coating, spin coating, casting, die coating, blade coating, bar coating, gravure coating, curtain coating, spray coating, doctor coating, and inkjet. Can do.
 また、金属導電層4の一部を導電性高分子化合物と水系溶剤に分散可能なポリマーとを含有するポリマー導電層3が被覆又は接触している導電性フィルム1を製造する方法としては、転写フィルムに金属導電層4を前記した方法で形成し、さらに導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層3を後記の方法で形成し、積層したしたものを、前記した透明樹脂フィルム基材2に転写する方法が挙げられる。 In addition, as a method for producing a conductive film 1 in which a part of the metal conductive layer 4 is coated or in contact with a polymer conductive layer 3 containing a conductive polymer compound and a polymer dispersible in an aqueous solvent, The above-mentioned transparent resin film is formed by forming the metal conductive layer 4 on the film by the method described above, and further forming the polymer conductive layer 3 containing the conductive polymer compound and the polyester resin by the method described later and laminating them. The method of transferring to the base material 2 is mentioned.
 また、導電性フィルム1を製造する方法として、金属細線パターンの非導電部(開口部)にインクジェット法等の公知の方法で、導電性高分子化合物と水系溶剤に分散可能なポリマーとを含有するポリマー導電層3を形成する方法等が挙げられる。
 導電性高分子化合物と水系溶剤に分散可能なポリマーとを含有するポリマー導電層3は、カチオン性π共役系高分子に対するポリアニオンの質量比が0.5~25の導電性高分子化合物を含むことが好ましい。これにより、高い導電性、高い透明性及び強い膜強度を得ることができる。
In addition, as a method for producing the conductive film 1, the non-conductive portion (opening portion) of the fine metal wire pattern contains a conductive polymer compound and a polymer dispersible in an aqueous solvent by a known method such as an inkjet method. Examples thereof include a method for forming the polymer conductive layer 3.
The polymer conductive layer 3 containing a conductive polymer compound and a polymer dispersible in an aqueous solvent contains a conductive polymer compound having a polyanion mass ratio of 0.5 to 25 to the cationic π-conjugated polymer. Is preferred. Thereby, high electroconductivity, high transparency, and strong film | membrane intensity | strength can be obtained.
 このような構造を有する本発明のポリマー導電層3及び金属導電層4を形成することで、金属若しくは金属酸化物の細線パターン又はポリマー導電層を単独で使用した場合では得ることのできない高い導電性を、導電性フィルム1の面内において均一に得ることができる。 By forming the polymer conductive layer 3 and the metal conductive layer 4 of the present invention having such a structure, high conductivity that cannot be obtained when a metal or metal oxide fine wire pattern or polymer conductive layer is used alone. Can be obtained uniformly in the plane of the conductive film 1.
 ポリマー導電層3の乾燥層厚は、表面平滑性及び透明性の観点から、30~2000nmの範囲内であることが好ましく、導電性の観点から、100nm以上であることがより好ましく、導電性フィルム1の表面平滑性の観点から、200nm以上であることがさらに好ましい。また、ポリマー導電層の乾燥後の厚さは、透明性の観点から、1000nm以下であることがより好ましい。 The dry layer thickness of the polymer conductive layer 3 is preferably in the range of 30 to 2000 nm from the viewpoint of surface smoothness and transparency, and more preferably 100 nm or more from the viewpoint of conductivity. From the viewpoint of surface smoothness of 1, the thickness is more preferably 200 nm or more. In addition, the thickness of the polymer conductive layer after drying is more preferably 1000 nm or less from the viewpoint of transparency.
 〔ポリマー導電層の形成〕
 ポリマー導電層3は、導電性高分子化合物とポリエステル樹脂とを含有する水系分散液(塗布液)を塗布した後、赤外線照射を施すことによって形成される。
 ここで、かかる赤外線照射による乾燥処理に加えて、他の乾燥処理を行うこともできる。赤外線照射と併用される乾燥処理の条件として特に制限はないが、透明樹脂フィルム基材2及び導電層3、4が損傷しない範囲の温度での熱乾燥処理を併用することができ、例えば、80~120℃の範囲内で10秒から10分の熱乾燥処理をすることができる。この熱乾燥処理は、赤外線照射による乾燥処理の前に行ってもよく、後に行ってもよい。
[Formation of polymer conductive layer]
The polymer conductive layer 3 is formed by applying an aqueous dispersion (coating liquid) containing a conductive polymer compound and a polyester resin, and then applying infrared irradiation.
Here, in addition to the drying process by infrared irradiation, other drying processes can be performed. Although there is no restriction | limiting in particular as conditions of the drying process used together with infrared irradiation, The heat drying process in the temperature of the range which does not damage the transparent resin film base material 2 and the conductive layers 3 and 4 can be used together, for example, 80 Heat drying treatment can be performed within a range of ˜120 ° C. for 10 seconds to 10 minutes. This heat drying treatment may be performed before or after the drying treatment by infrared irradiation.
 前記した塗布液は、添加剤として、可塑剤、安定剤(酸化防止剤、硫化防止剤等)、界面活性剤、溶解促進剤、重合禁止剤、着色剤(染料、顔料等)等を含んでいてもよい。さらに、前記した塗布液は、塗布性等の作業性を高める観点から、溶剤(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶剤)を含んでいてもよい。 The coating liquid described above contains, as additives, plasticizers, stabilizers (antioxidants, antioxidants, etc.), surfactants, dissolution accelerators, polymerization inhibitors, colorants (dyes, pigments, etc.) and the like. May be. Furthermore, from the viewpoint of improving workability such as coating properties, the coating liquid described above is a solvent (for example, water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons). Or other organic solvents).
 本発明において、導電層であるポリマー導電層3の表面の平滑性を表すRyとRaとは、Ry=粗さ曲線の最大高さ(表面の山頂部と谷底部との高低差)とRa=粗さ曲線の算術平均粗さを意味し、JIS B601(1994)に規定される表面粗さに準ずる値である。本発明に係る導電性フィルム1は、導電性の向上という観点から、導電層であるポリマー導電層3の表面の平滑性がRy≦50nmであり、かつ、導電層であるポリマー導電層3の表面の平滑性がRa≦10nmであることが好ましい。本発明において、Ry及びRaの測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができ、例えば、以下の手法で測定可能である。 In the present invention, Ry and Ra representing the smoothness of the surface of the polymer conductive layer 3 which is a conductive layer are Ry = the maximum height of the roughness curve (the difference in height between the top and bottom of the surface) and Ra = It means the arithmetic mean roughness of the roughness curve, and is a value according to the surface roughness specified in JIS B601 (1994). From the viewpoint of improving conductivity, the conductive film 1 according to the present invention has a surface smoothness of the polymer conductive layer 3 that is a conductive layer of Ry ≦ 50 nm, and the surface of the polymer conductive layer 3 that is a conductive layer. It is preferable that the smoothness of Ra ≦ 10 nm. In the present invention, a commercially available atomic force microscope (AFM) can be used for the measurement of Ry and Ra. For example, the measurement can be performed by the following method.
 AFMとして、日立ハイテクサイエンス社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーは、XY20μm、Z2μmが走査可能なものを使用する。カンチレバーは、日立ハイテクサイエンス社製シリコンカンチレバーSI-DF20で、共振周波数120~150kHz、バネ定数12~20N/mのものを用い、DFMモード(Dynamic Force Mode)で測定する。測定領域80×80μmを、走査周波数1Hzで測定する。 Using an AFM SPI3800N probe station and SPA400 multifunctional unit as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface. When the region where the atomic force works is reached, scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction. A piezo scanner that can scan XY 20 μm and Z 2 μm is used. The cantilever is a silicon cantilever SI-DF20 manufactured by Hitachi High-Tech Science Co., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 × 80 μm is measured at a scanning frequency of 1 Hz.
 本発明において、Ryの値は、導電性の向上という観点から、50nm以下であることがより好ましく、40nm以下であることがさらに好ましい。同様に、Raの値は、導電性の向上という観点から、10nm以下であることがより好ましく、5nm以下であることがさらに好ましい。 In the present invention, the value of Ry is more preferably 50 nm or less, and further preferably 40 nm or less, from the viewpoint of improving conductivity. Similarly, the value of Ra is more preferably 10 nm or less, and further preferably 5 nm or less, from the viewpoint of improving conductivity.
 本発明において、導電性フィルム1は、全光線透過率が60%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましい。全光透過率は、分光光度計等を用いた公知の方法にしたがって測定することができる。
 また、本発明の導電性フィルム1における導電層であるポリマー導電層3の電気抵抗値としては、性能向上という観点から、シート抵抗値として1000Ω/□以下であることが好ましく、100Ω/□以下であることがより好ましい。さらには、導電性フィルム1を電流駆動型オプトエレクトロニクスデバイスに適用するためには、電流駆動型オプトエレクトロニクスデバイスに適用した際の性能向上という観点から、シート抵抗値が50Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましい。すなわち、シート抵抗値が10Ω/□以下であると各種オプトエレクトロニクスデバイスにおいて、導電性フィルム1が電極として好適に機能することができて好ましい。
In the present invention, the conductive film 1 preferably has a total light transmittance of 60% or more, more preferably 70% or more, and further preferably 80% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.
In addition, the electrical resistance value of the polymer conductive layer 3 which is a conductive layer in the conductive film 1 of the present invention is preferably 1000Ω / □ or less as a sheet resistance value from the viewpoint of performance improvement, and is 100Ω / □ or less. More preferably. Furthermore, in order to apply the conductive film 1 to a current-driven optoelectronic device, the sheet resistance value may be 50Ω / □ or less from the viewpoint of performance improvement when applied to a current-driven optoelectronic device. Preferably, it is 10Ω / □ or less. That is, when the sheet resistance value is 10 3 Ω / □ or less, the conductive film 1 can preferably function as an electrode in various optoelectronic devices.
 前記したシート抵抗値は、例えば、JIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。
 本発明に係る導電性フィルム1の厚さには特に制限はなく、目的に応じて適宜選択することができるが、一般的に10μm以下であることが好ましく、厚さが薄くなるほど透明性及び柔軟性が向上するためより好ましい。
The sheet resistance value described above can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method using conductive plastic 4-probe method) or the like, and using a commercially available surface resistivity meter. It can be easily measured.
There is no restriction | limiting in particular in the thickness of the electroconductive film 1 which concerns on this invention, Although it can select suitably according to the objective, Generally it is preferable that it is 10 micrometers or less, and transparency and flexibility are so thin that thickness is thin. It is more preferable because of improved properties.
 <有機EL素子>
 本発明の実施形態に係る有機EL素子は、導電性フィルム1を電極として備えることを特徴とするものであり、有機発光層を含む有機層と、導電性フィルム1と、を備える。本発明の実施形態に係る有機EL素子は、導電性フィルム1を陽極として備えることが好ましく、有機発光層及び陰極については、有機EL素子に一般的に使われている材料、構成等の任意のものを用いることができる。
<Organic EL device>
An organic EL device according to an embodiment of the present invention is characterized by including a conductive film 1 as an electrode, and includes an organic layer including an organic light emitting layer and a conductive film 1. The organic EL device according to the embodiment of the present invention preferably includes the conductive film 1 as an anode, and the organic light-emitting layer and the cathode are arbitrarily selected from materials, configurations, and the like generally used for organic EL devices. Things can be used.
 有機EL素子の素子構成としては、陽極/有機発光層/陰極、陽極/正孔輸送層/有機発光層/電子輸送層/陰極、陽極/正孔注入層/正孔輸送層/有機発光層/電子輸送層/陰極、陽極/正孔注入層/有機発光層/電子輸送層/電子注入層/陰極、陽極/正孔注入層/有機発光層/電子注入層/陰極、等の各種の構成のものを挙げることができる。 As an element structure of the organic EL element, anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / Various configurations such as electron transport layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. Things can be mentioned.
 また、本発明において、有機発光層に使用できる発光材料又はドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、各種蛍光色素、希土類金属錯体、リン光発光材料等が挙げられるが、これらに限定されるものではない。また、これらの化合物のうちから選択される発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることが好ましい。有機発光層は、前記した材料等を用いて、蒸着、塗布、転写等の公知の方法によって製造される。この有機発光層の厚さは、発光効率の観点から、0.5~500nmが好ましく、0.5~200nmがより好ましい。 In the present invention, the light emitting material or doping material that can be used in the organic light emitting layer includes anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bis. Benzoxazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex Aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinaclide , Rubrene, distyrylbenzene derivatives, di still arylene derivatives, various fluorescent dyes, rare earth metal complex, but such phosphorescent materials include, but are not limited thereto. Further, it is preferable to contain 90 to 99.5 parts by mass of a light emitting material selected from these compounds and 0.5 to 10 parts by mass of a doping material. An organic light emitting layer is manufactured by well-known methods, such as vapor deposition, application | coating, transcription | transfer, using the above-mentioned material. The thickness of the organic light emitting layer is preferably 0.5 to 500 nm and more preferably 0.5 to 200 nm from the viewpoint of light emission efficiency.
 本発明の有機EL素子は、自発光型ディスプレイ、液晶用バックライト、照明等に用いることができる。本発明の有機EL素子は、均一にムラなく発光させることができるため、照明用途で用いることが好ましい。 The organic EL element of the present invention can be used for a self-luminous display, a liquid crystal backlight, illumination, and the like. Since the organic EL device of the present invention can uniformly emit light without unevenness, it is preferably used for illumination.
 本発明の導電性フィルム1は、高い導電性と透明性を併せ持ち、液晶表示素子、有機発光素子、無機電界発光素子、電子ペーパー、有機太陽電池、無機太陽電池等の各種オプトエレクトロニクスデバイスや、電磁波シールド、タッチパネル等の分野において好適に用いることができる。その中でも、導電性フィルム表面の平滑性が厳しく求められる有機EL素子や有機薄膜太陽電池素子の透明電極として特に好ましく用いることができる。 The conductive film 1 of the present invention has both high conductivity and transparency, and various optoelectronic devices such as liquid crystal display elements, organic light emitting elements, inorganic electroluminescent elements, electronic paper, organic solar cells, inorganic solar cells, and electromagnetic waves. It can be suitably used in fields such as shields and touch panels. Among these, it can use especially preferably as a transparent electrode of the organic EL element and organic thin-film solar cell element by which the smoothness of the surface of an electroconductive film is calculated | required severely.
 《有機EL素子の構成及びその製造方法》
 図5に示すとおり、有機EL素子50は、透明樹脂フィルム基材52、金属導電層54及びポリマー導電層55からなる導電性フィルム51(透明電極)を有している。
 導電性フィルム51の透明樹脂フィルム基材52の側縁部には取出電極53が形成されている。
 取出電極53は金属導電層54及びポリマー導電層55と接触しており、これら部材と電気的に導通している。導電性フィルム51のポリマー導電層55上には有機機能層56が形成されている。有機機能層56は正孔輸送層、発光層、正孔阻止層、電子輸送層等から構成されている。有機機能層56上には対電極57が形成されている。対電極57は導電性フィルム51と対向する電極であって導電性フィルム51とは反対の極性を有している。
<< Configuration of Organic EL Element and Manufacturing Method Thereof >>
As shown in FIG. 5, the organic EL element 50 includes a conductive film 51 (transparent electrode) including a transparent resin film substrate 52, a metal conductive layer 54, and a polymer conductive layer 55.
An extraction electrode 53 is formed on the side edge of the transparent resin film substrate 52 of the conductive film 51.
The extraction electrode 53 is in contact with the metal conductive layer 54 and the polymer conductive layer 55, and is electrically connected to these members. An organic functional layer 56 is formed on the polymer conductive layer 55 of the conductive film 51. The organic functional layer 56 includes a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like. A counter electrode 57 is formed on the organic functional layer 56. The counter electrode 57 is an electrode facing the conductive film 51 and has a polarity opposite to that of the conductive film 51.
 有機EL素子50では、取出電極53の一部が露出した状態で封止部材58により封止され、封止部材58が導電性フィルム51や有機機能層56を被覆・保護している。 The organic EL element 50 is sealed by a sealing member 58 with a part of the extraction electrode 53 exposed, and the sealing member 58 covers and protects the conductive film 51 and the organic functional layer 56.
 図6A~Fは、有機EL素子の製造方法を説明するための概略的な平面図である。
 続いて、図6A~Fを参照しながら有機EL素子50の製造方法について説明する。
 はじめに、透明樹脂フィルム基材52(図6A)上に、金属粒子の細線パターンを形成し、金属導電層54を形成する(図6B)。
 その後、導電性高分子化合物とポリエステル樹脂とを含有する水系分散液を含む一定の組成物を調製し、当該組成物を、金属導電層54の上にインクジェット印刷し、本発明の赤外線にて乾燥させ、ポリマー導電層55を形成し、金属導電層54をポリマー導電層55で被覆する(図6C)。
6A to 6F are schematic plan views for explaining a method of manufacturing an organic EL element.
Next, a method for manufacturing the organic EL element 50 will be described with reference to FIGS. 6A to 6F.
First, a fine line pattern of metal particles is formed on a transparent resin film substrate 52 (FIG. 6A) to form a metal conductive layer 54 (FIG. 6B).
Thereafter, a certain composition containing an aqueous dispersion containing a conductive polymer compound and a polyester resin is prepared, and the composition is ink-jet printed on the metal conductive layer 54 and dried with infrared rays of the present invention. Then, the polymer conductive layer 55 is formed, and the metal conductive layer 54 is covered with the polymer conductive layer 55 (FIG. 6C).
 その後、ポリマー導電層55(導電性フィルム51)上に、正孔輸送層、発光層、正孔阻止層、電子輸送層等からなる有機機能層56を形成する(図6D)。
 その後、取出電極53と、有機機能層56を被覆するように対電極57を形成し(図6E)、導電性フィルム51及び有機機能層56を完全に被覆するように封止部材58にてこれら部材を封止する(図6F)。
 以上の工程により有機EL素子50が製造される。
Thereafter, an organic functional layer 56 including a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and the like is formed on the polymer conductive layer 55 (conductive film 51) (FIG. 6D).
Thereafter, the counter electrode 57 is formed so as to cover the extraction electrode 53 and the organic functional layer 56 (FIG. 6E), and these are sealed by the sealing member 58 so as to completely cover the conductive film 51 and the organic functional layer 56. The member is sealed (FIG. 6F).
The organic EL element 50 is manufactured through the above steps.
 本発明の実施形態に係る導電性フィルムは、高い導電性と透明性とを併せ持ち、液晶表示素子、有機発光素子、無機電界発光素子、電子ペーパー、有機太陽電池、無機太陽電池等の各種オプトエレクトロニクスデバイスや、電磁波シールド、タッチパネル等の分野において好適に用いることができる。その中でも、導電性フィルムの表面の平滑性が厳しく求められる有機EL素子や有機薄膜太陽電池素子の導電性フィルムとして特に好ましく用いることができる。 The conductive film according to the embodiment of the present invention has both high conductivity and transparency, and various optoelectronics such as a liquid crystal display element, an organic light emitting element, an inorganic electroluminescent element, electronic paper, an organic solar cell, and an inorganic solar cell. It can be suitably used in the fields of devices, electromagnetic wave shields, touch panels and the like. Among these, it can use especially preferably as an electroconductive film of the organic EL element and organic thin-film solar cell element by which the smoothness of the surface of an electroconductive film is calculated | required severely.
 また、本発明に係る有機電子素子(例えば、有機EL素子)は、均一にムラなく発光させることができるため、照明用途で用いることが好ましいものであり、自発光型ディスプレイ、液晶用バックライト、照明等に用いることができる。
 また、本発明に係るタッチパネルは、フレキシブルで低抵抗であるため、曲面や大面積の用途で用いることができ、銀行等といった金融機関のATM、自動販売機や自動券売機のような不特定多数が扱う公共性の高いものをはじめ、携帯電話、携帯情報端末(PDA)、デジタルオーディオプレーヤー、携帯ゲーム機、コピー機、ファックス、カーナビ等、デジタル情報機器を中心に多方面で使用することができる。
Moreover, since the organic electronic element (for example, organic EL element) which concerns on this invention can be made to light-emit uniformly, it is preferable to use it for an illumination use, a self-light-emitting display, a backlight for liquid crystals, It can be used for lighting or the like.
In addition, since the touch panel according to the present invention is flexible and has low resistance, it can be used for curved surface and large area applications, such as ATMs of financial institutions such as banks, vending machines and ticket vending machines. It can be used in a wide variety of fields, mainly for digital information devices such as mobile phones, personal digital assistants (PDAs), digital audio players, portable game machines, copiers, fax machines, car navigation systems, etc. .
 なお、本発明を適用可能な実施形態は、上述した実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。 Note that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "mass part" or "mass%" is represented.
 <ポリエステル樹脂等の製造>
 本実施例で使用する、表1及び表2に記載のポリエステル樹脂等のバインダー樹脂の製造方法について説明する。
<Manufacture of polyester resin, etc.>
A method for producing a binder resin such as a polyester resin described in Table 1 and Table 2 used in this example will be described.
 (水系溶剤に分散可能なポリエステル樹脂P-1)
 ジメチルテレフタル酸138.6部、ジメチルイソフタル酸26.0部、5-スルホン酸ナトリウムジメチルイソフタル酸46.9部、エチレングリコール99.3部、ジエチレングリコール21.2部、1,6-ヘキサンジオール23.6部、触媒(シュウ酸チタンカリウム)0.1部を用意した。
(Polyester resin P-1 dispersible in aqueous solvent)
138.6 parts of dimethyl terephthalic acid, 26.0 parts of dimethylisophthalic acid, 46.9 parts of sodium dimethylisophthalic acid, 99.3 parts of ethylene glycol, 21.2 parts of diethylene glycol, 23.1,6-hexanediol. 6 parts and 0.1 part of a catalyst (potassium titanium oxalate) were prepared.
 これらの原料を反応器に入れて溶液を調製した。この溶液を常圧、窒素雰囲気中で撹拌混合しながら200℃に昇温した後、4時間かけて反応温度を260℃にまで徐々に昇温することで、エステル交換反応を完了させた。次に、この溶液を260℃の温度下で徐々に減圧し、260℃、0.67hPa(0.5mmHg)の条件下で2時間保持することで重縮合反応を進行させ、ポリエステル樹脂を得た。得られたポリエステル樹脂をICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を15モル%の比率(なお、当該比率は、表1及び表2では「比率」と記載。)で含有するジカルボン酸を構成成分とすることを確認した。 These solutions were put into a reactor to prepare a solution. This solution was heated to 200 ° C. while stirring and mixing in a normal pressure and nitrogen atmosphere, and then the reaction temperature was gradually raised to 260 ° C. over 4 hours to complete the transesterification reaction. Next, this solution was gradually depressurized at a temperature of 260 ° C., and the polycondensation reaction was advanced by maintaining for 2 hours under the conditions of 260 ° C. and 0.67 hPa (0.5 mmHg) to obtain a polyester resin. . When the obtained polyester resin was analyzed with an ICP emission spectrometer, the polyester resin had a ratio of 15 mol% of aromatic dicarboxylic acid having at least a sulfonic acid group (the ratio is shown in Tables 1 and 2 as “ It was confirmed that the dicarboxylic acid contained in “the ratio” is used as a constituent component.
 このポリエステル樹脂100部、水260部及びイソプロピルアルコール40部を、容器内に入れ、これらを撹拌しながら80~95℃の範囲内の温度下に2時間保持することで、ポリエステル樹脂濃度25%の水系溶剤に分散可能なポリエステル樹脂P-1を得た。 100 parts of this polyester resin, 260 parts of water and 40 parts of isopropyl alcohol are put in a container and kept at a temperature in the range of 80 to 95 ° C. for 2 hours with stirring, so that the polyester resin concentration is 25%. A polyester resin P-1 dispersible in an aqueous solvent was obtained.
 (水系溶剤に分散可能なポリエステル樹脂P-2)
 酸成分として仕込むジメチルテレフタル酸146.7部、ジメチルイソフタル酸27.5部、5-スルホン酸ナトリウムジメチルイソフタル酸31.2部に、それぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-2を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を10モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-2 dispersible in aqueous solvent)
A polyester resin that can be dispersed in the aqueous solvent, except that it is changed to 146.7 parts of dimethylterephthalic acid, 27.5 parts of dimethylisophthalic acid, and 31.2 parts of sodium dimethylisophthalic acid 5-sulfonate, which are charged as acid components. A polyester resin P-2 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin contains a dicarboxylic acid containing at least 10 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-3)
 酸成分として仕込むジメチルテレフタル酸153.2部、ジメチルイソフタル酸28.7部、5-スルホン酸ナトリウムジメチルイソフタル酸18.7部に、それぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-3を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を6モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-3 dispersible in aqueous solvent)
A polyester resin that can be dispersed in the aqueous solvent, except for changing to 153.2 parts of dimethylterephthalic acid, 28.7 parts of dimethylisophthalic acid, and 18.7 parts of sodium dimethylisophthalic acid 5-sulfonate charged as acid components. A polyester resin P-3 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least a 6 mol% aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-4)
 酸成分として仕込むジメチルテレフタル酸154.9部、ジメチルイソフタル酸29.0部、5-スルホン酸ナトリウムジメチルイソフタル酸15.6部に、それぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-4を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を5モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-4 dispersible in aqueous solvent)
A polyester resin that can be dispersed in the aqueous solvent, except that it is changed to 154.9 parts of dimethyl terephthalic acid, 29.0 parts of dimethyl isophthalic acid, and 15.6 parts of sodium dimethylisophthalic acid 5-sulfonate which are charged as acid components. A polyester resin P-4 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least 5 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-5)
 酸成分として仕込むジメチルテレフタル酸158.1部、ジメチルイソフタル酸29.6部、5-スルホン酸ナトリウムジメチルイソフタル酸9.4部に、それぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-5を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を3モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-5 dispersible in aqueous solvent)
A polyester resin that can be dispersed in the aqueous solvent, except for changing to 158.1 parts of dimethyl terephthalic acid, 29.6 parts of dimethyl isophthalic acid, and 9.4 parts of sodium dimethylisophthalic acid 5-sulfonate charged as acid components A polyester resin P-5 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least 3 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-6)
 酸成分として仕込むジメチルテレフタル酸159.7部、ジメチルイソフタル酸30.0部、5-スルホン酸ナトリウムジメチルイソフタル酸6.2部に、それぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-6を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を2モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-6 dispersible in aqueous solvent)
A polyester resin that can be dispersed in the aqueous solvent, except that 159.7 parts of dimethylterephthalic acid, 30.0 parts of dimethylisophthalic acid, and 6.2 parts of sodium dimethylisophthalic acid are added as acid components. A polyester resin P-6 dispersible in an aqueous solvent was obtained in the same manner as P-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin contains a dicarboxylic acid containing at least 2 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-7)
 酸成分として仕込むジメチルテレフタル酸161.4部、ジメチルイソフタル酸30.3部、5-スルホン酸ナトリウムジメチルイソフタル酸3.1部にそれぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-7を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を1モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-7 dispersible in aqueous solvent)
The polyester resin P dispersible in the aqueous solvent, except for changing to 161.4 parts of dimethyl terephthalic acid, 30.3 parts of dimethyl isophthalic acid, and 3.1 parts of sodium dimethylisophthalic acid, which are charged as acid components. A polyester resin P-7 dispersible in an aqueous solvent was obtained in the same manner as in Example-1. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin contains a dicarboxylic acid containing at least 1 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-8):比較
 酸成分として仕込むジメチルテレフタル酸130.4部、ジメチルイソフタル酸24.5部、5-スルホン酸ナトリウムジメチルイソフタル酸62.5部にそれぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-8を得た。得られたポリエステル樹脂のICP発光分析装置により解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を20モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-8 dispersible in aqueous solvent): Comparison Changed to 130.4 parts of dimethyl terephthalic acid, 24.5 parts of dimethyl isophthalic acid, and 62.5 parts of sodium dimethylisophthalic acid 5-sulfonate, which are charged as acid components Except that, polyester resin P-8 dispersible in aqueous solvent was obtained in the same manner as polyester resin P-1 dispersible in aqueous solvent. When the obtained polyester resin was analyzed by an ICP emission analyzer, it was confirmed that the polyester resin had a dicarboxylic acid containing at least 20 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. .
 (水系溶剤に分散可能なポリエステル樹脂P-9):比較
 酸成分として仕込むジメチルテレフタル酸161.7部、ジメチルイソフタル酸30.3部、5-スルホン酸ナトリウムジメチルイソフタル酸2.5部に、それぞれ変更すること以外は、前記水系溶剤に分散可能なポリエステル樹脂P-1と同様の方法で水系溶剤に分散可能なポリエステル樹脂P-9を得た。得られたポリエステル樹脂のICP発光分析装置より、解析したところ、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を0.8モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。
(Polyester resin P-9 dispersible in aqueous solvent): Comparison To 161.7 parts of dimethyl terephthalic acid, 30.3 parts of dimethyl isophthalic acid and 2.5 parts of sodium dimethyl isophthalic acid 5-sulfonate charged as acid components, respectively A polyester resin P-9 dispersible in an aqueous solvent was obtained in the same manner as the polyester resin P-1 dispersible in an aqueous solvent, except for the change. When the polyester resin was analyzed by an ICP emission analyzer of the obtained polyester resin, the polyester resin has a dicarboxylic acid containing at least 0.8 mol% of an aromatic dicarboxylic acid having a sulfonic acid group as a constituent component. It was confirmed.
 (水系溶剤に分散可能なポリエステル樹脂P-10):比較
 再公表特許WO2007/40208を参考に2,2-ビスヒドロキシメチルプロピオン酸ナトリウムを合成した。
 ジメチルテレフタル酸163.0部、ジメチルイソフタル酸30.6部、エチレングリコール99.3部、ジエチレングリコール21.2部、2,2-ビスヒドロキシメチルプロピオン酸ナトリウム23.6部、触媒(シュウ酸チタンカリウム)0.1部を用意した。
(Polyester resin P-10 dispersible in aqueous solvent): Comparison Sodium 2,2-bishydroxymethylpropionate was synthesized with reference to republished patent WO2007 / 40208.
163.0 parts dimethylterephthalic acid, 30.6 parts dimethylisophthalic acid, 99.3 parts ethylene glycol, 21.2 parts diethylene glycol, 23.6 parts sodium 2,2-bishydroxymethylpropionate, catalyst (potassium titanium oxalate) ) 0.1 part was prepared.
 これらの原料を反応器に入れて溶液を調製した。この溶液を常圧、窒素雰囲気中で撹拌混合しながら200℃に昇温した後、4時間かけて反応温度を260℃にまで徐々に昇温することで、エステル交換反応を完了させた。次に、この溶液を260℃の温度下で徐々に減圧し、260℃、0.67hPa(0.5mmHg)の条件下で2時間保持することで重縮合反応を進行させ、ポリエステル樹脂を得た。得られたポリエステル樹脂のH-NMR(プロトン核磁気共鳴)により、当該ポリエステル樹脂は、少なくともスルホン酸基を有する芳香族ジカルボン酸を0モル%の比率で含有するジカルボン酸を構成成分とすることを確認した。 These raw materials were put into a reactor to prepare a solution. This solution was heated to 200 ° C. while stirring and mixing in a normal pressure and nitrogen atmosphere, and then the reaction temperature was gradually raised to 260 ° C. over 4 hours to complete the transesterification reaction. Next, this solution was gradually depressurized at a temperature of 260 ° C., and the polycondensation reaction was advanced by maintaining for 2 hours under the conditions of 260 ° C. and 0.67 hPa (0.5 mmHg) to obtain a polyester resin. . According to 1 H-NMR (proton nuclear magnetic resonance) of the obtained polyester resin, the polyester resin is composed of a dicarboxylic acid containing at least 0 mol% of an aromatic dicarboxylic acid having a sulfonic acid group. It was confirmed.
 このポリエステル樹脂100部、水260部及びイソプロピルアルコール40部を、容器内に入れ、これらを撹拌しながら80~95℃の範囲内の温度下に2時間保持することで、ポリエステル樹脂濃度25%の水系溶剤に分散可能なポリエステル樹脂P-10を得た。 100 parts of this polyester resin, 260 parts of water and 40 parts of isopropyl alcohol are put in a container and kept at a temperature in the range of 80 to 95 ° C. for 2 hours with stirring, so that the polyester resin concentration is 25%. A polyester resin P-10 dispersible in an aqueous solvent was obtained.
 (水溶性ポリアクリル樹脂P-11):比較
 反応容器へMeOH500部を加え10分間加熱還流させた後、窒素下で室温に冷却した。アクリルアミド200部、アクリル酸ナトリウム34.3部、AIBN5.1部を加え、5時間加熱還流した。室温に冷却した後、3000部のメチルエチルケトン中に反応溶液を滴下し、1時間撹拌した。メチルエチルケトンをデカンテーション後、100部のメチルエチルケトンで3回洗浄後、純水でポリマーを溶解し、メスフラスコへ移した。純水を加え25%濃度とすることで水溶性ポリアクリル樹脂P-11を得た。
(Water-soluble polyacrylic resin P-11): Comparative 500 parts of MeOH was added to the reaction vessel, heated to reflux for 10 minutes, and then cooled to room temperature under nitrogen. 200 parts of acrylamide, 34.3 parts of sodium acrylate, and 5.1 parts of AIBN were added and heated to reflux for 5 hours. After cooling to room temperature, the reaction solution was added dropwise to 3000 parts of methyl ethyl ketone and stirred for 1 hour. After decantation of methyl ethyl ketone, the polymer was washed with 100 parts of methyl ethyl ketone three times, dissolved in pure water, and transferred to a volumetric flask. Water-soluble polyacrylic resin P-11 was obtained by adding pure water to a concentration of 25%.
 なお、表1及び表2中、バインダー樹脂の略称は以下のとおりである。
 R-150:ポリ(エチレンオキサイド) アルコックスR-150(明成化学工業社製、スルホン酸を含有しない)
In Tables 1 and 2, the abbreviations for the binder resins are as follows.
R-150: Poly (ethylene oxide) Alcox R-150 (manufactured by Meisei Chemical Co., Ltd., does not contain sulfonic acid)
 〔実施例1〕
 <導電性フィルムの製造方法>
 下記の手順で導電性フィルムを製造した。
[Example 1]
<Method for producing conductive film>
A conductive film was produced by the following procedure.
 (11)透明樹脂フィルム基材の作製
 (11.1)平滑層の形成
 厚さ100μmのポリエチレンテレフタレートフィルム(コスモシャインA4100、東洋紡績株式会社製)の下引き加工していない面に、JSR株式会社製UV硬化型有機/無機ハイブリッドハードコート材:OPSTAR Z7501を、塗布、乾燥後の平均厚さが4μmになるようにワイヤーバーで塗布した後、80℃で3分間乾燥させ、その後空気雰囲気下において高圧水銀ランプ使用して硬化条件1.0J/cmで硬化を行い、平滑層を形成した。
(11) Production of transparent resin film substrate (11.1) Formation of smooth layer JSR Corporation on the surface of 100 μm thick polyethylene terephthalate film (Cosmo Shine A4100, manufactured by Toyobo Co., Ltd.) UV curable organic / inorganic hybrid hard coating material: OPSTAR Z7501 was coated with a wire bar so that the average thickness after coating and drying was 4 μm, then dried at 80 ° C. for 3 minutes, and then in an air atmosphere Curing was performed under a curing condition of 1.0 J / cm 2 using a high-pressure mercury lamp to form a smooth layer.
 (11.2)ガスバリアー層の形成
 次に、上記平滑層を設けた試料基板上にガスバリアー層を以下に示す条件で、形成した。
(11.2) Formation of Gas Barrier Layer Next, a gas barrier layer was formed on the sample substrate provided with the smooth layer under the following conditions.
 (11.2.1)ガスバリアー層塗布液の塗布
 パーヒドロポリシラザン(PHPS、AZエレクトロニックマテリアルズ(株)製アクアミカ NN320)の20質量%ジブチルエーテル溶液をワイヤーバーにて、乾燥後の平均厚さが、0.30μmとなるように塗布し、塗布試料を得た。
(11.2.1) Application of gas barrier layer coating solution Average thickness after drying a 20% by weight dibutyl ether solution of perhydropolysilazane (PHPS, AQUAMICA NN320 manufactured by AZ Electronic Materials Co., Ltd.) with a wire bar However, it apply | coated so that it might become 0.30 micrometer, and the application | coating sample was obtained.
 (11.2.2)乾燥及び除湿処理
 <第一工程;乾燥処理>
 得られた塗布試料を温度85℃、湿度55%RHの雰囲気下で1分処理し、乾燥試料を得た。
 <第二工程;除湿処理>
 乾燥試料をさらに温度25℃、湿度10%RH(露点温度-8℃)の雰囲気下に10分間保持し、除湿処理を行った。
(11.2.2) Drying and dehumidifying treatment <First step; Drying treatment>
The obtained coated sample was treated for 1 minute in an atmosphere having a temperature of 85 ° C. and a humidity of 55% RH to obtain a dried sample.
<Second step; dehumidification treatment>
The dried sample was further dehumidified by being held for 10 minutes in an atmosphere at a temperature of 25 ° C. and a humidity of 10% RH (dew point temperature −8 ° C.).
 (11.2.3)改質処理
 除湿処理を行った試料を、下記の装置を用いて下記の条件で改質処理を行い、ガスバリアー層を形成した。改質処理時の露点温度は-8℃で実施した。
 <改質処理装置>
   株式会社エム・ディ・コム製エキシマ照射装置MODEL:MECL-M-1-200、波長172nm、ランプ封入ガス Xe
 <改質処理条件>
   エキシマ光強度 60mW/cm(172nm)
   試料と光源の距離 1mm
   ステージ加熱温度 70℃
   照射装置内の酸素濃度 1%
   エキシマ照射時間 3秒
 上記のようにしてガスバリアー性を有する透明樹脂フィルム基材を作製した。
(11.2.3) Modification Treatment The sample subjected to the dehumidification treatment was subjected to a modification treatment using the following apparatus under the following conditions to form a gas barrier layer. The dew point temperature during the reforming process was -8 ° C.
<Modification processing equipment>
Excimer irradiation equipment MODEL: MECL-M-1-200, wavelength 172 nm, lamp filled gas Xe
<Reforming treatment conditions>
Excimer light intensity 60 mW / cm 2 (172 nm)
1mm distance between sample and light source
Stage heating temperature 70 ℃
Oxygen concentration in irradiation device 1%
Excimer irradiation time 3 seconds A transparent resin film substrate having gas barrier properties was produced as described above.
 (12)ポリマー導電層の形成
 (12.1)ポリマー導電層形成用組成物の調製
 透明導電性高分子化合物 Clevios PH510(Heraeus社製 1.89%液)と、表1及び表2に記載の種類のバインダー樹脂とを、固形分質量比15:85で混合し、この混合物70質量部に、プロピレングリコール15質量部、エチレングリコールモノブチルエーテル12質量部を混合した後、水を加えて100質量部として、ポリマー導電層形成用組成物を調製した。
(12) Formation of Polymer Conductive Layer (12.1) Preparation of Polymer Conductive Layer-Forming Composition Transparent Conductive Polymer Compound Clevios PH510 (1.89% solution manufactured by Heraeus) and Table 1 and Table 2 Various types of binder resins were mixed at a solid content mass ratio of 15:85, and after mixing 70 parts by mass of this mixture with 15 parts by mass of propylene glycol and 12 parts by mass of ethylene glycol monobutyl ether, 100 parts by mass of water was added. A polymer conductive layer forming composition was prepared.
 (12.2)ポリマー導電層の塗設と乾燥処理
 ガスバリアー性を有する透明樹脂フィルム基材上に、前述のポリマー導電層形成用組成物を用いて、インクジェット印刷によりポリマー導電層を塗設した(図6C参照)。
 これを、表1及び表2に記載の乾燥法及び乾燥時間で乾燥処理して、ポリマー導電層を形成し、ポリマー導電層を有する「導電性フィルムサンプル101~155(表1及び表2のTC-101~TC-155)」を形成した。
 なお、インクジェット印刷は、インクジェットヘッド(コニカミノルタ社製)を取り付けた卓上型ロボット Shotmaster-300(武蔵エンジニアリング社製)を用い、インクジェット評価装置EB150(コニカミノルタ社製)にて制御した。
(12.2) Coating of polymer conductive layer and drying treatment On the transparent resin film substrate having gas barrier properties, the polymer conductive layer was coated by inkjet printing using the above-described composition for forming a polymer conductive layer. (See FIG. 6C).
This was dried by the drying method and drying time described in Table 1 and Table 2 to form a polymer conductive layer, and the “conductive film samples 101 to 155 (TCs in Tables 1 and 2) having the polymer conductive layer. −101 to TC-155) ”.
Inkjet printing was controlled by an inkjet evaluation apparatus EB150 (manufactured by Konica Minolta) using a desktop robot Shotmaster-300 (manufactured by Musashi Engineering) equipped with an ink jet head (manufactured by Konica Minolta).
 なお、表1及び表2中の乾燥法は、下記のとおりである。
   HP:ホットプレートによる伝導伝熱乾燥(MH-180CS、アズワン株式会社製)
   IR-1:赤外線ヒーターによる輻射伝熱乾燥(1000W/色温度2500K、ウシオ電機株式会社製)
   IR-2:赤外線ヒーターによる輻射伝熱乾燥(上記IR照射装置IR-1に、特許第4790092号を参考に、石英ガラス二重管内に空冷機構を有したもの、図3参照)
 なお、試料と赤外線ヒーターIR-1及びIR-2との距離は、100mmとした。
 また、表1及び表2中のHP温度は、ホットプレートの加熱温度(設定温度)である。
 また、表1及び表2中のフィラメント温度は、非接触式温度計(IR-AHS 株式会社チノー製)にて、タングステンフィラメントの放射率を0.39として測定し、表1及び表2の温度になるよう赤外線ヒーターの出力を調整した。
The drying methods in Tables 1 and 2 are as follows.
HP: Conductive heat transfer drying with hot plate (MH-180CS, manufactured by ASONE CORPORATION)
IR-1: Radiant heat transfer drying with an infrared heater (1000 W / color temperature 2500 K, manufactured by USHIO INC.)
IR-2: Radiation heat transfer drying with an infrared heater (the IR irradiation device IR-1 has an air cooling mechanism in a quartz glass double tube with reference to Japanese Patent No. 4790092, see FIG. 3)
The distance between the sample and the infrared heaters IR-1 and IR-2 was 100 mm.
The HP temperature in Tables 1 and 2 is the heating temperature (set temperature) of the hot plate.
The filament temperatures in Tables 1 and 2 were measured with a non-contact thermometer (IR-AHS manufactured by Chino Co., Ltd.) with the emissivity of the tungsten filament being 0.39. The output of the infrared heater was adjusted so that
 石英ガラスフィルターの赤外線透過率を図7に示す。
 石英ガラスフィルターの有無による分光放射輝度を図8に示す。
 図8中、点線部はフィルター無しの分光放射輝度を、実線部はフィルター有りの分光放射輝度をそれぞれ示しており、波長1μmからほぼ3μmまでの分光放射輝度はフィルターの有無にかかわらず同一である。
The infrared transmittance of the quartz glass filter is shown in FIG.
FIG. 8 shows the spectral radiance with and without the quartz glass filter.
In FIG. 8, the dotted line indicates the spectral radiance without the filter, and the solid line indicates the spectral radiance with the filter. The spectral radiance from the wavelength of 1 μm to almost 3 μm is the same regardless of the presence or absence of the filter. .
 表1及び表2中の波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率は、以下の方法により求めた。
 標準黒体炉(M390、Mikron社製)の温度を、測定した赤外線ヒーターのフィラメント温度に合わせ、FT-IR(FT/IR-4100、日本分光株式会社製)を用いて、標準黒体炉及び赤外線ヒーターの放射出力を、測定波数7800~350cm-1、分解能4cm-1、積算回数32回で測定し、赤外線ヒーターの分光放射率を求めた。
 次いで、プランクの放射測に従い、標準黒体炉と同温度における黒体放射スペクトルを求め、赤外線ヒーターの分光放射率を乗じて、赤外線ヒーターの分光放射スペクトルを得た。
 得られた赤外線ヒーターの分光放射スペクトルから、波長3.0μmにおける分光放射輝度の値と、波長5.8μmにおける分光放射輝度の値を読み取り、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率を、百分率で計算した。
The ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm in Table 1 and Table 2 was determined by the following method.
The temperature of the standard blackbody furnace (M390, manufactured by Mikron) was adjusted to the measured filament temperature of the infrared heater, and FT-IR (FT / IR-4100, manufactured by JASCO Corporation) was used. The radiation output of the infrared heater was measured at a measurement wave number of 7800 to 350 cm −1 , a resolution of 4 cm −1 , and the number of integrations of 32 times to obtain the spectral emissivity of the infrared heater.
Next, according to Planck's radiometry, a black body radiation spectrum at the same temperature as that of the standard black body furnace was obtained and multiplied by the spectral emissivity of the infrared heater to obtain a spectral radiation spectrum of the infrared heater.
The spectral radiance value at a wavelength of 3.0 μm and the spectral radiance value at a wavelength of 5.8 μm are read from the spectral radiation spectrum of the obtained infrared heater, and the wavelength of 5.8 μm with respect to the spectral radiance of a wavelength of 3.0 μm is read. The ratio of spectral radiance was calculated as a percentage.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (13)サンプルの評価
 導電性フィルムTC-101~155の特性(乾燥性、基材安定性、透明性、シート抵抗値、表面粗さ)を、サンプルごとに、下記のように評価した。結果は、表3及び表4に示す。
(13) Evaluation of Sample The characteristics (drying property, substrate stability, transparency, sheet resistance value, surface roughness) of the conductive films TC-101 to 155 were evaluated for each sample as follows. The results are shown in Tables 3 and 4.
 (13.1)乾燥性
 ポリマー導電層の塗膜の乾燥性について、塗膜表面を触診し、下記基準で評価した。
   ○:べたつきが無く、さらさらしている
   △:べたつきがある
   ×:塗膜が剥離し、溶媒が残っている
 評価基準:○と評価された試料が本発明として合格
(13.1) Drying property Regarding the drying property of the coating film of the polymer conductive layer, the surface of the coating film was palpated and evaluated according to the following criteria.
○: There is no stickiness, and it is dry. △: There is stickiness. ×: The coating film is peeled off and the solvent remains. Evaluation criteria: A sample evaluated as ○ passes the present invention.
 (13.2)基材変形(基材安定性)
 乾燥処理による透明樹脂フィルム基材のダメージ評価として、基材変形を下記基準で評価した。
   ○:変形無し
   △:僅かに反りがあるが、基板を自由に曲げられる
   ×:強い反りがあり、反りの部分で基板が曲がらない
 評価基準:○と評価された試料が本発明として合格
(13.2) Base material deformation (base material stability)
As a damage evaluation of the transparent resin film substrate due to the drying treatment, the substrate deformation was evaluated according to the following criteria.
○: No deformation Δ: Slightly warped, but the substrate can be bent freely ×: Strong warp, and the substrate does not bend at the warped portion Evaluation criteria: A sample evaluated as ○ passes the present invention.
 (13.3)透明性
 JIS K 7361-1:1997に準拠して、東京電色社製 HAZE METER NDH5000を用いて、全光線透過率を測定し、下記基準で評価した。導電性フィルムを有機電子素子として用いるためには、80%以上であることが好ましい。
   ○:80%以上
   △:75%以上80%未満
   ×:70%以上75%未満
 評価基準:強制劣化処理後に、○と評価された試料が本発明として合格
(13.3) Transparency Based on JIS K 7361-1: 1997, the total light transmittance was measured using HAZE METER NDH5000 manufactured by Tokyo Denshoku Co., Ltd., and evaluated according to the following criteria. In order to use a conductive film as an organic electronic device, it is preferably 80% or more.
○: 80% or more Δ: 75% or more and less than 80% ×: 70% or more and less than 75% Evaluation criteria: A sample evaluated as ○ after the forced deterioration treatment passes the present invention.
 (13.4)シート抵抗値(表面抵抗)
 JIS K 7194:1994に準拠して、抵抗率計(ロレスタGP(MCP-T610型):(株)三菱化学アナリテック社製)を用いてシート抵抗値を測定した。シート抵抗値は、強制劣化処理後に1000Ω/□以下であることが好ましく、有機電子素子を大面積にするには、強制劣化処理後に30Ω/□以下であることが好ましい。
 評価基準:強制劣化処理後に、1000Ω/□以下と評価された試料が本発明として合格
(13.4) Sheet resistance value (surface resistance)
Based on JIS K 7194: 1994, the sheet resistance value was measured using a resistivity meter (Loresta GP (MCP-T610 type): manufactured by Mitsubishi Chemical Analytech Co., Ltd.). The sheet resistance value is preferably 1000 Ω / □ or less after the forced deterioration treatment. In order to increase the area of the organic electronic device, the sheet resistance value is preferably 30 Ω / □ or less after the forced deterioration treatment.
Evaluation criteria: Samples evaluated as 1000Ω / □ or less after forced deterioration treatment pass the present invention.
 (13.5)表面粗さ(Ra)
 AFM(日立ハイテクサイエンス社製SPI3800Nプローブステーション及びSPA400多機能型ユニット)を使用し、約1cm角の大きさに切り取った試料を用いて、前記の方法(JIS B601(1994)に規定される表面粗さ(粗さ曲線の算術平均粗さ)に準ずる。)で測定した。
 評価基準:強制劣化処理後に、Ra≦10nmと評価された試料が本発明として合格
(13.5) Surface roughness (Ra)
Using an AFM (SPI3800N probe station and SPA400 multifunctional unit manufactured by Hitachi High-Tech Science Co., Ltd.) and using a sample cut into a size of about 1 cm square, the surface roughness defined in the above method (JIS B601 (1994)). (According to the arithmetic average roughness of the roughness curve).
Evaluation criteria: After forced deterioration treatment, a sample evaluated as Ra ≦ 10 nm passed the present invention.
 上記透明性、シート抵抗値及び表面粗さについては、下記強制劣化処理を行う前後にそれぞれ評価を行った。 The above-described transparency, sheet resistance value, and surface roughness were evaluated before and after the following forced deterioration treatment.
 (強制劣化処理)
 強制劣化処理として、TC-101~TC-155を80%RHの環境下で90℃14日間加熱した。
(Forced deterioration processing)
As a forced deterioration treatment, TC-101 to TC-155 were heated at 90 ° C. for 14 days in an environment of 80% RH.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (14)まとめ
 表3及び表4に示すとおり、本発明の赤外線を用いて乾燥を行った導電性フィルムのサンプルTC-127~TC-129、TC-132~TC-134、TC-137~TC-144、TC-150~TC-152及びTC-155は、比較例のサンプルTC-101~TC-126、TC-130、TC-131、TC-135、TC-136、TC-145~TC-149、TC-153及びTC-154に対して、塗膜の乾燥性、基材変形(基材安定性)、透明性、シート抵抗値及び表面粗さのいずれも優れていた。
(14) Summary As shown in Tables 3 and 4, conductive film samples TC-127 to TC-129, TC-132 to TC-134, TC-137 to TC dried using infrared rays of the present invention. -144, TC-150 to TC-152 and TC-155 are comparative samples TC-101 to TC-126, TC-130, TC-131, TC-135, TC-136, TC-145 to TC- 149, TC-153 and TC-154 were all excellent in coating film drying properties, substrate deformation (substrate stability), transparency, sheet resistance and surface roughness.
 〔実施例2〕
 実施例1の導電性フィルムの製造方法において、ガスバリアー性を有する透明樹脂フィルム基材上のガスバリアー面に、以下の方法で金属導電層を形成し、当該金属導電層の上にポリマー導電層の形成したほかは、実施例1の導電性フィルムの製造方法と同様にして金属導電層を有する導電性フィルムTC-201~TC-256を製造した。なお、導電性フィルムTC-201~TC-256の製造において、バインダー樹脂、導電性高分子化合物、金属導電層、乾燥法、HP温度、フィラメント温度、分光放射輝度の比率及び乾燥時間は表5及び表6のようにした。
[Example 2]
In the method for producing a conductive film of Example 1, a metal conductive layer is formed on a gas barrier surface on a transparent resin film substrate having gas barrier properties by the following method, and a polymer conductive layer is formed on the metal conductive layer. Except for the formation of, conductive films TC-201 to TC-256 having a metal conductive layer were manufactured in the same manner as the conductive film manufacturing method of Example 1. In the production of the conductive films TC-201 to TC-256, the binder resin, conductive polymer compound, metal conductive layer, drying method, HP temperature, filament temperature, spectral radiance ratio and drying time are shown in Table 5 and Table 6 was used.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 (21)金属導電層の形成
 [銀(Ag)細線]
 透明樹脂フィルム基材のガスバリアー層のない面に、グラビア印刷試験機K303MULTICOATER(RK Print Coat Instruments Ltd製)を用い、銀ナノインク(TEC-PR-030:Inktec社製)を、50μm幅、1mmピッチのメッシュパターンにて印刷し、金属細線パターンからなる金属導電層(表5及び表6に記載のAg細線)を形成した(図6B参照)。これを、120℃、30分の熱処理を行った。
(21) Formation of metal conductive layer [Silver (Ag) fine wire]
Using a gravure printing tester K303MULTICOATER (manufactured by RK Print Coat Instruments Ltd) on the surface of the transparent resin film base without a gas barrier layer, silver nano ink (TEC-PR-030: manufactured by Inktec) is 50 μm wide, 1 mm pitch The metal conductive layer (Ag thin line of Table 5 and Table 6) which consists of a metal fine line pattern was formed (refer FIG. 6B). This was heat-treated at 120 ° C. for 30 minutes.
 [銅メッシュ基板]
 透明樹脂フィルム基材のガスバリアー層のない面に、金属導電層として、下記の方法により、銅メッシュを作製し、後述の金属微粒子除去液BFによるパターンニングを行い、銅(銅)メッシュ基板を作製した。
 パラジウムナノ粒子を含有する森村ケミカル社製の触媒インクJIPD-7を用い、それにCabot製の自己分散タイプカーボンブラック溶液CAB-O-JET300を、触媒インクに対するカーボンブラック比率が10.0質量%になるように添加し、更にサーフィノール465(日信化学工業株式会社)を添加して、25℃における表面張力が48mN/mである導電性インクを調製した。
 導電性インクを、インクジェット記録ヘッドとして、圧力印加手段と電界印加手段とを有し、ノズル口径25μm、駆動周波数12kHz、ノズル数128、ノズル密度180dpi(dpiとは1インチ、即ち2.54cm当たりのドット数を表す)のピエゾ型ヘッドを搭載したインクジェットプリント装置に装填し、基材上に線幅10μm、乾燥後の膜厚0.5μm、線間隔300μmの格子状の導電性メッシュを形成した後、乾燥した。
 次いで、メルテックス社製の高速無電解銅メッキ液CU-5100を用い、温度55℃で10分間浸漬した後、洗浄して、無電解メッキ処理を施して、メッキ厚3μmの金属導電層を作製した。
[Copper mesh substrate]
On the surface of the transparent resin film substrate without the gas barrier layer, a copper mesh is prepared as a metal conductive layer by the following method, and patterned with a metal fine particle removing liquid BF, which will be described later, to form a copper (copper) mesh substrate. Produced.
The catalyst ink JISD-7 manufactured by Morimura Chemical Co. containing palladium nanoparticles is used, and the CAB-O-JET300 self-dispersion type carbon black solution manufactured by Cabot is used, and the carbon black ratio to the catalyst ink becomes 10.0% by mass. Then, Surfynol 465 (Nisshin Chemical Industry Co., Ltd.) was further added to prepare a conductive ink having a surface tension at 25 ° C. of 48 mN / m.
Conductive ink as an ink jet recording head has a pressure applying means and an electric field applying means, and has a nozzle diameter of 25 μm, a driving frequency of 12 kHz, a number of nozzles of 128, a nozzle density of 180 dpi (dpi is 1 inch, ie, 2.54 cm After a grid-shaped conductive mesh having a line width of 10 μm, a dried film thickness of 0.5 μm, and a line interval of 300 μm is formed on the base material , Dried.
Next, using a high-speed electroless copper plating solution CU-5100 manufactured by Meltex, soaked at a temperature of 55 ° C. for 10 minutes, washed and electroless-plated to produce a metal conductive layer having a plating thickness of 3 μm. did.
 〈金属微粒子除去液BFの作製〉
 エチレンジアミン4酢酸第2鉄アンモニウム 60g
 エチレンジアミン4酢酸 2g
 メタ重亜硫酸ナトリウム 15g
 チオ硫酸アンモニウム 70g
 マレイン酸 5g
 純水で1Lに仕上げ、硫酸又はアンモニア水でpHを5.5(室温)に調整後、カルボキシメチルセルロースナトリウム(SIGMA-ALDRICH社製;C5013)で粘度が10Pa・s(10000cP)に調整し、金属微粒子除去液BFを調製した。
<Preparation of metal fine particle removal liquid BF>
Ethylenediaminetetraacetic acid ferric ammonium 60g
Ethylenediaminetetraacetic acid 2g
Sodium metabisulfite 15g
70g ammonium thiosulfate
Maleic acid 5g
After finishing to 1 L with pure water and adjusting the pH to 5.5 (room temperature) with sulfuric acid or ammonia water, the viscosity is adjusted to 10 Pa · s (10000 cP) with sodium carboxymethylcellulose (manufactured by SIGMA-ALDRICH; C5013) A fine particle removing liquid BF was prepared.
 (22)サンプルの評価
 導電性フィルムTC-201~TC-256について特性(乾燥性、基材変形(基材安定性)、透明性、シート抵抗値及び表面粗さ)を、それぞれ実施例1と同様の方法で評価した。結果は表7及び表8に示す。
(22) Evaluation of sample The conductive films TC-201 to TC-256 have characteristics (drying property, base material deformation (base material stability), transparency, sheet resistance value, and surface roughness) as in Example 1. Evaluation was made in the same manner. The results are shown in Tables 7 and 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 (23)まとめ
 表7及び表8に示すとおり、本発明の赤外線を用いて乾燥を行った導電性フィルムのサンプルTC-227~TC-229、TC-232~TC-234、TC-237~TC-246、TC-252~TC-254は、比較例のサンプルTC-201~TC-226、TC-230、TC-231、TC-235、TC-236、TC-247~TC-251、TC-255、TC-256に対して、塗膜の乾燥性、基材安定性、透明性、シート抵抗値及び表面粗さのいずれも優れていた。
(23) Summary As shown in Tables 7 and 8, conductive film samples TC-227 to TC-229, TC-232 to TC-234, and TC-237 to TC dried using infrared rays of the present invention. -246, TC-252 to TC-254 are comparative samples TC-201 to TC-226, TC-230, TC-231, TC-235, TC-236, TC-247 to TC-251, TC- With respect to 255 and TC-256, all of the drying property, substrate stability, transparency, sheet resistance value, and surface roughness of the coating film were excellent.
 〔実施例3〕
 下記のようにして、有機電子素子として有機EL素子OEL-301~OEL-356を製造した。
 (31)有機EL素子(サンプル)の作製
 実施例2で作製した導電性フィルムTC-201~TC-256を用いて、以下の方法で、それぞれ対応する有機EL素子のサンプルOEL-301~OEL-356を作製した。
Example 3
Organic EL elements OEL-301 to OEL-356 were manufactured as organic electronic elements as described below.
(31) Production of Organic EL Element (Sample) Using the conductive films TC-201 to TC-256 produced in Example 2, the corresponding organic EL element samples OEL-301 to OEL- 356 was produced.
 (31.1)有機機能層の形成
 透明電極上に、下記のようにして、有機機能層(正孔輸送層、発光層、正孔阻止層、電子輸送層)を形成した。
 有機機能層は蒸着により形成した。市販の真空蒸着装置内の蒸着用るつぼの各々に、各層の構成材料を各々素子作製に最適の量を充填した。蒸着用るつぼは、モリブデン製又はタングステン製の抵抗加熱用材料で作製されたものを用いた。
(31.1) Formation of organic functional layer On the transparent electrode, an organic functional layer (a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer) was formed as follows.
The organic functional layer was formed by vapor deposition. Each of the vapor deposition crucibles in a commercially available vacuum vapor deposition apparatus was filled with the optimum amount of the constituent material of each layer for device fabrication. As the evaporation crucible, a crucible made of a resistance heating material made of molybdenum or tungsten was used.
 (31.1.1)正孔輸送層の形成
 真空度1×10-4Paまで減圧した後、下記化合物1の入った前記蒸着用るつぼに通電して加熱し、蒸着速度0.1nm/秒で透明電極上に蒸着し、厚さ30nmの正孔輸送層を設けた(図6D参照)。
(31.1.1) Formation of hole transport layer After reducing the pressure to 1 × 10 −4 Pa, the deposition crucible containing the following compound 1 was energized and heated, and the deposition rate was 0.1 nm / second. Was deposited on the transparent electrode to provide a hole transport layer having a thickness of 30 nm (see FIG. 6D).
 (31.1.2)発光層の形成
 次に、以下の手順で発光層を設けた。
 形成した正孔輸送層上に、下記化合物2が13質量%、下記化合物3が3.7質量%、下記化合物5が83.3質量%の濃度になるように、化合物2、化合物3及び化合物5を蒸着速度0.1nm/秒で共蒸着し、発光極大波長が622nm、厚さ10nmの緑赤色リン光発光層を形成した(図6D参照)。
 次いで、下記化合物4が10.0質量%、化合物5が90.0質量%の濃度になるように、化合物4及び化合物5を蒸着速度0.1nm/秒で共蒸着し、発光極大波長が471nm、厚さ15nmの青色リン光発光層を形成した(図6D参照)。
(31.1.2) Formation of light emitting layer Next, the light emitting layer was provided in the following procedure.
On the formed hole transport layer, Compound 2, Compound 3 and Compound 2 so that the following Compound 2 has a concentration of 13% by mass, the following Compound 3 is 3.7% by mass, and the following Compound 5 is 83.3% by mass. 5 was co-evaporated at a deposition rate of 0.1 nm / second to form a green-red phosphorescent layer having a maximum emission wavelength of 622 nm and a thickness of 10 nm (see FIG. 6D).
Subsequently, the compound 4 and the compound 5 were co-deposited at a deposition rate of 0.1 nm / second so that the following compound 4 had a concentration of 10.0% by mass and the compound 5 had a concentration of 90.0% by mass, and the emission maximum wavelength was 471 nm. A blue phosphorescent layer having a thickness of 15 nm was formed (see FIG. 6D).
 (31.1.3)正孔阻止層の形成
 さらに、形成した発光層上に、下記化合物6を蒸着し、厚さ5nmの正孔阻止層を形成した(図6D参照)。
(31.1.3) Formation of hole blocking layer Furthermore, the following compound 6 was vapor-deposited on the formed light emitting layer to form a hole blocking layer having a thickness of 5 nm (see FIG. 6D).
 (31.1.4)電子輸送層の形成
 引き続き、形成した正孔阻止層上に、CsFを層厚比で10%になるように化合物6と共蒸着し、厚さ45nmの電子輸送層を形成した(図6D参照)。
(31.1.4) Formation of Electron Transport Layer Subsequently, CsF was co-deposited with Compound 6 so that the layer thickness ratio was 10% on the formed hole blocking layer, and an electron transport layer having a thickness of 45 nm was formed. Formed (see FIG. 6D).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 (31.2)陰極の形成
 形成した電子輸送層の上に、陽極部用外部取り出し端子及び陰極形成用材料として、Alを5×10-4Paの真空下にてマスク蒸着し、厚さ100nmの陰極部を形成した。
 (31.3)封止膜の形成
 陽極部及び陰極部の外部取り出し端子が形成できるように、端部を除き陰極部の周囲に接着剤を塗り、ポリエチレンテレフタレート樹脂フィルム上にAlを厚さ300nmで蒸着した可撓性封止部材を貼合した後、熱処理で接着剤を硬化させ封止膜を形成し、有機EL素子OEL-301~OEL-356を作製した。
 接着剤として、2液性エポキシ配合樹脂(スリーボンド社製)2016Bと2103とを100:3の割合で配合したものを用いた。
(31.2) Formation of cathode On the formed electron transport layer, Al was vacuum-deposited under a vacuum of 5 × 10 −4 Pa as an external lead-out terminal for the anode part and a cathode forming material, and the thickness was 100 nm. The cathode part was formed.
(31.3) Formation of sealing film Adhesive is applied to the periphery of the cathode portion except for the ends so that the external lead terminals of the anode portion and the cathode portion can be formed, and Al 2 O 3 is coated on the polyethylene terephthalate resin film. After bonding a flexible sealing member deposited to a thickness of 300 nm, the adhesive was cured by heat treatment to form a sealing film, and organic EL elements OEL-301 to OEL-356 were produced.
As the adhesive, a two-component epoxy compounded resin (manufactured by Three Bond Co., Ltd.) 2016B and 2103 was blended at a ratio of 100: 3.
 形成した電子輸送層を、ポリエチレンテレフタレートを基材とし、Alを厚さ300nmで蒸着した可撓性封止部材で封止した(図6F参照)。具体的には、接着剤を塗り、可撓性封止部材を貼合した後、熱処理で接着剤を硬化させて封止した。封止部材の外に出たポリマー導電層及びAlを、それぞれ透明電極(陽極、アノード)及び陰極(カソード)の外部取り出し端子とし、「有機EL素子OEL-301~OEL-356」を作製した。 The formed electron transport layer was sealed with a flexible sealing member in which polyethylene terephthalate was used as a base material and Al 2 O 3 was deposited in a thickness of 300 nm (see FIG. 6F). Specifically, after applying an adhesive and pasting a flexible sealing member, the adhesive was cured by heat treatment and sealed. “Organic EL elements OEL-301 to OEL-356” were prepared by using the polymer conductive layer and Al that had come out of the sealing member as external extraction terminals of the transparent electrode (anode, anode) and cathode (cathode), respectively.
 (32)有機EL素子OEL-301~OEL-356の評価
 有機EL素子OEL-301~OEL-356の特性として、発光均一性(発光ムラ)、発光寿命を、それぞれ下記のように評価した。
(32) Evaluation of organic EL elements OEL-301 to OEL-356 As characteristics of the organic EL elements OEL-301 to OEL-356, the light emission uniformity (light emission unevenness) and the light emission lifetime were evaluated as follows.
 (32.1)発光均一性
 発光均一性は、KEITHLEY製ソースメジャーユニット2400型を用いて、直流電圧を有機EL素子に印加し発光させた。1000cd/mで発光させた有機EL素子OEL-301~OEL-356について、50倍の顕微鏡で各々の発光輝度ムラを観察した。また、有機EL素子OEL-301~OEL-356をオーブンにて60%RH、80℃2時間加熱したのち、再び前記23±3℃、55±3%RHの環境下で1時間以上調湿した(強制劣化処理)後、同様に発光均一性を観察した。
   ◎:完全に均一発光しており、申し分ない
   ○:ほとんど均一発光しており、問題ない
   △:部分的に若干発光ムラが見られるが、許容できる
   ×:全面にわたって発光ムラが見られ、許容できない
 評価基準:強制劣化処理後、◎、○と評価された試料が本発明として合格
(32.1) Luminescence uniformity The luminescence uniformity was obtained by applying a direct current voltage to the organic EL element using a KEITHLEY source measure unit 2400 type. Regarding the organic EL elements OEL-301 to OEL-356 that emitted light at 1000 cd / m 2 , each light emission luminance unevenness was observed with a 50 × microscope. In addition, the organic EL elements OEL-301 to OEL-356 were heated in an oven at 60% RH and 80 ° C. for 2 hours, and then conditioned again in the environment of 23 ± 3 ° C. and 55 ± 3% RH for 1 hour or more. After (forced deterioration treatment), the emission uniformity was observed in the same manner.
A: Completely uniform light emission, satisfactory O: Almost uniform light emission, no problem Δ: Some light emission unevenness is observed partially, but acceptable X: Light emission unevenness is observed over the entire surface, not acceptable Evaluation criteria: After forced deterioration treatment, samples evaluated as ◎ and ○ pass as the present invention.
 (32.2)発光寿命
 得られた有機EL素子の、初期の輝度を5000cd/mで連続発光させて、電圧を固定して、輝度が半減するまでの時間を求めた。アノード電極をITOとした有機EL素子を上記と同様の方法で作製し、これに対する比率を求め、以下の基準で評価した。発光寿命は、100%以上が好ましく、150%以上であることがより好ましい。
   ◎:150%以上
   ○:100%以上150%未満
   △:80%以上100%未満
   ×:80%未満
(32.2) Luminous lifetime The obtained organic EL device was continuously emitted at an initial luminance of 5000 cd / m 2 , the voltage was fixed, and the time until the luminance was reduced by half was determined. An organic EL element having an anode electrode made of ITO was produced by the same method as described above, the ratio to this was determined, and evaluated according to the following criteria. The light emission lifetime is preferably 100% or more, and more preferably 150% or more.
◎: 150% or more ○: 100% or more and less than 150% △: 80% or more and less than 100% ×: less than 80%
 評価の結果を表9及び表10に示す。表9及び表10において、備考における「本発明」は本発明の実施例に該当することを表し、「比較」は比較例であることを表す。また、実施例3における強制劣化処理の条件は、実施例1、2と同一である。 Evaluation results are shown in Table 9 and Table 10. In Tables 9 and 10, “present invention” in the remarks indicates that it corresponds to an example of the present invention, and “comparison” indicates that it is a comparative example. Further, the conditions for forced deterioration processing in the third embodiment are the same as those in the first and second embodiments.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 (33)まとめ
 表9及び表10から、比較例の有機EL素子OEL-301~OEL-326、OEL-330、OEL-331、OEL-335、OEL-336、OEL-347~OEL-351、OEL-355、OEL-356は、強制劣化処理後、発光均一性が著しく劣化して寿命も短いのに対し、本発明の有機EL素子OEL-327~OEL-329、OEL-332~OEL-334、OEL-337~OEL-346、OEL-352~OEL-354は、加熱後でも発光均一性が安定しており耐久性に優れる(高寿命である)ことが分かる。
(33) Summary From Tables 9 and 10, organic EL elements OEL-301 to OEL-326, OEL-330, OEL-331, OEL-335, OEL-336, OEL-347 to OEL-351, OEL of comparative examples are shown. -355 and OEL-356, after the forced deterioration treatment, the light emission uniformity is significantly deteriorated and the lifetime is short, whereas the organic EL elements OEL-327 to OEL-329, OEL-332 to OEL-334 of the present invention, It can be seen that OEL-337 to OEL-346 and OEL-352 to OEL-354 have stable emission uniformity and excellent durability (high life) even after heating.
 〔実施例4〕
 <タッチパネルの作製>
 実施例1、2で作製した導電性フィルムTC-101~TC-155、TC-201~TC-256を用いて、図9に示すタッチパネル101を以下の方法で組み立てた。
Example 4
<Production of touch panel>
Using the conductive films TC-101 to TC-155 and TC-201 to TC-256 produced in Examples 1 and 2, the touch panel 101 shown in FIG. 9 was assembled by the following method.
 <タッチパネルの組立方法>
 図9に示すように、タッチパネル101は、下部電極110と、上部電極120と、これらの間に設けられた熱硬化タイプドットスペーサ130と、を備える。下部電極110は、タッチパネル用ガラスITO(スパッタリング成膜品)であって、タッチパネル用ガラス111と、当該タッチパネル用ガラス111上に設けられたITO膜112と、を備える。上部電極120は、前記した実施例における導電性フィルムTC-101~TC-155、TC-201~TC-256のいずれかを有するものであり、透明樹脂フィルム基材121と、ポリマー導電層122と、を備える。そして、下部電極110のITO膜112と上部電極120のポリマー導電層122とを向かい合わせにし、熱硬化タイプドットスペーサ130を介在させて7μmの間隔を空けてパネル化することによって、タッチパネル101を組み立てた。
<Assembly method of touch panel>
As illustrated in FIG. 9, the touch panel 101 includes a lower electrode 110, an upper electrode 120, and a thermosetting type dot spacer 130 provided therebetween. The lower electrode 110 is a touch panel glass ITO (sputtering film product), and includes a touch panel glass 111 and an ITO film 112 provided on the touch panel glass 111. The upper electrode 120 has any one of the conductive films TC-101 to TC-155 and TC-201 to TC-256 in the above-described embodiments, and includes a transparent resin film substrate 121, a polymer conductive layer 122, . Then, the touch panel 101 is assembled by making the ITO film 112 of the lower electrode 110 and the polymer conductive layer 122 of the upper electrode 120 face each other and interposing a thermosetting type dot spacer 130 to form a panel with an interval of 7 μm. It was.
 組み立てたタッチパネル101の上部電極120及び下部電極110に抵抗測定機を取り付け、タッチパネル101の中央を手で押し、抵抗値を1000回測定した。その結果、本発明の導電性フィルムTC-127~TC-129、TC-132~TC-134、TC-137~TC-144、TC-150~TC-152、TC-227~TC-229、TC-232~TC-234、TC-237~TC-246、TC-252~TC-254を有するタッチパネル101よりも、比較の導電性フィルムTC-101~TC-126、TC-130、TC-131、TC-135、TC-136、TC-145~TC-149、TC-153、TC-154、TC-201~TC-226、TC-230、TC-231、TC-235、TC-236、TC-247~TC-251、TC-255、TC-256を有するタッチパネル101の方が、抵抗値の低下が経時で大きいことが確認された。 The resistance measuring machine was attached to the upper electrode 120 and the lower electrode 110 of the assembled touch panel 101, the center of the touch panel 101 was pushed by hand, and the resistance value was measured 1000 times. As a result, the conductive films TC-127 to TC-129, TC-132 to TC-134, TC-137 to TC-144, TC-150 to TC-152, TC-227 to TC-229, TC of the present invention. Compared to the touch panel 101 having -232 to TC-234, TC-237 to TC-246, and TC-252 to TC-254, the conductive films TC-101 to TC-126, TC-130, TC-131, TC-135, TC-136, TC-145 to TC-149, TC-153, TC-154, TC-201 to TC-226, TC-230, TC-231, TC-235, TC-236, TC- It was confirmed that the resistance value of the touch panel 101 having 247 to TC-251, TC-255, and TC-256 is greatly decreased over time.
 以上のように、本発明は、基材変形を抑制するとともに透明性、導電性及び表面粗さに優れた導電性フィルムの製造方法及び導電性フィルムを提供することに適している。
 また、本発明は、上記製造方法で作製された導電性フィルムを有機電子素子及びタッチパネルに備えさせることで、発光均一性及び寿命に優れた有機電子素子及びタッチパネルを提供することに適している。
As described above, the present invention is suitable for providing a method for producing a conductive film and a conductive film that are excellent in transparency, conductivity, and surface roughness while suppressing deformation of the substrate.
Moreover, this invention is suitable for providing the organic electronic element and touch panel which were excellent in the light emission uniformity and lifetime by providing an organic electronic element and a touch panel with the electroconductive film produced with the said manufacturing method.
 1     導電性フィルム
 2     透明樹脂フィルム基材
 3     ポリマー導電層
 4     金属導電層
 20    赤外線ヒーター
 22    フィラメント
 24    保護管
 26、28 フィルター
 30    中空部
 32    反射板
 40    冷却機構
 45    制御装置
 50    素子
 51    導電性フィルム
 52    透明樹脂フィルム基材
 53    取出電極
 54    金属導電層
 55    ポリマー導電層
 56    有機機能層
 57    対電極
 101   タッチパネル
 110   下部電極
 112   ITO膜
 120   上部電極
 121   透明樹脂フィルム基材
 122   ポリマー導電層
DESCRIPTION OF SYMBOLS 1 Conductive film 2 Transparent resin film base material 3 Polymer conductive layer 4 Metal conductive layer 20 Infrared heater 22 Filament 24 Protection tube 26, 28 Filter 30 Hollow part 32 Reflector 40 Cooling mechanism 45 Control device 50 Element 51 Conductive film 52 Transparent Resin film substrate 53 Extraction electrode 54 Metal conductive layer 55 Polymer conductive layer 56 Organic functional layer 57 Counter electrode 101 Touch panel 110 Lower electrode 112 ITO film 120 Upper electrode 121 Transparent resin film substrate 122 Polymer conductive layer

Claims (5)

  1.  透明樹脂フィルム基材上に、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有する導電性フィルムの製造方法であって、
     少なくとも下記ステップ(A)及びステップ(B)を有し、かつ、
     前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、
     下記ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を行うことを特徴とする導電性フィルムの製造方法。
     ステップ(A):前記導電性高分子化合物と前記ポリエステル樹脂とを含有する水系分散液を前記透明樹脂フィルム基材上に塗布するステップ
     ステップ(B):前記透明樹脂フィルム基材上に塗布した前記水系分散液に対して、前記赤外線の照射を行うことによって前記ポリマー導電層を形成するステップ
    A method for producing a conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate,
    At least the following steps (A) and (B):
    The polyester resin contains a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio within a range of 1 to 15 mol%, and further,
    In the following step (B), the method for producing a conductive film is characterized by performing infrared irradiation in which the ratio of the spectral radiance at a wavelength of 5.8 μm to the spectral radiance at a wavelength of 3.0 μm is 5% or less.
    Step (A): A step of applying an aqueous dispersion containing the conductive polymer compound and the polyester resin on the transparent resin film substrate Step (B): The step of applying on the transparent resin film substrate Forming the polymer conductive layer by irradiating the aqueous dispersion with the infrared rays;
  2.  前記透明樹脂フィルム基材上に、あらかじめ少なくともガスバリアー層を備えることを特徴とする請求項1に記載の導電性フィルムの製造方法。 The method for producing a conductive film according to claim 1, wherein at least a gas barrier layer is provided in advance on the transparent resin film substrate.
  3.  透明樹脂フィルム基材上に、少なくとも導電性高分子化合物とポリエステル樹脂とを含有するポリマー導電層を有する導電性フィルムであって、
     少なくとも下記ステップ(A)及びステップ(B)を経て製造され、かつ
     前記ポリエステル樹脂が、少なくともスルホン酸基を有する芳香族ジカルボン酸を1~15モル%の範囲内の比率で含有するジカルボン酸を構成成分とするものであり、さらに、
     当該ステップ(B)では、波長3.0μmの分光放射輝度に対する波長5.8μmの分光放射輝度の比率が、5%以下である赤外線の照射を施されたことを特徴とする導電性フィルム。
     ステップ(A):前記導電性高分子化合物と前記ポリエステル樹脂とを含有する水系分散液を前記透明樹脂フィルム基材上に塗布するステップ
     ステップ(B):前記透明樹脂フィルム基材上に塗布した前記水系分散液に対して、前記赤外線の照射を行うことによって前記ポリマー導電層を形成するステップ
    A conductive film having a polymer conductive layer containing at least a conductive polymer compound and a polyester resin on a transparent resin film substrate,
    The polyester resin is produced through at least the following steps (A) and (B), and comprises a dicarboxylic acid containing at least an aromatic dicarboxylic acid having a sulfonic acid group in a ratio in the range of 1 to 15 mol%. Ingredients, and
    In the step (B), a conductive film characterized by being irradiated with infrared rays having a ratio of the spectral radiance of a wavelength of 5.8 μm to the spectral radiance of a wavelength of 3.0 μm of 5% or less.
    Step (A): A step of applying an aqueous dispersion containing the conductive polymer compound and the polyester resin on the transparent resin film substrate Step (B): The step of applying on the transparent resin film substrate Forming the polymer conductive layer by irradiating the aqueous dispersion with the infrared rays;
  4.  請求項1若しくは請求項2に記載の導電性フィルムの製造方法によって製造された導電性フィルム又は請求項3に記載の導電性フィルムを電極として備えていることを特徴とする有機電子素子。 An organic electronic device comprising a conductive film produced by the method for producing a conductive film according to claim 1 or 2 or the conductive film according to claim 3 as an electrode.
  5.  請求項1若しくは請求項2に記載の導電性フィルムの製造方法によって製造された導電性フィルム又は請求項3に記載の導電性フィルムを電極として備えていることを特徴とするタッチパネル。 A touch panel comprising a conductive film produced by the method for producing a conductive film according to claim 1 or 2 or the conductive film according to claim 3 as an electrode.
PCT/JP2014/082514 2013-12-16 2014-12-09 Method for producing conductive film, conductive film, organic electronic element and touch panel WO2015093342A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015553489A JPWO2015093342A1 (en) 2013-12-16 2014-12-09 Manufacturing method of conductive film, conductive film, organic electronic device, and touch panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013259156 2013-12-16
JP2013-259156 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015093342A1 true WO2015093342A1 (en) 2015-06-25

Family

ID=53402691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082514 WO2015093342A1 (en) 2013-12-16 2014-12-09 Method for producing conductive film, conductive film, organic electronic element and touch panel

Country Status (2)

Country Link
JP (1) JPWO2015093342A1 (en)
WO (1) WO2015093342A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243460A (en) * 2011-05-17 2012-12-10 Teijin Dupont Films Japan Ltd Conductive film
JP2013131319A (en) * 2011-12-20 2013-07-04 Konica Minolta Inc Transparent conductive film, organic electroluminescent element and manufacturing method of transparent conductive film
WO2013111511A1 (en) * 2012-01-23 2013-08-01 日本碍子株式会社 Drying method and coating film drying furnace for coating film formed on pet film surface

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012243460A (en) * 2011-05-17 2012-12-10 Teijin Dupont Films Japan Ltd Conductive film
JP2013131319A (en) * 2011-12-20 2013-07-04 Konica Minolta Inc Transparent conductive film, organic electroluminescent element and manufacturing method of transparent conductive film
WO2013111511A1 (en) * 2012-01-23 2013-08-01 日本碍子株式会社 Drying method and coating film drying furnace for coating film formed on pet film surface

Also Published As

Publication number Publication date
JPWO2015093342A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
JP5987843B2 (en) Composition for forming transparent electrode, transparent electrode, organic electronic device, and method for producing transparent electrode
JP5888084B2 (en) Transparent electrode for organic electronic device, method for producing transparent electrode for organic electronic device, and organic electronic device
JP6020554B2 (en) Conductive film and organic electroluminescence device
WO2016147481A1 (en) Transparent electrode, method for manufacturing transparent electrode, and organic electroluminescence element
JP6319090B2 (en) Manufacturing method of transparent electrode
JP5761058B2 (en) Method for producing transparent conductive film and organic electroluminescence element
JP6024351B2 (en) Conductive film, organic electroluminescence element, and method of manufacturing conductive film
WO2014034920A1 (en) Transparent electrode, method for producing same and organic electronic device
JP5655745B2 (en) Transparent electrode and organic electroluminescence device
WO2013061967A1 (en) Transparent conductive film and organic electroluminescent element
JP2014229397A (en) Method for manufacturing electroconductive film, electroconductive film, organic electronic element, and touch panel
JP5782855B2 (en) Transparent electrode and organic electroluminescence device
JP5949494B2 (en) Coating liquid, conductive film manufacturing method and organic electroluminescence element manufacturing method
JP6003582B2 (en) Manufacturing method of transparent electrode
JP5903874B2 (en) Transparent conductive film, organic electroluminescent element, and method for producing transparent conductive film
US10103347B2 (en) Transparent electrode, method for manufacturing same, and organic electroluminescent element
JP6015764B2 (en) Transparent conductive film and organic electroluminescence device
JP2016110769A (en) Production method of transparent electrode, transparent electrode, production apparatus of transparent electrode, electronic equipment
JP5884671B2 (en) Transparent conductive film, organic electroluminescent element, and method for producing transparent conductive film
JP5834954B2 (en) Transparent conductive film and organic electroluminescence device
WO2015093342A1 (en) Method for producing conductive film, conductive film, organic electronic element and touch panel
JP2012138311A (en) Transparent conductive film substrate and organic electroluminescent element
JP2012243401A (en) Transparent conductive film and organic electroluminescent element
JP5831303B2 (en) Transparent conductive film and organic electroluminescence device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872536

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553489

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872536

Country of ref document: EP

Kind code of ref document: A1