WO2015090107A1 - 介质波导滤波器 - Google Patents

介质波导滤波器 Download PDF

Info

Publication number
WO2015090107A1
WO2015090107A1 PCT/CN2014/088839 CN2014088839W WO2015090107A1 WO 2015090107 A1 WO2015090107 A1 WO 2015090107A1 CN 2014088839 W CN2014088839 W CN 2014088839W WO 2015090107 A1 WO2015090107 A1 WO 2015090107A1
Authority
WO
WIPO (PCT)
Prior art keywords
coupling
tuning
screw
dielectric
medium
Prior art date
Application number
PCT/CN2014/088839
Other languages
English (en)
French (fr)
Inventor
许建军
朱晖
钟伟刚
Original Assignee
武汉凡谷电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310688407.3A external-priority patent/CN103618122B/zh
Priority claimed from CN201320827820.9U external-priority patent/CN203644908U/zh
Priority claimed from CN201420283976.XU external-priority patent/CN203967220U/zh
Application filed by 武汉凡谷电子技术股份有限公司 filed Critical 武汉凡谷电子技术股份有限公司
Publication of WO2015090107A1 publication Critical patent/WO2015090107A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2084Cascaded cavities; Cascaded resonators inside a hollow waveguide structure with dielectric resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • the invention relates to the technical field of electrical components for the communication industry, in particular to a dielectric waveguide filter.
  • a waveguide filter is usually used in communication systems to filter out interference signals or clutter signals in a specific frequency range.
  • the traditional waveguide filter structure is a metal cavity structure, that is, a precious material such as metal or metal alloy (such as aluminum, magnesium alloy, etc.) is hollowed out in the middle or part, and the metal material mainly functions as electromagnetic shielding and structural support.
  • the filter designed in this way has a high Q value, its volume and weight are large, which is not conducive to installation, disassembly and transportation; and because of the high price of precious metals, the cost of the waveguide filter is also high.
  • the tuning structure of the dielectric waveguide filter in the prior art generally functions as a frequency tuning by removing a medium material in a single cavity width of a small portion of the medium.
  • Such a filter tuning structure limits the cavity form of the filter, Conducive to the diversity and adaptability of filter structure design.
  • the object of the present invention is to solve the deficiencies of the above background art, and to provide a dielectric waveguide filter which is easy to process and assemble, convenient to debug, and low in cost.
  • the present invention adopts the following two technical solutions.
  • the first technical solution is: a dielectric waveguide filter, characterized in that the dielectric waveguide filter comprises a plurality of interconnected dielectric single cavities; the dielectric single cavity is a solid cavity made of a dielectric material, The surface of the solid cavity is provided with an electromagnetic shielding layer.
  • the medium single cavity is a solid cavity made of a ceramic dielectric material
  • the electromagnetic shielding layer is a metal layer.
  • a tuning structure is provided in the single cavity of the medium, the tuning structure consisting of a tuning blind hole disposed in the single cavity of the medium and a tuning screw matched with the tuning blind hole.
  • one end of the tuning screw is disposed in the tuning blind hole, a gap is provided between the circumferential wall of the tuning screw and the tuning blind hole, and the other end end of the tuning screw is screwed into the tuning nut, the tuning A tuning nut is disposed between the nut and the single cavity of the medium, and the tuning nut is fixedly coupled to the single cavity of the medium, and the tuning nut is passed through by the tuning screw.
  • the adjacent medium single chambers are connected by a coupling bridge.
  • the coupling bridge is a solid cavity made of the same dielectric material as the single cavity of the medium.
  • the coupling bridge is provided with a coupling blind hole in a vertical direction, and a coupling screw is disposed in the coupling blind hole, and one end of the coupling screw is disposed in the coupling blind hole, and the circumferential wall of the coupling screw and the coupling blind hole are A gap is provided, and the other end of the coupling screw is screwed into the coupling nut, and a coupling nut is disposed between the coupling nut and the coupling bridge, and the coupling nut is fixedly connected with the coupling bridge, and the coupling is The threaded sleeve is threaded through the coupling screw.
  • the coupling bridge is made of a metallic material.
  • the inner side of the coupling bridge is provided with a transverse groove
  • the surface of the coupling bridge is vertically provided with a through hole connected to the transverse groove
  • the through hole is provided with a coupling screw threadedly connected thereto
  • the upper end of the coupling screw is fitted in a coupling nut which is disposed on the surface of the coupling bridge, the coupling screw passes through the through hole, and the lower end of the coupling screw is disposed in the transverse groove.
  • the second solution is: a spliced dielectric filter, wherein the dielectric filter is formed by splicing a plurality of media single cavities, and the single cavity of the medium is a solid cavity made of a dielectric material.
  • the surface of the solid cavity is provided with an electromagnetic shielding layer; each medium single cavity is provided with a tuning blind hole in a vertical direction, and the tuning blind hole is provided with a frequency tuning structure; the joint faces of the adjacent single cells are in contact with each other.
  • the splicing surface of the single cavity of the adjacent medium is provided with matching grooves at vertical corresponding positions, and the matched grooves are spliced to form a cylindrical coupling blind hole, and the coupling is blind
  • a coupling tuning structure is provided in the hole.
  • the medium single cavity is a solid cavity made of a ceramic dielectric material
  • the electromagnetic shielding layer is a metal layer or a metal alloy layer.
  • the dielectric filter is formed by bonding or soldering a plurality of dielectric single cavities to each other.
  • the frequency tuning structure comprises a tuning screw disposed in the tuning blind hole, one end of the tuning screw is disposed in the tuning blind hole, and a gap is provided between the circumferential wall of the tuning screw and the tuning blind hole, The other end of the tuning screw is screwed into the tuning nut, and a tuning nut is disposed between the tuning nut and the single cavity of the medium, and the tuning nut is fixedly connected to the single cavity of the medium, and the tuning nut is Tighten the screws through.
  • the coupling tuning structure includes a coupling screw disposed in the coupling blind hole, one end of the coupling screw is disposed in the coupling blind hole, and a gap is formed between the circumferential wall of the coupling screw and the coupling blind hole.
  • the other end of the coupling screw is screwed into the coupling nut, and a coupling nut is disposed between the coupling nut and the single cavity of the medium, and the coupling nut is fixedly connected to the single cavity of the medium, and the coupling nut is coupled The screw passes through.
  • the invention utilizes different dielectric constants of air and medium, and fills a cavity of a conventional metal cavity waveguide filter, that is, an air portion, as a dielectric material, and an electromagnetic shielding layer is disposed on the surface of the dielectric material for electromagnetic shielding, and the dielectric material is used for the same.
  • a conventional metal cavity waveguide filter that is, an air portion, as a dielectric material, and an electromagnetic shielding layer is disposed on the surface of the dielectric material for electromagnetic shielding, and the dielectric material is used for the same.
  • the designed dielectric waveguide filter has the advantages of small size, light weight, environmental protection and low cost, and can better meet the future small size, light weight and low value of filters, duplexers and multiplexers. Development trends such as cost, high performance and environmental protection.
  • a splicing dielectric filter designs a conventional monolithic dielectric filter into a single cavity of a plurality of media, so that a single cavity of a certain medium occurs during the manufacturing process.
  • the single cavity of the medium can be replaced separately, thereby avoiding the phenomenon that the whole material is scrapped due to partial damage of a single cavity of a certain medium, so as to save production and manufacturing costs.
  • Figure 1 is a perspective view of Embodiment 1;
  • Figure 2 is a front view of Embodiment 1;
  • Figure 3 is a plan view of Figure 2;
  • Figure 4 is a right side view of Figure 2;
  • Figure 5 is a bottom view of Figure 2;
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 3;
  • FIG. 7 is a schematic structural view of a coupling bridge made of a metal material, which is a projection view from the coupling window 2 toward the coupling bridge 4;
  • Figure 8 is a cross-sectional view taken along line B-B of Figure 7;
  • FIG. 9 is a schematic diagram of a single-chamber splicing of a medium of a spliced dielectric filter designed in Embodiment 2;
  • Figure 10 is a schematic perspective view of a second embodiment
  • Figure 11 is a plan view of Embodiment 2.
  • Figure 12 is a right side view of Embodiment 2.
  • medium single cavity 1 coupling window 2, connector 3, coupling bridge 4, transverse groove 4.1, tuning screw 5, tuning nut 6, tuning nut 7, coupling screw 8, coupling nut 9, coupling nut 10, tuning
  • the blind hole 11 is coupled to the blind hole 12.
  • Embodiment 1 A dielectric waveguide filter as shown in 1-8, wherein the dielectric waveguide filter comprises a plurality of interconnected dielectric single chambers 1, and the dielectric single chambers 1 can be connected in series by a single connection. The connection may be performed in parallel by separate methods, or may be connected in series and in parallel; the dielectric single cavity 1 is a solid cavity made of a dielectric material, and the surface of the solid cavity is provided with an electromagnetic shielding layer.
  • the dielectric constant of the air and the medium is different, and the cavity of the conventional metal cavity waveguide filter, that is, the air portion is filled as a dielectric material, and an electromagnetic shielding layer is disposed on the surface of the dielectric material for electromagnetic shielding, and the dielectric material is utilized at the same time.
  • the designed dielectric waveguide filter has the advantages of small size, light weight, environmental protection and low cost, and can better meet the future small size, light weight, and the like of filters, duplexers and multiplexers. Development trends such as low cost, high performance and environmental protection.
  • the medium single cavity 1 in the embodiment adopts a hard ceramic dielectric material, and the filter made of the ceramic dielectric material has the characteristics of miniaturization, high stability, low loss, and can be effectively self-supporting; the electromagnetic shielding layer is solid.
  • the surface of the cavity is baked or plated with a metal material (such as silver, copper, etc.) for electromagnetic shielding.
  • a single chamber of a medium may be connected to a single chamber of a medium or a single chamber of a plurality of mediums according to a filter cavity.
  • a tuning structure is provided in the medium single cavity 1.
  • the tuning structure is composed of a tuning blind hole 11 disposed in the medium single cavity 1 and a tuning screw 5 matched with the tuning blind hole 11, and the resonant cavity perturbation principle is adopted.
  • the depth of the tuning screw 5 into the tuning blind hole 11 is changed, and the frequency of each medium single chamber 1 is finely adjusted.
  • one end of the tuning screw 5 is disposed in the tuning blind hole 11, and the circumferential wall of the tuning screw 5 is adjusted.
  • a gap is provided between the harmonic blind holes 11, and the other end end of the tuning screw 5 is screwed into the tuning nut 7, and a tuning nut 6 is provided between the tuning nut 7 and the medium single cavity 1, the tuning nut 6 and the medium
  • the cavity 1 is fixedly connected and the tuning nut 6 is passed through by the tuning screw 5.
  • the tuning screw 5 By rotating the tuning screw 5, the depth of the tuning screw 5 in the tuning blind hole 11 can be adjusted.
  • the tuning screw 5 can be screwed with the tuning nut 7, that is, the tightening of the tuning screw 5 is achieved. Solid purpose.
  • the adjacent medium single chamber 1 is connected by a coupling bridge 4, and the coupling bridge 4 and the adjacent medium single chamber 1 enclose a coupling window 2.
  • the coupling bridge 4 is a solid cavity made of the same dielectric material as the medium single cavity 1.
  • the coupling bridge 4 and the dielectric single cavity 1 constitute a whole dielectric block.
  • a coupling blind hole 12 is disposed in the vertical direction on the surface of the coupling bridge 4, and a coupling screw 8 is disposed in the coupling blind hole 12, and one end of the coupling screw 8 is disposed in the coupling blind hole 12, and the circumferential wall of the coupling screw 8 and the coupling blind hole A gap is provided between the two ends, and the other end of the coupling screw 8 is screwed into the coupling nut 9.
  • the coupling nut 10 and the coupling bridge 4 are provided with a coupling nut 10, and the coupling nut 10 is fixedly connected with the coupling bridge 4.
  • the coupling nut 10 is passed through by a coupling screw 8.
  • the coupling amount of the window is finely adjusted.
  • the coupling screw 8 is also screwed into the coupling nut 9 to achieve the purpose of fastening the coupling screw 8.
  • the coupling bridge 4 is made of a metal material, and a transverse groove 4.1 is opened in the direction of the coupling window 2 inside the coupling bridge 4, and the surface of the coupling bridge 4 is vertically opened and laterally grooved.
  • the through hole is connected, and the through hole is provided with a coupling screw 8 which is screwed thereto.
  • the upper end of the coupling screw 8 is fitted in the coupling nut 9, and the coupling nut 9 is directly disposed on the surface of the coupling bridge 4, and the coupling screw 8 passes through
  • the through hole has a lower end disposed in the lateral groove 4.1.
  • the coupling amount of the window is finely adjusted.
  • the coupling screw 8 is also screwed into the coupling nut 9 and the through hole to achieve the fastening of the coupling screw 8. purpose.
  • the tuning nut 7 and the tuning nut 6, the coupling nut 9 and the coupling nut 10 of the present invention may be of a unitary structure welded directly to the surfaces of the dielectric single chamber 1 and the coupling bridge 4.
  • the dielectric waveguide filter described in this embodiment can be used only as a filter, and it has only one Signal input port and one signal output port.
  • the dielectric waveguide filter described in this embodiment can be used as a duplexer, and each individual duplexer needs to be provided with a TX transmit filter and an RX receive filter, wherein the TX transmit filter and the RX receive filter are used.
  • a total of one ANT port, the TX transmit filter and the RX receive filter have different passband ranges, and the signals are connected or fed out through the connector 3, and the signals can be connected or fed out through the microstrip line.
  • the dielectric waveguide filter described in this embodiment can also be used as a multiplexer, and each individual multiplexer includes a plurality of filters, wherein a plurality of filters share one ANT port, but the passband ranges are not Similarly, each filter connects or feeds signals through the connector 3, and the signals can be connected or fed out through the microstrip line.
  • the dielectric waveguide filter described in this embodiment has an arbitrary cavity type and is not limited to an L-shape, a linear type, or the like.
  • Embodiment 2 A spliced dielectric filter as shown in FIG. 9-12, the dielectric filter is formed by connecting a plurality of dielectric single chambers 1 to each other, and the dielectric single chambers 1 can be separately connected in series. The connections may also be connected in parallel by separate methods, or may be connected in series and in parallel.
  • the medium single chamber 1 is a solid cavity made of a dielectric material, and the surface of the solid cavity is provided with an electromagnetic shielding layer.
  • the innovation of the utility model is that the dielectric filter is formed by splicing a plurality of media single cavities 1 through each other, and the splicing faces of the adjacent media single cavities 1 are in contact with each other, that is, in the manufacture of the dielectric filter, the dielectric filter
  • the first small module is processed into a single cavity of each medium, and then the single cavity of the medium is spliced into a dielectric filter, so that a certain medium appears in the manufacturing process.
  • the single cavity 1 is partially damaged, the single cavity 1 of the medium can be replaced separately, thereby avoiding the occurrence of the phenomenon that the entire material is scrapped due to partial damage of a single cavity in the background art, so as to save production and manufacturing costs.
  • the medium single cavity 1 in the embodiment adopts a hard ceramic dielectric material, and the filter made of the ceramic dielectric material has the characteristics of miniaturization, high stability, low loss, and can be effectively self-supporting; the electromagnetic shielding layer is solid.
  • the surface of the cavity is baked or plated with a layer of metal or metal alloy for electromagnetic shielding.
  • a single chamber 1 of the medium can be in a single cavity 1 according to the filter cavity.
  • the connection can also be connected to a plurality of media single chambers 1.
  • Adjacent media single chamber 1 can be spliced by welding or bonding.
  • the tuning blind hole 11 for adjusting the frequency is vertically opened in each medium single cavity, and the tuning blind hole 11 is provided with a frequency tuning structure; the splicing surface of the adjacent medium single cavity 1 is disposed along the vertical corresponding position. There are matched grooves, and the matched grooves are spliced to form a cylindrical coupling blind hole 12, and the coupling blind hole 12 is provided with a coupling tuning structure.
  • the splicing surface of the adjacent single-chamber 1 is directly spliced, thereby eliminating the need to connect the single cavity between the adjacent media through the coupling bridge, etc., which can reduce the volume and weight to a greater extent, and the corresponding savings. Processing costs.
  • the frequency tuning structure of the present embodiment includes a tuning screw 5 disposed in the tuning blind hole 11, one end of the tuning screw 5 being disposed in the tuning blind hole 11, between the circumferential wall of the tuning screw 5 and the tuning blind hole 11 With a gap, the other end of the tuning screw 5 is screwed into the tuning nut 7, and a tuning nut 6 is arranged between the tuning nut 7 and the medium single chamber 1.
  • the tuning nut 6 is fixedly connected to the medium single chamber 1 and is tuned.
  • the screw sleeve 6 is passed through by the tuning screw 5.
  • the frequency tuning structure utilizes the cavity perturbation principle to change the depth of the tuning screw 5 into the tuning blind hole 11 to finely adjust the frequency of each medium single cavity 1. After the frequency of each medium single cavity 1 is finely adjusted, the tuning screw 5 can be The threaded connection with the tuning nut 7 achieves the purpose of fastening the tuning screw 5.
  • the coupling tuning structure of the present embodiment includes a coupling screw 8 disposed in the coupling blind hole 12.
  • One end of the coupling screw 8 is disposed in the coupling blind hole 12, and between the circumferential wall of the coupling screw 8 and the coupling blind hole 12 A coupling gap is provided, and the other end of the coupling screw 8 is screwed into the coupling nut 9.
  • the coupling nut 10 and the medium single cavity 1 are provided with a coupling nut 10, and the coupling nut 10 is fixedly connected with the medium single cavity 1 and coupled.
  • the nut 10 is passed through by a coupling screw 8.
  • the coupling tuning structure utilizes the resonant cavity perturbation principle to change the depth of the coupling screw 8 into the coupling blind hole 12 to achieve the purpose of fine-tuning the coupling between the adjacent single holes 1.
  • the coupling of each medium single cavity 1 is fine-tuned and coupled.
  • the screw 8 can be screwed to the coupling nut 9, ie the purpose of fastening the coupling screw 8 is achieved.
  • the tuning screw 5 and the coupling screw 8 in the above solution can be replaced by a lighter weight screw, so that the total volume of the product is correspondingly reduced.
  • the tuning structure of the embodiment is an unnecessary structure.
  • the frequency tuning structure and the coupling tuning structure are not required to adjust the frequency and the coupling amount.
  • Coupling can be achieved by using adjacent splice faces
  • the method of partial shielding is realized by adjusting the size of the area of the shielding layer of the adjacent mosaic surface. At this time, the volume of the filter is smaller, the assembly is easier, and the cost is lower.
  • the spliced dielectric filter designed in this embodiment can be used only as a filter, and it has only one signal input port and one signal output port.
  • the spliced dielectric filter designed in this embodiment can be used as a duplexer.
  • Each separate duplexer needs to be provided with a TX transmit filter and an RX receive filter, wherein the TX transmit filter and the RX receive filter.
  • a total of one ANT port, the TX transmit filter and the RX receive filter have different passband ranges, and the signals are connected or fed out through the connector 10, and the signals can be connected or fed out through the microstrip line.
  • the spliced dielectric filter designed in this embodiment can also be used as a multiplexer, and each individual multiplexer includes a plurality of filters, wherein a plurality of filters share an ANT port, but each of the passband ranges Differently, each filter connects or feeds signals through the connector 3, and the signals can also be connected or fed out through the microstrip line.
  • the splicing type dielectric filter designed in this embodiment has an arbitrary cavity type, and is not limited to an L type, a straight type, or the like.
  • the utility model utilizes different dielectric constants of air and medium, and fills a cavity of a conventional metal cavity waveguide filter, that is, an air portion, into a dielectric material, and an electromagnetic shielding layer is disposed on the surface of the dielectric material for electromagnetic shielding, and the dielectric material is utilized at the same time.
  • the designed dielectric filter has many advantages such as small size, light weight, environmental protection and low cost, and can better meet the future small size, light weight and low value of filters, duplexers and multiplexers. Development trends such as cost, high performance and environmental protection.

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种介质波导滤波器,它包括介质单块,介质单块包括多个相互连接的介质单腔(1);介质单腔(1)为通过介质材料制成的实心腔体,实心腔体的表面设有电磁屏蔽层。所述介质波导滤波器利用空气与介质的介电常数不同,将传统金属腔波导滤波器的空腔即空气部分填充为介质材料,在介质材料的表面设有电磁屏蔽层进行电磁屏蔽,同时利用该介质材料进行支撑,使设计出来的介质波导滤波器具有体积小、重量轻、环保和成本低等诸多优点,能较好地满足未来滤波器、双工器和多工器类产品小体积、轻重量、低成本、高性能和环保等发展趋势。

Description

介质波导滤波器 技术领域
本发明涉及通讯行业用电器元件技术领域,具体地指一种介质波导滤波器。
背景技术
通讯系统中通常采用波导滤波器将特定频段范围内的干扰信号或杂波信号滤除。传统波导滤波器结构为金属腔体结构,即采用金属或金属合金等贵重材料(如:铝、镁合金等)将中间或局部掏空,其金属材料主要起到电磁屏蔽和结构支撑的作用。采用此种方式设计出来的滤波器虽然具有较高的Q值,但其体积及重量较大,不利于安装、拆卸及运输;而且由于贵重金属价格较高,导致波导滤波器成本也较高。
另外,现有技术中介质波导滤波器的调谐结构一般通过移去少部分介质单腔宽度上的介质材料起到频率调谐的作用,这样的滤波器调谐结构限制了滤波器的走腔形式,不利于滤波器结构设计的多元化和适应性。
因此,需对现有技术进行改进。
发明内容
本发明的目的就是要解决上述背景技术的不足,提供一种加工装配容易,调试方便,且成本较低的介质波导滤波器。
为实现上述目的,本发明采用如下两种技术方案。
第一种技术方案为:一种介质波导滤波器,其特征在于:该介质波导滤波器包括多个相互连接的介质单腔;所述介质单腔为通过介质材料制成的实心腔体,所述实心腔体的表面设有电磁屏蔽层。
优选地,所述介质单腔为陶瓷介质材料制成的实心腔体,所述电磁屏蔽层为金属层。
优选地,所述介质单腔中设有调谐结构,所述调谐结构由设置在介质单腔中的调谐盲孔和与所述调谐盲孔相配的调谐螺钉组成。
优选地,所述调谐螺钉的一端设置在调谐盲孔中,调谐螺钉的圆周壁与调谐盲孔之间设有间隙,所述调谐螺钉的另一端端部螺纹连接在调谐螺母内,所述调谐螺母与介质单腔之间设有调谐螺套,所述调谐螺套与介质单腔固定连接,所述调谐螺套被调谐螺钉穿过。
优选地,所述相邻介质单腔通过耦合桥进行连接。
优选地,所述耦合桥为与介质单腔同种介质材料制成的实心腔体。
优选地,所述耦合桥沿竖向设有耦合盲孔,所述耦合盲孔中设有耦合螺钉,所述耦合螺钉的一端设置在耦合盲孔中,耦合螺钉的圆周壁与耦合盲孔之间设有间隙,所述耦合螺钉的另一端端部螺纹连接在耦合螺母内,所述耦合螺母与耦合桥之间设有耦合螺套,所述耦合螺套与耦合桥固定连接,所述耦合螺套被耦合螺钉穿过。
优选地,所述耦合桥由金属材料制成。
优选地,所述耦合桥的内部开设有横向槽,所述耦合桥的表面沿竖向开设有与横向槽接通的通孔,所述通孔内设有与其螺纹连接的耦合螺钉,所述耦合螺钉的上端套装在耦合螺母中,所述耦合螺母设置在耦合桥的表面上,所述耦合螺钉穿过通孔,耦合螺钉的下端设置在横向槽中。
第二种方案为:一种拼接式介质滤波器,其特征在于:该介质滤波器由多个介质单腔相互拼接而成,所述介质单腔为通过介质材料制成的实心腔体,所述实心腔体的表面设有电磁屏蔽层;各个介质单腔沿竖向均开设有调谐盲孔,所述调谐盲孔内设有频率调谐结构;相邻介质单腔的拼接面相互接触。
优选地,所述相邻介质单腔的拼接面沿竖向对应位置处设有相匹配的凹槽,所述相匹配的凹槽拼接后形成一个圆筒形的耦合盲孔,所述耦合盲孔内设有耦合调谐结构。
优选地,所述介质单腔为陶瓷介质材料制成的实心腔体,所述电磁屏蔽层为金属层或金属合金层。
优选地,所述介质滤波器由多个介质单腔相互粘接或焊接而成。
优选地,所述频率调谐结构包括设置在调谐盲孔中的调谐螺钉,所述调谐螺钉的一端设置在调谐盲孔中,所述调谐螺钉的圆周壁与调谐盲孔之间设有间隙, 所述调谐螺钉的另一端端部螺纹连接在调谐螺母内,所述调谐螺母与介质单腔之间设有调谐螺套,所述调谐螺套与介质单腔固定连接,所述调谐螺套被调谐螺钉穿过。
优选地,所述耦合调谐结构包括设置在耦合盲孔中的耦合螺钉,所述耦合螺钉的一端设置在耦合盲孔中,所述耦合螺钉的圆周壁与耦合盲孔之间设有间隙,所述耦合螺钉的另一端端部螺纹连接在耦合螺母内,所述耦合螺母与介质单腔之间设有耦合螺套,所述耦合螺套与介质单腔固定连接,所述耦合螺套被耦合螺钉穿过。
本发明利用空气与介质的介电常数不同,将传统金属腔波导滤波器的空腔即空气部分填充为介质材料,在介质材料的表面设有电磁屏蔽层进行电磁屏蔽,同时利用该介质材料进行支撑,使设计出来的介质波导滤波器具有体积小、重量轻、环保和成本低等诸多优点,能较好地满足未来滤波器、双工器和多工器类产品小体积、轻重量、低成本、高性能和环保等发展趋势。
尤其是本发明所述的一种拼接式介质滤波器,将传统的整体式介质滤波器设计成由多个介质单腔相互拼接而成,这样在加工制造过程中,当出现某个介质单腔局部损坏时,可单独对该介质单腔进行替换,进而避免出现因某个介质单腔局部损坏而报废整块材料的现象发生,以达到节约生产制造成本的目的。
附图说明
图1为实施例1立体图;
图2为实施例1主视图;
图3为图2的俯视图;
图4为图2的右视图;
图5为图2的仰视图;
图6为图3中A-A剖视图;
图7为金属材料制成的耦合桥结构示意图,该图是从耦合窗口2朝耦合桥4方向的投影图;
图8为图7中B-B剖视图。
图9为实施例2所设计的拼接式介质滤波器的介质单腔拼接示意图;
图10为实施例2立体结构示意图;
图11为实施例2的俯视图;
图12为实施例2的右视图。
其中,介质单腔1,耦合窗口2,接插件3,耦合桥4,横向槽4.1,调谐螺钉5,调谐螺套6,调谐螺母7,耦合螺钉8,耦合螺母9,耦合螺套10,调谐盲孔11,耦合盲孔12。
具体实施方式
下面结合附图和具体实施例对本发明作进一步的详细说明。
实施例1:如:1-8中所示的一种介质波导滤波器,该介质波导滤波器包括多个相互连接的介质单腔1,介质单腔1之间可以单独采用串联的方式进行连接,也可以单独采用并联的方式进行连接,也可以串联和并联相互结合的方式进行连接;介质单腔1为通过介质材料制成的实心腔体,实心腔体的表面设有电磁屏蔽层。
本实施例利用空气与介质的介电常数不同,将传统金属腔波导滤波器的空腔即空气部分填充为介质材料,在介质材料的表面设有电磁屏蔽层进行电磁屏蔽,同时利用该介质材料进行支撑,使设计出来的介质波导滤波器具有体积小、重量轻、环保和成本低等诸多优点,能较好地满足未来滤波器、双工器和多工器类产品小体积、轻重量、低成本、高性能和环保等发展趋势。
本实施例中的介质单腔1选用硬质陶瓷介质材料,陶瓷介质材料制成的滤波器具有小型化、高稳定性、低损耗的特点,并可以有效的自我支撑;电磁屏蔽层为在实心腔体表面焙或镀一层金属材料(如银、铜等),进行电磁屏蔽。
本实施例中,一个介质单腔根据滤波器走腔形式,可以只与一个介质单腔连接,也可以与多个介质单腔连接。
本实施例在介质单腔1中设有调谐结构,调谐结构由设置在介质单腔1中的调谐盲孔11和与调谐盲孔11相配的调谐螺钉5组成,利用谐振腔微扰原理,通过改变调谐螺钉5进入调谐盲孔11中的深度,微调各介质单腔1的频率。
具体为:调谐螺钉5的一端设置在调谐盲孔11中,调谐螺钉5的圆周壁与调 谐盲孔11之间设有间隙,调谐螺钉5的另一端端部螺纹连接在调谐螺母7内,调谐螺母7与介质单腔1之间设有调谐螺套6,调谐螺套6与介质单腔1固定连接,调谐螺套6被调谐螺钉5穿过。通过旋转调谐螺钉5,即可调整调谐螺钉5在调谐盲孔11中的深度,各介质单腔1的频率微调后,调谐螺钉5可与调谐螺母7螺纹连接,即达到了调谐螺钉5的紧固目的。
而相邻介质单腔1通过耦合桥4进行连接,耦合桥4与相邻介质单腔1围成耦合窗口2。
本实施例选用两种耦合桥4设计方案:
方案一:耦合桥4为与介质单腔1同种介质材料制成的实心腔体,耦合桥4与介质单腔1构成一个整的介质单块。在耦合桥4的表面沿竖向设有耦合盲孔12,耦合盲孔12中设有耦合螺钉8,耦合螺钉8的一端设置在耦合盲孔12中,耦合螺钉8的圆周壁与耦合盲孔12之间设有间隙,耦合螺钉8的另一端端部螺纹连接在耦合螺母9内,耦合螺母9与耦合桥4之间设有耦合螺套10,耦合螺套10与耦合桥4固定连接,耦合螺套10被耦合螺钉8穿过。通过改变耦合螺钉8进入耦合盲孔12中的深度,微调窗口的耦合量,当窗口的耦合量微调后,耦合螺钉8也通过螺纹连接在耦合螺母9内,达到耦合螺钉8紧固的目的。
方案二:参考图7、图8,耦合桥4由金属材料制成,在耦合桥4的内部朝耦合窗口2的方向开设有横向槽4.1,耦合桥4的表面沿竖向开设有与横向槽4.1接通的通孔,通孔内设有与其螺纹连接的耦合螺钉8,耦合螺钉8的上端套装在耦合螺母9中,耦合螺母9直接设置在耦合桥4的表面上,耦合螺钉8穿过通孔,其下端设置在横向槽4.1中。通过改变耦合螺钉8进入内部横向槽4.1的深度,微调窗口的耦合量,当窗口的耦合量微调后,耦合螺钉8也通过螺纹连接在耦合螺母9及通孔内,达到耦合螺钉8紧固的目的。
它与方案一的区别仅在于耦合桥4自身的结构及是否有耦合螺套10,方案一与方案二的窗口的耦合量的调节结构、调节原理均一致。
本发明中的调谐螺母7与调谐螺套6、耦合螺母9与耦合螺套10可以为一体式结构,直接焊接在介质单腔1和耦合桥4的表面。
本实施例所描述的介质波导滤波器,可只作为一个滤波器使用,它只设有一 个信号输入端口和一个信号输出端口。
本实施例所描述的介质波导滤波器,可作为一个双工器使用,每个单独的双工器需设置一个TX发射滤波器和一个RX接收滤波器,其中TX发射滤波器和RX接收滤波器共一个ANT端口,TX发射滤波器、RX接收滤波器其通带范围各不相同,均通过接插件3将信号接入或馈出,也可通过微带线将信号接入或馈出。
本实施例所描述的介质波导滤波器,也可以作为一个多工器使用,每个单独的多工器包括多个滤波器,其中多个滤波器共用一个ANT端口,但其通带范围各不相同,各滤波器均通过接插件3将信号接入或馈出,也可通过微带线将信号接入或馈出。
本实施例所描述的介质波导滤波器,其走腔形式任意,不局限于L型、直线型等。
实施例2:如图9-12中所示的一种拼接式介质滤波器,该介质滤波器由多个介质单腔1相互连接而成,介质单腔1之间可以单独采用串联的方式进行连接,也可以单独采用并联的方式进行连接,也可以串联和并联相互结合的方式进行连接。介质单腔1为通过介质材料制成的实心腔体,实心腔体的表面设有电磁屏蔽层。
本实用新型的创新点在于:介质滤波器是由多个介质单腔1通过相互拼接而成的,相邻介质单腔1的拼接面相互接触,即在介质滤波器生产制造中,介质滤波器不是在整体模块上加工各个介质单腔1,而是先通过把各个小模块加工成各个介质单腔,再将介质单腔相互拼接成一个介质滤波器,这样在加工制造中当出现某个介质单腔1局部损坏时,可单独对该介质单腔1进行替换,进而避免出现背景技术中因某个介质单腔局部损坏而报废整块材料的现象发生,以达到节约生产制造成本的目的。
本实施例中的介质单腔1选用硬质陶瓷介质材料,陶瓷介质材料制成的滤波器具有小型化、高稳定性、低损耗的特点,并可以有效的自我支撑;电磁屏蔽层为在实心腔体表面焙或镀一层金属或金属合金层,进行电磁屏蔽。
本实施例中,一个介质单腔1根据滤波器走腔形式,可以只与一个介质单腔1 连接,也可以与多个介质单腔1连接。
相邻介质单腔1可以通过焊接或粘接的方式进行拼接。
本实施例在各个介质单腔沿竖向开设有用于调节频率的调谐盲孔11,调谐盲孔11内设有频率调谐结构;在相邻介质单腔1的拼接面沿竖向对应位置处设有相匹配的凹槽,相匹配的凹槽拼接后形成一个圆筒形的耦合盲孔12,耦合盲孔12内设有耦合调谐结构。本实施例通过相邻介质单腔1的拼接面直接拼接,取消了原相邻介质单腔之间需要通过耦合桥等进行连接的方式,可更大程度地降低了体积和重量,相应的节省了加工成本。
参考图12,本实施例的频率调谐结构包括设置在调谐盲孔11中的调谐螺钉5,调谐螺钉5的一端设置在调谐盲孔11中,调谐螺钉5的圆周壁与调谐盲孔11之间设有间隙,调谐螺钉5的另一端端部螺纹连接在调谐螺母7内,调谐螺母7与介质单腔1之间设有调谐螺套6,调谐螺套6与介质单腔1固定连接,调谐螺套6被调谐螺钉5穿过。频率调谐结构是利用谐振腔微扰原理,通过改变调谐螺钉5进入调谐盲孔11中的深度,达到微调各介质单腔1频率的目的,各介质单腔1的频率微调后,调谐螺钉5可与调谐螺母7螺纹连接,即达到了调谐螺钉5紧固的目的。
参考图12,本实施例的耦合调谐结构包括设置在耦合盲孔12中的耦合螺钉8,耦合螺钉8的一端设置在耦合盲孔12中,耦合螺钉8的圆周壁与耦合盲孔12之间设有间隙,耦合螺钉8的另一端端部螺纹连接在耦合螺母9内,耦合螺母9与介质单腔1之间设有耦合螺套10,耦合螺套10与介质单腔1固定连接,耦合螺套10被耦合螺钉8穿过。耦合调谐结构是利用谐振腔微扰原理,通过改变耦合螺钉8进入耦合盲孔12中的深度,达到微调相邻介质单腔1之间耦合的目的,各介质单腔1的耦合微调后,耦合螺钉8可与耦合螺母9螺纹连接,即达到了耦合螺钉8紧固的目的。
上述方案中的调谐螺钉5和耦合螺钉8均可以选用质量较轻的螺杆进行代替,这样产品的总体积也会相应减小。
本实施例的调谐结构为非必须结构,当加工精度较高时,无须采用频率调谐结构和耦合调谐结构进行频率和耦合量的调节。此时耦合可以通过采用相邻拼接面 局部屏蔽的方法实现,即通过改变相邻拼接面屏蔽层的区域大小进行耦合量的调节,此时,滤波器的体积会更小,装配更容易,成本也更低。
本实施例所设计的拼接式介质滤波器,可只作为一个滤波器使用,它只设有一个信号输入端口和一个信号输出端口。
本实施例所设计的拼接式介质滤波器,可作为一个双工器使用,每个单独的双工器需设置一个TX发射滤波器和一个RX接收滤波器,其中TX发射滤波器和RX接收滤波器共一个ANT端口,TX发射滤波器、RX接收滤波器其通带范围各不相同,均通过接插件10将信号接入或馈出,也可通过微带线将信号接入或馈出。
本实施例所设计的拼接式介质滤波器,也可以作为一个多工器使用,每个单独的多工器包括多个滤波器,其中多个滤波器共用一个ANT端口,但其通带范围各不相同,各滤波器均通过接插件3将信号接入或馈出,也可通过微带线将信号接入或馈出。
本实施例所设计的拼接式介质滤波器,其走腔形式任意,不局限于L型、直线型等。
本实用新型利用空气与介质的介电常数不同,将传统金属腔波导滤波器的空腔即空气部分填充为介质材料,在介质材料的表面设有电磁屏蔽层进行电磁屏蔽,同时利用该介质材料进行支撑,使设计出来的介质滤波器具有体积小、重量轻、环保和成本低等诸多优点,能较好地满足未来滤波器、双工器和多工器类产品小体积、轻重量、低成本、高性能和环保等发展趋势。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种介质波导滤波器,其特征在于:该介质波导滤波器包括多个相互连接的介质单腔(1);所述介质单腔(1)为通过介质材料制成的实心腔体,所述实心腔体的表面设有电磁屏蔽层。
  2. 根据权利要求1所述的介质波导滤波器,其特征在于:所述介质单腔(1)为陶瓷介质材料制成的实心腔体,所述电磁屏蔽层为金属层。
  3. 根据权利要求1所述的介质波导滤波器,其特征在于:所述介质单腔(1)中设有调谐结构,所述调谐结构由设置在介质单腔(1)中的调谐盲孔(11)和与所述调谐盲孔(11)相配的调谐螺钉(5)组成。
  4. 根据权利要求3所述的介质波导滤波器,其特征在于:所述调谐螺钉(5)的一端设置在调谐盲孔(11)中,调谐螺钉(5)的圆周壁与调谐盲孔(11)之间设有间隙,所述调谐螺钉(5)的另一端端部螺纹连接在调谐螺母(7)内,所述调谐螺母(7)与介质单腔(1)之间设有调谐螺套(6),所述调谐螺套(6)与介质单腔(1)固定连接,所述调谐螺套(6)被调谐螺钉(5)穿过。
  5. 根据权利要求1所述的介质波导滤波器,其特征在于:所述相邻介质单腔(1)通过耦合桥(4)进行连接。
  6. 根据权利要求5所述的介质波导滤波器,其特征在于:所述耦合桥(4)为与介质单腔(1)同种介质材料制成的实心腔体。
  7. 根据权利要求6所述的介质波导滤波器,其特征在于:所述耦合桥(4)沿竖向设有耦合盲孔(12),所述耦合盲孔(12)中设有耦合螺钉(8),所述耦合螺钉(8)的一端设置在耦合盲孔(12)中,耦合螺钉(8)的圆周壁与耦合盲孔 (12)之间设有间隙,所述耦合螺钉(8)的另一端端部螺纹连接在耦合螺母(9)内,所述耦合螺母(9)与耦合桥(4)之间设有耦合螺套(10),所述耦合螺套(10)与耦合桥(4)固定连接,所述耦合螺套(10)被耦合螺钉(8)穿过。
  8. 根据权利要求5所述的介质波导滤波器,其特征在于:所述耦合桥(4)由金属材料制成。
  9. 根据权利要求8所述的介质波导滤波器,其特征在于:所述耦合桥(4)的内部沿横向开设有横向槽(4.1),所述耦合桥(4)的表面沿竖向开设有与横向槽(4.1)接通的通孔,所述通孔内设有与其螺纹连接的耦合螺钉(8),所述耦合螺钉(8)的上端套装在耦合螺母(9)中,所述耦合螺母(9)设置在耦合桥(4)的表面上,所述耦合螺钉(8)穿过通孔,耦合螺钉(8)的下端设置在横向槽(4.1)中。
  10. 一种拼接式介质滤波器,其特征在于:该介质滤波器由多个介质单腔相互拼接而成,所述介质单腔为通过介质材料制成的实心腔体,所述实心腔体的表面设有电磁屏蔽层;各个介质单腔沿竖向均开设有调谐盲孔,所述调谐盲孔内设有频率调谐结构;相邻介质单腔的拼接面相互接触。
  11. 根据权利要求10所述的拼接式介质滤波器,其特征在于:所述相邻介质单腔的拼接面沿竖向对应位置处设有相匹配的凹槽,所述相匹配的凹槽拼接后形成一个圆筒形的耦合盲孔,所述耦合盲孔内设有耦合调谐结构。
  12. 根据权利要求10所述的拼接式介质滤波器,其特征在于:所述介质单腔为陶瓷介质材料制成的实心腔体,所述电磁屏蔽层为金属层或金属合金层。
  13. 根据权利要求10所述的拼接式介质滤波器,其特征在于:所述介质滤波器由多个介质单腔相互粘接或焊接而成。
  14. 根据权利要求10所述的拼接式介质滤波器,其特征在于:所述频率调谐结构包括设置在调谐盲孔中的调谐螺钉,所述调谐螺钉的一端设置在调谐盲孔中,所述调谐螺钉的圆周壁与调谐盲孔之间设有间隙,所述调谐螺钉的另一端端部螺纹连接在调谐螺母内,所述调谐螺母与介质单腔之间设有调谐螺套,所述调谐螺套与介质单腔固定连接,所述调谐螺套被调谐螺钉穿过。
  15. 根据权利要求11所述的拼接式介质滤波器,其特征在于:所述耦合调谐结构包括设置在耦合盲孔中的耦合螺钉,所述耦合螺钉的一端设置在耦合盲孔中,所述耦合谐螺钉的圆周壁与耦合盲孔之间设有间隙,所述耦合螺钉的另一端端部螺纹连接在耦合螺母内,所述耦合螺母与介质单腔之间设有耦合螺套,所述耦合螺套与介质单腔固定连接,所述耦合螺套被耦合螺钉穿过。
PCT/CN2014/088839 2013-12-16 2014-10-17 介质波导滤波器 WO2015090107A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201320827820.9 2013-12-16
CN201310688407.3 2013-12-16
CN201310688407.3A CN103618122B (zh) 2013-12-16 2013-12-16 介质波导滤波器
CN201320827820.9U CN203644908U (zh) 2013-12-16 2013-12-16 介质波导滤波器
CN201420283976.X 2014-05-30
CN201420283976.XU CN203967220U (zh) 2014-05-30 2014-05-30 拼接式介质滤波器

Publications (1)

Publication Number Publication Date
WO2015090107A1 true WO2015090107A1 (zh) 2015-06-25

Family

ID=53402077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088839 WO2015090107A1 (zh) 2013-12-16 2014-10-17 介质波导滤波器

Country Status (1)

Country Link
WO (1) WO2015090107A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017004417A1 (en) * 2015-07-01 2017-01-05 Cts Corporation Rf dielectric waveguide duplexer filter module
US10116028B2 (en) 2011-12-03 2018-10-30 Cts Corporation RF dielectric waveguide duplexer filter module
US10483608B2 (en) 2015-04-09 2019-11-19 Cts Corporation RF dielectric waveguide duplexer filter module
CN111641013A (zh) * 2020-06-12 2020-09-08 中国电子科技集团公司第二十六研究所 一种螺旋式的高性能介质波导滤波器及通信设备
CN111816962A (zh) * 2020-08-11 2020-10-23 中国电子科技集团公司第二十六研究所 一种介质滤波器电磁混合耦合结构及通信设备
US11081769B2 (en) 2015-04-09 2021-08-03 Cts Corporation RF dielectric waveguide duplexer filter module
US11437691B2 (en) 2019-06-26 2022-09-06 Cts Corporation Dielectric waveguide filter with trap resonator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002307A (en) * 1997-01-29 1999-12-14 Murata Manufacturing Co., Ltd. Dielectric filter and dielectric duplexer
US6535086B1 (en) * 2000-10-23 2003-03-18 Allen Telecom Inc. Dielectric tube loaded metal cavity resonators and filters
CN1419311A (zh) * 2001-11-14 2003-05-21 无线电射频系统公司 三模式单块滤波器组件
CN1492535A (zh) * 2002-10-23 2004-04-28 ���ߵ���Ƶϵͳ��˾ 介质单块三模微波延时滤波器
JP2010098673A (ja) * 2008-10-20 2010-04-30 Japan Radio Co Ltd 誘電体フィルタ
CN202217753U (zh) * 2011-08-16 2012-05-09 武汉凡谷电子技术股份有限公司 一种介质滤波器的耦合结构
CN102544649A (zh) * 2012-01-04 2012-07-04 西安电子科技大学 一腔三模滤波器
CN103618122A (zh) * 2013-12-16 2014-03-05 武汉凡谷电子技术股份有限公司 介质波导滤波器
CN203644908U (zh) * 2013-12-16 2014-06-11 武汉凡谷电子技术股份有限公司 介质波导滤波器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002307A (en) * 1997-01-29 1999-12-14 Murata Manufacturing Co., Ltd. Dielectric filter and dielectric duplexer
US6535086B1 (en) * 2000-10-23 2003-03-18 Allen Telecom Inc. Dielectric tube loaded metal cavity resonators and filters
CN1419311A (zh) * 2001-11-14 2003-05-21 无线电射频系统公司 三模式单块滤波器组件
CN1492535A (zh) * 2002-10-23 2004-04-28 ���ߵ���Ƶϵͳ��˾ 介质单块三模微波延时滤波器
JP2010098673A (ja) * 2008-10-20 2010-04-30 Japan Radio Co Ltd 誘電体フィルタ
CN202217753U (zh) * 2011-08-16 2012-05-09 武汉凡谷电子技术股份有限公司 一种介质滤波器的耦合结构
CN102544649A (zh) * 2012-01-04 2012-07-04 西安电子科技大学 一腔三模滤波器
CN103618122A (zh) * 2013-12-16 2014-03-05 武汉凡谷电子技术股份有限公司 介质波导滤波器
CN203644908U (zh) * 2013-12-16 2014-06-11 武汉凡谷电子技术股份有限公司 介质波导滤波器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116028B2 (en) 2011-12-03 2018-10-30 Cts Corporation RF dielectric waveguide duplexer filter module
US10483608B2 (en) 2015-04-09 2019-11-19 Cts Corporation RF dielectric waveguide duplexer filter module
US11081769B2 (en) 2015-04-09 2021-08-03 Cts Corporation RF dielectric waveguide duplexer filter module
WO2017004417A1 (en) * 2015-07-01 2017-01-05 Cts Corporation Rf dielectric waveguide duplexer filter module
US11437691B2 (en) 2019-06-26 2022-09-06 Cts Corporation Dielectric waveguide filter with trap resonator
CN111641013A (zh) * 2020-06-12 2020-09-08 中国电子科技集团公司第二十六研究所 一种螺旋式的高性能介质波导滤波器及通信设备
CN111816962A (zh) * 2020-08-11 2020-10-23 中国电子科技集团公司第二十六研究所 一种介质滤波器电磁混合耦合结构及通信设备

Similar Documents

Publication Publication Date Title
WO2015090107A1 (zh) 介质波导滤波器
CN103618122B (zh) 介质波导滤波器
WO2020143814A1 (zh) 一种滤波器
CN203644908U (zh) 介质波导滤波器
WO2020143070A1 (zh) 滤波器
US11735801B2 (en) High-q triple-mode cavity dielectric resonant hollow structure and filter with resonant structure
US11239540B2 (en) Irregular-shaped triple-mode cavity resonance structure and filter with the resonance structure
KR102426072B1 (ko) 캐비티 필터
CN109411852B (zh) 一种空腔高q三模介质谐振结构及含有该谐振结构的滤波器
US9935348B2 (en) TM dielectric resonator, method for implementing TM dielectric resonator and TM dielectric filter
WO2022001570A1 (zh) 一种带阻滤波器及射频器件
CN206864585U (zh) 一种介质波导滤波器
CN203967220U (zh) 拼接式介质滤波器
CN105006613A (zh) 一种椭圆缺陷结构四分之一模基片集成波导带通滤波器
KR101386941B1 (ko) 조립식 대역 저지 필터
US20210257707A1 (en) Outwardly Protruding Triple-Mode Cavity Resonance Structure and Filter with Resonance Structure
CN204243179U (zh) 1~4GHz双极化开放边界天线
CN103413996B (zh) LTCC的Ka波段毫米波宽边耦合带通滤波器
CN209434355U (zh) 一种介质滤波器
CN203150678U (zh) 介质谐振腔耦合连接结构
CN105206905A (zh) 一种基于交叉型多模谐振器的宽阻带三模双通带滤波器
US20210328320A1 (en) Concave Triple-Mode Cavity Resonance Structure and Filter with the Resonance Structure
CN100553033C (zh) 同轴腔体滤波器的容性耦合装置
KR200467912Y1 (ko) 캐비티 구조를 가진 무선 주파수 필터
CN105304984A (zh) 基于交叉型多模谐振器的平衡带通滤波器

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14871504

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/01/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14871504

Country of ref document: EP

Kind code of ref document: A1