WO2015090498A1 - Abgasrückführungs-kühler reinigungsverfahren - Google Patents

Abgasrückführungs-kühler reinigungsverfahren Download PDF

Info

Publication number
WO2015090498A1
WO2015090498A1 PCT/EP2014/003089 EP2014003089W WO2015090498A1 WO 2015090498 A1 WO2015090498 A1 WO 2015090498A1 EP 2014003089 W EP2014003089 W EP 2014003089W WO 2015090498 A1 WO2015090498 A1 WO 2015090498A1
Authority
WO
WIPO (PCT)
Prior art keywords
egr
exhaust gas
internal combustion
line
combustion engine
Prior art date
Application number
PCT/EP2014/003089
Other languages
English (en)
French (fr)
Inventor
Thomas Hoen
Thorsten Kräuter
Ulf Klein
Michael Tolles
Andreas Friesen
Andreas Boemer
Original Assignee
Deutz Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutz Aktiengesellschaft filed Critical Deutz Aktiengesellschaft
Priority to EP14803046.3A priority Critical patent/EP3092384A1/de
Publication of WO2015090498A1 publication Critical patent/WO2015090498A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0077Control of the EGR valve or actuator, e.g. duty cycle, closed loop control of position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/42Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • From DE 40 07 516 is a diesel engine with an exhaust pipe, in which an exhaust gas turbine of an exhaust gas turbocharger and a particulate filter are arranged and with a combustion air line, in which a supercharger of the exhaust gas turbocharger is provided, as well as with an exhaust gas recirculation line downstream of the particulate filter the exhaust pipe branches off and connects them to the combustion air line, wherein downstream of the exhaust gas turbine an oxidation catalyst and behind this the particulate filter are arranged in the exhaust pipe and that in the exhaust gas recirculation line, an exhaust gas cooler is known.
  • a reverse airflow may be used to clean the EGR cooler.
  • a single charge air cooler is used to cool the mixture of charge air and recirculated exhaust gas.
  • a flow valve that can be moved between open, bypass, and reverse positions is used to control the flow of the charge air / recirculated exhaust gas mixture through the radiator. The reverse position of the flow valve provides a reverse purge flow through the cooling passages to remove accumulated soot particles in the radiator.
  • the method provided by Kennedy may use contaminated exhaust air containing soot particles to clean the EGR cooler, as well as increased complexity in exhaust flow design through the EGR cooler.
  • An exemplary system includes an EGR valve for selectively diverting a portion of the exhaust gas through an EGR passage to an intake side of the internal combustion engine, an EGR cooler disposed in the EGR passage, the EGR cooler having an exhaust side and a suction side and an intake pressurized air supply system having a compressed air passage, wherein the intake pressurized air supply system is configured to selectively divert a portion of the intake pressurized air compressed by the turbocharger through the EGR cooler to remove particulate matter deposited in the EGR cooler.
  • a valve disposed in the compressed air passage may control the flow of intake compressed air.
  • the valve for controlling the intake pressurized air flow through the intake pressure passage may be omitted if the compressed air passage is sized and oriented so as not to interfere with the flow of EGR gas into the EGR cooler and that it is still possible to adequately control the EGR Supply quantity of EGR flow for engine operation.
  • turbocharger suction compressed air which is relatively free of soot particulate available from the engine turbocharger, may be used to purge the EGR cooler to generate sufficient turbulence to detach soot particles deposited in the EGR cooler.
  • the compressed air may be used to remove radiator contaminants if EGR is not used for engine operation to reduce any disturbances to EGR flow operation.
  • the object of the present invention is to avoid the abovementioned disadvantages and to provide an internal combustion engine with EGR in order to reliably maintain the exhaust gas limit values.
  • an internal combustion engine with exhaust gas recirculation comprising at least one turbocharger, at least one engine control unit, at least one intake pipe, at least one exhaust pipe having at least one EGR pipe, the EGR pipe having at least one EGR valve in said EGR passage for diverting a portion of the exhaust gas through said EGR passage to at least one downstream EGR cooler and its EGR cooler exhaust side, wherein the EGR cooler with its suction side by means of EGR intake manifold with the intake passage is connected, wherein the EGR valve is so close and obviously designed that are removed by additional exhaust pressure pulses, which get into the EGR cooler, the deposited there soot particles.
  • EGR exhaust gas recirculation
  • At least one EGR valve is arranged downstream of the EGR cooler and upstream of the intake line.
  • At least one intercooler is arranged between the turbocharger, in particular the fresh air compressor, and the intake line.
  • the intake line and / or the EGR intake line piece has at least one temperature sensor.
  • the invention further includes a method of operating an exhaust gas recirculation (EGR) internal combustion engine comprising at least one turbocharger, at least one engine control unit, at least one intake manifold, at least one exhaust conduit having at least one EGR conduit, the EGR conduit at least one EGR valve in said EGR passage for diverting a portion of the exhaust gas through said EGR passage to at least one downstream EGR cooler and its EGR cooler exhaust side, wherein the EGR cooler with its suction side by means of EGR intake pipe is connected to the intake manifold, wherein the EGR valve is closed and apparently designed so that additional exhaust pressure pulses are generated, which get into the EGR cooler to remove deposited in the EGR cooler soot particles dissolved.
  • EGR exhaust gas recirculation
  • Figure 1 is a schematic representation of the internal combustion engine
  • Figure 2 shows the time course of the flap opening angle during the
  • FIG. 1 shows a schematic representation of the internal combustion engine 1 is shown.
  • the internal combustion engine 1 is in the embodiment of Figure 1 is a six-cylinder diesel engine with intake and exhaust tract. Next, the internal combustion engine 1 to a turbocharger 2, which is communicatively connected to intake and exhaust tract.
  • the exhaust pipe 3 of the internal combustion engine 1 has two EGR lines 4, each having an EGR valve 5, which is designed to be open and closed.
  • the EGR lines 4 each open into an EGR cooler 6, the suction side of the EGR cooler 7 is communicatively connected to the EGR intake pipe section 8.
  • a reed valve 14 is arranged.
  • a charge air cooler 10 is arranged between the intake pipe 9 and the turbocharger 2, a charge air cooler 10 is arranged.
  • the intake pipe 9 has a temperature sensor 12 and a pressure sensor 13, which communicate with the engine control unit 11 by means of electrical lines or radio links.
  • the temperature sensor 12 and the pressure sensor 13 supply their data for controlling the internal combustion engine 1 and the cleaning of the EGR cooler 6 to the engine control unit 11, which in turn controls the EGR valves 5 and opens and closes them by means of closing and then opening an EGR valve 5 to generate a surge, which frees the EGR cooler 6 from the deposited there soot particles.
  • the cleaning takes place by means of electronic control of the EGR valve 5, which, as can be seen in FIG. 2, is opened and closed in a pulse-like manner.
  • An alternative embodiment provides that the EGR flap position is time-controlled. This means that the cleaning process takes place within a defined time interval.
  • a temperature control is implemented instead of a time, which is realized by a temperature sensor behind the EGR cooler.
  • the function is shown as a function of time in FIG.
  • the cleaning effect in the EGR cooler is that the superficially adhering soot deposition is greatly reduced by forced pressure pulses.
  • the pressure pulse is caused by increasing alternating valve opening angle of the upstream EGR actuator, as can be seen in Figure 2.
  • the invention is applicable to all internal combustion engine with external EGR system and electronic control of the EGR actuator. reference numeral

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Beschrieben wird eine Brennkraftmaschine mit Abgasrückführung (AGR), umfassend wenigstens einen Turbolader (2), wenigstens ein Motorsteuergerät (11), wenigstens eine Ansaugleitung (9), wenigstens eine Abgasleitung (3), die wenigstens eine AGR-Leitung (4) aufweist, wobei die AGR-Leitung (4) wenigstens ein AGR-Ventil (5) in besagter AGR-Leitung (4) zum Umleiten eines Teils des Abgases durch besagte AGR-Leitung (4) zu wenigstens einem in Strömungsrichtung nachgeordneten AGR-Kühler (6) bzw. seiner AGR-Kühler-Abgasseite (6) aufweist, wobei der AGR-Kühler (14) mit seiner Ansaugseite (7) mittels AGR-Ansaugleitungsstück (8) mit der Ansaugleitung (9) verbunden ist, wobei das AGR-Ventil (5) derart schließ- und offenbar ausgestaltet ist, dass durch zusätzliche Abgasdruckpulse, die in den AGR-Kühler gelangen, die dort abgeschiedenen Rußpartikel entfernt werden.

Description

Abgasrückführungs-Kühler Reinigungsverfahren
B E S C H R E I B U N G
Aus der DE 40 07 516 ist ein Dieselmotor mit einer Abgasleitung, in der eine Abgasturbine eines Abgasturboladers und ein Partikelfilter angeordnet sind und mit einer Verbrennungsluftleitung, in der ein Lader des Abgasturboladers vorgesehen ist, sowie mit einer Abgasrückführleitung, die in Strömungsrichtung hinter dem Partikelfilter von der Abgasleitung abzweigt und diese mit der Verbrennungsluftleitung verbindet, wobei in Strömungsrichtung hinter der Abgasturbine ein Oxidationskatalysator und hinter diesem das Partikelfilter in der Abgasleitung angeordnet sind und dass in der Abgasrückführleitung ein Abgaskühler vorgesehen ist, bekannt.
Bei einem anderen, durch das US-Patent Nr. 7,0 1 ,080 an Kennedy bereitgestellten Beispiel, kann zum Reinigen des AGR-Kühlers ein umgekehrter Luftstrom verwendet werden. Bei diesem Beispiel wird zum Kühlen der Mischung aus Ladeluft und rückgeführtem Abgas ein einzelner Ladeluft- kühler verwendet. Ein Strömungsventil, das zwischen offener, Bypass- und Umkehrposition bewegt werden kann, wird zum Steuern der Strömung der Mischung aus Ladeluft und rückgeführtem Abgas durch den Kühler verwendet. Die Umkehrposition des Strömungsventils liefert eine umgekehrte Reinigungsströmung durch die Kühlpassagen, um in dem Kühler akkumu- lierte Rußpartikel zu entfernen. Das von Kennedy bereitgestellte Verfahren kann jedoch kontaminierte Abluft, die Rußpartikel enthält, zum Reinigen des AGR-Kühlers verwenden, sowie eine vergrößerte Komplexität beim Abgasströmungsdesign durch den AGR-Kühler. In der DE 10 2009 046 016 A1 werden hierin Systeme und Verfahren zum Verwenden von Ansaugdruckluft, die frei von Rußpartikeln ist, zum Reinigen des AGR-Kühlers eines Verbrennungsmotors mit einem Turbolader be- reitgestellt. Ein beispielhaftes System enthält ein AGR-Ventil zum selektiven Umleiten eines Teils des Abgases durch einen AGR-Kanal zu einer Ansaugseite des Verbrennungsmotors, einen in dem AGR-Kanal angeordneten AGR-Kühler, wobei der AGR-Kühler eine Abgasseite und eine Ansaug- seite aufweist, und ein Ansaugdruckluftzufuhrsystem mit einem Druckluftkanal, wobei das Ansaugdruckluftzufuhrsystem konfiguriert ist, einen Teil der von dem Turbolader komprimierten Ansaugdruckluft selektiv durch den AGR-Kühler umzuleiten, um in dem AGR-Kühler abgeschiedene Rußpartikel zu entfernen. Bei einigen Beispielen kann ein in dem Druckluftkanal an- geordnetes Ventil die Strömung der Ansaugdruckluft steuern. Bei anderen Beispielen kann das Ventil zum Steuern der Ansaugdruckluftströmung durch den Ansaugdruckkanal wegfallen, wenn der Druckluftkanal derart bemessen und ausgerichtet wird, dass er die Strömung von AGR-Gas in den AGR-Kühler nicht stört, und dass es immer noch möglich ist, die adäquate Menge an AGR-Strömung für den Motorbetrieb zuzuführen. Auf diese Weise kann Turboladeransaugdruckluft, die relativ frei von Rußpartikulat ist und die von dem Motorturbolader erhältlich ist, zum Durchspülen des AGR- Kühlers verwendet werden, um ausreichend Turbulenzen zum Ablösen von in dem AGR-Kühler abgeschiedenen Rußpartikeln zu erzeugen. Bei einem Beispiel kann die Druckluft zum Entfernen von Kühlerverunreinigungen verwendet werden, wenn AGR nicht für den Motorbetrieb zum Reduzieren etwaiger Störungen am AGR-Strömungsbetrieb verwendet wird.
Daran ist nachteilig, dass die Reinigung des AGR-Kühlers mit großem Auf- wand betrieben werden muss.
Nachteilig ist es auch, dass es beim Einsatz von AGR-Kühlern immer wieder zum Kühlerwirkungsgradverlust aufgrund von übermäßigen Rußablagerungen (Fouling) und somit zur Nichteinhaltung der Abgasgrenzwerte kommt.
Da das Nichteinhalten der Abgasgrenzwerte ein Verstoß gegen die Gesetzgebung ist, wurde ein Prinzip entwickelt, welches diese Verschmutzungen eliminiert und die Abgasemissionen in den geforderten Grenzen hält. Aufgabe der vorliegenden Erfindung ist es, die oben genannten Nachteile zu vermeiden und eine Brennkraftmaschine mit AGR zu schaffen, um zuverlässig die Abgasgrenzwerte einzuhalten.
Die Aufgabe wird durch eine Brennkraftmaschine mit Abgasrückführung (AGR) gelöst, umfassend wenigstens einen Turbolader, wenigstens ein Motorsteuergerät, wenigstens eine Ansaugleitung, wenigstens eine Abgas- leitung, die wenigstens eine AGR-Leitung aufweist, wobei die AGR-Leitung wenigstens ein AGR-Ventil in besagter AGR-Leitung zum Umleiten eines Teils des Abgases durch besagte AGR-Leitung zu wenigstens einem in Strömungsrichtung nachgeordneten AGR-Kühler bzw. seiner AGR-Kühler- Abgasseite aufweist, wobei der AGR-Kühler mit seiner Ansaugseite mittels AGR-Ansaugleitungsstück mit der Ansaugleitung verbunden ist, wobei das AGR-Ventil derart schließ- und offenbar ausgestaltet ist, dass durch zusätzliche Abgasdruckpulse, die in den AGR-Kühler gelangen, die dort abgeschiedenen Rußpartikel entfernt werden.
In einer alternativen Ausgestaltung ist vorgesehen, dass wenigstens ein AGR-Ventil nach dem AGR-Kühler und vor der Ansaugleitung angeordnet ist.
Weiter ist vorteilhafterweise vorgesehen, dass zwischen Turbolader, insbesondere dem Frischluftkompressor, und der Ansaugleitung wenigstens ein Ladeluftkühler angeordnet ist.
In einer anderen vorteilhaften Ausgestaltung ist vorgesehen, dass die Ansaugleitung und/oder das AGR-Ansaugleitungsstück wenigstens einen Temperatursensor aufweist.
Eine vorteilhafte Weiterbildung sieht vor, dass die Ansaugleitung und/oder das AGR-Ansaugleitungsstück wenigstens einen Drucksensor aufweist. Weiter beinhaltet die Erfindung ein Verfahren zum Betreiben einer Brennkraftmaschine mit Abgasrückführung (AGR), umfassend wenigstens einen Turbolader, wenigstens ein Motorsteuergerät, wenigstens eine Ansaugleitung, wenigstens eine Abgasleitung, die wenigstens eine AGR-Leitung auf- weist, wobei die AGR-Leitung wenigstens ein AGR-Ventil in besagter AGR- Leitung zum Umleiten eines Teils des Abgases durch besagte AGR-Leitung zu wenigstens einem in Strömungsrichtung nachgeordneten AGR-Kühler bzw. seiner AGR-Kühler-Abgasseite aufweist, wobei der AGR-Kühler mit seiner Ansaugseite mittels AGR-Ansaugleitungsstück mit der Ansauglei- tung verbunden ist, wobei das AGR-Ventil derart schließ- und offenbar ausgestaltet ist, dass zusätzliche Abgasdruckpulse entstehen, die in den AGR- Kühler gelangen, um in dem AGR-Kühler abgeschiedene Rußpartikel zu entfernen, gelöst. Weitere Merkmale der Erfindung gehen aus der nachfolgenden Beschreibung und den Zeichnungen hervor, in der ein Ausführungsbeispiel der Erfindung schematisch dargestellt ist.
Es zeigen:
Figur 1 eine schematische Darstellung der Brennkraftmaschine
Figur 2 den zeitlichen Verlauf des Klappenöffnungswinkels während des
Reinigungsvorgangs
In Figur 1 wird eine schematische Darstellung der Brennkraftmaschine 1 dargestellt.
Die Brennkraftmaschine 1 ist im Ausführungsbeispiel nach Figur 1 ein Sechszylinderdieselmotor mit Ansaugtrakt und Abgastrakt. Weiter weist die Brennkraftmaschine 1 einen Turbolader 2 auf, der mit Ansaugtrakt und Abgastrakt kommunizierend verbunden ist. Die Abgasleitung 3 der Brennkraftmaschine 1 weist zwei AGR-Leitungen 4 auf, die über je ein AGR-Ventil 5 verfügen, das offen- und schließbar ausgeführt ist. Die AGR-Leitungen 4 münden jeweils in einem AGR-Kühler 6, dessen Ansaugseite des AGR- Kühlers 7 mit dem AGR-Ansaugleitungsstück 8 kommunizierend verbunden ist. Am Ende - aus Strömungssicht - von AGR-Ansaugleitungsstück 8, noch vor der Ansaugleitung 9, ist ein Reed valve 14 angeordnet. Zwischen der Ansaugleitung 9 und dem Turbolader 2 ist ein Ladeluftkühler 10 angeordnet. Die Ansaugleitung 9 weist Temperatursensor 12 und einen Drucksensor 13 auf, die mittels elektrischer Leitungen bzw. Funkverbindungen mit dem Motorsteuergerät 11 kommunizieren. Der Temperatursensor 12 und der Drucksensor 13 liefern ihre Daten zur Steuerung der Brennkraft- maschine 1 und der Abreinigung des AGR-Kühlers 6 an das Motorsteuergerät 11 , das wiederrum die AGR-Ventile 5 ansteuert und diese öffnet und schließt, um mittels eines durch das Schließen und anschließendes Öffnen eines AGR-Ventils 5 einen Druckstoß zu erzeugen, der den AGR-Kühler 6 von den dort abgeschiedenen Rußpartikeln befreit. Die Abreinigung erfolgt mittels elektronischer Regelung des AGR-Ventils 5, welches, wie in Figur 2 zu sehen ist, impulsartig geöffnet und geschlossen wird. Eine alternative Ausgestaltung sieht vor, dass die AGR-Klappenstellung zeitgesteuert ist. Das heißt, dass der Reinigungsvorgang in einem festgelegten Zeitintervall stattfindet. Eine andere alternative Ausgestaltung sieht vor, dass anstatt einer Zeit- eine Temperaturregelung umgesetzt wird, was durch einen Temperatursensor hinter dem AGR-Kühler realisiert wird. Beim Erreichen einer festgelegten Temperatur findet das "Abblasen" des Rußes statt. Bei beiden Varianten (Temperatur, Zeit) ist die Funktion in Abhängigkeit der Zeit in Figur 2 dargestellt. Der Reinigungseffekt im AGR-Kühler besteht darin, dass die oberflächlich anhaftende Rußablagerung durch erzwungene Druckimpulse stark reduziert wird. Der Druckimpuls wird durch steigende alternierende Klappenöffnungswinkel des vorgeschalteten AGR-Stellers hervorgerufen, wie dies in Figur 2 zu sehen ist. Die Erfindung ist für alle Verbrennungskraftmaschinen mit externem AGR-System und elektronischer Rege- lung des AGR-Stellers anwendbar. Bezugszeichen
1 Brennkraftmaschine
2 Turbolader
3 Abgasleitung
4 AGR-Leitung
5 AGR-Ventil
6 Abgasseite des AGR-Kühlers
7 Ansaugseite des AGR-Kühler
8 AGR-Ansaugleitungsstück
9 Ansaugleitung
10 Ladeluftkühler
11 Motorsteuergerät
12 Temperatursensor
13 Drucksensor
14 Reed valve
15 AGR-Kühler

Claims

A N S P R Ü C H E
1. Brennkraftmaschine mit Abgasrückführung (AGR), umfassend wenigstens einen Turbolader (2), wenigstens ein Motorsteuergerät (1 1 ), wenigstens eine Ansaugleitung (9), wenigstens eine Abgasleitung (3), die wenigstens eine AGR-Leitung (4) aufweist, wobei die AGR-Leitung (4) wenigstens ein AGR-Ventil (5) in besagter AGR-Leitung (4) zum Umleiten eines Teils des Abgases durch besagte AGR-Leitung (4) zu wenigstens einem in Strömungsrichtung nachgeordneten AGR-Kühler (15) bzw. seiner AGR-Kühler- Abgasseite (6) aufweist, wobei der AGR-Kühler (15) mit seiner Ansaugseite (7) mittels AGR-Ansaugleitungsstück (8) mit der Ansaugleitung (9) verbun- den ist, wobei das AGR-Ventil (5) derart schließ- und offenbar ausgestaltet ist, dass durch zusätzliche Abgasdruckpulse, die in den AGR-Kühler gelangen, die dort abgeschiedenen Rußpartikel entfernt werden.
2. Brennkraftmaschine nach Anspruch 1 ,
dadurch gekennzeichnet, dass zwischen Turbolader (2), insbesondere dem Frischluftkompressor, und der Ansaugleitung (9) wenigstens ein Ladeluftkühler (10) angeordnet ist.
3. Brennkraftmaschine nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die Ansaugleitung (9) und/oder das AGR- Ansaugleitungsstück (8) wenigstens einen Temperatursensor (12) aufweist.
4. Brennkraftmaschine nach einem oder mehreren der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass die Ansaugleitung (9) und/oder das AGR- Ansaugleitungsstück (8) wenigstens einen Drucksensor (13) aufweist.
5. Brennkraftmaschine nach einem oder mehreren der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass im Wesentlichen zwischen Ansaugleitung (9) und AGR-Ansaugleitungsstück (8) wenigstens ein Reed valve (14) an- geordnet ist.
6. Verfahren zum Betreiben einer Brennkraftmaschine nach einem oder mehreren der vorgenannten Ansprüche,
dadurch gekennzeichnet, dass eine Brennkraftmaschine eines oder mehre- ren der vorgenannten Ansprüche zum Einsatz kommt.
PCT/EP2014/003089 2013-12-16 2014-11-19 Abgasrückführungs-kühler reinigungsverfahren WO2015090498A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14803046.3A EP3092384A1 (de) 2013-12-16 2014-11-19 Abgasrückführungs-kühler reinigungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013020642.1A DE102013020642A1 (de) 2013-12-16 2013-12-16 Abgasrückführungs-Kühler Reinigungsverfahren
DE102013020642.1 2013-12-16

Publications (1)

Publication Number Publication Date
WO2015090498A1 true WO2015090498A1 (de) 2015-06-25

Family

ID=51987113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/003089 WO2015090498A1 (de) 2013-12-16 2014-11-19 Abgasrückführungs-kühler reinigungsverfahren

Country Status (3)

Country Link
EP (1) EP3092384A1 (de)
DE (1) DE102013020642A1 (de)
WO (1) WO2015090498A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210198A1 (de) 2016-06-09 2017-12-14 Zf Friedrichshafen Ag Kühlung von Bauteilen mit einem Druckstoßerzeuger zur Ausbildung einer turbulenten Kühlmittelströmung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109339962A (zh) * 2018-09-28 2019-02-15 潍柴动力股份有限公司 一种egr阀的控制方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729004A1 (de) * 2005-06-02 2006-12-06 Denso Corporation AGR-Regelungsvorrichtung und Verfahren zum Betrieb derselben
EP1867863A2 (de) * 2006-06-16 2007-12-19 Mahle International GmbH Abgasrückführeinrichtung für eine Brennkraftmaschine und zugehöriges Betriebsverfahren
US20110146233A1 (en) * 2009-12-22 2011-06-23 Caterpillar Inc. Regeneration assist calibration
US20120048245A1 (en) * 2010-09-01 2012-03-01 Gm Global Technology Operations, Inc. Modulating hydrodynamic flow characteristics to alleviate automotive heat exchanger contamination

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4007516C2 (de) 1990-03-09 1997-03-06 Kloeckner Humboldt Deutz Ag Dieselmotor
US7011080B2 (en) 2002-06-21 2006-03-14 Detroit Diesel Corporation Working fluid circuit for a turbocharged engine having exhaust gas recirculation
US6904898B1 (en) * 2003-09-09 2005-06-14 Volvo Lastyagnar Ab Method and arrangement for reducing particulate load in an EGR cooler
US8250865B2 (en) 2008-11-05 2012-08-28 Ford Global Technologies, Llc Using compressed intake air to clean engine exhaust gas recirculation cooler
US8375713B2 (en) * 2009-12-04 2013-02-19 International Engine Intellectual Property Company, Llc EGR cooler cleaning system and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1729004A1 (de) * 2005-06-02 2006-12-06 Denso Corporation AGR-Regelungsvorrichtung und Verfahren zum Betrieb derselben
EP1867863A2 (de) * 2006-06-16 2007-12-19 Mahle International GmbH Abgasrückführeinrichtung für eine Brennkraftmaschine und zugehöriges Betriebsverfahren
US20110146233A1 (en) * 2009-12-22 2011-06-23 Caterpillar Inc. Regeneration assist calibration
US20120048245A1 (en) * 2010-09-01 2012-03-01 Gm Global Technology Operations, Inc. Modulating hydrodynamic flow characteristics to alleviate automotive heat exchanger contamination

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016210198A1 (de) 2016-06-09 2017-12-14 Zf Friedrichshafen Ag Kühlung von Bauteilen mit einem Druckstoßerzeuger zur Ausbildung einer turbulenten Kühlmittelströmung

Also Published As

Publication number Publication date
DE102013020642A1 (de) 2015-06-18
EP3092384A1 (de) 2016-11-16

Similar Documents

Publication Publication Date Title
DE102013002894B4 (de) Turbine für einen Abgasturbolader
DE102009014277B4 (de) Vorrichtung zum Betreiben einer Diesel-Brennkraftmaschine mit Abgasturboaufladung
DE102006054117B4 (de) Im Teil- und Volllastbetrieb gesteuerte Kurbelgehäuse-Belüftung einer Brennkraftmaschine
DE102006055814B4 (de) Turbogeladener Verbrennungsmotor mit Abgasrückführung
DE10216773B4 (de) Kühler für ein dem Hauptabgasstrom eines Verbrennungsmotors entnommenes Abgas
DE102008036896A1 (de) Abgasrückführungssystem für eine Verbrennungskraftmaschine
DE202014009592U1 (de) Abgasbehandlungseinrichtung zur Behandlung von Abgas einer Brennkraftmaschine und Brennkraftmaschine
DE112007000298B4 (de) Auspuffelement für Anlage zum Ausströmen von Gasen
DE10235013A1 (de) Verfahren zur Bestimmung eines Ladedrucksollwerts in einer Brennkraftmaschine mit einem Abgasturbolader
WO2015090498A1 (de) Abgasrückführungs-kühler reinigungsverfahren
AT513133B1 (de) Großdiesel-Brennkraftmaschine
DE102010045503B4 (de) Vorrichtung zur Abgasrückführung an einer Brennkraftmaschine mit kombinierter Stauklappe und Bypassventil
DE102013008827A1 (de) Aufgeladene Brennkraftmaschine
DE102014007167A1 (de) Brennkraftmaschine sowie Verfahren zum Betreiben einer Brennkraftmaschine
EP2737195B1 (de) Aufgeladene brennkraftmaschine
DE102016219774B4 (de) System für ein Kraftfahrzeug und Verfahren zum Betreiben einer Brennkraftmaschine für ein Kraftfahrzeug
DE102014016877A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
DE102012109270A1 (de) Brennkraftmaschine mit einem Einlassstrang
DE102012021679A1 (de) Brennkraftmaschine mit Abgasrückführeinrichtung und Kondensatabscheider
DE102004035324A1 (de) Schaltung einer Registeraufladung sowie sequentiellen Aufladung
WO2008095214A1 (de) Vorrichtung zur abgasrückführung für einen verbrennungsmotor
DE202015101888U1 (de) Verbrennungsmotor mit Niederdruck-Abgasrückführung
DE102013003136B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine sowie entsprechende Brennkraftmaschine
DE102015208475A1 (de) Einrichtung zum Abführen von Kondensat aus einer Turboladeranordnung
DE102013209029A1 (de) Abgasrückführsystem für einen Verbrennungsmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14803046

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014803046

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014803046

Country of ref document: EP