WO2015093223A1 - 光変調素子 - Google Patents

光変調素子 Download PDF

Info

Publication number
WO2015093223A1
WO2015093223A1 PCT/JP2014/080758 JP2014080758W WO2015093223A1 WO 2015093223 A1 WO2015093223 A1 WO 2015093223A1 JP 2014080758 W JP2014080758 W JP 2014080758W WO 2015093223 A1 WO2015093223 A1 WO 2015093223A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
phase modulation
modulation amount
optical device
electrodes
Prior art date
Application number
PCT/JP2014/080758
Other languages
English (en)
French (fr)
Inventor
綾乃 田辺
松本 健志
正史 横山
信幸 橋本
栗原 誠
知己 根本
輝正 日比
佐理 一本嶋
Original Assignee
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンホールディングス株式会社 filed Critical シチズンホールディングス株式会社
Priority to EP14871172.4A priority Critical patent/EP3086167A4/en
Priority to JP2015553441A priority patent/JP6478922B2/ja
Priority to CN201480069445.3A priority patent/CN105829958B/zh
Priority to US15/106,094 priority patent/US20160320677A1/en
Publication of WO2015093223A1 publication Critical patent/WO2015093223A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/50Phase-only modulation

Definitions

  • the present invention relates to a liquid crystal optical device for giving a phase distribution to a light flux.
  • a liquid crystal element is disposed in an optical system, and the focal length of the optical system is changed by providing a desired phase distribution to a light flux transmitted through the liquid crystal element by utilizing the refractive index variability of the liquid crystal element. Correction of aberration or aberration has been studied.
  • a liquid crystal layer is provided, a plurality of ring-shaped transparent electrodes are provided concentrically on at least one surface of the liquid crystal layer, and the other transparent electrode is opposed to the other through the liquid crystal layer.
  • a liquid crystal element whose focal length can be adjusted by adjusting a voltage applied between the transparent electrodes for each ring-shaped transparent electrode.
  • the refractive index of the liquid crystal layer is adjusted by the voltage applied between the two transparent electrodes facing each other across the liquid crystal layer. Therefore, by forming and patterning the transparent electrode provided on at least one surface of the liquid crystal layer with a plurality of partial electrodes to which different voltages can be applied, the refractive index of the liquid crystal layer can be adjusted according to the pattern of the transparent electrode. It is adjusted. And the phase distribution given to the light flux which penetrates a liquid crystal layer turns into discrete distribution according to the pattern of a transparent electrode. Therefore, in order to reduce the difference between the ideal and continuous phase distribution and the phase distribution actually given, which is to be given to the light flux transmitted through the liquid crystal layer, the individual partial electrodes are made smaller, and It is necessary to increase the number of
  • the gap for insulating adjacent partial electrodes also increases.
  • the number of lead-out electrodes drawn from each partial electrode to the outside of the liquid crystal element also increases.
  • the liquid crystal layer light transmitted through portions corresponding to the gap and the extraction electrode is not subjected to desired phase modulation by the liquid crystal layer, and therefore, the increase of the gap and the extraction electrode causes deterioration of the optical performance of the liquid crystal element.
  • due to the limitations of processing technology when providing a transparent electrode on the surface of the liquid crystal layer there is a limit to the miniaturization of partial electrodes.
  • the present invention provides a liquid crystal optical device capable of providing a light beam with a phase distribution of finer resolution than the resolution of the transparent electrode pattern formed on the surface of the liquid crystal layer.
  • a liquid crystal optical device having N liquid crystal elements arranged along an optical axis, and N is an integer of 2 or more.
  • each of the N liquid crystal elements includes a liquid crystal layer in which liquid crystal molecules aligned in a predetermined direction are sealed, and two transparent electrodes arranged to face each other across the liquid crystal layer.
  • At least one of the two transparent electrodes has a plurality of partial electrodes, and the difference between the maximum value and the minimum value of the phase modulation amount in the phase distribution given to the light flux transmitted through the liquid crystal layer is a predetermined level For each level when divided by a number, at least one of the plurality of partial electrodes is disposed in the portion of the liquid crystal layer that provides the light flux with the phase modulation amount of that level, and the boundary between two adjacent partial electrodes for the light flux.
  • the liquid crystal element is characterized in that the position is different for each liquid crystal element.
  • the phase modulation amount at each level corresponds to the difference between adjacent levels when the difference between the maximum value and the minimum value of the phase modulation amount is equally divided by a predetermined number of levels, N It is preferable that a plurality of partial electrodes be arranged for each liquid crystal element so as to be shifted for each liquid crystal element by the difference in phase modulation amount obtained by equal division.
  • the plurality of partial electrodes are arranged such that the number of levels of phase modulation amount included in the interval is reduced.
  • the positions of the lead-out electrodes supplying power to the plurality of partial electrodes in the plane orthogonal to the optical axis be the same for each of the plurality of liquid crystal elements.
  • the liquid crystal optical device is a light flux transmitted through a portion of the liquid crystal layer provided with the partial electrode between the transparent electrode and each of the plurality of partial electrodes. It is preferable to further include a control circuit that applies a voltage according to the level of the phase modulation amount to be provided.
  • the control circuit controls between the partial electrode corresponding to the position where the phase modulation amount in the phase modulation profile is the maximum value, and the partial electrode corresponding to the position where the phase modulation amount is the minimum value, and the opposing transparent electrode. It is preferable to apply a voltage so that the phase modulation amount becomes the maximum value and the minimum value, respectively.
  • the predetermined number of levels for the first liquid crystal element of the N liquid crystal elements is the first number of levels, and for the other liquid crystal elements of the N liquid crystal elements.
  • the predetermined number of levels is preferably a second number of levels obtained by adding one to the first number of levels.
  • the control circuit controls the voltage applied between the partial electrode corresponding to the maximum value of the phase modulation amount among the plurality of partial electrodes in the first liquid crystal element and the phase difference between the transparent electrode and the transparent electrode.
  • the liquid crystal optical device can provide the light flux transmitted through the liquid crystal optical element with a phase distribution with a resolution finer than that of the transparent electrode pattern formed on the surface of the liquid crystal layer.
  • FIG. 1 is a schematic view of a liquid crystal optical device according to an embodiment of the present invention.
  • FIG. 2A is a schematic side view of a liquid crystal element included in the liquid crystal optical device.
  • FIG. 2B is a schematic front view of a liquid crystal element included in the liquid crystal optical device.
  • FIG. 3 is a view showing an example of a phase distribution for symmetrical aberration correction given to a light beam by a liquid crystal optical device.
  • FIGS. 4A to 4C respectively show an example of the phase distribution given to the luminous flux by each liquid crystal element and the corresponding ring-shaped electrode pattern.
  • FIG. 5 is a diagram showing the deviation of the phase distribution given to the luminous flux by each liquid crystal element.
  • FIG. 6 is a diagram showing an example of a phase distribution given to a light flux transmitted through the entire liquid crystal optical device.
  • FIG. 7 is a diagram showing the relationship between each annular electrode and the applied voltage.
  • FIG. 8 is a view showing another example of the phase distribution given to light flux by each liquid crystal element.
  • FIG. 9 is a view showing another example of the phase distribution given to the light flux transmitted through the entire liquid crystal optical device.
  • FIGS. 10 (A) to 10 (C) are diagrams showing an example of the phase distribution given to the luminous flux by the individual liquid crystal elements according to the modification and the corresponding ring electrode pattern, respectively.
  • FIG. 11 is a diagram showing the deviation of the phase distribution given to the luminous flux by each liquid crystal element according to the modification.
  • FIG. 12 is a diagram showing an example of a phase distribution given to a light flux transmitted through the entire liquid crystal optical device according to a modification.
  • FIG. 13 is a schematic configuration view of a laser microscope having a liquid crystal optical device according to the
  • This liquid crystal optical device has a plurality of liquid crystal elements along the optical axis direction.
  • Each liquid crystal element has a liquid crystal layer and two transparent electrodes facing each other across the liquid crystal layer.
  • at least one of the two transparent electrodes provided in each liquid crystal element is formed of a plurality of partial electrodes arranged in accordance with the phase distribution given to the light flux passing through the liquid crystal optical device.
  • the arrangement of the partial electrodes is determined such that the level difference of the phase modulation amount provided to the partial light fluxes transmitted through the respective regions corresponding to two adjacent partial electrodes in the liquid crystal layer becomes equal. .
  • the partial electrodes are arranged such that the position of the boundary between the partial electrodes with respect to the light flux transmitted through the liquid crystal optical device is shifted for each liquid crystal element.
  • this liquid crystal optical device gives the light beam a phase distribution having a finer resolution than the resolution of the pattern of the transparent electrode of each liquid crystal element.
  • the position of the boundary between the partial electrodes with respect to the light beam transmitted through the liquid crystal optical device if the distance from the optical axis to the boundary between the partial electrodes differs for each liquid crystal element.
  • each liquid crystal element is different.
  • the luminous flux incident on the liquid crystal optical device is diffused light or convergent light, if the ratio of the distance from the optical axis to the boundary between the partial electrodes to the distance from the optical axis to the outer periphery of the luminous flux differs for each liquid crystal element
  • the position of the boundary between the partial electrodes with respect to the light flux transmitted through the liquid crystal optical device is different for each liquid crystal element.
  • FIG. 1 is a schematic view of a liquid crystal optical device according to an embodiment of the present invention.
  • the liquid crystal optical device 1 has three liquid crystal elements 2-1 to 2-3 and a control circuit 3 for controlling each liquid crystal element along an optical axis OA of an optical system in which the liquid crystal optical device is disposed.
  • the light flux transmitted through the liquid crystal optical device 1 is phase-modulated by the liquid crystal elements 2-1 to 2-3 by transmitting through the liquid crystal layers of the liquid crystal elements 2-1 to 2-3.
  • the liquid crystal optical device 1 provides the light beam with a desired phase distribution, for example, a phase distribution for correcting the wavefront aberration generated in the optical system in which the liquid crystal optical device 1 is disposed.
  • the number of liquid crystal elements included in the liquid crystal optical device 1 is not limited to three, and may be two or more.
  • the liquid crystal elements 2-1 to 2-3 included in the liquid crystal optical device 1 will be described below.
  • the liquid crystal elements 2-1 to 2-3 have the same structure and function except for the arrangement pattern of the transparent electrodes. Therefore, only the liquid crystal element 2-1 will be described below.
  • FIG. 2 (A) is a schematic front view of the liquid crystal element 2-1
  • FIG. 2 (B) is a schematic side view of the liquid crystal element 2-1
  • the liquid crystal element 2-1 includes a liquid crystal layer 10, and transparent substrates 11 and 12 disposed substantially parallel to both sides of the liquid crystal layer 10 along the optical axis OA.
  • the liquid crystal molecules 15 contained in the liquid crystal layer 10 are sealed between the transparent substrates 11 and 12 and the seal member 16.
  • the size of the liquid crystal molecules 15 is exaggerated more than the size of the actual liquid crystal molecules.
  • the liquid crystal element 2-1 further includes a transparent electrode 13 disposed between the transparent substrate 11 and the liquid crystal layer 10 and a transparent electrode 14 disposed between the liquid crystal layer 10 and the transparent substrate 12.
  • the transparent substrates 11 and 12 are made of, for example, a material such as glass or resin that is transparent to light having a wavelength included in a predetermined wavelength range.
  • the transparent electrodes 13 and 14 are made of, for example, a material called ITO, in which tin oxide is added to indium oxide.
  • an alignment film (not shown) may be disposed between the transparent electrodes 13 and 14 and the liquid crystal layer 10 to align the liquid crystal molecules 15 in a predetermined direction.
  • the transparent electrode 13 has a plurality of annular electrodes 13-1 to 13-n arranged concentrically around the optical axis OA.
  • Each annular electrode is an example of a partial electrode.
  • the liquid crystal molecules are driven by the control circuit 3 in the liquid crystal layer 10 by the plurality of ring-shaped electrodes, thereby covering the entire active region which is a region capable of modulating the phase of the light beam transmitted through the liquid crystal element 2-1.
  • the transparent electrode 14 is formed as one circular electrode covering the entire active area.
  • the transparent electrode 14 may also have a plurality of annular electrodes arranged concentrically in the same manner as the transparent electrode 13.
  • annular zone By applying different voltages between the respective annular electrodes and the transparent electrode 14, annular portions of the liquid crystal layer 10 corresponding to the individual annular electrodes (hereinafter simply referred to as an annular zone for the sake of convenience) ), A different phase modulation amount is given to the luminous flux. For this reason, the control circuit 3 can give a desired phase distribution to the luminous flux transmitted through the liquid crystal element 2-1 by adjusting the voltage applied to each ring-shaped electrode.
  • the liquid crystal molecules 15 enclosed in the liquid crystal layer 10 are homogeneously oriented, for example, such that the major axis direction of the liquid crystal molecules 15 is substantially parallel to the polarization plane of linearly polarized light incident on the liquid crystal element 2-1. That is, the long axis directions of the liquid crystal molecules 15 are parallel to each other, and are aligned parallel to the interface between the transparent substrates 11 and 12 and the liquid crystal layer 10.
  • the liquid crystal molecules sealed in the liquid crystal layers of the liquid crystal elements 2-2 and 2-3 are also aligned in the same direction as the alignment direction of the liquid crystal molecules of the liquid crystal element 2-1.
  • the refractive index n e of the liquid crystal molecules 15 is different from the refractive index in the long axis direction and the refractive index in the direction orthogonal to the long axis direction, and the refractive index n e for the polarization component (abnormal ray) parallel to the long axis direction of the liquid crystal molecules 15 is higher than the refractive index n o for a polarized component parallel to the minor axis direction of liquid crystal molecules 15 (ordinary ray). Therefore, the liquid crystal element 2-1 in which the liquid crystal molecules 15 are homogeneously aligned behaves as a uniaxial birefringent element.
  • the liquid crystal molecules 15 have dielectric anisotropy, and generally, a force acts in the direction in which the long axis of the liquid crystal molecules follows the electric field direction. That is, when a voltage is applied between the transparent electrodes 13 and 14 provided on the two transparent substrates 11 and 12 sandwiching the liquid crystal molecules 15, the major axis direction of the liquid crystal molecules 15 is parallel to the transparent substrates 11 and 12. From the state, it inclines in the direction orthogonal to the surfaces of the transparent substrates 11 and 12 according to the applied voltage.
  • the refractive index n [psi of the liquid crystal layer 10, n o ⁇ n ⁇ ⁇ n e (n o is the refractive index of ordinary light, n e is The refractive index of the extraordinary light). Therefore, when the thickness of the liquid crystal layer 10 is d, an optical path length difference ⁇ nd ( n e d) between the light flux passing through the area to which voltage is applied and the light flux passing through the area to which voltage is not applied. -N ⁇ d) occurs. Therefore, the phase difference between the two light beams is 2 ⁇ nd / ⁇ .
  • is the wavelength of the luminous flux incident on the liquid crystal layer 10.
  • the voltage applied to a ring-shaped zone is a refractive index n a of the annular zone the liquid crystal layer 10 when the V a, the liquid crystal layer 10 when the voltage applied to the other ring-shaped zone V b
  • the phase difference generated between the light beams transmitted through the two ring zones is 2 ⁇ (n a ⁇ n b ) d / ⁇ .
  • the control circuit 3 adjusts the voltage applied to each annular electrode in accordance with the wavelength of the incident light flux, thereby providing a predetermined value for the light flux transmitted through the liquid crystal element 2-1 regardless of the wavelength of the incident light flux. Phase distribution is given.
  • phase modulation profile to be displayed on the liquid crystal optical device 1 is determined.
  • This phase modulation profile is determined to correct, for example, a symmetrical wavefront aberration centered on the optical axis OA, such as a spherical aberration generated in the entire optical system including the liquid crystal optical device 1.
  • the phase modulation profile represents a phase distribution opposite to that of the wavefront aberration generated in the entire optical system including the liquid crystal optical device 1.
  • FIG. 3 is a view showing an example of a symmetrical phase modulation profile for wavefront aberration correction given by the liquid crystal optical device 1 to a light beam.
  • the horizontal axis represents the position in the plane orthogonal to the optical axis OA.
  • the position of the optical axis OA is represented by 0 on the horizontal axis.
  • the vertical axis represents the phase modulation amount.
  • Curve 300 represents a phase modulation profile.
  • the arrangement pattern of the annular electrodes is determined by dividing the phase modulation profile 300 such that the phase differences between adjacent annular zones are equal.
  • the phase modulation profile 300 is discretely connected by connecting two adjacent ring zone electrodes with a resistor having the same resistance value.
  • a phase modulation profile 310 can be provided that approximates.
  • a pattern 320 of ring-shaped electrodes corresponding to discrete phase modulation profiles 310 is shown.
  • the gaps between the annular electrodes are indicated by solid lines. That is, the individual rings or circles separated by solid lines correspond to one ring electrode 320-1 to 320-11 in order from the center.
  • the difference between the maximum phase modulation amount and the minimum phase modulation amount of the phase modulation profile 300 is equally divided into six (that is, the number of levels of the phase modulation amount is 6), and the corresponding ring electrode is eleven.
  • the boundaries at which the phase modulation amount changes between the respective liquid crystal elements are at different positions of the light flux transmitted through the liquid crystal optical device 1.
  • the pattern of the annular electrode is determined. For example, the difference between the maximum phase modulation amount and the minimum phase modulation amount of the phase modulation profile displayed by the liquid crystal optical device 1 is equally divided by M (that is, the number of phase modulation amounts is M, M is an integer of 2 or more)
  • M that is, the number of phase modulation amounts is M, M is an integer of 2 or more
  • the position and range of the annular zone of each liquid crystal element which gives the luminous flux a phase modulation amount of Lth level from the level at which the phase modulation amount is minimum are determined according to the following equation.
  • x and y represent the coordinates of two axes orthogonal to one another in a plane orthogonal to the optical axis
  • F (x, y) represents normalized phase modulation at the coordinates (x, y) Indicates the phase modulation amount of the profile.
  • the normalized phase modulation profile is obtained by normalizing the phase modulation profile displayed by each liquid crystal element such that the maximum phase modulation amount is 1.
  • N is the number of liquid crystal elements that the liquid crystal optical device 1 has and modulates the phase of the light flux in the same polarization direction, and is an integer of 2 or more.
  • k represents the number of the liquid crystal element that modulates the phase of the light flux in the same polarization direction.
  • the number k in the equation (1) does not correspond to the order of liquid crystal elements along the optical axis OA.
  • the number k corresponding to each liquid crystal element may be determined in an arbitrary order.
  • the set of coordinates (x, y) for which the equation (1) is satisfied is the position and range of the L-th ring zone.
  • one orbicular zone electrode is arranged in each orbicular zone respectively. That is, in each liquid crystal element, the voltage applied to the liquid crystal layer corresponds to the level of each phase modulation amount when the difference between the minimum value and the maximum value of the phase modulation amount is equally divided by a predetermined number of levels. Different annular electrodes are provided. Therefore, the difference in phase modulation amount between adjacent levels is the same in each liquid crystal element.
  • a liquid crystal element having a difference in phase modulation amount between adjacent levels when the difference between the minimum value and the maximum value of phase modulation amount is equally divided by a predetermined number of levels The liquid crystal elements are shifted by the difference in phase modulation amount obtained by equal division by the number of.
  • the individual ring zones of each liquid crystal element are displaced by approximately 1 / N of the width of the ring zone with respect to the ring zones of the other liquid crystal element.
  • the horizontal axis represents the position in the plane orthogonal to the optical axis OA.
  • the position of the optical axis OA is represented by 0 on the horizontal axis.
  • the vertical axis represents the phase modulation amount.
  • patterns 411, 421, and 431 of ring-shaped electrodes provided in the liquid crystal elements 2-1 to 2-3 are shown. Similar to FIG. 3, the gaps between the annular electrodes are indicated by solid lines.
  • FIG. 5 is a diagram showing the deviation of the phase distribution given to the luminous flux by each liquid crystal element.
  • FIG. 6 is a figure which shows an example of the phase distribution given to the light beam which permeate
  • the horizontal axis represents the position in the plane orthogonal to the optical axis OA.
  • the position of the optical axis OA is represented by 0 on the horizontal axis.
  • the vertical axis represents the phase modulation amount.
  • a curve 400 in FIG. 5 represents an ideal phase modulation profile, and corresponds to the phase modulation profile 400 in FIG. 4 (A) to FIG. 4 (C). Further, phase modulation profile 600 indicated by a dotted line in FIG.
  • phase modulation profile 610 represents an ideal phase modulation profile corresponding to phase modulation profile 610 obtained by combining the phase modulation profiles provided by the respective liquid crystal elements (ie, phase modulation
  • the profile 600 has a phase modulation amount three times the phase modulation amount of the ideal phase modulation profile for each liquid crystal element).
  • the phase modulation profiles 410 to 430 represent phase modulations given by the liquid crystal elements 2-1 to 2-3 to the luminous flux, respectively, and correspond to the phase modulation profiles 410 to 430 in FIG. 4 (A) to FIG. 4 (C).
  • FIG. 5 the boundary position between adjacent levels of the phase modulation amount differs for each liquid crystal element. Therefore, as shown in the phase modulation profile 610 of FIG.
  • the phase modulation amount given to the light flux transmitted through the liquid crystal optical device 1 is equally divided into 18 levels by 35 ring zones. As described above, the resolution of the phase distribution given to the light flux transmitted through the liquid crystal optical device 1 is higher than the resolution of the transparent electrode pattern of each liquid crystal element.
  • the phase modulation profile 610 can approximate the ideal phase modulation profile 400 more appropriately than the phase modulation profiles 410 to 430.
  • the number M of levels of phase modulation amount in each liquid crystal element is not limited to the above example.
  • the number M of levels of the phase modulation amount may be appropriately set according to the application and specification of the liquid crystal optical device 1.
  • each annular electrode may be the same. And in order to set the applied voltage of each annular electrode so that the difference of the applied voltage between adjacent annular electrodes becomes the same, from the phase modulation profile, the position where the amount of phase modulation is maximum and the position where it is minimum An annular electrode corresponding to is determined. Then, the control circuit 3 applies an applied voltage as the maximum phase modulation amount and an applied voltage as the minimum phase modulation amount to the corresponding ring electrodes.
  • the plurality of annular electrodes are connected to each other by adjacent electrodes (resistors) having the same electric resistance. For this reason, the voltage difference between adjacent ring electrodes is equal due to resistance division. Further, by controlling the applied voltage in this manner, the number of lead-out electrodes can be reduced and the configuration of the control circuit 3 can be simplified, as compared to independently controlling the voltage applied to each annular electrode.
  • FIG. 7 is a diagram showing the relationship between each annular electrode and the applied voltage when the liquid crystal elements 2-1 to 2-3 have n annular electrodes.
  • the center electrode is the ring electrode 1
  • the ring electrode at the outermost periphery is the ring electrode n
  • the ring electrode to which the maximum voltage is applied is the ring electrode m.
  • the same voltage V1 is applied to the first annular electrode of the center electrode and the nth annular electrode on the outermost periphery
  • the voltage V2 is applied to the m annular electrode.
  • the maximum phase modulation amount and the minimum phase modulation amount of each liquid crystal element are equally divided by the number of liquid crystal elements that the liquid crystal optical device 1 has, the maximum phase modulation amount and the minimum phase modulation amount that the entire liquid crystal optical device 1 gives to light flux.
  • the voltage applied to each liquid crystal element may be determined so as to obtain the phase modulation amount.
  • the phase distribution given to the light flux by the liquid crystal optical device 1 may not be a distribution symmetrical with the optical axis.
  • the liquid crystal optical device 1 has each liquid crystal element such that the phase distribution for correcting the wavefront aberration asymmetric with respect to the optical axis, such as coma aberration generated in the entire optical system in which the liquid crystal optical device 1 is disposed,
  • the arrangement pattern of the transparent electrodes 13 of may be determined.
  • FIG. 9 is a view showing another example of the phase modulation profile given to the light flux transmitted through the entire liquid crystal optical device 1.
  • the horizontal axis represents the position in the plane orthogonal to the optical axis OA.
  • the position of the optical axis OA is represented by 0 on the horizontal axis.
  • the vertical axis represents the phase modulation amount.
  • a partial electrode is disposed for each portion of the liquid crystal layer 10 corresponding to each level.
  • the position of the boundary between adjacent levels of the phase modulation amount that is, the position of the boundary between adjacent partial electrodes differs for each liquid crystal element. Therefore, as shown in the phase modulation profile 910 of FIG. 9, the phase modulation amount given to the light flux transmitted through the liquid crystal optical device 1 is equally divided into 18 levels.
  • the difference between the phase modulation profile 910 which the entire liquid crystal optical device 1 gives to the luminous flux and the corresponding ideal phase modulation profile 900 is the ideal phase with the phase modulation profiles 810 to 830 which the individual liquid crystal elements give to the luminous flux. It is smaller than the difference of the modulation profile 800.
  • the maximum point of the phase modulation amount, the minimum point, and the phase modulation amount at the outermost periphery of the active region of the liquid crystal layer are different from each other, the maximum point, the minimum point, and the active region
  • a voltage corresponding to the phase modulation amount of the portion where the partial electrode is provided is supplied from the control circuit 3 to the partial electrode provided at the outermost periphery through the extraction electrode.
  • the adjacent partial electrodes may be connected by electrodes (resistors) having the same electric resistance.
  • the lead-out electrodes for supplying power from the control circuit 3 to the ring-shaped electrodes of each liquid crystal element may be provided at the same position on the plane orthogonal to the optical axis OA. As a result, the proportion of the portion of the light flux incident on the liquid crystal optical device 1 that transmits the extraction electrode is reduced, so the liquid crystal optical device 1 provides the desired phase distribution to more portions of the incident light flux. be able to.
  • this liquid crystal optical device the pattern of the transparent electrode is determined such that the position of the boundary between the partial electrodes with respect to the incident light flux is different for each liquid crystal element. Therefore, this liquid crystal optical device can give to the light flux the phase distribution having a finer resolution than the resolution of the pattern of the transparent electrode of each liquid crystal element. Therefore, since this liquid crystal optical device can reduce the error between the ideal and continuous phase distribution given to the luminous flux and the discrete phase distribution actually given to the luminous flux, it is more appropriate for the luminous flux A phase distribution can be given.
  • this liquid crystal optical device can reduce the number of levels of phase modulation amount applied to luminous flux to individual luminous elements as compared to the number of phase modulation amounts applied to luminous flux as a whole liquid crystal optical device, each liquid crystal element has The number of partial electrodes can also be reduced. Therefore, this liquid crystal optical device can suppress the gap between the partial electrodes and the number of extraction electrodes.
  • a part of the plurality of boundaries between two adjacent partial electrodes in each liquid crystal element may be at the same position with respect to the light beam transmitted through each liquid crystal element. Even in this case, the other boundaries of the plurality of boundaries between two adjacent partial electrodes are at different positions with respect to the light flux transmitted through each liquid crystal element, so the liquid crystal optical device is a transparent electrode of each liquid crystal element A phase distribution having finer resolution than that of the pattern of can be given to the transmitted light flux.
  • the liquid crystal optical device has two sets of the above-mentioned liquid crystal elements so that desired phase modulation can be performed even on a light flux having a polarization plane in any direction, and each set of liquid crystal elements
  • the arrangement pattern of the electrodes and the arrangement direction of the liquid crystals may be orthogonal to each other.
  • the liquid crystal optical device may have the above-described set of liquid crystal elements for each type of aberration to be corrected.
  • the difference in applied voltage between adjacent partial electrodes may be different. That is, the difference between the adjacent levels of the phase modulation amount by the individual liquid crystal elements may be different for each level. For example, in order to prevent the partial electrodes from becoming finer, in at least one liquid crystal element, the narrower the distance along the plane orthogonal to the optical axis between two adjacent extreme values of the phase adjustment amount, ie, the phase As the amount of adjustment changes sharply, the number of levels of phase modulation amount included in the interval may be reduced.
  • FIGS. 10A to 10 (C) respectively show liquid crystal elements 2-1 to 2-3 for applying phase modulation corresponding to the phase modulation profile shown in FIG. 3 to the luminous flux according to the modification. It is a figure showing an example of a phase modulation profile, and a corresponding ring zone electrode pattern.
  • the horizontal axis represents the position in the plane orthogonal to the optical axis OA.
  • the position of the optical axis OA is represented by 0 on the horizontal axis.
  • the vertical axis represents the phase modulation amount.
  • FIGS. 10A to 10C patterns 1011, 1021, and 1031 of ring-shaped electrodes provided in the liquid crystal elements 2-1 to 2-3 are shown. Similar to FIG. 3, the gaps between the annular electrodes are indicated by solid lines.
  • the phase modulation amount is divided into four levels from the position r1 to the position that is the outermost periphery of the active region, that is, the position r2 adjacent to the position r1 where the phase modulation amount is a minimum value.
  • the difference in phase modulation amount between adjacent levels is twice the difference in phase modulation amount between adjacent levels in the range from position 0 to r1. Therefore, in this modification, in the ideal phase modulation profile 1000 corresponding to the phase modulation profile 300 in FIG. 3, the number of ring zones included in the ring electrode pattern shown in FIG. Rings are set.
  • phase modulation between adjacent levels is performed to realize such a phase modulation profile.
  • the larger the difference in quantity the larger the resistance value of the resistor connecting the two corresponding ring electrodes.
  • the difference in phase modulation between adjacent levels is the difference in phase modulation between adjacent levels in other portions.
  • the resistor connected between the strip electrode 1011c and the other has a resistance twice as large as that of the resistor connected between the other ring electrodes.
  • the phase modulation amount is divided into five levels and four levels, respectively.
  • phase modulation profiles 1020 and 1030 in the portion where the phase modulation amount is steep, the difference in phase modulation amount between adjacent levels is the difference in phase modulation amount between adjacent levels in the range from position 0 to r1 It is doubled.
  • the number of annular zones included in the annular electrode patterns shown in FIGS. 4B and 4C is smaller than the number of annular zones 11 10 rings are set. Also in this modification, the position of the boundary between adjacent ring zones differs for each liquid crystal element.
  • FIG. 11 is a diagram showing the deviation of the phase distribution given to the luminous flux by each liquid crystal element having the annular electrode pattern shown in FIGS. 10 (A) to 10 (C).
  • FIG. 12 is a figure which shows an example of the phase distribution given to the light beam which permeate
  • the horizontal axis represents the position in the plane orthogonal to the optical axis OA.
  • the position of the optical axis OA is represented by 0 on the horizontal axis.
  • the vertical axis represents the phase modulation amount.
  • a curve 1000 in FIG. 11 represents an ideal phase modulation profile given to the luminous flux by each liquid crystal element, and corresponds to the phase modulation profile 1000 in FIGS.
  • phase modulation profiles 1010 to 1030 respectively indicate phase modulations given to the luminous flux by the liquid crystal elements 2-1 to 2-3, and correspond to the phase modulation profiles 1010 to 1030 in FIGS. 10 (A) to 10 (C).
  • a phase modulation profile 1200 indicated by a dotted line in FIG. 12 represents an ideal phase modulation profile corresponding to the phase modulation profile 1210 obtained by combining the phase modulation profiles provided by the liquid crystal elements. As shown in FIG. 11, the boundary position between adjacent levels of the phase modulation amount differs for each liquid crystal element. Therefore, as shown in the phase modulation profile 1210 of FIG. 12, the phase modulation amount given to the light flux transmitted through the liquid crystal optical device 1 is equally divided into 18 levels by 30 ring zones.
  • the resolution of the phase distribution given to the light flux transmitted through the liquid crystal optical device 1 is higher than the resolution of the transparent electrode pattern of each liquid crystal element. Moreover, in this modification, since the minimum width of the widths of the individual orbicular zones becomes wider as compared with the above embodiment, the formation of the transparent electrode pattern on the transparent substrate is facilitated.
  • each partial electrode of each liquid crystal element is insulated from each other, and each partial electrode is individually separated from the control circuit via the lead electrode.
  • the part where the partial electrode is provided may receive a voltage according to the amount of phase modulation given to the luminous flux.
  • FIG. 13 shows a schematic configuration diagram of a laser microscope 100 provided with a liquid crystal optical device according to one embodiment or modification of the present invention.
  • the laser beam emitted from the laser light source 101 which is a coherent light source, is adjusted to collimated light by the collimating optical system 102, and the collimated light is transmitted through the liquid crystal optical device 103 according to the above embodiment or modification. Is focused on the sample 105.
  • a luminous flux including the information of the sample such as a luminous flux reflected or scattered by the sample 105 or fluorescence generated by the sample is traced back along the optical path, reflected by the beam splitter 106, and a confocal optical system 107 as a second optical system.
  • the laser light source 101 may have a plurality of laser light sources having different wavelengths of emitted lasers.
  • the wavefront aberration generated by the optical system from the laser light source 1 to the focusing position of the light beam including the objective lens 104 is estimated, and the phase distribution that cancels the wavefront aberration is used as a phase modulation profile in the liquid crystal optical device 103.
  • this laser microscope 100 improves the imaging performance.
  • the liquid crystal optical device of the present invention is used for aberration correction of an optical system such as a laser microscope, but the present invention is not limited to these embodiments.
  • the liquid crystal optical device of the present invention may be used as an optical axis symmetric refractive index distribution lens.

Abstract

 液晶光学デバイスは、光軸に沿って配列された複数の液晶素子(2-1~2-3)を有する。この液晶光学デバイスにおいて、各液晶素子は、所定の方向に配向された液晶分子15が封入された液晶層10と、液晶層10を挟んで対向するように配置された二つの透明電極13、14とを有し、二つの透明電極のうちの少なくとも一方は、複数の部分電極(13-1~13-n)を有し、かつ、液晶層を透過する光束に与える位相分布における位相変調量の最大値と最小値の差を所定のレベル数で分割したときの各レベルごとに、そのレベルの位相変調量を光束に与える液晶層の部分に複数の部分電極の少なくとも一つが配置され、光束に対する、隣接する二つの部分電極間の境界の位置が液晶素子ごとに異なる。

Description

光変調素子
 本発明は、光束に位相分布を与える液晶光学デバイスに関する。
 従来より、光学系内に液晶素子を配置して、その液晶素子の屈折率可変性を利用して、液晶素子を透過する光束に所望の位相分布を与えることにより、光学系の焦点距離を変更したり、あるいは、収差を補正することが研究されている。例えば、特許文献1には、液晶層を有し、その液晶層の少なくとも一方の面に、複数のリング状の透明電極を同心円状に設け、各透明電極と液晶層を挟んで対向する他方の透明電極間に印加する電圧を各リング状の透明電極ごとに調節することで、焦点距離を調節可能な液晶素子が開示されている。
特表2008-529064号公報
 上記のように、液晶層の屈折率は、液晶層を挟んで対向する二つの透明電極間に印加される電圧によって調節される。そのため、液晶層の少なくとも一方の面に設けられる透明電極を、異なる電圧を印加可能な複数の部分電極で形成してパターン化することにより、その透明電極のパターンに応じて液晶層の屈折率が調節される。そして、液晶層を透過する光束に対して与えられる位相分布は、透明電極のパターンに応じた離散的な分布となる。したがって、液晶層を透過する光束に対して与えようとする、理想的かつ連続的な位相分布と実際に与えられる位相分布の差を小さくするには、個々の部分電極を小さくするとともに、部分電極の数を増やす必要が有る。
 しかし、部分電極の数が増えると、隣接する部分電極同士を絶縁するためのギャップも増える。また、液晶素子の制御回路と各部分電極とを電気的に接続するために、各部分電極から液晶素子の外部まで引き出される引き出し電極の数も増える。液晶層のうち、ギャップ及び引き出し電極に相当する部分を透過した光は、液晶層による所望の位相変調を受けないので、ギャップ及び引き出し電極の増加は、液晶素子の光学性能の低下を招く。また、液晶層の表面に透明電極を設ける際の加工技術の制約により、部分電極の細密化には限界がある。
 そこで、本発明は、液晶層の表面に形成される透明電極パターンの解像度よりも微細な解像度の位相分布を光束に与えることができる液晶光学デバイスを提供する。
 本発明の一つの実施形態によれば、光軸に沿って配列されたN個の液晶素子を有し、かつNは2以上の整数である液晶光学デバイスが提供される。この液晶光学デバイスにおいて、N個の液晶素子のそれぞれは、所定の方向に配向された液晶分子が封入された液晶層と、液晶層を挟んで対向するように配置された二つの透明電極とを有し、二つの透明電極のうちの少なくとも一方は、複数の部分電極を有し、かつ、液晶層を透過する光束に与える位相分布における位相変調量の最大値と最小値の差を所定のレベル数で分割したときの各レベルごとに、そのレベルの位相変調量を光束に与える液晶層の部分に複数の部分電極の少なくとも一つが配置され、光束に対する、隣接する二つの部分電極間の境界の位置が液晶素子ごとに異なる箇所を有することを特徴とする。
 この液晶光学デバイスにおいて、各レベルの位相変調量が、位相変調量の最大値と最小値の差を所定のレベル数で等分割したときの隣接レベル間の差に相当する位相変調量をNで等分割して得られる位相変調量の差ずつ、液晶素子ごとにずれるように、各液晶素子について複数の部分電極が配置されることが好ましい。
 さらに、この液晶光学デバイスでは、N個の液晶素子のうちの少なくとも一つにおいて、位相変調量の隣接する二つの極値のそれぞれに相当する、光軸に直交する面における位置の間隔が小さいほど、その間隔に含まれる位相変調量のレベルの数が少なくなるように複数の部分電極が配置されることが好ましい。
 さらに、この液晶光学デバイスにおいて、光軸に直交する面における、複数の部分電極に電力を供給する引き出し電極の位置が複数の液晶素子のそれぞれについて同一であることが好ましい。
 また、液晶光学デバイスは、N個の液晶素子のそれぞれについて、複数の部分電極のそれぞれと対向する透明電極との間に、液晶層のうちのその部分電極が設けられた部分を透過する光束に与える位相変調量のレベルに応じた電圧を印加する制御回路をさらに有することが好ましい。
 さらに、この液晶光学デバイスにおいて、N個の液晶素子のそれぞれについて、複数の部分電極のうちの互いに隣接する二つの部分電極は、それぞれ抵抗子によって接続されることが好ましい。この場合において、制御回路は、位相変調プロファイルにおける位相変調量が極大値となる位置に対応する部分電極及び位相変調量が極小値となる位置に対応する部分電極と、対向する透明電極との間に、それぞれ、位相変調量が極大値及び極小値となるように電圧を印加することが好ましい。
 さらに、この液晶光学デバイスにおいて、N個の液晶素子のうちの第1の液晶素子についての所定のレベル数は第1のレベル数であり、N個の液晶素子のうちの他の液晶素子についての所定のレベル数は第1のレベル数に1を加えた第2のレベル数であることが好ましい。この場合において、制御回路は、第1の液晶素子における、複数の部分電極のうちの位相変調量の最大値に対応する部分電極と対向する透明電極との間に印加される電圧と、位相変調量の最小値に対応する部分電極と対向する透明電極との間に印加される電圧との第1の電圧差に対する、他の液晶素子における、複数の部分電極のうちの位相変調量の最大値に対応する部分電極と対向する透明電極との間に印加される電圧と、位相変調量の最小値に対応する部分電極と対向する透明電極との間に印加される電圧との第2の電圧差の比が、第1のレベル数に対する第2のレベル数の比と等しくなるように、各液晶素子の各部分電極と対向する透明電極との間の電圧を制御することが好ましい。
 本発明によれば、液晶光学デバイスは、液晶光学素子を透過する光束に液晶層の表面に形成される透明電極パターンの解像度よりも微細な解像度の位相分布を与えることができる。
図1は、本発明の一つの実施形態による液晶光学デバイスの概略構成図である。 図2(A)は、液晶光学デバイスが有する液晶素子の概略側面図である。図2(B)は、液晶光学デバイスが有する液晶素子の概略正面図である。 図3は、液晶光学デバイスが光束に与える対称性収差補正用の位相分布の一例を示す図である。 図4(A)~図4(C)は、それぞれ、個々の液晶素子が光束に与える位相分布の一例及び対応する輪帯電極パターンを表す図である。 図5は、各液晶素子が光束に与える位相分布のずれを表す図である。 図6は、液晶光学デバイス全体を透過した光束に与えられる位相分布の一例を示す図である。 図7は、各輪帯電極と印加される電圧との関係を示す図である。 図8は、個々の液晶素子が光束に与える位相分布の他の一例を表す図である。 図9は、液晶光学デバイス全体を透過した光束に与えられる位相分布の他の一例を示す図である。 図10(A)~図10(C)は、それぞれ、変形例による、個々の液晶素子が光束に与える位相分布の一例及び対応する輪帯電極パターンを表す図である。 図11は、変形例による、各液晶素子が光束に与える位相分布のずれを表す図である。 図12は、変形例による、液晶光学デバイス全体を透過した光束に与えられる位相分布の一例を示す図である。 図13は、実施形態または変形例による液晶光学デバイスを有するレーザー顕微鏡の概略構成図である。
 以下、図面を参照しつつ、本発明による液晶光学デバイスの好適な実施の形態について詳細に説明する。
 この液晶光学デバイスは、光軸方向に沿って複数の液晶素子を有する。各液晶素子は、液晶層と、液晶層を挟んで対向する二つの透明電極とを有する。そして各液晶素子に設けられる二つの透明電極のうちの少なくとも一方は、液晶光学デバイスを透過する光束に与える位相分布に応じて配置される複数の部分電極により形成される。そして液晶層のうちの互いに隣接する二つの部分電極に対応するそれぞれの領域を透過した部分光束間に対して与えられる位相変調量のレベル差が等しくなるように、部分電極の配置が決定される。さらに、液晶光学デバイスを透過する光束に対する部分電極間の境界の位置が、液晶素子ごとにずれるように、部分電極は配置される。これにより、この液晶光学デバイスは、個々の液晶素子の透明電極のパターンの解像度よりも微細な解像度を持つ位相分布を光束に与える。
 なお、液晶光学デバイスに入射する光束が平行光束である場合、光軸から部分電極間の境界までの距離が液晶素子ごとに異なれば、液晶光学デバイスを透過する光束に対する部分電極間の境界の位置が、液晶素子ごとに異なる。一方、液晶光学デバイスに入射する光束が拡散光または収束光である場合、光軸から光束の外周までの距離に対する、光軸から部分電極間の境界までの距離の比が液晶素子ごとに異なれば、液晶光学デバイスを透過する光束に対する部分電極間の境界の位置が、液晶素子ごとに異なることになる。
 図1は、本発明の一つの実施形態による液晶光学デバイスの概略構成図である。液晶光学デバイス1は、液晶光学デバイスが配置される光学系の光軸OAに沿って、3個の液晶素子2-1~2-3と、各液晶素子を制御する制御回路3とを有する。そして液晶光学デバイス1を透過する光束は、各液晶素子2-1~2-3のそれぞれが有する液晶層を透過することにより、各液晶素子2-1~2-3によって位相変調される。これにより、液晶光学デバイス1は、光束に対して所望の位相分布、例えば、液晶光学デバイス1が配置された光学系にて発生する波面収差を補正する位相分布を与える。
 なお、液晶光学デバイス1が有する液晶素子の数は3個に限られず、2個以上であればよい。
 以下、液晶光学デバイス1が有する液晶素子2-1~2-3について説明する。なお、液晶素子2-1~2-3は、透明電極の配置パターンを除いて、同じ構造及び機能を有する。そこで以下では、液晶素子2-1についてのみ説明する。
 図2(A)は、液晶素子2-1の概略正面図であり、図2(B)は、液晶素子2-1の概略側面図である。
 液晶素子2-1は、液晶層10と、光軸OAに沿って液晶層10の両側に略平行に配置された透明基板11、12を有する。そして液晶層10に含まれる液晶分子15は、透明基板11及び12と、シール部材16との間に封入されている。なお、図2(B)において、説明のために、液晶分子15のサイズは、実際の液晶分子のサイズよりも誇張されている。また液晶素子2-1は、透明基板11と液晶層10の間に配置された透明電極13と、液晶層10と透明基板12の間に配置された透明電極14とを有する。なお、透明基板11、12は、例えば、ガラスまたは樹脂など、所定の波長域に含まれる波長を持つ光に対して透明な材料により形成される。また透明電極13、14は、例えば、ITOと呼ばれる、酸化インジウムに酸化スズを添加した材料により形成される。また、透明電極13、14と、液晶層10の間には、液晶分子15を所定の方向に配向させる配向膜(図示せず)が配置されてもよい。
 透明電極13は、光軸OAを中心とする同心円状に配置された、複数の輪帯電極13-1~13-nを有する。各輪帯電極は、部分電極の一例である。そして複数の輪帯電極により、液晶層10のうち、制御回路3によって液晶分子が駆動されることで、液晶素子2-1を透過する光束の位相を変調できる領域であるアクティブ領域全体が覆われる。一方、透明電極14は、アクティブ領域全体を覆う円形状の一つの電極として形成される。なお、透明電極14も、透明電極13と同様に、同心円状に配置された複数の輪帯電極を有してもよい。各輪帯電極と透明電極14との間にそれぞれ互いに異なる電圧が印加されることにより、個々の輪帯電極に対応する液晶層10の輪帯状の部分(以下では、便宜上、単に輪帯と呼ぶ)ごとに、異なる位相変調量が光束に与えられる。このため、制御回路3が、各輪帯電極に印加する電圧を調節することで、液晶素子2-1を透過する光束に所望の位相分布を与えることができる。
 液晶層10に封入された液晶分子15は、例えば、液晶分子15の長軸方向が、液晶素子2-1に入射する直線偏光の偏光面と略平行となるようにホモジニアス配向される。すなわち、液晶分子15のそれぞれは、その長軸方向がお互いに平行となり、かつ、透明基板11、12と液晶層10との界面と平行に並んでいる。なお、液晶素子2-2、2-3の液晶層に封入される液晶分子も、液晶素子2-1の液晶分子の配向方向と同じ方向に配向される。
 液晶分子15は、その長軸方向における屈折率と長軸方向に直交する方向における屈折率とが異なり、液晶分子15の長軸方向に平行な偏光成分(異常光線)に対する屈折率neは、液晶分子15の短軸方向に平行な偏光成分(常光線)に対する屈折率noよりも高い。そのため、液晶分子15をホモジニアス配向させた液晶素子2-1は、1軸性の複屈折素子として振舞う。
 液晶分子15は、誘電率異方性を持ち、一般に液晶分子長軸が電界方向に倣う方向に力が働く。すなわち、液晶分子15を挟む2枚の透明基板11、12に設けられた透明電極13、14間に電圧が印加されると、液晶分子15の長軸方向は、透明基板11、12に平行な状態から、印加される電圧に応じて透明基板11、12の表面に直交する方向に傾いてくる。このとき、液晶分子15の長軸に平行な偏光成分の光束を考えると、液晶層10の屈折率nψは、no≦nψ≦ne(noは常光の屈折率、neは異常光の屈折率)となる。そのため、液晶層10の厚さがdであると、液晶層10のうち、電圧が印加された領域を通る光束と印加されていない領域を通る光束の間に、光路長差Δnd(=ned-nψd)が生じる。したがって、その二つの光束間の位相差は、2πΔnd/λとなる。なお、λは、液晶層10に入射する光束の波長である。また、ある輪帯に印加される電圧がVaのときの液晶層10のその輪帯の屈折率がnaであり、他の輪帯に印加される電圧がVbのときの液晶層10のその輪帯の屈折率がnbであるとすると、その二つの輪帯を透過した光束間に生じる位相差は2π(na-nb)d/λとなる。
 なお、液晶層10に入射する光束の波長によって、液晶層10の屈折率は変化する。そこで制御回路3が、入射する光束の波長に応じて各輪帯電極に印加する電圧を調節することで、入射する光束の波長によらずに液晶素子2-1を透過する光束に対して所定の位相分布が与えられる。
 次に、各液晶素子2-1~2-3の透明電極13が有する各輪帯電極の配置パターンの決定方法について説明する。まずは、液晶光学デバイス1に表示したい位相変調プロファイルを決定する。この位相変調プロファイルは、例えば、液晶光学デバイス1を含む光学系全体で発生する、球面収差といった、光軸OAを中心とする対称性の波面収差を補正するように決定される。この場合、位相変調プロファイルは、液晶光学デバイス1を含む光学系全体で発生する波面収差の位相分布と逆の位相分布を表す。
 図3は、液晶光学デバイス1が光束に与える対称性の波面収差補正用の位相変調プロファイルの一例を示す図である。図3の上側において、横軸は光軸OAに直交する面における位置を表す。なお横軸において光軸OAの位置は0で表される。縦軸は位相変調量を表す。曲線300は、位相変調プロファイルを表す。本実施形態では、互いに隣接する輪帯間での位相差が等間隔になるように、位相変調プロファイル300を分割することにより、輪帯電極の配置パターンが決定される。互いに隣接する輪帯間での位相差が等間隔となる場合、後述するように、隣接する二つの輪帯電極ごとに、同じ抵抗値を持つ抵抗で接続することで位相変調プロファイル300を離散的に近似する位相変調プロファイル310を与えることができる。
 図3の下側には、離散的な位相変調プロファイル310に対応する輪帯電極のパターン320が示される。なお、図3では、輪帯電極間のギャップは実線で示されている。すなわち、実線で区切られた個々のリングまたは円が、中心から順に、それぞれ、一つの輪帯電極320-1~320-11に対応する。この例では、位相変調プロファイル300の最大位相変調量と最小位相変調量の差が6等分され(すなわち、位相変調量のレベル数が6)、対応する輪帯電極が11個となる。
 さらに、本実施形態では、各液晶素子間で、位相変調量が変化する境界、すなわち、輪帯間の境界が、液晶光学デバイス1を透過する光束の異なる位置となるように、各液晶素子の輪帯電極のパターンが決定される。例えば、液晶光学デバイス1が表示する位相変調プロファイルの最大位相変調量と最小位相変調量の差をM等分(すなわち、位相変調量のレベル数がMであり、Mは2以上の整数)したときの、位相変調量が最小となるレベルからL番目のレベルの位相変調量を光束に与える各液晶素子の輪帯の位置及び範囲は、次式に従って決定される。
Figure JPOXMLDOC01-appb-M000001
ここで、x,yは、光軸に直交する平面における、たがいに直交する二つの軸のそれぞれの座標を表し、F(x,y)は、座標(x,y)における、正規化位相変調プロファイルの位相変調量を表す。正規化位相変調プロファイルは、各液晶素子が表示する位相変調プロファイルをその最大位相変調量が1となるように正規化したものである。またNは、液晶光学デバイス1が有する、同一の偏光方向の光束の位相を変調する液晶素子の数であり、2以上の整数である。kは、同一の偏光方向の光束の位相を変調する液晶素子の番号を表す。例えば、本実施形態では、N=3であり、k=0~2は、それぞれ、液晶素子2-1~2-3に対応する。なお、(1)式における番号kは、光軸OAに沿った液晶素子の順序には対応していない。各液晶素子に対応する番号kは、任意の順序に従って決定されればよい。
 (1)式が満たされる座標(x,y)の集合がL番目の輪帯の位置及び範囲となる。そして個々の輪帯に、それぞれ、一つの輪帯電極が配置される。すなわち、各液晶素子には、位相変調量の最小値と最大値の差を所定のレベル数で等分割したときの各位相変調量のレベルに相当する位置ごとに、液晶層に印加する電圧が異なる輪帯電極が設けられる。そのため、隣接レベル間の位相変調量の差は、各液晶素子において同一となる。さらに、位相変調量の各レベルについて、位相変調量の最小値と最大値の差を所定のレベル数で等分割したときの隣接レベル間の位相変調量の差を、液晶光学デバイスが有する液晶素子の数で等分割して得られる位相変調量の差だけ、液晶素子ごとにずらす。これにより、各液晶素子の個々の輪帯が、その輪帯の幅の略1/Nずつ、他の液晶素子の輪帯に対してずれるようになる。
 図4(A)~図4(C)は、それぞれ、N=3、M=6としたときに、(1)式に従って決定された、液晶素子2-1~2-3の位相変調プロファイルの一例及び対応する輪帯電極パターンを表す図である。図4(A)~図4(C)の上側において、横軸は光軸OAに直交する面における位置を表す。なお横軸において光軸OAの位置は0で表される。縦軸は位相変調量を表す。図4(A)~図4(C)の下側には、液晶素子2-1~2-3に設けられる輪帯電極のパターン411、421、431を表す。図3と同様に、輪帯電極間のギャップは実線で示されている。
 図4(A)の位相変調プロファイル410に示されるように、液晶素子2-1(k=0)が与える位相変調量は、6レベルに等分割される。そして、図3の位相変調プロファイル300に対応する、理想的な位相変調プロファイル400において、中心の位相変調量と光束の最外周の位相変調量が等しい場合、11個の輪帯が設定される。すなわち、図4(A)の位相変調プロファイルは、先に示した図3の位相変調プロファイル310と同一であり、液晶素子2-1の輪帯電極のパターン411は、図3で示されている輪帯電極のパターン320と同一となる。一方、図4(B)、図4(C)の位相変調プロファイル420、430に示されるように、液晶素子2-2(k=1)及び液晶素子2-3(k=2)が与える位相変調量は、7レベルに等分割される。そのため、液晶素子2-2、2-3の輪帯電極パターン421、431では、13個の輪帯が設定される。この場合、隣接する輪帯間の境界の位置が、液晶素子ごとに異なる。
 図5は、各液晶素子が光束に与える位相分布のずれを表す図である。また図6は、液晶光学デバイス全体を透過した光束に与えられる位相分布の一例を示す図である。図5及び図6において、横軸は光軸OAに直交する面における位置を表す。なお横軸において光軸OAの位置は0で表される。縦軸は位相変調量を表す。そして図5における曲線400は、理想的な位相変調プロファイルを表し、図4(A)~図4(C)における位相変調プロファイル400に対応する。また図6において点線で示される位相変調プロファイル600は、各液晶素子により与えられる位相変調プロファイルを合成して得られる位相変調プロファイル610に対応する、理想的な位相変調プロファイルを表す(すなわち、位相変調プロファイル600は、各液晶素子についての理想的な位相変調プロファイルの位相変調量の3倍の位相変調量を持つ)。位相変調プロファイル410~430は、それぞれ、液晶素子2-1~2-3が光束に与える位相変調を表し、図4(A)~図4(C)における位相変調プロファイル410~430に対応する。図5に示されるように、液晶素子ごとに、位相変調量の隣接レベル間の境界位置が異なる。そのため、図6の位相変調プロファイル610に示されるように、液晶光学デバイス1を透過する光束に対して与えられる位相変調量は、35個の輪帯によって18レベルに等分割されたものとなる。このように、各液晶素子が有する透明電極パターンの解像度よりも、液晶光学デバイス1を透過する光束に与えられる位相分布の解像度の方が高くなる。そして位相変調プロファイル610の方が、位相変調プロファイル410~430よりも、理想的な位相変調プロファイル400をより適切に近似できる。
 なお、各液晶素子における、位相変調量のレベル数Mは、上記の例に限られない。位相変調量のレベル数Mは、液晶光学デバイス1の用途及び仕様に応じて適宜設定されればよい。例えば、位相変調素子のレベル数Mは16であってもよい。すなわち、N個の液晶素子のうちの一つについては、位相変調量の最大値と最小値間の差が16レベルに分割され、他の液晶素子については位相変調量の最大値と最小値間の差が17レベルに分割される。この場合において、液晶素子の数が3個(すなわち、N=3)であれば、液晶光学デバイス1を透過する光束に対して与えられる位相変調量は、48レベルに分割されたものとなる。
 液晶層10の隣接する輪帯間の位相変調量の差を、各輪帯について同一とするためには、隣接する輪帯に設けられた輪帯電極間の液晶層10に印加する電圧の差も、各輪帯電極について同一とすればよい。そして隣接する輪帯電極間の印加電圧の差が同一となるように、各輪帯電極の印加電圧を設定するために、位相変調プロファイルから、位相変調量が最大となる位置及び最小となる位置に対応する輪帯電極が決定される。そして制御回路3が、最大位相変調量となる印加電圧と最低相変調量となる印加電圧を、それぞれに対応する輪帯電極に加える。また、複数の輪帯電極は、それぞれ隣接する輪帯電極間を同一の電気抵抗を持つ電極(抵抗子)によって接続される。このため、抵抗分割により隣接する輪帯電極間の電圧差は同一となる。また、このように印加電圧を制御することで、各輪帯電極に印加する電圧を独立に制御するよりも、引き出し電極の数を減らすことができるとともに、制御回路3の構成を簡単化できる。
 図7は、液晶素子2-1~2-3がn個の輪帯電極を有する場合の、各輪帯電極と印加される電圧との関係を示す図である。図7では、中心電極を輪帯電極1、最外周の輪帯電極を輪帯電極n、最大電圧を印加する輪帯電極を輪帯電極mとする。この例では、中心電極の輪帯電極1番目と最外周の輪帯電極n番目に同一の電圧V1が、輪帯電極m番目に電圧V2が印加される。
 ここで、(1)式より、k=0に対応する液晶素子(例えば、液晶素子2-1)の位相変調量のレベル数はMとなり、k≠0に対応する液晶素子(例えば、液晶素子2-2、2-3)の位相変調量のレベル数(M+1)よりも一つ少ない。そこで、k=0に対応する液晶素子における、最大電圧V2と最小電圧V1の差ΔV0=(V2-V1)に対して、k≠0に対応する液晶素子における、最大電圧V2と最小電圧V1の差ΔV1=(V2-V1)は、ΔV1=ΔV0(M+1)/Mとなるように設定される。例えば、図4(A)~図4(C)に示されるように、k=0に対応する液晶素子2-1のレベル数が6であり、液晶素子2-1において最大位相変調量を与えるレベルと最小位相変調量を与えるレベル間の電圧差がVであれば、レベル数が7となる、液晶素子2-2、2-3において最大位相変調量を与えるレベルと最小位相変調量を与えるレベル間の電圧差は7/6Vとなる。
 また、各液晶素子の最大位相変調量及び最小位相変調量が、液晶光学デバイス1全体が光束に与える最大位相変調量及び最小位相変調量を、液晶光学デバイス1が有する液晶素子の数で当分した位相変調量となるように、各液晶素子に印加される電圧は決定されればよい。
 また、液晶光学デバイス1が光束に与える位相分布は、光軸対称な分布でなくてもよい。例えば、液晶光学デバイス1は、液晶光学デバイス1が配置された光学系全体で生じるコマ収差といった、光軸に対して非対称な波面収差を補正する位相分布を光束に与えられるように、各液晶素子の透明電極13の配置パターンが決定されてもよい。
 図8は、N=3、M=7としたときに、(1)式に従って決定された、液晶素子2-1~2-3の位相変調プロファイルの他の一例を表す図である。また図9は、液晶光学デバイス1全体を透過した光束に与えられる位相変調プロファイルの他の一例を示す図である。図8に示される理想的な位相変調プロファイル800、及び、図9に示される各液晶素子が高速に与える位相変調プロファイルを合成したものに対応する理想的な位相変調プロファイル900は、例えば、液晶光学デバイス1を有する光学系が生じるコマ収差といった非対称な収差を補正するものである。
 図8及び図9において、横軸は光軸OAに直交する面における位置を表す。なお横軸において光軸OAの位置は0で表される。縦軸は位相変調量を表す。図8の位相変調プロファイル810に示されるように、液晶素子2-1(k=0)が与える位相変調量は、6レベルに等分割される。そして各レベルに対応する液晶層10の部分ごとに部分電極が配置される。一方、位相変調プロファイル820、830に示されるように、液晶素子2-2(k=1)及び液晶素子2-3(k=2)が与える位相変調量は、7レベルに等分割される。この場合も、位相変調量の隣接レベル間の境界の位置、すなわち、隣接する部分電極間の境界の位置が、液晶素子ごとに異なる。そのため、図9の位相変調プロファイル910に示されるように、液晶光学デバイス1を透過する光束に対して与えられる位相変調量は、18レベルに等分割されたものとなる。このように、液晶光学デバイス1全体が光束に与える位相変調プロファイル910と対応する理想的な位相変調プロファイル900の差は、個々の液晶素子が光束に与える位相変調プロファイル810~830と理想的な位相変調プロファイル800の差よりも小さくなっている。
 なお、図8に示されるように、位相変調量の極大点、極小点及び液晶層のアクティブ領域の最外周での位相変調量がそれぞれ異なる場合には、その極大点、極小点及びアクティブ領域の最外周に設けられた部分電極に、引き出し電極を介して、その部分電極が設けられた部分の位相変調量に応じた電圧が制御回路3から供給される。そして、隣接する部分電極間は同一の電気抵抗を持つ電極(抵抗子)によって接続されればよい。
 なお、制御回路3から各液晶素子の輪帯電極に電力を供給するための引き出し電極は、それぞれ、光軸OAと直交する面における同じ位置に設けられてもよい。これにより、液晶光学デバイス1に入射する光束のうち、引き出し電極を透過する部分の割合が小さくなるので、液晶光学デバイス1は、その入射光束のより多くの部分に対して所望の位相分布を与えることができる。
 以上に説明してきたように、この液晶光学デバイスは、入射する光束に対する部分電極間の境界の位置が液晶素子ごとに異なるように透明電極のパターンが決定される。そのため、この液晶光学デバイスは、個々の液晶素子の透明電極のパターンの解像度よりも微細な解像度を持つ位相分布を透過する光束に与えることができる。そのため、この液晶光学デバイスは、光束に与える理想的でかつ連続的な位相分布と実際に光束に与えられる離散的な位相分布との誤差を少なくすることができるので、光束に対してより適切な位相分布を与えることができる。さらに、この液晶光学デバイスは、液晶光学デバイス全体として光束に与える位相変調量のレベル数よりも、個々の液晶素子が光束に与える位相変調量のレベル数を少なくできるので、個々の液晶素子が有する部分電極の数も少なくて済む。そのため、この液晶光学デバイスは、部分電極間のギャップ及び引き出し電極の数を抑制できる。
 なお、各液晶素子における、隣接する二つの部分電極間の複数の境界のうちの一部の境界については、各液晶素子を透過する光束に対して同じ位置となっていてもよい。この場合でも、隣接する二つの部分電極間の複数の境界の他の境界については、各液晶素子を透過する光束に対して異なる位置となるため、液晶光学デバイスは、個々の液晶素子の透明電極のパターンの解像度よりも微細な解像度を持つ位相分布を透過する光束に与えることができる。
 また、変形例によれば、液晶光学デバイスは、任意の方向の偏光面を持つ光束についても所望の位相変調を行えるように、上記の液晶素子の組を二組有し、各組の液晶素子の電極の配置パターン及び液晶の配列方向を互いに直交させてもよい。あるいは、液晶光学デバイスは、補正対象とする収差の種類ごとに、上記の液晶素子の組を有してもよい。
 さらに他の変形例によれば、隣接する部分電極間の印加電圧の差は異なっていてもよい。すなわち、個々の液晶素子による、位相変調量の隣接レベル間の差はレベルごとに異なっていてもよい。例えば、部分電極が微細になることを避けるために、少なくとも一つの液晶素子において、位相調整量の隣接する二つの極値間の光軸に直交する面に沿った間隔が狭いほど、すなわち、位相調整量が急峻に変化するほど、その間隔に含まれる位相変調量のレベルの数を少なくしてもよい。
 図10(A)~図10(C)は、それぞれ、変形例による、図3に示された位相変調プロファイルに相当する位相変調を光束に与えるための、液晶素子2-1~2-3の位相変調プロファイルの一例及び対応する輪帯電極パターンを表す図である。図10(A)~図10(C)の上側において、横軸は光軸OAに直交する面における位置を表す。なお横軸において光軸OAの位置は0で表される。縦軸は位相変調量を表す。図10(A)~図10(C)の下側には、液晶素子2-1~2-3に設けられる輪帯電極のパターン1011、1021、1031が表される。図3と同様に、輪帯電極間のギャップは実線で示されている。なお、この変形例でも、N=3として、(1)式に従って輪帯電極パターンが決定されている。
 図10(A)の位相変調プロファイル1010に示されるように、位相変調量が極小値となる光軸の位置0から、位相変調量が極大値となる位置r1までは、図4(A)に示される位相変調プロファイルと同様に、位相変調量は6レベル(すなわち、M=6)に等分割されている。一方、位置r1から、アクティブ領域の最外周となる位置、すなわち、位置r1に隣接する、位相変調量が極小値となる位置r2までは、位相変調量は4レベルに分割されている。特に、位相変調量が急峻になる部分では、隣接レベル間の位相変調量の差が、位置0からr1までの範囲における隣接レベル間の位相変調量の差の2倍になっている。そのため、この変形例では、図3の位相変調プロファイル300に対応する、理想的な位相変調プロファイル1000において、図4(A)に示される輪帯電極パターンが有する輪帯の数よりも少ない、9個の輪帯が設定される。
 なお、図7に示されるように、位相変調量が極値となる輪帯電極が制御回路3と接続される例では、このような位相変調プロファイルを実現するために、隣接レベル間の位相変調量差が大きくなるほど、対応する二つの輪帯電極を結ぶ抵抗子の抵抗値が大きくなればよい。図10(A)の例では、液晶素子2-1の輪帯電極のパターン1011において、隣接レベル間の位相変調量の差が、他の部分における、隣接レベル間の位相変調量の差の2倍となる部分に相当する、最外周から2番目の輪帯電極1011aと3番目の輪帯電極1011bとの間に接続される抵抗子、及び、輪帯電極1011bと最外周から4番目の輪帯電極1011cとの間に接続される抵抗子は、他の輪帯電極間に接続される抵抗子の抵抗値と比較して、2倍の抵抗値を持つ。
 同様に、図10(B)、図10(C)の位相変調プロファイル1020、1030に示されるように、光軸の位置0から、位相変調量が極大値となる位置r1までは、液晶素子2-2(k=1)及び液晶素子2-3(k=2)が与える位相変調量は、7レベルに等分割される。一方、位置r1から位置r2までは、位相変調量は、それぞれ、5レベル、4レベルに分割されている。そして位相変調プロファイル1020及び1030においても、位相変調量が急峻になる部分では、隣接レベル間の位相変調量の差が、位置0からr1までの範囲における隣接レベル間の位相変調量の差の2倍になっている。そのため、液晶素子2-2、2-3の輪帯電極パターン1021、1031では、図4(B)及び図4(C)に示される輪帯電極パターンが有する輪帯の数よりも少ない、11個、10個の輪帯が設定される。なお、この変形例においても、隣接する輪帯間の境界の位置が、液晶素子ごとに異なる。
 図11は、図10(A)~図10(C)に示される輪帯電極パターンを持つ各液晶素子が光束に与える位相分布のずれを表す図である。また図12は、液晶光学デバイス全体を透過した光束に与えられる位相分布の一例を示す図である。図11及び図12において、横軸は光軸OAに直交する面における位置を表す。なお横軸において光軸OAの位置は0で表される。縦軸は位相変調量を表す。そして図11における曲線1000は、個々の液晶素子が光束に与える理想的な位相変調プロファイルを表し、図10(A)~図10(C)における位相変調プロファイル1000に対応する。位相変調プロファイル1010~1030は、それぞれ、液晶素子2-1~2-3が光束に与える位相変調を表し、図10(A)~図10(C)における位相変調プロファイル1010~1030に対応する。また図12において点線で示される位相変調プロファイル1200は、各液晶素子により与えられる位相変調プロファイルを合成して得られる位相変調プロファイル1210に対応する、理想的な位相変調プロファイルを表す。図11に示されるように、液晶素子ごとに、位相変調量の隣接レベル間の境界位置が異なる。そのため、図12の位相変調プロファイル1210に示されるように、液晶光学デバイス1を透過する光束に対して与えられる位相変調量は、30個の輪帯によって18レベルに等分割されたものとなる。したがって、この変形例においても、各液晶素子が有する透明電極パターンの解像度よりも、液晶光学デバイス1を透過する光束に与えられる位相分布の解像度の方が高くなる。またこの変形例では、上記の実施形態と比較して、個々の輪帯の幅のうちの最小となる幅が広くなるので、透明基板上での透明電極パターンの形成が容易となる。
 また、位相変調量の隣接レベル間の差を個別に調節する場合には、各液晶素子の各部分電極は、互いに絶縁され、各部分電極は、それぞれ、引き出し電極を介して、制御回路から個別にその部分電極が設けられた部分が光束に与える位相変調量に応じた電圧を受ければよい。
 図13は、本発明の一つの実施形態または変形例による液晶光学デバイスを備えたレーザー顕微鏡100の概略構成図を示している。コヒーレント光源であるレーザー光源101から出射したレーザー光束は、コリメート光学系102により平行光に調整され、その平行光は、上記の実施形態または変形例による液晶光学デバイス103を透過した後、対物レンズ104によって試料105上に集光される。試料105により反射または散乱した光束もしくは試料により発生した蛍光等、試料の情報を含んだ光束は、光路を逆にたどり、ビームスプリッター106で反射され、第2の光学系であるコンフォーカル光学系107で再び共焦点ピンホール108上に集光される。そして、共焦点ピンホール108が、試料の焦点位置以外からの光束をカットするので、検出器109でSN比の良好な信号が得られる。なお、レーザー光源101は、放射するレーザーの波長が異なる複数のレーザー光源を有していてもよい。
 ここで、対物レンズ104を含む、レーザー光源1から光束の集光位置までの光学系により発生する波面収差を見積もり、その波面収差をキャンセルするような位相分布を位相変調プロファイルとして液晶光学デバイス103に表示することで、このレーザー顕微鏡100は、結像性能を向上させる。
 また、以上説明してきた実施形態では、本発明の液晶光学デバイスをレーザー顕微鏡などの光学系の収差補正に用いる例を示したが、本発明は、これらの実施例に限られるものではない。例えば、本発明の液晶光学デバイスは、光軸対称な屈折率分布レンズとして用いられてもよい。
 1  液晶光学デバイス
 2-1~2-3  液晶素子
 3  制御回路
 10  液晶層
 11、12  透明基板
 13、14  透明電極
 13-1~13-n  輪帯電極(部分電極)
 15  液晶分子
 16  シール部材
 100  レーザー顕微鏡
 101  レーザー光源
 102  コリメート光学系
 103  収差補正デバイス
 104  対物レンズ
 105  試料
 106  ビームスプリッター
 107  コンフォーカル光学系
 108  共焦点ピンホール
 109  検出器

Claims (7)

  1.  光軸に沿って配列されたN個の液晶素子を有し、かつNは2以上の整数である液晶光学デバイスであって、
     前記N個の液晶素子のそれぞれは、
      所定の方向に配向された液晶分子が封入された液晶層と、
      前記液晶層を挟んで対向するように配置された二つの透明電極とを有し、
      前記二つの透明電極のうちの少なくとも一方は、複数の部分電極を有し、かつ、前記液晶層を透過する光束に与える位相分布における位相変調量の最大値と最小値の差を所定のレベル数で分割したときの各レベルごとに、当該レベルの位相変調量を前記光束に与える前記液晶層の部分に前記複数の部分電極の少なくとも一つが配置され、
      前記光束に対する、隣接する二つの前記部分電極間の境界の位置が前記液晶素子ごとに異なる箇所を有することを特徴とする液晶光学デバイス。
  2.  各レベルの位相変調量が、前記位相変調量の最大値と最小値の差を前記所定のレベル数で等分割したときの隣接レベル間の差に相当する位相変調量を前記Nで等分割して得られる位相変調量の差ずつ、前記液晶素子ごとにずれるように、各液晶素子について前記複数の部分電極が配置される、請求項1に記載の液晶光学デバイス。
  3.  前記N個の液晶素子のうちの少なくとも一つにおいて、
     前記位相変調量の隣接する二つの極値のそれぞれに相当する、前記光軸に直交する面における位置の間隔が小さいほど、当該間隔に含まれる位相変調量のレベルの数が少なくなるように前記複数の部分電極が配置される、請求項1に記載の液晶光学デバイス。
  4.  前記光軸に直交する面における、前記複数の部分電極に電力を供給する引き出し電極の位置が前記複数の液晶素子のそれぞれについて同一である、請求項1~3の何れか一項に記載の液晶光学デバイス。
  5.  前記N個の液晶素子のそれぞれについて、前記複数の部分電極のそれぞれと対向する前記透明電極との間に、前記液晶層のうちの当該部分電極が設けられた部分を透過する光束に与える位相変調量の前記レベルに応じた電圧を印加する制御回路をさらに有する、請求項1~4の何れか一項に記載の液晶光学デバイス。
  6.  前記N個の液晶素子のそれぞれについて、前記複数の部分電極のうちの互いに隣接する二つの部分電極は、それぞれ抵抗子によって接続され、
     前記制御回路は、前記位相変調プロファイルにおける位相変調量が極大値となる位置に対応する前記部分電極及び前記位相変調量が極小値となる位置に対応する前記部分電極と、対向する前記透明電極との間に、それぞれ、前記位相変調量が極大値及び極小値となるように電圧を印加する、請求項5に記載の液晶光学デバイス。
  7.  前記N個の液晶素子のうちの第1の液晶素子についての前記所定のレベル数は第1のレベル数であり、前記N個の液晶素子のうちの他の液晶素子についての前記所定のレベル数は前記第1のレベル数に1を加えた第2のレベル数であり、
     前記制御回路は、前記第1の液晶素子における、前記複数の部分電極のうちの前記位相変調量の最大値に対応する部分電極と対向する前記透明電極との間に印加される電圧と、前記位相変調量の最小値に対応する部分電極と対向する前記透明電極との間に印加される電圧との第1の電圧差に対する、前記他の液晶素子における、前記複数の部分電極のうちの前記位相変調量の最大値に対応する部分電極と対向する前記透明電極との間に印加される電圧と、前記位相変調量の最小値に対応する部分電極と対向する前記透明電極との間に印加される電圧との第2の電圧差の比が、前記第1のレベル数に対する前記第2のレベル数の比と等しくなるように、各液晶素子の各部分電極と対向する前記透明電極との間の電圧を制御する、請求項5または6に記載の液晶光学デバイス。
PCT/JP2014/080758 2013-12-19 2014-11-20 光変調素子 WO2015093223A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14871172.4A EP3086167A4 (en) 2013-12-19 2014-11-20 Optical modulation element
JP2015553441A JP6478922B2 (ja) 2013-12-19 2014-11-20 光変調素子
CN201480069445.3A CN105829958B (zh) 2013-12-19 2014-11-20 液晶光学器件
US15/106,094 US20160320677A1 (en) 2013-12-19 2014-11-20 Optical midulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013262481 2013-12-19
JP2013-262481 2013-12-19

Publications (1)

Publication Number Publication Date
WO2015093223A1 true WO2015093223A1 (ja) 2015-06-25

Family

ID=53402578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080758 WO2015093223A1 (ja) 2013-12-19 2014-11-20 光変調素子

Country Status (5)

Country Link
US (1) US20160320677A1 (ja)
EP (1) EP3086167A4 (ja)
JP (1) JP6478922B2 (ja)
CN (1) CN105829958B (ja)
WO (1) WO2015093223A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804616A (zh) * 2016-09-26 2019-05-24 株式会社日立制作所 摄像装置
WO2021153083A1 (ja) * 2020-01-30 2021-08-05 株式会社ジャパンディスプレイ 光制御装置及び照明装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104732168B (zh) * 2015-03-20 2017-08-25 京东方科技集团股份有限公司 一种显示系统、控制方法
US11054680B1 (en) * 2018-08-07 2021-07-06 UltResFP, LLC Electronically configurable variable aperture and grating for optical and spectral applications
CN109782498B (zh) * 2019-01-24 2022-02-18 南京奥谱依电子科技有限公司 用于波前寻址测调的液晶微镜、其制备方法和光学显微镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346627A (ja) * 1989-07-12 1991-02-27 In Focus Syst Inc ディスプレイ装置
JP2004101885A (ja) * 2002-09-10 2004-04-02 Pioneer Electronic Corp 液晶レンズ並びにその駆動方法及び装置
WO2006054803A1 (ja) * 2004-11-22 2006-05-26 Citizen Holdings Co., Ltd. 液晶光学素子及びその製造方法
JP2008529064A (ja) 2005-01-21 2008-07-31 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 可変な焦点距離を備えた電気活性な適応レンズ
JP2010230887A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452834B2 (ja) * 2005-12-28 2014-03-26 エルジー ディスプレイ カンパニー リミテッド 液晶表示装置
JP5289327B2 (ja) * 2007-12-06 2013-09-11 シチズンホールディングス株式会社 液晶フレネルレンズ
US8154804B2 (en) * 2008-03-25 2012-04-10 E-Vision Smart Optics, Inc. Electro-optic lenses for correction of higher order aberrations
CN103309096A (zh) * 2013-06-09 2013-09-18 京东方科技集团股份有限公司 一种双层结构液晶透镜及三维显示装置
KR20150051755A (ko) * 2013-11-05 2015-05-13 삼성디스플레이 주식회사 액정 렌즈 패널 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0346627A (ja) * 1989-07-12 1991-02-27 In Focus Syst Inc ディスプレイ装置
JP2004101885A (ja) * 2002-09-10 2004-04-02 Pioneer Electronic Corp 液晶レンズ並びにその駆動方法及び装置
WO2006054803A1 (ja) * 2004-11-22 2006-05-26 Citizen Holdings Co., Ltd. 液晶光学素子及びその製造方法
JP2008529064A (ja) 2005-01-21 2008-07-31 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド 可変な焦点距離を備えた電気活性な適応レンズ
JP2010230887A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086167A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804616A (zh) * 2016-09-26 2019-05-24 株式会社日立制作所 摄像装置
CN109804616B (zh) * 2016-09-26 2021-01-08 株式会社日立制作所 摄像装置
WO2021153083A1 (ja) * 2020-01-30 2021-08-05 株式会社ジャパンディスプレイ 光制御装置及び照明装置
US11754904B2 (en) 2020-01-30 2023-09-12 Japan Display Inc. Light control device and illumination device
JP7408422B2 (ja) 2020-01-30 2024-01-05 株式会社ジャパンディスプレイ 光制御装置及び照明装置

Also Published As

Publication number Publication date
CN105829958B (zh) 2019-08-20
US20160320677A1 (en) 2016-11-03
JP6478922B2 (ja) 2019-03-06
CN105829958A (zh) 2016-08-03
JPWO2015093223A1 (ja) 2017-03-16
EP3086167A4 (en) 2017-09-13
EP3086167A1 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
WO2015093223A1 (ja) 光変調素子
RU2601227C2 (ru) Многоячеечный жидкокристаллический оптический прибор с управлением сопряженным электрическим полем
CN107209437B (zh) 具有改进的区域过渡的液晶光束控制装置及其制造方法
KR100854183B1 (ko) 광학 소자
US10168586B2 (en) Electrically tunable optical phase modulation element
JP4349781B2 (ja) 液晶レンズ並びにその駆動方法及び装置
JP5136419B2 (ja) 投射型表示装置
JP5297550B1 (ja) 液晶光学素子および画像表示装置
US10838251B2 (en) Phase modulation device
CN115087915A (zh) 光控制装置以及照明装置
US9442302B2 (en) Liquid crystal lens device and image display device
JP5297551B1 (ja) 液晶光学素子および画像表示装置
CN106647064B (zh) 一种光学器件、显示装置及其驱动方法
US11493822B2 (en) Diffractive optical element and display device
US8493645B2 (en) Optically powered optical modulator
TWI647523B (zh) 電光相位調變器
US11204527B2 (en) Liquid crystal display panel, driving method therefor, and display device
JP2016114899A (ja) 液晶光学デバイス
US8724063B2 (en) Liquid crystal optical apparatus, drive device, and image display device
JPH11133449A (ja) 光学装置
JP6817623B2 (ja) 偏光制御装置および偏光制御方法
JP2019070765A (ja) 位相変調装置
JP4277775B2 (ja) 電界制御アナモルフィック液晶レンズ
JP6514088B2 (ja) 液晶光学素子
CN117015736A (zh) 液晶光控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553441

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014871172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014871172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15106094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE