WO2015089792A1 - 一种微带贴片天线和多入多出天线 - Google Patents

一种微带贴片天线和多入多出天线 Download PDF

Info

Publication number
WO2015089792A1
WO2015089792A1 PCT/CN2013/089972 CN2013089972W WO2015089792A1 WO 2015089792 A1 WO2015089792 A1 WO 2015089792A1 CN 2013089972 W CN2013089972 W CN 2013089972W WO 2015089792 A1 WO2015089792 A1 WO 2015089792A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
length
microstrip
branch
width
Prior art date
Application number
PCT/CN2013/089972
Other languages
English (en)
French (fr)
Inventor
余荣道
刘晟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP13899614.5A priority Critical patent/EP3073575A4/en
Priority to CN201380081788.7A priority patent/CN105830279A/zh
Priority to PCT/CN2013/089972 priority patent/WO2015089792A1/zh
Publication of WO2015089792A1 publication Critical patent/WO2015089792A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems

Definitions

  • the present invention relates to the field of communications, and in particular, to a microstrip patch antenna and a MIMO (Multi-Input Multiple-Output) antenna.
  • MIMO Multi-Input Multiple-Output
  • a wireless communication system such as a mobile cellular communication system
  • a WLAN Wireless Local Area Network
  • FWA Wireless Wireless Access
  • a BS Base Station
  • AP Access Point, an access point
  • Communication nodes such as RS (Relay Station) and UE (User Equipment) are usually equipped with an antenna having the capability of transmitting and receiving signals. Since the attenuation of the wireless signal in the wireless channel is very large, the signal from the other communication node is very weak when it reaches the antenna compared with the transmitted signal of the antenna, and in order to ensure the spectral efficiency, the wireless full double is usually used in the communication system.
  • the technology that is, the transmitted signal and the received signal are simultaneously transmitted and received through the antenna.
  • a small base station using wireless full-duplex technology is generally configured with an antenna, a receiving end, and a transmitting end.
  • the antenna is generally a whip antenna or a rubber antenna. It is assumed that the antenna of the small base station is a rubber antenna with a center frequency of 2.4 GHz and a bandwidth of 80 MHz.
  • the transmitting end transmits a signal through the antenna, a part of the transmitted signal will enter the receiving end to generate a self-interference signal due to the reflection of the antenna. If the power of the transmitted signal is about OdBm, the power of the self-interfering signal generated by the reflection is about - 15 d B m , therefore, the self-interference signal power of the small base station receiving the signal using the rubber antenna is high.
  • Embodiments of the present invention provide a microstrip patch antenna and a MIMO antenna capable of reducing the power of an antenna self-interference signal.
  • a microstrip patch antenna comprising a microstrip patch, a ground patch, and a dielectric layer between the microstrip patch and the ground patch.
  • the grounding patch is provided with a first slot extending through the grounding patch for coupling resonance of the microstrip patch, wherein the shape of the first slot is a rectangle and an isosceles triangle.
  • one side of the rectangle coincides with a bottom side of the isosceles triangle, and a length of the overlapping side of the rectangle is greater than a length of a bottom side of the isosceles triangle.
  • the microstrip patch has a rectangular shape, and an axis of symmetry in a parallel longitudinal direction of the microstrip patch coincides with an axis of symmetry of the isosceles triangle.
  • a projection of the microstrip patch on the dielectric layer and a projection of the first slotted isosceles triangular portion on the dielectric layer have overlapping regions.
  • the base of the isosceles triangle is equal to the waist.
  • the overlapping edge of the rectangle is the long side of the rectangle.
  • the microstrip patch antenna further includes:
  • microstrip feed line disposed in the same layer as the microstrip patch, wherein the microstrip feed line is electrically connected to an edge of the microstrip patch in a direction parallel to the width direction of the apex of the isosceles triangle, the microstrip
  • the axis of symmetry of the feed line coincides with the axis of symmetry of the parallel length direction of the microstrip patch.
  • the length of the rectangular portion of the first slot is 33 ⁇ (1 ⁇ 0.2), and the width of the rectangular portion of the first slot is 24 ⁇ ( l ⁇ 0.2", the length of the base of the first slotted isosceles triangle portion is 8X (1 ⁇ 0.2 WJ, and the height of the first slotted isosceles triangle portion is 16x (l ⁇ 0.2),
  • the width of the microstrip patch is 6x(l ⁇ 0.2)ww, the length of the microstrip patch is 38.8x(l ⁇ 0.2)ww, and the length of the microstrip feeder is 10x(l ⁇ 0.2)w
  • the width of the microstrip feed line is 3.38x (1 ⁇ 0.2)w, the length of the ground patch is 75x (1 ⁇ 0.2)ww, and the width of the ground patch is 60x (l ⁇ 0.2)ww.
  • the length of the dielectric layer is equal to the length of the ground patch, the width of the dielectric layer is equal to the width of the ground patch, and the dielectric
  • the first slotted rectangular portion has a length of 33 mm, and the first slotted rectangular portion has a width of 24 mm.
  • the length of the base of the first slotted isosceles triangle portion is 8 mm, the height of the first slotted isosceles triangle portion is 16 mm, the width of the microstrip patch is 6 mm, and the microstrip patch
  • the length of the strip is 38.8 mm, the length of the microstrip feed line is 10 mm, the width of the microstrip feed line is 3.38 mm, the length of the ground patch is 75 mm, and the width of the ground patch is 60 mm.
  • the length of the dielectric layer is equal to the length of the ground patch, the width of the dielectric layer is equal to the width of the ground patch, and the dielectric layer has a thickness of 1.6.
  • the dielectric layer uses an epoxy having a dielectric constant of 4.4 and a loss tangent of 0.02. Resin FR4.
  • a MIMO antenna comprising: a microstrip patch layer, a ground patch layer, and a dielectric layer between the microstrip patch layer and the ground patch layer.
  • the grounding patch layer includes N grounding patches, each of the grounding patches is provided with a first slot extending through the grounding patch for coupling resonance of the microstrip patch,
  • a slotted shape is a combination of a rectangle and an isosceles triangle, the edge of the rectangle coincides with the bottom edge of the isosceles triangle, and the length of the coincident edge of the rectangle is greater than the base of the isosceles triangle Length, the N is greater than or equal to 2.
  • the microstrip patch layer includes N microstrip patches, each of the microstrip patches corresponding to one of the grounding patches, the microstrip patch is rectangular, and the microstrip patch has a parallel length direction.
  • the axis of symmetry coincides with the axis of symmetry of the isosceles triangle.
  • the projection of each of the microstrip patches on the dielectric layer and the projection of the first slotted isosceles triangular portion on each of the ground patches on the dielectric layer have overlapping regions.
  • the MIMO antenna further includes: a spacing unit in the same layer as the ground patch of the antenna, the spacing unit being located between each two adjacent ground patches of the at least two grounding patches for adding Isolation between antennas.
  • the spacer unit includes a first spacer and a second spacer.
  • the first spacer is composed of a first branch and a second branch that are perpendicular to each other and do not intersect, and a vertical point of the second branch is located at a midpoint of the first branch.
  • the second spacer includes a third branch, a fourth branch, and a fifth branch, and the fourth branch and the fifth branch are respectively parallel to the vertical line of the third branch and the third The branches do not intersect, and the fourth branch and the fifth branch are axisymmetric with respect to the mid-perpendicular line of the third branch.
  • the first branch, the second branch, the third branch, the fourth branch, and the fifth branch are each a rectangular structure.
  • the MIMO antenna further includes:
  • the microstrip feeder set includes N microstrip feed lines disposed in the same layer as each of the strips, each of the microstrip feed lines and one of the microstrip patches in a parallel width direction The edges of the sides adjacent to the apex of the isosceles triangle are electrically connected, and each of the microstrips incorporates a second achievable manner.
  • each of the grounded slabs has a length of 75x ( l ⁇ 0.2)ww
  • each of the grounding patches has a width of 50x (1 ⁇ 0.2)ww
  • a length of the first slotted rectangular portion of each of the grounding patches is 33X (1 ⁇ 0.2 WJ)
  • the width of the first slotted rectangular portion is 24 ⁇ (1 ⁇ 0.2) w
  • the length of the base of the first slotted isosceles triangle portion is 8 ⁇ (1 ⁇ 0.2)
  • the first slotted The height of the isosceles triangle portion is 16x(l ⁇ 0.2)ww
  • the width of each of the microstrip shells is 10x(l ⁇ 0.2)ww
  • the length of each of the microstrip patches is 39x (l ⁇ 0.2)ww
  • each of the microstrip feed lines has a length of 10x (1 ⁇ 0.2)ww
  • each of the microstrip feed lines has a width of 3.38X (1 ⁇ 0.2 WJ, between two adjacent ground patches)
  • the interval is 40X (1 ⁇
  • each of the grounding patches has a length of 75 mm, and each of the grounding patches has a width of 50 mm, and each of the grounding patches is The length of the first slotted rectangular portion is 33, the first slotted rectangle The width of the portion is 24 mm, the length of the base of the first slotted isosceles triangle portion is 8 mm, the height of the first slotted isosceles triangle portion is 16 mm, and the width of each of the microstrip patches is 10mm, each of the microstrip patches has a length of 39mm, each of the microstrip feed lines has a length of 10mm, and each of the microstrip feed lines has a width of 3.38mm, between two adjacent ground patches.
  • the length of the first branch of the first spacer is 30 mm
  • the length of the second branch is 30 mm
  • the length of the third branch of the second spacer is 30
  • the length of the fourth branch is 25 mm
  • the length of the fifth branch is 25 mm
  • the width of the five nodes is 5 mm
  • the width of the dielectric layer is equal to the length of the ground patch.
  • An antenna and a MIMO antenna provided by an embodiment of the present invention include a microstrip patch, a ground patch having a first slot, and a dielectric layer between the microstrip patch and the ground patch, and are attached by the microstrip Coupling resonance between the chip and the ground patch for receiving and transmitting signals, reducing the self-interference signal of the small base station using the microstrip patch antenna when transmitting and receiving signals, because the transmitted signal is reflected by the antenna and enters the receiving end. It can effectively reduce the power of the antenna self-interference signal.
  • FIG. 1 is a schematic structural diagram of a microstrip patch antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a slotted structure of a ground patch of a microstrip patch antenna according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing a slotted projection of a ground patch of a microstrip patch antenna and a microstrip patch projection of the antenna according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram showing another slot structure of a ground patch of a microstrip patch antenna according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of another microstrip patch antenna according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a size of a microstrip patch antenna according to an embodiment of the present invention
  • FIG. 7 is a self-interference power-frequency curve diagram of a microstrip patch antenna according to an embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of a MIMO antenna according to an embodiment of the present invention
  • FIG. 9 is a schematic structural diagram of another MIMO antenna according to an embodiment of the present invention
  • FIG. 10 is still another MIMO antenna according to an embodiment of the present invention
  • 1 is a schematic diagram of a size of a MIMO antenna according to an embodiment of the present invention
  • FIG. 12 is a self-interference power-frequency curve diagram of a MIMO antenna according to an embodiment of the present invention.
  • FIG. 1-b is a side view of the microstrip patch antenna 10, including a microstrip patch 101, a ground patch 102, and The dielectric layer 103 between the microstrip patch and the ground patch is shown in FIG. 1-b.
  • the microstrip patch antenna 10 placed during normal operation is a ground patch 102 and a dielectric layer 103 from bottom to top.
  • the microstrip patch 101, the X direction in the figure indicates the direction from bottom to top.
  • the top view of the microstrip patch antenna 10 can be as shown in FIG. 1 - a.
  • the ground patch 102 is provided with a first slot 1021 extending through the ground patch 102 for the microstrip patch. 101 performs coupling resonance.
  • the shape of the first slot 1021 is a combination of a rectangle 1021 1 and an isosceles triangle 10212.
  • One side of the rectangle 1021 1 and the bottom edge of the isosceles triangle 10212 coincide. That is, the AB side of the rectangle 1021 1 in FIG. 2 coincides with the CD side of the isosceles triangle 10212, the overlapping side of the rectangle 1021 1 is the AB side in FIG.
  • the length is ⁇
  • the bottom side of the isosceles triangle 10212 is in FIG. CD
  • the length of the side is / 2
  • the length of the overlapping side of the rectangle 10211 is greater than the length of the bottom side of the isosceles triangle 10212, that is, >/ 2 .
  • the coincident edge of the rectangle 10211 is typically the length of the rectangle 10211.
  • the microstrip patch 101 has a rectangular shape, and the axis of symmetry of the parallel strip length of the microstrip patch 101 coincides with the axis of symmetry of the isosceles triangle.
  • the coincident axis of symmetry is shown by a straight line A in Figure 1-a.
  • the projection 1031 of the microstrip patch 101 on the dielectric layer 103 and the projection 1302 of the isosceles triangular portion of the first slot 1021 on the dielectric layer 103 have overlapping regions on which the microstrip patch 101 is located.
  • the upper projection 1031 is a projection of the microstrip patch 101 on the dielectric layer 103 in the parallel X direction
  • the projection 1032 of the isosceles triangular portion of the first slot 1021 on the dielectric layer is the isosceles of the first slot 1021.
  • the projection 1031 of the microstrip patch 101 on the dielectric layer 103 can completely cover the projection 1032 of the isosceles triangle portion of the first slot 1021 on the dielectric layer 103.
  • the projection 1031 of the microstrip patch 101 on the dielectric layer may also cover only the projection of the isosceles triangle portion of the first slot 1021 on the dielectric layer 103.
  • the central area of 1032 is not limited to the central area of 1032.
  • the projection 1031 of the microstrip patch 101 on the dielectric layer 103 and the projection 1032 of the isosceles triangle portion of the first slot 1021 on the dielectric layer 103 respectively indicate the microstrip patch 101 and the first
  • the size of the isosceles triangle portion of the slot 1021, and the center frequencies of the different antennas formed by the different sizes of the microstrip patch 101 and the isosceles triangle portion of the first slot 1021 are different from the power generated by the interference signal, so the actual In the application, the overlapping area of the projection 1031 of the microstrip patch 101 on the dielectric layer 103 and the projection 1032 of the isosceles triangular portion of the first slot 1021 on the dielectric layer 103 may be determined according to specific conditions.
  • the size of the embodiment of the present invention is not limited thereto.
  • the portion of the isosceles triangle 10212 of the first slot 1021 may be replaced by an equilateral triangle 10213, that is, the bottom edge of the isosceles triangle 10212 is equal to the waist, and the equilateral triangle is Either side of 10213 can be used as the bottom edge of the equilateral triangle 10213, according to different application scenarios of the small base station using the microstrip patch antenna 10 and different parameter requirements of the microstrip patch antenna 10, This embodiment of the present invention does not limit this.
  • the microstrip patch antenna 10 further includes a microstrip feed line 104 disposed in the same layer as the microstrip patch 101. As shown in FIG. 5-a, the microstrip feed line 104 and the microstrip patch are attached. The sides of the parallel width direction of the slice 101 are electrically connected to the side of the apex of the isosceles triangle, and the edge of the microstrip patch 101 in the direction parallel to the width direction is adjacent to the edge of the apex of the isosceles triangle as shown in FIG. 5-a. As shown in the CD, the axis of symmetry of the microstrip feed line 104 coincides with the axis of symmetry of the parallel length direction of the microstrip patch 101, and FIG.
  • the plane of the symmetry axis EF is a sectional view of the cutting plane, and the bottom layer of FIG. 5-b is the ground patch 102, the dielectric layer 103, the microstrip patch 101 and the microstrip feeder arranged in the same layer as the microstrip patch 101.
  • the X direction indicates the direction from bottom to top, and the microstrip feeder 104 is used to feed the microstrip patch 101 as a microstrip feed.
  • the 50 ohm microstrip feed line 104 can be used as the micro The patch 101 is fed.
  • the microstrip patch 101 can also be fed by means of coaxial feeding.
  • a 50 ohm coaxial cable can be used to feed the microstrip patch 101.
  • the specific feeding mode can be based on specific conditions. The embodiment of the present invention does not limit this.
  • the microstrip patch antenna 10 provided by the embodiment of the present invention is generally used for a small base station.
  • the center frequency of the microstrip patch antenna 10 is 2.4 GHz and is used for WiFi (Wireless Fidelity)
  • the size of the microstrip patch antenna 10 is 33x (1 ⁇ 0.2) of the rectangular portion of the first slot 1021, that is, the length of the rectangular portion of the first slot 1021 is greater than or equal to 26.4 mm and less than or equal to 39.6 mm;
  • the width of the rectangular portion of the first slot 1021 is 24x (1 ⁇ 0.2), that is, the width of the rectangular portion of the first slot 1021 is greater than or equal to 19.2 mm and less than or equal to 28.8 mm; the isosceles triangle portion of the first slot 1021.
  • the length of the bottom edge is 8x (l ⁇ 0.2), that is, the length of the base of the isosceles triangle portion of the first slot 1021 is large. Is equal to 6.4 mm, less than or equal to 9.6 mm; the height of the isosceles triangle portion of the first slot 1021 is 16x (l ⁇ 0.2), that is, the height of the isosceles triangle portion of the first slot 1021 is greater than or equal to 12.8 mm, less than or equal to 19.2mm;
  • the width of the microstrip patch 101 is 6x(l ⁇ 0.2)ww, that is, the width of the microstrip patch 101 is 4.8mm or more and 7.2mm or less; the length of the microstrip patch 101 is 38.8x (l ⁇ 0.2), that is, the length of the microstrip patch 101 is greater than or equal to 31.04 mm, which is less than or equal to 46.56 mm; the length of the microstrip feeder 104 is 10 x (l ⁇ 0.2)
  • the width of the microstrip feed line 104 is 3.38x (1 ⁇ 0.2) m, that is, the width of the microstrip feed line 104 is greater than or equal to 2.7 mm and less than or equal to 4.0 mm; the length of the ground patch 102 is 75 x (l ⁇ 0.2) ww, that is, The length of the grounding patch 102 is greater than or equal to 60 mm and less than or equal to 90 mm; the width of the grounding patch 102 is 60x (1 ⁇ 0.2), that is, the width of the grounding patch 102 is greater than or equal to 48 mm, and less than or equal to 72 mm; the length of the dielectric layer and the grounding sticker The length of the sheets is equal, the width of the dielectric layer is equal to the width of the ground patch, and the thickness of the dielectric layer is 1.6.
  • the tape antenna is provided.
  • the preferred size of 10 is that, as shown in FIG. 6-a, the rectangular portion of the first slot 1021 has a length of 33 mm, and the rectangular portion of the first slot 1021 has a width of 24 mm, and the isosceles triangle portion of the first slot 1021.
  • the length of the bottom side is 8 mm
  • the height of the isosceles triangle portion of the first groove 1021 is 16 mm
  • the width of the microstrip patch 101 is 6 mm
  • the length of the microstrip patch 101 is 38.8 mm
  • the length of the microstrip feed line 104 is Wmm
  • the width of the microstrip feeder 104 is 3.38 mm
  • the length of the ground patch 102 is 75 mm
  • the width of the ground patch 102 is 60 mm
  • the length of the dielectric layer is equal to the length of the ground patch
  • the width and ground of the dielectric layer are The width of the patches is equal, as shown in Figure 6-b
  • the dielectric layer thickness is 1.6.
  • the frequency of the microstrip patch antenna 10 - self-interference signal loss diagram As shown in FIG. 7, the curve G in FIG. 7 indicates the power value of the self-interference signal of the microstrip patch antenna 10 at different operating frequencies.
  • the microstrip according to the embodiment of the present invention is compared with the existing antenna.
  • the patch antenna 10 effectively reduces the power of the self-interfering signal.
  • the microstrip patch antenna 10 can operate at a bandwidth of 200 MHz when the power of the self-interference signal is less than or equal to -15 dB, compared to the existing antenna, in the backhaul. When the losses are the same, the operating bandwidth of the antenna is increased.
  • the dielectric layer 103 generally uses an epoxy resin FR4 having a dielectric constant of 4.4 and a loss tangent of 0.02.
  • the FR4 is a type of epoxy resin, and a Rogers substrate may also be used.
  • the embodiment of the present invention does not limit the selection according to the specific situation.
  • a microstrip patch antenna includes a rectangular microstrip patch, a ground patch having a first slot, and a dielectric layer between the microstrip patch and the ground patch.
  • the coupling resonance between the microstrip patch and the ground patch is used to receive and transmit signals, and the small base station using the microstrip patch antenna is reduced in transmitting and receiving signals, and the transmitting signal is reflected by the antenna and enters the receiving end.
  • the self-interference signal can effectively reduce the power of the antenna self-interference signal.
  • the embodiment of the present invention provides a MIMO antenna 80, as shown in FIG. 8-a, including: a microstrip patch layer 801, a ground patch layer 802, and a microstrip patch layer 801 and a ground patch layer 802.
  • FIG. 6-b is a side view of the MIMO antenna 80. It can be seen from FIG. 8-b that the MIMO antenna 80 placed during normal operation is a ground patch 802, a dielectric layer 803, and a microstrip patch 801 from bottom to top.
  • the X direction in the figure indicates the direction from bottom to top.
  • the grounding patch layer 802 includes N grounding patches 8021, wherein the N is greater than or equal to 2, and FIG. 8 is illustrated by two grounding patches 8021.
  • the grounding patch 8021 is disposed through the grounding patch 8021.
  • a first slot for coupling resonance of the microstrip patch 801 1 wherein the shape of the first slot is a combination of a rectangle and an isosceles triangle, the edge of the rectangle and the isosceles triangle The bottom edges coincide, the rectangle
  • the length of the overlapping side is greater than the length of the bottom side of the isosceles triangle.
  • the overlapping side of the rectangle is the side of the length direction of the rectangle.
  • the microstrip patch layer 801 includes N microstrip patches 801 1 , and the number of microstrip patches 801 is the same as the number of ground patches 802.
  • FIG. 8 illustrates two microstrip patches 801, each The microstrip patch 801 1 corresponds to one of the ground patch 8021, that is, the microstrip patch 801 1 and the ground patch 8021 have a corresponding relationship, and the microstrip patch 801 1 has a rectangular shape.
  • the axis of symmetry of the parallel length direction of the microstrip patch 801 1 coincides with the axis of symmetry of the isosceles triangle, such that when the MIMO antenna 80 is placed in a normal working state, as described in FIG. 8-b,
  • the microstrip patch 801 1 is located directly above the isosceles triangle.
  • each of the microstrip patches 801 1 on the dielectric layer coincides with the projection of the first slotted isosceles triangular portion on each of the ground patches 8021 on the dielectric layer
  • the overlapped area indicates that the projection of the microstrip patch 801 1 on the dielectric layer 803 can completely cover the projection of the first slotted isosceles triangle portion of the ground patch 8021 on the dielectric layer 803, or may only cover
  • the description of the embodiment of the present invention will be omitted.
  • the projection of the microstrip patch 801 1 on the dielectric layer 803 and the projection of the first slotted isosceles triangle portion of the ground patch 8021 on the dielectric layer 803 respectively indicate the microstrip patch
  • the center frequency and the power generated by the self-interference signal are also different. Therefore, in actual applications, the projection of the microstrip patch 801 1 on the dielectric layer 803 and the first slotted isosceles of the ground patch 8021 can be determined according to specific conditions.
  • the overlapping area of the projection of the triangular portion on the dielectric layer 803 is not limited in this embodiment of the present invention.
  • the MIMO antenna 80 further includes a spacing unit 804 disposed in the same layer as the ground patch 8021 of the antenna, where the spacing unit is located adjacent to each of the at least two grounding patches 8021. Between the grounding patches 8021, used to add antennas The isolation between.
  • the spacing unit 804 may further include a first spacer 8041 and a second spacer 8042.
  • the first spacer 8041 is composed of a first branch and a second branch that are perpendicular to each other and do not intersect, and a vertical point of the second branch is located at a midpoint of the first branch; the second spacer 8042
  • the third branch, the fourth branch, and the fifth branch are respectively included, and the fourth branch and the fifth branch are respectively parallel to the vertical line of the third branch and do not intersect with the third branch.
  • the fourth branch and the fifth branch are axisymmetric with respect to a vertical line of the third branch; the first branch, the second branch, the third branch, the fourth branch, and the fifth branch are rectangular structures .
  • the material of the first spacer and the second spacer may be the same as the material of the grounding patch 8021, or may be different from the material of the grounding patch 8021, and is determined according to the specific situation, which is not limited by the embodiment of the present invention.
  • the MIMO antenna generates a coupling resonance between the patch and the ground patch for receiving and transmitting signals, which reduces the small base station using the MIMO antenna when transmitting and receiving signals, because the transmitted signal is reflected by the antenna.
  • the self-interference signal entering the receiving end effectively reduces the power of the antenna self-interference signal compared to the prior art.
  • the MIMO antenna 80 further includes: a microstrip feeder group 805, where the microstrip feeder group 805 includes N microstrip feeders 8051 disposed in the same layer as each of the microstrip patches.
  • Each of the microstrip feed lines 8051 is electrically connected to an edge of a parallel width direction of one of the microstrip patches 801 1 near an apex of the isosceles triangle, and an axis of symmetry of each of the microstrip feed lines 8051
  • the microstrip patch 801 1 has a symmetrical axis perpendicular to the longitudinal direction, and specifically, the 50 ohm microstrip feed line 8051 can be used to feed the strip 801 1 .
  • the microstrip patch 801 1 can also be fed by means of coaxial feeding.
  • a 50 ohm coaxial cable can be used to feed the microstrip patch 101.
  • the specific feeding mode can be determined according to the specific The embodiment of the present invention does not limit this.
  • the MIMO antenna 80 provided by the embodiment of the present invention is generally used for a small base station.
  • the MIMO antenna 80 has a size range of each of the ground patches.
  • Length is 75x (l ⁇ 0.2)
  • each The width of the ground patch is 50 ⁇ (1 ⁇ 0.2)
  • the length of the first slotted rectangular portion of each of the ground patch 8021 is 33 ⁇ (1 ⁇ 0.2), and the first slotted rectangle
  • the width of the portion is 24x (1 ⁇ 0.2)
  • the length of the base of the first slotted isosceles triangle portion is 8x (1 ⁇ 0.2)
  • the height of the first slotted isosceles triangle portion is 16x ( l ⁇ 0.2)
  • each of the microstrip patches 8011 has a width of 10 ⁇ (1 ⁇ 0.2)
  • each of the microstrip patches 8011 has a length of 39 ⁇ (1 ⁇ 0.2)ww
  • the length of the feeder is 10x (l ⁇ 0.2)ww, the width of each of the ground patches
  • the preferred size of the MIMO antenna 80 is 75 mm for each of the ground patches, and each of the grounds
  • the width of the patch is 50 mm
  • the length of the first slotted rectangular portion of each of the ground patch 8021 is 33 mm
  • the width of the first slotted rectangular portion is 24 mm
  • the length of the base of the isosceles triangle portion is 8 mm
  • the height of the first grooved isosceles triangle portion is 16 mm
  • the width of each of the microstrip patches 8011 is 10 mm
  • the length of the 8011 is 39m
  • the length of each of the microstrip feeders is 10mm
  • the width of each of the microstrip feed lines is 3.38mm
  • the interval between two adjacent grounding patches 8021 is 40mm
  • the length of the second branch is 30m
  • the length of the second branch is 30m
  • the length of the second branch is
  • the width of the first branch, the second branch, the third branch, the fourth branch, and the fifth branch are both 5 mm
  • the width of the dielectric layer is equal to the length of the ground patch.
  • the power of the self-interference signal of the MIMO antenna 80 is less than or equal to -21.5 when the operating frequency is 2.4 GHz and the bandwidth is 80 MHz. dB, and the MIMO antenna used by the existing small base station has a power of self-interference signal of -15 dB or less based on the bandwidth of 80 MHz. When it is close to -15 dB, it may not meet the needs of the small base station, so The existing MIMO antenna, the MIMO antenna 80 according to the embodiment of the present invention effectively reduces the power of the self-interference signal.
  • the MIMO antenna 80 has a working bandwidth of 200 MHz when the power of the self-interference signal is less than or equal to -15 dB, which is the same in backhaul compared to the existing MIMO antenna. In the case, the operating bandwidth of the MIMO antenna is increased.
  • the MIMO antenna provided by the embodiment of the present invention includes a microstrip patch layer, a ground patch layer, and a dielectric layer between the microstrip patch layer and the ground patch layer, wherein the microstrip patch layer includes at least two micro With a patch, the grounding patch layer includes at least two grounding patches, and a coupling resonance between the microstrip patch and the grounding patch is used to receive and transmit signals, thereby reducing a small base station using the MIMO antenna When transmitting and receiving signals, since the transmitted signal is reflected by the antenna and enters the self-interference signal at the receiving end, the power of the antenna self-interference signal can be effectively reduced.

Abstract

本发明实施例提供一种微带贴片天线和MIMO天线,应用于通信领域,能够降低天线自干扰信号的功率。所述微带贴片天线包括:微带贴片、接地贴片和位于所述微带贴片与所述接地贴片之间的介质层;所述接地贴片上设置有贯穿所述接地贴片的第一开槽,所述第一开槽的形状是一个矩形和一个等腰三角形的组合,所述矩形一条边和所述等腰三角形的底边;所述微带贴片呈矩形,所述微带贴片平行长度方向的对称轴与所述等腰三角形的对称轴重合;所述微带贴片在所述介质层上的投影与所述第一开槽的等腰三角形部分在所述介质层上的投影存在重合区域。本发明实施例提供一种微带贴片天线和MIMO天线,应用于小型基站。

Description

一种微带贴片天线和多入多出天线 技术领域
本发明涉及通信领域, 尤其涉及一种微带贴片天线和 MIMO ( Multiple-Input Multiple-Output , 多入多出 ) 天线。
背景技术
在移动蜂窝通信系统、 WLAN ( Wireless Local Area Network , 无线局域网 )、 FWA ( Fixed Wireless Access , 固定无线接入) 等无 线通信系统中, B S ( Base Station, 基站) 或 AP ( Access Point, 接 入点)、 RS ( Relay Station, 中继站) 以及 UE ( User Equipment, 用 户设备) 等通信节点通常配置有具有发射信号和接收信号能力的天 线。 由于无线信号在无线信道中的衰减非常大, 与天线的发射信号 相比, 来自其他通信节点的信号到达天线时信号已经非常微弱, 而 为了保证频谱效率, 在通信系统中通常釆用无线全双工技术, 即发 送信号和接收信号同时经过天线进行发送和接收。 釆用无线全双工 技术的小型基站一般配置有天线、 接收端和发射端, 所述天线一般 为拉杆天线或橡胶天线, 假设小型基站的天线为 中 心频率为 2.4GHz ,带宽为 80MHz的橡胶天线,当发射端通过天线发射信号时, 一部分发射信号会由于天线的反射而进入接收端产生自干扰信号, 若发射信号的功率约为 OdBm ,则由于反射而产生的自干扰信号的功 率约为 - 15 d B m , 因此釆用所述橡胶天线的小型基站接收信号的自干 扰信号功率较高。
发明内容
本发明的实施例提供一种微带贴片天线和 MIMO天线 , 能够降 低天线自干扰信号的功率。
为达到上述目的, 本发明的实施例釆用如下技术方案:
第一方面, 提供一种微带贴片天线, 包括微带贴片、 接地贴片 和位于所述微带贴片与所述接地贴片之间的介质层。 所述接地贴片上设置有贯穿所述接地贴片的第一开槽, 用于对 所述微带贴片进行耦合谐振, 所述第一开槽的形状是一个矩形和一 个等腰三角形的组合, 所述矩形一条边和所述等腰三角形的底边重 合, 所述矩形的重合边的长度大于所述等腰三角形的底边的长度。
所述微带贴片呈矩形, 所述微带贴片平行长度方向的对称轴与 所述等腰三角形的对称轴重合。
所述微带贴片在所述介质层上的投影与所述第一开槽的等腰三 角形部分在所述介质层上的投影存在重合区域。
结合第一方面, 在第一种可实现方式中, 所述等腰三角形的底 边与腰相等。
结合第一方面或者第一种可实现方式,在第二种可实现方式中, 所述矩形的重合边为所述矩形的长边。
结合第二种可实现方式, 在第三种可实现方式中, 所述微带贴 片天线还包括:
与所述微带贴片同层设置的微带馈线, 所述微带馈线与所述微 带贴片上平行宽度方向的边中靠近所述等腰三角形顶点的边电连 接, 所述微带馈线的对称轴与所述微带贴片平行长度方向的对称轴 重合。
结合第三种可实现方式, 在第四种可实现方式中, 所述第一开 槽的矩形部分的长为 33x(l±0.2) , 所述第一开槽的矩形部分的宽为 24x(l±0.2 " , 所述第一开槽的等腰三角 形部分的底边长度为 8X(1±0.2 WJ, 所述第一开槽的等腰三角形部分的高为 16x(l±0.2) , 所 述微带贴片的宽为 6x(l±0.2)ww, 所述微带贝占片的长为 38.8x(l±0.2)ww , 所述微带馈线的长为 10x(l±0.2) w,所述微带馈线的宽为 3.38x(l±0.2)w , 所述接地贴片的长为 75x(l±0.2)ww, 所述接地贴片的宽为 60x(l±0.2)ww, 所述介质层的长与所述接地贴片的长相等, 所述介质层的宽与所述 接地贴片的宽相等, 所述介质层厚度为 1.6 。
结合第四种可实现方式, 在第五种可实现方式中, 所述第一开 槽的矩形部分的长为 33mm , 所述第一开槽的矩形部分的宽为 24mm , 所述第一开槽的等腰三角形部分的底边长度为 8mm ,所述第一开槽的 等腰三角形部分的高为 16mm , 所述微带贴片的宽为 6mm , 所述微带贴 片的长为 38.8mm , 所述微带馈线的长为 10mm , 所述微带馈线的宽为 3.38mm , 所述接地贴片的长为 75mm , 所述接地贴片的宽为 60mm , 所述 介质层的长与所述接地贴片的长相等, 所述介质层的宽与所述接地 贴片的宽相等, 所述介质层厚度为 1.6 。
结合第一方面或第一至第五中可实现方式任意一种可实现方 式, 在第六种可实现方式中, 所述介质层釆用介电常数为 4.4 , 损耗 角正切为 0.02的环氧树脂 FR4。
第二方面, 提供一种 MIMO天线, 包括: 微带贴片层、 接地贴 片层和位于微带贴片层与接地贴片层之间的介质层。
所述接地贴片层包括 N个接地贴片, 每个所述接地贴片设置有 贯穿所述接地贴片的第一开槽, 用于对所述微带贴片进行耦合谐振, 所述第一开槽的形状是一个矩形和一个等腰三角形的组合, 所述矩 形一条边和所述等腰三角形的底边重合, 所述矩形的重合边的长度 大于所述等腰三角形的底边的长度, 所述 N大于或等于 2。
所述微带贴片层包括 N个微带贴片, 每个所述微带贴片对应一 个所述接地贴片, 所述微带贴片呈矩形, 所述微带贴片平行长度方 向的对称轴与所述等腰三角形的对称轴重合。
每个所述微带贴片在所述介质层上的投影与每个所述接地贴片 上的所述第一开槽的等腰三角形部分在所述介质层上的投影存在重 合区域。
所述 MIMO天线还包括: 与所述天线的接地贴片同层的间隔单 元, 所述间隔单元位于所述至少两个接地贴片中每两个相邻的接地 贴片之间, 用于增加天线之间的隔离度。
结合第二方面, 在第一种可实现方式中, 所述间隔单元包括第 一间隔体和第二间隔体。
所述第一间隔体由互相垂直且不交叉的第一枝节和第二枝节组 成, 所述第二枝节的垂点位于所述第一枝节的中点。 所述第二间隔体包括第三枝节、 第四枝节和第五枝节, 所述第 四枝节和所述第五枝节分别与所述第三枝节的中垂线平行且与所述 第三枝节不交叉, 所述第四枝节和所述第五枝节以所述第三枝节的 中垂线轴对称。
所述第一枝节、 第二枝节、 第三枝节、 第四枝节和第五枝节均 为矩形结构。
结合第一种可实现方式, 在第二种可实现方式中, 所述 MIMO 天线还包括:
微带馈线组, 所述微带馈线组包括 N个与每个所述带贴片同层 设置的微带馈线, 每个所述微带馈线与一个所述微带贴片上平行宽 度方向的边中靠近所述等腰三角形顶点的边电连接, 每个所述微带 结合第二种可实现方式, 在第三种可实现方式中, 每个所述接 地贝占片的长为 75x(l±0.2)ww , 每个所述接地贴片的宽为 50x(l±0.2)ww , 每 个所述接地贴片的所述第一开槽的矩形部分的长为 33X(1±0.2 WJ , 所 述第一开槽的矩形部分的宽为 24x(l±0.2) w , 所述第一开槽的等腰三 角形部分的底边长度为 8x(l±0.2) , 所述第一开槽的等腰三角形部分 的高为 16x(l±0.2)ww , 每个所述微带贝占片的宽为 10x(l±0.2)ww , 每个所述 微带贴片的长为 39x(l±0.2)ww , 每个所述微带馈线的长为 10x(l±0.2)ww , 每个所述微带馈线的宽为 3.38X(1±0.2 WJ , 相邻两个接地贴片之间的间 隔为 40X(1±0.2 WJ , 所述第一间 隔体的所述第 一枝节 的长度为 30x(l±0.2)ww , 所述第二枝节的长度为 30x(l±0.2)ww , 所述第二间隔体的 所述第三枝节 的长度为 30x(l±0.2) , 所述第 四枝节 的长度为 25x(l±0.2)ww, 所述第五枝节的长度为 25x(l±0.2)ww, 所述第一枝节、 所 述第二枝节、 所述第三枝节、 所述第四枝节和所述第五枝节的宽度 均为 5X(1±0.2 WJ, 所述介质层的宽与所述接地贴片的长相等。
结合第三种可实现方式, 在第四种可实现方式中, 每个所述接 地贴片的长为 75mm, 每个所述接地贴片的宽为 50mm , 每个所述接地 贴片的所述第一开槽的矩形部分的长为 33 , 所述第一开槽的矩形 部分的宽为 24mm , 所述第一开槽的等腰三角形部分的底边长度为 8mm , 所述第一开槽的等腰三角形部分的高为 16mm , 每个所述微带贴 片的宽为 10mm , 每个所述微带贴片的长为 39mm , 每个所述微带馈线 的长为 10mm , 每个所述微带馈线的宽为 3.38mm , 相邻两个接地贴片之 间的间隔为 40mm , 所述第一间隔体的所述第一枝节的长度为 30mm , 所述第二枝节的长度为 30mm , 所述第二间隔体的所述第三枝节的长 度为 30 , 所述第四枝节的长度为 25mm , 所述第五枝节的长度为 25mm , 所述第一枝节、 所述第二枝节、 所述第三枝节、 所述第四枝 节和所述第五枝节的宽度均为 5mm ,所述介质层的宽与所述接地贴片 的长相等。
本发明实施例提供的天线和 MIMO天线, 包括微带贴片、 具有 第一开槽的接地贴片和位于所述微带贴片与所述接地贴片之间的介 质层, 由微带贴片和接地贴片之间产生耦合谐振, 用来接收和发射 信号, 减少了釆用微带贴片天线的小型基站在进行收发信号时, 由 于发射信号经过天线反射而进入接收端的自干扰信号, 能够有效降 低天线自干扰信号的功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种微带贴片天线的结构示意图; 图 2为本发明实施例提供的一种微带贴片天线的接地贴片的一 种开槽结构示意图;
图 3 为本发明实施例提供的一种微带贴片天线的接地贴片的开 槽投影与所述天线的微带贴片投影的示意图;
图 4为本发明实施例提供的一种微带贴片天线的接地贴片的另 一种开槽结构示意图; 图 5 为本发明实施例提供的另一种微带贴片天线的结构示意 图;
图 6为本发明实施例提供的一种微带贴片天线的尺寸示意图; 图 7 为本发明实施例提供的一种微带贴片天线的自干扰功率- 频率曲线图;
图 8为本发明实施例提供的一种 MIMO天线的结构示意图; 图 9为本发明实施例提供的另一种 MIMO天线的结构示意图; 图 10为本发明实施例提供的又一种 MIMO天线的结构示意图; 图 1 1为本发明实施例提供的一种 MIMO天线的尺寸示意图; 图 12为本发明实施例提供的一种 MIMO天线的自干扰功率-频 率曲线图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供一种微带贴片天线 10 ,如图 1 -b所示, 图 1 -b 为微带贴片天线 10的侧视图, 包括微带贴片 101、 接地贴片 102和 位于所述微带贴片与所述接地贴片之间的介质层 103 , 由图 1 -b可知 正常工作时放置的微带贴片天线 10从下往上依次是接地贴片 102、 介质层 103和微带贴片 101 , 图中 X方向指示从下到上的方向。
该微带贴片天线 10的俯视图可以如图 1 - a所示, 所述接地贴片 102上设置有贯穿所述接地贴片 102 的第一开槽 1021 , 用于对所述 微带贴片 101进行耦合谐振, 如图 2所示, 所述第一开槽 1021 的形 状是一个矩形 1021 1 和一个等腰三角形 10212 的组合, 矩形 1021 1 的一条边和等腰三角形 10212的底边重合, 即图 2 中矩形 1021 1 的 AB边与等腰三角形 10212的 CD边重合, 矩形 1021 1 的重合边为图 2中的 AB边, 其长度为 ^ , 等腰三角形 10212的底边为图 2 中的 CD 边, 其长度为 /2, 矩形 10211 的重合边的长度大于等腰三角形 10212 的底边的长度, 即 >/2。 实际应用中矩形 10211 的重合边通常为矩 形 10211 的长。
所述微带贴片 101 呈矩形, 所述微带贴片 101 的平行长度方向 的对称轴与所述等腰三角形的对称轴重合, 重合的对称轴如图 1-a 中直线 A所示,这样使得当微带贴片天线 10是正常工作状态放置时, 如图 1-b所述, 所述微带贴片 101位于所述等腰三角形的正上方。
微带贴片 101在所述介质层 103上的投影 1031与第一开槽 1021 的等腰三角形部分在所述介质层 103上的投影 1302存在重合区域, 微带贴片 101在所述介质层上的投影 1031为微带贴片 101沿平行 X 方向在介质层 103上的投影, 第一开槽 1021 的等腰三角形部分在所 述介质层上的投影 1032为第一开槽 1021 的等腰三角形部分沿平行 X 方向在介质层 103 上的投影。 如图 3-a 所示, 所述微带贴片 101 在所述介质层 103 上的投影 1031 可以完全覆盖所述第一开槽 1021 的等腰三角形部分在所述介质层 103上的投影 1032,如图 3-b所示, 所述微带贴片 101在所述介质层上的投影 1031也可以只覆盖所述第 一开槽 1021 的等腰三角形部分在所述介质层 103上的投影 1032的 中心区域。 由于所述微带贴片 101在所述介质层 103上的投影 1031 和所述第一开槽 1021的等腰三角形部分在介质层 103上的投影 1032 分别指示了微带贴片 101 和第一开槽 1021 的等腰三角形部分的大 小, 且不同大小的微带贴片 101和第一开槽 1021 的等腰三角形部分 构成的不同天线的中心频率和产生自干扰信号的功率也不同, 因此 实际应用中可以根据具体情况决定所述微带贴片 101 在所述介质层 103 上的投影 1031 与所述第一开槽 1021 的等腰三角形部分在所述 介质层 103上的投影 1032的重合区域的大小, 本发明实施例对此不 作限定。
这样一来, 微带贴片和接地贴片之间产生耦合谐振, 用来接收 和发射信号, 减少了釆用该微带贴片天线的小型基站在进行收发信 号时, 由于发射信号经过天线反射而进入接收端的自干扰信号, 相 较于现有技术, 有效降低天线自干扰信号的功率。
进一步的,如图 4所示,所述第一开槽 1021的等腰三角形 10212 部分可以替换为等边三角形 10213, 即所述等腰三角形 10212 的底 边与腰相等, 则所述等边三角形 10213 的任意一边可以作为该等边 三角形 10213 的底边, 根据釆用所述微带贴片天线 10的小型基站的 应用场景不同和对所述微带贴片天线 10的参数要求不同进行选择, 本发明实施例对此不做限定。
进一步的, 所述微带贴片天线 10 还包括与所述微带贴片 101 同层设置的微带馈线 104, 如图 5-a所示, 所述微带馈线 104与所述 微带贴片 101 上平行宽度方向的边中靠近所述等腰三角形顶点的边 电连接, 所述微带贴片 101 上平行宽度方向的边中靠近所述等腰三 角形顶点的边如图 5-a中 CD所示,微带馈线 104的对称轴与所述微 带贴片 101平行长度方向的对称轴重合,图 5-b为以图 5-a中微带馈 线 104 与微带贴片 101 重合的对称轴 EF 所在平面为剖切面的剖面 图, 图 5-b由下往上依次为接地贴片 102,介质层 103,微带贴片 101 和与微带贴片 101 同层设置的微带馈线 104, 图中 X方向指示由下 往上的方向, 釆用微带馈线 104为微带贴片 101馈电称为微带馈电, 具体的, 可以釆用 50欧姆的微带馈线 104为微带贴片 101馈电。 实 际应用中, 也可以釆用同轴馈电的方式为微带贴片 101 馈电, 例如 可以釆用 50欧姆的同轴电缆为微带贴片 101馈电, 具体馈电方式可 以根据具体情况选择, 本发明实施例对此不做限定。
本发明实施例所提供的微带贴片天线 10通常用于小型基站, 当 所述微带贴片天线 10的中心频率为 2.4GHz, 且用于 WiFi( Wireless Fidelity, 无线保真) 时, 所述微带贴片天线 10 的尺寸范围为第一 开槽 1021 的矩形部分的长为 33x(l±0.2) , 即第一开槽 1021 的矩形 部分的长大于等于 26.4mm , 小于等于 39.6mm; 第一开槽 1021 的矩形部 分的宽为 24x(l±0.2) , 即第一开槽 1021 的矩形部分的宽大于等于 19.2mm , 小于等于 28.8mm; 第一开槽 1021 的等腰三角形部分的底边长 度为 8x(l±0.2) , 即第一开槽 1021 的等腰三角形部分的底边长度大 于等于 6.4mm, 小于等于 9.6mm; 第一开槽 1021 的等腰三角形部分的 高为 16x(l±0.2) , 即第一开槽 1021 的等腰三角形部分的高大于等于 12.8mm , 小于等于 19.2mm; 微带贴片 101 的宽为 6x(l±0.2)ww , 即微带贴 片 101 的宽大于等于 4.8mm, 小于等于 7.2mm; 微带贴片 101 的长为 38.8x(l±0.2) , 即微带贴片 101 的长大于等于 31.04mm , 小于等于 46.56mm; 微带馈线 104的长为 10x(l±0.2)m , 即微带馈线 104的长大于 等于 8mm , 小于等于 12mm ; 微带馈线 104 的宽为 3.38x(l±0.2)m , 即微 带馈线 104的宽大于等于 2.7mm , 小于等于 4.0mm; 接地贴片 102的长 为 75x(l±0.2)ww , 即接地贴片 102的长大于等于 60mm, 小于等于 90mm; 接地贴片 102 的宽为 60x(l±0.2) , 即接地贴片 102 的宽大于等于 48mm , 小于等于 72mm; 介质层的长与接地贴片的长相等, 介质层的 宽与接地贴片的宽相等, 介质层厚度为 1.6 。 釆用以上尺寸的所述 微带贴片天线 10, 能够有效降低发射信号的反射, 进而降低自干扰。
示例的, 经过 ADS ( Advanced Design System, 先进设计系统 ) 平台的仿真,若 带贴片天线 10的中心频率为 2.4GHz,且用于 WiFi ( Wireless Fidelity, 无线保真 )时, 啟带贴片天线 10的优选尺寸为, 如图 6-a所示,第一开槽 1021的矩形部分的长为 33mm,第一开槽 1021 的矩形部分的宽为 24mm , 第一开槽 1021 的等腰三角形部分的底边长 度为 8mm , 第一开槽 1021 的等腰三角形部分的高为 16mm , 微带贴片 101 的宽为 6mm, 微带贴片 101 的长为 38.8mm , 微带馈线 104 的长为 Wmm , 微带馈线 104的宽为 3.38mm , 接地贴片 102的长为 75mm , 所述 接地贴片 102 的宽为 60mm, 介质层的长与接地贴片的长相等, 介质 层的宽与接地贴片的宽相等, 如图 6-b 所示, 介质层厚度为 1.6 。 当所述微带贴片天线 10 的各部分尺寸为上述优选尺寸, 且选用 50 欧姆的微带馈线为微带贴片馈电时时, 该微带贴片天线 10 的频率- 自干扰信号损耗图如图 7所示, 图 7 中曲线 G表示微带贴片天线 10 在不同的工作频率下的自干扰信号的功率值, 从曲线 G可以看出当 工作频率为 2.4GHz, 带宽为 80MHz时, 所述 带贴片天线 10的自 干扰信号的功率小于等于 -27.5dB , 而现有小型基站所使用的天线在 满足带宽 80MHz 的基础上自干扰信号的功率小于等于 - 15dB , 在接 近于 - 15dB 时, 可能已经不能满足小型基站的需要了, 因此相较于 现有天线, 本发明实施例所述的微带贴片天线 10有效的降低了 自干 扰信号的功率。 如果小型基站的应用场景允许较大功率的回程损耗, 则所述微带贴片天线 10在自干扰信号的功率小于等于 - 15dB时, 可 工作带宽为 200MHz , 相较于现有天线, 在回程损耗相同的情况下, 增大了天线的工作带宽。
具体的, 实际应用中所述介质层 103通常釆用介电常数为 4.4 , 损耗角正切为 0.02的环氧树脂 FR4 , 所述 FR4为环氧树脂的一种型 号, 也可以釆用 Rogers基板, 根据具体情况进行选择, 本发明实施 例对此不做限定。
本发明实施例提供的微带贴片天线, 包括矩形的微带贴片、 具 有第一开槽的接地贴片和位于所述微带贴片与所述接地贴片之间的 介质层, 由微带贴片和接地贴片之间产生耦合谐振, 用来接收和发 射信号, 减少了釆用该微带贴片天线的小型基站在进行收发信号时, 由于发射信号经过天线反射而进入接收端的自干扰信号, 能够有效 降低天线自干扰信号的功率。 本发明实施例提供一种 MIMO天线 80 , 如图 8-a所示, 包括: 微带贴片层 801、 接地贴片层 802 和位于微带贴片层 801 与接地贴 片层 802之间的介质层 803 , 图 6-b为 MIMO天线 80的侧视图, 由 图 8-b可知正常工作时放置的 MIMO天线 80从下往上依次是接地贴 片 802、 介质层 803和微带贴片 801 , 图中 X方向指示从下到上的方 向。
所述接地贴片层 802 包括 N个接地贴片 8021 , 所述 N 大于等 于 2 , 图 8 以两个接地贴片 8021 进行说明, 所述接地贴片 8021 设 置有贯穿所述接地贴片 8021 的第一开槽,用于对所述微带贴片 801 1 进行耦合谐振, 所述第一开槽的形状是一个矩形和一个等腰三角形 的组合, 所述矩形一条边和所述等腰三角形的底边重合, 所述矩形 的重合边的长度大于所述等腰三角形的底边的长度, 通常所述矩形 的重合边为所述矩形的长度方向的边, 具体解释见本发明实施例对 图 2的说明, 在此不做赘述。
所述微带贴片层 801 包括 N个微带贴片 801 1 ,微带贴片 801 的 数量与接地贴片 802的数量一样多, 图 8 以两个微带贴片 801 进行 说明, 每个所述微带贴片 801 1对应一个所述接地贴片 8021 , 即所述 微带贴片 801 1 与所述接地贴片 8021 存在——对应的关系, 所述微 带贴片 801 1 呈矩形, 所述微带贴片 801 1 的平行长度方向的对称轴 与所述等腰三角形的对称轴重合,这样使得当 MIMO天线 80是正常 工作状态放置时, 如图 8-b所述, 所述微带贴片 801 1位于所述等腰 三角形的正上方。
所述每个微带贴片 801 1 在所述介质层上的投影与每个所述接 地贴片 8021 上的所述第一开槽的等腰三角形部分在所述介质层上 的投影存在重合区域, 所述存在重合区域表示微带贴片 801 1在介质 层 803上的投影可以完全覆盖接地贴片 8021的第一开槽的等腰三角 形部分在介质层 803上的投影, 也可以只覆盖接地贴片 8021 的第一 开槽的等腰三角形部分在介质层 803 上的投影的中心区域, 具体解 释见本发明实施例对图 3 的解释说明, 在此不做赘述。 由于所述微 带贴片 801 1 在所述介质层 803上的投影和所述接地贴片 8021 的第 一开槽的等腰三角形部分在所述介质层 803 上的投影分别指示了微 带贴片 801 1和接地贴片 8021的第一开槽的等腰三角形部分的大小, 且不同大小的微带贴片 801 1 和接地贴片 8021 的第一开槽的等腰三 角形部分构成的不同天线的中心频率和产生自干扰信号的功率也不 同, 因此实际应用中可以根据具体情况决定微带贴片 801 1在所述介 质层 803上的投影与接地贴片 8021的第一开槽的等腰三角形部分在 所述介质层 803上的投影的重合区域, 本发明实施例对此不作限定。
如图 9所示, 所述 MIMO天线 80还包括与所述天线的接地贴 片 8021 同层设置的间隔单元 804 , 所述间隔单元位于所述至少两个 接地贴片 8021 中每两个相邻的接地贴片 8021 之间, 用于增加天线 之间的隔离度。
具体的,所述间隔单元 804还可以包括第一间隔体 8041和第二 间隔体 8042。
所述第一间隔体 8041 由互相垂直且不交叉的第一枝节和第二 枝节组成, 所述第二枝节的垂点位于所述第一枝节的中点; 所述第 二间隔体 8042包括第三枝节、 第四枝节和第五枝节, 所述第四枝节 和所述第五枝节分别与所述第三枝节的中垂线平行且与所述第三枝 节不交叉, 所述第四枝节和所述第五枝节以所述第三枝节的中垂线 轴对称; 所述第一枝节、 第二枝节、 第三枝节、 第四枝节和第五枝 节均为矩形结构。 第一间隔体和第二间隔体的材质可以与接地贴片 8021 的材质相同, 也可以与接地贴片 8021 的材质不同, 根据具体 情况确定, 本发明实施例对此不做限定。
这样一来, MIMO 天线中由 带贴片和接地贴片之间产生耦合 谐振, 用来接收和发射信号, 减少了釆用该 MIMO天线的小型基站 在进行收发信号时, 由于发射信号经过天线反射而进入接收端的自 干扰信号, 相较于现有技术, 有效降低天线自干扰信号的功率。
进一步的, 如图 10所示, 所述 MIMO天线 80还包括: 微带馈线组 805 , 所述微带馈线组 805 包括 N个与每个所述微 带贴片同层设置的微带馈线 8051 , 每个所述微带馈线 8051 与一个 所述微带贴片 801 1上平行宽度方向的边中靠近所述等腰三角形顶点 的边电连接,每个所述微带馈线 8051 的对称轴与所述微带贴片 801 1 平行长度方向的对称轴垂重合, 具体的可以釆用 50欧姆的微带馈线 805 1为 带贴片 801 1馈电。 实际应用中, 也可以釆用同轴馈电的方 式为微带贴片 801 1 馈电, 例如可以釆用 50欧姆的同轴电缆为微带 贴片 101 馈电, 具体馈电方式可以根据具体情况选择, 本发明实施 例对此不做限定。
具体的, 本发明实施例所提供的 MIMO 天线 80通常用于小型 基站, 当所述 MIMO天线 80的中心频率为 2.4GHz时, 所述 MIMO 天线 80的尺寸范围为每个所述接地贴片的长为 75x(l±0.2) , 每个所 述接地贴片的宽为 50x(l±0.2) , 每个所述接地贴片 8021 的所述第一 开槽的矩形部分的长为 33x(l±0.2) , 所述第一开槽的矩形部分的宽 为 24x(l±0.2) , 所述第一开槽的等腰三角 形部分的底边长度为 8x(l±0.2) , 所述第一开槽的等腰三角形部分的高为 16x(l±0.2) , 每 个所述微带贴片 8011 的宽为 10x(l±0.2) , 每个所述微带贴片 8011 的长为 39x(l±0.2)ww , 每个所述微带馈线的长为 10x(l±0.2)ww , 每个所述 微带馈线的宽为 3.38 X (1士 0.2) , 相邻两个接地贴片 8021 之间的间隔 为 40x(l±0.2)ww , 第一间隔体 8041 的第一枝节的长度为 30x(l±0.2)ww , 第二枝节的长度为 30x(l±0.2) , 第二间隔体 8042的第三枝节的长度 为 30x(l±0.2)ww , 第四枝节的长度为 25x(l±0.2)ww , 第五枝节的长度为 25x(l±0.2)mm , 所述第一枝节、 所述第二枝节、 所述第三枝节、 所述 第四枝节和所述第五枝节的宽度均为 5x(l±0.2) , 所述介质层的宽与 所述接地贴片的长相等。
示例的, 如图 11 所示, 经过 ADS平台的仿真, 若 MIMO天线 80的中心频率为 2.4GHz, MIMO天线 80的优选尺寸为每个所述接 地贴片的长为 75mm , 每个所述接地贴片的宽为 50mm , 每个所述接地 贴片 8021 的所述第一开槽的矩形部分的长为 33mm , 所述第一开槽的 矩形部分的宽为 24mm , 所述第一开槽的等腰三角形部分的底边长度 为 8mm , 所述第一开槽的等腰三角形部分的高为 16mm , 每个所述微带 贴片 8011 的宽为 10mm , 每个所述微带贴片 8011 的长为 39m , 每个 所述微带馈线的长为 10mm , 每个所述微带馈线的宽为 3.38mm , 相邻两 个接地贴片 8021 之间的间隔为 40mm , 第 ―间隔体 8041 的第一枝节 的长度为 30m , 第二枝节的长度为 30m , 第二间隔体 8042的第三枝 0^1 H力 30mm , 四 ϋ 0^1 H力 25mm , 第五枝节的长度为 25mm 时, 所述第一枝节、 所述第二枝节、 所述第三枝节、 所述第四枝节 和所述第五枝节的宽度均为 5mm ,所述介质层的宽与所述接地贴片的 长相等。 当所述 MIMO天线 80的各部分尺寸为上述优选尺寸, 且选 用 50欧姆的亏待馈线 8051为微带贴片 8011馈电时,该 MIMO天线 80 的频率-自干扰信号损耗图如图 12 所示, 图 12 中曲线 H 表示 MIMO天线 80在不同的工作频率下的自干扰信号的功率值, 从曲线 H可以看出当工作频率为 2.4GHz , 带宽为 80MHz 时, 所述 MIMO 天线 80 的自干扰信号的功率小于等于 -21.5dB , 而现有小型基站所 使用的 MIMO天线在满足带宽 80MHz的基础上自干扰信号的功率小 于等于 - 15dB , 在接近于 - 15dB时, 可能已经不能满足小型基站的需 要了, 因此相较于现有 MIMO天线, 本发明实施例所述的 MIMO天 线 80有效的降低了 自干扰信号的功率。 如果小型基站的应用场景允 许较大功率的回程损耗,则所述 MIMO天线 80在自干扰信号的功率 小于等于 - 15dB时,可工作带宽为 200MHz ,相较于现有 MIMO天线, 在回程损耗相同的情况下, 增大了 MIMO天线的工作带宽。
本发明实施例提供的 MIMO天线, 包括微带贴片层、 接地贴片 层和位于微带贴片层与接地贴片层之间的介质层, 所述微带贴片层 包括至少两个微带贴片, 所述接地贴片层包括至少两个接地贴片, 微带贴片和接地贴片之间产生耦合谐振, 用来接收和发射信号, 减 少了釆用该 MIMO天线的小型基站在进行收发信号时, 由于发射信 号经过天线反射而进入接收端的自干扰信号, 能够有效降低天线自 干扰信号的功率。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、一种微带贴片天线( 10 ),包括微带贴片( 101 )、接地贴片( 102 ) 和位于所述微带贴片与所述接地贴片之间的介质层 ( 103 ), 其特征在 于,
所述接地贴片 ( 102 ) 上设置有贯穿所述接地贴片 ( 102) 的第一 开槽 ( 1021 ), 用于对所述微带贴片 ( 101 ) 进行耦合谐振, 所述第一 开槽( 1021 ) 的形状是一个矩形 ( 10211 )和一个等腰三角形 ( 10212) 的组合, 所述矩形 ( 10211 ) 一条边和所述等腰三角形 ( 10212) 的底 边重合, 所述矩形 ( 10211 ) 的重合边的长度大于所述等腰三角形 ( 10212) 的底边的长度;
所述微带贴片 ( 101 ) 呈矩形 , 所述微带贴片 ( 101 ) 平行长度方 向的对称轴与所述等腰三角形 ( 10212) 的对称轴重合;
所述微带贴片 ( 101 ) 在所述介质层 ( 103 ) 上的投影 ( 1031 ) 与 所述第一开槽( 1021 )的等腰三角形( 10212 )部分在所述介质层( 103 ) 上的投影 ( 1032 ) 存在重合区域。
2、 根据权利要求 1所述的微带贴片天线 ( 10 ), 其特征在于, 所 述等腰三角形 ( 10212) 的底边与腰相等。
3、根据权利要求 1或 2所述的微带贴片天线( 10), 其特征在于, 所述矩形 ( 10211 ) 的重合边为所述矩形 ( 10211 ) 的长边。
4、 根据权利要求 3所述的微带贴片天线 ( 10 ), 其特征在于, 所 述天线 ( 10 ) 还包括:
与所述微带贴片 ( 101 ) 同层设置的微带馈线 ( 104 ), 所述微带 馈线 ( 104 ) 与所述微带贴片 ( 101 ) 上平行宽度方向的边中靠近所述 等腰三角形 ( 10212 ) 顶点的边电连接, 所述微带馈线 ( 104 ) 的对称 轴与所述微带贴片 ( 101 ) 平行长度方向的对称轴重合。
5、 根据权利要求 4所述的微带贴片天线 ( 10 ), 其特征在于, 所述第一开槽 ( 1021 ) 的矩形 ( 10211 ) 部分的长为 33x(l±0.2) , 所述第一开槽 ( 1021 ) 的矩形 ( 10211 ) 部分的宽为 24x(l±0.2) , 所 述第一开槽 ( 1021 ) 的等腰三角形 ( 10212 ) 部分的底边长度为 8x(l±0.2)mm, 所述第一开槽 ( 1021 ) 的等腰三角形 ( 10212 ) 部分的高 为 16x(l±0.2)m , 所述微带贴片 ( 101 ) 的宽为 6x(l± 0.2)m , 所述微带贴 片 ( 101 )的长为 38.8χ(1±0.2)画 ,所述微带馈线( 104 )的长为 10χ(1±0.2)画 , 所述微带馈线 ( 104 ) 的宽为 3.38 x(l±0.2) , 所述接地贴片 ( 102 ) 的 长为 75x(l±0.2)ww , 所述接地贝占片 ( 102 ) 的宽为 60x(l±0.2)ww , 所述介 质层( 103 )的长与所述接地贴片 ( 102 )的长相等, 所述介质层( 103 ) 的宽与所述接地贴片( 102 )的宽相等,所述介质层( 103 )厚度为 1.6 。
6、 根据权利要求 5所述的微带贴片天线 ( 10 ), 其特征在于, 所 述第一开槽 ( 1021 ) 的矩形 ( 10211 ) 部分的长为 33mm , 所述第一开 槽 ( 1021 ) 的矩形 ( 10211 ) 部分的宽为 24mm, 所述第一开槽 ( 1021 ) 的等腰三角形( 10212 )部分的底边长度为 8mm , 所述第一开槽( 1021 ) 的等腰三角形 ( 10212 ) 部分的高为 16mm, 所述微带贴片 ( 101 ) 的宽 为 6mm, 所述微带贴片 ( 101 ) 的长为 38.8mm , 所述微带馈线 ( 104 ) 的长为 10画 , 所述微带馈线( 104 )的宽为 3.38mm, 所述接地贴片( 102 ) 的长为 75mm, 所述接地贴片 ( 102 ) 的宽为 60mm , 所述介质层 ( 103 ) 的长与所述接地贴片 ( 102 ) 的长相等, 所述介质层 ( 103 ) 的宽与所 述接地贴片 ( 102 ) 的宽相等, 所述介质层 ( 103 ) 厚度为 1.6 。
7、 根据权利要求 1 至 6任意一项权利要求所述的微带贴片天线 ( 10 ), 其特征在于, 所述介质层 ( 103 ) 釆用介电常数为 4.4, 损耗 角正切为 0.02的环氧树脂 FR4。
8、 一种多入多出 MIMO天线 ( 80 ), 包括: 微带贴片层 ( 801 )、 接地贴片层 ( 802 ) 和位于微带贴片层 ( 801 ) 与接地贴片层 ( 802 ) 之间的介质层 ( 803 ), 其特征在于,
所述接地贴片层 ( 802 ) 包括 N 个接地贴片 ( 8021 ), 每个所述 接地贴片 ( 8021 ) 设置有贯穿所述接地贴片 ( 8021 ) 的第一开槽, 用 于对所述微带贴片 ( 8011 ) 进行耦合谐振, 所述第一开槽的形状是一 个矩形和一个等腰三角形的组合, 所述矩形一条边和所述等腰三角形 的底边重合, 所述矩形的重合边的长度大于所述等腰三角形的底边的 长度, 所述 N大于或等于 2; 所述微带贴片层 ( 801 ) 包括 N 个微带贴片 ( 8011 ), 每个所述 微带贴片( 8011 )对应一个所述接地贴片( 8021 ),所述微带贴片( 8011 ) 呈矩形, 所述微带贴片 ( 8011 ) 平行长度方向的对称轴与所述等腰三 角形的对称轴重合;
每个所述微带贴片 ( 8011 ) 在所述介质层 ( 803 ) 上的投影与每 个所述接地贴片 ( 8021 )上的所述第一开槽的等腰三角形部分在所述 介质层 ( 803 ) 上的投影存在重合区域;
所述 MIMO天线 ( 80 ) 还包括: 与所述天线的接地贴片 ( 8021 ) 同层的间隔单元 ( 804 ) , 所述间隔单元 ( 804 ) 位于所述至少两个接 地贴片 ( 8021 ) 中每两个相邻的接地贴片 ( 8021 ) 之间, 用于增加天 线之间的隔离度。
9、 根据权利要求 8 所述的 MIMO 天线 ( 80), 其特征在于, 所 述间隔单元 ( 804 ) 包括第一间隔体 ( 8041 ) 和第二间隔体 ( 8042 ); 所述第一间隔体( 8041 )由互相垂直且不交叉的第一枝节和第二 枝节组成, 所述第二枝节的垂点位于所述第一枝节的中点;
所述第二间隔体 ( 8042 ) 包括第三枝节、 第四枝节和第五枝节, 所述第四枝节和所述第五枝节分别与所述第三枝节的中垂线平行且 与所述第三枝节不交叉, 所述第四枝节和所述第五枝节以所述第三枝 节的中垂线轴对称;
所述第一枝节、 第二枝节、 第三枝节、 第四枝节和第五枝节均为 矩形结构。
10、 根据权利要求 9所述的 MIMO天线 ( 80 ), 其特征在于, 所 述 MIMO天线 ( 80) 还包括:
微带馈线组 ( 805 ), 所述微带馈线组 ( 805 ) 包括 N个与每个所 述带贴片同层设置的微带馈线 ( 8051 ), 每个所述微带馈线 ( 8051 ) 与一个所述微带贴片 ( 8011 )上平行宽度方向的边中靠近所述等腰三 角形顶点的边电连接, 每个所述微带馈线 ( 8051 ) 的对称轴与所述微 带贴片 ( 8011 ) 平行长度方向的对称轴垂重合。
11、 根据权利要求 10所述的 MIMO天线 ( 80), 其特征在于, 每个所述接地贴片 ( 8021 ) 的长为 75x(l±0.2) , 每个所述接地贴 片 ( 8021 ) 的宽为 50x(l±0.2) , 每个所述接地贴片 ( 8021 ) 的所述第 一开槽的矩形部分的长为 33x(l±0.2) , 所述第一开槽的矩形部分的宽 为 24x(l±0.2) , 所述第一开槽的等腰三角 形部分的底边长度为 8x(l±0.2) , 所述第一开槽的等腰三角形部分的高为 16x(l±0.2) , 每 个所述微带贴片( 8011 )的宽为 10x(l±0.2) ,每个所述微带贴片( 8011 ) 的长为 39x(l±0.2)ww , 每个所述微带馈线 ( 8051 ) 的长为 10x(l±0.2)ww , 每个所述微带馈线 ( 8051 ) 的宽为 3.38 x(l±0.2) , 相邻两个接地贴片
( 8021 ) 之间的间隔为 40x(l±0.2) , 所述第一间隔体 ( 8041 ) 的所述 第一枝节的长度为 30x(l±0.2)ww , 所述第二枝节的长度为 30x(l±0.2)ww , 所述第二间隔体 ( 8042 ) 的所述第三枝节的长度为 30x(l±0.2) , 所述 第四枝节的长度为 25x(l±0.2)ww , 所述第五枝节的长度为 25x(l±0.2)ww , 所述第一枝节、 所述第二枝节、 所述第三枝节、 所述第四枝节和所述 第五枝节的宽度均为 5x(l±0.2) , 所述介质层 ( 803 ) 的宽与所述接地 贴片 ( 8021 ) 的长相等。
12、 根据权利要求 11所述的 MIMO天线 ( 80 ), 其特征在于, 每个所述接地贴片( 8021 )的长为 75mm ,每个所述接地贴片( 8021 ) 的宽为 50mm , 每个所述接地贴片 ( 8021 ) 的所述第一开槽的矩形部分 的长为 33mm , 所述第一开槽的矩形部分的宽为 24mm , 所述第一开槽的 等腰三角形部分的底边长度为 8mm , 所述第一开槽的等腰三角形部分 的高为 16mm , 每个所述 带贴片 ( 8011 ) 的宽为 10mm , 每个所述啟带 贴片 ( 8011 ) 的长为 39mm , 每个所述微带馈线 ( 8051 ) 的长为 10mm , 每个所述 带馈线 ( 8051 ) 的宽为 3.38mm , 相邻两个所述接地贴片
( 8021 ) 之间的间隔为 40mm , 所述第一间隔体 ( 8041 ) 的所述第一枝 节的长度为 30mm , 所述第二枝节的长度为 30 , 所述第二间隔体
( 8042 )的所述第三枝节的长度为 30mm ,所述第四枝节的长度为 25mm , 所述第五枝节的长度为 25mm , 所述第一枝节、 所述第二枝节、 所述第 三枝节、 所述第四枝节和所述第五枝节的宽度均为 5mm , 所述介质层
( 803 ) 的宽与所述接地贴片 ( 8021 ) 的长相等。
PCT/CN2013/089972 2013-12-19 2013-12-19 一种微带贴片天线和多入多出天线 WO2015089792A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13899614.5A EP3073575A4 (en) 2013-12-19 2013-12-19 Micro-strip patch antenna and multiple-input multiple-output antenna
CN201380081788.7A CN105830279A (zh) 2013-12-19 2013-12-19 一种微带贴片天线和多入多出天线
PCT/CN2013/089972 WO2015089792A1 (zh) 2013-12-19 2013-12-19 一种微带贴片天线和多入多出天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089972 WO2015089792A1 (zh) 2013-12-19 2013-12-19 一种微带贴片天线和多入多出天线

Publications (1)

Publication Number Publication Date
WO2015089792A1 true WO2015089792A1 (zh) 2015-06-25

Family

ID=53401973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089972 WO2015089792A1 (zh) 2013-12-19 2013-12-19 一种微带贴片天线和多入多出天线

Country Status (3)

Country Link
EP (1) EP3073575A4 (zh)
CN (1) CN105830279A (zh)
WO (1) WO2015089792A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3154126A1 (en) * 2015-10-08 2017-04-12 Nokia Solutions and Networks Oy Ground phase manipulation in a beam forming antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200723593A (en) * 2005-12-01 2007-06-16 Univ Southern Taiwan Tech A boardband operation of the microstrip-line-fed printed polygonal slot antena
CN102439784A (zh) * 2010-03-10 2012-05-02 华为技术有限公司 微带耦合器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI324415B (en) * 2007-01-23 2010-05-01 Univ Southern Taiwan Tech A printed polygonal slot antenna fed by a microstrip line for three-band operation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200723593A (en) * 2005-12-01 2007-06-16 Univ Southern Taiwan Tech A boardband operation of the microstrip-line-fed printed polygonal slot antena
CN102439784A (zh) * 2010-03-10 2012-05-02 华为技术有限公司 微带耦合器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3154126A1 (en) * 2015-10-08 2017-04-12 Nokia Solutions and Networks Oy Ground phase manipulation in a beam forming antenna

Also Published As

Publication number Publication date
EP3073575A4 (en) 2017-04-05
CN105830279A (zh) 2016-08-03
EP3073575A1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
US11075462B2 (en) Antenna device
JP3209565U (ja) マルチモードアンテナおよび基地局
KR101693583B1 (ko) 공급 네트워크, 안테나, 및 이중 편파 안테나 어레이 공급 회로
WO2017114063A1 (zh) 天线和通信设备
US9300041B2 (en) Multimode broadband antenna module and wireless terminal
JP6988909B2 (ja) アンテナ装置
US10305185B2 (en) Multiband antenna
WO2020134362A1 (zh) 一种天线、天线阵列和基站
WO2009137302A4 (en) Single cable antenna module for laptop computer and mobile devices
WO2014005436A1 (zh) 四极化天线振子、四极化天线和四极化多天线阵
EP3185358B1 (en) Antenna arrangement
WO2021244158A1 (zh) 双极化天线及客户前置设备
US20120326942A1 (en) Sectorized Antenna
US20090295643A1 (en) Multiple Feedpoint Antenna
JP2008271486A (ja) アンテナモジュール及びそれを用いる装置
CN107248613B (zh) 一种高增益双频天线单元
US20120162035A1 (en) All-in-one multi-band antenna for wireless communication system
KR20190087270A (ko) 무선 통신 시스템에서 안테나 장치 및 이를 구비하는 전자기기
CN104733856A (zh) 一种利用三条缝隙解耦的mimo天线
JPH0884106A (ja) マイクロ波中継器
WO2015089792A1 (zh) 一种微带贴片天线和多入多出天线
KR101159948B1 (ko) 메타 물질 구조물을 이용한 중계기 안테나
CN107845854B (zh) 复合天线
JP2023543278A (ja) アンテナ・デバイス、アンテナ・デバイスのアレイ
CN108565560B (zh) 一种天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899614

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899614

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899614

Country of ref document: EP