WO2018107951A1 - 多天线设备的信道接入方法及装置 - Google Patents

多天线设备的信道接入方法及装置 Download PDF

Info

Publication number
WO2018107951A1
WO2018107951A1 PCT/CN2017/112877 CN2017112877W WO2018107951A1 WO 2018107951 A1 WO2018107951 A1 WO 2018107951A1 CN 2017112877 W CN2017112877 W CN 2017112877W WO 2018107951 A1 WO2018107951 A1 WO 2018107951A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
distribution information
radiation distribution
antenna radiation
beam direction
Prior art date
Application number
PCT/CN2017/112877
Other languages
English (en)
French (fr)
Inventor
孙立新
丁颖哲
周明宇
Original Assignee
北京佰才邦技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京佰才邦技术有限公司 filed Critical 北京佰才邦技术有限公司
Publication of WO2018107951A1 publication Critical patent/WO2018107951A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance

Definitions

  • the present application relates to the field of channel access, and in particular to a channel access method and apparatus for a multi-antenna device.
  • a mobile communication system refers to a system in which an operator provides communication services for a user terminal (such as a mobile phone) by deploying a wireless access network device (such as a base station) and a core network device (such as a Home Location Register, HLR). .
  • a wireless access network device such as a base station
  • a core network device such as a Home Location Register, HLR.
  • the first generation of mobile communication refers to the original analog, voice-only cellular phone standard, mainly using analog technology and Frequency Division Multiple Access (FDMA) access method;
  • second generation mobile Communication introduces digital technology to improve network capacity, improve voice quality and confidentiality, with Global System for Mobile Communication (GSM) and Code Division Multiple Access (CDMA IS) -95) as the representative;
  • the third generation of mobile communication mainly refers to CDMA2000, WCDMA, TD-SCDMA three technologies, all using code division multiple access as access technology;
  • the fourth generation of mobile communication system standards are relatively uniform internationally Long Term Evolution/Long Term Evolution-Advanced (LTE/LTE-A), which is based on the Orthogonal Frequency Division Multiple Access (OFDMA) uplink.
  • LTE/LTE-A Long Term Evolution/Long Term Evolution-Advanced
  • OFDMA Orthogonal Frequency Division Multiple Access
  • FIG. 1 is a schematic diagram showing the basic architecture of a mobile communication network.
  • the mobile communication network includes a core network, an access network, and a terminal.
  • the terminal may be a mobile phone or a computer.
  • the core network and the access network are connected through a backhaul link.
  • LAA Licensed-Assisted Access
  • EDCA Enhanced Distributed Channel Access
  • the base station can form a directional narrow beam by beamforming beamforming, such as the main lobe and the side lobe portion in FIG. 3, and the signal energy is concentratedly transmitted to a specified direction. For directions other than the directional beam, the signal energy is low, that is, no interference occurs.
  • MU-MIMO ie, multi-user space division multiplexing
  • a plurality of different beams are formed to point to different users respectively (for example, according to CSI (Channel Status Indicator) feedback or DoA. (Direction of Arrival, or the geographic information is matched), and different beam coverage ranges are different.
  • the beam coverage may be an elliptical area as shown in FIG.
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • SDMA Space Division Multiple Access
  • the embodiment of the present application provides a channel access method and apparatus for a multi-antenna device, so as to at least solve the technical problem that the spectrum efficiency of channel access of the multi-antenna device is low.
  • a channel access method for a multi-antenna device comprising: acquiring a transmission request for transmitting data by using a multi-antenna device; and each beam direction corresponding to the transmission request Independent channel access is performed on it.
  • performing independent channel access in each of the beam directions corresponding to the sending request includes: acquiring transmit antenna radiation distribution information corresponding to the sending request indication; determining, receiving, based on the transmit antenna radiation distribution information Antenna radiation distribution information; performing independent channel busy detection on the received signal in each beam direction of the receiving antenna radiation distribution information.
  • performing independent channel busy and idle detection on the received signal of each beam direction in the receive antenna radiation distribution information includes: performing independent channel energy detection on the received signal in each beam direction of the receive antenna radiation distribution information And/or carrier sensing, wherein the channel busy detection includes channel energy detection and/or carrier sensing.
  • determining, according to the transmit antenna radiation distribution information, the receive antenna radiation distribution information comprises: adjusting transmit antenna radiation distribution information and receive antenna radiation distribution information, such that the transmit antenna radiation distribution information and the receive antenna radiation distribution information are similar.
  • performing independent channel busy detection on the received signal in each beam direction of the receive antenna radiation distribution information includes: the energy of the received signal in the first preset time period is lower than the gate When the value is limited, the channel in which the beam direction is within the first preset time period is considered to be idle, and the beam side is Receiving, when the energy of the received signal in the second preset time period is lower than the threshold, reducing the current backoff coefficient by one, and continuing to receive signals for each beam direction in the receive antenna radiation distribution information Perform independent channel busy and idle detection.
  • the current backoff coefficient is kept unchanged; if the received signal is in the first pre If the energy in the time period is higher than the threshold, it is determined that the channel in the beam direction is busy, and the current backoff coefficient is kept unchanged.
  • the method further includes: if the current backoff coefficient is not zero, proceeding to the beam Directional channel energy detection.
  • the method further includes: if the current backoff coefficient is zero, transmitting in the beam direction The data.
  • determining the receive antenna radiation distribution information based on the transmit antenna radiation distribution information includes: selecting a receive precoding matrix according to a transmit transmit beamforming transmit precoding matrix; and based on the transmit precoding matrix and the receive precoding matrix Adjusting the transmit antenna radiation distribution information and the receive antenna radiation distribution information.
  • selecting the receiving precoding matrix according to the transmitting precoding matrix that is configured to transmit the beamforming includes: determining a plurality of user equipments corresponding to the sending request; and detecting a reference of the interference signal when performing channel receiving detection on the user equipment Generating a channel coefficient matrix between the device transmitting the reference signal to the multi-antenna device according to the reference signal of the detected interference signal; and incorporating the channel coefficient matrix of the interference signal into the multi-antenna device into the channel coefficient
  • the joint matrix obtains the combined channel coefficient joint matrix.
  • detecting the reference signal of the interference signal includes: detecting the downlink reference signal in the case that the detection interference signal is an LTE downlink signal, where The reference signal includes a cell-specific reference signal and a downlink demodulation reference signal; and in the case that the detected interference signal is an LTE uplink signal, the uplink reference signal is detected, wherein the reference signal includes an uplink demodulation reference signal and a sounding reference signal.
  • detecting the reference signal of the interference signal includes: detecting, in the case that the interference signal is an LTE downlink signal, detecting the downlink reference signal, where the reference signal includes a cell-specific reference signal and a downlink demodulation reference signal; In the case where the interference signal is a Wi-Fi signal, the preamble sequence signal is detected, wherein the reference signal includes the preamble sequence signal.
  • the method further includes: respectively transmitting control information in each of the beam directions.
  • separately transmitting control information in each of the beam directions includes one of: when transmitting a signal on the common physical downlink control channel, simultaneously transmitting common physical downlink control in a beam direction in which multiple channel access is successful Common control information of the channel, wherein the common control information includes: a common physical downlink control channel reference signal, a common reference signal, a common measurement and report incoming channel state information reference signal, a common primary synchronization signal, and a common secondary synchronization signal.
  • transmitting the control information in each of the beam directions includes one of the following: when the physical downlink control channel sends the scheduling information of the physical downlink shared channel unicast to the corresponding user, the beam of the corresponding user equipment The transmission is performed on the control channel unit corresponding to the scheduling information in the direction of the beam in which the other channel access is successful.
  • performing independent channel access in each beam direction corresponding to the sending request includes: when the transmitting and receiving beam directions of the multi-antenna device are fixed, using different antennas in different beam directions to perform independent Channel access.
  • the multi-antenna device is a base station, and an antenna of the base station divides a cell of the base station into non-overlapping sectors, and each of the sectors has an independent receiving When the antenna unit is transmitted, the transmission and reception beam directions of the base station are fixed.
  • performing independent channel busy and idle detection on the received signal of each beam direction in the receive antenna radiation distribution information includes: adjusting a corresponding beam direction based on feedback of the hybrid automatic repeat request in each of the beam directions a channel contention window; or adjusting a channel contention window in each of the beam directions based on feedback of a hybrid automatic repeat request in all beam directions in the receive antenna radiation distribution information.
  • the transmit antenna radiation distribution information is recorded in a transmit antenna direction profile
  • the receive antenna radiation profile information is recorded in a receive antenna direction profile.
  • a channel access apparatus for a multi-antenna device includes: a first acquiring unit, configured to acquire a sending request for transmitting data by using a multi-antenna device; and an access unit And performing independent channel access in each beam direction corresponding to the sending request.
  • the access unit includes: a first acquiring module, configured to acquire transmit antenna radiation distribution information corresponding to the sending request indication; and a first determining module, configured to determine, according to the transmit antenna radiation distribution information, a receive antenna radiation distribution
  • the first detection module is configured to perform independent channel busy detection on the received signal in each beam direction of the receive antenna radiation distribution information.
  • the first detecting module includes: a first detecting submodule, configured to perform independent channel energy detection and/or carrier sensing on the received signal in each beam direction of the receiving antenna radiation distribution information, where Channel busy detection includes channel energy detection and/or carrier sensing.
  • the first determining module includes: a first adjusting submodule, configured to adjust transmit antenna radiation distribution information and receive antenna radiation distribution information, such that the transmit antenna radiation distribution information and the receive antenna radiation distribution information are similar.
  • the first detecting module further includes: a first counting submodule, configured to: when the received signal is less than the threshold, the energy in the first preset time period And determining, in the value, that the channel in the beam direction is idle in the first preset time period, and the energy of the received signal in the beam direction in the second preset time period is lower than the threshold
  • the current backoff coefficient is decremented by one, and the independent channel busy detection of the received signal in each beam direction of the receiving antenna radiation distribution information is continued.
  • the first detecting module further includes: a second counting submodule, configured to: if the energy of the received signal in the beam direction in the second preset time period is higher than the threshold, The current backoff coefficient is unchanged; the second counting submodule is configured to determine that the channel in the beam direction is busy if the energy of the received signal in the first preset time period is higher than the threshold value The current backoff coefficient does not change.
  • the device further includes: a second detecting submodule, configured to perform channel energy detection on the beam direction if the current backoff coefficient is not zero after the first detecting module operates.
  • the device further includes: a third detecting submodule, configured to send the data in the beam direction if the current backoff coefficient is zero after the first detecting module operates.
  • the first determining module further includes: a first selecting submodule, configured to select a receiving precoding matrix according to a transmitting precoding matrix that transmits a beamforming shape; and a second adjusting submodule, configured to send a precoding matrix based on the sending And transmitting the transmit antenna radiation distribution information and the receive antenna radiation distribution information with the receiving precoding matrix.
  • the first selection sub-module includes: a first determining sub-module, configured to determine a plurality of user equipments corresponding to the sending request; and a fourth detecting sub-module, configured to perform channel receiving detection on the user equipment, a reference signal for detecting an interference signal; a first obtaining submodule, configured to acquire, according to the reference signal of the detected interference signal, a channel coefficient matrix between the device that sends the reference signal to the multi-antenna device; and the merging sub-module The interference signal to the multi-antenna device The channel coefficient matrix is merged into the channel coefficient joint matrix to obtain a combined channel coefficient joint matrix.
  • the fourth detection sub-module includes: a fifth detection sub-module, configured to detect a downlink reference signal, where the interference signal is an LTE downlink signal, where the reference signal includes a cell-specific reference signal and downlink demodulation a reference signal module, configured to detect an uplink reference signal, where the detected interference signal is an LTE uplink signal, where the reference signal includes an uplink demodulation reference signal and a sounding reference signal.
  • a fifth detection sub-module configured to detect a downlink reference signal, where the interference signal is an LTE downlink signal, where the reference signal includes a cell-specific reference signal and downlink demodulation a reference signal module, configured to detect an uplink reference signal, where the detected interference signal is an LTE uplink signal, where the reference signal includes an uplink demodulation reference signal and a sounding reference signal.
  • the fourth detection sub-module further includes: a seventh detection sub-module, configured to detect a downlink reference signal, where the interference signal is an LTE downlink signal, where the reference signal includes a cell-specific reference signal and a downlink solution Adjusting the reference signal; the eighth detecting submodule, configured to detect the preamble sequence signal if the detected interfering signal is a Wi-Fi signal, wherein the reference signal includes the preamble sequence signal.
  • the device further includes: a sending module, configured to separately send control information in each of the beam directions after the first detecting module operates.
  • the sending module includes one of the following: a first sending submodule, configured to send a common physical downlink control channel in a beam direction with multiple channel access success when transmitting a signal on a common physical downlink control channel Common control information, wherein the common control information includes: a common physical downlink control channel reference signal, a common reference signal, a common measurement and report incoming channel state information reference signal, a common primary synchronization signal, and a common secondary synchronization signal.
  • the sending module further includes one of the following: a second sending submodule, configured to: when the physical downlink control channel sends the scheduling information of the physical downlink shared channel unicast to the corresponding user, in the beam direction of the corresponding user equipment The transmission is performed on the control channel unit corresponding to the scheduling information in the beam direction in which other channel access is successful.
  • a second sending submodule configured to: when the physical downlink control channel sends the scheduling information of the physical downlink shared channel unicast to the corresponding user, in the beam direction of the corresponding user equipment The transmission is performed on the control channel unit corresponding to the scheduling information in the beam direction in which other channel access is successful.
  • the access unit includes: a first access module, configured to be used when When the transmit and receive beam directions of the antenna device are fixed, different antennas are used for independent channel access in different beam directions.
  • the multi-antenna device is a base station, and an antenna of the base station divides a cell of the base station into non-overlapping sectors, and each of the sectors has an independent transmitting and receiving antenna unit, and the base station transmits and The receive beam direction is fixed.
  • the first detecting module includes: a third adjusting submodule, configured to adjust a channel contention window in a corresponding beam direction based on feedback of the hybrid automatic repeat request in each of the beam directions; or, a fourth adjuster And a module, configured to adjust a channel contention window in each beam direction based on feedback of a hybrid automatic repeat request in all beam directions in the receive antenna radiation distribution information.
  • the transmit antenna radiation distribution information is recorded in a transmit antenna direction profile
  • the receive antenna radiation profile information is recorded in a receive antenna direction profile.
  • a base station including: a memory, a processor coupled to the memory, the memory and the processor being in communication via a bus system; the memory storing a software program; The processor is configured to: acquire a transmission request for transmitting data by the multi-antenna device by performing the software program; perform independent channel access in each beam direction corresponding to the transmission request.
  • the processor is further configured to: obtain transmit antenna radiation distribution information corresponding to the sending request indication; determine receive antenna radiation distribution information based on the transmit antenna radiation distribution information; The received signal of each beam direction in the antenna radiation distribution information is subjected to independent channel busy and idle detection to perform independent channel access in each beam direction corresponding to the transmission request.
  • the processor is further configured to: perform independent channel energy detection and/or carrier sensing on the received signal of each beam direction in the receive antenna radiation distribution information, where the channel is Busy detection includes letter Channel energy detection and/or carrier sensing for independent channel busy detection of received signals for each beam direction in the receive antenna radiation distribution information.
  • the processor is further configured to: adjust transmit antenna radiation distribution information and receive antenna radiation distribution information such that the transmit antenna radiation distribution information and the receive antenna radiation distribution information are similar to each other based on The transmit antenna radiation distribution information determines the receive antenna radiation distribution information.
  • the processor is further configured to: when the energy of the received signal in the first preset time period is lower than the threshold, consider that the beam direction is in the The channel in the first preset time period is idle, and when the energy of the received signal in the beam direction is lower than the threshold value in the second preset time period, the current backoff coefficient is decremented by one, and continues Independent channel busy detection is performed on the received signal of each beam direction in the receive antenna radiation distribution information.
  • independent channel access may be performed on each beam direction corresponding to the sending request, and the multi-antenna device may be in multiple beam directions at the same time.
  • the transmitting and receiving data, the direction of the transmitting beam and the receiving beam of the multi-antenna device may be fixed.
  • the transmitting beam and the receiving beam may be performed in the corresponding one direction of the multiple antenna device, and The independent channel access is performed, which can reduce the interference of the beam signals from other directions, thereby solving the technical problem of low spectral efficiency of channel access of the multi-antenna device.
  • FIG. 1 is a schematic diagram of a basic communication network structure according to the prior art
  • FIG. 2 is a schematic diagram of a channel access priority according to the prior art
  • FIG. 3 is a schematic diagram of beamforming according to the prior art
  • FIG. 4 is a schematic diagram of a multi-user space division multiplexing according to the prior art
  • FIG. 5 is a flowchart of a channel access method of an optional multi-antenna device according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of downlink data transmission in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of uplink data transmission in an embodiment of the present application.
  • FIG. 8 is a structural diagram of a channel access apparatus of an optional multi-antenna apparatus according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an optional base station in accordance with an embodiment of the present application.
  • an embodiment of a channel access method for a multi-antenna device is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings may be in a computer system such as a set of computer executable instructions. The steps shown and described may be performed in a different order than the ones described herein, although the logical order is shown in the flowchart.
  • FIG. 5 is a flowchart of a channel access method of an optional multi-antenna device according to an embodiment of the present application. As shown in FIG. 5, the method includes the following steps:
  • Step S502 acquiring a sending request for sending data by using a multi-antenna device
  • Step S504 performing independent detection in each beam direction corresponding to the transmission request.
  • Channel access
  • a sending request for sending data through the multi-antenna device can be obtained, and independent channel access is performed in each beam direction corresponding to the sending request, and the multi-antenna device can transmit data in multiple beam directions.
  • Receiving data, the direction of the transmit beam and the receive beam of the multi-antenna device can be fixed.
  • the transmit beam and the receive beam may be performed in the corresponding same direction of the multiple antenna device, and access of the independent channel may be performed, so that interference from the beam signals in other directions may be reduced, thereby solving multiple Technical problem of low spectral efficiency of channel access of antenna devices.
  • the multi-antenna device in the foregoing embodiment may be a base station, and the antenna of the base station may divide the cells of the base station into non-overlapping sectors, each sector has an independent transmitting and receiving antenna unit, and the transmitting and receiving beam directions of the base station are fixed.
  • step S502 may be first performed to obtain a sending request for sending data by using a multi-antenna device, where the multi-antenna device may send data, and when the multi-antenna device receives a request for sending data from another device, it may send The data is processed in a certain manner, and the data is transmitted in a direction of a suitable transmitting beam.
  • the data source received by the multi-antenna device may be a device such as a mobile terminal (such as a mobile phone), a server, or a base station, and is sent in the embodiment of the present application.
  • the data request may be completed in the form of an instruction, which may be a code or a data, and the multi-antenna device may receive a data transmission instruction sent from another device.
  • the received data may have a corresponding beam direction, and the beam direction may be a beam direction for transmitting data for transmitting data, and may be receiving for multiple antenna devices.
  • the beam direction of the data, the direction of the received data may be fixed, or may be a random direction in each direction of the multi-antenna device, the random direction is determined according to the distance between the multi-antenna device and the device transmitting the data side. , the determination of the direction of receiving data here may be between the multi-antenna device and the transmitting data side The shortest distance.
  • the multi-antenna device may perform step S504 to perform independent channel access in each beam direction corresponding to the transmission request.
  • the beam direction may be a beam direction when the data is received, and the direction of the received data may be determined when the data is received, so that the channel in the direction may also be determined.
  • Data transmission can be performed on this channel.
  • the multi-antenna device can determine the beam direction of the received data, and the transmitting data can determine the beam direction of the transmitted data, wherein the beam direction of the data transmitted by the transmitting data party and the beam direction of the data received by the device for multiple days can be In contrast, in different directions in the same channel.
  • the transmit antenna radiation distribution information corresponding to the transmit request indication may be acquired first, and then the receive antenna radiation distribution information is determined based on the transmit antenna radiation distribution information, and finally, the multi-antenna device pairs the received antenna.
  • the received signal in each beam direction in the pattern performs independent channel busy detection.
  • the transmitting antenna radiation distribution information may include a direction for transmitting an instruction of the requesting party to request the multi-antenna device to send data, and a direction for transmitting the data to the multi-antenna device, where the transmitting antenna radiation distribution information may include multiple sending request-to-multi-antenna
  • the direction of the instruction of the device requesting to send data may be non-conflicting for the direction in which the plurality of sending requesters request the multi-antenna device to send data, that is, each direction may have a corresponding request to send data, or may not have a request.
  • An instruction to send data but there is no instruction to send a request to send data at the same time in the same direction. Otherwise, it will cause a conflict in the request to send data.
  • the transmit antenna radiation distribution information may change in real time, within a certain time interval ( For example, 5 minutes), the transmit antenna radiation distribution information may determine the transmit antenna radiation distribution information according to an instruction to request transmission of data in each direction. After acquiring the radiation distribution information of the transmitting antenna, the multi-antenna device may determine the radiation distribution information of the receiving antenna based on the radiation distribution information of the transmitting antenna, and determine the receiving antenna.
  • a certain time interval For example, 5 minutes
  • the transmit antenna radiation distribution information may determine the transmit antenna radiation distribution information according to an instruction to request transmission of data in each direction.
  • the multi-antenna device may determine the radiation distribution information of the receiving antenna based on the radiation distribution information of the transmitting antenna, and determine the receiving antenna.
  • the radiation distribution information When the radiation distribution information is used, it may be determined according to the direction of the instruction for transmitting the request data in each direction of the receiving antenna radiation distribution information, and when the data is requested to be transmitted, the direction of the transmitting beam from the sending request command to the multi-antenna device may be determined, in determining
  • the transmitting direction antenna pattern and the receiving antenna line drawing diagram can adjust the transmitting antenna radiation distribution information and the receiving antenna radiation distribution information, and the transmitting antenna radiation distribution information and the receiving antenna radiation distribution information can be similar or one-to-one correspondence.
  • the multi-antenna device may perform independent channel busy and idle detection on the received signal of each beam direction in the receive antenna radiation distribution information after determining the receive antenna radiation distribution information, wherein each of the receive antenna radiation distribution information
  • the beam direction is determined according to a request sending instruction that the sending data device sends to the multi-antenna device
  • the received signal in the beam direction may be a signal that the multi-antenna device receives the data after requesting the sending data to send the request command or after transmitting the data, Before receiving the signal, it is necessary to perform busy detection on the channel to determine whether the transmission data can be received.
  • the busy detection of the received signal in each beam direction may include independently receiving signals in each beam direction of the multi-antenna device. Channel energy detection and/or carrier sensing, wherein channel busy detection includes channel energy detection and/or carrier sensing.
  • independent channel energy detection and/or carrier sensing are performed on the received signals of each beam direction of the multi-antenna device, wherein performing independent channel energy detection on the received signals may include receiving the signals at the first preset.
  • the threshold value for example, 20dbi
  • the channel whose beam direction is within the first preset time period is considered to be idle, and the received signal in the beam direction is at the second preset.
  • the current backoff coefficient is decremented by one, and the independent channel busy detection of the received signal in each beam direction in the receiving antenna radiation distribution information is continued.
  • the current backoff coefficient is kept unchanged, if the received signal has high energy in the first preset time period.
  • the threshold it is determined that the channel in the beam direction is busy and remains The current backoff coefficient does not change.
  • the first preset time period and the second preset time period may be the same or different, wherein the backoff coefficient may be used to calculate how many idle time slots can be detected before transmitting data. It is only possible to detect a certain value (for example, 5) to transmit a signal, which can be randomly generated for the range specified by the standard.
  • the backoff coefficient may be reduced to a certain value (for example, 0). data.
  • the current backoff coefficient may be determined. If the current backoff coefficient is not zero, the channel direction of the beam direction is continued. Energy detection, if the current backoff coefficient is zero, the data can be transmitted in the corresponding beam direction in the receiving antenna radiation distribution information.
  • the multi-antenna device may separately send the control information in each beam direction after performing independent channel busy and idle detection on the received signal in each beam direction of the receiving antenna radiation distribution information, which is used in the embodiment of the present application.
  • the multi-antenna device can separately transmit the control information in each beam direction
  • the direction of each beam is determined by the receiving antenna radiation distribution information and the transmitting antenna radiation distribution information, and the control information may be the data requested to be sent, or may be sent.
  • the instruction of the data is used in the embodiment of the present application.
  • the receive precoding matrix in the process of determining the receive antenna radiation distribution information based on the transmit antenna radiation distribution information, may be selected according to the transmit transmit beamforming transmit precoding matrix, and then may be based on the transmit precoding matrix and The receiving precoding matrix adjusts the transmit antenna radiation distribution information and the receive antenna radiation distribution information.
  • the beamforming in this embodiment may be applied to a multi-antenna device, and the beamforming may be an antenna array-based signal pre-processing manner, wherein a corresponding transmit pre-coding matrix may be formed before the transmit beamforming, Sending a precoding matrix to select a corresponding receiving precoding matrix, and transmitting
  • the precoding matrix may first determine a plurality of user equipments corresponding to the sending request, where determining that the plurality of user equipments may be determining that there are several devices requesting to send data, and requesting to send data
  • the device may have different directions when sending data, and may determine different directions of multiple user equipments and one or more devices in the same direction to request data before and after the order, so that the corresponding backoff coefficient can be calculated, and then,
  • the reference signal of the interference signal is detected, and the detection of the interference signal may be determined according to the reference signal, and when the user equipment detects the channel, the interference signal of the channel may also be detected
  • the downlink reference signal when detecting the reference signal of the interference signal, may be detected when the interference signal is an LTE downlink signal, where the reference signal may include a cell-specific reference signal and a downlink demodulation reference.
  • the signal may be used to detect an uplink reference signal when the detected interference signal is an LTE uplink signal, where the reference signal includes an uplink demodulation reference signal and a sounding reference signal.
  • the detection of the interference signal for the embodiment is an LTE uplink signal or an LTE downlink signal, which may be determined according to the energy of the channel.
  • the multi-antenna device may acquire a channel coefficient matrix between the device transmitting the reference signal and the multi-antenna device according to the reference signal of the detected interference signal, and finally merge the interference coefficient signal into the channel coefficient matrix between the multi-antenna devices.
  • the channel coefficients are combined with the matrix to obtain a combined channel coefficient joint matrix.
  • the channel coefficient matrix may be determined according to a channel coefficient between the requesting data transmitting party and the multi-antenna device.
  • the requesting sender sends the request data to the multi-antenna device to transmit data, and has different beam directions.
  • the interference signal may be an interference signal of the external device, and the interference signal of the external device may not send the data
  • Noise another type of interference signal may be an interference signal in other directions, which may be an interference signal generated when requesting to transmit data or actively transmitting data, and the interference signal may be It deviates from the direction in which the data is requested to be sent.
  • the data When the data is actively transmitted, it can correspond to other directions, so that the data is transmitted in the other direction, so that interference signals can be generated on other channels that transmit data.
  • selecting a receiving precoding matrix according to a transmit precoding matrix for transmitting a transmit beam shape may be performed by using a matrix selection algorithm, where the matrix selection algorithm may be a zero forcing algorithm, a minimum mean square error algorithm, or a block pair. A keratinization algorithm, or an angle of arrival algorithm.
  • An optional embodiment is to obtain a channel coefficient matrix of each user equipment in a transmit precoding matrix that selects a transmit beamforming, and obtain a channel coefficient matrix for each user equipment, where the channel coefficient matrix may be orthogonal to the channel.
  • the downlink reference signal when detecting that the interference signal is an LTE downlink signal, the downlink reference signal may be detected, where the reference signal may include a cell-specific reference signal and a downlink demodulation reference signal, and then, the detected interference signal is Wi.
  • the preamble sequence signal can be detected, wherein the reference signal can include a preamble sequence signal.
  • the cell may be a cell according to the base station in the foregoing embodiment, and the base station may divide the cell into different sectors. The direction of the transmitting and receiving beams of the base station may be fixed or may be biased.
  • the cell-specific reference signal may be determined according to the beam direction of the base station, or may be determined when the base station transmits and receives data, and may be determined for the downlink demodulation reference signal when detecting the reference signal.
  • the multi-antenna device can perform channel access in an unlicensed frequency band.
  • the multi-antenna device can send the public physics in the beam direction with multiple channel access success when transmitting the signal on the common physical downlink control channel.
  • the common control information includes: a common physical downlink control channel reference signal, a common reference signal, a common measurement and report introduction channel state information reference signal, a common primary synchronization signal, and a common secondary synchronization signal, and another optional implementation
  • the scheduling information may be in the beam direction of the corresponding user equipment or in the beam direction of other channel access success when the physical downlink control channel sends the scheduling information of the physical downlink shared channel unicast to the corresponding user.
  • the corresponding control channel unit performs transmission.
  • different antennas may be used for independent channels in different beam directions when the transmission and reception beam directions of the multi-antenna device are fixed. Access, ie determining the transmit and receive beams in different directions of the multi-antenna device.
  • different antennas can be configured for independent channel access, and the configuration of the antenna is determined according to the direction of the transmitting and receiving beams; in the same request data, the requesting data is sent to the multi-antenna device to send the request information and The multi-antenna device uses the same antenna for transmitting the data after receiving the request to send the information, so that the interference information of the transmitting and receiving beams in other directions can be avoided, and the spectrum utilization rate is improved.
  • the corresponding beam when independent channel busy and idle detection is performed on the received signal of each beam direction in the receive antenna radiation distribution information, the corresponding beam may be adjusted based on the feedback of the hybrid automatic repeat request in each beam direction.
  • the channel contention window in the direction may also adjust the channel contention window in each beam direction based on the feedback of the hybrid automatic repeat request in all beam directions in the receive antenna radiation distribution information.
  • the feedback of the hybrid automatic repeat request in each beam direction is determined according to whether there is signal interference or channel interference when transmitting and receiving the beam, and in the feedback adjustment, it may be based on feedback in a single beam direction, It may be feedback on all beam directions in the receiving antenna radiation distribution information, and the feedback information may be used to adjust the channel usage, and the channel allocation may be more reasonable, thereby improving the channel usage rate and improving the spectrum utilization rate. .
  • the multi-antenna device can perform channel access in an unlicensed frequency band, and adjust the radiation distribution information of the receiving antenna to be consistent with the radiation distribution information of the transmitting antenna, and perform independent channels for the received signals in each beam direction.
  • the busy idle detection process wherein the channel busy idle detection may specifically be: when the energy is lower than the threshold, the channel in the current beam direction is determined to be idle, and the backoff count is decreased by one; when the energy is higher than the threshold, the channel in the current beam direction is determined to be busy, and the backoff count is not The energy detection is continued.
  • the effect of improving the spectral efficiency of the unlicensed frequency band can be achieved by performing channel access independently in multiple beam directions.
  • the multi-user stream beamforming transmission and the channel busy and idle detection and the independent channel access in the corresponding multiple beam directions can avoid the influence of the channel busy detection results in different directions, and further Increased spatial diversity gain and spectral efficiency over unlicensed bands.
  • the transmit antenna radiation distribution information may be recorded in a transmit antenna direction distribution map
  • the receive antenna radiation distribution information may be recorded in a receive antenna direction distribution map.
  • the specific technologies of the mobile communication described in the foregoing embodiments are not limited, and may be WCDMA, CDMA2000, TD-SCDMA, WiMAX, LTE/LTE-A, and the fifth generation that may occur later.
  • the sixth generation, the Nth generation mobile communication technology refers to a terminal side product that can support the communication protocol of the land mobile communication system, and a special modem module (Wireless Modem), which can be used by the mobile phone, Various types of terminal forms such as tablet computers and data cards are integrated to complete the communication function.
  • the following uses the fourth generation mobile communication system LTE/LTE-A as an example, wherein the mobile communication terminal is represented as a UE (User Equipment) ), the access device is represented as a base station to further interpret the method in the above embodiment Description.
  • the mobile communication terminal is represented as a UE (User Equipment)
  • the access device is represented as a base station to further interpret the method in the above embodiment Description.
  • a corresponding receiving precoding matrix may be selected according to a precoding matrix that transmits a beamforming shape.
  • the specific selection method includes adjusting the receiving and transmitting directions according to the algorithms such as the zero-forcing, the minimum mean square error, the block diagonalization, the arrival angle direction AoA, and the like according to the transmission precoding matrix, the channel coefficient matrix, the departure angle AoD, and the detected interference.
  • the figure is such that the receive pattern remains substantially the same as the transmit pattern.
  • 6 is a schematic diagram of downlink data transmission in the embodiment of the present application. As shown in FIG. 6, in the process of data transmission, downlink data transmission of a multi-antenna device and uplink data transmission as shown in FIG. 7 are different for data transmission.
  • the uplink data transmission may be the sending data
  • the downlink data transmission may be the receiving data, where the uplink and downlink data transmissions are not specifically limited.
  • Hn [H1, H2, ..., Hn-1, Hn+1, ..., HN] is the joint channel matrix of users other than the user n, that is, mutual interference with the user n Channel matrix.
  • the purpose of both transmit beamforming and receive beamforming is to obtain the most pre-coding matrix, so that the pre-coding matrix maximizes the received signal-to-noise ratio in the user n direction, and minimizes the interference of other users while maximizing the received signal.
  • the base station schedules the N paired users in the same data burst, and each user is scheduled to occupy the entire data burst duration.
  • the received signal is first multiplied by the N users. After the matrix, the received signals of the beam direction corresponding to each user are obtained, and then energy detection is performed separately for each corresponding beam direction. When the energy is lower than the threshold, the channel in the current beam direction is determined to be idle, and the backoff count is decremented by one.
  • the HARQ feedback of the current direction may be separately used in the beam direction of each user, or may be jointly maintained according to the HARQ feedback in all wavenumber directions.
  • the transmission of each beam can be independent (in TTI granularity), for half-duplex systems (ie, can only be received or transmitted simultaneously on the same carrier),
  • the transmission of each beam needs to be aligned, and the multi-carrier channel access procedure in 3GPP (ie, accessing the primary carrier by selecting a channel or aligning the backoff count on multiple beams by additional backoff) may be employed.
  • the type of the interference signal selects a corresponding detection mode (for example, when the interference signal is detected as an LTE signal), and passes the reference signal on the interference signal (for example, when the interference signal is detected as an LTE signal)
  • the CRS is detected; when the WiFi signal is detected, the reference signal such as the preamble is detected), and the channel coefficient matrix between the interference signal and the receiving device is obtained.
  • the interfering channel coefficient matrix is merged into the joint channel matrix H to calculate a precoding matrix, thereby achieving nulling of the wavenumber direction of the interference signal.
  • the data burst may also include a common signal, such as a common PDCCH, according to the method in the first alternative embodiment.
  • a common signal such as a common PDCCH
  • the common PDCCH/CRS/CSI-RS/PSS/SSS and the like are simultaneously transmitted in the beam direction in which multiple channel access is successful (ie, also beamforming); when the scheduling ticket is sent on the PDCCH
  • the CCE corresponding to the DCI may be sent only in the beam direction corresponding to the UE (that is, also beam-formed), or may be sent on other beams with successful channel access.
  • beamforming can be performed using the same coding matrix as the corresponding user.
  • sectorized antenna based setup may be performed, that is, a special application of the method of the embodiment is when the transmit and receive beam directions of the antenna are fixed (eg, sectorized antennas, one will be When the 360° cell is divided into three non-overlapping 120° sectors, each sector has an independent transmitting and receiving antenna unit, channel access in each beam direction is completely independent.
  • channel access can be independently performed in multiple beam directions, and the effect of improving the spectrum efficiency of the unlicensed frequency band is achieved.
  • the multi-user stream beamforming transmission and the channel busy and idle detection and the independent channel access can be performed respectively in the corresponding multiple beam directions.
  • the method of the process avoids the influence of the interference between the beams in different directions on the channel busy detection result, thereby improving the spatial diversity gain and the spectrum efficiency on the unlicensed frequency band.
  • FIG. 8 is a structural diagram of a channel access apparatus of another optional multi-antenna apparatus according to an embodiment of the present application.
  • the apparatus includes: a first obtaining unit 81, configured to acquire The antenna device sends a request for sending data; and the access unit 82 is configured to perform independent channel access in each beam direction corresponding to the sending request.
  • the first obtaining unit 81 can use the access unit 82 to perform independent channel access in each beam direction corresponding to the sending request when the multi-antenna device acquires the request for transmitting data, the multi-antenna
  • the device can transmit data and receive data in multiple beam directions at the same time.
  • the direction of the transmit beam and the receive beam of the multi-antenna device can be fixed.
  • the transmit beam and the receive beam can correspond to multiple antenna devices.
  • the same direction is performed, and independent channel access can be performed, which can reduce interference from beam signals in other directions, thereby solving the technical problem of low spectral efficiency of channel access of multi-antenna devices.
  • the access unit in the foregoing embodiment may include: a first acquiring module, configured to acquire transmit antenna radiation distribution information corresponding to the sending request indication; and a first determining module, configured to determine, according to the transmit antenna radiation distribution information, Receiving antenna radiation distribution information; the first detecting module is configured to perform independent channel busy and idle detection on the received signal in each beam direction of the receiving antenna radiation distribution information.
  • the first detecting module may include: a first detecting submodule, configured to perform independent channel energy detection and/or carrier sensing on the received signal in each beam direction of the receiving antenna radiation distribution information, where Channel busy detection includes channel energy detection and/or carrier sensing.
  • the first determining module in the foregoing embodiment may include: a first adjusting submodule, configured to adjust transmit antenna radiation distribution information and receive antenna radiation scores.
  • the cloth information is such that the transmitting antenna radiation distribution information and the receiving antenna radiation distribution information are similar.
  • the first detecting module may further include: a first counting submodule, configured to consider that the beam direction is at the first preset time when the energy of the received signal in the first preset time period is lower than a threshold value
  • the channel in the segment is idle, and when the energy of the received signal in the beam direction is lower than the threshold in the second preset time period, the current backoff coefficient is decremented by one, and each beam direction in the radiation distribution information of the receiving antenna is continued.
  • the received signal performs independent channel busy and idle detection.
  • the first detecting module further includes: a second counting submodule, configured to keep the current backoff coefficient unchanged if the received signal of the beam direction in the second preset time period is higher than the threshold value;
  • the counting submodule is configured to determine that the channel in the beam direction is busy if the energy of the received signal in the first preset time period is higher than the threshold, and keep the current backoff coefficient unchanged.
  • the apparatus in the foregoing embodiment may further include: a second detecting submodule, configured to perform channel energy detection on the beam direction if the current backoff coefficient is not zero after the first detecting module operates.
  • a second detecting submodule configured to perform channel energy detection on the beam direction if the current backoff coefficient is not zero after the first detecting module operates.
  • the device in the foregoing implementation may further include: a third detecting submodule, configured to send data in a beam direction if the current backoff coefficient is zero after the first detecting module operates.
  • the first determining module may further include: a first selecting submodule, configured to select a receiving precoding matrix according to a transmitting precoding matrix that transmits a beamforming shape; and a second adjusting submodule, configured to The transmit precoding matrix and the receive precoding matrix adjust the transmit antenna radiation distribution information and the receive antenna radiation distribution information.
  • the first selection sub-module may include: a first determining sub-module, configured to determine a plurality of user equipments corresponding to the sending request; and a fourth detecting sub-module, configured to detect when performing channel receiving detection on the user equipment a reference signal of the interference signal; a first acquisition submodule for detecting the interference signal a reference signal, obtaining a channel coefficient matrix between the device transmitting the reference signal to the multi-antenna device; and a merging sub-module for combining the channel coefficient matrix of the interference signal to the multi-antenna device into the channel coefficient joint matrix to obtain the combined channel coefficient Union matrix.
  • the fourth detection sub-module may include: a fifth detection sub-module, configured to detect a downlink reference signal, where the interference signal is an LTE downlink signal, where the reference signal includes a cell-specific reference signal and a downlink demodulation reference signal, where the sixth detection submodule is configured to detect an uplink reference signal when the detected interference signal is an LTE uplink signal, where the reference signal includes an uplink demodulation reference signal and a sounding reference signal.
  • the fourth detection sub-module in the foregoing embodiment may further include: a seventh detection sub-module, configured to detect a downlink reference signal when the interference signal is an LTE downlink signal, where the reference signal includes a cell-specific reference signal and a downlink Demodulating the reference signal; the eighth detecting submodule, configured to detect the preamble sequence signal if the detected interfering signal is a Wi-Fi signal, wherein the reference signal comprises a preamble sequence signal.
  • the optional device may further include: a sending module, configured to separately send control information in each beam direction after the first detecting module operates.
  • the sending module in the foregoing embodiment may include one of the following: a first sending submodule, configured to send a common physics in a beam direction in which multiple channel access succeeds when transmitting a signal on a common physical downlink control channel.
  • the common control information of the downlink control channel where the common control information includes: a common physical downlink control channel reference signal, a common reference signal, a common measurement and report introduction channel state information reference signal, a common primary synchronization signal, and a common secondary synchronization signal.
  • the sending module of the foregoing embodiment further includes one of the following: a second sending submodule, configured to: when the physical downlink control channel sends the scheduling information of the physical downlink shared channel unicast to the corresponding user, Corresponding user equipment in the beam direction or simultaneously in the beam direction of other channel access success The control channel unit corresponding to the scheduling information is transmitted.
  • a second sending submodule configured to: when the physical downlink control channel sends the scheduling information of the physical downlink shared channel unicast to the corresponding user, Corresponding user equipment in the beam direction or simultaneously in the beam direction of other channel access success The control channel unit corresponding to the scheduling information is transmitted.
  • the access unit includes: a first access module, configured to use different antennas for independent channel access in different beam directions when the transmit and receive beam directions of the multi-antenna device are fixed.
  • the multi-antenna device is a base station, and the antenna of the base station divides the cells of the base station into non-overlapping sectors, and when each sector has an independent transmitting and receiving antenna unit, the transmitting and receiving beam directions of the base station are fixed.
  • the first detecting module includes: a third adjusting submodule, configured to adjust a channel contention window in a corresponding beam direction based on feedback of the hybrid automatic repeat request in each beam direction; or, a fourth adjusting submodule, A channel contention window in each beam direction is adjusted for feedback based on a hybrid automatic repeat request in all beam directions in the receive antenna radiation profile information.
  • the transmit antenna radiation distribution information is recorded in the transmit antenna direction profile
  • the receive antenna radiation profile information is recorded in the receive antenna direction profile
  • FIG. 9 is a schematic diagram of another optional base station, which may be applied to the above embodiment, as shown in FIG. 9, including: a memory 91, a processor 93 coupled to the memory, a memory and processing, according to an embodiment of the present application.
  • the device communicates with the bus system; the memory stores the software program; the processor runs the software program for: obtaining a transmission request for transmitting data through the multi-antenna device; and performing independent channel connection in each beam direction corresponding to the transmission request In.
  • the processor is further configured to: obtain the transmit antenna radiation distribution information corresponding to the sending request indication; determine the receive antenna radiation distribution information based on the transmit antenna radiation distribution information; and each of the receive antenna radiation distribution information
  • the received signal in the beam direction performs independent channel busy and idle detection to perform independent channel access in each beam direction corresponding to the transmission request.
  • the processor is further configured to: perform independent processing on the received signal in each beam direction of the receive antenna radiation distribution information by performing the following steps: Channel energy detection and/or carrier sensing, wherein channel busy detection includes channel energy detection and/or carrier sensing to perform independent channel busy detection for received signals in each beam direction of the received antenna radiation distribution information. .
  • the processor is further configured to: adjust the transmit antenna radiation distribution information and the receive antenna radiation distribution information, so that the transmit antenna radiation distribution information and the receive antenna radiation distribution information are similar to be determined based on the transmit antenna radiation distribution information.
  • Receive antenna radiation distribution information is further configured to: adjust the transmit antenna radiation distribution information and the receive antenna radiation distribution information, so that the transmit antenna radiation distribution information and the receive antenna radiation distribution information are similar to be determined based on the transmit antenna radiation distribution information. Receive antenna radiation distribution information.
  • the processor is further configured to: when the energy of the received signal in the first preset time period is lower than a threshold, consider that the channel whose beam direction is within the first preset time period is idle, and When the energy of the received signal in the beam direction is lower than the threshold value in the second preset time period, the current backoff coefficient is decremented by one, and the independent channel busy of the received signal in each beam direction of the receiving antenna radiation distribution information is continued. Free detection.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical singles.
  • Meta that is, can be located in one place, or can be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • a computer readable storage medium A number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Abstract

本申请公开了多天线设备的信道接入方法及装置,其中,该方法包括:获取用于通过多天线设备发送数据的发送请求;在所述发送请求对应的每个波束方向上进行独立的信道接入。本申请解决了多天线设备的信道接入的频谱效率低的技术问题。

Description

多天线设备的信道接入方法及装置
本申请要求于2016年12月14日提交中国专利局、申请号为201611155769.6、申请名称为“多天线设备的信道接入方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信道接入领域,具体而言,涉及一种多天线设备的信道接入方法及装置。
背景技术
移动通信系统,是指运营商通过部署无线接入网设备(如基站),和核心网设备(如归属位置寄存器,Home Location Register,HLR)等,为用户终端(如手机)提供通信服务的系统。移动通信经历了第一代、第二代、第三代、第四代。其中,第一代移动通信是指最初的模拟、仅限语音通话的蜂窝电话标准,主要采用的是模拟技术和频分多址(Frequency Division Multiple Access,FDMA)的接入方法;第二代移动通信引入了数字技术,提高了网络容量、改善了话音质量和保密性,以“全球移动通信系统”(Global System for Mobile Communication,GSM)和“码分多址”(Code Division Multiple Access,CDMA IS-95)为代表;第三代移动通信主要指CDMA2000,WCDMA,TD-SCDMA三种技术,均是以码分多址作为接入技术的;第四代移动通信系统的标准在国际上相对统一,为国际标准化组织3GPP制定的长期演进(Long Term Evolution/Long Term Evolution-Advanced,LTE/LTE-A),其下行基于正交频分多址接入(Orthogonal Frequency Division Multiple Access,OFDMA),上行基于单载波频分多直接入(Single Carrier–Frequency  Division Multiple Access,SC-FDMA)的接入方式,依据灵活的带宽和自适应的调制编码方式,达到了下行峰值速率1Gbps,上行峰值速率500Mbps的高速传输。图1简要示出了移动通信网络的基本架构,移动通信网络包括核心网、接入网和终端,该终端可以为手机或者电脑等,核心网和接入网通过回传链路连接。
由于运营商所拥有的授权频谱有限,因此希望通过非授权频谱资源来扩充LTE的容量。基于前述的需求,3GPP制定了LTE在非授权频段工作的标准即LAA(Licensed-Assisted Access)。当前的5GHz附近的非授权频段主要为Wi-Fi所使用,因此为了保证与现网Wi-Fi设备公平的竞争信道资源,3GPP在LAA的设计当中会考虑使用与Wi-Fi中类似的信道竞争机制来保证公平性。类似于Wi-Fi的EDCA(Enhanced Distributed Channel Access)中不同优先级业务对应不同的信道接入参数,LTE R13中定了四种信道接入优先级如下表1以及图2所示。接入优先级越高(1>2>3>4),竞争时间越短,占用时间也越短。由于高优先级的burst长度较短(即占用资源较少),复用用户数目较少,更加容易形成定向的波束,例如接入优先级1时仅为2ms(即2个subframe)。
表1
Figure PCTCN2017112877-appb-000001
Figure PCTCN2017112877-appb-000002
基站通过波束成形beamforming可以形成定向窄波束,如图3中的主瓣和旁瓣部分,将信号能量集中发送到指定方向,对于定向波束以外的方向,信号能量较低,即不会产生干扰。
如图4所示,当采用MU-MIMO(即多用户空分复用),形成多个不同的波束分别指向不同的用户(例如根据CSI(Channel Status Indicator,通信状态指示器信息)反馈或者DoA(Direction of Arrival,波达方向估计)或者地理信息等进行配对),不同波束覆盖范围不同,该波束覆盖范围可以为图4所示的椭圆区域。
对于在非授权频段传输的DL(Down Link,下行链路)data burst(突发数据),会通过TDMA(Time Division Multiple Access,时分复用)/FDMA(Frequency Division Multiple Access,频分复用)/SDMA(Space Division Multiple Access,空分复用)等方式来复用不同用户,即使对下行信号采用beamforming,由于不同用户方向不同及不同subframe的方向不同,最终整个DL data burst的叠加方向也等效于全向,因此对于DL LBT(Listen Before Talk,先听后讲)也只能采用全向天线接收进行能量检测。
对于高接入优先级的DL data burst进行LBT时,当采用全向接收天线进行能量检测时,如果DL data burst采用beamforming,则发射方向图显著小于接收方向图,导致波束覆盖以外的信号(不会产生相互干扰)也会导致CCA(Clear Channel Assessment,空闲信道估计)不成功(检测到的功率大于门限),延长接入等待时间。此外,即使接收天线使用与发射天线相同的方向图,当DL data burst中的多个波束方向中任意一个检测到其他信号时会导致CCA不成功,即使其他波束不会与该信号互相干扰。综上,由于现有全向天线的LBT,导致波束成形beamforming的空分复用优势无法完全发挥,频谱效率降低。
针对上述的现有多天线设备的信道接入的频谱效率较低的问题,目前尚未提出有效的解决方案。
申请内容
本申请实施例提供了一种多天线设备的信道接入方法及装置,以至少解决多天线设备的信道接入的频谱效率低的技术问题。
根据本申请实施例的一个方面,提供了一种多天线设备的信道接入方法,该方法包括:获取用于通过多天线设备发送数据的发送请求;在所述发送请求对应的每个波束方向上进行独立的信道接入。
进一步地,在所述发送请求对应的每个所述波束方向上进行独立的信道接入包括:获取与所述发送请求指示对应的发送天线辐射分布信息;基于所述发送天线辐射分布信息确定接收天线辐射分布信息;对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
进一步地,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,所述信道忙闲检测包括信道能量检测和/或载波侦听。
进一步地,基于所述发送天线辐射分布信息确定接收天线辐射分布信息包括:调整发送天线辐射分布信息和接收天线辐射分布信息,使得所述发送天线辐射分布信息和所述接收天线辐射分布信息相近。
进一步地,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:在所述接收信号在所述第一预设时间段内的能量低于所述门限值时,认为所述波束方向在所述第一预设时间段内的信道空闲,并在所述波束方 向的接收信号在所述第二预设时间段内的能量低于所述门限值时,将当前退避系数减一,并继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
进一步地,若所述波束方向的接收信号在所述第二预设时间段内的能量高于所述门限值,则保持当前退避系数不变;若所述接收信号在所述第一预设时间段内的能量高于所述门限值,则确定所述波束方向的信道繁忙,保持当前退避系数不变。
进一步地,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测之后,所述方法还包括:若所述当前退避系数不为零,则继续进行对所述波束方向进行信道能量检测。
进一步地,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测之后,所述方法还包括:若所述当前退避系数为零,则在所述波束方向上发送所述数据。
进一步地,基于所述发送天线辐射分布信息确定接收天线辐射分布信息包括:根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵;基于所述发送预编码矩阵和所述接收预编码矩阵调整所述发送天线辐射分布信息和接收天线辐射分布信息。
进一步地,根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵包括:确定所述发送请求对应的多个用户设备;在对所述用户设备进行信道接收检测时,检测干扰信号的参考信号;根据检测到的干扰信号的参考信号,获取发送所述参考信号的设备到多天线设备间的信道系数矩阵;将所述干扰信号到多天线设备间的信道系数矩阵合并入所述信道系数联合矩阵,得到合并后的信道系数联合矩阵。
进一步地,检测干扰信号的参考信号包括:在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述 参考信号包括小区特定参考信号和下行解调参考信号;在检测到的干扰信号为LTE上行信号的情况下,检测上行参考信号,其中,所述参考信号包括上行解调参考信号和探测参考信号。
进一步地,检测干扰信号的参考信号包括:在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;在检测到的干扰信号为Wi-Fi信号的情况下,检测前导序列信号,其中,所述参考信号包括所述前导序列信号。
进一步地,在对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测之后,所述方法还包括:在所述每个波束方向上分别发送控制信息。
进一步地,在所述每个波束方向上分别发送控制信息包括下述之一:当在公共物理下行控制信道上发送信号时,同时在多个信道接入成功的波束方向上发送公共物理下行控制信道的公共控制信息,其中,所述公共控制信息包括:公共物理下行控制信道参考信号、公共参考信号、公共测量和报告引入信道状态信息参考信号、公共主同步信号和公共辅同步信号。
进一步地,在所述每个波束方向上分别发送控制信息包括下述之一:当在物理下行控制信道发送单播给对应用户的物理下行共享信道的调度信息时,在对应的用户设备的波束方向上或者同时在其他信道接入成功的波束方向上的所述调度信息对应的控制信道单元上进行发送。
进一步地,在所述发送请求对应的每个波束方向上进行独立的信道接入包括:当所述多天线设备的发送和接收波束方向固定时,在不同的波束方向使用不同的天线进行独立的信道接入。
进一步地,所述多天线设备为基站,所述基站的天线将所述基站的小区分为不重叠的扇区,每个所述扇区具有独立的收 发天线单元时,所述基站的发送和接收波束方向固定。
进一步地,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:基于每个所述波束方向上的混合自动重传请求的反馈调整对应的波束方向上的信道竞争窗;或者基于所述接收天线辐射分布信息中所有波束方向上的混合自动重传请求的反馈调整所述每个波束方向上的信道竞争窗。
进一步地,所述发送天线辐射分布信息记录在发送天线方向分布图中,所述接收天线辐射分布信息记录在接收天线方向分布图中。
根据本申请实施例的另一个方面,提供了一种多天线设备的信道接入装置,该装置包括:第一获取单元,用于获取用于通过多天线设备发送数据的发送请求;接入单元,用于在所述发送请求对应的每个波束方向上进行独立的信道接入。
进一步地,接入单元包括:第一获取模块,用于获取与所述发送请求指示对应的发送天线辐射分布信息;第一确定模块,用于基于所述发送天线辐射分布信息确定接收天线辐射分布信息;第一检测模块,用于对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
进一步地,第一检测模块包括:第一检测子模块,用于对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,所述信道忙闲检测包括信道能量检测和/或载波侦听。
进一步地,第一确定模块包括:第一调整子模块,用于调整发送天线辐射分布信息和接收天线辐射分布信息,使得所述发送天线辐射分布信息和所述接收天线辐射分布信息相近。
进一步地,第一检测模块还包括:第一计数子模块,用于在所述接收信号在所述第一预设时间段内的能量低于所述门限 值时,认为所述波束方向在所述第一预设时间段内的信道空闲,并在所述波束方向的接收信号在所述第二预设时间段内的能量低于所述门限值时,将当前退避系数减一,并继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
进一步地,所述第一检测模块还包括:第二计数子模块,用于若所述波束方向的接收信号在所述第二预设时间段内的能量高于所述门限值,则保持当前退避系数不变;第二计数子模块,用于若所述接收信号在所述第一预设时间段内的能量高于所述门限值,则确定所述波束方向的信道繁忙,保持当前退避系数不变。
进一步地,所述装置还包括:第二检测子模块,用于在第一检测模块工作之后,若所述当前退避系数不为零,则继续进行对所述波束方向进行信道能量检测。
进一步地,所述装置还包括:第三检测子模块,用于在第一检测模块工作之后,若所述当前退避系数为零,则在所述波束方向上发送所述数据。
进一步地,第一确定模块还包括:第一选取子模块,用于根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵;第二调整子模块,用于基于所述发送预编码矩阵和所述接收预编码矩阵调整所述发送天线辐射分布信息和接收天线辐射分布信息。
进一步地,第一选取子模块包括:第一确定子模块,用于确定所述发送请求对应的多个用户设备;第四检测子模块,用于在对所述用户设备进行信道接收检测时,检测干扰信号的参考信号;第一获取子模块,用于根据检测到的干扰信号的参考信号,获取发送所述参考信号的设备到多天线设备间的信道系数矩阵;合并子模块,用于将所述干扰信号到多天线设备间的 信道系数矩阵合并入所述信道系数联合矩阵,得到合并后的信道系数联合矩阵。
进一步地,第四检测子模块包括:第五检测子模块,用于在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;第六检测子模块,用于在检测到的干扰信号为LTE上行信号的情况下,检测上行参考信号,其中,所述参考信号包括上行解调参考信号和探测参考信号。
进一步地,第四检测子模块还包括:第七检测子模块,用于在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;第八检测子模块,用于在检测到的干扰信号为Wi-Fi信号的情况下,检测前导序列信号,其中,所述参考信号包括所述前导序列信号。
进一步地,所述装置还包括:发送模块,用于在第一检测模块工作之后,在所述每个波束方向上分别发送控制信息。
进一步地,发送模块包括下述之一:第一发送子模块,用于当在公共物理下行控制信道上发送信号时,同时在多个信道接入成功的波束方向上发送公共物理下行控制信道的公共控制信息,其中,所述公共控制信息包括:公共物理下行控制信道参考信号、公共参考信号、公共测量和报告引入信道状态信息参考信号、公共主同步信号和公共辅同步信号。
进一步地,发送模块还包括下述之一:第二发送子模块,用于当在物理下行控制信道发送单播给对应用户的物理下行共享信道的调度信息时,在对应的用户设备的波束方向上或者同时在其他信道接入成功的波束方向上的所述调度信息对应的控制信道单元上进行发送。
进一步地,接入单元包括:第一接入模块,用于当所述多 天线设备的发送和接收波束方向固定时,在不同的波束方向使用不同的天线进行独立的信道接入。
进一步地,所述多天线设备为基站,所述基站的天线将所述基站的小区分为不重叠的扇区,每个所述扇区具有独立的收发天线单元时,所述基站的发送和接收波束方向固定。
进一步地,第一检测模块包括:第三调整子模块,用于基于每个所述波束方向上的混合自动重传请求的反馈调整对应的波束方向上的信道竞争窗;或者,第四调整子模块,用于基于所述接收天线辐射分布信息中所有波束方向上的混合自动重传请求的反馈调整所述每个波束方向上的信道竞争窗。
进一步地,所述发送天线辐射分布信息记录在发送天线方向分布图中,所述接收天线辐射分布信息记录在接收天线方向分布图中。
根据本申请实施例的另一个方面,提供了一种基站,包括:存储器、与所述存储器耦合的处理器,所述存储器和所述处理器通过总线系统相通信;所述存储器存储软件程序;所述处理器通过运行所述软件程序以用于:获取用于通过多天线设备发送数据的发送请求;在所述发送请求对应的每个波束方向上进行独立的信道接入。
进一步地,所述处理器还用于通过执行下述步骤:获取与所述发送请求指示对应的发送天线辐射分布信息;基于所述发送天线辐射分布信息确定接收天线辐射分布信息;对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测,以在所述发送请求对应的每个波束方向上进行独立的信道接入。
进一步地,所述处理器还用于通过执行下述步骤:对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,所述信道忙闲检测包括信 道能量检测和/或载波侦听,以对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
进一步地,所述处理器还用于通过执行下述步骤:调整发送天线辐射分布信息和接收天线辐射分布信息,使得所述发送天线辐射分布信息和所述接收天线辐射分布信息相近,以基于所述发送天线辐射分布信息确定接收天线辐射分布信息。
进一步地,所述处理器还用于通过执行下述步骤:在所述接收信号在所述第一预设时间段内的能量低于所述门限值时,认为所述波束方向在所述第一预设时间段内的信道空闲,并在所述波束方向的接收信号在所述第二预设时间段内的能量低于所述门限值时,将当前退避系数减一,并继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
在本申请实施例中,可以在多天线设备接收到发送数据的请求时,对发送请求所对应的每个波束方向上进行独立的信道接入,该多天线设备可以同时在多个波束方向上发送数据和接收数据,多天线设备在发送波束和接收波束的方向可以是固定的,在本申请实施例中,发送波束和接收波束可以在多天线设备的对应的同一个方向中进行,并且可以进行独立信道的接入,这样可以降低来自其它方向波束信号的干扰,从而解决了多天线设备的信道接入的频谱效率低的技术问题。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据现有技术的一种基本通信网络结构的示意图;
图2是根据现有技术的一种信道接入优先级的示意图;
图3是根据现有技术的一种波束形成的示意图;
图4是根据现有技术的一种多用户空分复用的示意图;
图5是根据本申请实施例的一种可选的多天线设备的信道接入方法的流程图;
图6是本申请实施例下行数据传输的示意图;
图7是本申请实施例上行数据传输的示意图;
图8是根据本申请实施例的一种可选的多天线设备的信道接入装置的结构图;
图9是根据本申请实施例的一种可选的基站的示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
名词解释:
Figure PCTCN2017112877-appb-000003
Figure PCTCN2017112877-appb-000004
Figure PCTCN2017112877-appb-000005
Figure PCTCN2017112877-appb-000006
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本申请实施例,提供了一种多天线设备的信道接入方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图5是根据本申请实施例的一种可选的多天线设备的信道接入方法的流程图,如图5所示,该方法包括如下步骤:
步骤S502,获取用于通过多天线设备发送数据的发送请求;
步骤S504,在发送请求对应的每个波束方向上进行独立的 信道接入。
通过上述实施例,可以获取通过多天线设备发送数据的发送请求,并在发送请求所对应的每个波束方向上进行独立的信道接入,该多天线设备可以在多个波束方向上发送数据和接收数据,多天线设备在发送波束和接收波束的方向可以是固定的。在本申请实施例中,发送波束和接收波束可以在多天线设备的对应的同一个方向中进行,并且可以进行独立信道的接入,这样可以降低来自其它方向波束信号的干扰,从而解决了多天线设备的信道接入的频谱效率低的技术问题。
对于上述实施例中的多天线设备可以为基站,基站的天线可以将基站的小区分为不重叠的扇区,每个扇区具有独立的收发天线单元,基站的发送和接收波束方向固定。
上述实施例中,可以先执行步骤S502,获取用于通过多天线设备发送数据的发送请求,该多天线设备可以发送数据,在多天线设备接收到来自其它设备发送数据的请求时,可以将发送的数据进行一定的处理,在合适的发送波束方向上发送数据,其中,多天线设备接收的数据来源可以是其它移动终端(例如,手机)、服务器或者基站等设备,对本申请实施例中的发送数据请求,可以是通过指令的形式完成,该指令可以是代码也可以是数据,多天线设备可以接收来自其它设备发送的数据发送指令。
对于上述实施例中的接收到来自其它设备发送数据的请求,该接收数据可以有相应的波束方向,该波束方向对于发送数据方可以是进行发送数据的波束方向;而对于多天线设备可以是接收数据的波束方向,这个接收数据的方向可以是固定的,也可以是多天线设备的各个方向中的一个随机方向,该随机方向是根据多天线设备与发送数据方的设备之间的距离确定的,这里接收数据方向的确定可以是多天线设备与发送数据方之间 的最短距离。
在本申请实施例中,多天线设备可以在获取到发送数据的发送请求后,执行步骤S504,在发送请求对应的每个波束方向上进行独立的信道接入。其中,该波束方向可以是接收数据时的波束方向,在接收数据时对于接收数据的方向可以确定,这样也可以确定该方向上的信道,在本申请实施例中,确定接收数据的信道后,可以在该信道进行数据传输。信道进行数据传输时,多天线设备可以确定接收数据的波束方向,发送数据方可以确定发送数据的波束方向,其中,发送数据方发送数据的波束方向和多天向设备接收数据的波束方向可以是相对的,在同一个信道中的不同方向。
对于上述实施例中的信道接入,可以先获取与发送请求指示对应的发送天线辐射分布信息,之后,基于该发送天线辐射分布信息确定接收天线辐射分布信息,最后,多天线设备对接收的天线方向图中每个波束方向的接收信号进行独立的信道忙闲检测。其中,发送天线辐射分布信息可以包括发送请求方对多天线设备请求发送数据的指令的方向,以及发送数据到多天线设备的方向,该发送天线辐射分布信息可以包括多个发送请求方对多天线设备请求发送数据的指令的方向,对于多个发送请求方对多天线设备请求发送数据的指令的方向可以是不冲突的,即每一个方向可以有相应的请求发送数据的指令,也可以没有请求发送数据的指令,但是在同一个方向的同一时间不可以有发送请求发送数据的指令,否则其会造成发送数据请求的冲突,发送天线辐射分布信息可以是实时变化的,在一定时间间隔内(例如,5分钟),发送天线辐射分布信息可以根据各个方向请求发送数据的指令来确定发送天线辐射分布信息。在获取到发送天线辐射分布信息后,多天线设备可以基于该发送天线辐射分布信息确定接收天线辐射分布信息,在确定接收天线 辐射分布信息时,可以是根据接收天线辐射分布信息中每一个方向的发送请求数据的指令的方向确定,在请求发送数据时,从发送请求指令到多天线设备的发送波束方向可以确定,在确定发送方向天线图和接收天线放线图是,可以调整发送天线辐射分布信息和接收天线辐射分布信息,可以使得发送天线辐射分布信息和接收天线辐射分布信息相近,也可以是一一对应的。
对于上述实施例,多天线设备可以在确定接收天线辐射分布信息后,对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测,其中,接收天线辐射分布信息中的每个波束方向是根据请求发送数据设备发送到多天线设备的请求发送指令确定的,该波束方向的接收信号可以是请求发送数据方发送请求指令或者发送数据后,多天线设备接收数据的信号,在接收信号之前,需要对信道进行忙闲检测,以确定是否可以接收发送数据,在这里对每个波束方向的接收信号进行忙闲检测可以包括对多天线设备的每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,信道忙闲检测包括信道能量检测和/或载波侦听。
对于上述实施例中对多天线设备的每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,对接收信号进行独立的信道能量检测可以包括接收信号在第一预设时间段(例如,2分钟)内的能量低于门限值(例如,20dbi)时,认为波束方向在第一预设时间段内的信道空闲,并在波束方向的接收信号在第二预设时间段(例如,1分钟)内的能量低于门限值时,将当前退避系数减一,并继续对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。可选的,若检测出波束方向的接收信号在第二预设时间段内的能量高于门限值,则保持当前退避系数不变,若接收信号在第一预设时间段内的能量高于门限值,则确定波束方向的信道繁忙,保持 当前退避系数不变。对于该实施例,第一预设时间段和第二预设时间段可以是相同的,也可以是不同的,其中,退避系数可以是用于计算发送数据前能够检测到多少个空闲的时隙,只有能够检测到一定的数值(例如,5个)才可以发送信号,该数值可以为标准规定的范围随机生成的。在本申请实施例中,通过检测信道的能量是否高于门限值,从而确定信道是否繁忙,以及确定是否可以减少退避系数,可以在退避系数减少到一定的数值时(例如,0个)发送数据。
在上述实施例中的对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测之后,可以确定当前退避系数,若当前退避系数不为零,则继续进行对波束方向进行信道能量检测,若当前退避系数为零,则可以在接收天线辐射分布信息中的对应的波束方向上发送数据。
可选的,多天线设备可以在对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测之后,可以在每个波束方向上分别发送控制信息,对于本申请实施例中,多天线设备可以在每个波束方向上分别发送控制信息时,通过接收天线辐射分布信息和发送天线辐射分布信息确定每个波束的方向,该控制信息可以是请求发送的数据,也可以是发送数据的指令。
一种可选的实施例,在基于发送天线辐射分布信息确定接收天线辐射分布信息的过程中可以根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵,之后可以基于发送预编码矩阵和接收预编码矩阵调整发送天线辐射分布信息和接收天线辐射分布信息。对于该实施例中的波束赋形可以应用在多天线设备上,该波束赋形可以是基于天线阵列的信号预处理方式,其中,在发送波束赋形之前可以形成相应的发送预编码矩阵,可以通过发送预编码矩阵选取对应的接收预编码矩阵,在发送 预编码矩阵选取对应的接收预编码矩阵的过程中,可以先确定发送请求对应的多个用户设备,其中,确定多个用户设备可以是确定有几个请求发送数据的设备,对于请求发送数据的设备在发送数据时可以有不同的方向,可以确定多个用户设备的不同方向以及在同一方向上有一个或多个设备请求发送数据的前后顺序,这样可以计算相应的退避系数,之后,可以在对用户设备进行信道接收检测时,检测干扰信号的参考信号,该干扰信号的检测可以是根据该参考信号确定的,在用户设备对信道进行检测时,也可以检测信道的干扰信号。
一种可选的实施例,在检测干扰信号的参考信号时,可以在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,参考信号可以包括小区特定参考信号和下行解调参考信号,可以对在检测到的干扰信号为LTE上行信号的情况下,检测上行参考信号,其中,参考信号包括上行解调参考信号和探测参考信号。对于该实施例检测干扰信号为LTE上行信号或LTE下行信号,可以是根据信道的能量确定。
对于上述实施例,多天线设备可以根据检测到的干扰信号的参考信号,获取发送参考信号的设备到多天线设备间的信道系数矩阵,最后将干扰信号到多天线设备间的信道系数矩阵合并入信道系数联合矩阵,得到合并后的信道系数联合矩阵。其中,该信道系数矩阵可以是根据请求发送数据方到多天线设备间的信道系数确定的,在信道中,由请求发送方发送请求数据到多天线设备发送数据,有不同的波束方向,在多天线设备接收请求发送数据以及接收发送数据指令后发送数据时,在信道中会有不同的干扰信号,该干扰信号可以是外来设备的干扰信号,该外来设备的干扰信号可以不发送数据,例如,噪声,另一种干扰信号可以是其它方向的干扰信号,其可以是在请求发送数据或者主动发送数据时产生的干扰信号,该干扰信号可以 是偏离了请求发送数据的方向,可以在主动发送数据时,对应了其它方向,从而在另一个方向发送数据,这样可以在其它发送数据的信道上产生干扰信号。
一种可选的实施例,根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵可以利用矩阵选择算法进行选取,其中矩阵选择算法可以为迫零算法、最小均方误差算法、块对角化算法、或到达角方向算法。
一种可选的实施例,在发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵中获得各个用户设备的信道系数矩阵,其中,对于信道系数矩阵可以是对信道正交程度高于预设阈值的N个用户设备进行配对,得到配对用户设备n的信道系数联合矩阵H-n,其中,H-n=[H1,H2,…,Hn-1,Hn+1,…,HN],信道系数联合矩阵H-n为除了配对用户设备n以外的其他用户设备的联合信道矩阵,之后,对配对用户设备n的信道系数联合矩阵H-n进行奇异值分解,得到H-n=[U-n(1)U-n(0)]Σ-n[V-n(1)V-n(0)],最后,选取Zn=(U-n(0))作为用户设备n的接收预编码矩阵。
对于上述实施例,在检测干扰信号为LTE下行信号的情况下,可以检测下行参考信号,其中,参考信号可以包括小区特定参考信号和下行解调参考信号,之后,在检测到的干扰信号为Wi-Fi信号的情况下,可以检测前导序列信号,其中,参考信号可以包括前导序列信号。在该实施例中,小区可以是将天线根据上述实施例中基站的小区,基站可以将小区分为不同的扇区,在基站的发送和接收波束的方向可以是固定的也可以是有一些偏差的,对于小区特定的参考信号可以是根据基站的波束方向确定的,也可以是对于基站发送和接收数据时确定的,对于下行解调参考信号可以是在检测参考信号时确定的。
可选的,该多天线设备可以在非授权频段进行信道接入。
一种可选的实施方式,多天线设备在每个波束方向上分别发送控制信息后,可以在公共物理下行控制信道上发送信号时,同时在多个信道接入成功的波束方向上发送公共物理下行控制信道的公共控制信息。,其中,所述公共控制信息包括:公共物理下行控制信道参考信号、公共参考信号、公共测量和报告引入信道状态信息参考信号、公共主同步信号和公共辅同步信号,另一种可选的实施方式,可以在物理下行控制信道发送单播给对应用户的物理下行共享信道的调度信息时,在对应的用户设备的波束方向上或者同时在其他信道接入成功的波束方向上的所述调度信息对应的控制信道单元上进行发送。
对于上述实施例,在发送请求对应的每个波束方向上进行独立的信道接入时,可以在多天线设备的发送和接收波束方向固定时,在不同的波束方向使用不同的天线进行独立的信道接入,即在多天线设备的不同方向确定发送和接收波束。对于发送和接收波束可以配置不同的天线进行独立的信道接入,该天线的配置是根据发送和接收波束的方向确定的;在同一个请求数据中,请求发送数据方向多天线设备发送请求信息与多天线设备在接收到请求发送信息后发送数据的波束用同一个天线,这样可以避免其他方向的发送和接收波束的干扰信息,提高频谱利用率。
对于上述实施例中,可以在对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测时,可以基于每个波束方向上的混合自动重传请求的反馈调整对应的波束方向上的信道竞争窗,也可以基于接收天线辐射分布信息中所有波束方向上的混合自动重传请求的反馈调整每个波束方向上的信道竞争窗。在每个波束方向上的混合自动重传请求的反馈是根据发送和接收波束时有无产生信号干扰或者信道干扰确定的,在该反馈调整中,可以是基于单个波束方向上的反馈,也 可以是对接收天线辐射分布信息中的所有波束方向上的反馈,其反馈的信息可以用于调整信道的使用,可以达到对信道的分配更合理,从而提高信道的使用率,提高频谱的使用率。
一种可选的实施方式,该多天线设备可以在非授权频段进行信道接入,通过调整接收天线辐射分布信息与发送天线辐射分布信息保持一致,对每个波束方向的接收信号进行独立的信道忙闲检测进程,其中信道忙闲检测具体可以为:当能量低于门限则判定当前波束方向的信道空闲,退避计数减一;当能量高于门限则判定当前波束方向的信道繁忙,退避计数不变,继续进行能量检测,通过该实施例,可以通过在多个波束方向上独立的进行信道接入,实现了提高非授权频段的频谱效率的效果。
对于上述实施例,可以通过多用户流波束赋形发送以及在对应多个波束方向分别进行信道忙闲检测并独立进行信道接入,可以避免不同方向波束间对信道忙闲检测结果的影响,进而提高了非授权频段上的空间分集增益和频谱效率。
可选的,发送天线辐射分布信息可以记录在发送天线方向分布图中,接收天线辐射分布信息可以记录在接收天线方向分布图中。
在上述实施例中,需要注意的是,上述实施例中所描述的移动通信具体技术不限,可以为WCDMA、CDMA2000、TD-SCDMA、WiMAX、LTE/LTE-A以及后续可能出现的第五代、第六代、第N代移动通信技术,上述实施例中描述的终端,指可以支持陆地移动通信系统的通信协议的终端侧产品,特制通信的调制解调器模块(Wireless Modem),其可以被手机、平板电脑、数据卡等各种类型的终端形态集成从而完成通信功能,另外,为方便描述,以下采用第四代移动通信系统LTE/LTE-A作为举例,其中移动通信终端表示为UE(User Equipment),接入设备表示为基站来对上述实施例中的方法进行进一步的解释 说明。
下面是根据本申请可选的实施例的具体实施方式。
在一个可选的实施例中,在基于多流波束赋形时,可以根据发射发送波束赋形的预编码矩阵,选择对应的接收预编码矩阵。具体选择方法包括通过迫零、最小均方误差、块对角化化、到达角方向AoA等算法,根据发送预编码矩阵、信道系数矩阵、离开角AoD、检测到干扰等来调整接收以及发送方向图,使得接收方向图与发射方向图保持基本相同。图6是本申请实施例下行数据传输的示意图,如图6所示,在数据传输的过程中,多天线设备的下行数据传输与如图7所示的上行数据传输都对数据的传输有不同的方式。可选的,上行数据传输可以是发送数据,下行数据传输可以是接收数据,这里的上下行数据传输不做具体地限定。
另一种可选的实施方式,以基站下行使用对角化(Block diagonalization)算法作为多用户波束赋形为例,假设上下行在相同的载波,首先基站通过检测用户设备发送的SRS等上行参考信号(上下行不在同载波的情况,通过UE反馈获得)获得用户n的信道系数矩阵Hn,选取信道正交程度较高的N个用户进行配对,形成联合信道系数矩阵H=[H1,H2,…,Hn,…HN],定义H-n=[H1,H2,…,Hn-1,Hn+1,…,HN]为除了用户n以外的其他用户的联合信道矩阵,即与用户n产生互相干扰的信道矩阵。发送波束赋形与接收波束赋形的目的均是为了获得最有预编码矩阵,使得该预编码矩阵在用户n方向信干噪比最大,即将其他用户的干扰最小化的同时最大化接收信号。对配对用户的信道系数联合矩阵H-n进行SVD分解,得到H-n=[U-n(1)U-n(0)]Σ-n[V-n(1)V-n(0)]*,其中X(1)和X(0)分别表示非零特征值和零特征值对应的特征向量构成的子空间。因此U-n(0)是H-n的零空间的一组正交基,即(U-n(0))*H-n=0,即多用户间的干 扰为零。选取Zn=(U-n(0))*作为用户n的接收预编码矩阵,则Zn H=Zn Hn。同理选择Wn=V-n(0)作为用户n的发送预编码矩阵。进一步优化用户n的接收信干噪比,可以继续对Hn进行SVD分解,以获取最优信道编码矩阵(Hn=[Un(1)Un(0)]Σn[Vn(1) Vn(0)]*),最终接收预编码矩阵为(Un(1)U-n(0))*,同理可得最终发送预编码矩阵Vn-1(0)Vn(1)。基站将N个配对后的用户调度在同一个数据突发之中,且每个用户被调度占用整个数据突发时长,在进行信道检测时,首先对接收信号乘以N个用户的接收预编码矩阵后获得每个用户对应的波束方向的接收信号,然后对于每个对应波束方向单独进行能量检测,当能量低于门限则判定当前波束方向的信道空闲,退避计数减一。
在上述实施例中,在能量高于门限时则判定当前波束方向的信道繁忙,退避计数不变,继续进行能量检测。对于信道接入参数(如P3表中所示)可以是每个用户的波束方向使用不同的参数,也可以使用相同的参数。对于信道竞争窗基于HARQ反馈的调整,可以每个用户的波束方向上单独根据本方向的HARQ反馈,也可以根据所有波数方向上HARQ反馈共同维护。对于全双工的系统(即在相同载波上同时收发),各个波束的发送可以独立(以TTI为颗粒度),对于半双工的系统(即在相同载波上只能同时收或发),各个波束的发送需要对齐,可以采用3GPP中对于多载波信道接入流程(即通过选择信道接入主载波或通过额外退避来对齐多个波束上的退避计数)。
在另一个可选的实施例中,在检测到干扰信号后对零陷调整时,可以基于上述可选实施例的方法,当设备在进行信道接收检测并发现其他可辨识干扰信号时,可以根据干扰信号的类型选择对应的检测方式(例如当检测到干扰信号为LTE信号时),通过干扰信号上的参考信号(例如当检测到干扰信号为LTE信 号时,检测CRS;当检测到为WiFi信号时,检测preamble等参考信号),获得干扰信号到接收设备间的信道系数矩阵。将该干扰的信道系数矩阵合并入联合信道矩阵H中,来计算预编码矩阵,从而实现对干扰信号波数方向的零陷。
在另一个可选的实施例中,在控制信道以及参考信号的波束赋形时,也可以基于第一个可选的实施例中的方法,数据突发中可能会包含公共信号,如公共PDCCH用于指示子帧配置、参考信号CRS/CSI-RS、同步信号PSS/SSS等、以及在PDCCH上传输的调度(self-scheduling在非授权载波上同时传输DL GRANT和PDSCH)单播PDSCH的DCI等,为了避免PDCCH对于波束方向的影响,基站可以在每个用户的波束方向上分别发送控制信息。具体地,当发送公共PDCCH时,公共PDCCH/CRS/CSI-RS/PSS/SSS等同时在多个信道接入成功的波束方向上发送(即同样经过波束赋形);当在PDCCH发送调度单播PDSCH的DCI时,该DCI对应的CCE可以只在该UE对应的波束方向上发送(即同样经过波束赋形),也可以在其他信道接入成功的波束上发送。对于EPDCCH传输的DCI,由于其本身支持波束赋形,可以使用与对应用户相同的与编码矩阵进行波束赋形。
在另一个可选的实施例中,可以进行基于扇区化天线的设置,也即本实施例的方法的一个特殊应用为当天线的发送和接收波束方向固定(例如扇区化天线,将一个360°小区分为三个不重叠的120°扇区,每个扇区有独立的收发天线单元)时,各个波束方向上的信道接入完全独立进行。
通过本申请实施例实施例,可以在多个波束方向上独立的进行信道接入,实现了提高非授权频段的频谱效率的效果。
在上述实施例中,可以通过多用户流波束赋形发送以及在对应多个波束方向分别进行信道忙闲检测并独立进行信道接入 过程的方法,避免不同方向波束间对信道忙闲检测结果的影响,进而提高了非授权频段上的空间分集增益和频谱效率。
下面以另一种可选的实施例做出说明。
图8是根据本申请实施例的另一种可选的多天线设备的信道接入装置的结构图,如图8所示,该装置包括:第一获取单元81,用于获取用于通过多天线设备发送数据的发送请求;接入单元82,用于在发送请求对应的每个波束方向上进行独立的信道接入。
通过上述实施例,可以利用第一获取单元81在多天线设备获取到发送数据的请求时,利用接入单元82对发送请求所对应的每个波束方向上进行独立的信道接入,该多天线设备可以同时在多个波束方向上发送数据和接收数据,多天线设备在发送波束和接收波束的方向可以是固定的,在本申请实施例中,发送波束和接收波束可以在多天线设备的对应的同一个方向中进行,并且可以进行独立信道的接入,这样可以降低来自其它方向波束信号的干扰,从而解决了多天线设备的信道接入的频谱效率低的技术问题。
可选的,对于上述实施例中的接入单元可以包括:第一获取模块,用于获取与发送请求指示对应的发送天线辐射分布信息;第一确定模块,用于基于发送天线辐射分布信息确定接收天线辐射分布信息;第一检测模块,用于对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
对于上述实施例,其第一检测模块可以包括:第一检测子模块,用于对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,信道忙闲检测包括信道能量检测和/或载波侦听。
可选的,上述实施例中的第一确定模块可以包括:第一调整子模块,用于调整发送天线辐射分布信息和接收天线辐射分 布信息,使得发送天线辐射分布信息和接收天线辐射分布信息相近。
对于上述实施方式,第一检测模块还可以包括:第一计数子模块,用于在接收信号在第一预设时间段内的能量低于门限值时,认为波束方向在第一预设时间段内的信道空闲,并在波束方向的接收信号在第二预设时间段内的能量低于门限值时,将当前退避系数减一,并继续对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
进一步地,第一检测模块还包括:第二计数子模块,用于若波束方向的接收信号在第二预设时间段内的能量高于门限值,则保持当前退避系数不变;第二计数子模块,用于若接收信号在第一预设时间段内的能量高于门限值,则确定波束方向的信道繁忙,保持当前退避系数不变。
可选的,上述实施例中的装置还可以包括:第二检测子模块,用于在第一检测模块工作之后,若当前退避系数不为零,则继续进行对波束方向进行信道能量检测。
对于上述实施中的装置还可以包括:第三检测子模块,用于在第一检测模块工作之后,若当前退避系数为零,则在波束方向上发送数据。
一种可选的实施方式,第一确定模块还可以包括:第一选取子模块,用于根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵;第二调整子模块,用于基于发送预编码矩阵和接收预编码矩阵调整发送天线辐射分布信息和接收天线辐射分布信息。
对于上述实施方式,第一选取子模块可以包括:第一确定子模块,用于确定发送请求对应的多个用户设备;第四检测子模块,用于在对用户设备进行信道接收检测时,检测干扰信号的参考信号;第一获取子模块,用于根据检测到的干扰信号的 参考信号,获取发送参考信号的设备到多天线设备间的信道系数矩阵;合并子模块,用于将干扰信号到多天线设备间的信道系数矩阵合并入信道系数联合矩阵,得到合并后的信道系数联合矩阵。
在本申请实施例中,第四检测子模块可以包括:第五检测子模块,用于在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,参考信号包括小区特定参考信号和下行解调参考信号;第六检测子模块,用于在检测到的干扰信号为LTE上行信号的情况下,检测上行参考信号,其中,参考信号包括上行解调参考信号和探测参考信号。
对于上述实施例中第四检测子模块还可以包括:第七检测子模块,用于在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,参考信号包括小区特定参考信号和下行解调参考信号;第八检测子模块,用于在检测到的干扰信号为Wi-Fi信号的情况下,检测前导序列信号,其中,参考信号包括前导序列信号。
可选的实施方式该装置还可以包括:发送模块,用于在第一检测模块工作之后,在每个波束方向上分别发送控制信息。
对于上述实施方式中的发送模块可以包括下述之一:第一发送子模块,用于当在公共物理下行控制信道上发送信号时,同时在多个信道接入成功的波束方向上发送公共物理下行控制信道的公共控制信息,其中,公共控制信息包括:公共物理下行控制信道参考信号、公共参考信号、公共测量和报告引入信道状态信息参考信号、公共主同步信号和公共辅同步信号。
可选的实施方式,上述实施方式的发送模块还包括下述之一:第二发送子模块,用于当在物理下行控制信道发送单播给对应用户的物理下行共享信道的调度信息时,在对应的用户设备的波束方向上或者同时在其他信道接入成功的波束方向上的 调度信息对应的控制信道单元上进行发送。
对于上述实施例,接入单元包括:第一接入模块,用于当多天线设备的发送和接收波束方向固定时,在不同的波束方向使用不同的天线进行独立的信道接入。
可选的实施方式,多天线设备为基站,基站的天线将基站的小区分为不重叠的扇区,每个扇区具有独立的收发天线单元时,基站的发送和接收波束方向固定。
进一步地,第一检测模块包括:第三调整子模块,用于基于每个波束方向上的混合自动重传请求的反馈调整对应的波束方向上的信道竞争窗;或者,第四调整子模块,用于基于接收天线辐射分布信息中所有波束方向上的混合自动重传请求的反馈调整每个波束方向上的信道竞争窗。
另一种可选的实施方式,发送天线辐射分布信息记录在发送天线方向分布图中,接收天线辐射分布信息记录在接收天线方向分布图中。
图9是根据本申请实施例的另一种可选的基站的示意图,该基站可以应用于上述实施例,如图9所示,包括:存储器91、与存储器耦合的处理器93,存储器和处理器通过总线系统相通信;存储器存储软件程序;处理器通过运行软件程序以用于:获取用于通过多天线设备发送数据的发送请求;在发送请求对应的每个波束方向上进行独立的信道接入。
可选的,处理器还用于通过执行下述步骤:获取与发送请求指示对应的发送天线辐射分布信息;基于发送天线辐射分布信息确定接收天线辐射分布信息;对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测,以在发送请求对应的每个波束方向上进行独立的信道接入。
另一种可选的实施方式,处理器还用于通过执行下述步骤:对接收天线辐射分布信息中每个波束方向的接收信号进行独立 的信道能量检测和/或载波侦听,其中,信道忙闲检测包括信道能量检测和/或载波侦听,以对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
可选的,处理器还用于通过执行下述步骤:调整发送天线辐射分布信息和接收天线辐射分布信息,使得发送天线辐射分布信息和接收天线辐射分布信息相近,以基于发送天线辐射分布信息确定接收天线辐射分布信息。
其中,处理器还用于通过执行下述步骤:在接收信号在第一预设时间段内的能量低于门限值时,认为波束方向在第一预设时间段内的信道空闲,并在波束方向的接收信号在第二预设时间段内的能量低于门限值时,将当前退避系数减一,并继续对接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
在本申请的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单 元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (43)

  1. 一种多天线设备的信道接入方法,其特征在于,包括:
    获取用于通过多天线设备发送数据的发送请求;
    在所述发送请求对应的每个波束方向上进行独立的信道接入。
  2. 根据权利要求1所述的方法,其特征在于,在所述发送请求对应的每个所述波束方向上进行独立的信道接入包括:
    获取与所述发送请求指示对应的发送天线辐射分布信息;
    基于所述发送天线辐射分布信息确定接收天线辐射分布信息;
    对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
  3. 根据权利要求2所述的方法,其特征在于,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:
    对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,所述信道忙闲检测包括信道能量检测和/或载波侦听。
  4. 根据权利要求2所述的方法,其特征在于,基于所述发送天线辐射分布信息确定接收天线辐射分布信息包括:
    调整发送天线辐射分布信息和接收天线辐射分布信息,使得所述发送天线辐射分布信息和所述接收天线辐射分布信息相近。
  5. 根据权利要求2所述的方法,其特征在于,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:
    在所述接收信号在所述第一预设时间段内的能量低于所述门限值时,认为所述波束方向在所述第一预设时间段内的信道 空闲,并在所述波束方向的接收信号在所述第二预设时间段内的能量低于所述门限值时,将当前退避系数减一,并继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
  6. 根据权利要求5所述的方法,其特征在于,继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:
    若检测出所述波束方向的接收信号在所述第二预设时间段内的能量高于所述门限值,则保持当前退避系数不变;
    若检测出所述接收信号在所述第一预设时间段内的能量高于所述门限值,则确定所述波束方向的信道繁忙,保持当前退避系数不变。
  7. 根据权利要求5所述的方法,其特征在于,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测之后,所述方法还包括:
    若所述当前退避系数不为零,则继续进行对所述波束方向进行信道能量检测。
  8. 根据权利要求5所述的方法,其特征在于,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测之后,所述方法还包括:
    若所述当前退避系数为零,则在所述波束方向上发送所述数据。
  9. 根据权利要求2所述的方法,其特征在于,基于所述发送天线辐射分布信息确定接收天线辐射分布信息包括:
    根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵;
    基于所述发送预编码矩阵和所述接收预编码矩阵调整所述发送天线辐射分布信息和接收天线辐射分布信息。
  10. 根据权利要求9所述的方法,其特征在于,根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵包括:
    确定所述发送请求对应的多个用户设备;
    在对所述用户设备进行信道接收检测时,检测干扰信号的参考信号;
    根据检测到的干扰信号的参考信号,获取发送所述参考信号的设备到多天线设备间的信道系数矩阵;
    将所述干扰信号到多天线设备间的信道系数矩阵合并入所述信道系数联合矩阵,得到合并后的信道系数联合矩阵。
  11. 根据权利要求9所述的方法,其特征在于,检测干扰信号的参考信号包括:
    在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;
    在检测到的干扰信号为LTE上行信号的情况下,检测上行参考信号,其中,所述参考信号包括上行解调参考信号和探测参考信号。
  12. 根据权利要求9所述的方法,其特征在于,检测干扰信号的参考信号包括:
    在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;
    在检测到的干扰信号为Wi-Fi信号的情况下,检测前导序列信号,其中,所述参考信号包括所述前导序列信号。
  13. 根据权利要求2所述的方法,其特征在于,在对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测之后,所述方法还包括:
    在所述每个波束方向上分别发送控制信息。
  14. 根据权利要求13所述的方法,其特征在于,在所述每个波束方向上分别发送控制信息包括下述之一:
    当在公共物理下行控制信道上发送信号时,同时在多个信道接入成功的波束方向上发送公共物理下行控制信道的公共控制信息,其中,所述公共控制信息包括:公共物理下行控制信道参考信号、公共参考信号、公共测量和报告引入信道状态信息参考信号、公共主同步信号和公共辅同步信号。
  15. 根据权利要求13所述的方法,其特征在于,在所述每个波束方向上分别发送控制信息包括下述之一:
    当在物理下行控制信道发送单播给对应用户的物理下行共享信道的调度信息时,在对应的用户设备的波束方向上或者同时在其他信道接入成功的波束方向上的所述调度信息对应的控制信道单元上进行发送。
  16. 根据权利要求1所述的方法,其特征在于,在所述发送请求对应的每个波束方向上进行独立的信道接入包括:
    当所述多天线设备的发送和接收波束方向固定时,在不同的波束方向使用不同的天线进行独立的信道接入。
  17. 根据权利要求15所述的方法,其特征在于,所述多天线设备为基站,所述基站的天线将所述基站的小区分为不重叠的扇区,每个所述扇区具有独立的收发天线单元时,所述基站的发送和接收波束方向固定。
  18. 根据权利要求2所述的方法,其特征在于,对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测包括:
    基于每个所述波束方向上的混合自动重传请求的反馈调整对应的波束方向上的信道竞争窗;或者
    基于所述接收天线辐射分布信息中所有波束方向上的混合自动重传请求的反馈调整所述每个波束方向上的信道竞争窗。
  19. 根据权利要求2所述的方法,其特征在于,所述发送天线辐射分布信息记录在发送天线方向分布图中,所述接收天线辐射分布信息记录在接收天线方向分布图中。
  20. 一种多天线设备的信道接入装置,其特征在于,包括:
    第一获取单元,用于获取用于通过多天线设备发送数据的发送请求;
    接入单元,用于在所述发送请求对应的每个波束方向上进行独立的信道接入。
  21. 根据权利要求20所述的装置,其特征在于,接入单元包括:
    第一获取模块,用于获取与所述发送请求指示对应的发送天线辐射分布信息;
    第一确定模块,用于基于所述发送天线辐射分布信息确定接收天线辐射分布信息;
    第一检测模块,用于对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
  22. 根据权利要求21所述的装置,其特征在于,第一检测模块包括:
    第一检测子模块,用于对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,所述信道忙闲检测包括信道能量检测和/或载波侦听。
  23. 根据权利要求21所述的装置,其特征在于,第一确定模块包括:
    第一调整子模块,用于调整发送天线辐射分布信息和接收天线辐射分布信息,使得所述发送天线辐射分布信息和所述接收天线辐射分布信息相近。
  24. 根据权利要求21所述的装置,其特征在于,第一检测模块还包括:
    第一计数子模块,用于在所述接收信号在所述第一预设时间段内的能量低于所述门限值时,认为所述波束方向在所述第一预设时间段内的信道空闲,并在所述波束方向的接收信号在所述第二预设时间段内的能量低于所述门限值时,将当前退避系数减一,并继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
  25. 根据权利要求22所述的装置,其特征在于,所述第一检测模块还包括:
    第二计数子模块,用于若所述波束方向的接收信号在所述第二预设时间段内的能量高于所述门限值,则保持当前退避系数不变;若所述接收信号在所述第一预设时间段内的能量高于所述门限值,则确定所述波束方向的信道繁忙,保持当前退避系数不变。
  26. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    第二检测子模块,用于在第一检测模块工作之后,若所述当前退避系数不为零,则继续进行对所述波束方向进行信道能量检测。
  27. 根据权利要求25所述的装置,其特征在于,所述装置还包括:
    第三检测子模块,用于在第一检测模块工作之后,若所述当前退避系数为零,则在所述波束方向上发送所述数据。
  28. 根据权利要求21所述的装置,其特征在于,第一确定模块还包括:
    第一选取子模块,用于根据发射发送波束赋形的发送预编码矩阵选取接收预编码矩阵;
    第二调整子模块,用于基于所述发送预编码矩阵和所述接收预编码矩阵调整所述发送天线辐射分布信息和接收天线辐射 分布信息。
  29. 根据权利要求28所述的装置,其特征在于,第一选取子模块包括:
    第一确定子模块,用于确定所述发送请求对应的多个用户设备;
    第四检测子模块,用于在对所述用户设备进行信道接收检测时,检测干扰信号的参考信号;
    第一获取子模块,用于根据检测到的干扰信号的参考信号,获取发送所述参考信号的设备到多天线设备间的信道系数矩阵;
    合并子模块,用于将所述干扰信号到多天线设备间的信道系数矩阵合并入所述信道系数联合矩阵,得到合并后的信道系数联合矩阵。
  30. 根据权利要求28所述的装置,其特征在于,第四检测子模块包括:
    第五检测子模块,用于在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;
    第六检测子模块,用于在检测到的干扰信号为LTE上行信号的情况下,检测上行参考信号,其中,所述参考信号包括上行解调参考信号和探测参考信号。
  31. 根据权利要求28所述的装置,其特征在于,第四检测子模块还包括:
    第七检测子模块,用于在检测干扰信号为LTE下行信号的情况下,检测下行参考信号,其中,所述参考信号包括小区特定参考信号和下行解调参考信号;
    第八检测子模块,用于在检测到的干扰信号为Wi-Fi信号的情况下,检测前导序列信号,其中,所述参考信号包括所述前 导序列信号。
  32. 根据权利要求21所述的装置,其特征在于,所述装置还包括:
    发送模块,用于在第一检测模块工作之后,在所述每个波束方向上分别发送控制信息。
  33. 根据权利要求32所述的装置,其特征在于,发送模块包括下述之一:
    第一发送子模块,用于当在公共物理下行控制信道上发送信号时,同时在多个信道接入成功的波束方向上发送公共物理下行控制信道的公共控制信息,其中,所述公共控制信息包括:公共物理下行控制信道参考信号、公共参考信号、公共测量和报告引入信道状态信息参考信号、公共主同步信号和公共辅同步信号。
  34. 根据权利要求32所述的装置,其特征在于,发送模块还包括下述之一:
    第二发送子模块,用于当在物理下行控制信道发送单播给对应用户的物理下行共享信道的调度信息时,在对应的用户设备的波束方向上或者同时在其他信道接入成功的波束方向上的所述调度信息对应的控制信道单元上进行发送。
  35. 根据权利要求20所述的装置,其特征在于,接入单元包括:
    第一接入模块,用于当所述多天线设备的发送和接收波束方向固定时,在不同的波束方向使用不同的天线进行独立的信道接入。
  36. 根据权利要求34所述的装置,其特征在于,所述多天线设备为基站,所述基站的天线将所述基站的小区分为不重叠的扇区,每个所述扇区具有独立的收发天线单元时,所述基站的发送和接收波束方向固定。
  37. 根据权利要求21所述的装置,其特征在于,第一检测模块包括:
    第三调整子模块,用于基于每个所述波束方向上的混合自动重传请求的反馈调整对应的波束方向上的信道竞争窗;或者
    第四调整子模块,用于基于所述接收天线辐射分布信息中所有波束方向上的混合自动重传请求的反馈调整所述每个波束方向上的信道竞争窗。
  38. 根据权利要求21所述的装置,其特征在于,所述发送天线辐射分布信息记录在发送天线方向分布图中,所述接收天线辐射分布信息记录在接收天线方向分布图中。
  39. 一种基站,其特征在于,包括:
    存储器、与所述存储器耦合的处理器,所述存储器和所述处理器通过总线系统相通信;
    所述存储器存储软件程序;
    所述处理器通过运行所述软件程序以用于:
    获取用于通过多天线设备发送数据的发送请求;
    在所述发送请求对应的每个波束方向上进行独立的信道接入。
  40. 根据权利要求39所述的基站,其特征在于,所述处理器还用于通过执行下述步骤:获取与所述发送请求指示对应的发送天线辐射分布信息;基于所述发送天线辐射分布信息确定接收天线辐射分布信息;对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测,以在所述发送请求对应的每个波束方向上进行独立的信道接入。
  41. 根据权利要求39所述的基站,其特征在于,所述处理器还用于通过执行下述步骤:对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道能量检测和/或载波侦听,其中,所述信道忙闲检测包括信道能量检测和/或载波侦听, 以对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
  42. 根据权利要求39所述的基站,其特征在于,所述处理器还用于通过执行下述步骤:调整发送天线辐射分布信息和接收天线辐射分布信息,使得所述发送天线辐射分布信息和所述接收天线辐射分布信息相近,以基于所述发送天线辐射分布信息确定接收天线辐射分布信息。
  43. 根据权利要求39所述的基站,其特征在于,所述处理器还用于执行下述步骤:在所述接收信号在所述第一预设时间段内的能量低于所述门限值时,认为所述波束方向在所述第一预设时间段内的信道空闲,并在所述波束方向的接收信号在所述第二预设时间段内的能量低于所述门限值时,将当前退避系数减一,并继续对所述接收天线辐射分布信息中每个波束方向的接收信号进行独立的信道忙闲检测。
PCT/CN2017/112877 2016-12-14 2017-11-24 多天线设备的信道接入方法及装置 WO2018107951A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611155769.6A CN106658751B (zh) 2016-12-14 2016-12-14 多天线设备的信道接入方法及装置
CN201611155769.6 2016-12-14

Publications (1)

Publication Number Publication Date
WO2018107951A1 true WO2018107951A1 (zh) 2018-06-21

Family

ID=58823236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112877 WO2018107951A1 (zh) 2016-12-14 2017-11-24 多天线设备的信道接入方法及装置

Country Status (2)

Country Link
CN (1) CN106658751B (zh)
WO (1) WO2018107951A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019036231A1 (en) * 2017-08-16 2019-02-21 Qualcomm Incorporated LOW TRANSMITTER CARRIER (LBT) LISTENING WITH A NEW RADIO SPECTRUM SHARING DETECTION SIGNAL TRANSMISSION (NR-SS)
WO2020001285A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 同步信号的传输方法以及相关设备
EP3998833A4 (en) * 2019-07-11 2023-02-01 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DISPLAYING THE CHANNEL STATUS OF AN UNLICENSED SPECTRUM AND STORAGE MEDIA
EP4278647A4 (en) * 2021-01-14 2024-03-20 Nec Corp METHOD, DEVICE AND MEDIUM FOR COMMUNICATION

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658751B (zh) * 2016-12-14 2020-06-02 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置
US11277865B2 (en) 2017-05-30 2022-03-15 Huawei Technologies Co., Ltd. Methods and system for LBT threshold setting for directional reception and transmission
CN109219152A (zh) * 2017-06-29 2019-01-15 索尼公司 无线通信系统中的电子设备以及无线通信方法
CN109392184B (zh) * 2017-08-02 2020-10-16 维沃移动通信有限公司 一种非授权频段下的信息传输方法、网络设备及终端
CN109392120B (zh) * 2017-08-10 2023-06-09 株式会社电装 信息指示方法及相关设备
CN107820684B (zh) * 2017-09-27 2021-01-15 北京小米移动软件有限公司 信道检测、信息发送方法、装置及通信设备
CN107919929B (zh) * 2017-11-16 2021-02-23 宇龙计算机通信科技(深圳)有限公司 一种基于波束的信道检测方法和设备
US10785799B2 (en) * 2017-11-20 2020-09-22 Qualcomm Incorporated Adaptive medium sensing thresholds
CN111543074B (zh) * 2018-01-05 2022-12-27 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN116828612A (zh) * 2018-01-11 2023-09-29 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN110167035B (zh) 2018-02-13 2021-02-26 华为技术有限公司 波束管理方法、终端、网络设备以及存储介质
KR20200120709A (ko) 2018-02-14 2020-10-21 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 업 링크 데이터의 스케줄링 방법 및 기기
JP2021517386A (ja) * 2018-02-14 2021-07-15 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. センシング方法および機器
CN110167166B (zh) * 2018-02-14 2022-12-27 上海朗帛通信技术有限公司 一种基站、用户设备中的用于无线通信的方法和装置
CN110392439B (zh) * 2018-04-16 2020-12-29 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN108702796B (zh) 2018-05-02 2022-06-24 北京小米移动软件有限公司 同步广播块的发送、解调方法及装置、基站和用户设备
CN111971937B (zh) * 2018-05-09 2021-12-24 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN108702283B (zh) * 2018-05-31 2021-12-07 北京小米移动软件有限公司 同步广播块的配置、解析方法及装置、基站和用户设备
CN110581754B (zh) * 2018-06-11 2021-05-11 电信科学技术研究院有限公司 一种请求信号的发送、接收方法及设备、装置
CN110740452A (zh) * 2018-07-20 2020-01-31 中兴通讯股份有限公司 发现干扰的方法、装置、接收设备、发射设备及存储介质
CN111800809B (zh) * 2019-08-02 2022-02-15 维沃移动通信有限公司 一种信道监听方法、通信设备
CN112673708B (zh) * 2019-08-15 2023-05-30 北京小米移动软件有限公司 网络分配向量设置方法和装置
CN110932765B (zh) * 2019-11-01 2023-04-07 复旦大学 一种用于均匀矩形阵列的全方向波束赋形方法
WO2022147757A1 (zh) * 2021-01-08 2022-07-14 北京小米移动软件有限公司 一种非授权信道的检测方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269532A1 (en) * 2013-03-15 2014-09-18 Alcatel-Lucent Usa Inc. Spatially grouped random access in a wireless network
WO2016015650A1 (en) * 2014-07-29 2016-02-04 Huawei Technologies Co., Ltd. Device, network, and method for communications with spatial-specific sensing
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100499398C (zh) * 2005-03-02 2009-06-10 中兴通讯股份有限公司 宽带码分多址系统智能天线的实现方法及装置
CN101340218A (zh) * 2007-07-04 2009-01-07 华为技术有限公司 多输入多输出系统中通信方法及装置
KR102007804B1 (ko) * 2013-03-19 2019-10-21 삼성전자주식회사 무선 통신 시스템을 위한 채널 추정 장치 및 방법
KR101791808B1 (ko) * 2013-12-09 2017-10-30 후아웨이 테크놀러지 컴퍼니 리미티드 신호 처리 방법 및 기지국

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140269532A1 (en) * 2013-03-15 2014-09-18 Alcatel-Lucent Usa Inc. Spatially grouped random access in a wireless network
WO2016015650A1 (en) * 2014-07-29 2016-02-04 Huawei Technologies Co., Ltd. Device, network, and method for communications with spatial-specific sensing
CN105611637A (zh) * 2016-02-06 2016-05-25 北京佰才邦技术有限公司 信道发送状态的指示方法和终端
CN106658751A (zh) * 2016-12-14 2017-05-10 北京佰才邦技术有限公司 多天线设备的信道接入方法及装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019036231A1 (en) * 2017-08-16 2019-02-21 Qualcomm Incorporated LOW TRANSMITTER CARRIER (LBT) LISTENING WITH A NEW RADIO SPECTRUM SHARING DETECTION SIGNAL TRANSMISSION (NR-SS)
US10925091B2 (en) 2017-08-16 2021-02-16 Qualcomm Incorporated Listen-before-talk (LBT) with new radio-spectrum sharing (NR-SS) discovery signal transmission
US11601975B2 (en) 2017-08-16 2023-03-07 Qualcomm Incorporated Listen-before-talk (LBT) with new radio-spectrum sharing (NR-SS) discovery signal transmission
WO2020001285A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 同步信号的传输方法以及相关设备
CN110650528A (zh) * 2018-06-27 2020-01-03 华为技术有限公司 同步信号的传输方法以及相关设备
CN110650528B (zh) * 2018-06-27 2021-01-29 华为技术有限公司 同步信号的传输方法以及相关设备
EP3998833A4 (en) * 2019-07-11 2023-02-01 Beijing Xiaomi Mobile Software Co., Ltd. METHOD AND DEVICE FOR DISPLAYING THE CHANNEL STATUS OF AN UNLICENSED SPECTRUM AND STORAGE MEDIA
EP4278647A4 (en) * 2021-01-14 2024-03-20 Nec Corp METHOD, DEVICE AND MEDIUM FOR COMMUNICATION

Also Published As

Publication number Publication date
CN106658751A (zh) 2017-05-10
CN106658751B (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2018107951A1 (zh) 多天线设备的信道接入方法及装置
CN113923680B (zh) 用于通信波束恢复的系统和方法
CN103209415B (zh) 全双工干扰处理方法和装置
EP3455949B1 (en) Reference signals and link adaptation for massive mimo
US20230396381A1 (en) System and Method for Transmitting a Sub-Space Selection
JP7321707B2 (ja) 方法、システムおよび装置
US8364162B2 (en) UE initiated frequency partitioning based CoMP scheme for downlink cellular communications
EP4221307A1 (en) Method for measuring and reporting channel state information in wireless communication system and device therefor
EP3128680B1 (en) Method and apparatus for implementing transparent multi-user multiple-input multiple-output transmission
US10200170B2 (en) Method and apparatus for a multi-cell full-dimension MIMO system
CN110870215B (zh) 空间先听后说
JP2018513573A (ja) アンライセンスバンドでのlteのためのpdschプリコーディング適応
US10313852B2 (en) Method and device for selecting distributed antenna in vehicle-to-vehicle communication system
CN116158171A (zh) 用于全双工系统中的接收和发送波束配对的方法和系统
WO2020140353A1 (en) System and Method for Beam Management with Emissions Limitations
TWI745403B (zh) 終端裝置、基地台、通訊控制方法及記錄媒體
CN110235419B (zh) 用于动态介质共享的统一空间操作
KR102306100B1 (ko) Mu­mimo 간섭 채널 네트워크 환경에서의 간섭정렬 송수신 신호처리 장치 및 방법
EP3729671B1 (en) Uplink transmissions in a wireless communications network
US9843415B2 (en) Terminal apparatus, feedback control method, base station, pairing control method, program, and wireless communication system
US11956037B2 (en) Spatial reuse for wireless network
EP3949653B1 (en) Advanced antenna systems for spatial listen-before-talk
CN106341168B (zh) 预编码方法、信息发送方法、及其装置
KR101807816B1 (ko) 분산 안테나 시스템에서 다중 사용자 다중 안테나 송수신을 위한 기지국의 통신 장치 및 통신 방법
US20230156504A1 (en) Bidirectional channel statistics-based beam refinement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17880187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 23/09/2019 )

122 Ep: pct application non-entry in european phase

Ref document number: 17880187

Country of ref document: EP

Kind code of ref document: A1