WO2015090067A1 - 一种同步波束成形信号的发送、接收方法、基站和终端 - Google Patents

一种同步波束成形信号的发送、接收方法、基站和终端 Download PDF

Info

Publication number
WO2015090067A1
WO2015090067A1 PCT/CN2014/083189 CN2014083189W WO2015090067A1 WO 2015090067 A1 WO2015090067 A1 WO 2015090067A1 CN 2014083189 W CN2014083189 W CN 2014083189W WO 2015090067 A1 WO2015090067 A1 WO 2015090067A1
Authority
WO
WIPO (PCT)
Prior art keywords
index
sequence
synchronized
beamforming signal
beamforming
Prior art date
Application number
PCT/CN2014/083189
Other languages
English (en)
French (fr)
Inventor
郭森宝
郁光辉
鲁照华
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015090067A1 publication Critical patent/WO2015090067A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the invention relates to a high frequency communication technology, in particular to a method for transmitting and receiving a synchronous beamforming signal, a base station and a terminal.
  • the LTE (Long Term Evolution) communication system is required to cover an area covering 100km, and the high-frequency communication system can reach an area covering up to 1km. If considering the high air absorbance (oxygen absorption, rain fading, fog fading) of the actual high frequency carrier and sensitivity to shadow fading, the coverage area that the HF communication system can actually support is less than 1 km. If the HF communication system supports the maximum lkm coverage area, the SINR (Signal to Interference plus Noise Ratio) obtained by the same coverage area is different from the LTE communication system, and the former has at least 20 dB more than the latter. The signal-to-noise ratio decreases.
  • SINR Signal to Interference plus Noise Ratio
  • the high-frequency communication system and the LTE communication system have approximate SINRs in the same coverage area, it is necessary to ensure the antenna gain of the high-frequency communication system. Since the high-frequency communication has a shorter wavelength, it is possible to accommodate more antenna elements per unit area, and more antenna elements can provide higher antenna gain, thereby ensuring coverage of the high-frequency communication system.
  • More antenna elements mean that beamforming can be used to ensure the coverage of high-frequency communication systems. To obtain a good beamforming effect, it is necessary to obtain channel state information accurately, thereby obtaining beamforming weights from the channel state information. To obtain a better beamforming weight, for the transmitting base station, the receiving terminal needs to feed back the downlink channel state information or the beamforming weight. For the receiving terminal, the transmitting base station needs to feed back the uplink channel.
  • the state information or the beam shaping weights ensure that the base station can transmit the downlink service by using the optimal beam, and the terminal can also use the optimal beam to transmit the uplink service.
  • Base station Before obtaining the downlink channel state information or the beamforming weight, the optimal beam cannot be used to cover the terminal, so that the terminal cannot measure the reference signal transmitted by the base station, or even if the base station covers the terminal, the terminal cannot reach the base station. With the same coverage, the content of the terminal feedback (downlink channel state information or beam shaping weight) cannot be known by the base station, so that the selection of the beamforming weight and the normal communication cannot be performed.
  • the embodiments of the present invention provide a method for transmitting and receiving a synchronous beamforming signal, a base station, and a terminal.
  • An embodiment of the present invention provides a method for transmitting a synchronous beamforming signal, including: sending, by a base station, a synchronous beamforming signal;
  • the base station selects to use the corresponding optimal beam to transmit downlink data according to the feedback optimal beam information; and the optimal beam is selected by the synchronous beamforming signal.
  • the embodiment of the invention further provides a method for receiving a synchronous beamforming signal, comprising: receiving a synchronous beamforming signal by a terminal;
  • the terminal selects an optimal beam from the received synchronous beamforming signals and feeds back optimal beam information.
  • the embodiment of the invention further provides a method for transmitting a synchronous beamforming signal, the method comprising:
  • the base station sends a synchronous beamforming signal to the terminal
  • the terminal selects an optimal beam from the received synchronous beamforming signals and feeds the optimal beam information to the base station;
  • the base station transmits downlink data using the optimal beam.
  • the embodiment of the invention further provides a base station, including:
  • a first interaction module configured to send a synchronous beamforming signal, and receive feedback optimal beam information
  • a data transmission module configured to send downlink data by using an optimal beam corresponding to the optimal beam information
  • the embodiment of the invention further provides a terminal, including:
  • the second interaction module is configured to receive the synchronous beamforming signal and feed back the optimal beam information.
  • the beam selection module is configured to select an optimal beam from the received synchronous beamforming signals, and provide the optimal beam information to the The second interaction module is described.
  • An embodiment of the present invention further provides a transmission system for a synchronous beamforming signal, including the foregoing base station and terminal.
  • the embodiment of the invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions for performing a method for transmitting a synchronous beamforming signal of a base station.
  • An embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions for performing a method of receiving a synchronous beamforming signal of a terminal.
  • the method for transmitting, receiving, and transmitting a synchronous beamforming signal and the base station, the terminal, and the system provided by the embodiment of the present invention the base station sends a synchronous beamforming signal to the terminal; the terminal selects an optimal beam from the received synchronous beamforming signal and sends the optimal beam to the base station. Feedback optimal beam information; The base station transmits downlink data using the optimal beam. Through the transmission of the synchronous beamforming signal and the selection and feedback of the optimal beam, the base station and the terminal can acquire the same coverage information, thereby implementing the selection and subsequent communication of the subsequent beamforming weights.
  • FIG. 1 is a schematic diagram of a method for transmitting a synchronous beamforming signal according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a synchronous beamforming signal according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram 1 of a synchronous beamforming signal according to Embodiment 2 of the present invention.
  • FIG. 4 is a second schematic diagram of a synchronous beamforming signal according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of a synchronous beamforming signal according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a transmission system of a synchronous beamforming signal according to an embodiment of the present invention. detailed description
  • the embodiment of the invention provides a method for transmitting a synchronous beamforming signal, as shown in FIG. 1 , which includes:
  • Step 101 The base station sends a synchronous beamforming signal to the terminal.
  • Step 102 The terminal selects an optimal beam from the received synchronous beamforming signals and feeds the optimal beam information to the base station.
  • Step 103 The base station sends the downlink data by using an optimal beam.
  • the transmitting process of the synchronous beamforming signal includes: the base station transmitting the synchronous beamforming signal; the base station transmitting the downlink data according to the feedback optimal beam information using the corresponding optimal beam; and the optimal beam is selected from the synchronous beamforming signal.
  • the base station periodically transmits a synchronized beamforming signal on a pre-configured time-frequency resource.
  • the receiving process of the synchronous beamforming signal comprises: the terminal receiving the synchronous beamforming signal; the terminal selecting the optimal beam from the received synchronous beamforming signals and feeding back the optimal beam information.
  • the terminal periodically receives the synchronized beamforming signal on the pre-configured time-frequency resources.
  • the above synchronous beamforming signal structure has the following forms:
  • the first type the sequence of the synchronous beamforming signal is divided into M beam groups, each beam group corresponding to one index; each beam group includes N m sequences, and each sequence in the group corresponds to one index;
  • the M beam groups and each set of N m sequences form a total of ! N m sequences, the M being a positive integer, ml
  • m 1 ⁇ M
  • the beam group index indicates a cell identifier
  • the intra-group sequence index indicates a beam index
  • the sequence of the synchronous beamforming signal is divided into 63 beam groups, and each beam group includes 8 sequences, which constitute a total of 504 sequences; or
  • the sequence of the synchronous beamforming signal is divided into 14 beam groups, and each beam group includes 36 sequences, which constitute a total of 504 sequences; or
  • the sequence of the synchronous beamforming signal is divided into 28 beam groups, and each beam group includes 18 sequences, which constitute a total of 504 sequences; or
  • the sequence of the synchronous beamforming signal is divided into 42 beam groups, and each beam group includes 12 sequences, which constitute a total of 504 sequences.
  • the synchronous beamforming signal includes a first synchronous beamforming signal and a second synchronous beamforming signal; the first synchronous beamforming signal and the second synchronous beamforming signal have different time domain locations and/or frequency domain locations.
  • the first synchronization beamforming signal and the second synchronization beamforming signal respectively comprise one or more sequences; the sequence index in the first synchronization beamforming signal indicates a cell identity; and the sequence index in the second synchronization beamforming signal indicates a beam index.
  • the first synchronous beamforming signal includes three sequences, and the second synchronous beamforming signal includes 168 sequences; or
  • the first synchronous beamforming signal comprises 168 sequences, and the second synchronous beamforming signal comprises 8 sequences; or
  • the first synchronous beamforming signal comprises 168 sequences, and the second synchronous beamforming signal comprises 4 sequences; or
  • the first sync beamforming signal contains 168 sequences and the second sync beamforming signal contains 12 sequences.
  • the first synchronous beamforming signal is divided into a first sub-synchronized beamforming signal and a second sub-synchronized beamforming signal.
  • the synchronous beamforming signal includes a first synchronous beamforming signal and a second synchronous beamforming signal; the first synchronous beamforming signal and the second synchronous beamforming signal have different time domain positions and/or frequency domain positions.
  • Y P sequence combinations; ⁇ one sequence combination is divided into L sequence combination groups, each sequence combination group corresponds to one index; each sequence combination group contains P/ L sequences are combined, each sequence combination in the group corresponds to one index; S, X, Y, P, L are positive integers;
  • the sequence combination group index indicates a cell identity
  • the intra-group sequence combination index indicates a beam index.
  • the first synchronous beamforming signal comprises three sequences
  • the second synchronous beamforming signal comprises 168 sequences, a total of 504 sequence combinations
  • 504 sequence combinations are divided into 63 sequence combination groups, each group comprising 8 sequence combinations; or ,
  • the first synchronous beamforming signal comprises three sequences
  • the second synchronous beamforming signal comprises 168 sequences, a total of 504 sequence combinations
  • 504 sequence combinations are divided into 14 sequence combination groups, each group comprising 36 sequence combinations; or ,
  • the first synchronous beamforming signal comprises three sequences
  • the second synchronous beamforming signal comprises 168 sequences, a total of 504 sequence combinations
  • 504 sequence combinations are divided into 28 sequence combination groups, each group comprising 18 sequence combinations; or ,
  • the first synchronous beamforming signal comprises three sequences
  • the second synchronous beamforming signal comprises 168 sequences, a total of 504 sequence combinations
  • 504 sequence combinations are divided into 42 sequence combination groups, Each group consists of 12 sequence combinations.
  • the synchronous beamforming signal includes first to first synchronous beamforming signals; the first to first synchronous beamforming signals have different time domain positions and/or frequency domain positions; I is a positive integer; the ith synchronous beam The shaped signal is included! ⁇ sequences, each sequence corresponding to an index, l ⁇ i ⁇ I, the first to the first synchronous beamforming signals form a total of jf /, a sequence combination, each sequence combination
  • the sequence combination index indicates the beam index.
  • the first synchronous beamforming signal comprises 6 sequences
  • the second synchronous beamforming signal comprises 6 sequences, which together comprise 36 sequence combinations; 36 sequence combinations of indicator beam indices correspond to 36 different beam indices.
  • the sequence of the step beamforming signal is divided into M beam groups, and each beam group includes a sequence of N m (m is 1 to M).
  • the beam group index (inter-group index) is used to indicate the cell identifier.
  • the sequence index (intra-group index) in the beam group is used to indicate the beam index in the cell, and the M beam groups and each group of N m sequences are formed in total! N m sequences (M is a positive integer). According to the number of beam groups M,
  • the index between groups can be set to 1, 2...M, or 0, 1 ... M-1.
  • the index in the group can be set to l. 2
  • N m can also be set to 0, l ... N m -l, for example, the structures shown in Table 1-1 and Table 1-2.
  • the two setting modes of the inter-group index and the two setting modes of the intra-group index may be used in combination, and are not limited to the two combinations of Table 1-1 and Table 1-2.
  • the terminal detects the synchronous beamforming signal sent by the base station on the time-frequency resource, and the synchronization beam shaping signal causes the terminal to perform synchronization operation and beam selection operation with the base station, and the synchronization operation includes time domain synchronization and frequency domain synchronization.
  • the terminal detects the synchronous beamforming signal (!; ⁇ sequence) sent by the base station, it performs m-l
  • Beam selection operation selecting one or more optimal sequences in the synchronous beamforming signal for synchronization, and detecting a corresponding inter-group index and an intra-group index, and obtaining an inter-group index, the terminal obtains a cell identifier; obtaining an intra-group index After that, the terminal obtains the beam index in the cell. Terminal access After the beam is indexed, the obtained beam index can be fed back to the base station directly or indirectly through the uplink. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the base station periodically transmits a synchronous beamforming signal within a predefined time unit.
  • the sequence of the synchronous beamforming signal is divided into 63 beam groups, and each beam group includes 8 sequences.
  • the inter-group sequence index is used to indicate the cell identifier, and the intra-group sequence index is used to indicate the beam index in the cell, and 63 beams.
  • the group and each group of 8 sequences constitute a total of 504 sequences.
  • the terminal detects a sequence of the synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence, the terminal detects the corresponding inter-group index and the intra-group index, thereby identifying the corresponding cell identifier and the beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 504 synchronous beamforming signals, wherein the total identified cell identifier is 63, the beam index is 8, and a cell can have up to 8 beam directions. If it is assumed that all beams need to cover a range of 360 degrees, then each beam has a width of 45 degrees. If it is assumed that all beams need to cover a range of 120 degrees, then each beam has a width of 15 degrees.
  • the base station periodically transmits a synchronous beamforming signal within a predefined time unit.
  • the sequence of the synchronous beamforming signal is divided into 14 beam groups, each beam group includes 36 sequences, the inter-group sequence index is used to indicate the cell identifier, and the intra-group sequence index is used to indicate the beam index in the cell, 14 beams. Groups and 36 sequences per group, for a total of 504 sequences.
  • the terminal detects a sequence of synchronous beamforming signals sent by the base station, when the terminal detects the After the optimal sequence, the terminal detects the corresponding inter-group index and the intra-group index, thereby identifying the corresponding cell identifier and beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 504 times of synchronous beamforming signals, wherein a total of 14 identified cell identifiers, 36 beam indexes, and a maximum of 36 beam directions in a cell. If it is assumed that all beams need to cover a range of 360 degrees, then each beam has a width of 10 degrees. If it is assumed that all beams need to cover a range of 120 degrees, then each beam has a width of 3.33 degrees.
  • the base station periodically transmits a synchronous beamforming signal within a predefined time unit.
  • the sequence of the synchronous beamforming signal is divided into 28 beam groups, each of which includes 18 sequences, the inter-group sequence index is used to indicate the cell identifier, and the intra-group sequence index is used to indicate the beam index in the cell, 28 beams. Groups and 18 sequences per group, for a total of 504 sequences.
  • the terminal detects a sequence of the synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence, the terminal detects the corresponding inter-group index and the intra-group index, thereby identifying the corresponding cell identifier and the beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 504 synchronous beamforming signals, wherein the total identified cell identifier is 28, the beam index is 18, and a cell can have up to 18 beam directions. If it is assumed that all beams need to cover a range of 360 degrees, then each beam has a width of 20 degrees. If it is assumed that all beams need to cover a range of 120 degrees, then each beam has a width of 6.67 degrees.
  • Sub-Examples 1-4 As shown in FIG. 2, it is assumed that the base station periodically transmits a synchronous beamforming signal in a predefined time unit, and the sequence of the synchronous beamforming signal is divided into 42 beam groups, and each beam group includes 12 sequences.
  • the inter-group sequence index is used to indicate the cell identifier
  • the intra-group sequence index is used to indicate the beam index in the cell
  • 42 beam groups and 12 groups per group and a total of 504 sequences are formed.
  • the terminal detects a sequence of the synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence, the terminal detects the corresponding inter-group index and the intra-group index, thereby identifying the corresponding cell identifier and the beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 504 synchronous beamforming signals, wherein the total identified cell identifier is 42, the identification beam index is 12, and a cell can have up to 12 beam directions. If the range of all beams to be covered is assumed to be 360 degrees, then each beam has a width of 30 degrees. If it is assumed that all beams need to cover a range of 120 degrees, then each beam has a width of 10 degrees.
  • Embodiment 2 The beamforming signal is divided into two: a first synchronous beamforming signal and a second synchronous beamforming signal, which have different time domain positions and/or frequency domain positions.
  • the first synchronous beamforming signal includes one or more sequences, each sequence corresponding to one sequence index; the second synchronous beamforming signal includes one or more sequences, and each sequence corresponds to one sequence index.
  • the sequence index in the first synchronization beamforming signal is configured to indicate a cell identity, and the sequence index in the second synchronization beamforming signal is configured to indicate a beam index in the cell.
  • the terminal detects two synchronous beamforming signals sent by the base station on the time-frequency resource, and the synchronous beamforming signal enables the terminal to perform synchronization operation and beam selection operation with the base station, and the synchronization operation includes Time domain synchronization and frequency domain synchronization.
  • the terminal When the terminal detects two synchronous beamforming signals sent by the base station, selecting one or more optimal sequences from the first synchronous beamforming signal and the second synchronous beamforming signal, respectively, and detecting the most of the first synchronous beamforming signals a sequence index corresponding to the optimal sequence and a sequence index corresponding to the optimal sequence in the second synchronous beamforming signal; thereby obtaining a cell identity and a beam index.
  • the terminal After obtaining the beam index, the terminal can directly or indirectly feed back the obtained beam index to the base station through the uplink.
  • the base station After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the base station periodically transmits two synchronous beamforming signals in a predefined time unit (this embodiment is represented by 0 and 1).
  • the sequence of synchronous beamforming signals 0 is The number is 3, and each sequence corresponds to one sequence index; the number of sequences of the synchronous beamforming signal 1 is 168, and each sequence corresponds to one sequence index.
  • the sequence index in the synchronous beamforming signal 0 indicates the cell identifier, and the sequence index in the synchronous beamforming signal 1 indicates the beam index.
  • the terminal detects a sequence of two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence in each of the synchronous beamforming signals, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 0, and optimizes The sequence index of the sequence in the synchronous beamforming signal 1 detects the corresponding cell identity and beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a total of 171 synchronized beamforming signals, wherein the total identified cell identifier is 3, the identification beam index is 168, and a cell can have a maximum of 168. Beam direction.
  • Synchronous beamforming signal 0 can use PSS (Primary Synchronize Signal) in LTE.
  • PSS Primary Synchronize Signal
  • the primary synchronization signal), the synchronous beamforming signal 1 can use the SSS (Secondary Synchronize Signal) of LTE.
  • the base station periodically transmits two synchronous beamforming signals in a predefined time unit (this embodiment is represented by 0 and 1).
  • the sequence of synchronous beamforming signals 0 is The number is 8, each sequence corresponds to one sequence index; the number of sequences of the synchronous beamforming signal 1 is 168, and each sequence corresponds to one sequence index.
  • the sequence index in the synchronous beamforming signal 0 indicates the beam index, and the sequence index in the synchronous beamforming signal 1 indicates the cell identity.
  • the terminal detects a sequence of two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 1, and optimizes The sequence index of the sequence in the synchronous beamforming signal 0, thereby detecting the corresponding cell identity and beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a total of 176 synchronized beamforming signals, wherein the total identified cell identifier is 168, the identification beam index is 8, and a cell can have a maximum of 8 Beam direction.
  • the base station periodically transmits two synchronous beamforming signals in a predefined time unit (this embodiment is represented by 0 and 1).
  • the sequence of synchronous beamforming signals 0 is The number is 4, and each sequence corresponds to one sequence index; the number of sequences of the synchronous beamforming signal 1 is 168, and each sequence corresponds to one sequence index.
  • the sequence index in the synchronous beamforming signal 0 indicates a beam index, and the sequence index in the synchronous beamforming signal 1 indicates a cell identifier.
  • the terminal detects a sequence of two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence in each of the synchronous beamforming signals, the terminal detects the sequence index of the optimal sequence in the synchronization beam into the signal 1, and the most The sequence index of the good sequence in the synchronous beamforming signal 0, thereby detecting the corresponding cell identity and beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 172 synchronous beamforming signals, wherein the total identified cell identifier is 168, the identification beam index is 4, and a cell can have up to 4 beams. direction.
  • Synchronous beamforming signal 1 can use SSS in LTE;
  • Synchronous beamforming signal 0 can use the extension of PSS of LTE, as shown in Table 3, where Root index" indicates PSS is used.
  • the base station periodically transmits two synchronous beamforming signals in a predefined time unit (this embodiment is represented by 0 and 1).
  • the sequence of synchronous beamforming signals 0 is The number is 12, and each sequence corresponds to one sequence index; the number of sequences of the synchronous beamforming signal 1 is 168, and each sequence corresponds to one sequence index.
  • the sequence index in the synchronous beamforming signal 0 indicates a beam index, and the sequence index in the synchronous beamforming signal 1 indicates a cell identifier.
  • the terminal detects a sequence of two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 1, and optimizes The sequence index of the sequence in the synchronous beamforming signal 0, thereby detecting the corresponding cell identity and beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a total of 180 synchronized beamforming signals, wherein the total identified cell identifier is 168, the identification beam index is 12, and one cell can have up to 12 Beam direction.
  • the synchronous beamforming signal 1 can use the SSS in LTE; the synchronous beamforming signal 0 can use the extension of the PSS of LTE, as shown in Table 4, where the Root index" indicates the synchronous beamforming signal when the PSS is extended.
  • the synchronous beamforming signal indicating the cell identifier may be further divided into several signals for time-frequency synchronization and cell identity acquisition of the base station and the terminal.
  • the base station periodically transmits three synchronous beamforming signals in a predefined time unit (this embodiment is represented by 0, 1, and 2).
  • the synchronous beamforming signal 0 is used.
  • the synchronous beamforming signal 1 and the synchronous beamforming signal 2 are used for time-frequency synchronization of the base station and the terminal and the acquisition of the cell identity (here, the synchronous beamforming signal 1 and the synchronous beamforming signal 2 can be understood as passing the indication
  • the synchronized beamforming signal of the cell identifier is divided.
  • the beamforming signal 0, 1 can also be used to indicate beam indexing, and the synchronous beamforming signal 2 is used for time-frequency synchronization of the base station and the terminal and acquisition of the cell identity.
  • the synchronous beamforming signal 0, 1 is used to indicate the beam index and the time-frequency synchronization, and the synchronous beamforming signal 2 is used for the terminal to acquire the cell identifier.
  • the terminal detects a sequence of three synchronous beamforming signals transmitted by the base station. After the terminal detects the optimal sequence in the synchronous beamforming signal 1 and the synchronous beamforming signal 2, the terminal detects the optimal sequence in the synchronous beamforming signal 1 and the synchronization beam. Forming the sequence identifier in the signal 2 to obtain the corresponding cell identifier; after the terminal detects the optimal sequence in the synchronous beamforming signal 0, the terminal detects the sequence identifier of the optimal sequence in the synchronous beamforming signal 0, thereby obtaining a corresponding of Beam index. After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • Synchronous beamforming signal 1 can use SSS in LTE
  • synchronous beamforming signal 2 can use LTE PSS (Secondary Synchronize Signal)
  • sync beam shaping signal 0 can design a new sequence.
  • Embodiment 3 The beamforming signal is divided into two: a first synchronous beamforming signal and a second synchronous beamforming signal, which have different time domain positions and/or frequency domain positions.
  • the first synchronous beamforming signal includes X sequences, each sequence corresponding to one index (0 ⁇ X-1)
  • the second synchronous beamforming signal includes Y sequences, each sequence corresponding to an index. (0 ⁇ Y-1), a total of X ⁇ sequence combinations are formed, and the X. sequence combinations are divided into groups, each group containing (X.
  • sequence combination group index indicates the cell identifier
  • index of the intra-group sequence combination indicates the beam index
  • the terminal detects two synchronous beamforming signals sent by the base station on the time-frequency resource, and the synchronization beam shaping signal causes the terminal to perform synchronization operation and beam selection operation with the base station, and the synchronization operation includes time domain synchronization and frequency domain synchronization.
  • the terminal detects two synchronous beamforming signals sent by the base station, and the terminal selects one or more optimal sequences from the first synchronous beamforming signal and the second synchronous beamforming signal, respectively, and detects an optimal sequence in the first synchronous beamforming signal.
  • the sequence index and the sequence index of the optimal sequence in the second synchronous beamforming signal the terminal obtains the corresponding sequence combination according to the sequence index in the detected first synchronous beamforming signal and the sequence index in the second synchronous beamforming signal
  • the sequence combination group in which the sequence combination is located and obtain the index of the sequence combination of the corresponding group and the index of the sequence combination group
  • the terminal acquires the index according to the index of the sequence combination group and the index of the sequence combination within the group
  • the cell ID and beam index should be.
  • the terminal After obtaining the beam index, the terminal directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the synchronous beamforming signal 0 includes three sequences
  • the sync beam shaping signal 1 includes 168 sequences, each sequence corresponding to one sequence index.
  • the sequence of three synchronous beamforming signals 0 and the sequence of 168 synchronous beamforming signals 1 constitute 504 sequence combinations.
  • the 504 sequence combinations are grouped into 63 sequence combination groups, and each group includes 8 sequence combinations, wherein the index of the sequence combination group (inter-group index) (for example, 0 to 62) indicates the cell identity, and the intra-group sequence
  • the combined index (intra-group index) indicates the beam index.
  • the terminal detects two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence (one or more) in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 0. And a sequence index of the optimal sequence in the synchronous beamforming signal 1, and then obtaining a corresponding sequence combination according to the sequence index in the detected synchronous beamforming signal 0 and the sequence index in the synchronous beamforming signal 1, and The sequence combination group in which the sequence combination is located, thereby obtaining the corresponding inter-group index and intra-group index. According to a predefined manner, in this embodiment, the terminal obtains the cell identity through the inter-group index, and obtains the beam index through the intra-group index.
  • the terminal After the terminal obtains the beam index, it directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the best beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 171 synchronous beamforming signals, and the detected sequence combination is 504, wherein the total identified cell identifier is 63, and the identification beam index is 8 A cell can have up to 8 beam directions.
  • the synchronous beamforming signal 0 can use the PSS in LTE, and the synchronous beamforming signal 1 can use the SSS of LTE.
  • Sub-Embodiment 3-2 (this embodiment is represented by 0 and 1), the synchronous beamforming signal 0 includes 3 sequences, and each sequence corresponds to one sequence index; the synchronous beamforming signal 1 includes 168 sequences, and each sequence corresponds to A sequence index. Then the sequence of 3 synchronous beamforming signals 0 and the sequence of 168 synchronous beamforming signals 1 constitute 504 sequence combinations.
  • the 504 sequence combinations are grouped into 14 sequence combination groups, each group including 36 sequence combinations, wherein the index of the sequence combination group (inter-group index) (for example, 0 ⁇ 13) indicates the cell identity, the intra-group sequence.
  • the combined index (intra-group index) (eg 0 ⁇ 35) indicates the beam index.
  • the terminal detects two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence (one or more) in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 0. And a sequence index of the optimal sequence in the synchronous beamforming signal 1, and then obtaining a corresponding sequence combination according to the sequence index in the detected synchronous beamforming signal 0 and the sequence index in the synchronous beamforming signal 1, and The sequence combination group in which the sequence combination is located, thereby obtaining the corresponding inter-group index and intra-group index. According to a predefined manner, in this embodiment, the terminal obtains the cell identity through the inter-group index, and obtains the beam index through the intra-group index.
  • the terminal After the terminal obtains the beam index, it directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the best beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 171 synchronous beamforming signals, and the detected sequence combination is 504, wherein the total identified cell identifier is 14 and the identification beam index is 36.
  • a cell can have up to 36 beam directions.
  • Synchronous beamforming signal 0 can use PSS in LTE
  • synchronous beamforming signal 1 can use LTE SSS.
  • the synchronous beamforming signal 0 includes 3 sequences, and each sequence corresponds to one sequence index; the synchronous beamforming signal 1 includes 168 sequences, and each sequence corresponds to one sequence index (may be The sequence index of these 171 sequences is identified as 0 ⁇ 171). Then, the sequence of 3 synchronous beamforming signals 0 and the sequence of 168 synchronous beamforming signals 1 constitute 504 sequence combinations.
  • the 504 sequence combinations are grouped into 28 sequence combination groups, each group including 18 sequence combinations, wherein the index of the sequence combination group (inter-group index) (for example, 0 ⁇ 27) indicates the cell identity, the intra-group sequence
  • the combined index (intra-group index) (eg, 0 ⁇ 17) indicates the beam index.
  • the terminal detects two synchronous beamforming signals (0 and 1) sent by the base station, and when the terminal detects the optimal sequence(s) in each synchronous beamforming signal, the terminal obtains the sequence index of the optimal sequence, and then Obtaining, according to the sequence index of the optimal sequence in the detected synchronous beamforming signal 0 and the sequence index of the optimal sequence in the synchronous beamforming signal 1, obtaining a corresponding sequence combination, and a sequence combination group in which the sequence combination is located, thereby Obtain the corresponding inter-group index and intra-group index.
  • the terminal obtains the cell identifier through the inter-group index, and obtains the beam index through the intra-group index.
  • the terminal After the terminal obtains the beam index, it directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 171 synchronous beamforming signals, and the detected sequence combination is 504, wherein the total identified cell identifier is 28, and the identification beam index is 18 A cell can have up to 18 beam directions.
  • Synchronous beamforming signal 0 can use PSS in LTE
  • synchronous beamforming signal 1 can use LTE SSS.
  • the synchronous beamforming signal 0 includes three sequences, each of which is The column corresponds to a sequence index; the synchronous beamforming signal 1 comprises 168 sequences, each sequence corresponding to a sequence index. Then the sequence of 3 synchronous beamforming signals 0 and the sequence of 168 synchronous beamforming signals 1 constitute 504 sequence combinations.
  • the 504 sequence combinations are grouped into 42 sequence combination groups, each group including 12 sequence combinations, wherein the index of the sequence combination group (inter-group index) (for example, 0 to 41) indicates the cell identity, the intra-group sequence.
  • the combined index (intra-group index) (eg, 0 ⁇ 12) indicates the beam index.
  • the terminal detects two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence (one or more) in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 0. And a sequence index of the optimal sequence in the synchronous beamforming signal 1, and then obtaining a corresponding sequence combination according to the sequence index in the detected synchronous beamforming signal 0 and the sequence index in the synchronous beamforming signal 1, and The sequence combination group in which the sequence combination is located, thereby obtaining the corresponding inter-group index and intra-group index. According to a predefined manner, in this embodiment, the terminal obtains the cell identity through the inter-group index, and obtains the beam index through the intra-group index.
  • the terminal After the terminal obtains the beam index, it directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the best beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 171 synchronous beamforming signals, and the detected sequence combination is 504, wherein the total identified cell identifier is 42 and the identification beam index is 12 A cell can have up to 12 beam directions.
  • Synchronous beamforming signal 0 can use PSS in LTE
  • synchronous beamforming signal 1 can use LTE SSS.
  • the fourth embodiment beamforming signal is divided into one: first to first synchronous beamforming signals.
  • the first to first sync beamforming signals have different time domain locations and/or frequency domain locations.
  • the combined index indicates the beam index.
  • the terminal detects two synchronous beamforming signals sent by the base station on the time-frequency resource, and the synchronization beam shaping signal causes the terminal to perform synchronization operation and beam selection operation with the base station, and the synchronization operation includes time domain synchronization and frequency domain synchronization.
  • the terminal detects one synchronous beamforming signal sent by the base station, and the terminal selects one or more optimal sequences from the first to the first synchronous beamforming signals respectively, and detects the sequence of the optimal sequence in the first to the second synchronous beamforming signals.
  • the index obtains a corresponding sequence combination (one or more) according to the detected sequence index, and obtains a corresponding beam index according to the index of the sequence combination.
  • the terminal obtains the beam index, it directly or indirectly passes the uplink feedback beam index.
  • the base station After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal detects two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence (one or more) in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 0. And a sequence index of the optimal sequence in the synchronous beamforming signal 1, and then obtaining a corresponding sequence combination according to the sequence index in the detected synchronous beamforming signal 0 and the sequence index in the synchronous beamforming signal 1, according to the sequence combination The index of the sequence combination obtains the corresponding beam index. After the terminal obtains the beam index, it directly or indirectly passes the uplink. Link feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the optimal beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal needs to detect a sequence of 12 synchronous beamforming signals, and the detected sequence combination is 36, wherein the total identification beam index is 36.
  • the base station periodically transmits three synchronous beamforming signals in a predefined time unit (this embodiment is represented by 0, 1, and 2), and the synchronous beamforming signal 0 includes three sequences, one for each sequence index.
  • the synchronous beamforming signal 1 includes two sequences, each sequence corresponding to one sequence index;
  • the terminal detects two synchronous beamforming signals sent by the base station. After the terminal detects the optimal sequence (one or more) in each synchronous beamforming signal, the terminal detects the sequence index of the optimal sequence in the synchronous beamforming signal 0, The sequence index of the optimal sequence in the synchronous beamforming signal 1 and the sequence index of the optimal sequence in the synchronous beamforming signal 2, and then, according to the detected three sequence indexes, obtain the corresponding sequence combination, according to the index of the sequence combination Obtain the corresponding beam index. After the terminal obtains the beam index, it directly or indirectly passes the uplink feedback beam index. After obtaining the beam index fed back by the terminal, the base station knows the best beam for transmitting the downlink data to the terminal, so that the base station can use the optimal beam to send the downlink data to the terminal.
  • the terminal can reduce the detection complexity of the terminal and the complexity of the standard design sequence by detecting the multi-level sequence index shown in the fourth embodiment.
  • N sequences need to be designed, and the corresponding terminal needs to be detected N times;
  • the number of times the corresponding terminal is detected is less than ⁇ , and X sequences, ⁇ sequences, and ⁇ sequences can be independently designed, which reduces the complexity of the standard design sequence.
  • the embodiment of the present invention further provides a base station, a terminal, and a synchronization beamforming signal transmission system, and the synchronous beamforming signal involved in the following manner is the same as that described in the foregoing method, and details are not described herein again. .
  • the base station 10 includes: a first interaction module 11 configured to send a synchronous beamforming signal and receive feedback optimal beam information; and the data transmission module 12 is configured to use the most feedback.
  • the superior beam transmits downlink data.
  • the first interaction module 11 is further configured to periodically transmit the synchronous beamforming signal on the pre-configured time-frequency resource.
  • the sequence of the synchronous beamforming signal is divided into two beam groups, and each beam group corresponds to one index; each beam group includes N m sequences, and each sequence in the group corresponds to one index; M beam groups and each group N m sequences are composed in total! ⁇ sequences, M is a positive integer, and the value of m is ml
  • the beam group index indicates the cell identifier, and the intra-group sequence index indicates the beam index.
  • the synchronous beamforming signal includes a first synchronous beamforming signal and a second synchronous beamforming signal; the first synchronous beamforming signal and the second synchronous beamforming signal have different time domain positions and/or frequency domain positions.
  • the first synchronous beamforming signal and the second synchronous beamforming signal respectively comprise one or more sequences; the sequence index in the first synchronous beamforming signal indicates a cell identifier; The sequence index in the step beamforming signal indicates the beam index.
  • the first synchronous beamforming signal is divided into a first sub-synchronized beamforming signal and a second sub-synchronized beamforming signal.
  • the first synchronous beamforming signal and the second synchronous beamforming signal comprise a total of S sequences, each sequence corresponding to an index
  • the first synchronous beamforming signal includes X sequences
  • L sequence combination groups each sequence combination group corresponds to one index
  • each sequence combination group contains P/L sequence combinations, each sequence combination in the group corresponds to one index
  • S, X, Y, ⁇ , L are positive Integer
  • the sequence combination group index indicates a cell identity
  • the intra-group sequence combination index indicates a beam index.
  • the synchronous beamforming signal includes first to first synchronous beamforming signals; the first to first synchronous beamforming signals have different time domain positions and/or frequency domain positions; I is a positive integer;
  • the i-th sync beamforming signal contains! ⁇ sequences, each sequence corresponding to an index, l ⁇ i ⁇ I, the first to the first synchronous beamforming signals form a total of jf /, a sequence combination, each sequence combination
  • the sequence combination index indicates the beam index.
  • the first interaction module 11 may be implemented by a communication function chip of the base station 10.
  • the data transmission module 12 may be configured by a central processing unit (CPU) of the base station 10, and a microprocessor (MPU, Micro Processing Unit). ), digital signal processor (DSP, Digital Signal Processor) or programmable logic array (FPGA, Field - Programmable Gate Array) implementation.
  • CPU central processing unit
  • MPU Micro Processing Unit
  • DSP Digital Signal Processor
  • FPGA Field - Programmable Gate Array
  • the terminal 20 provided by the embodiment of the present invention includes: a second interaction module 21 configured to receive a synchronous beamforming signal and feed back optimal beam information; and a beam selection module 22 configured to receive synchronous beamforming from the receiving beam The optimal beam is selected in the signal, and the optimal beam information is provided to the second interaction module.
  • the second interaction module 21 is further configured to be pre-configured periodically. The synchronized beamforming signal is received on the set time-frequency resource.
  • the sequence of the synchronous beamforming signal is divided into M beam groups, and each beam group corresponds to one index; each beam group includes N m sequences, and each sequence in the group corresponds to one index; M beam groups and each group N m sequences are composed in total! ⁇ sequences, M is a positive integer, and the value of m is
  • the beam group index indicates the cell identity
  • the intra-group sequence index indicates the beam index
  • the beam selection module 22 is further configured to: select one or more optimal sequences from the received
  • the second interaction module 21 is further configured to feed the cell identity and the beam index through the uplink.
  • the synchronous beamforming signal includes a first synchronous beamforming signal and a second synchronous beamforming signal; the first synchronous beamforming signal and the second synchronous beamforming signal have different time domain positions and/or frequency domain positions.
  • the first synchronous beamforming signal and the second synchronous beamforming signal respectively comprise one or more sequences; the sequence index in the first synchronous beamforming signal indicates a cell identifier; and the sequence index in the second synchronous beamforming signal indicates a beam index .
  • the beam selection module 22 is further configured to select one or more optimal sequences from the received first synchronous beamforming signal and the second synchronous beamforming signal, respectively, and detect an optimal sequence in the first synchronous beamforming signal.
  • Corresponding sequence index and a sequence index corresponding to the optimal sequence in the second synchronization beamforming signal ; acquiring a cell identifier according to a sequence index corresponding to the optimal sequence in the first synchronization beamforming signal, according to an optimal sequence in the second synchronization beamforming signal
  • Corresponding sequence index obtains a beam index, and provides the acquired cell identifier and beam index to the second interaction module;
  • the second interaction module 21 is further configured to feed the cell identifier and the beam index through the uplink.
  • the first synchronous beamforming signal and the second synchronous beamforming signal comprise a total of S sequences, each sequence corresponding to an index
  • the first synchronous beamforming signal includes X sequences
  • L sequence combination groups each sequence combination group corresponding to one index
  • each sequence combination group contains P/L sequence combinations, each sequence combination in the group corresponds to one index
  • X, Y, P, L are positive integers;
  • the sequence combination group index indicates a cell identity
  • the intra-group sequence combination index indicates a beam index
  • the beam selection module 22 is further configured to select one or more optimal sequences from the received first synchronous beamforming signal and the second synchronous beamforming signal, respectively, and detect an optimal sequence in the first synchronous beamforming signal. a sequence index and a sequence index of an optimal sequence in the second synchronous beamforming signal; obtaining a corresponding sequence combination according to the sequence index in the detected first synchronization beamforming signal and the sequence index in the second synchronization beamforming signal, And the sequence combination group in which the sequence combination is located, and obtain the corresponding intra-group sequence combination cable 1 and sequence combination group index; obtain corresponding cell identifier and beam index according to the sequence combination group index and the intra-group sequence combination index, and provide the second Interaction module 21;
  • the second interaction module 21 is further configured to feed the cell identity and the beam index through the uplink.
  • the synchronous beamforming signal includes first to first synchronous beamforming signals; the first to first synchronous beamforming signals have different time domain positions and/or frequency domain positions; I is a positive integer;
  • the i-th sync beamforming signal contains! ⁇ sequences, each sequence corresponding to an index, l ⁇ i ⁇ I, the first to the first synchronous beamforming signals form a total of jf /, a sequence combination, each sequence combination
  • the sequence combination index indicates the beam index.
  • the beam selection module 22 is further configured to select one or more optimal sequences from the received first to first synchronous beamforming signals, respectively, and detect an optimal sequence corresponding to the first to the first synchronous beamforming signals.
  • the sequence index is obtained according to the detected sequence index, and the corresponding beam index is obtained according to the sequence combination index, and the obtained beam index is provided to the second interaction module 21;
  • the second interaction module 21 is further configured to feed the beam index through the uplink.
  • the foregoing second interaction module 21 can be implemented by the communication function chip of the terminal 20, and the beam selection module 22 can be implemented by the CPU, MPU, DSP or FPGA of the terminal 20.
  • the transmission system of the synchronous beamforming signal provided by the embodiment of the present invention includes: the base station 10 and the terminal 20.
  • the embodiment of the invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions for performing a method for transmitting a synchronous beamforming signal of a base station.
  • An embodiment of the present invention further provides a computer readable storage medium, the storage medium comprising a set of computer executable instructions for performing a method of receiving a synchronous beamforming signal of a terminal.

Abstract

本发明公开了一种同步波束成形信号的传输方法,包括:基站向终端发送同步波束成形信号;终端从接收的同步波束成形信号中选择最优波束并向基站反馈最优波束信息;基站使用最优波束发送下行数据。本发明还公开了一种同步波束成形信号的发送方法、接收方法、基站、终端和传输系统。

Description

一种同步波束成形信号的发送、 接收方法、 基站和终端 技术领域
本发明涉及高频通信技术, 特别是指一种同步波束成形信号的发送、 接收方法、 基站和终端。 背景技术
LTE (长期演进, Long Term Evolution )通信系统最高要求达到覆盖 100km的区域, 高频通信系统最高可以达到覆盖 lkm的区域。 如果考虑实 际高频载波的高空气吸收度(氧气吸收, 雨衰落, 雾衰落) 以及对阴影衰 落敏感等特点, 高频通信系统实际可以支持的覆盖区域要小于 lkm。 如果 高频通信系统支持最大 lkm覆盖区域, 那么与 LTE通信系统相比, 相同的 覆盖区域获得的 SINR (信号与干扰加噪声比, Signal to Interference plus Noise Ratio ) 不同, 前者比后者存在至少 20dB的信噪比下降, 为了保证高 频通信系统与 LTE通信系统在相同覆盖区域内具有近似的 SINR,需要保证 高频通信系统的天线增益。 由于高频通信具有更短的波长, 从而可以保证 单位面积上容纳更多的天线元素, 更多的天线元素可以提供更高的天线增 益, 从而保证高频通信系统的覆盖性能。
更多的天线元素意味着可以釆用波束赋型的方法来保证高频通信系统 的覆盖性能。 要得到好的波束赋型效果需要准确的获得信道状态信息, 从 而从信道状态信息中获得波束赋型权值。 要获得较好的波束赋型权值, 对 于发送端基站来说, 接收端终端需要反馈下行的信道状态信息或者波束赋 型权值, 对于接收端终端来说, 发送端基站需要反馈上行的信道状态信息 或者波束赋型权值, 从而保证基站可以釆用最优的波束发送下行业务, 终 端也可以釆用的最优的波束发送上行业务。 这时就会存在一个问题: 基站 在获得下行的信道状态信息或者波束赋型权值前, 无法利用最优的波束覆 盖到终端, 从而终端无法测量基站发送的参考信号, 或者, 即使基站覆盖 到终端, 但是终端也无法达到与基站同样的覆盖, 则终端反馈的内容(下 行的信道状态信息或者波束赋型权值)基站无法获知, 从而不能进行波束 赋型权值的选择和正常通信。 发明内容
为解决现有存在的技术问题, 本发明实施例提供一种同步波束成形信 号的发送、 接收方法、 基站和终端。
本发明实施例提供了一种同步波束成形信号的发送方法, 包括: 基站发送同步波束成形信号;
所述基站根据反馈的最优波束信息选择使用对应的最优波束发送下行 数据; 所述最优波束通过所述同步波束成形信号选取。
本发明实施例还提供了一种同步波束成形信号的接收方法, 包括: 终端接收同步波束成形信号;
所述终端从接收的所述同步波束成形信号中选择最优波束并反馈最优 波束信息。
本发明实施例还提供了一种同步波束成形信号的传输方法, 该方法包 括:
基站向终端发送同步波束成形信号;
所述终端从接收的所述同步波束成形信号中选择最优波束并向基站反 馈最优波束信息;
所述基站使用所述最优波束发送下行数据。
本发明实施例还提供了一种基站, 包括:
第一交互模块, 配置为发送同步波束成形信号, 并接收反馈的最优波 束信息; 数据传输模块, 配置为使用所述最优波束信息对应的最优波束发送下 行数据。
本发明实施例还提供了一种终端, 包括:
第二交互模块,配置为接收同步波束成形信号,并反馈最优波束信息; 波束选择模块, 配置为从接收的所述同步波束成形信号中选择最优波 束, 并将最优波束信息提供给所述第二交互模块。
本发明实施例还提供了一种同步波束成形信号的传输系统, 包括上述 的基站和终端。
本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组计算机可执行指令, 所述指令用于执行基站的同步波束成形信号的发 送方法。
本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组计算机可执行指令, 所述指令用于执行终端的同步波束成形信号的接 收方法。
本发明实施例提供的同步波束成形信号的发送、 接收、 传输方法以及 基站、 终端、 系统中: 基站向终端发送同步波束成形信号; 终端从接收的 同步波束成形信号中选择最优波束并向基站反馈最优波束信息; 基站使用 最优波束发送下行数据。 通过同步波束成形信号的传输以及最优波束的选 取以及反馈, 基站和终端能够获取相同的覆盖信息, 从而实现后续波束赋 型权值的选择和正常通信。 附图说明
图 1为本发明实施例提供的同步波束成形信号的传输方法示意图; 图 2为本发明实施例一提供的同步波束成形信号示意图;
图 3为本发明实施例二提供的同步波束成形信号示意图一;
图 4为本发明实施例二提供的同步波束成形信号示意图二; 图 5为本发明实施例三提供的同步波束成形信号示意图; 图 6为本发明实施例提供基站结构示意图;
图 7为本发明实施例提供终端结构示意图;
图 8为本发明实施例提供的同步波束成形信号的传输系统结构示意图。 具体实施方式
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。 本发明实施例提供了一种同步波束成形信号的传输方法,如图 1所示, 包括:
步骤 101, 基站向终端发送同步波束成形信号;
步骤 102,终端从接收的同步波束成形信号中选择最优波束并向基站反 馈最优波束信息;
步骤 103, 基站使用最优波束发送下行数据。
下面分别从基站侧和终端侧对上述技术方案进行描述。
基站侧
同步波束成形信号的发送过程, 包括: 基站发送同步波束成形信号; 基站根据反馈的最优波束信息使用对应的最优波束发送下行数据; 最优波 束从同步波束成形信号中选取。 优选地, 基站周期性地在预先配置的时频 资源上发送同步波束成形信号。
终端侧
同步波束成形信号的接收过程, 包括: 终端接收同步波束成形信号; 终端从接收的同步波束成形信号中选择最优波束并反馈最优波束信息。 优 选地, 终端周期性地在预先配置的时频资源上接收同步波束成形信号。
上述同步波束成形信号结构有以下几种形式:
第一种: 同步波束成形信号的序列分为 M个波束组, 每个波束组对应 一个索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; 所 述 M个波束组和每组 Nm个序列总共构成! Nm个序列, 所述 M为正整数, m-l
所述 m的取值为 1~M;
所述波束组索引指示小区标识, 组内序列索引指示波束索引。
例如:
同步波束成形信号的序列分为 63个波束组, 每个波束组中包括 8个序 列, 总共构成 504个序列; 或者,
同步波束成形信号的序列分为 14个波束组, 每个波束组中包括 36个 序列, 总共构成 504个序列; 或者,
同步波束成形信号的序列分为 28个波束组, 每个波束组中包括 18个 序列, 总共构成 504个序列; 或者,
同步波束成形信号的序列分为 42个波束组, 每个波束组中包括 12个 序列, 总共构成 504个序列。
第二种: 同步波束成形信号包括第一同步波束成形信号和第二同步波 束成形信号; 第一同步波束成形信号和第二同步波束成形信号具有不同的 时域位置和 /或频域位置。
第一同步波束成形信号和第二同步波束成形信号分别包含一个或多个 序列; 第一同步波束成形信号中的序列索引指示小区标识; 第二同步波束 成形信号中的序列索引指示波束索引。
例如:
第一同步波束成形信号包含 3个序列,第二同步波束成形信号包含 168 个序列; 或者,
第一同步波束成形信号包含 168个序列,第二同步波束成形信号包含 8 个序列; 或者,
第一同步波束成形信号包含 168个序列,第二同步波束成形信号包含 4 个序列; 或者, 第一同步波束成形信号包含 168个序列, 第二同步波束成形信号包含 12个序列。
另外, 第一同步波束成形信号划分为第一子同步波束成形信号和第二 子同步波束成形信号。
第三种: 同步波束成形信号包括第一同步波束成形信号和第二同步波 束成形信号; 第一同步波束成形信号和第二同步波束成形信号具有不同的 时域位置和 /或频域位置。
第一同步波束成形信号和第二同步波束成形信号一共包含 S个序列, 每个序列对应一个索引; 第一同步波束成形信号包含 X个序列, 第二同步 波束成形信号包含 Y个序列, X+Y=S; X个序列和 Y个序列构成 X . Y=P 个序列组合; Ρ个序列组合分为 L个序列组合组, 每个序列组合组对应一 个索引; 每个序列组合组包含 P/L个序列组合, 组内每个序列组合对应一 个索引; S、 X、 Y、 P、 L均为正整数;
序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。 例 如:
第一同步波束成形信号包含 3个序列,第二同步波束成形信号包含 168 个序列,一共构成 504个序列组合; 504个序列组合分为 63个序列组合组, 每组包括 8个序列组合; 或者,
第一同步波束成形信号包含 3个序列,第二同步波束成形信号包含 168 个序列,一共构成 504个序列组合; 504个序列组合分为 14个序列组合组, 每组包括 36个序列组合; 或者,
第一同步波束成形信号包含 3个序列,第二同步波束成形信号包含 168 个序列,一共构成 504个序列组合; 504个序列组合分为 28个序列组合组, 每组包括 18个序列组合; 或者,
第一同步波束成形信号包含 3个序列,第二同步波束成形信号包含 168 个序列,一共构成 504个序列组合; 504个序列组合分为 42个序列组合组, 每组包括 12个序列组合。
第四种: 同步波束成形信号包括第一至第 I同步波束成形信号; 第一至 第 I同步波束成形信号具有不同的时域位置和 /或频域位置; I为正整数; 第 i同步波束成形信号包含!^个序列,每个序列对应一个索引, l≤i≤I, 第一至第 I 同步波束成形信号一共构成 jf/,个序列组合, 每个序列组合对
/二1
应一个索引, 序列组合索引指示波束索引。
例如:
第一同步波束成形信号包含 6 个序列, 第二同步波束成形信号包含 6 个序列, 一共构成 36个序列组合; 36个指示波束索引的序列组合对应 36 个不同的波束索引。
下面通过具体的实施例来说明上述技术方案。
实施例一
步波束成形信号的序列分为 M个波束组,每个波束组中包括 Nm ( m的取值 为 1~M )个序列。 波束组索引 (组间索引)用来指示小区标识, 波束组内 的序列索引 (组内索引)用来指示小区中的波束索引, 则 M个波束组和每 组 Nm个序列总共构成! Nm个序列( M取值为正整数)。根据波束组个数M,
m-l
可以将组间索引设置为 1、 2...M, 也可以设置为 0、 1 ...M-1 ; 根据每个波 束组内的序列个数 Nm,可以将组内索引设置为 l、2...Nm,也可以设置为 0、 l ...Nm-l, 例如表 1-1、 表 1-2所示结构。 组间索引 组内索引 小区标识 波束索引
0 0
1 1
0 0
… …
No-1 No-1
0 0
1 1
1 1
Figure imgf000010_0001
Figure imgf000010_0002
上述组间索引的两个设置方式和组内索引的两个设置方式可以任意结 合使用, 并不限于表 1-1、 表 1-2的两个结合方式。
终端在时频资源上检测基站发送的同步波束成形信号, 该同步波束成 形信号使得终端与基站进行同步操作和波束选择操作, 同步操作包括时域 同步以及频域同步。 当终端检测到基站发送的同步波束成形信号 (!;^个序列) 时, 执行 m-l
波束选择操作: 选择该同步波束成形信号中的一个或者多个最优序列进行 同步, 并且检测对应的组间索引和组内索引, 获得组间索引后, 终端获得 了小区标识; 获得组内索引后, 终端获得了小区中的波束索引。 终端获得 波束索引后, 可以直接或者间接地通过上行链路向基站反馈获得的波束索 引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的最 优波束, 从而基站可以利用最优波束给终端发送下行数据。
子实施例 1-1
如图 2所示, 假设基站周期性地在预定义的时间单元内发送了一种同 步波束成形信号。 该同步波束成形信号的序列分为 63个波束组, 每个波束 组中包括 8个序列, 组间序列索引用来指示小区标识, 组内序列索引用来 指示小区中的波束索引, 63个波束组和每组 8个序列, 总共构成 504个序 列。
终端检测基站发送的同步波束成形信号的序列, 当终端检测到其中的 最优序列后, 终端检测相应的组间索引和组内索引, 从而识别出对应的小 区标识以及波束索引。 终端获得波束索引后直接或者间接地通过上行链路 反馈波束索引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下 行数据的最优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 504个同步波束成 形信号的序列, 其中总共识别小区标识为 63个, 波束索引为 8个, 一个小 区最多可以存在 8个波束方向, 如果假定所有波束需要覆盖的范围为 360 度,那么每个波束的宽度为 45度。如果假定所有波束需要覆盖的范围为 120 度, 那么每个波束的宽度为 15度。
子实施例 1-2
如图 2所示, 假设基站周期性地在预定义的时间单元内发送了一种同 步波束成形信号。 该同步波束成形信号的序列分为 14个波束组, 每个波束 组中包括 36个序列, 组间序列索引用来指示小区标识, 组内序列索引用来 指示小区中的波束索引, 14个波束组和每组 36个序列, 总共构成 504个序 列。
终端检测基站发送的同步波束成形信号的序列, 当终端检测到其中的 最优序列后, 终端检测相应的组间索引和组内索引, 从而识别出对应的小 区标识以及波束索引。 终端获得波束索引后直接或者间接地通过上行链路 反馈波束索引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下 行数据的最优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 504 次同步波束成 形信号的序列, 其中总共识别小区标识为 14个, 波束索引为 36个, 一个 小区最多可以存在 36个波束方向,如果假定所有波束需要覆盖的范围为 360 度,那么每个波束的宽度为 10度。如果假定所有波束需要覆盖的范围为 120 度, 那么每个波束的宽度为 3.33度。
子实施例 1-3
如图 2所示, 假设基站周期性地在预定义的时间单元内发送了一种同 步波束成形信号。 该同步波束成形信号的序列分为 28个波束组, 每个波束 组中包括 18个序列, 组间序列索引用来指示小区标识, 组内序列索引用来 指示小区中的波束索引, 28个波束组和每组 18个序列, 总共构成 504个序 列。
终端检测基站发送的同步波束成形信号的序列, 当终端检测到其中的 最优序列后, 终端检测相应的组间索引和组内索引, 从而识别出对应的小 区标识以及波束索引。 终端获得波束索引后直接或者间接地通过上行链路 反馈波束索引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下 行数据的最优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 504个同步波束成 形信号的序列, 其中总共识别小区标识为 28个, 波束索引为 18个, 一个 小区最多可以存在 18个波束方向,如果假定所有波束需要覆盖的范围为 360 度,那么每个波束的宽度为 20度。如果假定所有波束需要覆盖的范围为 120 度, 那么每个波束的宽度为 6.67度。
子实施例 1-4 如图 2所示, 假设基站周期性地在预定义的时间单元内发送了一种同 步波束成形信号, 该同步波束成形信号的序列分为 42个波束组, 每个波束 组中包括 12个序列, 组间序列索引用来指示小区标识, 组内序列索引用来 指示小区中的波束索引, 42个波束组和每组 12个序列, 总共构成 504个序 列。
终端检测基站发送的同步波束成形信号的序列, 当终端检测到其中的 最优序列后, 终端检测相应的组间索引和组内索引, 从而识别出对应的小 区标识以及波束索引。 终端获得波束索引后直接或者间接地通过上行链路 反馈波束索引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下 行数据的最优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 504个同步波束成 形信号的序列, 其中总共识别小区标识为 42个, 识别波束索引为 12个, 一个小区最多可以存在 12个波束方向, 如果假定所有波束需要覆盖的范围 为 360度, 那么每个波束的宽度为 30度。 如果假定所有波束需要覆盖的范 围为 120度, 那么每个波束的宽度为 10度。 实施例二 波束成形信号分为两个: 第一同步波束成形信号和第二同步波束成形信号, 两者具有不同的时域位置和 /或频域位置。 第一同步波束成形信号中包含一 个或多个序列, 每个序列对应一个序列索引; 第二同步波束成形信号中包 含一个或多个序列, 每个序列对应一个序列索引。 将第一同步波束成形信 号中的序列索引配置为指示小区标识, 将第二同步波束成形信号中的序列 索引配置为指示小区中的波束索引。
终端在时频资源上检测基站发送的两个同步波束成形信号, 该同步波 束成形信号使得终端与基站进行同步操作和波束选择操作, 同步操作包括 时域同步以及频域同步。
当终端检测到基站发送的两个同步波束成形信号时, 分别从第一同步 波束成形信号和第二同步波束成形信号中选择一个或多个最优序列, 并检 测第一同步波束成形信号中最优序列对应的序列索引和第二同步波束成形 信号中最优序列对应的序列索引; 从而获得小区标识和波束索引。 终端获 得波束索引后, 可以直接或者间接地通过上行链路向基站反馈获得的波束 索引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的 最优波束, 从而基站可以利用最优波束给终端发送下行数据。
子实施例 2-1
如图 3 所示, 假设基站周期性地在预定义的时间单元内发送了两个同 步波束成形信号(该实施例用 0和 1表示), 该实施例中, 同步波束成形信 号 0的序列个数为 3, 每个序列对应一个序列索引; 同步波束成形信号 1的 序列个数为 168, 每个序列对应一个序列索引。 其中, 同步波束成形信号 0 中的序列索引指示小区标识, 同步波束成形信号 1 中的序列索引指示波束 索引。
终端检测基站发送的两个同步波束成形信号的序列, 当终端检测到每 个同步波束成形信号中的最优序列后, 终端检测最优序列在同步波束成形 信号 0中的序列索引,以及最优序列在同步波束成形信号 1中的序列索引, 从而检测出对应的小区标识和波束索引。 终端获得波束索引后直接或者间 接地通过上行链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获 知了给终端发送下行数据的最优波束, 从而基站可以利用最优波束给终端 发送下行数据。
釆用这种检测方式, 在该实施例中, 终端一共需要检测 171 个同步波 束成形信号的序列, 其中, 总共识别小区标识为 3个, 识别波束索引为 168 个, 一个小区最多可以存在 168个波束方向。
同步波束成形信号 0可以釆用 LTE中的 PSS( Primary Synchronize Signal, 主同步信号), 同步波束成形信号 1 可以釆用 LTE 的 SSS ( Secondary Synchronize Signal, 主同步信号)。
子实施例 2-2
如图 3 所示, 假设基站周期性地在预定义的时间单元内发送了两个同 步波束成形信号(该实施例用 0和 1表示), 该实施例中, 同步波束成形信 号 0的序列个数为 8, 每个序列对应一个序列索引; 同步波束成形信号 1的 序列个数为 168,每个序列对应一个序列索引。 同步波束成形信号 0中的序 列索引指示波束索引, 同步波束成形信号 1中的序列索引指示小区标识。
终端检测基站发送的两个同步波束成形信号的序列, 当终端检测到每 个同步波束成形信号中的最优序列后, 终端检测最优序列在同步波束成形 信号 1中的序列索引,以及最优序列在同步波束成形信号 0中的序列索引, 从而检测出对应的小区标识和波束索引。 终端获得波束索引后直接或者间 接地通过上行链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获 知了给终端发送下行数据的最优波束, 从而基站可以利用最优波束给终端 发送下行数据。
釆用这种检测方式, 在该实施例中, 终端一共需要检测 176个同步波 束成形信号的序列, 其中, 总共识别小区标识为 168个, 识别波束索引为 8 个, 一个小区最多可以存在 8个波束方向。
同步波束成形信号 1可以釆用 LTE中的 SSS; 同步波束成形信号 0可 以釆用 LTE的 PSS的扩展,例如表 2-1和表 2-2所示,其中, Root index"表 示釆用 PSS的扩展时, 同步波束成形信号 0中的序列索引对应的根, NUMx ( x=0~4 ) >0。
Figure imgf000015_0001
表 2-1 序列索引 Root index"
0 25
1 29
2 34
3 NUMO
4 NUM1
5 NUM2
6 NUM3
7 NUM4
表 2-2 子实施例 2-3
如图 3 所示, 假设基站周期性地在预定义的时间单元内发送了两个同 步波束成形信号(该实施例用 0和 1表示), 该实施例中, 同步波束成形信 号 0的序列个数为 4, 每个序列对应一个序列索引; 同步波束成形信号 1的 序列个数为 168, 每个序列对应一个序列索引。 其中, 同步波束成形信号 0 中的序列索引指示波束索引, 同步波束成形信号 1 中的序列索引指示小区 标识。
终端检测基站发送的两个同步波束成形信号的序列, 当终端检测到每 个同步波束成形信号中的最优序列后, 终端检测最优序列在同步波束成幵 信号 1中的序列索引,以及最优序列在同步波束成形信号 0中的序列索引, 从而检测出对应的小区标识和波束索引。 终端获得波束索引后直接或者间 接地通过上行链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获 知了给终端发送下行数据的最优波束, 从而基站可以利用最优波束给终端 发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 172个同步波束成 形信号的序列,其中, 总共识别小区标识为 168个,识别波束索引为 4个, 一个小区最多可以存在 4个波束方向。 同步波束成形信号 1可以釆用 LTE中的 SSS; 同步波束成形信号 0可 以釆用 LTE的 PSS的扩展,例如表 3所示,其中, Root index"表示釆用 PSS 的扩展时,同步波束成形信号 0中的序列索引对应的根, NUMx(x=0~4)>0。
Figure imgf000017_0001
子实施例 2-4
如图 3 所示, 假设基站周期性地在预定义的时间单元内发送了两个同 步波束成形信号(该实施例用 0和 1表示), 该实施例中, 同步波束成形信 号 0的序列个数为 12, 每个序列对应一个序列索引; 同步波束成形信号 1 的序列个数为 168, 每个序列对应一个序列索引。 其中, 同步波束成形信号 0中的序列索引指示波束索引,同步波束成形信号 1中的序列索引指示小区 标识。
终端检测基站发送的两个同步波束成形信号的序列, 当终端检测到每 个同步波束成形信号中的最优序列后, 终端检测最优序列在同步波束成形 信号 1中的序列索引,以及最优序列在同步波束成形信号 0中的序列索引, 从而检测出对应的小区标识和波束索引。 终端获得波束索引后直接或者间 接地通过上行链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获 知了给终端发送下行数据的最优波束, 从而基站可以利用最优波束给终端 发送下行数据。
釆用这种检测方式, 在该实施例中, 终端一共需要检测 180个同步波 束成形信号的序列, 其中总共识别小区的标识为 168个, 识别波束索引为 12个, 一个小区最多可以存在 12个波束方向。
同步波束成形信号 1可以釆用 LTE中的 SSS; 同步波束成形信号 0可 以釆用 LTE的 PSS的扩展,例如表 4所示,其中, Root index"表示釆用 PSS 的扩展时,同步波束成形信号 0中的序列索引对应的根, NUMx(x=0~4)>0。 序列索引 Root index"
0 25
1 29
2 34
3 NUMO
4 NUM1
5 NUM2
6 NUM3
7 NUM4
8 NUM5
9 NUM6
10 NUM7
11 NUM8
表 4
子实施例 2-5
在实际应用中, 还可以将指示小区标识的同步波束成形信号进一步分 为几个信号,用于基站和终端的时频同步和小区标识的获得。如图 4所示, 假设基站周期性地在预定义的时间单元内发送了三种同步波束成形信号 (该实施例用 0、 1和 2表示), 该实施例中, 同步波束成形信号 0用于指 示波束索引, 同步波束成形信号 1和同步波束成形信号 2用于基站和终端 的时频同步以及小区标识的获得(这里的同步波束成形信号 1 和同步波束 成形信号 2 可以理解为通过对指示小区标识的同步波束成形信号进行划分 得到的)。 在实际应用中, 也可以同步波束成形信号 0, 1 用于指示波束索 引,同步波束成形信号 2用于基站和终端的时频同步以及小区标识的获得。 或者同步波束成形信号 0, 1用于指示波束索引和时频同步, 同步波束成形 信号 2用于终端获取小区标识。
终端检测基站发送的三种同步波束成形信号的序列, 当终端检测到同 步波束成形信号 1和同步波束成形信号 2中的最优序列后, 终端检测最优 序列在同步波束成形信号 1和同步波束成形信号 2中的序列标识, 从而获 得对应的小区标识; 当终端检测到同步波束成形信号 0 中的最优序列后, 终端检测最优序列在同步波束成形信号 0 中的序列标识, 从而获得对应的 波束索引。 终端获得波束索引后直接或者间接地通过上行链路反馈波束索 引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的最 优波束, 从而基站可以利用最优波束给终端发送下行数据。
同步波束成形信号 1可以釆用 LTE中的 SSS, 同步波束成形信号 2可 以釆用 LTE的 PSS ( Secondary Synchronize Signal , 主同步信号), 同步波 束成形信号 0可以设计新的序列。 实施例三 波束成形信号分为两个: 第一同步波束成形信号和第二同步波束成形信号, 两者具有不同的时域位置和 /或频域位置。 如图 5所示, 第一同步波束成形 信号包含了 X个序列, 每个序列对应一个索引 (0~X-1 ), 第二同步波束成 形信号包含了 Y个序列,每个序列对应一个索引(0~Y-1 ),一共组成了 X ·Υ 个序列组合, 将这 X . Υ个序列组合分为 Ν个组, 每组包含( X . Υ ) /Ν个 序列组合, 序列组合组索引 (组间索引 0~Ν-1 )指示小区标识, 组内序列组 合的索引 (组内索引 0~ ( X . Y ) /N-1 )指示波束索引。
终端在时频资源上检测基站发送的两个同步波束成形信号, 该同步波 束成形信号使得终端与基站进行同步操作和波束选择操作, 同步操作包括 时域同步以及频域同步。
终端检测基站发送的两个同步波束成形信号, 终端分别从第一同步波 束成形信号和第二同步波束成形信号中选择一个或多个最优序列, 并检测 第一同步波束成形信号中最优序列的序列索引以及第二同步波束成形信号 中最优序列的序列索引; 终端根据检测出的第一同步波束成形信号中的序 列索引和第二同步波束成形信号中的序列索引, 获得对应的序列组合、 以 及序列组合所在的序列组合组, 并获得对应的组内序列组合的索引和序列 组合组的索引; 终端根据序列组合组的索引和组内序列组合的索引获取对 应的小区标识和波束索引。 终端获得波束索引后直接或者间接地通过上行 链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获知了给终端发 送下行数据的最优波束, 从而基站可以利用最优波束给终端发送下行数据。
子实施例 3-1 号(该实施例用 0和 1表示), 同步波束成形信号 0包括 3个序列, 同步波 束成形信号 1 包括 168个序列, 每个序列对应一个序列索引。 则 3个同步 波束成形信号 0的序列和 168个同步波束成形信号 1的序列构成了 504个 序列组合。 对这个 504个序列组合进行分组, 分为 63个序列组合组, 每组 包括 8个序列组合, 其中, 序列组合组的索引 (组间索引)(例如 0~62 )指 示小区标识,组内序列组合的索引(组内索引)(例如 0~7 )指示波束索引。
终端检测基站发送的两个同步波束成形信号, 当终端检测到每个同步 波束成形信号中的最优序列 (一个或多个)后, 终端检测最优序列在同步 波束成形信号 0中的序列索引, 以及最优序列在同步波束成形信号 1 中的 序列索引, 然后, 根据检测出的同步波束成形信号 0 中的序列索引和同步 波束成形信号 1 中的序列索引, 获得对应的序列组合、 以及该序列组合所 在的序列组合组, 从而获得对应的组间索引和组内索引。 根据预定义的方 式, 在该实施例中, 终端通过组间索引获得小区标识, 通过组内索引获得 波束索引。 终端获得波束索引后直接或者间接地通过上行链路反馈波束索 引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的最 优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 171 个同步波束成 形信号的序列, 检测到的序列组合为 504个, 其中, 总共识别小区标识为 63个, 识别波束索引为 8个, 一个小区最多可以存在 8个波束方向。
同步波束成形信号 0可以釆用 LTE中的 PSS, 同步波束成形信号 1可 以釆用 LTE的 SSS。 子实施例 3-2 号(该实施例用 0和 1表示), 同步波束成形信号 0包括 3个序列, 每个序 列对应一个序列索引; 同步波束成形信号 1 包括 168个序列, 每个序列对 应一个序列索引。 则 3个同步波束成形信号 0的序列和 168个同步波束成 形信号 1的序列构成了 504个序列组合。对这个 504个序列组合进行分组, 分为 14个序列组合组, 每组包括 36个序列组合, 其中, 序列组合组的索 引 (组间索引)(例如 0~13 )指示小区标识, 组内序列组合的索引 (组内索 引 ) (例如 0~35 )指示波束索引。
终端检测基站发送的两个同步波束成形信号, 当终端检测到每个同步 波束成形信号中的最优序列 (一个或多个)后, 终端检测最优序列在同步 波束成形信号 0中的序列索引, 以及最优序列在同步波束成形信号 1 中的 序列索引, 然后, 根据检测出的同步波束成形信号 0 中的序列索引和同步 波束成形信号 1 中的序列索引, 获得对应的序列组合、 以及该序列组合所 在的序列组合组, 从而获得对应的组间索引和组内索引。 根据预定义的方 式, 在该实施例中, 终端通过组间索引获得小区标识, 通过组内索引获得 波束索引。 终端获得波束索引后直接或者间接地通过上行链路反馈波束索 引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的最 优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 171 个同步波束成 形信号的序列, 检测到的序列组合为 504个, 其中, 总共识别小区标识为 14个, 识别波束索引为 36个, 一个小区最多可以存在 36个波束方向。
同步波束成形信号 0可以釆用 LTE中的 PSS, 同步波束成形信号 1可 以釆用 LTE的 SSS。
子实施例 3-3 号(该实施例用 0和 1表示), 同步波束成形信号 0包括 3个序列, 每个序 列对应一个序列索引; 同步波束成形信号 1 包括 168个序列, 每个序列对 应一个序列索引 (可以将这 171个序列的序列索引标识为 0~171 )。 则 3个 同步波束成形信号 0的序列和 168个同步波束成形信号 1的序列构成了 504 个序列组合。 对这个 504个序列组合进行分组, 分为 28个序列组合组, 每 组包括 18个序列组合,其中,序列组合组的索引(组间索引)(例如 0~27 ) 指示小区标识, 组内序列组合的索引 (组内索引)(例如 0~17 )指示波束索 引。
终端检测基站发送的两个同步波束成形信号 (0和 1 ), 当终端检测到 每个同步波束成形信号中的最优序列 (一个或多个)后, 终端获得最优序 列的序列索引, 然后, 根据检测出的同步波束成形信号 0 中的最优序列的 序列索引和同步波束成形信号 1 中的最优序列的序列索引, 获得对应的序 列组合、 以及该序列组合所在的序列组合组, 从而获得对应的组间索引和 组内索引。 根据预定义的方式, 在该实施例中, 终端通过组间索引获得小 区标识, 通过组内索引获得波束索引。 终端获得波束索引后直接或者间接 地通过上行链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获知 了给终端发送下行数据的最优波束, 从而基站可以利用最优波束给终端发 送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 171 个同步波束成 形信号的序列, 检测到的序列组合为 504个, 其中, 总共识别小区标识为 28个, 识别波束索引为 18个, 一个小区最多可以存在 18个波束方向。
同步波束成形信号 0可以釆用 LTE中的 PSS, 同步波束成形信号 1可 以釆用 LTE的 SSS。
子实施例 3-4 号(该实施例用 0和 1表示), 同步波束成形信号 0包括 3个序列, 每个序 列对应一个序列索引; 同步波束成形信号 1 包括 168个序列, 每个序列对 应一个序列索引。 则 3个同步波束成形信号 0的序列和 168个同步波束成 形信号 1的序列构成了 504个序列组合。对这个 504个序列组合进行分组, 分为 42个序列组合组, 每组包括 12个序列组合, 其中, 序列组合组的索 引 (组间索引)(例如 0~41 )指示小区标识, 组内序列组合的索引 (组内索 引 ) (例如 0~12 )指示波束索引。
终端检测基站发送的两个同步波束成形信号, 当终端检测到每个同步 波束成形信号中的最优序列 (一个或多个)后, 终端检测最优序列在同步 波束成形信号 0中的序列索引, 以及最优序列在同步波束成形信号 1 中的 序列索引, 然后, 根据检测出的同步波束成形信号 0 中的序列索引和同步 波束成形信号 1 中的序列索引, 获得对应的序列组合、 以及该序列组合所 在的序列组合组, 从而获得对应的组间索引和组内索引。 根据预定义的方 式, 在该实施例中, 终端通过组间索引获得小区标识, 通过组内索引获得 波束索引。 终端获得波束索引后直接或者间接地通过上行链路反馈波束索 引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的最 优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 171 个同步波束成 形信号的序列, 检测到的序列组合为 504个, 其中, 总共识别小区标识为 42个, 识别波束索引为 12个, 一个小区最多可以存在 12个波束方向。
同步波束成形信号 0可以釆用 LTE中的 PSS, 同步波束成形信号 1可 以釆用 LTE的 SSS。
实施例四 波束成形信号分为 I个: 第一至第 I同步波束成形信号。 第一至第 I同步波 束成形信号具有不同的时域位置和 /或频域位置。 第 i 同步波束成形信号包 含 1^ 个序列, l≤i≤I, 第一至第 I 同步波束成形信号一共构成 ^^/, = ^ ><^/2 ><...><^/, ><...>< 个序列组合, 每个序列组合对应一个索引, 序列
/二1
组合的索引指示波束索引。
终端在时频资源上检测基站发送的两个同步波束成形信号, 该同步波 束成形信号使得终端与基站进行同步操作和波束选择操作, 同步操作包括 时域同步以及频域同步。
终端检测基站发送的 I个同步波束成形信号,终端分别从第一至第 I同 步波束成形信号中选择一个或多个最优序列, 并检测第一至第同步波束成 形信号中最优序列的序列索引; 终端根据检测出的序列索引, 获得对应的 序列组合(一个或多个), 并根据序列组合的索引获取对应的波束索引。 终 端获得波束索引后直接或者间接地通过上行链路反馈波束索引。 基站获得 终端反馈的波束索引后, 就获知了给终端发送下行数据的最优波束, 从而 基站可以利用最优波束给终端发送下行数据。
子实施例 4-1 号(该实施例用 0和 1表示), 同步波束成形信号 0包括 6个序列, 每个序 列对应一个序列索引, 同步波束成形信号 1 包括 6个序列, 每个序列对应 一个序列索引。 则 6个同步波束成形信号 0的序列和 6个同步波束成形信 号 1的序列构成了 6x6=36个序列组合, 其中, 每个序列组合对应一个索引 ( 0-35 ), 序列组合的索引指示波束索引。
终端检测基站发送的两个同步波束成形信号, 当终端检测到每个同步 波束成形信号中的最优序列 (一个或多个)后, 终端检测最优序列在同步 波束成形信号 0中的序列索引, 以及最优序列在同步波束成形信号 1 中的 序列索引, 然后, 根据检测出的同步波束成形信号 0 中的序列索引和同步 波束成形信号 1 中的序列索引, 获得对应的序列组合, 根据该序列组合的 索引获取对应的波束索引。 终端获得波束索引后直接或者间接地通过上行 链路反馈波束索引。 基站获得终端反馈的波束索引后, 就获知了给终端发 送下行数据的最优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 12个同步波束成形 信号的序列, 检测到的序列组合为 36 个, 其中, 总共识别波束索引为 36 个。
子实施例 4-2
假设基站周期性地在预定义的时间单元内发送了三个同步波束成形信 号 (该实施例用 0、 1和 2表示), 同步波束成形信号 0包括 3个序列, 每 个序列对应一个序列索引; 同步波束成形信号 1 包括 2个序列, 每个序列 对应一个序列索引; 同步波束成形信号 2包括 6个序列, 每个序列对应一 个序列索引; 则一共构成了 3x2x6=36个序列组合, 其中, 每个序列组合对 应一个索引 (0~35 ), 序列组合的索引指示波束索引。
终端检测基站发送的两个同步波束成形信号, 当终端检测到每个同步 波束成形信号中的最优序列 (一个或多个)后, 终端检测同步波束成形信 号 0中最优序列的序列索引、 同步波束成形信号 1 中最优序列的序列索引 以及同步波束成形信号 2 中最优序列的序列索引, 然后, 根据检测出的这 三个序列索引, 获得对应的序列组合, 根据该序列组合的索引获取对应的 波束索引。 终端获得波束索引后直接或者间接地通过上行链路反馈波束索 引。 基站获得终端反馈的波束索引后, 就获知了给终端发送下行数据的最 优波束, 从而基站可以利用最优波束给终端发送下行数据。
釆用这种检测方式, 在该实施例中, 终端需要检测 3+2+6=11个同步波 束成形信号的序列, 检测到的序列组合为 36个, 其中, 总共识别波束索引 为 36个。
终端通过实施例四所示的多级序列索引的检测方式可以减少终端的检 测复杂度以及标准设计序列的复杂度。 例如, 当只釆用一级序列索引来指 示 N个波束时, 需要设计 N个序列, 相应的终端需要检测 N次; 当釆用三 级序列索引来指示 N个波束时, 例如, 可以分别设计 X个序列、 Y个序列 和 Z个序列 (X、 Y、 Ζ满足: Χ*Υ*Ζ=Ν且 Χ+Υ+ Ζ <Ν ), X个序列、 Υ个 序列、 Ζ个序列构成 X * Υ*Ζ=Ν个序列组合,序列组合的索引指示波束索引, 由此可见, 这种情况下总共需要设计 Χ+Υ+Ζ <N个序列, 相应的终端检测 的次数小于 Ν, 而且 X个序列、 Υ个序列、 Ζ个序列可以独立设计, 减小 了标准设计序列的复杂度。
上述终端检测最优序列的方法有多种, 例如釆用序列相关的方法, 选 择相关值最高的序列作为最优序列。 釆用不同的检测方式选择出的序列不 同,无论釆用何种检测方法,只要能够得到最优的一个或者多个序列即可。
为了实现上述方法, 本发明实施例还提供了一种基站、 终端和同步波 束成形信号的传输系统, 下述涉及的同步波束成形信号, 其形式如上述方 法中所述相同, 此处不再赘述。
如图 6所示, 本发明实施例提供的基站 10包括: 第一交互模块 11, 配 置为发送同步波束成形信号, 并接收反馈的最优波束信息; 数据传输模块 12,配置为使用反馈的最优波束发送下行数据。优选地,第一交互模块 11, 还配置为周期性地在预先配置的时频资源上发送同步波束成形信号。
其中, 同步波束成形信号的序列分为 Μ个波束组, 每个波束组对应一 个索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; M个 波束组和每组 Nm个序列总共构成! ^个序列, M为正整数, m的取值为 m-l
1~M; 波束组索引指示小区标识, 组内序列索引指示波束索引。
其中, 同步波束成形信号包括第一同步波束成形信号和第二同步波束 成形信号; 第一同步波束成形信号和第二同步波束成形信号具有不同的时 域位置和 /或频域位置。
其中, 第一同步波束成形信号和第二同步波束成形信号分别包含一个 或多个序列; 第一同步波束成形信号中的序列索引指示小区标识; 第二同 步波束成形信号中的序列索引指示波束索引。
其中, 第一同步波束成形信号划分为第一子同步波束成形信号和第二 子同步波束成形信号。
其中, 第一同步波束成形信号和第二同步波束成形信号一共包含 S个 序列, 每个序列对应一个索引;
第一同步波束成形信号包含 X个序列, 第二同步波束成形信号包含 Y 个序列, X+ Y=S; X个序列和 Y个序列构成 X · Y=P个序列组合; Ρ个序 列组合分为 L个序列组合组, 每个序列组合组对应一个索引; 每个序列组 合组包含 P/L个序列组合,组内每个序列组合对应一个索引; S、 X、 Y、 Ρ、 L均为正整数;
序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。 其中, 同步波束成形信号包括第一至第 I同步波束成形信号; 第一至第 I同步波束成形信号具有不同的时域位置和 /或频域位置; I为正整数;
第 i同步波束成形信号包含!^个序列,每个序列对应一个索引, l≤i≤I, 第一至第 I 同步波束成形信号一共构成 jf/,个序列组合, 每个序列组合对
/二1
应一个索引, 序列组合索引指示波束索引。
需要说明的是, 上述第一交互模块 11 可以由基站 10的通信功能芯片 实现, 数据传输模块 12 可以由基站 10 的中央处理器 (CPU, Central Processing Unit ), 微处理器(MPU, Micro Processing Unit )、 数字信号处理 器 (DSP, Digital Signal Processor ) 或可编程逻辑阵列 ( FPGA, Field - Programmable Gate Array ) 实现。
如图 7所示, 本发明实施例提供的终端 20包括: 第二交互模块 21, 配 置为接收同步波束成形信号, 并反馈最优波束信息; 波束选择模块 22, 配 置为从接收的同步波束成形信号中选择最优波束, 并将最优波束信息提供 给第二交互模块。 优选地, 第二交互模块 21, 还配置为周期性地在预先配 置的时频资源上接收同步波束成形信号。
其中, 同步波束成形信号的序列分为 M个波束组, 每个波束组对应一 个索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; M个 波束组和每组 Nm个序列总共构成! ^个序列, M为正整数, m的取值为
1~M;
波束组索引指示小区标识, 组内序列索引指示波束索引。
其中, 波束选择模块 22, 还配置为从接收到的 | m个序列中选择一个 或多个最优序列, 并检测最优序列对应的波束组索引和组内序列索引; 根 据检测到的波束组索引和组内序列索引获取对应的小区标识和波束索引, 并将获取的小区标识和波束索引提供给第二交互模块 21 ;
第二交互模块 21, 还配置为将小区标识和波束索引通过上行链路进行 反馈。
其中, 同步波束成形信号包括第一同步波束成形信号和第二同步波束 成形信号; 第一同步波束成形信号和第二同步波束成形信号具有不同的时 域位置和 /或频域位置。
其中, 第一同步波束成形信号和第二同步波束成形信号分别包含一个 或多个序列; 第一同步波束成形信号中的序列索引指示小区标识; 第二同 步波束成形信号中的序列索引指示波束索引。
其中, 波束选择模块 22, 还配置为分别从接收到的第一同步波束成形 信号和第二同步波束成形信号中选择一个或多个最优序列, 并检测第一同 步波束成形信号中最优序列对应的序列索引和第二同步波束成形信号中最 优序列对应的序列索引; 根据第一同步波束成形信号中最优序列对应的序 列索引获取小区标识, 根据第二同步波束成形信号中最优序列对应的序列 索引获取波束索引, 并将获取的小区标识和波束索引提供给第二交互模块; 第二交互模块 21, 还配置为将小区标识和波束索引通过上行链路进行 反馈。
其中, 第一同步波束成形信号和第二同步波束成形信号一共包含 S个 序列, 每个序列对应一个索引;
第一同步波束成形信号包含 X个序列, 第二同步波束成形信号包含 Y 个序列, X+ Y=S; X个序列和 Y个序列构成 X · Y=P个序列组合; Ρ个序 列组合分为 L个序列组合组, 每个序列组合组对应一个索引; 每个序列组 合组包含 P/L个序列组合, 组内每个序列组合对应一个索引; X、 Y、 P、 L 均为正整数;
序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。
其中, 波束选择模块 22, 还配置为分别从接收到的第一同步波束成形 信号和第二同步波束成形信号中选择一个或多个最优序列, 并检测第一同 步波束成形信号中最优序列的序列索引以及第二同步波束成形信号中最优 序列的序列索引; 根据检测出的第一同步波束成形信号中的序列索引和第 二同步波束成形信号中的序列索引, 获得对应的序列组合、 以及序列组合 所在的序列组合组, 并获得对应的组内序列组合索弓 1和序列组合组索引; 根据序列组合组索引和组内序列组合索引获取对应的小区标识和波束索引, 提供给第二交互模块 21 ;
第二交互模块 21, 还配置为将小区标识和波束索引通过上行链路进行 反馈。
其中, 同步波束成形信号包括第一至第 I同步波束成形信号; 第一至第 I同步波束成形信号具有不同的时域位置和 /或频域位置; I为正整数;
第 i同步波束成形信号包含!^个序列,每个序列对应一个索引, l≤i≤I, 第一至第 I 同步波束成形信号一共构成 jf/,个序列组合, 每个序列组合对
/二1
应一个索引, 序列组合索引指示波束索引。 其中, 波束选择模块 22, 还配置为分别从接收到的第一至第 I同步波 束成形信号中选择一个或多个最优序列,并检测第一至第 I同步波束成形信 号中最优序列对应的序列索引; 根据检测出的序列索引, 获得对应的序列 组合, 并根据序列组合索引获取对应的波束索引, 并将获取的波束索引提 供给第二交互模块 21 ;
第二交互模块 21, 还配置为将波束索引通过上行链路进行反馈。
需要说明的是, 上述第二交互模块 21 可以由终端 20的通信功能芯片 实现,波束选择模块 22可以由终端 20的 CPU、 MPU、 DSP或 FPGA实现。
如图 8所示, 本发明实施例提供的同步波束成形信号的传输系统, 包 括: 上述基站 10和终端 20。
本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组计算机可执行指令, 所述指令用于执行基站的同步波束成形信号的发 送方法。
本发明实施例还提供了一种计算机可读存储介质, 所述存储介质包括 一组计算机可执行指令, 所述指令用于执行终端的同步波束成形信号的接 收方法。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等。 本文釆用的信令信 息通知方案, 均应包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种同步波束成形信号的发送方法, 包括:
基站发送同步波束成形信号;
所述基站根据反馈的最优波束信息选择使用对应的最优波束发送下行 数据; 所述最优波束通过所述同步波束成形信号选取。
2、 根据权利要求 1所述同步波束成形信号的发送方法, 其中, 所述基 站周期性地在预先配置的时频资源上发送所述同步波束成形信号。
3、 根据权利要求 1或 2所述同步波束成形信号的发送方法, 其中, 所述同步波束成形信号的序列分为 M个波束组, 每个波束组对应一个 索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; 所述 M 个波束组和每组 Nm个序列总共构成! ^个序列, 所述 M为正整数, 所述 m-l
m的取值为 1~M;
所述波束组索引指示小区标识, 组内序列索引指示波束索引。
4、 根据权利要求 1或 2所述同步波束成形信号的发送方法, 其中, 所述同步波束成形信号包括第一同步波束成形信号和第二同步波束成 形信号; 所述第一同步波束成形信号和第二同步波束成形信号具有不同的 时域位置和 /或频域位置。
5、 根据权利要求 4所述同步波束成形信号的发送方法, 其中, 所述第 一同步波束成形信号和第二同步波束成形信号分别包含一个或多个序列; 所述第一同步波束成形信号中的序列索引指示小区标识; 所述第二同步波 束成形信号中的序列索引指示波束索引。
6、 根据权利要求 5所述同步波束成形信号的发送方法, 其中, 所述第 一同步波束成形信号划分为第一子同步波束成形信号和第二子同步波束成 形信号。
7、 根据权利要求 4所述同步波束成形信号的发送方法, 其中, 所述第一同步波束成形信号和第二同步波束成形信号一共包含 S个序 列, 每个序列对应一个索引;
所述第一同步波束成形信号包含 X个序列, 所述第二同步波束成形信 号包含 Y个序列,所述 X+Y=S;所述 X个序列和所述 Y个序列构成 X ·Υ=Ρ 个序列组合; 所述 Ρ个序列组合分为 L个序列组合组, 每个序列组合组对 应一个索引; 每个序列组合组包含 P/L 个序列组合, 组内每个序列组合对 应一个索引; 所述 S、 X、 Y、 P、 L均为正整数;
所述序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。
8、 根据权利要求 1或 2所述同步波束成形信号的发送方法, 其中, 所述同步波束成形信号包括第一至第 I同步波束成形信号;所述第一至 第 I同步波束成形信号具有不同的时域位置和 /或频域位置; 所述 I为正整 数;
所述第 i同步波束成形信号包含 1^个序列, 每个序列对应一个索引, l≤i≤I, 所述第一至第 I同步波束成形信号一共构成 jf/,个序列组合, 每个
/二1
所述序列组合对应一个索引, 所述序列组合索引指示波束索引。
9、 一种同步波束成形信号的接收方法, 包括:
终端接收同步波束成形信号;
所述终端从接收的所述同步波束成形信号中选择最优波束并反馈最优 波束信息。
10、 根据权利要求 9所述同步波束成形信号的接收方法, 其中, 所述终端周期性地在预先配置的时频资源上接收所述同步波束成形信 号。
11、 根据权利要求 9或 10所述同步波束成形信号的接收方法, 其中, 所述同步波束成形信号的序列分为 M个波束组,每个波束组对应一个索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; 所述 M个波 束组和每组 Nm个序列总共构成! ^个序列, 所述 M为正整数, 所述 m的 取值为 1~M;
所述波束组索引指示小区标识, 组内序列索引指示波束索引。
12、 根据权利要求 11所述同步波束成形信号的接收方法, 其中, 所述 终端从接收的所述同步波束成形信号中选择最优波束并反馈最优波束信息, 包括: 所述终端从接收到的所述 | Nm个序列中选择一个或多个最优序列, 并 检测所述最优序列对应的波束组索引和组内序列索引;
所述终端根据检测到的所述波束组索引和组内序列索引获取对应的小 区标识和波束索引, 并将获取的小区标识和波束索引通过上行链路进行反 馈。
13、 根据权利要求 9或 10所述同步波束成形信号的接收方法, 其中, 所述同步波束成形信号包括第一同步波束成形信号和第二同步波束成形信 号; 所述第一同步波束成形信号和第二同步波束成形信号具有不同的时域 位置和 /或频域位置。
14、 根据权利要求 13所述同步波束成形信号的接收方法, 其中, 所述 第一同步波束成形信号和第二同步波束成形信号分别包含一个或多个序列; 所述第一同步波束成形信号中的序列索引指示小区标识; 所述第二同步波 束成形信号中的序列索引指示波束索引。
15、 根据权利要求 14所述同步波束成形信号的接收方法, 其中, 所述 终端从接收的所述同步波束成形信号中选择最优波束并反馈最优波束信息, 包括:
所述终端分别从接收到的第一同步波束成形信号和第二同步波束成形 信号中选择一个或多个最优序列, 并检测所述第一同步波束成形信号中最 优序列对应的序列索引和所述第二同步波束成形信号中最优序列对应的序 列索引;
所述终端根据所述第一同步波束成形信号中最优序列对应的序列索引 获取小区标识, 根据所述第二同步波束成形信号中最优序列对应的序列索 引获取波束索引, 并将获取的小区标识和波束索引通过上行链路进行反馈。
16、 根据权利要求 13所述同步波束成形信号的接收方法, 其中, 所述第一同步波束成形信号和第二同步波束成形信号一共包含 S个序 列, 每个序列对应一个索引;
所述第一同步波束成形信号包含 X个序列, 所述第二同步波束成形信 号包含 Y个序列,所述 X+Y=S;所述 X个序列和所述 Y个序列构成 X ·Υ=Ρ 个序列组合; 所述 Ρ个序列组合分为 L个序列组合组, 每个序列组合组对 应一个索引; 每个序列组合组包含 P/L 个序列组合, 组内每个序列组合对 应一个索引; 所述 X、 Y、 P、 L均为正整数;
所述序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。
17、 根据权利要求 16所述同步波束成形信号的接收方法, 其中, 所述 终端从接收的所述同步波束成形信号中选择最优波束并反馈最优波束信息, 包括:
所述终端分别从接收到的第一同步波束成形信号和第二同步波束成形 信号中选择一个或多个最优序列, 并检测第一同步波束成形信号中最优序 列的序列索引以及第二同步波束成形信号中最优序列的序列索引;
所述终端根据检测出的第一同步波束成形信号中的序列索引和第二同 步波束成形信号中的序列索引, 获得对应的序列组合、 以及序列组合所在 所述终端根据所述序列组合组索引和组内序列组合索引获取对应的小 区标识和波束索引, 并通过上行链路进行反馈。
18、 根据权利要求 9或 10所述同步波束成形信号的接收方法, 其中, 所述同步波束成形信号包括第一至第 I同步波束成形信号; 所述第一至第 I 同步波束成形信号具有不同的时域位置和 /或频域位置; 所述 I为正整数; 所述第 i同步波束成形信号包含 1^个序列, 每个序列对应一个索引, l≤i≤I, 所述第一至第 I同步波束成形信号一共构成 jf/,个序列组合, 每个
/二1
所述序列组合对应一个索引, 所述序列组合索引指示波束索引。
19、 根据权利要求 18所述同步波束成形信号的接收方法, 其中, 所述 终端从接收的所述同步波束成形信号中选择最优波束并反馈最优波束信息, 包括:
所述终端分别从接收到的第一至第 I 同步波束成形信号中选择一个或 多个最优序列,并检测所述第一至第 I同步波束成形信号中最优序列对应的 序列索引; 所述终端根据检测出的序列索引, 获得对应的序列组合, 并根 据序列组合索引获取对应的波束索引; 所述终端将获取的波束索引通过上 行链路进行反馈。
20、 一种同步波束成形信号的传输方法, 该方法包括:
基站向终端发送同步波束成形信号;
所述终端从接收的所述同步波束成形信号中选择最优波束并向基站反 馈最优波束信息;
所述基站使用所述最优波束发送下行数据。
21、 一种基站, 包括:
第一交互模块, 配置为发送同步波束成形信号, 并接收反馈的最优波 束信息;
数据传输模块, 配置为使用所述最优波束信息对应的最优波束发送下 行数据。
22、 根据权利要求 21所述基站, 其中, 所述第一交互模块, 还配置为 周期性地在预先配置的时频资源上发送所述同步波束成形信号。
23、 根据权利要求 21或 22所述基站, 其中,
所述同步波束成形信号的序列分为 M个波束组, 每个波束组对应一个 索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; 所述 M 个波束组和每组 Nm个序列总共构成! ^个序列, 所述 M为正整数, 所述 m-l
m的取值为 1~M;
所述波束组索引指示小区标识, 组内序列索引指示波束索引。
24、 根据权利要求 21或 22所述基站, 其中,
所述同步波束成形信号包括第一同步波束成形信号和第二同步波束成 形信号; 所述第一同步波束成形信号和第二同步波束成形信号具有不同的 时域位置和 /或频域位置。
25、 根据权利要求 24所述基站, 其中,
所述第一同步波束成形信号和第二同步波束成形信号分别包含一个或 多个序列; 所述第一同步波束成形信号中的序列索引指示小区标识; 所述 第二同步波束成形信号中的序列索引指示波束索引。
26、 根据权利要求 25所述基站, 其中, 所述第一同步波束成形信号划 分为第一子同步波束成形信号和第二子同步波束成形信号。
27、 根据权利要求 24所述基站, 其中,
所述第一同步波束成形信号和第二同步波束成形信号一共包含 S个序 列, 每个序列对应一个索引;
所述第一同步波束成形信号包含 X个序列, 所述第二同步波束成形信 号包含 Y个序列,所述 X+Y=S;所述 X个序列和所述 Y个序列构成 X ·Υ=Ρ 个序列组合; 所述 Ρ个序列组合分为 L个序列组合组, 每个序列组合组对 应一个索引; 每个序列组合组包含 P/L 个序列组合, 组内每个序列组合对 应一个索引; 所述 S、 X、 Y、 P、 L均为正整数; 所述序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。
28、 根据权利要求 21或 22所述基站, 其中,
所述同步波束成形信号包括第一至第 I同步波束成形信号;所述第一至 第 I同步波束成形信号具有不同的时域位置和 /或频域位置; 所述 I为正整 数;
所述第 i同步波束成形信号包含 1^个序列, 每个序列对应一个索引, l≤i≤I, 所述第一至第 I同步波束成形信号一共构成 jf/,个序列组合, 每个
1
所述序列组合对应一个索引, 所述序列组合索引指示波束索引。
29、 一种终端, 包括:
第二交互模块,配置为接收同步波束成形信号,并反馈最优波束信息; 波束选择模块, 配置为从接收的所述同步波束成形信号中选择最优波 束, 并将最优波束信息提供给所述第二交互模块。
30、 根据权利要求 29所述终端, 其中, 所述第二交互模块, 还配置为 周期性地在预先配置的时频资源上接收所述同步波束成形信号。
31、 根据权利要求 29或 30所述终端, 其中,
所述同步波束成形信号的序列分为 M个波束组, 每个波束组对应一个 索引; 每个波束组中包括 Nm个序列, 组内每个序列对应一个索引; 所述 M 个波束组和每组 Nm个序列总共构成! ^个序列, 所述 M为正整数, 所述 m的取值为 1~M;
所述波束组索引指示小区标识, 组内序列索引指示波束索引。
32、 根据权利要求 31所述终端, 其中, 所述波束选择模块, 还配置为从接收到的所述 | Nm个序列中选择一个 或多个最优序列, 并检测所述最优序列对应的波束组索弓 1和组内序列索引; 根据检测到的所述波束组索引和组内序列索引获取对应的小区标识和波束 索引, 并将获取的小区标识和波束索引提供给所述第二交互模块; 所述第二交互模块, 还配置为将所述小区标识和波束索引通过上行链 路进行反馈。
33、 根据权利要求 29或 30所述终端, 其中,
所述同步波束成形信号包括第一同步波束成形信号和第二同步波束成 形信号; 所述第一同步波束成形信号和第二同步波束成形信号具有不同的 时域位置和 /或频域位置。
34、 根据权利要求 33所述终端, 其中,
所述第一同步波束成形信号和第二同步波束成形信号分别包含一个或 多个序列; 所述第一同步波束成形信号中的序列索引指示小区标识; 所述 第二同步波束成形信号中的序列索引指示波束索引。
35、 根据权利要求 34所述终端, 其中,
所述波束选择模块, 还配置为分别从接收到的第一同步波束成形信号 和第二同步波束成形信号中选择一个或多个最优序列, 并检测所述第一同 步波束成形信号中最优序列对应的序列索引和所述第二同步波束成形信号 中最优序列对应的序列索引; 根据所述第一同步波束成形信号中最优序列 对应的序列索引获取 ' j、区标识, 根据所述第二同步波束成形信号中最优序 列对应的序列索引获取波束索引, 并将获取的小区标识和波束索引提供给 所述第二交互模块;
所述第二交互模块, 还配置为将所述小区标识和波束索引通过上行链 路进行反馈。
36、 根据权利要求 33所述终端, 其中,
所述第一同步波束成形信号和第二同步波束成形信号一共包含 S个序 列, 每个序列对应一个索引;
所述第一同步波束成形信号包含 X个序列, 所述第二同步波束成形信 号包含 Y个序列,所述 X+Y=S;所述 X个序列和所述 Y个序列构成 X ·Υ=Ρ 个序列组合; 所述 P个序列组合分为 L个序列组合组, 每个序列组合组对 应一个索引; 每个序列组合组包含 P/L 个序列组合, 组内每个序列组合对 应一个索引; 所述 X、 Y、 P、 L均为正整数;
所述序列组合组索引指示小区标识, 组内序列组合索引指示波束索引。
37、 根据权利要求 36所述终端, 其中,
所述波束选择模块, 还配置为分别从接收到的第一同步波束成形信号 和第二同步波束成形信号中选择一个或多个最优序列, 并检测第一同步波 束成形信号中最优序列的序列索引以及第二同步波束成形信号中最优序列 的序列索引; 根据检测出的第一同步波束成形信号中的序列索引和第二同 步波束成形信号中的序列索引, 获得对应的序列组合、 以及序列组合所在 的序列组合组, 并获得对应的组内序列组合索引和序列组合组索引; 根据 所述序列组合组索引和组内序列组合索引获取对应的小区标识和波束索引, 提供给所述第二交互模块;
所述第二交互模块, 还配置为将所述小区标识和波束索引通过上行链 路进行反馈。
38、 根据权利要求 29或 30所述终端, 其中,
所述同步波束成形信号包括第一至第 I同步波束成形信号;所述第一至 第 I同步波束成形信号具有不同的时域位置和 /或频域位置; 所述 I为正整 数;
所述第 i同步波束成形信号包含 1^个序列, 每个序列对应一个索引, l≤i≤I, 所述第一至第 I同步波束成形信号一共构成 jf/,个序列组合, 每个
/二1
所述序列组合对应一个索引, 所述序列组合索引指示波束索引。
39、 根据权利要求 38所述终端, 其中,
所述波束选择模块,还配置为分别从接收到的第一至第 I同步波束成形 信号中选择一个或多个最优序列,并检测所述第一至第 I同步波束成形信号 中最优序列对应的序列索引; 根据检测出的序列索引, 获得对应的序列组 合, 并根据序列组合索引获取对应的波束索引, 并将获取的波束索引提供 给所述第二交互模块;
所述第二交互模块, 还配置为将所述波束索引通过上行链路进行反馈。
40、一种同步波束成形信号的传输系统, 包括权利要求 21-28任一项 所述的基站和权利要求 29-39任一项所述的终端。
41、 一种计算机可读存储介质, 所述存储介质包括一组计算机可执 行指令,所述指令用于执行权利要求 1-8任一项所述的同步波束成形信号 的发送方法。
42、 一种计算机可读存储介质, 所述存储介质包括一组计算机可执 行指令, 所述指令用于执行权利要求 9-19任一项所述的同步波束成形信 号的接收方法。
PCT/CN2014/083189 2013-12-20 2014-07-29 一种同步波束成形信号的发送、接收方法、基站和终端 WO2015090067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310714080.2A CN104734758A (zh) 2013-12-20 2013-12-20 一种同步波束成形信号的发送、接收方法、基站和终端
CN201310714080.2 2013-12-20

Publications (1)

Publication Number Publication Date
WO2015090067A1 true WO2015090067A1 (zh) 2015-06-25

Family

ID=53402067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083189 WO2015090067A1 (zh) 2013-12-20 2014-07-29 一种同步波束成形信号的发送、接收方法、基站和终端

Country Status (2)

Country Link
CN (1) CN104734758A (zh)
WO (1) WO2015090067A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000421A1 (zh) * 2016-07-01 2018-01-04 广东欧珀移动通信有限公司 传输信号的方法、网络设备和终端设备
EP3451552A4 (en) * 2016-09-29 2019-07-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. SIGNAL TRANSMISSION PROCESS AND DEVICE

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106412942A (zh) * 2015-07-31 2017-02-15 株式会社Ntt都科摩 波束参考信号的发送方法、波束选择方法、基站及用户终端
CN106888076B (zh) * 2015-12-15 2020-08-25 中兴通讯股份有限公司 一种波束训练中实现同步的方法及装置
CN106921424B (zh) * 2015-12-31 2019-04-16 中兴通讯股份有限公司 一种信道测量导频的传输方法和装置
CN108432303B (zh) * 2016-01-11 2020-10-09 华为技术有限公司 一种波束同步的方法及装置
CN107548076A (zh) * 2016-06-28 2018-01-05 北京信威通信技术股份有限公司 同步信号的发送方法和检测方法
WO2018000318A1 (zh) * 2016-06-30 2018-01-04 富士通株式会社 同步信号的传输装置、方法以及多天线通信系统
WO2018006355A1 (zh) * 2016-07-07 2018-01-11 华为技术有限公司 发射权值选择方法及基站
CN107733505B (zh) * 2016-08-12 2020-02-28 电信科学技术研究院 一种波束赋形训练方法、终端和基站
CN107888245B (zh) 2016-09-30 2020-10-09 电信科学技术研究院 一种波束处理方法、基站及移动终端
WO2018119754A1 (en) * 2016-12-28 2018-07-05 Motorola Mobility Llc Transmission beam indicating
CN108282894B (zh) * 2017-01-06 2020-07-07 中国移动通信有限公司研究院 一种小区接入的方法、基站及终端
CN108365939B (zh) * 2017-01-26 2024-03-01 华为技术有限公司 一种配置信息的方法、装置及系统
CN106851816B (zh) * 2017-02-03 2020-08-14 宇龙计算机通信科技(深圳)有限公司 同步方法、装置及系统
EP3579446B1 (en) * 2017-02-06 2021-04-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for use in transmitting signal, terminal device, and network device
AU2017398128A1 (en) 2017-02-13 2019-09-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method, terminal device and network device
CN108631841B (zh) 2017-03-17 2021-05-28 电信科学技术研究院 一种发送波束确定方法、发送端和接收端
JP2020519130A (ja) * 2017-05-03 2020-06-25 アイディーエーシー ホールディングス インコーポレイテッド 新無線(nr)におけるページングの手順のための方法および装置
CN109151841A (zh) * 2017-06-16 2019-01-04 电信科学技术研究院 一种多trp下波束的传输、接收方法、基站及终端
CN109104227A (zh) 2017-06-20 2018-12-28 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN109302720B (zh) * 2017-07-25 2021-03-23 华为技术有限公司 一种选择波束的方法及设备
CN111480373A (zh) * 2017-12-29 2020-07-31 Oppo广东移动通信有限公司 信号传输的方法、终端设备和网络设备
CN110266350A (zh) * 2019-04-30 2019-09-20 中国联合网络通信集团有限公司 波束分配方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453255A (zh) * 2007-11-28 2009-06-10 华为技术有限公司 一种波束成形的方法、系统和装置
CN102396164A (zh) * 2009-04-17 2012-03-28 马维尔国际贸易有限公司 分段波束成形
US20120114030A1 (en) * 2010-11-09 2012-05-10 Nec Laboratories America, Inc. Power Scaling for Retransmissions in Uplink MIMO Hybrid ARQ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101828836B1 (ko) * 2011-08-23 2018-02-13 삼성전자주식회사 빔 포밍 기반의 무선통신시스템에서 빔 스캐닝을 통한 스케줄링 장치 및 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453255A (zh) * 2007-11-28 2009-06-10 华为技术有限公司 一种波束成形的方法、系统和装置
CN102396164A (zh) * 2009-04-17 2012-03-28 马维尔国际贸易有限公司 分段波束成形
US20120114030A1 (en) * 2010-11-09 2012-05-10 Nec Laboratories America, Inc. Power Scaling for Retransmissions in Uplink MIMO Hybrid ARQ

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018000421A1 (zh) * 2016-07-01 2018-01-04 广东欧珀移动通信有限公司 传输信号的方法、网络设备和终端设备
US10651921B2 (en) 2016-07-01 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd Method for signal transmission, network device, and terminal device
US10797779B2 (en) 2016-07-01 2020-10-06 Guandong Oppo Mobile Telecommunications Corp., Ltd. Method for determining frame timing, network device, and terminal device
US11005558B2 (en) 2016-07-01 2021-05-11 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining frame timing, network device, and terminal device
TWI731112B (zh) * 2016-07-01 2021-06-21 大陸商Oppo廣東移動通信有限公司 傳輸信號的方法、網絡設備和終端設備
US11671165B2 (en) 2016-07-01 2023-06-06 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for determining frame timing, network device, and terminal device
EP3451552A4 (en) * 2016-09-29 2019-07-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. SIGNAL TRANSMISSION PROCESS AND DEVICE
US11075686B2 (en) 2016-09-29 2021-07-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and device

Also Published As

Publication number Publication date
CN104734758A (zh) 2015-06-24

Similar Documents

Publication Publication Date Title
WO2015090067A1 (zh) 一种同步波束成形信号的发送、接收方法、基站和终端
US10972167B2 (en) User apparatus, base station, and communication method
US11689275B2 (en) Group-based beam management
KR102419361B1 (ko) 랜덤 액세스를 위한 방법, 기지국 장치 및 사용자 장치
WO2021083368A1 (zh) 感知方法及装置
CN113923680B (zh) 用于通信波束恢复的系统和方法
US11582724B2 (en) User equipment, base station, communication access method, and communication method
US9906284B2 (en) Beam identification method, related device and system in MIMO beamforming communication system
US9692459B2 (en) Using multiple frequency bands with beamforming assistance in a wireless network
US20180124837A1 (en) Method and apparatus for random access in millimeter wave systems
WO2018107951A1 (zh) 多天线设备的信道接入方法及装置
EP2832015B1 (en) Systems for communicating using multiple frequency bands in a wireless network
US9084260B2 (en) Systems for communicating using multiple frequency bands in a wireless network
CN104735685B (zh) 一种信息处理方法、装置和系统
CN108809580A (zh) 传输上行信号的方法、用户设备及基站
EP3918742A1 (en) Leveraging positioning reference signal and positioning measurements to enhance random access
US11824607B2 (en) Electronic device, method and storage medium for wireless communication system
WO2015090034A1 (zh) 一种上下行波束混合指示的方法、基站、终端和系统
WO2016041358A1 (zh) 一种上行同步方法、装置和系统
WO2015090061A1 (zh) 一种实现下行波束索引处理的方法、装置和系统
CN110380837B (zh) 非竞争随机接入的方法和装置
CN109952721A (zh) 用于新无线电初始同步和寻呼的方法和装置
WO2015090032A1 (zh) 下行波束确定方法、装置及系统、计算机存储介质
TW200913605A (en) Methods and apparatus for selecting and/or using a communications band for peer to peer signaling
WO2015090058A1 (zh) 一种指示和接收上行波束索引的方法、系统及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14872583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14872583

Country of ref document: EP

Kind code of ref document: A1