WO2015089902A1 - 一种微抖动的电磁继电器 - Google Patents
一种微抖动的电磁继电器 Download PDFInfo
- Publication number
- WO2015089902A1 WO2015089902A1 PCT/CN2014/001032 CN2014001032W WO2015089902A1 WO 2015089902 A1 WO2015089902 A1 WO 2015089902A1 CN 2014001032 W CN2014001032 W CN 2014001032W WO 2015089902 A1 WO2015089902 A1 WO 2015089902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- contact
- movable contact
- static
- movable
- side wall
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H50/00—Details of electromagnetic relays
- H01H50/54—Contact arrangements
- H01H50/56—Contact spring sets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/12—Contacts characterised by the manner in which co-operating contacts engage
- H01H1/14—Contacts characterised by the manner in which co-operating contacts engage by abutting
- H01H1/24—Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting
- H01H1/26—Contacts characterised by the manner in which co-operating contacts engage by abutting with resilient mounting with spring blade support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/50—Means for increasing contact pressure, preventing vibration of contacts, holding contacts together after engagement, or biasing contacts to the open position
Definitions
- the invention belongs to the technical field of electromechanical engineering, and in particular relates to the design and manufacture of a micro-jitter electromagnetic relay.
- Electromagnetic relays are commonly used components in electromechanical engineering.
- the electromagnetic relay is mainly composed of a relay base, an iron core, a coil, a yoke, a fixed contact piece, a spring, a fixed contact fixed on the fixed contact piece, a movable contact piece, and a movable contact fixed on the movable contact piece.
- Current electromagnetic relay contact contacts produce jitter when they are attracted and released, and cannot be used in applications where jitter is required. When the contact is shaken, an arc is generated, which causes the contact to corrode and sinter. If certain precautions are not taken, the jitter will seriously affect the life of the relay. Practice has shown that reducing contact jitter and eliminating arcs are decisive factors in increasing relay life and reliability.
- the main measure to reduce the jitter of the contact and release of the contacts of the relay is to use a method of changing the mechanical parameters and the material of the spring system.
- the contact spring is a rigid contact spring system, increasing the contact pressure, or selecting A dynamic contact spring material having a small material density, a large elastic modulus, and a large vibration attenuation coefficient, or reducing the length and width of the movable contact spring, increasing the thickness, and the like, improves vibration resistance.
- there are some electromagnetic relay designs that reduce jitter they do not reduce the jitter of the electromagnetic relay during operation.
- the electromagnetic relay includes an iron core having a substantially J-shaped plane, and has one end portion as a support receiving portion and the other end portion as a magnetic pole portion; the movable iron piece has a substantially L-shaped plane and is movable by being attached to the corner portion.
- the contact piece is supported, and one end portion is rotatably supported by the support receiving portion of the iron core, and the other end portion, that is, the adsorption portion is opposed to the magnetic pole portion of the iron core, and is attracted to the magnetic pole portion.
- the electromagnetic relay has a certain effect on the horizontal anti-jitter, but the anti-jitter effect in the vertical direction is not obvious.
- the invention of the name "Electromagnetic relay with flexible bifurcated moving spring” Created and designed an electromagnetic relay that is not easy to generate vibration.
- the magnetic circuit portion, the push card, the contact portion and the outer casing are formed.
- the contact portion is provided with at least a normally closed static spring portion and a moving spring portion.
- the contact portion and the magnetic circuit portion are connected by a push card, and the movable spring is provided with a flexible split. Since the flexible splitting is provided on the moving spring, it can be used to reduce or even eliminate the free moving stroke of the push card when the relay is in the released state, thereby significantly improving the vibration and impact resistance of the electromagnetic relay having the normally closed contact.
- the push card pushes the moving spring toward the moving spring, and the flexible fork and the push card may be separated from each other or may be in contact with each other, but the contact pressure should be significantly smaller than the pressure of the working contact surface, for the product
- the performance sensitivity and other performance effects are small.
- the separation of the flexible fork and the push card is the best mode of the invention.
- the electromagnetic relay is not only complicated in structure, but also has an anti-jitter effect.
- the designer believes that the solution completely solves the technical problem that the contact is easy to jump back due to the electric repulsion in the background art, and has the following advantages: the combined force of the electromagnetic force and the driving force is large, the contact pressure of the contact is large, and the contact The resistance is small, the contact electrical contact is reliable and stable, and it can resist the short-circuit current and prevent the damage of the functional relay; the contact switching power is large, and the long-term large load can work, but the switching frequency should not be too fast; the structure is compact, and the vibration and impact resistance are Strong; with strong load capacity, low price, good processability, can be produced in large quantities.
- the electromagnetic relay is not only complicated in structure, but also has an anti-jitter effect through experiments.
- the invention is an improvement scheme of the electromagnetic relay technology which is made to eliminate the jitter phenomenon which occurs when the electromagnetic relay is sucked and released.
- the purpose of the invention patent is to provide a micro-jitter electromagnetic relay with novel structure and good effect, which overcomes the shortcomings of the current electromagnetic relay when the electromagnetic relay works.
- a micro-jittering electromagnetic relay which mainly comprises a static contact spring 5, a movable contact 6, a magnetic core 7, a coil 9, a movable contact support 10, a spring 11, a bracket 12,
- the movable contact spring 13 and the static contact 14 are characterized in that: the movable contact 6 has a movable contact 1, the static contact 14 has a static contact 2, and the movable contact 1 is connected to the movable contact spring 13
- the static contact 2 is connected to the static contact spring 5, the movable contact 1 and the static contact 2 are in contact with each other, and the outer side wall of the movable contact 1 is in the shape of a truncated cone.
- the inner side wall of the central portion of the contact 2 is in the shape of a truncated cone which is convexly fitted to the outer surface of the truncated cone of the movable contact 1.
- the outer side wall of the movable contact 1 is round.
- the truncated cone-shaped inner side wall of the central portion of the mesa and the stationary contact 2 is in an embedded contact state.
- the outer side wall of the movable contact 1 When the movable contact 1 and the stationary contact 2 are separated, the outer side wall of the movable contact 1 has a truncated cone shape and static
- the inner side wall of the concave inner side of the contact 2 is separated by a truncated cone shape;
- the outer side wall of the movable contact 1 may also be a spherical crown shape, and the inner side wall of the central portion of the static contact 2 is a movable contact Point 1 of the ball crown a spherical crown shape in which the outer side wall is convexly fitted, and the spherical crown of the outer side wall of the movable contact 1 and the spherical crown of the concave inner side wall of the middle portion of the stationary contact 2 when the movable contact 1 and the stationary contact 2 are in contact
- the shapes are in an embedded contact state, and when the movable contact 1 and the stationary contact 2 are separated, the spherical crown shape of the outer side wall
- the oblique side 3 of the movable contact is a plane or a curved surface
- the inclined side 4 of the stationary contact 2 corresponds to a plane or a curved surface
- the angle ⁇ between the central axis of the movable contact 1 and the truncated outer side wall of the movable contact 1 is between 5 and 90 degrees, that is, ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the angle ⁇ between the central axis of the stationary contact 2 and the concave truncated outer sidewall of the central portion of the stationary contact 2 is between 5 and 90 degrees, i.e., ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the angle ⁇ between the central axis of the movable contact 1 and the oblique side 3 of the movable contact is between 5 and 90 degrees, that is, ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the angle ⁇ between the central axis of the stationary contact 2 and the oblique side 4 of the stationary contact is between 5 and 90 degrees, i.e., ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the structure of the movable contact 1 and the static contact 2 can be interchanged, such as a truncated cone type structure, the movable contact can be made into a convex circular table type, and the static contact can be made into a concave circular table type, or vice versa.
- the present invention adopting the above measures can effectively reduce the jitter of the contacts during operation.
- the movable contact 1 is in contact with the movable contact 6 through the movable contact spring 13 while the stationary contact 2 is in contact with the fixed contact 14 through the contact spring contact 5, and the contact bounce is greatly reduced when the contact is contacted. .
- the contact contact of the present invention is a bevel contact
- the dynamic and static contacts and the material have a certain elasticity, from the perspective of the entire contact surface, Some parts are not in contact, and the other part is in contact, and for both ends of the static and dynamic contacts, as long as there is contact with one contact point, the whole state is contact, and in the on state, the jitter at the time of contact is effectively reduced;
- the unit rebound force is smaller than the straight surface contact, which is also beneficial to reduce the jitter;
- the contacts are in contact, because of the bevel contact, the self-cleaning action occurs between the static and dynamic contacts;
- the contact area is large, so the contact resistance is small, which is advantageous for passing a large current.
- Figure 1 is a schematic view showing the overall structure of the present invention
- FIG. 2 is a schematic perspective view showing a three-dimensional structure of a truncated cone contact according to Embodiment 1 of the present invention
- Figure 3 is a cross-sectional view of the central axis of the truncated cone contact of the first embodiment of the present invention
- FIG. 4 is a schematic perspective view of a spherical crown contact according to Embodiment 2 of the present invention.
- Figure 5 is a cross-sectional view showing the central axis of the spherical cap contact of the second embodiment of the present invention.
- Figure 6 is a schematic perspective view showing the three-sided oblique side of the embodiment of the present invention.
- the retaining ring 7 is a cross-sectional view of the central axis of the arc-shaped dynamic and static contact of the two oblique sides of the third embodiment of the present invention.
- FIG. 8 is a schematic perspective view showing the four oblique sides of the embodiment of the present invention as a planar dynamic and static contact;
- Figure 9 is a cross-sectional view showing the central axis of four oblique side plane moving and static contacts according to Embodiment 4 of the present invention.
- Figure 10 is a schematic view showing the structure of a static contact spring according to Embodiment 1 of the present invention.
- the invention improves the contact structure on the basis of the electromagnetic relay currently used.
- the magnetic holding relay currently used mainly comprises a moving contact 6, a magnetic core 7, a moving contact driving point 8, a coil 9, a movable contact support 10, a spring 11, a bracket 12, a moving contact spring 13, and a static contact 14
- the movable contact 6 and the fixed contact 14 have common contacts.
- the improvement of the invention is that the structure of the movable contact 1 and the static contact 2 is improved, and the contact spring 5 of the static contact is added, so that the configuration of the electromagnetic relay is given as a full picture in FIG. 1 , and other embodiments only give dynamic touch A detailed structural diagram of point 1 and static contact 2 and static contact spring 5.
- the movable contact 1 of the present invention is connected to the movable contact spring 13
- the static contact 2 is connected to the contact spring 5 of the static contact.
- the contact between the movable contact 1 and the static contact 2 is a bevel contact.
- the outer side wall of the contact 1 has a truncated cone shape
- the inner side wall of the central portion of the stationary contact 2 is a truncated cone shape which is convexly combined with the truncated outer side wall of the movable contact 1, the movable contact 1 and the static contact
- the truncated cone shape of the outer side wall of the movable contact 1 and the truncated cone shape of the inner side wall of the central portion of the stationary contact 2 are in an embedded contact state, and the movable contact 1 and the stationary contact 2 are separated.
- the truncated cone shape of the outer side wall of the movable contact 1 is separated from the truncated cone shape of the inner side wall of the central portion of the stationary contact 2: the outer side wall of the movable contact 1 may also be a spherical crown shape, and the static
- the inner side wall of the middle portion of the contact 2 is a spherical crown shape which is convexly fitted to the spherical outer wall of the movable contact 1, and the outer side wall of the movable contact 1 when the movable contact 1 and the stationary contact 2 are in contact
- the spherical crown shape and the spherical crown shape of the concave inner side wall of the central portion of the stationary contact 2 are in an embedded contact state, and when the movable contact 1 and the stationary contact 2 are separated, the outer side wall of the movable contact 1 Ball crown and static contact 2
- the spherical inner surface of the concave inner side wall is separated; the outer side wall of the movable contact
- the oblique side 3 of the movable contact is a plane or a curved surface
- the inclined side 4 of the stationary contact 2 corresponds to a plane or a curved surface.
- the angle ⁇ between the central axis of the movable contact 1 and the truncated outer side wall of the movable contact 1 is between 5 and 90 degrees, that is, ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the angle ⁇ between the central axis of the stationary contact 2 and the concave truncated outer sidewall of the central portion of the stationary contact 2 is 5 degrees. Between 90 degrees, that is, ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the angle ⁇ between the central axis of the movable contact 1 and the oblique side 3 of the movable contact is between 5 and 90 degrees, that is, ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- the angle ⁇ between the central axis of the stationary contact 2 and the oblique side 4 of the stationary contact is between 5 and 90 degrees, i.e., ⁇ ⁇ 5 degrees and ⁇ ⁇ 90 degrees.
- Figure 1 is a schematic view showing the entire structure of the present invention.
- the electromagnetic relay currently used mainly comprises a moving contact 6, a magnetic core 7, a moving contact driving point 8, a coil 9, a movable contact support 10, a spring 11, a bracket 12, a moving contact spring 13, and a static contact 14,
- the movable contact 6 and the fixed contact 14 have common contacts.
- the present invention improves the structure of the movable contact 1 and the stationary contact 2 and adds the fixed contact contact spring 5.
- the movable contact 1 and the stationary contact 2 are improved to beveled.
- Embodiment 2 is a perspective view showing the three-dimensional structure of a truncated cone contact according to Embodiment 1 of the present invention.
- Embodiment 1 is an embodiment of a circular table type arc surface contact type of the present invention.
- the outer side wall of the movable contact 1 is a circular table
- the static contact 2 is a circular abutment
- the center portion is provided with a truncated-shaped concave hole which is convexly fitted to the truncated outer side wall of the movable contact 1.
- the angle ⁇ between the central axis of the movable contact 1 and the oblique side 3 of the movable contact is 65 degrees
- the angle ⁇ of the central axis of the stationary contact 2 and the oblique side 4 of the stationary contact is 65 degrees, as shown in FIG.
- Embodiment 4 is a schematic perspective view of a spherical crown contact according to Embodiment 2 of the present invention.
- Embodiment 2 is an embodiment of a spherical cap curved contact type.
- the movable contact 1 of the embodiment 2 is a circular metal block, and the lower end of the circular metal block is provided with a spherical cap.
- the structure of the static contact 2 is a metal cylinder fixed on a circular pier, and the middle of the metal cylinder is set. There is a concave hole which is matched with the spherical crown convex and concave provided by the movable contact 1, and the central axis planing surface is shown in FIG. 5.
- Figure 6 is a schematic perspective view showing the three-sided oblique side of the embodiment of the present invention as a curved contact.
- Embodiment 3 is an embodiment of a two-cone type arcuate contact type.
- the movable contact 1 of the embodiment 3 is a pointed wedge, and the tapered wedge is provided with the movable contact inclined side 3 on both sides.
- the structure of the static contact 2 is such that two oblique metal arc plates are fixed on one of the piers, and the inner faces of the arc plates are opposite to each other, and the two arc plates are respectively provided with the movable contacts oblique side 3 of the movable contact 1
- the static contact oblique side 4 of the curved surface which is convexly and concavely opposed to each other, the static contact inclined side 4 and the movable contact oblique side 3 can be closely fitted.
- the angle between the central axis of the movable contact 1 and the oblique side 3 of the movable contact is 40 degrees.
- the angle between the central axis of the stationary contact 2 and the oblique side 4 of the stationary contact is 40 degrees.
- FIG. 8 is a schematic perspective view showing the four-sided oblique side of the embodiment of the present invention as a planar dynamic and static contact.
- Embodiment 4 is a four-slope planar contact pattern.
- the movable contact 1 of the fourth embodiment is a circular table, and the side surface of the circular table is provided with a curved side surface 3 of the movable contact.
- the static contact 2 has a structure in which four oblique curved metal plates are fixed on a pier, and the inner faces of the metal plates are provided with a static contact inclined side 4, a static contact inclined side 4 and a movable contact.
- the slanted side 3 can fit snugly.
- the angle between the central axis of the movable contact 1 and the oblique side 3 of the movable contact is 40 degrees.
- the angle between the central axis of the stationary contact 2 and the oblique side 4 of the stationary contact is 40 degrees.
- Both the movable contact 1 and the stationary contact 2 are made of copper.
- the movable contact inclined side 3 and the static contact inclined side 4 are plated with a molten metal material and combined with a servo connector to be used as a contact structure for the manufacture of a relay, a contactor or a circuit breaker.
- Figure 10 is a schematic view showing the structure of a static contact spring according to Embodiment 1 of the present invention.
- the stationary contact 2 of this embodiment is riveted to the stationary contact 14 by a sheet metal elastomer as the static contact spring 5.
- the dynamic and static contact structure of the present invention is interchangeable, such as a conical structure, the movable contact can be made into a convex conical type, and the static contact can be made into a concave conical type, or vice versa.
- the angle ⁇ of the inclined surface and the static and dynamic contact axis can be selected according to different applications and materials. When the contacts are in contact, there must be jitter, and the jitter is caused by the non-contact of the moving contact at a short distance.
- the movable contact driving point 8 When the coil 9 is connected with a voltage, the movable contact driving point 8 is pushed to move the movable contact 1 in the direction of contact with the stationary contact 2.
- the contact When the moving and static contact is in contact, the contact is shaken due to the presence of the static and dynamic contact spring. Great damping.
- the jitter is caused by the non-contact of the dynamic and static contacts due to bounce in a very short distance. Because it is a bevel contact, and the dynamic and static contacts and materials have a certain elasticity, allowing a certain displacement, from the perspective of the entire contact surface, one part does not touch, and the other part touches, and for the two ends of the dynamic and static contact, As long as there is a contact point, the entire state is contact and is in the on state. In this way, the jitter is effectively reduced, and if the parameters are matched well, the jitter-free effect can also be achieved.
- the spring 11 pushes the movable contact drive point 8 to move the movable contact away from the stationary contact. Since the contact separation speed is fast, once separated, there is no contact, that is, When released, there is no jitter.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Contacts (AREA)
Abstract
一种微抖动的电磁继电器,包括静触头触簧(5)、动触头(6)、磁芯(7)、线圈(9)、动触片支撑(10)、弹簧(11)、支架(12)、动触头触簧(13)、静触头(14),动触头(6)具有动触点(1),静触头(14)具有静触点(2),动触点(1)连接在动触头触簧(13)上,静触点(2)连接在静触头触簧(5)上,动触点(1)和静触点(2)接触处为斜面接触。该电磁继电器工作时能有效地减少触点的抖动。因是斜面接触,动静触点之间会产生自洁作用;与直面接触相比,接触面积大,因此接触电阻小,有利于通过较大电流。
Description
本发明属机电工程技术领域,特别是涉及一种微抖动的电磁继电器的设计和制造。
电磁继电器是机电工程常用的元件。电磁继电器主要由继电器底座、铁芯、线圈、磁轭、定触片、弹簧、固定在定触片上的定触点、动触片、固定在动触片上的动触点组成。目前的电磁继电器触头触点吸合和释放时会产生抖动,不能使用于要求抖动小的场合。触点抖动时会产生电弧,电弧会使触点腐蚀、熔结。若不采取一定的预防措施,抖动会严重影响继电器的寿命。实践证明,减少触点抖动,消灭电弧是增加继电器寿命和可靠性的决定性因素。目前,减少继电器的触点吸合和释放时抖动的主要措施是采用改变机械参数和触簧系统的材料的方法,例如对于静触簧为刚性的触簧系统,增加触点被压力,或者选用材料密度小、弹性模量大及振动衰减系数大的动触簧材料,或者减少动触簧片的长度和宽度、增大厚度等提高抗振动性。虽然还有一些减少抖动的电磁继电器的设计,但都未能很好地减少电磁继电器工作时的抖动。
申请号02141545.5,名称为“电磁继电器”的发明创造,设计了一种不易产生振摆的电磁继电器。该电磁继电器包括:铁芯,平面大致呈J字形状,将一端部作为支承承受部,将另一端部作为磁极部;可动铁片,平面大致呈L字形,通过安装在角部的可动接触片支承,并将一端部可转动地支承在铁芯的支承承受部上、使另一端部即吸附部与所述铁芯的磁极部相对,并可吸附在该磁极部上。事实上该电磁继电器在水平抗抖动上有一定的效果,但在竖直方向上抗抖动的效果并不明显。
申请号03120338.8,名称为“带柔性分叉动簧的电磁继电器”的发明创
造,设计了一种不易产生振摆的电磁继电器。由磁路部分、推动卡、接触部分及外壳组成,接触部分至少设有常闭静簧部分、动簧部分,接触部分与磁路部分通过推动卡连接,动簧上设有柔性分叉。由于在动簧上设柔性分叉,可用于减少甚至消除继电器处于释放状态时的推动卡的自由活动行程,因此显著地提高了具有常闭触点的电磁继电器的抗振动、抗冲击性能。当继电器处于吸合状态时,推动卡朝动簧方向推动动簧,柔性分叉与推动卡间可以是相互分离,也可以是相互接触,但接触压力应明显小于工作接触面的压力,对产品的动作灵敏度等性能影响较小。继电器处于吸合状态时,柔性分叉与推动卡相分离是本发明的最佳方式。该电磁继电器不但结构比较复杂,而且抗抖动的效果并不明显。
申请号200710008565.4,名称为“抵抗电动斥力的电磁继电器”的发明创造,设计了一种不易产生振摆的电磁继电器。方案为在继电器触点闭合工作时,继电器加负载,线圈加置位信号,第二引出片和动簧片电流方向相反并相互作用产生磁场,该磁场使得动簧片产生电磁力,而且产生的电磁力与推动卡产生的推动力方向相同,则触点压力增大并足以抵抗电动斥力的破坏。设计人认为,其方案完全解决了背景技术中因电动斥力而引起的触点易回跳的技术问题,其还具有如下的优点:电磁力与推动力的合力大,触点接触压力大,接触电阻小,触点电接触可靠、稳定,足可抵抗短路电流,防止功能继电器的损坏;触点切换功率大,能长期大负载工作,但切换频率不宜过快;结构紧凑,耐震动、冲击能力强;带负载能力强,价格便宜,工艺性好,可进行大批量流水线生产。但实际上,可以明显地看到该电磁继电器不但结构复杂,而且经实验抗抖动的效果也并不理想。
本发明正是为了消除电磁继电器吸合及释放时出现的抖动现象而作出的电磁继电器技术改进方案。
发明内容:
本发明专利的目的是提供一种结构新颖、效果好的微抖动电磁继电器,以克服目前的电磁继电器工作时明显抖动的缺点。
本发明的目的是这样实现的:一种微抖动的电磁继电器,主要包括静触头触簧5、动触头6、磁芯7、线圈9、动触片支撑10、弹簧11、支架12、动触头触簧13,静触头14,其特征为:动触头6具有动触点1,静触头14具有静触点2,动触点1连接在动触头触簧13上,静触点2连接在静触头触簧5上,所述的动触点1和静触点2接触处为斜面接触,所述的动触点1的外侧壁为圆台形,所述的静触点2的中部内凹的内侧壁为与动触点1的圆台形外侧壁凹凸贴合的圆台形,动触点1和静触点2触合时,动触点1的外侧壁的圆台形与静触点2的中部内凹的内侧壁的圆台形相互贴台呈嵌入式触合状态,动触点1和静触点2分离时,动触点1的外侧壁的圆台形与静触点2的中部内凹的内侧壁的圆台形分离;所述的动触点1的外侧壁也可为球冠形,所述的静触点2的中部内凹的内侧壁为与动触点1的球冠形外侧壁凹凸贴合的球冠形,动触点1和静触点2触合时,动触点1的外侧壁的球冠形与静触点2的中部内凹的内侧壁的球冠形相互贴合呈嵌入式触合状态,动触点1和静触点2分离时,动触点1的外侧壁的球冠形与静触点2的中部内凹的内侧壁的球冠形分离;所述的动触点1的外侧壁也可为具有二个或二个以上的动触点斜侧面3,所述的静触点2的侧壁具有二个或二个以上的静触点斜侧面4,动触点1和静触点2触台时动触点斜侧面3与静触点斜侧面4相互贴合呈嵌入式触合状态,动触点1和静触点2分离时动触点斜侧面3与静触点斜侧面4脱离。
动触点斜侧面3为平面或弧面,静触点2的斜侧面4相应为平面或弧面。
动触点1的中轴线与动触点1的圆台形外侧壁的角度α在5度和90度之间,即α≥5度及α<90度。
静触点2的中轴线与静触点2的中部内凹的圆台形外侧壁的角度α在5度和90度之间,即α≥5度及α<90度。
动触点1的中轴线与动触点斜侧面3的角度α在5度和90度之间,即α≥5度及α<90度。
静触点2的中轴线与静触点斜侧面4的角度α在5度和90度之间,即α≥5度及α<90度。
动触点1和静触点2结构可互换,如圆台型结构,动触点可做成凸圆台型,静触点可做成凹圆台型,也可二者相反。
采取以上措施的本发明,工作时能有效地减少触点的抖动。动触点1通过动触头触簧13与动触头6接触,同时静触点2通过静触头触簧5与静触头14接触,当触点接触时,极大地减少了触点弹跳。因为抖动是动静触点因弹跳在极短距离内非接触造成的,在本发明的触点接触处为斜面接触,且动静触点及材料均有一定的弹性,从整个接触面来看,一部份不接触,而另一部分接触,而对动静触点两端而言,只要有一个接触点接触,则整个状态为接触,处于接通状态,就有效地地减少了接触时的抖动;在触点接触时,因是斜面接触,单位反弹力比直面接触小,这也有利于减少抖动;在触点接触时,因是斜面接触,动静触点之间会产生自洁作用;与直面接触相比,接触面积大,因此接触电阻小,有利于通过较大电流。
附图1是本发明整体的结构示意图;
附图2为本发明实施例1的圆台形触点立体结构示意图;
附图3为本发明实施例1的圆台形触点中轴线剖面图;
附图4为本发明实施例2的球冠形触点立体结构示意图;
附图5为本发明实施例2的球冠形触点中轴线剖面图;
附图6为本发明实施例3的二个斜侧面为弧形触点立体结构示意图;
附圈7为本发明实施例3的二个斜侧面为弧形动静触点中轴线剖面图;
附图8为本发明实施例4的四个斜侧面为平面动静触点立体结构示意图;
附图9为本发明实施例4的四个斜侧面平面动静触点中轴线剖面图。
附图10为本发明实施例1的静触簧结构示意图。
附图标记说明:动触点 1、静触点 2、动触点斜侧面 3、静触点斜侧面 4、静触头触簧 5、动触头 6、磁芯 7、动触头驱动点 8、线圈 9、动触片支撑 10、弹簧 11、支架 12、动触头触簧 13、静触头 14。
以下再结合附图和实施例对本发明作进一步的详述。
具体实施方式;
本发明是在目前使用的电磁继电器的基础上对触头结构进行了改进。目前使用的磁保持继电器主要包括动触头6、磁芯7、动触头驱动点8、线圈9、动触片支撑10、弹簧11、支架12、动触头触簧13、静触头14,动触头6和静触头14具有普通的触点。
本发明的改进之处在于改进了动触点1和静触点2结构,并增加了静触头触簧5,因此图1给出电磁继电器的构造为全图,其他实施例只给出动触点1和静触点2及静触头触簧5的具体结构示意图。
本发明的动触点1连接在动触头触簧13上,静触点2连接在静触头触簧5上,动触点1和静触点2接触处为斜面接触,所述的动触点1的外侧壁为圆台形,所述的静触点2的中部内凹的内侧壁为与动触点1的圆台形外侧壁凹凸贴合的圆台形,动触点1和静触点2触合时,动触点1的外侧壁的圆台形与静触点2的中部内凹的内侧壁的圆台形相互贴合呈嵌入式触合状态,动触点1和静触点2分离时,动触点1的外侧壁的圆台形与静触点2的中部内凹的内侧壁的圆台形分离:所述的动触点1的外侧壁也可为球冠形,所述的静触点2的中部内凹的内侧壁为与动触点1的球冠形外侧壁凹凸贴合的球冠形,动触点1和静触点2触合时,动触点1的外侧壁的球冠形与静触点2的中部内凹的内侧壁的球冠形相互贴合呈嵌入式触合状态,动触点1和静触点2分离时,动触点1的外侧壁的球冠形与静触点2的中部内凹的内侧壁的球冠形分离;所述的动触点1的外侧壁也可为具有二个或二个以上的动触点斜侧面3,所述的静触点2的侧壁具有二个或二个以上的静触点斜侧面4,动触点1和静触点2触合时动触点斜侧面3与静触点斜侧面4相互贴合呈嵌入式触台状态,动触点1和静触点2分离时动触点斜侧面3与静触点斜侧面4脱离。
动触点斜侧面3为平面或弧面,静触点2的斜侧面4相应为平面或弧面。动触点1的中轴线与动触点1的圆台形外侧壁的角度α在5度和90度之间,即α≥5度及α<90度。
静触点2的中轴线与静触点2的中部内凹的圆台形外侧壁的角度α在5度
和90度之间,即α≥5度及α<90度。
动触点1的中轴线与动触点斜侧面3的角度α在5度和90度之间,即α≥5度及α<90度。
静触点2的中轴线与静触点斜侧面4的角度α在5度和90度之间,即α≥5度及α<90度。
附图1是本发明整体的结构示意图。
目前使用的电磁继电器主要包括动触头6、磁芯7、动触头驱动点8、线圈9、动触片支撑10、弹簧11、支架12、动触头触簧13、静触头14,动触头6和静触头14具有普通的触点。本发明则改进了动触点1和静触点2结构,并增加了静触头触簧5。动触点1和静触点2改进为斜面接触。
附图2为本发明实施例1的圆台形触点立体结构示意图。实施例1为本发明圆台型弧面接触型式的实施例。
动触点1的外侧壁为一圆台,静触点2为一圆型墩台,中部开有与动触点1的圆台形外侧壁凹凸贴合的圆台形凹洞。动触点1的中轴线与动触点斜侧面3的角度α为65度,静触点2的中轴线与静触点斜侧面4的角度α为65度,如图3所示。
附图4为本发明实施例2的球冠形触点立体结构示意图。实施例2为球冠弧面接触型式的实施例。
实施例2的动触点1为圆形金属块,圆形金属块下端设置有球冠,静触点2的结构为在一圆形墩台上固定有一个金属圆柱,金属圆柱的中部,设置有与动触点1设置的球冠凸凹相向吻合的凹洞,中轴线刨面图如图5所示。
附图6为本发明实施例3的二个斜侧面为弧形触点立体结构示意图。实施例3为二园锥型弧面接触型式的实施例。
实施例3的动触点1为一尖形楔块,尖形楔块二边设置有动触点斜侧面3。静触点2的结构为在一墩台上固定有二块斜立的金属弧板,弧板的相向之间内面,二块弧板分别设置有与动触点1的动触点斜侧面3凸凹相向吻合的弧面的静触点斜侧面4,静触点斜侧面4与动触点斜侧面3能紧密贴合。
如图7所示,动触点1的中轴线与动触点斜侧面3的角度为40度。静触点2的中轴线与静触点斜侧面4的角度为40度。
附图8为本发明实施例4的四个斜侧面为平面动静触点立体结构示意图。实施例4为四斜面平面接触型式。
实施例4的动触点1为一圆台,圆台的侧面设置有弧面状的动触点斜侧面3。静触点2的结构为在一墩台上固定有四块斜立的弧面状金属板,金属板的相向之间内面设置静触点斜侧面4,静触点斜侧面4与动触点斜侧面3能紧密贴合。
如图9所示,动触点1的中轴线与动触点斜侧面3的角度为40度。静触点2的中轴线与静触点斜侧面4的角度为40度。
动触点1和静触点2均用铜做成。动触点斜侧面3和静触点斜侧面4,镀上防熔融金属材料并与伺服连接件结合即可作为触头结构应用于继电器、接触器或断路器的制造。
附图10为本发明实施例1的静触簧结构示意图。
该实施例的静触点2通过一金属片弹性体作静触簧5,铆在静触头14上。
本发明的动静触点结构可互换,如圆锥型结构,动触点可做成凸圆锥型,静触点可做成凹圆锥型,也可二者相反。斜面与动静触点中轴线角度α可按不同应用、材料选定。当触点接触时,一定会存在抖动,而抖动是动静触点因弹跳在很短距离内非接触造成。如在很短的距离内,因是斜面接触,且动静触点及材料均有一定的弹性,从整个接触面来看,一部份不接触,而另一部分接触,而对动静触点两端而言,只要有一个接触点接触,则整个状态为接触,处于接通状态。这样,如在很短距离内的抖动,动静触点两端,就可以一直维持接通状态,即减少或消除了很短距离内的抖动。此种触点结构,与其它的措施配台,可以做出微抖动或无抖动的触头结构,进而制造出微抖动或无抖动的继电器、接触器或断路器。
本发明的实施例是这样工作的:
(一)吸合。
在线圈9通上电压,推动动触头驱动点8,使动触点1向与静触点2接触方向移动,在动静触点接触时,因动静触簧的存在,使触点抖动得到了极大的阻尼。触点接触时,抖动是动静触点因弹跳在极短距离内非接触造成。因是斜面接触,且动静触点及材料均有一定的弹性,允许一定的位移,从整个接触面来看,一部份不接触,而另一部分接触,而对动静触点两端而言,只要有一个接触点,则整个状态为接触,处于接通状态。这样,就有效地地减少了抖动,各参数配合好的话,也可以达到无抖动的效果。
(二)释放。
在线圈9断电,弹簧11推动动触头驱动点8,使动触点向与静触点相分离方向移动,因触点分离速度很快,一旦分离,则不会再有接触,即在释放时,也不会有抖动产生。
Claims (9)
- 一种微抖动的电磁继电器,主要包括静触头触簧(5)、动触头(6)、磁芯(7)、线圈(9)、动触片支撑(10)、弹簧(11)、支架(12)、动触头触簧(13)、静触头(14),其特征为:动触头(6)具有动触点(1),静触头14具有静触点(2),动触点(1)连接在动触头触簧(13)上,静触点2连接在静触头触簧(5)上,所述的动触点(1)和静触点(2)接触处为斜面接触,所述的动触点(1)的外侧壁为圆台形,所述的静触点(2)的中部内凹的内侧壁为与动触点(1)的圆台形外侧壁凹凸贴合的圆台形,动触点(1)和静触点(2)触合时,动触点(1)的外侧壁的圆台形与静触点(2)的中部内凹的内侧壁的圆台形相互贴合呈嵌入式触合状态,动触点(1)和静触点(2)分离时,动触点(1)的外侧壁的圆台形与静触点(2)的中部内凹的内侧壁的圆台形分离;所述的动触点(1)的外侧壁也可为球冠形,所述的静触点(2)的中部内凹的内侧壁为与动触点(1)的球冠形外侧壁凹凸贴合的球冠形,动触点(1)和静触点(2)触合时,动触点(1)的外侧壁的球冠形与静触点(2)的中部内凹的内侧壁的球冠形相互贴合呈嵌入式触合状态,动触点(1)和静触点(2)分离时,动触点(1)的外侧壁的球冠形与静触点(2)的中部内凹的内侧壁的球冠形分离;所述的动触点(1)的外侧壁也可为具有二个或二个以上的动触点斜侧面(3),所述的静触点(2)的侧壁具有二个或二个以上的静触点斜侧面(4),动触点(1)和静触点(2)触台时动触点斜侧面(3)与静触点斜侧面(4)相互贴合呈嵌入式触合状态,动触点(1)和静触点(2)分离时动触点斜侧面(3)与静触点斜侧面(4)脱离。
- 根据权利要求1所述的电磁继电器,其特征为:动触点(1) 通过动触头触簧(13)连接到动触头(6)。
- 根据权利要求1所述的电磁继电器,其特征为;静触点(2)通过静触头触簧(5)连接到静触头(14)。
- 根据权利要求1所述的电磁继电器,其特征为:动触点(1)的动触点斜侧面(3)为平面或弧面,静触点(2)的斜侧面4相应为平面或弧面。
- 根据权利要求1所述的电磁继电器,其特征为:动触点(1)的中轴线与动触点(1)的圆台形外侧壁的角度α在5度和90度之间。
- 根据权利要求1所述的触点结构,其特征为:静触点(2)的中轴线与静触点(2)的中部内凹的圆台形外侧壁的角度α在5度和90度之间。
- 根据权利要求1所述的电磁继电器,其特征为:动触点(1)的中轴线与动触点斜侧面(3)的角度α在5度和90度之间。
- 根据权利要求1所述的电磁继电器,其特征为:静触点(2)的中轴线与静触点斜侧面(4)的角度α在5度和90度之间。
- 根据权利要求1所述的电磁继电器,其特征为:动触点(1)和静触点(2)结构可互换。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310692154.7 | 2013-12-18 | ||
CN201310692154.7A CN103715020A (zh) | 2013-12-18 | 2013-12-18 | 一种微抖动的电磁继电器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015089902A1 true WO2015089902A1 (zh) | 2015-06-25 |
Family
ID=50407903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/001032 WO2015089902A1 (zh) | 2013-12-18 | 2014-11-19 | 一种微抖动的电磁继电器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103715020A (zh) |
WO (1) | WO2015089902A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108538677A (zh) * | 2018-06-19 | 2018-09-14 | 浙江紫光电器有限公司 | 一种隔离开关 |
CN109243925A (zh) * | 2018-09-29 | 2019-01-18 | 上海永继电气股份有限公司 | 一种继电器及其触头装置 |
CN109494133A (zh) * | 2019-01-09 | 2019-03-19 | 常熟开关制造有限公司(原常熟开关厂) | 一种断路器的触点结构 |
CN109637891A (zh) * | 2019-02-14 | 2019-04-16 | 刘昌国 | 一种靠静触头提供保持力的继电器 |
CN112735916A (zh) * | 2020-12-26 | 2021-04-30 | 福达合金材料股份有限公司 | 一种铆钉型电触头组件结构及电触头的加工方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103715020A (zh) * | 2013-12-18 | 2014-04-09 | 北海市深蓝科技发展有限责任公司 | 一种微抖动的电磁继电器 |
CN112071701B (zh) * | 2020-07-28 | 2023-05-26 | 行驱电气(上海)有限公司 | 一种接线板组件及继电器 |
CN116013737B (zh) * | 2022-12-07 | 2023-09-22 | 深圳市特瑞华腾新能源有限公司 | 一种防触点粘连的电磁继电器保护设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2508384Y (zh) * | 2001-11-15 | 2002-08-28 | 桂林机床电器有限公司 | 一种采用片簧式触头的拍合式电磁继电器或接触器 |
CN2558069Y (zh) * | 2002-05-10 | 2003-06-25 | 李纪平 | 一种球面接触自动消弧的接触器 |
CN1858880A (zh) * | 2005-04-12 | 2006-11-08 | Nec东金株式会社 | 电磁继电器 |
JP2012248476A (ja) * | 2011-05-30 | 2012-12-13 | Fujitsu Component Ltd | 電磁リレー |
CN103715020A (zh) * | 2013-12-18 | 2014-04-09 | 北海市深蓝科技发展有限责任公司 | 一种微抖动的电磁继电器 |
CN203674098U (zh) * | 2013-12-18 | 2014-06-25 | 北海市深蓝科技发展有限责任公司 | 一种微抖动的电磁继电器 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200993927Y (zh) * | 2006-11-16 | 2007-12-19 | 中国振华(集团)科技股份有限公司宇光分公司 | 一种真空灭弧室用的新型触头 |
JP5345095B2 (ja) * | 2010-03-30 | 2013-11-20 | 三菱電機株式会社 | 接点開閉器 |
CN201638695U (zh) * | 2010-04-08 | 2010-11-17 | 李健全 | 一种导电触点 |
CN201820713U (zh) * | 2010-09-15 | 2011-05-04 | 海盐众信电子有限公司 | 智能磁保持继电器 |
CN102254749A (zh) * | 2011-06-30 | 2011-11-23 | 北海市深蓝科技发展有限责任公司 | 一种能减少抖动的电磁继电器 |
CN203013637U (zh) * | 2013-01-06 | 2013-06-19 | 北海市深蓝科技发展有限责任公司 | 一种无抖动的电磁继电器 |
CN103337415A (zh) * | 2013-06-14 | 2013-10-02 | 东莞市三友联众电器有限公司 | 一种继电器接触系统 |
-
2013
- 2013-12-18 CN CN201310692154.7A patent/CN103715020A/zh active Pending
-
2014
- 2014-11-19 WO PCT/CN2014/001032 patent/WO2015089902A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2508384Y (zh) * | 2001-11-15 | 2002-08-28 | 桂林机床电器有限公司 | 一种采用片簧式触头的拍合式电磁继电器或接触器 |
CN2558069Y (zh) * | 2002-05-10 | 2003-06-25 | 李纪平 | 一种球面接触自动消弧的接触器 |
CN1858880A (zh) * | 2005-04-12 | 2006-11-08 | Nec东金株式会社 | 电磁继电器 |
JP2012248476A (ja) * | 2011-05-30 | 2012-12-13 | Fujitsu Component Ltd | 電磁リレー |
CN103715020A (zh) * | 2013-12-18 | 2014-04-09 | 北海市深蓝科技发展有限责任公司 | 一种微抖动的电磁继电器 |
CN203674098U (zh) * | 2013-12-18 | 2014-06-25 | 北海市深蓝科技发展有限责任公司 | 一种微抖动的电磁继电器 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108538677A (zh) * | 2018-06-19 | 2018-09-14 | 浙江紫光电器有限公司 | 一种隔离开关 |
CN108538677B (zh) * | 2018-06-19 | 2024-04-16 | 浙江紫光电器有限公司 | 一种隔离开关 |
CN109243925A (zh) * | 2018-09-29 | 2019-01-18 | 上海永继电气股份有限公司 | 一种继电器及其触头装置 |
CN109243925B (zh) * | 2018-09-29 | 2024-02-09 | 上海永继电气股份有限公司 | 一种继电器及其触头装置 |
CN109494133A (zh) * | 2019-01-09 | 2019-03-19 | 常熟开关制造有限公司(原常熟开关厂) | 一种断路器的触点结构 |
CN109637891A (zh) * | 2019-02-14 | 2019-04-16 | 刘昌国 | 一种靠静触头提供保持力的继电器 |
CN112735916A (zh) * | 2020-12-26 | 2021-04-30 | 福达合金材料股份有限公司 | 一种铆钉型电触头组件结构及电触头的加工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103715020A (zh) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015089902A1 (zh) | 一种微抖动的电磁继电器 | |
WO2015043109A1 (zh) | 一种含永磁电磁结构 | |
CN108400056B (zh) | 一种基于双线圈单稳态永磁机构的直流断路器 | |
KR101957118B1 (ko) | 전자기 릴레이 | |
CN203674097U (zh) | 一种自适应的微抖动磁保持继电器过零通断控制装置 | |
CN102254749A (zh) | 一种能减少抖动的电磁继电器 | |
CN203674101U (zh) | 一种微抖动的磁保持继电器 | |
CN103000454A (zh) | 一种新结构含永磁电磁继电器 | |
CN201514903U (zh) | 限位式双断点电磁继电器 | |
CN203674098U (zh) | 一种微抖动的电磁继电器 | |
CN202487498U (zh) | 双向磁场消弧装置 | |
CN101976637A (zh) | 具有自锁结构的磁保持继电器 | |
CN103715024A (zh) | 一种微抖动的磁保持继电器 | |
CN103474287B (zh) | 双动铁心永磁操动机构 | |
CN203674099U (zh) | 一种过零动作的微抖动节能型交流接触器 | |
CN202585273U (zh) | 一种继电器 | |
WO2015089901A1 (zh) | 一种微抖动的触头结构 | |
JP2024530820A (ja) | 消弧能力を向上させることができる高圧直流リレー | |
CN103715022A (zh) | 一种自适应的微抖动磁保持继电器过零通断控制装置 | |
CN203013637U (zh) | 一种无抖动的电磁继电器 | |
CN102610447A (zh) | 一种继电器 | |
CN204204778U (zh) | 断路器的灭弧装置及断路器和一种带有平行布置的双断点触头结构的断路器 | |
CN109473310B (zh) | 油内使用的永磁操动机构 | |
CN105679611A (zh) | 一种抵抗电磁斥力的磁保持继电器 | |
CN204720395U (zh) | 一种防抖动装置的继电器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14870977 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14870977 Country of ref document: EP Kind code of ref document: A1 |