WO2015087942A1 - Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method - Google Patents

Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method Download PDF

Info

Publication number
WO2015087942A1
WO2015087942A1 PCT/JP2014/082766 JP2014082766W WO2015087942A1 WO 2015087942 A1 WO2015087942 A1 WO 2015087942A1 JP 2014082766 W JP2014082766 W JP 2014082766W WO 2015087942 A1 WO2015087942 A1 WO 2015087942A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper foil
copper
resin substrate
insulating resin
brightness
Prior art date
Application number
PCT/JP2014/082766
Other languages
French (fr)
Japanese (ja)
Inventor
新井 英太
敦史 三木
康修 新井
嘉一郎 中室
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to KR1020167015615A priority Critical patent/KR101944166B1/en
Priority to JP2015520739A priority patent/JP5819571B1/en
Priority to CN201480067242.0A priority patent/CN105980609B/en
Priority to MYPI2016702133A priority patent/MY183375A/en
Publication of WO2015087942A1 publication Critical patent/WO2015087942A1/en
Priority to PH12016501130A priority patent/PH12016501130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/12Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a surface-treated copper foil, a copper clad laminate, a printed wiring board, an electronic device, and a method for manufacturing a printed wiring board.
  • FPCs flexible printed wiring boards
  • the signal transmission speed has been increased, and impedance matching has become an important factor in FPC.
  • a resin insulation layer for example, polyimide
  • the demand for higher wiring density has further increased the number of FPC layers.
  • processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer
  • the visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
  • a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface.
  • This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
  • Patent Document 1 a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value.
  • An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
  • Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more.
  • the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 ⁇ m, and the specular gloss at an incident angle of 60 ° is 250 or more.
  • Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel.
  • An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
  • JP 2004-98659 A WO2003 / 096776 Japanese Patent No. 2849059
  • Patent Document 1 a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency. Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF. Furthermore, although the processing method described in Patent Document 3 allows fine processing of Cu-Co-Ni on a copper foil, excellent visibility can be realized when the copper foil is observed through a resin. Not. The present invention provides a surface-treated copper foil that adheres well to a resin and realizes excellent visibility when observed through the resin.
  • the inventors of the present invention have obtained a copper foil whose surface color difference is controlled to a predetermined range by surface treatment and photographed with a CCD camera through a polyimide substrate laminated from the treated surface side. Paying attention to the slope of the brightness curve near the end of the copper foil drawn in the observation point-brightness graph obtained from the image, controlling the slope of the brightness curve can determine the type of substrate resin film and the thickness of the substrate resin film. It was found that the resin transparency was good without being affected.
  • a surface-treated copper foil in which surface treatment is performed on one surface and the other surface, and the surface-treated copper foil is formed from the one surface side.
  • a copper clad laminate that is laminated with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less before being laminated to the copper foil, the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more.
  • This is a surface-treated copper foil having a ten-point average roughness Rz of 0.35 ⁇ m or more.
  • Another aspect of the present invention is a surface-treated copper foil in which surface treatment is performed on one surface and the other surface, respectively, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
  • a copper-clad laminate constructed by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
  • the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing
  • the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper foil to the portion without the copper foil are examples of the brightness curve generated from the end of the copper foil to the portion without the copper foil.
  • the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is t1
  • the lightness curve In the depth range from the intersection with Bt to 0.1 ⁇ B with respect to Bt the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B is t2.
  • the surface-treated copper foil has a TD ten-point average roughness Rz of 0.35 ⁇ m or more as measured by a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  • the average roughness Rz of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.00. It is 35 ⁇ m or more.
  • the arithmetic average roughness Ra of TD measured with a laser microscope whose wavelength of the laser beam on the surface of the copper foil subjected to the other surface treatment is 405 nm, 0.05 ⁇ m or more.
  • the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
  • a copper-clad laminate composed by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
  • the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing
  • the top average value Bt and the bottom average value of the brightness curve generated from the end of the copper foil to the portion without the copper foil
  • the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
  • a copper-clad laminate constituted by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
  • the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B is t2.
  • the surface-treated copper foil has an arithmetic average roughness Ra of TD of 0.05 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  • the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 ⁇ m or more.
  • the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
  • a copper-clad laminate composed by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
  • the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing
  • the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side.
  • a copper-clad laminate constituted by laminating with a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide is 50 or more
  • the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B is t2.
  • the other surface-treated copper foil is a surface-treated copper foil having a root mean square height Rq of TD of 0.08 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm.
  • the surface treatment of the other surface is a roughening treatment.
  • a value indicating a position of an intersection closest to the copper foil among intersections of the lightness curve and Bt is defined as t1.
  • a value indicating the position of the intersection closest to the copper foil among the intersections of the brightness curve and 0.1 ⁇ B was defined as t2.
  • the following ⁇ B (PI) before pasting the surface-treated copper foil from the one surface side to the copper foil is 50 or more and 65 or less;
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface over the polyimide in the copper clad laminate formed by laminating is 53 or more.
  • Sv defined by the formula (1) in the brightness curve is 3.5 or more.
  • Sv defined by the formula (1) in the brightness curve is 3.9 or more.
  • Sv defined by the formula (1) in the brightness curve is 5.0 or more.
  • the ten-point average roughness Rz of TD measured with the contact-type roughness meter on the one surface is 0.20 to 0.64 ⁇ m
  • the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B on the copper foil surface is 1.0 to 1.7.
  • the TD ten-point average roughness Rz measured by the contact-type roughness meter on the one surface is 0.26 to 0.62 ⁇ m.
  • the A / B is 1.0 to 1.6.
  • the present invention is a copper clad laminate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
  • the present invention is a printed wiring board using the surface-treated copper foil of the present invention.
  • the present invention is an electronic device using at least one printed wiring board of the present invention.
  • the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit includes one surface on the insulating resin substrate side, A color difference ⁇ E * ab based on JIS Z8730 on the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit passes through the insulating resin substrate.
  • an observation point-brightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit includes one surface on the insulating resin substrate side, A color difference ⁇ E * ab based on JIS Z8730 on the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit passes through the insulating resin substrate.
  • an observation point-brightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1
  • in the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt a
  • the printed circuit board has a TD ten-point average roughness Rz of 0.35 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
  • the arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.00. It is 05 ⁇ m or more.
  • the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit through the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
  • An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • Arithmetic average roughness Ra of the TD to the wavelength of the laser light is measured by a laser microscope is 405nm of other surface treatment copper circuit surface is a printed circuit board is 0.05 ⁇ m or more.
  • the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
  • An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1
  • the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt
  • Sv defined by the following equation (1) is 3.0 or more
  • Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
  • the printed circuit board has an arithmetic average roughness Ra of TD of 0.05 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
  • the root mean square height Rq of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.08 ⁇ m or more.
  • the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit through the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
  • An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • Root-mean-square height Rq of TD that the wavelength of the laser beam of the other surface treatment copper circuit surface is measured by a laser microscope is 405nm is a printed circuit board is at least 0.08 .mu.m.
  • the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
  • An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1
  • the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt
  • Sv defined by the following equation (1) is 3.0 or more
  • Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
  • the surface treatment of the other surface is a roughening treatment.
  • the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.
  • the present invention includes at least a step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. This is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected.
  • the present invention is an electronic device using one or more printed wiring boards to which at least one printed wiring board of the present invention is connected.
  • the present invention is a surface-treated copper foil used for the printed wiring board of the present invention.
  • the present invention provides a copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil having one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil through the insulating resin substrate is 50 or more, and the copper foil of the copper-clad laminate Is etched into a line-shaped copper foil and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends.
  • This is a copper clad laminate having a point average roughness Rz of 0.35 ⁇ m or more.
  • the present invention provides a copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil having one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper foil of the copper-clad laminate Is etched into a line-shaped copper foil and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends.
  • the copper clad laminate of the present invention has an average roughness Rz of TD measured by a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment of 0.35 ⁇ m or more. is there.
  • the arithmetic average roughness Ra of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0. .05 ⁇ m or more.
  • Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
  • a color difference ⁇ E * ab based on JIS 87 Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
  • Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
  • a color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
  • the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 ⁇ m or more.
  • Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
  • a color difference ⁇ E * ab based on JIS 87 Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
  • This is a copper clad laminate having an average square root height Rq of 0.08 ⁇ m or more.
  • Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side.
  • a color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate.
  • the surface treatment of the other surface is a roughening treatment.
  • the present invention is a surface-treated copper foil used for the copper-clad laminate of the present invention.
  • the present invention is a printed wiring board manufactured using the copper clad laminate of the present invention.
  • the copper foil used in the present invention is useful for a copper foil or the like used by laminating a resin substrate to produce a laminate and forming a circuit by etching.
  • the copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil.
  • the surface of the copper foil to be bonded to the resin substrate in the present invention, this surface is also referred to as “one surface”) for the purpose of improving the peel strength of the copper foil after lamination.
  • the surface of the copper foil may be subjected to a roughening treatment for performing fist-like electrodeposition.
  • the electrolytic copper foil has irregularities at the time of manufacture, the irregularities can be further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment.
  • this roughening treatment can be performed by alloy plating such as copper-cobalt-nickel alloy plating or copper-nickel-phosphorus alloy plating, preferably copper alloy plating.
  • Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off.
  • the copper foil used in the present invention may be applied with a heat-resistant plating layer or a rust-proof plating layer on one surface after roughening treatment on one surface or by omitting the roughening treatment.
  • a treatment for omitting the roughening treatment and applying a heat-resistant plating layer or a rust-proof plating layer to the surface a plating treatment using a Ni—W plating bath under the following conditions can be used.
  • the balance of the treatment liquid used in the present invention for electrolysis, surface treatment or plating is water unless otherwise specified.
  • Plating bath composition Ni: 20-30 g / L, W: 15-40 mg / L pH: 3.0-4.0 Temperature: 35-45 ° C Current density D k : 1.7 to 2.3 A / dm 2 Plating time: 18 to 25 seconds
  • the thickness of the copper foil used in the present invention is not particularly limited, but is, for example, 1 ⁇ m or more, 2 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, for example, 3000 ⁇ m or less, 1500 ⁇ m or less, 800 ⁇ m. Below, it is 300 micrometers or less, 150 micrometers or less, 100 micrometers or less, 70 micrometers or less, 50 micrometers or less, and 40 micrometers or less.
  • the copper foil according to the present invention includes a copper alloy containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, V, B, and Co. Foil is also included. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease.
  • the conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more.
  • the rolled copper foil includes copper foil produced using tough pitch copper (JIS H3100 C1100) or oxygen-free copper (JIS H3100 C1020).
  • Electrolytic copper foil used for this invention Moreover, the manufacturing conditions of the electrolytic copper foil used for this invention are shown below.
  • Leveling agent 1 bis (3sulfopropyl) disulfide): 10 to 30 ppm
  • Leveling agent 2 (amine compound) 10 to 30 ppm
  • an amine compound having the following chemical formula can be used.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • the copper-cobalt-nickel alloy plating as the roughening treatment is, as a result of electrolytic plating, an amount of adhesion of 15 to 40 mg / dm 2 of copper—100 to 3000 ⁇ g / dm 2 of cobalt—100 to 1500 ⁇ g / dm 2 of nickel. It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate.
  • the amount of Co deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 ⁇ g / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 ⁇ g / dm 2 , the etching residue may increase.
  • a preferable Co adhesion amount is 1000 to 2500 ⁇ g / dm 2
  • a preferable nickel adhesion amount is 500 to 1200 ⁇ g / dm 2 .
  • the etching stain means that Co remains without being dissolved when etched with copper chloride
  • the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
  • the plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating are as follows: Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L pH: 1 to 4 Temperature: 30-50 ° C Current density D k : 20 to 30 A / dm 2 Plating time: 1-5 seconds
  • Plating bath composition Cu 10-50 g / L, Ni 3-20 g / L, P1-10 g / L pH: 1 to 4 Temperature: 30-40 ° C Current density D k : 20 to 50 A / dm 2 Plating time: 0.5-3 seconds
  • Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Co 5-20 g / L, W 1-10 g / L pH: 1-5 Temperature: 30-50 ° C Current density D k : 20 to 50 A / dm 2 Plating time: 0.5-5 seconds
  • Plating bath composition Cu 5-20 g / L, Ni 5-20 g / L, Mo 1-10 g / L, P 1-10 g / L pH: 1-5 Temperature: 20-50 ° C Current density D k : 20 to 50 A / dm 2 Plating time: 0.5-5 seconds
  • each layer may be a plurality of layers such as two layers, three layers, and the order of stacking the layers may be any order, and the layers may be stacked alternately.
  • a known heat-resistant layer can be used as the heat-resistant layer. Further, for example, the following surface treatment can be used.
  • the heat-resistant layer and rust-proof layer known heat-resistant layers and rust-proof layers can be used.
  • the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum
  • it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like.
  • the heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum.
  • An oxide, nitride, or silicide containing one or more elements selected from the above may be included.
  • the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy.
  • the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer.
  • the nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities.
  • the total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 .
  • the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably.
  • the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate.
  • the rust prevention layer may be a chromate treatment layer. A known chromate treatment layer can be used for the chromate treatment layer.
  • the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate.
  • Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included).
  • Specific examples of the chromate treatment layer include a pure chromate treatment layer and a zinc chromate treatment layer.
  • a chromate treatment layer treated with an anhydrous chromic acid or potassium dichromate aqueous solution is referred to as a pure chromate treatment layer.
  • a chromate treatment layer treated with a treatment liquid containing chromic anhydride or potassium dichromate and zinc is referred to as a zinc chromate treatment layer.
  • the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2.
  • a tin layer of ⁇ 80 mg / m 2 , preferably 5 mg / m 2 ⁇ 40 mg / m 2 may be sequentially laminated.
  • the nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these.
  • the heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable.
  • coating weight of cobalt 200 ⁇ 2000 ⁇ g / dm 2 of cobalt -50 ⁇ 700 [mu] g / dm 2 of nickel - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable.
  • cobalt nickel cobalt -100 ⁇ 700 ⁇ g / dm 2 weight deposited on the roughened surface is 200 ⁇ 3000 ⁇ g / dm 2 - can form a nickel alloy plating layer.
  • This treatment can be regarded as a kind of rust prevention treatment in a broad sense.
  • This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • the treated surface becomes reddish, which is not preferable.
  • the amount of cobalt deposition exceeds 3000 ⁇ g / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate.
  • a preferable cobalt adhesion amount is 500 to 2500 ⁇ g / dm 2 .
  • the nickel adhesion amount is less than 100 ⁇ g / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated.
  • nickel exceeds 1300 microgram / dm ⁇ 2 > alkali etching property will worsen.
  • a preferable nickel adhesion amount is 200 to 1200 ⁇ g / dm 2 .
  • Plating bath composition Co 1-20 g / L, Ni 1-20 g / L pH: 1.5 to 3.5 Temperature: 30-80 ° C Current density D k : 1.0 to 20.0 A / dm 2 Plating time: 0.5-4 seconds
  • a zinc plating layer having an adhesion amount of 30 to 250 ⁇ g / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 ⁇ g / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 ⁇ g / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated.
  • the zinc coating weight is 30 ⁇ 240 ⁇ g / dm 2, more preferably 80 ⁇ 220 ⁇ g / dm 2.
  • the galvanizing conditions are as follows: Plating bath composition: Zn 100 to 300 g / L pH: 3-4 Temperature: 50-60 ° C Current density Dk: 0.1 to 0.5 A / dm 2 Plating time: 1 to 3 seconds
  • a zinc alloy plating layer such as zinc-nickel alloy plating may be formed in place of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.
  • a known weathering layer can be used as the weathering layer.
  • a well-known silane coupling process layer can be used, for example, The silane coupling process layer formed using the following silanes can be used.
  • a known silane coupling agent may be used.
  • an amino silane coupling agent, an epoxy silane coupling agent, or a mercapto silane coupling agent may be used.
  • Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and ⁇ -aminopropyl.
  • Triethoxysilane N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, ⁇ -mercaptopropyltrimethoxysilane or the like may be used.
  • the silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like.
  • you may use 2 or more types of such silane coupling agents in mixture.
  • it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
  • the amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl
  • the silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
  • the surface-treated copper foil of the present invention is a copper clad laminate in which the following ⁇ B (PI) before being laminated to the copper foil is laminated with a polyimide having a thickness of 50 or more and 65 or less, over the polyimide.
  • the color difference ⁇ E * ab based on JIS Z8730 on the surface is controlled to 50 or more.
  • the color difference ⁇ E * ab is more preferably 53 or more, 55 or more, and more preferably 60 or more.
  • the upper limit of the color difference ⁇ E * ab is not particularly limited, but is, for example, 90 or less, 88 or less, or 87 or less, or 85 or less, or 75 or less, or 70 or less.
  • the color difference ⁇ E * ab is measured by a color difference meter, and is a comprehensive index shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. Yes, ⁇ L: black and white, ⁇ a: red-green, ⁇ b: yellow-blue, represented by the following formula;
  • the surface-treated copper foil of the present invention may be a non-roughened copper foil or a roughened copper foil in which roughened particles are formed on one surface of the copper foil.
  • the TD ten-point average roughness Rz measured in (1) is preferably 0.20 to 0.64 ⁇ m.
  • the ten-point average roughness Rz of TD measured with a contact-type roughness meter is less than 0.20 ⁇ m on one surface of the copper foil, the copper foil surface may be insufficiently roughened, and the resin There is a possibility that a problem of insufficient adhesion may occur.
  • the ten-point average roughness Rz of TD measured with a contact roughness meter is greater than 0.64 ⁇ m on one surface of the copper foil, the unevenness of the resin surface after removing the copper foil by etching is large. As a result, there may be a problem that the transparency of the resin becomes poor.
  • the ten-point average roughness Rz of TD measured with a contact-type roughness meter on one surface of the copper foil is more preferably 0.26 to 0.62 ⁇ m, still more preferably 0.40 to 0.55 ⁇ m.
  • the roughness (Rz) and glossiness of TD measured with a contact-type roughness meter on one surface of the copper foil before the surface treatment are controlled.
  • the surface roughness (Rz) of TD measured with a contact-type roughness meter on one surface of the copper foil before the surface treatment is 0.20 to 0.55 ⁇ m, preferably 0.20 to 0.00. 42 ⁇ m.
  • Such a copper foil is produced by adjusting the oil film equivalent of the rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution.
  • the surface roughness (Rz) on the one surface of the copper foil after a process is carried out by making the surface roughness (Rz) and glossiness of TD in the one surface of the copper foil before a process into the said range.
  • the surface area can be easily controlled.
  • the copper foil before the surface treatment has a TD 60-degree glossiness of 300 to 910% on one surface, more preferably 500 to 810%, and more preferably 500 to 710%. If the 60 degree glossiness of MD on one surface of the copper foil before the surface treatment is less than 300%, the transparency of the resin may be poorer than the case of 300% or more, and if it exceeds 910% This may cause a problem that it is difficult to manufacture.
  • the high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000 or less.
  • Oil film equivalent ⁇ (rolling oil viscosity [cSt]) ⁇ (sheet feeding speed [mpm] + roll peripheral speed [mpm]) ⁇ / ⁇ (roll biting angle [rad]) ⁇ (yield stress of material [kg / mm 2 ]) ⁇
  • the rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
  • a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.
  • Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
  • the surface-treated copper foil of the present invention is obtained by laminating a polyimide having the following ⁇ B (PI) of 50 or more and 65 or less before being laminated to the copper foil from one surface side, and then photographing the copper foil with a CCD camera through the polyimide
  • the edge of the copper foil was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil stretched.
  • a value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is defined as t1, and 0.1 ⁇ B based on Bt from the intersection of the lightness curve and Bt.
  • Sv defined by the following equation (1) is 3 when the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ⁇ B in the depth range up to 0.0 or more is preferable.
  • Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
  • FIG. 1A and FIG. 1B are schematic views that define Bt and Bb when the width of the copper foil is about 0.3 mm.
  • a V-shaped brightness curve as shown in FIG. 1A and a brightness curve having a bottom as shown in FIG. 1B are obtained. is there.
  • the “top average value Bt of the lightness curve” is the average value of lightness when measured at 5 locations (total 10 locations on both sides) at 30 ⁇ m intervals from the positions 50 ⁇ m away from the end positions on both sides of the copper foil.
  • the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown.
  • the mark width may be about 0.2 mm, 0.16 mm, or 0.1 mm.
  • top average value Bt of the lightness curve is 5 points at 30 ⁇ m intervals from a position 100 ⁇ m apart, a position 300 ⁇ m apart, or a position 500 ⁇ m apart from the end positions on both sides of the mark (total 10 on both sides). Location) It may be the average value of brightness when measured.
  • FIG. 2 shows a schematic diagram defining t1, t2, and Sv.
  • T1 (pixel ⁇ 0.1) indicates an intersection closest to the copper foil among the intersections of the lightness curve and Bt.
  • T2 (pixel ⁇ 0.1)” is a distance between the intersection of the lightness curve and Bt and the depth of 0.1 ⁇ B from the intersection of Bt to 0.1 ⁇ B. Indicates the closest intersection.
  • Sv grade / pixel ⁇ 0.1
  • One pixel on the horizontal axis corresponds to a length of 10 ⁇ m.
  • Sv measures the both sides of copper foil, and employ
  • the brightness is high where there is no copper foil, but the brightness decreases as soon as the end of the copper foil is reached. If the visibility when viewed through the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility when viewed through the polyimide substrate is poor, the brightness does not suddenly drop from “high” to “low” at the end of the copper foil, but the state of decline is moderate and the brightness is low. The state of decline becomes unclear.
  • the present invention is based on such knowledge, and the surface-treated copper foil of the present invention is a polyimide having a ⁇ B (PI) of 50 or more and 65 or less before being bonded to the copper foil from the surface side where the surface treatment is performed.
  • PI ⁇ B
  • the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by photographing.
  • the Sv value is controlled to 3.0 or more.
  • the discriminating power of the copper foil through the polyimide by the CCD camera is improved without being affected by the type and thickness of the substrate resin. For this reason, good visibility when observing from a polyimide substrate is obtained, and positioning accuracy such as marking with a copper foil is improved when a predetermined treatment is performed on a polyimide substrate in an electronic substrate manufacturing process, thereby yield. The effect of improving is obtained.
  • Sv is preferably 3.5 or more, more preferably 3.9 or more, more preferably 4.5 or more, more preferably 5.0 or more, and more preferably 5.5 or more.
  • the upper limit of Sv is not particularly limited, but is, for example, 15 or less and 10 or less. According to such a configuration, the boundary between the copper foil and the non-copper foil becomes clearer, the positioning accuracy is improved, the error due to the copper foil image recognition is reduced, and the alignment can be performed more accurately. become.
  • the surface-treated copper foil on both surfaces of the polyimide the copper foil on both surfaces is removed by etching, and only the copper foil on one surface is formed into a circuit shape. If the visibility obtained by observation is good, such a surface-treated copper foil has good visibility obtained by laminating it on polyimide and then observing through polyimide.
  • the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B on one surface of the copper foil greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, in the surface-treated copper foil of the present invention, the ratio A / B is preferably 1.0 to 1.7, and more preferably 1.0 to 1.6.
  • the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B of the roughened particles on the surface treated surface is, for example, when the surface is roughened, and the surface area A of the roughened particles, It can also be referred to as the ratio A / B with the area B obtained when the copper foil is viewed in plan from the copper foil surface side.
  • the surface state such as particle morphology, formation density, and surface roughness is determined, and the surface roughness Rz, glossiness and copper foil are determined.
  • the surface area ratio A / B of the surface can be controlled.
  • the surface-treated copper foil of the present invention is also subjected to a surface treatment on the surface of the copper foil opposite to the surface to be bonded to the resin substrate (in the present invention, this surface is also referred to as “the other surface”).
  • the surface-treated copper foil is bonded to the resin substrate from one surface side, generally, the resin substrate / surface-treated copper foil / protective film is laminated in this order, and heat and pressure are applied from the protective film side by a laminating roll. to paste together.
  • the protective film adheres to the surface (the other surface) opposite to the resin substrate side of the surface-treated copper foil (it does not slip between the surface-treated copper foil and the protective film). There is.
  • the other surface of the surface-treated copper foil of the present invention is surface-treated, and by increasing the contact area between the copper foil and the protective film, the copper foil during the lamination process with the resin substrate is used.
  • the problem that a protective film sticks can be suppressed favorably.
  • the surface-treated copper foil of the present invention has, on one side, a TD ten-point average roughness Rz measured by a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface of 0.35 ⁇ m. That's it. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to.
  • the surface-treated copper foil of the present invention has a TD ten-point average roughness Rz of 0.40 ⁇ m or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  • the upper limit of the TD ten-point average roughness Rz of the surface-treated copper foil of the present invention measured with a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface must be specifically limited. Is typically 4.0 ⁇ m or less, more typically 3.0 ⁇ m or less, more typically 2.5 ⁇ m or less, and more typically 2.0 ⁇ m or less. .
  • the arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.05 ⁇ m. That's it.
  • the arithmetic average roughness Ra of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 ⁇ m or more. More preferably, it is still more preferably 0.10 ⁇ m or more, still more preferably 0.20 ⁇ m or more, and still more preferably 0.30 ⁇ m or more.
  • the upper limit of the arithmetic average roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the surface-treated copper foil of the present invention on the other surface-treated copper foil is 405 nm needs to be specifically limited. None, but typically 0.80 ⁇ m or less, more typically 0.65 ⁇ m or less, more typically 0.50 ⁇ m or less, and more typically 0.40 ⁇ m or less.
  • the root mean square height Rq of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the other surface-treated copper foil is 0.00. It is 08 ⁇ m or more. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to.
  • the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the other copper foil is 0.10 ⁇ m or more.
  • the upper limit of the root mean square height Rq of TD measured with the laser microscope whose wavelength of the laser beam of the surface treated copper foil of the present invention is 405 nm is particularly limited. Although not required, it is typically 0.80 ⁇ m or less, more typically 0.60 ⁇ m or less, more typically 0.50 ⁇ m or less, and more typically 0.40 ⁇ m or less. is there.
  • the other surface treatment in the surface-treated copper foil of the present invention is not particularly limited and may be a roughening treatment, omitting the roughening treatment, and heat resistant by plating (plating that is not normal plating or roughening plating).
  • the process which provides a layer or a rust prevention layer may be sufficient.
  • the roughening treatment may be performed using a plating solution containing copper sulfate and an aqueous sulfuric acid solution, or the roughening treatment may be performed using a plating solution comprising copper sulfate and an aqueous sulfuric acid solution. Alloy plating such as copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, nickel-zinc alloy plating may be used.
  • the copper alloy plating bath for example, a plating bath containing one or more elements other than copper and copper, more preferably any selected from the group consisting of copper and cobalt, nickel, arsenic, tungsten, chromium, zinc, phosphorus, manganese and molybdenum It is preferable to use a plating bath containing at least one kind.
  • the other surface treatment in the surface-treated copper foil of the present invention may be a surface treatment other than the above roughening treatment and plating treatment.
  • a surface treatment for forming irregularities on the other surface a surface treatment by electropolishing may be performed.
  • unevenness can be formed on the other surface of the copper foil by electropolishing the other surface of the copper foil in a solution composed of copper sulfate and an aqueous sulfuric acid solution.
  • electropolishing aims at smoothing, but the other surface treatment of the present invention forms concavities and convexities by electropolishing.
  • the method for forming the irregularities by electrolytic polishing may be performed by a known technique.
  • Examples of known techniques of electropolishing for forming the unevenness include the methods described in JP-A-2005-240132, JP-A-2010-059547, and JP-A-2010-047842.
  • Treatment solution Cu: 20 g / L, H 2 SO 4 : 100 g / L, temperature: 50 ° C.
  • -Electropolishing current 15 A / dm 2 -Electropolishing time: 15 seconds etc. are mentioned.
  • the unevenness may be formed by mechanically polishing the other surface. Mechanical polishing may be performed by a known technique.
  • you may provide a heat-resistant layer, a rust prevention layer, and a weather resistant layer after the other surface treatment in the surface-treated copper foil of this invention.
  • the heat-resistant layer, the rust-proof layer, and the weather-resistant layer may be the method described in the above description or experimental example, or may be a known technique.
  • the laminate can be produced by bonding the surface-treated copper foil of the present invention to an insulating resin substrate from one surface side.
  • the insulating resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like.
  • a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy Resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc. polyester film, polyimide film, liquid crystal polymer (LCP) film for FPC, Teflon (registered trademark) film or the like can be used.
  • a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing.
  • FPC it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc.
  • a laminated board can be manufactured by performing.
  • the thickness of the polyimide base resin is not particularly limited, but generally 25 ⁇ m or 50 ⁇ m can be mentioned.
  • the laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited.
  • PWB printed wiring boards
  • the single-sided PWB, the double-sided PWB, and the multilayer PWB 3
  • rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material.
  • the electronic device of the present invention can be manufactured using such a printed wiring board.
  • the printed wiring board of the present invention is a printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit is connected to one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate with a CCD camera.
  • the printed wiring board can be positioned more accurately.
  • the printed wiring board of the present invention is a printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit is connected to one surface on the insulating resin substrate side.
  • the color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate.
  • An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera.
  • the copper clad laminate of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil being one of the insulating resin substrates.
  • the surface of the copper foil over the insulating resin substrate, the color difference ⁇ E * ab based on JIS Z8730 is 50 or more, and the copper foil of the copper-clad laminate is Then, after forming a line-shaped copper foil by etching and taking a picture with a CCD camera through an insulating resin substrate, the image obtained by the shooting is along a direction perpendicular to the direction in which the observed line-shaped copper foil extends.
  • the surface-treated copper foil of the present invention can be used for the copper foil of the copper clad laminate of the present invention. When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately.
  • the copper clad laminate of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil being one of the insulating resin substrates.
  • a color difference ⁇ E * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the surface of the copper-clad laminate has the surface and the other surface subjected to surface treatment.
  • the top of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Average value Bt
  • Is the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ⁇ B in the depth range from the intersection of the lightness curve and Bt to 0.1 ⁇ B with reference to Bt Sv defined by the following formula (1) is 3.0 or more when a value indicating the value is t2.
  • the surface-treated copper foil of the present invention can be used for the copper foil of the copper clad laminate of the present invention. When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately.
  • Sv ( ⁇ B ⁇ 0.1) / (t1-t2) (1)
  • the surface of the copper circuit or copper foil opposite to the surface to be bonded to the resin substrate (the other surface) is also subjected to surface treatment.
  • surface treatment When passing a printed wiring board or copper-clad laminate through a roll-to-roll production line, between the transport roll in the production line and the surface opposite to the resin substrate side of the printed wiring board or copper-clad laminate The problem of sticking (cannot slip) may occur. When such a problem arises, wrinkles and streaks occur on the other surface of the copper circuit or copper foil.
  • the other surface of the printed wiring board or the copper clad laminate of the present invention is surface-treated, and by increasing the contact area between the copper circuit or the copper foil and the protective film, it is conveyed in the production line.
  • the problem of sticking to the roll can be satisfactorily suppressed.
  • the adhesion between the other surface, the dry film, and the coverlay is improved, the weather resistance of the printed wiring board or the copper clad laminate is improved.
  • a laminate of metal and resin is prepared.
  • the form of the laminate of the metal and the resin is not particularly limited as long as it is configured by bonding the metal to the resin.
  • copper or the like is used on at least one surface of a resin such as polyimide, which is used to electrically connect the main body substrate and the attached circuit board, and the circuit board.
  • a resin such as polyimide
  • the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. It becomes a laminated body.
  • the laminate has a mark formed of a part of the metal wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminate.
  • the above-mentioned mark is photographed by the photographing means through the resin, and the image obtained by the photographing is observed for each observation point along the direction perpendicular to the direction in which the observed mark extends.
  • Is measured to produce an observation point-lightness graph, and a difference ⁇ B ( ⁇ B Bt ⁇ Bb) between a top average value Bt and a bottom average value Bb of a lightness curve generated from an end portion of the mark to a portion without the mark. )
  • Is used to detect the position of the mark and the laminate of the metal and the resin is positioned based on the detected position of the mark.
  • the position of the mark may be detected using only the Sv value, and the laminate of the metal and the resin may be positioned based on the detected position of the mark.
  • the position of the mark may be detected using both the value and the laminate of the metal and the resin may be positioned based on the detected position of the mark.
  • the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately.
  • the apparatus for detecting the position can determine that the mark is present at the position.
  • the device for detecting the position can determine that the mark is present at the position when ⁇ B is 40 or more and Sv is 3.0 or more.
  • the printed wiring board can be positioned more accurately.
  • the copper foil may have been subjected to a surface treatment.
  • soldering connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used.
  • the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted.
  • a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention.
  • One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board.
  • “copper circuit” includes copper wiring.
  • the positioning method according to the embodiment of the present invention may include a step of moving a laminated body (including a laminated body of copper and resin and a printed wiring board).
  • a laminated body including a laminated body of copper and resin and a printed wiring board.
  • it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device equipped with an arm mechanism, or may be moved by floating a laminate using gas.
  • the moving device may be moved by a moving means, such as a moving device or moving means (including a roller or a bearing) that moves a laminated body by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means.
  • the positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
  • the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated body of the said metal and resin positioned in this invention. In that case, the mark may be the circuit.
  • positioning includes “detecting the position of a mark or an object”.
  • alignment includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
  • each copper foil was prepared, and one surface was plated under the conditions described in Tables 2 and 3 as a roughening treatment.
  • Rolld copper foil was manufactured as follows. A predetermined copper ingot was manufactured and hot-rolled, and then annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 1 to obtain a copper foil.
  • “Tough pitch copper” in Table 1 indicates tough pitch copper standardized in JIS H3100 C1100.
  • Oxygen-free copper in Table 1 represents oxygen-free copper standardized in JIS H3100 C1020.
  • Ppm of the additive element described in Table 1 indicates mass ppm. For example, “Tough pitch copper + Ag 180 ppm” in the type column of the metal foil (before surface treatment) in Table 1 means that 180 mass ppm of Ag is added to the tough pitch copper.
  • Electrolyte composition (copper: 100 g / L, sulfuric acid: 100 g / L, chlorine: 50 ppm, leveling agent 1 (bis (3sulfopropyl) disulfide): 10-30 ppm, leveling agent 2 (amine compound): 10-30 ppm) ⁇
  • Electrolyte temperature 50-60 °C ⁇
  • Current density 70 to 100 A / dm 2
  • Electrolysis time 1 minute
  • Electrolytic solution linear velocity 4 m / sec
  • the following amine compounds were used as amine compounds.
  • R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.
  • the electrolytic copper foil change the measurement position in the direction (TD) perpendicular to the traveling direction of the electrolytic copper foil in the electrolytic copper foil manufacturing apparatus, and perform the measurement 10 times for each value. Asked. In addition, the surface roughness (Rz) was calculated
  • the other surface after the surface treatment of each Example and a comparative example it is preferable to measure the surface roughness using a non-contact type method. Specifically, the state of the other surface after the surface treatment of each example and comparative example is evaluated by the roughness value measured with a laser microscope. This is because the state of the surface can be evaluated in more detail. About the other surface of the surface-treated copper foil, surface roughness (ten-point average roughness) Rz was measured based on JIS B0601 1994 with an Olympus laser microscope OLS4000.
  • the evaluation length is 258 ⁇ m
  • the cut-off value is zero
  • the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction or electrolytic copper
  • the value was calculated
  • the measurement environment temperature of the surface roughness Rz with a laser microscope was 23 to 25 ° C.
  • Rz was arbitrarily measured at 10 locations, and the average value at 10 locations of Rz was defined as the value of surface roughness (10-point average roughness) Rz. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
  • the root mean square height Rq of the surface was measured based on JIS B0601 2001 with the Olympus laser microscope OLS4000.
  • the evaluation length is 258 ⁇ m
  • the cut-off value is zero
  • the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction or electrolytic copper
  • the value was calculated
  • the measurement environment temperature of the root mean square height Rq of the surface with a laser microscope was 23 to 25 ° C.
  • Rq was measured arbitrarily at 10 locations, and the average value at 10 locations of the Rq was taken as the value of the root mean square height Rq.
  • the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
  • the surface roughness Ra of the other surface of the copper foil after the surface treatment of each example and comparative example was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994.
  • the evaluation length is 258 ⁇ m
  • the cut-off value is zero
  • the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction.
  • the value was calculated
  • the measurement environment temperature of the arithmetic average roughness Ra of the surface with a laser microscope was set to 23 to 25 ° C. Ra was measured arbitrarily at 10 locations, and the average value of 10 locations of Ra was used as the value of arithmetic average roughness Ra. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
  • ⁇ E * ab was measured based on the following formula using the L * a * b color system, ⁇ L: black and white, ⁇ a: reddish green, ⁇ b: yellow blue.
  • the color difference ⁇ E * ab is defined as zero for white and 90 for black;
  • Kaneka-made polyimide film with a thickness of 25 ⁇ m or 50 ⁇ m [PIXEO (polyimide type: FRS), polyimide film with adhesive layer for copper-clad laminate, PMDA (pyromellitic anhydride) -based polyimide film (PMDA-ODA (4,4′-diaminodiphenyl ether) based polyimide film)] was used.
  • the polyimide film that bonds the surface of the surface-treated copper foil for each test example is It is the same as the polyimide film used in the evaluation of “lightness curve inclination”. And all the copper foil of one side was removed by the etching. Further, the copper foil on the other surface was etched to form a line having a width of 0.3 mm. Thereafter, a white paper was laid on the back of the 0.3 mm wide line-shaped copper foil, and was photographed with a CCD camera (line CCD camera of 8192 pixels) through the polyimide film, and an image obtained by photographing was observed.
  • CCD camera line CCD camera of 8192 pixels
  • FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the measurement method of the brightness curve.
  • the polyimide having a thickness of 25 ⁇ m or 50 ⁇ m used for the evaluation of the slope of the lightness curve was a polyimide having a ⁇ B (PI) of 50 or more and 65 or less with respect to the polyimide before being bonded to the copper foil.
  • ⁇ B (PI) for the polyimide before being bonded to the copper foil, instead of a 0.3 mm wide line-shaped copper foil, a 0.3 mm wide line-shaped black mark is used on a blank sheet. ⁇ B (PI) was measured using the printed material (printed material printed with a line-shaped black mark).
  • ⁇ B, t1, t2, and Sv were measured with the following photographing apparatus.
  • One pixel on the horizontal axis corresponds to a length of 10 ⁇ m.
  • white glossy paper having a gloss level of 43.0 ⁇ 2 was used for the “white paper” laid on the “back surface of a 0.3 mm wide lined copper foil”.
  • the above-mentioned “printed matter printed with a line-shaped black mark” is printed on white glossy paper having a glossiness of 43.0 ⁇ 2 according to JIS P8208 (1998) (a copy of the dust measurement chart of FIG.
  • the photographing device is a CCD camera, a white paper on which a polyimide substrate laminated with a sample copper foil is placed (the polyimide substrate laminated with a copper foil is placed with the surface opposite to the surface having a line-shaped copper foil facing the CCD camera. ), An illumination power source for irradiating light to the imaging part of the polyimide substrate, a copper foil to be imaged, and a transporter (not shown) for transporting the polyimide substrate onto the stage.
  • the main specifications of the camera are as follows: ⁇ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation Line CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits) ⁇ Power supply for lighting: High-frequency lighting power supply (power supply unit x 2) ⁇ Illumination: fluorescent lamp (30W, model name: FPL27EX-D, twin fluorescent lamp)
  • a line for ⁇ B (PI) measurement a line indicated by an arrow drawn on the contaminant of FIG. 5 of 0.7 mm 2 was used.
  • the width of the line is 0.3 mm.
  • the line CCD camera field of view is arranged in a dotted line in FIG.
  • the signal is confirmed at 256 gradations on the full scale, and the place where the black mark of the printed matter does not exist (on the white glossy paper above) without placing the polyimide film (polyimide substrate) to be measured.
  • the lens aperture was adjusted so that the peak gradation signal of 230 ⁇ 5 falls within the range (when a portion outside the mark printed on the contaminants is measured with a CCD camera from the transparent film side).
  • the camera scan time (the time when the camera shutter is open and the time when light is captured) is fixed at 250 ⁇ s, and the lens aperture is adjusted so that it falls within the above gradation.
  • 0 means “black”
  • lightness 255 means “white”
  • the gray level from “black” to “white” Is divided into 256 gradations for display.
  • peel strength (adhesive strength);
  • the normal peel strength was measured with a tensile tester Autograph 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrates.
  • the sample which bonded together the polyimide film and the surface treatment surface which is one surface of the surface treatment copper foil which concerns on the experiment example of this invention was used for the measurement of this peel strength.
  • the peel strength was measured with a copper foil thickness of 18 ⁇ m. About the copper foil whose thickness is less than 18 micrometers, copper plating was performed and copper foil thickness was 18 micrometers. Moreover, when thickness was larger than 18 micrometers, it etched and copper foil thickness was 18 micrometers.
  • FIG. 4 the SEM observation photograph on the copper foil surface of (a) Comparative example 1 and (b) Example 1 in the case of said Rz evaluation is shown, respectively. Further, in Examples 1 to 9, the width of the mark made of a copper foil formed into a line having a width of 0.3 mm and the mark of the contaminants were changed from 0.3 mm to 0.16 mm (the area of the contaminant sheet was 0.5 mm 2). In the same manner, ⁇ B (PI), Sv value, and ⁇ B value were measured by changing to the third mark (mark indicated by the arrow in FIG. 6) from the side closest to the description of 0.5. The (PI), Sv value, and ⁇ B value were the same as when the mark width was 0.3 mm.
  • a position 50 ⁇ m away from the end positions on both sides of the mark is defined as a position 100 ⁇ m apart, a position 300 ⁇ m apart, and a position 500 ⁇ m apart. From this position, the same ⁇ B (PI), Sv value and ⁇ B value were measured by changing to the average value of the brightness when measured at 5 locations (total 10 locations on both sides) at 30 ⁇ m intervals.
  • ⁇ B (PI), Sv value, and ⁇ B value are average values of brightness when measured at 5 locations at a distance of 30 ⁇ m from a position 50 ⁇ m away from the end positions on both sides of the mark (total 10 locations on both sides). The value was the same as ⁇ B (PI), Sv value, and ⁇ B value in the case of “top average value Bt”.
  • Example 8 the glossy surface of the copper foil (the surface on the side in contact with the drum during the production of the electrolytic copper foil) is subjected to electrolytic polishing and / or chemical polishing, whereby the TD roughness Rz and glossiness are obtained.
  • a predetermined surface treatment or formation of an intermediate layer or the like was performed.
  • the surface treatment such as roughening treatment is performed on both surfaces of the copper foil
  • the surface treatment may be performed on both surfaces simultaneously, or the surface treatment may be separately performed on one surface and the other surface.
  • the ten-point average roughness Rz of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the roughening treatment in each example was 0.35 ⁇ m or more.
  • arithmetic mean roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the roughened copper foil surface of each Example was 405 nm was all 0.05 micrometer or more.
  • the root mean square height Rq of TD measured with the laser microscope whose wavelength of the laser beam of the roughened copper foil surface of each Example was 405 nm was 0.08 micrometer or more in all.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laser Beam Processing (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention provides a treated surface copper foil, which adheres favorably to resin and achieves excellent visibility when observed through the resin. Provided is a treated surface copper foil in which respective surface treatments have been performed on the two surfaces, wherein the color difference (∆E*ab) based on JIS Z8730 of the through-polyimide surface of a copper-clad laminate, configured by laminating treated surface copper foil on a polyimide with a ∆B(PI) before bonding to the copper foil of 50 to 65, is at least 50. When the copper foil is photographed with a CCD camera through the polyimide, which has been laminated from the surface on which surface treatment has been performed, ∆B (∆B = Bt - Bb) in the observation point-brightness graph is at least 40. The ten-point mean roughness (Rz) of TD of the other surface of the treated surface copper foil measured with a laser microscope in which the wavelength of the laser light is 405 nm is at least 0.35 µm.

Description

表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
 本発明は、表面処理銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法に関する。 The present invention relates to a surface-treated copper foil, a copper clad laminate, a printed wiring board, an electronic device, and a method for manufacturing a printed wiring board.
 スマートフォンやタブレットPCといった小型電子機器には、配線の容易性や軽量性からフレキシブルプリント配線板(以下、FPC)が採用されている。近年、これら電子機器の高機能化により信号伝送速度の高速化が進み、FPCにおいてもインピーダンス整合が重要な要素となっている。信号容量の増加に対するインピーダンス整合の方策として、FPCのベースとなる樹脂絶縁層(例えば、ポリイミド)の厚層化が進んでいる。また配線の高密度化要求によりFPCの多層化がより一層進んでいる。一方、FPCは液晶基材への接合やICチップの搭載などの加工が施されるが、この際の位置合わせは銅箔と樹脂絶縁層との積層板における銅箔をエッチングした後に残る樹脂絶縁層を透過して視認される位置決めパターンを介して行われるため、樹脂絶縁層の視認性が重要となる。 For small electronic devices such as smartphones and tablet PCs, flexible printed wiring boards (hereinafter referred to as FPCs) are employed because of their ease of wiring and light weight. In recent years, with the enhancement of functions of these electronic devices, the signal transmission speed has been increased, and impedance matching has become an important factor in FPC. As a measure for impedance matching with respect to an increase in signal capacity, a resin insulation layer (for example, polyimide) serving as a base of an FPC has been increased in thickness. In addition, the demand for higher wiring density has further increased the number of FPC layers. On the other hand, processing such as bonding to a liquid crystal substrate and mounting of an IC chip is performed on the FPC, but the alignment at this time is the resin insulation remaining after etching the copper foil in the laminate of the copper foil and the resin insulating layer The visibility of the resin insulation layer is important because it is performed through a positioning pattern that is visible through the layer.
 また、銅箔と樹脂絶縁層との積層板である銅張積層板は、表面に粗化めっきが施された圧延銅箔を使用しても製造できる。この圧延銅箔は、通常タフピッチ銅(酸素含有量100~500重量ppm)又は無酸素銅(酸素含有量10重量ppm以下)を素材として使用し、これらのインゴットを熱間圧延した後、所定の厚さまで冷間圧延と焼鈍とを繰り返して製造される。 Also, a copper clad laminate that is a laminate of a copper foil and a resin insulating layer can be manufactured using a rolled copper foil having a roughened plating surface. This rolled copper foil usually uses tough pitch copper (oxygen content of 100 to 500 ppm by weight) or oxygen free copper (oxygen content of 10 ppm by weight or less) as a raw material, and after hot rolling these ingots, It is manufactured by repeating cold rolling and annealing to a thickness.
 このような技術として、例えば、特許文献1には、ポリイミドフィルムと低粗度銅箔とが積層されてなり、銅箔エッチング後のフィルムの波長600nmでの光透過率が40%以上、曇価(HAZE)が30%以下であって、接着強度が500N/m以上である銅張積層板に係る発明が開示されている。
 また、特許文献2には、電解銅箔による導体層を積層された絶縁層を有し、当該導体層をエッチングして回路形成した際のエッチング領域における絶縁層の光透過性が50%以上であるチップオンフレキ(COF)用フレキシブルプリント配線板において、前記電解銅箔は、絶縁層に接着される接着面にニッケル-亜鉛合金による防錆処理層を備え、該接着面の表面粗度(Rz)は0.05~1.5μmであるとともに入射角60°における鏡面光沢度が250以上であることを特徴とするCOF用フレキシブルプリント配線板に係る発明が開示されている。
 また、特許文献3には、印刷回路用銅箔の処理方法において、銅箔の表面に銅-コバルト-ニッケル合金めっきによる粗化処理後、コバルト-ニッケル合金めっき層を形成し、更に亜鉛-ニッケル合金めっき層を形成することを特徴とする印刷回路用銅箔の処理方法に係る発明が開示されている。
As such a technique, for example, in Patent Document 1, a polyimide film and a low-roughness copper foil are laminated, and a light transmittance at a wavelength of 600 nm of the film after copper foil etching is 40% or more, a haze value. An invention relating to a copper clad laminate having (HAZE) of 30% or less and an adhesive strength of 500 N / m or more is disclosed.
Further, Patent Document 2 has an insulating layer in which a conductive layer made of electrolytic copper foil is laminated, and the light transmittance of the insulating layer in the etching region when the circuit is formed by etching the conductive layer is 50% or more. In a flexible printed wiring board for chip-on-flex (COF), the electrolytic copper foil includes a rust-proofing layer made of a nickel-zinc alloy on an adhesive surface bonded to an insulating layer, and the surface roughness (Rz) of the adhesive surface ) Is 0.05 to 1.5 μm, and the specular gloss at an incident angle of 60 ° is 250 or more. An invention relating to a flexible printed wiring board for COF is disclosed.
Patent Document 3 discloses a method for treating a copper foil for a printed circuit, in which a cobalt-nickel alloy plating layer is formed on the surface of the copper foil after a roughening treatment by copper-cobalt-nickel alloy plating, and further zinc-nickel. An invention relating to a method for treating a copper foil for printed circuit, characterized by forming an alloy plating layer is disclosed.
特開2004-98659号公報JP 2004-98659 A WO2003/096776WO2003 / 096776 特許第2849059号公報Japanese Patent No. 2849059
 特許文献1において、黒化処理又はめっき処理後の有機処理剤により接着性が改良処理されて得られる低粗度銅箔は、銅張積層板に屈曲性が要求される用途では、疲労によって断線することがあり、樹脂透視性に劣る場合がある。
 また、特許文献2では、粗化処理がなされておらず、COF用フレキシブルプリント配線板以外の用途においては銅箔と樹脂との密着強度が低く不十分である。
 さらに、特許文献3に記載の処理方法では、銅箔へのCu-Co-Niによる微細処理は可能であったが、当該銅箔を樹脂越しに観察した際に、優れた視認性を実現できていない。
 本発明は、樹脂と良好に接着し、且つ、樹脂越しに観察した際に、優れた視認性を実現する表面処理銅箔を提供する。
In Patent Document 1, a low-roughness copper foil obtained by improving adhesion with an organic treatment agent after blackening treatment or plating treatment is broken due to fatigue in applications where flexibility is required for a copper-clad laminate. May be inferior in resin transparency.
Moreover, in patent document 2, the roughening process is not made and the adhesive strength of copper foil and resin is low and inadequate in uses other than the flexible printed wiring board for COF.
Furthermore, although the processing method described in Patent Document 3 allows fine processing of Cu-Co-Ni on a copper foil, excellent visibility can be realized when the copper foil is observed through a resin. Not.
The present invention provides a surface-treated copper foil that adheres well to a resin and realizes excellent visibility when observed through the resin.
 本発明者らは鋭意研究を重ねた結果、表面処理によって表面の色差が所定範囲に制御された銅箔を、当該処理面側から積層させたポリイミド基板越しにCCDカメラで撮影した当該銅箔の画像から得られる観察地点-明度グラフにおいて描かれる銅箔端部付近の明度曲線の傾きに着目し、当該明度曲線の傾きを制御することが、基板樹脂フィルムの種類や基板樹脂フィルムの厚さの影響を受けずに、樹脂透明性が良好となることを見出した。 As a result of intensive studies, the inventors of the present invention have obtained a copper foil whose surface color difference is controlled to a predetermined range by surface treatment and photographed with a CCD camera through a polyimide substrate laminated from the treated surface side. Paying attention to the slope of the brightness curve near the end of the copper foil drawn in the observation point-brightness graph obtained from the image, controlling the slope of the brightness curve can determine the type of substrate resin film and the thickness of the substrate resin film. It was found that the resin transparency was good without being affected.
 以上の知見を基礎として完成された本発明は一側面において、一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔である。 The present invention completed on the basis of the above knowledge is, in one aspect, a surface-treated copper foil in which surface treatment is performed on one surface and the other surface, and the surface-treated copper foil is formed from the one surface side. In a copper clad laminate that is laminated with a polyimide having the following ΔB (PI) of 50 or more and 65 or less before being laminated to the copper foil, the color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide is 50 or more. When the CCD film is photographed with a CCD camera through the polyimide layered from one surface side, the image obtained by the photographing is observed along a direction perpendicular to the direction in which the observed copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each point, the top of the lightness curve generated from the end of the copper foil to the part without the copper foil The TD measured by a laser microscope in which the difference ΔB (ΔB = Bt−Bb) between the average value Bt and the bottom average value Bb is 40 or more and the wavelength of the laser light on the surface of the other copper foil is 405 nm. This is a surface-treated copper foil having a ten-point average roughness Rz of 0.35 μm or more.
 本発明は別の一側面において、一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔である。
Another aspect of the present invention is a surface-treated copper foil in which surface treatment is performed on one surface and the other surface, respectively, and the surface-treated copper foil is bonded to the copper foil from the one surface side. In a copper-clad laminate constructed by laminating with a polyimide having the following ΔB (PI) of 50 or more and 65 or less, the color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide is 50 or more, When photographed with a CCD camera through the polyimide laminated from the surface side of the surface, the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing In the observation point-brightness graph prepared as described above, the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper foil to the portion without the copper foil. ΔB (ΔB = Bt−Bb), and in the observation point-lightness graph, the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is t1, and the lightness curve In the depth range from the intersection with Bt to 0.1 ΔB with respect to Bt, the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ΔB is t2. Sv defined by the following formula (1) becomes 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The surface-treated copper foil has a TD ten-point average roughness Rz of 0.35 μm or more as measured by a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
 本発明の表面処理銅箔は別の一実施形態において、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの平均粗さRzが、0.35μm以上である。 In another embodiment of the surface-treated copper foil of the present invention, the average roughness Rz of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.00. It is 35 μm or more.
 本発明の表面処理銅箔は更に別の一実施形態において、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である。 In another embodiment of the surface-treated copper foil of the present invention, the arithmetic average roughness Ra of TD measured with a laser microscope whose wavelength of the laser beam on the surface of the copper foil subjected to the other surface treatment is 405 nm, 0.05 μm or more.
 本発明は更に別の一側面において、一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔である。 In another aspect of the present invention, the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side. In a copper-clad laminate composed by laminating with a polyimide having the following ΔB (PI) of 50 or more and 65 or less, the color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide is 50 or more, When photographed with a CCD camera through the polyimide laminated from the surface side of the surface, the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing In the observation point-brightness graph prepared as above, the top average value Bt and the bottom average value of the brightness curve generated from the end of the copper foil to the portion without the copper foil The difference ΔB (ΔB = Bt−Bb) from b is 40 or more, and the arithmetic mean roughness Ra of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil treated with the other surface is 405 nm. The surface-treated copper foil is 0.05 μm or more.
 本発明は更に別の一側面において、一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔である。
In another aspect of the present invention, the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side. In a copper-clad laminate constituted by laminating with a polyimide having the following ΔB (PI) of 50 or more and 65 or less, the color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide is 50 or more, When photographing with a CCD camera through the polyimide laminated from one surface side, for the image obtained by the photographing, the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends is shown. In the observation point-brightness graph produced by measurement, the top average value Bt and the bottom average value of the brightness curve generated from the end of the copper foil to the portion without the copper foil The difference from b is ΔB (ΔB = Bt−Bb), and the value indicating the position of the intersection closest to the copper foil among the intersections of the brightness curve and Bt is t1 in the observation point-brightness graph. In the depth range from the intersection of the curve and Bt to 0.1 ΔB with reference to Bt, the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ΔB is t2. Sv defined by the following formula (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The surface-treated copper foil has an arithmetic average roughness Ra of TD of 0.05 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
 本発明の表面処理銅箔は更に別の一実施形態において、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である。 In yet another embodiment of the surface-treated copper foil of the present invention, the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 μm or more.
 本発明は更に別の一側面において、一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔である。 In another aspect of the present invention, the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side. In a copper-clad laminate composed by laminating with a polyimide having the following ΔB (PI) of 50 or more and 65 or less, the color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide is 50 or more, When photographed with a CCD camera through the polyimide laminated from the surface side of the surface, the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by the photographing In the observation point-brightness graph prepared as above, the top average value Bt and the bottom average value of the brightness curve generated from the end of the copper foil to the portion without the copper foil The root mean square height Rq of TD measured with a laser microscope in which the difference ΔB from Δb (ΔB = Bt−Bb) is 40 or more and the wavelength of the laser beam on the other surface treated copper foil surface is 405 nm Is a surface-treated copper foil of 0.08 μm or more.
 本発明は更に別の一側面において、一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔である。
In another aspect of the present invention, the surface-treated copper foil is subjected to surface treatment on one surface and the other surface, and the surface-treated copper foil is bonded to the copper foil from the one surface side. In a copper-clad laminate constituted by laminating with a polyimide having the following ΔB (PI) of 50 or more and 65 or less, the color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide is 50 or more, When photographing with a CCD camera through the polyimide laminated from one surface side, for the image obtained by the photographing, the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends is shown. In the observation point-brightness graph produced by measurement, the top average value Bt and the bottom average value of the brightness curve generated from the end of the copper foil to the portion without the copper foil The difference from b is ΔB (ΔB = Bt−Bb), and the value indicating the position of the intersection closest to the copper foil among the intersections of the brightness curve and Bt is t1 in the observation point-brightness graph. In the depth range from the intersection of the curve and Bt to 0.1 ΔB with reference to Bt, the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ΔB is t2. Sv defined by the following formula (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The other surface-treated copper foil is a surface-treated copper foil having a root mean square height Rq of TD of 0.08 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm.
 本発明の表面処理銅箔は更に別の一実施形態において、前記他方の表面の表面処理が粗化処理である。 In another embodiment of the surface-treated copper foil of the present invention, the surface treatment of the other surface is a roughening treatment.
 本発明に係る表面処理銅箔の別の実施形態においては、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となる。
  Sv=(ΔB×0.1)/(t1-t2)   (1)
In another embodiment of the surface-treated copper foil according to the present invention, in the observation point-lightness graph, a value indicating a position of an intersection closest to the copper foil among intersections of the lightness curve and Bt is defined as t1. In the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB with reference to Bt, a value indicating the position of the intersection closest to the copper foil among the intersections of the brightness curve and 0.1 ΔB was defined as t2. Sometimes, Sv defined by the following formula (1) is 3.0 or more.
Sv = (ΔB × 0.1) / (t1-t2) (1)
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが53以上となる。 In still another embodiment of the surface-treated copper foil according to the present invention, the following ΔB (PI) before pasting the surface-treated copper foil from the one surface side to the copper foil is 50 or more and 65 or less; The color difference ΔE * ab based on JIS Z8730 of the surface over the polyimide in the copper clad laminate formed by laminating is 53 or more.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線における(1)式で定義されるSvが3.5以上となる。 In yet another embodiment of the surface-treated copper foil according to the present invention, Sv defined by the formula (1) in the brightness curve is 3.5 or more.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線における(1)式で定義されるSvが3.9以上となる。 In yet another embodiment of the surface-treated copper foil according to the present invention, Sv defined by the formula (1) in the brightness curve is 3.9 or more.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記明度曲線における(1)式で定義されるSvが5.0以上となる。 In yet another embodiment of the surface-treated copper foil according to the present invention, Sv defined by the formula (1) in the brightness curve is 5.0 or more.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.20~0.64μmであり、前記銅箔表面の三次元表面積Aと二次元表面積Bとの比A/Bが1.0~1.7である。 In still another embodiment of the surface-treated copper foil according to the present invention, the ten-point average roughness Rz of TD measured with the contact-type roughness meter on the one surface is 0.20 to 0.64 μm, The ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B on the copper foil surface is 1.0 to 1.7.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.26~0.62μmである。 In yet another embodiment of the surface-treated copper foil according to the present invention, the TD ten-point average roughness Rz measured by the contact-type roughness meter on the one surface is 0.26 to 0.62 μm.
 本発明に係る表面処理銅箔の更に別の実施形態においては、前記A/Bが1.0~1.6である。 In still another embodiment of the surface-treated copper foil according to the present invention, the A / B is 1.0 to 1.6.
 本発明は更に別の側面において、本発明の表面処理銅箔と樹脂基板とを積層して構成した銅張積層板である。 In yet another aspect, the present invention is a copper clad laminate configured by laminating the surface-treated copper foil of the present invention and a resin substrate.
 本発明は更に別の側面において、本発明の表面処理銅箔を用いたプリント配線板である。 In yet another aspect, the present invention is a printed wiring board using the surface-treated copper foil of the present invention.
 本発明は更に別の側面において、本発明のプリント配線板を少なくとも1つ用いた電子機器である。 In yet another aspect, the present invention is an electronic device using at least one printed wiring board of the present invention.
 本発明は更に別の側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板である。 In yet another aspect of the present invention, the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit includes one surface on the insulating resin substrate side, A color difference ΔE * ab based on JIS Z8730 on the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit passes through the insulating resin substrate. In an observation point-brightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper circuit to the portion where there is no copper circuit is 40 or more, Square ten-point average roughness Rz of the TD to the wavelength of the laser light is measured by a laser microscope is 405nm of surface treatment copper circuit surface of a printed wiring board is 0.35μm or more.
 本発明は更に別の側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板である。
In yet another aspect of the present invention, the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit includes one surface on the insulating resin substrate side, A color difference ΔE * ab based on JIS Z8730 on the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit passes through the insulating resin substrate. In an observation point-brightness graph prepared by measuring the lightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb), and the observation point−lightness In the graph, the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1, and in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt. When the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The printed circuit board has a TD ten-point average roughness Rz of 0.35 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
 本発明のプリント配線板は別の一実施形態において、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である。 In another embodiment of the printed wiring board of the present invention, the arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.00. It is 05 μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板である。 In yet another aspect of the present invention, the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper circuit through the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate. An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. , The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion where the copper circuit is not present is 40 or more. Arithmetic average roughness Ra of the TD to the wavelength of the laser light is measured by a laser microscope is 405nm of other surface treatment copper circuit surface is a printed circuit board is 0.05μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板である。
In yet another aspect of the present invention, the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate. An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. , The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb), and the observation point−light In the degree graph, the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1, and the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt , When the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The printed circuit board has an arithmetic average roughness Ra of TD of 0.05 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
 本発明のプリント配線板は更に別の一実施形態において、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である。 In still another embodiment of the printed wiring board of the present invention, the root mean square height Rq of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.08 μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板である。 In yet another aspect of the present invention, the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper circuit through the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate. An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. , The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion where the copper circuit is not present is 40 or more. Root-mean-square height Rq of TD that the wavelength of the laser beam of the other surface treatment copper circuit surface is measured by a laser microscope is 405nm is a printed circuit board is at least 0.08 .mu.m.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板である。
In yet another aspect of the present invention, the printed circuit board includes an insulating resin substrate and a copper circuit provided on the insulating resin substrate, the copper circuit including one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate. An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. , The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb), and the observation point−light In the degree graph, the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1, and the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt , When the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The printed circuit board having a root mean square height Rq of TD of 0.08 μm or more measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
 本発明のプリント配線板は更に別の一実施形態において、前記他方の表面の表面処理が粗化処理である。 In another embodiment of the printed wiring board of the present invention, the surface treatment of the other surface is a roughening treatment.
 本発明は更に別の側面において、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。 In yet another aspect, the present invention is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards of the present invention.
 本発明は更に別の側面において、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続する工程を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法である。 In yet another aspect, the present invention includes at least a step of connecting at least one printed wiring board of the present invention to another printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention. This is a method of manufacturing a printed wiring board in which two or more printed wiring boards are connected.
 本発明は更に別の側面において、本発明のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器である。 In yet another aspect, the present invention is an electronic device using one or more printed wiring boards to which at least one printed wiring board of the present invention is connected.
 本発明は更に別の側面において、本発明のプリント配線板に用いられている表面処理銅箔である。 In yet another aspect, the present invention is a surface-treated copper foil used for the printed wiring board of the present invention.
 本発明は更に別の側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板である。 In still another aspect, the present invention provides a copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil having one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper foil through the insulating resin substrate is 50 or more, and the copper foil of the copper-clad laminate Is etched into a line-shaped copper foil and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along the direction, the top average value of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil B The difference ΔB between t and the bottom average value Bb (ΔB = Bt−Bb) is 40 or more, and the TD measured by a laser microscope whose wavelength of the laser light on the surface of the other copper foil is 405 nm is 10%. This is a copper clad laminate having a point average roughness Rz of 0.35 μm or more.
 本発明は更に別の側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板である。
In still another aspect, the present invention provides a copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil having one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper foil of the copper-clad laminate Is etched into a line-shaped copper foil and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along the direction, the top average value of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Bt A difference ΔB (ΔB = Bt−Bb) with respect to the bottom average value Bb, and a value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the brightness curve and Bt in the observation point-brightness graph Is the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt Sv defined by the following formula (1) is 3.0 or more when the value indicating is t2,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The copper-clad laminate having a TD ten-point average roughness Rz of 0.35 μm or more measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
 本発明の銅張積層板は一実施形態において、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの平均粗さRzが、0.35μm以上である。 In one embodiment, the copper clad laminate of the present invention has an average roughness Rz of TD measured by a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment of 0.35 μm or more. is there.
 本発明の銅張積層板は別の一実施形態において、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である。 In another embodiment of the copper clad laminate of the present invention, the arithmetic average roughness Ra of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0. .05 μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板である。 Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side. A color difference ΔE * ab based on JIS 87 Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate When the foil is formed into a line-shaped copper foil by etching and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along a certain direction, the top average of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil value Arithmetic of TD measured with a laser microscope in which the difference ΔB (ΔB = Bt−Bb) between Bt and the bottom average value Bb is 40 or more and the wavelength of the laser light on the surface of the other copper foil is 405 nm It is a copper clad laminate having an average roughness Ra of 0.05 μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板である。
Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side. A color difference ΔE * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate When the foil is formed into a line-shaped copper foil by etching and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along a certain direction, the top average of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Value B The difference ΔB (ΔB = Bt−Bb) between the average value and the bottom average value Bb indicates the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and Bt in the observation point-lightness graph. With the value t1, in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the intersection of the lightness curve and 0.1ΔB closest to the line-shaped copper foil When the value indicating the position is t2, Sv defined by the following equation (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The copper-clad laminate having a TD arithmetic average roughness Ra of 0.05 μm or more measured with a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface.
 本発明の銅張積層板は更に別の一実施形態において、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である。 In yet another embodiment of the copper clad laminate of the present invention, the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板である。 Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side. A color difference ΔE * ab based on JIS 87 Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate When the foil is formed into a line-shaped copper foil by etching and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along a certain direction, the top average of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil value The difference ΔB between Bt and the bottom average value Bb (ΔB = Bt−Bb) is 40 or more, and the square of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the other surface treated copper foil surface This is a copper clad laminate having an average square root height Rq of 0.08 μm or more.
 本発明は更に別の一側面において、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
  Sv=(ΔB×0.1)/(t1-t2)   (1)
 前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板である。
Still another aspect of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, wherein the copper foil is one surface on the insulating resin substrate side. A color difference ΔE * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the copper of the copper-clad laminate When the foil is formed into a line-shaped copper foil by etching and then photographed with a CCD camera through the insulating resin substrate, the image obtained by the photographing is perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point along a certain direction, the top average of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Value B The difference ΔB (ΔB = Bt−Bb) between the average value and the bottom average value Bb indicates the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and Bt in the observation point-lightness graph. With the value t1, in the depth range from the intersection of the lightness curve and Bt to 0.1ΔB with reference to Bt, the intersection of the lightness curve and 0.1ΔB closest to the line-shaped copper foil When the value indicating the position is t2, Sv defined by the following equation (1) is 3.0 or more,
Sv = (ΔB × 0.1) / (t1-t2) (1)
The copper-clad laminate having a root mean square height Rq of TD of 0.08 μm or more measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment.
 本発明の銅張積層板は更に別の一実施形態において、前記他方の表面の表面処理が粗化処理である。 In another embodiment of the copper clad laminate of the present invention, the surface treatment of the other surface is a roughening treatment.
 本発明は更に別の側面において、本発明の銅張積層板に用いられている表面処理銅箔である。 In yet another aspect, the present invention is a surface-treated copper foil used for the copper-clad laminate of the present invention.
 本発明は更に別の側面において、本発明の銅張積層板を用いて製造したプリント配線板である。 In yet another aspect, the present invention is a printed wiring board manufactured using the copper clad laminate of the present invention.
 本発明によれば、樹脂と良好に接着し、且つ、樹脂越しに観察した際に、優れた視認性を実現する表面処理銅箔を提供することができる。 According to the present invention, it is possible to provide a surface-treated copper foil that adheres well to a resin and realizes excellent visibility when observed through the resin.
Bt及びBbを定義する模式図である。It is a schematic diagram which defines Bt and Bb. t1及びt2及びSvを定義する模式図である。It is a schematic diagram which defines t1, t2, and Sv. 明度曲線の傾き評価の際の、撮影装置の構成及び明度曲線の傾きの測定方法を表す模式図である。It is a schematic diagram showing the structure of an imaging device and the measuring method of the inclination of a lightness curve in the case of evaluation of the lightness curve inclination. Rz評価の際の比較例1の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of the comparative example 1 in the case of Rz evaluation. Rz評価の際の実施例1の銅箔表面のSEM観察写真である。It is a SEM observation photograph of the copper foil surface of Example 1 in the case of Rz evaluation. 実施例で用いた夾雑物の外観写真である。It is an external appearance photograph of the foreign material used in the Example. 実施例で用いた夾雑物の外観写真である。It is an external appearance photograph of the foreign material used in the Example.
 〔表面処理銅箔の形態及び製造方法〕
 本発明において使用する銅箔は、樹脂基板に積層させて積層体を作製し、エッチングにより回路を形成することで使用される銅箔等に有用である。
 本発明において使用する銅箔は、電解銅箔或いは圧延銅箔いずれでも良い。通常、銅箔の、樹脂基板と接着する面(本発明では、当該面を「一方の表面」とも呼ぶ)には積層後の銅箔の引き剥し強さを向上させることを目的として、脱脂後の銅箔の表面にふしこぶ状の電着を行う粗化処理が施されてもよい。電解銅箔は製造時点で凹凸を有しているが、粗化処理により電解銅箔の凸部を増強して凹凸を一層大きくすることができる。本発明においては、この粗化処理は銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっき等の合金めっき好ましくは銅合金めっきにより行うことができる。粗化前の前処理として通常の銅めっき等が行われることがあり、粗化後の仕上げ処理として電着物の脱落を防止するために通常の銅めっき等が行なわれることもある。
 本発明において使用する銅箔は、一方の表面において、粗化処理を行った後、又は、粗化処理を省略して、耐熱めっき層や防錆めっき層を表面に施されていてもよい。粗化処理を省略して、耐熱めっき層や防錆めっき層を表面に施す処理として、下記条件のNi-Wめっき浴によるめっき処理を用いることができる。なお、本発明に用いられる、電解、表面処理又はめっき等に用いられる処理液の残部は特に明記しない限り水である。
[Form and manufacturing method of surface-treated copper foil]
The copper foil used in the present invention is useful for a copper foil or the like used by laminating a resin substrate to produce a laminate and forming a circuit by etching.
The copper foil used in the present invention may be either an electrolytic copper foil or a rolled copper foil. Usually, after degreasing, the surface of the copper foil to be bonded to the resin substrate (in the present invention, this surface is also referred to as “one surface”) for the purpose of improving the peel strength of the copper foil after lamination. The surface of the copper foil may be subjected to a roughening treatment for performing fist-like electrodeposition. Although the electrolytic copper foil has irregularities at the time of manufacture, the irregularities can be further increased by enhancing the convex portions of the electrolytic copper foil by roughening treatment. In the present invention, this roughening treatment can be performed by alloy plating such as copper-cobalt-nickel alloy plating or copper-nickel-phosphorus alloy plating, preferably copper alloy plating. Ordinary copper plating or the like may be performed as a pretreatment before roughening, and ordinary copper plating or the like may be performed as a finishing treatment after roughening in order to prevent electrodeposits from dropping off.
The copper foil used in the present invention may be applied with a heat-resistant plating layer or a rust-proof plating layer on one surface after roughening treatment on one surface or by omitting the roughening treatment. As a treatment for omitting the roughening treatment and applying a heat-resistant plating layer or a rust-proof plating layer to the surface, a plating treatment using a Ni—W plating bath under the following conditions can be used. The balance of the treatment liquid used in the present invention for electrolysis, surface treatment or plating is water unless otherwise specified.
 めっき浴組成:Ni:20~30g/L、W:15~40mg/L
 pH:3.0~4.0
 温度:35~45℃
 電流密度Dk:1.7~2.3A/dm2
 めっき時間:18~25秒
 なお、本発明において使用する銅箔の厚みは特に限定する必要は無いが、例えば1μm以上、2μm以上、3μm以上、5μm以上であり、例えば3000μm以下、1500μm以下、800μm以下、300μm以下、150μm以下、100μm以下、70μm以下、50μm以下、40μm以下である。
Plating bath composition: Ni: 20-30 g / L, W: 15-40 mg / L
pH: 3.0-4.0
Temperature: 35-45 ° C
Current density D k : 1.7 to 2.3 A / dm 2
Plating time: 18 to 25 seconds The thickness of the copper foil used in the present invention is not particularly limited, but is, for example, 1 μm or more, 2 μm or more, 3 μm or more, 5 μm or more, for example, 3000 μm or less, 1500 μm or less, 800 μm. Below, it is 300 micrometers or less, 150 micrometers or less, 100 micrometers or less, 70 micrometers or less, 50 micrometers or less, and 40 micrometers or less.
 なお、本願発明に係る銅箔にはAg、Sn、In、Ti、Zn、Zr、Fe、P、Ni、Si、Te、Cr、Nb、V、B、Co等の元素を一種以上含む銅合金箔も含まれる。上記元素の濃度が高くなる(例えば合計で10質量%以上)と、導電率が低下する場合がある。圧延銅箔の導電率は、好ましくは50%IACS以上、より好ましくは60%IACS以上、更に好ましくは80%IACS以上である。また、圧延銅箔にはタフピッチ銅(JIS H3100 C1100)や無酸素銅(JIS H3100 C1020)を用いて製造した銅箔も含まれる。 The copper foil according to the present invention includes a copper alloy containing one or more elements such as Ag, Sn, In, Ti, Zn, Zr, Fe, P, Ni, Si, Te, Cr, Nb, V, B, and Co. Foil is also included. When the concentration of the above elements increases (for example, 10% by mass or more in total), the conductivity may decrease. The conductivity of the rolled copper foil is preferably 50% IACS or more, more preferably 60% IACS or more, and still more preferably 80% IACS or more. The rolled copper foil includes copper foil produced using tough pitch copper (JIS H3100 C1100) or oxygen-free copper (JIS H3100 C1020).
 また、本願発明に用いる電解銅箔の製造条件を以下に示す。
 <電解液組成>
 銅:90~110g/L
 硫酸:90~110g/L
 塩素:50~100ppm
 レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm
 レベリング剤2(アミン化合物):10~30ppm
 上記のアミン化合物には以下の化学式のアミン化合物を用いることができる。
Moreover, the manufacturing conditions of the electrolytic copper foil used for this invention are shown below.
<Electrolyte composition>
Copper: 90-110g / L
Sulfuric acid: 90-110 g / L
Chlorine: 50-100ppm
Leveling agent 1 (bis (3sulfopropyl) disulfide): 10 to 30 ppm
Leveling agent 2 (amine compound): 10 to 30 ppm
As the amine compound, an amine compound having the following chemical formula can be used.
Figure JPOXMLDOC01-appb-C000001
(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
Figure JPOXMLDOC01-appb-C000001
(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.)
 <製造条件>
 電流密度:70~100A/dm2
 電解液温度:50~60℃
 電解液線速:3~5m/sec
 電解時間:0.5~10分間
<Production conditions>
Current density: 70-100 A / dm 2
Electrolyte temperature: 50-60 ° C
Electrolyte linear velocity: 3-5m / sec
Electrolysis time: 0.5 to 10 minutes
 粗化処理としての銅-コバルト-ニッケル合金めっきは、電解めっきにより、付着量が15~40mg/dm2の銅-100~3000μg/dm2のコバルト-100~1500μg/dm2のニッケルであるような3元系合金層を形成するように実施することができる。Co付着量が100μg/dm2未満では、耐熱性が悪化し、エッチング性が悪くなることがある。Co付着量が3000μg/dm2 を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じ、また、耐酸性及び耐薬品性の悪化がすることがある。Ni付着量が100μg/dm2未満であると、耐熱性が悪くなることがある。他方、Ni付着量が1500μg/dm2を超えると、エッチング残が多くなることがある。好ましいCo付着量は1000~2500μg/dm2であり、好ましいニッケル付着量は500~1200μg/dm2である。ここで、エッチングシミとは、塩化銅でエッチングした場合、Coが溶解せずに残ってしまうことを意味しそしてエッチング残とは塩化アンモニウムでアルカリエッチングした場合、Niが溶解せずに残ってしまうことを意味するものである。 The copper-cobalt-nickel alloy plating as the roughening treatment is, as a result of electrolytic plating, an amount of adhesion of 15 to 40 mg / dm 2 of copper—100 to 3000 μg / dm 2 of cobalt—100 to 1500 μg / dm 2 of nickel. It can be carried out so as to form a ternary alloy layer. If the amount of deposited Co is less than 100 μg / dm 2 , the heat resistance may deteriorate and the etching property may deteriorate. When the amount of Co deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, etching spots may occur, and acid resistance and chemical resistance may deteriorate. If the Ni adhesion amount is less than 100 μg / dm 2 , the heat resistance may deteriorate. On the other hand, when the Ni adhesion amount exceeds 1500 μg / dm 2 , the etching residue may increase. A preferable Co adhesion amount is 1000 to 2500 μg / dm 2 , and a preferable nickel adhesion amount is 500 to 1200 μg / dm 2 . Here, the etching stain means that Co remains without being dissolved when etched with copper chloride, and the etching residue means that Ni remains without being dissolved when alkaline etching is performed with ammonium chloride. It means that.
 このような3元系銅-コバルト-ニッケル合金めっきを形成するためのめっき浴及びめっき条件は次の通りである:
 めっき浴組成:Cu10~20g/L、Co1~10g/L、Ni1~10g/L
 pH:1~4
 温度:30~50℃
 電流密度Dk:20~30A/dm2
 めっき時間:1~5秒
The plating bath and plating conditions for forming such a ternary copper-cobalt-nickel alloy plating are as follows:
Plating bath composition: Cu 10-20 g / L, Co 1-10 g / L, Ni 1-10 g / L
pH: 1 to 4
Temperature: 30-50 ° C
Current density D k : 20 to 30 A / dm 2
Plating time: 1-5 seconds
 また、本発明の粗化処理としての銅-ニッケル-りん合金めっき条件を以下に示す。
 めっき浴組成:Cu10~50g/L、Ni3~20g/L、P1~10g/L
 pH:1~4
 温度:30~40℃
 電流密度Dk:20~50A/dm2
 めっき時間:0.5~3秒
The copper-nickel-phosphorus alloy plating conditions as the roughening treatment of the present invention are shown below.
Plating bath composition: Cu 10-50 g / L, Ni 3-20 g / L, P1-10 g / L
pH: 1 to 4
Temperature: 30-40 ° C
Current density D k : 20 to 50 A / dm 2
Plating time: 0.5-3 seconds
 また、本発明の粗化処理としての銅-ニッケル-コバルト-タングステン合金めっき条件を以下に示す。
 めっき浴組成:Cu5~20g/L、Ni5~20g/L、Co5~20g/L、W1~10g/L
 pH:1~5
 温度:30~50℃
 電流密度Dk:20~50A/dm2
 めっき時間:0.5~5秒
The copper-nickel-cobalt-tungsten alloy plating conditions as the roughening treatment of the present invention are shown below.
Plating bath composition: Cu 5-20 g / L, Ni 5-20 g / L, Co 5-20 g / L, W 1-10 g / L
pH: 1-5
Temperature: 30-50 ° C
Current density D k : 20 to 50 A / dm 2
Plating time: 0.5-5 seconds
 また、本発明の粗化処理としての銅-ニッケル-モリブデン-リン合金めっき条件を以下に示す。
 めっき浴組成:Cu5~20g/L、Ni5~20g/L、Mo1~10g/L、P1~10g/L
 pH:1~5
 温度:20~50℃
 電流密度Dk:20~50A/dm2
 めっき時間:0.5~5秒
The copper-nickel-molybdenum-phosphorus alloy plating conditions as the roughening treatment of the present invention are shown below.
Plating bath composition: Cu 5-20 g / L, Ni 5-20 g / L, Mo 1-10 g / L, P 1-10 g / L
pH: 1-5
Temperature: 20-50 ° C
Current density D k : 20 to 50 A / dm 2
Plating time: 0.5-5 seconds
 粗化処理後、粗化処理面上に耐熱層、防錆層および耐候性層の群から選択される層の内1種以上を設けてもよい。また、各層は2層、3層等、複数の層であってもよく、各層を積層する順はいかなる順であってもよく、各層を交互に積層してもよい。 After the roughening treatment, one or more layers selected from the group consisting of a heat-resistant layer, a rust-proof layer and a weather-resistant layer may be provided on the roughened surface. In addition, each layer may be a plurality of layers such as two layers, three layers, and the order of stacking the layers may be any order, and the layers may be stacked alternately.
 ここで、耐熱層としては公知の耐熱層を用いることが出来る。また、例えば以下の表面処理を用いることが出来る。
 耐熱層、防錆層としては公知の耐熱層、防錆層を用いることができる。例えば、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む層であってもよく、ニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素からなる金属層または合金層であってもよい。また、耐熱層および/または防錆層はニッケル、亜鉛、錫、コバルト、モリブデン、銅、タングステン、リン、ヒ素、クロム、バナジウム、チタン、アルミニウム、金、銀、白金族元素、鉄、タンタルの群から選ばれる1種以上の元素を含む酸化物、窒化物、珪化物を含んでもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金を含む層であってもよい。また、耐熱層および/または防錆層はニッケル-亜鉛合金層であってもよい。前記ニッケル-亜鉛合金層は、不可避不純物を除き、ニッケルを50wt%~99wt%、亜鉛を50wt%~1wt%含有するものであってもよい。前記ニッケル-亜鉛合金層の亜鉛及びニッケルの合計付着量が5~1000mg/m2、好ましくは10~500mg/m2、好ましくは20~100mg/m2であってもよい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量と亜鉛の付着量との比(=ニッケルの付着量/亜鉛の付着量)が1.5~10であることが好ましい。また、前記ニッケル-亜鉛合金を含む層または前記ニッケル-亜鉛合金層のニッケルの付着量は0.5mg/m2~500mg/m2であることが好ましく、1mg/m2~50mg/m2であることがより好ましい。耐熱層および/または防錆層がニッケル-亜鉛合金を含む層である場合、スルーホールやビアホール等の内壁部がデスミア液と接触したときに銅箔と樹脂基板との界面がデスミア液に浸食されにくく、銅箔と樹脂基板との密着性が向上する。防錆層はクロメート処理層であってもよい。クロメート処理層には公知のクロメート処理層を用いることが出来る。例えばクロメート処理層とは無水クロム酸、クロム酸、二クロム酸、クロム酸塩または二クロム酸塩を含む液で処理された層のことをいう。クロメート処理層はコバルト、鉄、ニッケル、モリブデン、亜鉛、タンタル、銅、アルミニウム、リン、タングステン、錫、砒素およびチタン等の元素(金属、合金、酸化物、窒化物、硫化物等どのような形態でもよい)を含んでもよい。クロメート処理層の具体例としては、純クロメート処理層や亜鉛クロメート処理層等が挙げられる。本発明においては、無水クロム酸または二クロム酸カリウム水溶液で処理したクロメート処理層を純クロメート処理層という。また、本発明においては無水クロム酸または二クロム酸カリウムおよび亜鉛を含む処理液で処理したクロメート処理層を亜鉛クロメート処理層という。
Here, a known heat-resistant layer can be used as the heat-resistant layer. Further, for example, the following surface treatment can be used.
As the heat-resistant layer and rust-proof layer, known heat-resistant layers and rust-proof layers can be used. For example, the heat-resistant layer and / or the anticorrosive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, tantalum A layer containing one or more elements selected from nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements Further, it may be a metal layer or an alloy layer made of one or more elements selected from the group consisting of iron, tantalum and the like. The heat-resistant layer and / or rust preventive layer is a group of nickel, zinc, tin, cobalt, molybdenum, copper, tungsten, phosphorus, arsenic, chromium, vanadium, titanium, aluminum, gold, silver, platinum group elements, iron, and tantalum. An oxide, nitride, or silicide containing one or more elements selected from the above may be included. Further, the heat-resistant layer and / or the rust preventive layer may be a layer containing a nickel-zinc alloy. Further, the heat-resistant layer and / or the rust preventive layer may be a nickel-zinc alloy layer. The nickel-zinc alloy layer may contain 50 wt% to 99 wt% nickel and 50 wt% to 1 wt% zinc, excluding inevitable impurities. The total adhesion amount of zinc and nickel in the nickel-zinc alloy layer may be 5 to 1000 mg / m 2 , preferably 10 to 500 mg / m 2 , preferably 20 to 100 mg / m 2 . The ratio of the nickel adhesion amount and the zinc adhesion amount of the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer (= nickel adhesion amount / zinc adhesion amount) is 1.5 to 10. It is preferable. Further, the amount of nickel deposited on the layer containing the nickel-zinc alloy or the nickel-zinc alloy layer is preferably 0.5 mg / m 2 to 500 mg / m 2 , and 1 mg / m 2 to 50 mg / m 2 . More preferably. When the heat-resistant layer and / or rust prevention layer is a layer containing a nickel-zinc alloy, the interface between the copper foil and the resin substrate is eroded by the desmear liquid when the inner wall of a through hole or via hole comes into contact with the desmear liquid. It is difficult to improve the adhesion between the copper foil and the resin substrate. The rust prevention layer may be a chromate treatment layer. A known chromate treatment layer can be used for the chromate treatment layer. For example, the chromate-treated layer refers to a layer treated with a liquid containing chromic anhydride, chromic acid, dichromic acid, chromate or dichromate. Chromate treatment layer is any element such as cobalt, iron, nickel, molybdenum, zinc, tantalum, copper, aluminum, phosphorus, tungsten, tin, arsenic and titanium (metal, alloy, oxide, nitride, sulfide, etc.) May be included). Specific examples of the chromate treatment layer include a pure chromate treatment layer and a zinc chromate treatment layer. In the present invention, a chromate treatment layer treated with an anhydrous chromic acid or potassium dichromate aqueous solution is referred to as a pure chromate treatment layer. In the present invention, a chromate treatment layer treated with a treatment liquid containing chromic anhydride or potassium dichromate and zinc is referred to as a zinc chromate treatment layer.
 例えば耐熱層および/または防錆層は、付着量が1mg/m2~100mg/m2、好ましくは5mg/m2~50mg/m2のニッケルまたはニッケル合金層と、付着量が1mg/m2~80mg/m2、好ましくは5mg/m2~40mg/m2のスズ層とを順次積層したものであってもよく、前記ニッケル合金層はニッケル-モリブデン、ニッケル-亜鉛、ニッケル-モリブデン-コバルトのいずれか一種により構成されてもよい。また、耐熱層および/または防錆層は、ニッケルまたはニッケル合金とスズとの合計付着量が2mg/m2~150mg/m2であることが好ましく、10mg/m2~70mg/m2であることがより好ましい。また、耐熱層および/または防錆層は、[ニッケルまたはニッケル合金中のニッケル付着量]/[スズ付着量]=0.25~10であることが好ましく、0.33~3であることがより好ましい。 For example, the heat-resistant layer and / or the rust preventive layer has a nickel or nickel alloy layer with an adhesion amount of 1 mg / m 2 to 100 mg / m 2 , preferably 5 mg / m 2 to 50 mg / m 2 , and an adhesion amount of 1 mg / m 2. A tin layer of ˜80 mg / m 2 , preferably 5 mg / m 2 ˜40 mg / m 2 may be sequentially laminated. The nickel alloy layer may be nickel-molybdenum, nickel-zinc, nickel-molybdenum-cobalt. You may be comprised by any one of these. The heat-resistant layer and / or rust-preventing layer preferably has a total adhesion amount of nickel or nickel alloy and tin of 2 mg / m 2 to 150 mg / m 2 and 10 mg / m 2 to 70 mg / m 2 . It is more preferable. In addition, the heat-resistant layer and / or the rust-preventing layer preferably has [amount of nickel deposited in nickel or nickel alloy] / [amount of tin deposited] = 0.25 to 10, preferably 0.33 to 3. More preferred.
 また、耐熱層および/または防錆層として、付着量が200~2000μg/dm2のコバルト-50~700μg/dm2のニッケルのコバルト-ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト-ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。 Further, as the heat-resistant layer and / or anticorrosive layer, coating weight of cobalt 200 ~ 2000μg / dm 2 of cobalt -50 ~ 700 [mu] g / dm 2 of nickel - can form a nickel alloy plating layer. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable.
 粗化処理後、粗化面上に付着量が200~3000μg/dm2のコバルト-100~700μg/dm2のニッケルのコバルト-ニッケル合金めっき層を形成することができる。この処理は広い意味で一種の防錆処理とみることができる。このコバルト-ニッケル合金めっき層は、銅箔と基板の接着強度を実質的に低下させない程度に行う必要がある。コバルト付着量が200μg/dm2未満では、耐熱剥離強度が低下し、耐酸化性及び耐薬品性が悪化することがある。また、もう一つの理由として、コバルト量が少ないと処理表面が赤っぽくなってしまうので好ましくない。コバルト付着量が3000μg/dm2を超えると、磁性の影響を考慮せねばならない場合には好ましくなく、エッチングシミが生じる場合があり、また、耐酸性及び耐薬品性の悪化することがある。好ましいコバルト付着量は500~2500μg/dm2である。一方、ニッケル付着量が100μg/dm2未満では耐熱剥離強度が低下し耐酸化性及び耐薬品性が悪化することがある。ニッケルが1300μg/dm2を超えると、アルカリエッチング性が悪くなる。好ましいニッケル付着量は200~1200μg/dm2である。 After roughening treatment, cobalt nickel cobalt -100 ~ 700μg / dm 2 weight deposited on the roughened surface is 200 ~ 3000μg / dm 2 - can form a nickel alloy plating layer. This treatment can be regarded as a kind of rust prevention treatment in a broad sense. This cobalt-nickel alloy plating layer needs to be performed to such an extent that the adhesive strength between the copper foil and the substrate is not substantially lowered. If the amount of cobalt adhesion is less than 200 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. As another reason, if the amount of cobalt is small, the treated surface becomes reddish, which is not preferable. When the amount of cobalt deposition exceeds 3000 μg / dm 2 , it is not preferable when the influence of magnetism must be taken into account, and etching spots may occur, and acid resistance and chemical resistance may deteriorate. A preferable cobalt adhesion amount is 500 to 2500 μg / dm 2 . On the other hand, if the nickel adhesion amount is less than 100 μg / dm 2 , the heat-resistant peel strength is lowered, and the oxidation resistance and chemical resistance may be deteriorated. When nickel exceeds 1300 microgram / dm < 2 >, alkali etching property will worsen. A preferable nickel adhesion amount is 200 to 1200 μg / dm 2 .
 また、コバルト-ニッケル合金めっきの条件は次の通りである:
 めっき浴組成:Co1~20g/L、Ni1~20g/L
 pH:1.5~3.5
 温度:30~80℃
 電流密度Dk:1.0~20.0A/dm2
 めっき時間:0.5~4秒
The conditions for cobalt-nickel alloy plating are as follows:
Plating bath composition: Co 1-20 g / L, Ni 1-20 g / L
pH: 1.5 to 3.5
Temperature: 30-80 ° C
Current density D k : 1.0 to 20.0 A / dm 2
Plating time: 0.5-4 seconds
 本発明に従えば、コバルト-ニッケル合金めっき上に更に付着量の30~250μg/dm2の亜鉛めっき層が形成される。亜鉛付着量が30μg/dm2未満では耐熱劣化率改善効果が無くなることがある。他方、亜鉛付着量が250μg/dm2を超えると耐塩酸劣化率が極端に悪くなることがある。好ましくは、亜鉛付着量は30~240μg/dm2であり、より好ましくは80~220μg/dm2である。 According to the present invention, a zinc plating layer having an adhesion amount of 30 to 250 μg / dm 2 is further formed on the cobalt-nickel alloy plating. If the zinc adhesion amount is less than 30 μg / dm 2 , the heat deterioration rate improving effect may be lost. On the other hand, when the zinc adhesion amount exceeds 250 μg / dm 2 , the hydrochloric acid deterioration rate may be extremely deteriorated. Preferably, the zinc coating weight is 30 ~ 240μg / dm 2, more preferably 80 ~ 220μg / dm 2.
 上記亜鉛めっきの条件は次の通りである:
 めっき浴組成:Zn100~300g/L
 pH:3~4
 温度:50~60℃
 電流密度Dk:0.1~0.5A/dm2
 めっき時間:1~3秒
The galvanizing conditions are as follows:
Plating bath composition: Zn 100 to 300 g / L
pH: 3-4
Temperature: 50-60 ° C
Current density Dk: 0.1 to 0.5 A / dm 2
Plating time: 1 to 3 seconds
 なお、亜鉛めっき層の代わりに亜鉛-ニッケル合金めっき等の亜鉛合金めっき層を形成してもよく、さらに最表面にはクロメート処理やシランカップリング剤の塗布等によって防錆層を形成してもよい。 A zinc alloy plating layer such as zinc-nickel alloy plating may be formed in place of the zinc plating layer, and a rust prevention layer may be formed on the outermost surface by chromate treatment or application of a silane coupling agent. Good.
 耐候性層としては公知の耐候性層を用いることが出来る。また、耐候性層としては例えば公知のシランカップリング処理層を用いることができ、また以下のシランを用いて形成するシランカップリング処理層を用いることが出来る。
 シランカップリング処理に用いられるシランカップリング剤には公知のシランカップリング剤を用いてよく、例えばアミノ系シランカップリング剤又はエポキシ系シランカップリング剤、メルカプト系シランカップリング剤を用いてよい。また、シランカップリング剤にはビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ‐メタクリロキシプロピルトリメトキシシラン、γ‐グリシドキシプロピルトリメトキシシラン、4‐グリシジルブチルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N‐3‐(4‐(3‐アミノプロポキシ)プトキシ)プロピル‐3‐アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ‐メルカプトプロピルトリメトキシシラン等を用いてもよい。
A known weathering layer can be used as the weathering layer. Moreover, as a weather resistance layer, a well-known silane coupling process layer can be used, for example, The silane coupling process layer formed using the following silanes can be used.
As the silane coupling agent used for the silane coupling treatment, a known silane coupling agent may be used. For example, an amino silane coupling agent, an epoxy silane coupling agent, or a mercapto silane coupling agent may be used. Silane coupling agents include vinyltrimethoxysilane, vinylphenyltrimethoxylane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, and γ-aminopropyl. Triethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazolesilane, triazinesilane, γ-mercaptopropyltrimethoxysilane or the like may be used.
 前記シランカップリング処理層は、エポキシ系シラン、アミノ系シラン、メタクリロキシ系シラン、メルカプト系シランなどのシランカップリング剤などを使用して形成してもよい。なお、このようなシランカップリング剤は、2種以上混合して使用してもよい。中でも、アミノ系シランカップリング剤又はエポキシ系シランカップリング剤を用いて形成したものであることが好ましい。 The silane coupling treatment layer may be formed using a silane coupling agent such as epoxy silane, amino silane, methacryloxy silane, mercapto silane, or the like. In addition, you may use 2 or more types of such silane coupling agents in mixture. Especially, it is preferable to form using an amino-type silane coupling agent or an epoxy-type silane coupling agent.
 ここで言うアミノ系シランカップリング剤とは、N‐(2‐アミノエチル)‐3‐アミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、3‐アミノプロピルトリエトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、N‐(3‐アクリルオキシ‐2‐ヒドロキシプロピル)‐3‐アミノプロピルトリエトキシシラン、4‐アミノブチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリメトキシシラン、N‐(2‐アミノエチル‐3‐アミノプロピル)トリス(2‐エチルヘキソキシ)シラン、6‐(アミノヘキシルアミノプロピル)トリメトキシシラン、アミノフェニルトリメトキシシラン、3‐(1‐アミノプロポキシ)‐3,3‐ジメチル‐1‐プロペニルトリメトキシシラン、3‐アミノプロピルトリス(メトキシエトキシエトキシ)シラン、3‐アミノプロピルトリエトキシシラン、3‐アミノプロピルトリメトキシシラン、ω‐アミノウンデシルトリメトキシシラン、3‐(2‐N‐ベンジルアミノエチルアミノプロピル)トリメトキシシラン、ビス(2‐ヒドロキシエチル)‐3‐アミノプロピルトリエトキシシラン、(N,N‐ジエチル‐3‐アミノプロピル)トリメトキシシラン、(N,N‐ジメチル‐3‐アミノプロピル)トリメトキシシラン、N‐メチルアミノプロピルトリメトキシシラン、N‐フェニルアミノプロピルトリメトキシシラン、3‐(N‐スチリルメチル‐2‐アミノエチルアミノ)プロピルトリメトキシシラン、γ‐アミノプロピルトリエトキシシラン、N‐β(アミノエチル)γ‐アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシランからなる群から選択されるものであってもよい。 The amino silane coupling agent referred to here is N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, 3- Aminopropyltriethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, aminopropyltrimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, N- (3 -Acryloxy-2-hydroxypropyl) -3-aminopropyltriethoxysilane, 4-aminobutyltriethoxysilane, (aminoethylaminomethyl) phenethyltrimethoxysilane, N- (2-aminoethyl-3-aminopropyl) Trimethoxysilane, -(2-aminoethyl-3-aminopropyl) tris (2-ethylhexoxy) silane, 6- (aminohexylaminopropyl) trimethoxysilane, aminophenyltrimethoxysilane, 3- (1-aminopropoxy) -3,3 -Dimethyl-1-propenyltrimethoxysilane, 3-aminopropyltris (methoxyethoxyethoxy) silane, 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, ω-aminoundecyltrimethoxysilane, 3- ( 2-N-benzylaminoethylaminopropyl) trimethoxysilane, bis (2-hydroxyethyl) -3-aminopropyltriethoxysilane, (N, N-diethyl-3-aminopropyl) trimethoxysilane, (N, N -Dimethyl-3-aminopropyl) Trimethoxysilane, N-methylaminopropyltrimethoxysilane, N-phenylaminopropyltrimethoxysilane, 3- (N-styrylmethyl-2-aminoethylamino) propyltrimethoxysilane, γ-aminopropyltriethoxysilane, N -Β (aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane may be selected from the group consisting of Good.
 シランカップリング処理層は、ケイ素原子換算で、0.05mg/m2~200mg/m2、好ましくは0.15mg/m2~20mg/m2、好ましくは0.3mg/m2~2.0mg/m2の範囲で設けられていることが望ましい。前述の範囲の場合、基材樹脂と表面処理銅箔との密着性をより向上させることができる。 The silane coupling treatment layer is 0.05 mg / m 2 to 200 mg / m 2 , preferably 0.15 mg / m 2 to 20 mg / m 2 , preferably 0.3 mg / m 2 to 2.0 mg in terms of silicon atoms. / M 2 is desirable. In the case of the above-mentioned range, the adhesiveness between the base resin and the surface-treated copper foil can be further improved.
 通常、銅箔表面に粗化処理が施される場合には硫酸銅水溶液におけるやけめっきが従来技術であるが、めっき浴中に銅以外の金属を含んだ銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっきなどの合金めっきにより、当該銅箔を前記一方の表面側から、銅箔に張り合わせ前のΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となる表面処理を行うことができる。 Usually, when roughening treatment is applied to the surface of copper foil, burnt plating in an aqueous copper sulfate solution is a conventional technique. However, copper-cobalt-nickel alloy plating or copper-containing a metal other than copper in the plating bath. A copper clad laminate in which the copper foil is laminated with a polyimide having a ΔB (PI) of 50 or more and 65 or less before being bonded to the copper foil from one surface side by alloy plating such as nickel-phosphorus alloy plating The surface treatment through which the color difference ΔE * ab based on JIS Z8730 on the surface over polyimide can be 50 or more can be performed.
 〔表面色差ΔE*ab〕
 本発明の表面処理銅箔は、一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上に制御されている。このような構成により、背面とのコントラストが鮮明となり、当該銅箔をポリイミド基板越しに観察した際の視認性が高くなる。この結果、当該銅箔を回路形成に使用した場合等において、当該ポリイミド基板を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等が容易となる。当該色差ΔE*abが50未満であると、背面とのコントラストが不鮮明になる可能性が生じる。当該色差ΔE*abは、より好ましくは53以上、55以上、より好ましくは60以上である。色差ΔE*abの上限は特に限定する必要はないが、例えば90以下、88以下、あるいは87以下、あるいは85以下、あるいは75以下、あるいは70以下である。
 ここで、色差ΔE*abは、色差計で測定され、黒/白/赤/緑/黄/青を加味し、JIS Z8730に基づくL*a*b表色系を用いて示される総合指標であり、ΔL:白黒、Δa:赤緑、Δb:黄青として、下記式で表される;
Figure JPOXMLDOC01-appb-M000002
[Surface color difference ΔE * ab]
The surface-treated copper foil of the present invention is a copper clad laminate in which the following ΔB (PI) before being laminated to the copper foil is laminated with a polyimide having a thickness of 50 or more and 65 or less, over the polyimide. The color difference ΔE * ab based on JIS Z8730 on the surface is controlled to 50 or more. With such a configuration, the contrast with the back surface becomes clear and the visibility when the copper foil is observed through the polyimide substrate is enhanced. As a result, when the copper foil is used for circuit formation, alignment or the like when mounting an IC chip through a positioning pattern that is visible through the polyimide substrate is facilitated. If the color difference ΔE * ab is less than 50, the contrast with the back surface may become unclear. The color difference ΔE * ab is more preferably 53 or more, 55 or more, and more preferably 60 or more. The upper limit of the color difference ΔE * ab is not particularly limited, but is, for example, 90 or less, 88 or less, or 87 or less, or 85 or less, or 75 or less, or 70 or less.
Here, the color difference ΔE * ab is measured by a color difference meter, and is a comprehensive index shown using the L * a * b color system based on JIS Z8730, taking into account black / white / red / green / yellow / blue. Yes, ΔL: black and white, Δa: red-green, Δb: yellow-blue, represented by the following formula;
Figure JPOXMLDOC01-appb-M000002
 〔銅箔表面の十点平均粗さRz〕
 本発明の表面処理銅箔は、銅箔の一方の表面において、無粗化処理銅箔でも、粗化粒子が形成された粗化処理銅箔でもよく、粗化処理表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.20~0.64μmであるのが好ましい。このような構成により、ピール強度が高くなって樹脂と良好に接着し、且つ、銅箔をエッチングで除去した後の樹脂の透明性が高くなる。この結果、当該樹脂を透過して視認される位置決めパターンを介して行うICチップ搭載時の位置合わせ等が容易となる。銅箔の一方の表面において、接触式粗さ計で測定したTDの十点平均粗さRzが0.20μm未満であると、銅箔表面の粗化処理が不十分であるおそれがあり、樹脂と十分に接着できないという問題が生じるおそれがある。一方、銅箔の一方の表面において、接触式粗さ計で測定したTDの十点平均粗さRzが0.64μm超であると、銅箔をエッチングで除去した後の樹脂表面の凹凸が大きくなるおそれがあり、その結果樹脂の透明性が不良となる問題が生じるおそれがある。銅箔の一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzは、0.26~0.62μmがより好ましく、0.40~0.55μmが更により好ましい。
[10-point average roughness Rz of copper foil surface]
The surface-treated copper foil of the present invention may be a non-roughened copper foil or a roughened copper foil in which roughened particles are formed on one surface of the copper foil. The TD ten-point average roughness Rz measured in (1) is preferably 0.20 to 0.64 μm. With such a configuration, the peel strength is increased and the resin is satisfactorily bonded to the resin, and the transparency of the resin after the copper foil is removed by etching is increased. As a result, alignment and the like when mounting an IC chip through a positioning pattern that is visible through the resin are facilitated. If the ten-point average roughness Rz of TD measured with a contact-type roughness meter is less than 0.20 μm on one surface of the copper foil, the copper foil surface may be insufficiently roughened, and the resin There is a possibility that a problem of insufficient adhesion may occur. On the other hand, if the ten-point average roughness Rz of TD measured with a contact roughness meter is greater than 0.64 μm on one surface of the copper foil, the unevenness of the resin surface after removing the copper foil by etching is large. As a result, there may be a problem that the transparency of the resin becomes poor. The ten-point average roughness Rz of TD measured with a contact-type roughness meter on one surface of the copper foil is more preferably 0.26 to 0.62 μm, still more preferably 0.40 to 0.55 μm.
 視認性の効果を達成するために、表面処理前の銅箔の一方の表面における接触式粗さ計で測定したTDの粗さ(Rz)及び光沢度を制御する。具体的には、表面処理前の銅箔の一方の表面における接触式粗さ計で測定したTDの表面粗さ(Rz)を0.20~0.55μmとし、好ましくは0.20~0.42μmとする。このような銅箔としては、圧延油の油膜当量を調整して圧延を行う(高光沢圧延)、或いは、ケミカルエッチングのような化学研磨やリン酸溶液中の電解研磨により作製する。このように、処理前の銅箔の一方の表面におけるTDの表面粗さ(Rz)と光沢度とを上記範囲にすることで、処理後の銅箔の一方の表面における表面粗さ(Rz)及び表面積を制御しやすくすることができる。 In order to achieve the effect of visibility, the roughness (Rz) and glossiness of TD measured with a contact-type roughness meter on one surface of the copper foil before the surface treatment are controlled. Specifically, the surface roughness (Rz) of TD measured with a contact-type roughness meter on one surface of the copper foil before the surface treatment is 0.20 to 0.55 μm, preferably 0.20 to 0.00. 42 μm. Such a copper foil is produced by adjusting the oil film equivalent of the rolling oil (high gloss rolling), or by chemical polishing such as chemical etching or electrolytic polishing in a phosphoric acid solution. Thus, the surface roughness (Rz) on the one surface of the copper foil after a process is carried out by making the surface roughness (Rz) and glossiness of TD in the one surface of the copper foil before a process into the said range. In addition, the surface area can be easily controlled.
 また、表面処理前の銅箔は、一方の表面におけるTDの60度光沢度が300~910%とし、500~810%であるのがより好ましく、500~710%であることがより好ましい。表面処理前の銅箔の一方の表面におけるMDの60度光沢度が300%未満であると300%以上の場合よりも上述の樹脂の透明性が不良となるおそれがあり、910%を超えると、製造することが難しくなるという問題が生じるおそれがある。
 なお、高光沢圧延は以下の式で規定される油膜当量を13000~24000以下とすることで行うことが出来る。
 油膜当量={(圧延油粘度[cSt])×(通板速度[mpm]+ロール周速度[mpm])}/{(ロールの噛み込み角[rad])×(材料の降伏応力[kg/mm2])}
 圧延油粘度[cSt]は40℃での動粘度である。
 油膜当量を13000~24000とするためには、低粘度の圧延油を用いたり、通板速度を遅くしたりする等、公知の方法を用いればよい。
 化学研磨は硫酸-過酸化水素-水系またはアンモニア-過酸化水素-水系等のエッチング液で、通常よりも濃度を低くして、長時間かけて行う。
The copper foil before the surface treatment has a TD 60-degree glossiness of 300 to 910% on one surface, more preferably 500 to 810%, and more preferably 500 to 710%. If the 60 degree glossiness of MD on one surface of the copper foil before the surface treatment is less than 300%, the transparency of the resin may be poorer than the case of 300% or more, and if it exceeds 910% This may cause a problem that it is difficult to manufacture.
The high gloss rolling can be performed by setting the oil film equivalent defined by the following formula to 13000 to 24000 or less.
Oil film equivalent = {(rolling oil viscosity [cSt]) × (sheet feeding speed [mpm] + roll peripheral speed [mpm])} / {(roll biting angle [rad]) × (yield stress of material [kg / mm 2 ])}
The rolling oil viscosity [cSt] is a kinematic viscosity at 40 ° C.
In order to set the oil film equivalent to 13000 to 24000, a known method such as using a low-viscosity rolling oil or slowing the sheet passing speed may be used.
Chemical polishing is performed with an etching solution such as sulfuric acid-hydrogen peroxide-water system or ammonia-hydrogen peroxide-water system at a lower concentration than usual and for a long time.
 〔明度曲線〕
 本発明の表面処理銅箔は、一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドを積層させた後、銅箔をポリイミド越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、銅箔の端部から銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となる。
 また、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となるのが好ましい。
  Sv=(ΔB×0.1)/(t1-t2)   (1)
[Brightness curve]
The surface-treated copper foil of the present invention is obtained by laminating a polyimide having the following ΔB (PI) of 50 or more and 65 or less before being laminated to the copper foil from one surface side, and then photographing the copper foil with a CCD camera through the polyimide In the observation point-brightness graph, the edge of the copper foil was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil stretched. The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the portion where no copper foil is present is 40 or more.
In the observation point-lightness graph, a value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is defined as t1, and 0.1 ΔB based on Bt from the intersection of the lightness curve and Bt. Sv defined by the following equation (1) is 3 when the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and 0.1 ΔB in the depth range up to 0.0 or more is preferable.
Sv = (ΔB × 0.1) / (t1-t2) (1)
 ここで、「明度曲線のトップ平均値Bt」、「明度曲線のボトム平均値Bb」、及び、後述の「t1」、「t2」、「Sv」について、図を用いて説明する。
 図1(a)及び図1(b)に、銅箔の幅を約0.3mmとした場合のBt及びBbを定義する模式図を示す。銅箔の幅を約0.3mmとした場合、図1(a)に示すようにV型の明度曲線となる場合と、図1(b)に示すように底部を有する明度曲線となる場合がある。いずれの場合も「明度曲線のトップ平均値Bt」は、銅箔の両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を示す。一方、「明度曲線のボトム平均値Bb」は、明度曲線が図1(a)に示すようにV型となる場合は、このV字の谷の先端部における明度の最低値を示し、図1(b)の底部を有する場合は、約0.3mmの中心部の値を示す。なお、マークの幅は、0.2mm、0.16mm、0.1mm程度としてもよい。さらに、「明度曲線のトップ平均値Bt」は、マークの両側の端部位置から100μm離れた位置、300μm離れた位置、或いは、500μm離れた位置から、それぞれ30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値としてもよい。
Here, “top average value Bt of the lightness curve”, “bottom average value Bb of the lightness curve”, and “t1”, “t2”, and “Sv” described later will be described with reference to the drawings.
FIG. 1A and FIG. 1B are schematic views that define Bt and Bb when the width of the copper foil is about 0.3 mm. When the width of the copper foil is about 0.3 mm, a V-shaped brightness curve as shown in FIG. 1A and a brightness curve having a bottom as shown in FIG. 1B are obtained. is there. In any case, the “top average value Bt of the lightness curve” is the average value of lightness when measured at 5 locations (total 10 locations on both sides) at 30 μm intervals from the positions 50 μm away from the end positions on both sides of the copper foil. Show. On the other hand, the “bottom average value Bb of the lightness curve” indicates the minimum value of lightness at the tip of the V-shaped valley when the lightness curve is V-shaped as shown in FIG. When it has the bottom of (b), the value of the center part of about 0.3 mm is shown. The mark width may be about 0.2 mm, 0.16 mm, or 0.1 mm. Furthermore, the “top average value Bt of the lightness curve” is 5 points at 30 μm intervals from a position 100 μm apart, a position 300 μm apart, or a position 500 μm apart from the end positions on both sides of the mark (total 10 on both sides). Location) It may be the average value of brightness when measured.
 図2に、t1及びt2及びSvを定義する模式図を示す。「t1(ピクセル×0.1)」は、明度曲線とBtとの交点の内、前記銅箔に最も近い交点を示す。「t2(ピクセル×0.1)」は、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点を示す。このとき、t1およびt2を結ぶ線で示される明度曲線の傾きについては、y軸方向に0.1ΔB、x軸方向に(t1-t2)で計算されるSv(階調/ピクセル×0.1)で定義される。なお、横軸の1ピクセルは10μm長さに相当する。また、Svは、銅箔の両側を測定し、小さい値を採用する。さらに、明度曲線の形状が不安定で上記「明度曲線とBtとの交点」が複数存在する場合は、最も銅箔に近い交点を採用する。 FIG. 2 shows a schematic diagram defining t1, t2, and Sv. “T1 (pixel × 0.1)” indicates an intersection closest to the copper foil among the intersections of the lightness curve and Bt. “T2 (pixel × 0.1)” is a distance between the intersection of the lightness curve and Bt and the depth of 0.1ΔB from the intersection of Bt to 0.1ΔB. Indicates the closest intersection. At this time, regarding the slope of the brightness curve indicated by the line connecting t1 and t2, Sv (gradation / pixel × 0.1) calculated by 0.1ΔB in the y-axis direction and (t1−t2) in the x-axis direction. ). One pixel on the horizontal axis corresponds to a length of 10 μm. Moreover, Sv measures the both sides of copper foil, and employ | adopts a small value. Further, when the shape of the lightness curve is unstable and there are a plurality of the “intersections between the lightness curve and Bt”, the intersection closest to the copper foil is adopted.
 CCDカメラで撮影した上記画像において、銅箔がない部分では高い明度となるが、銅箔端部に到達したとたんに明度が低下する。ポリイミド基板越しに見たときの視認性が良好であれば、このような明度の低下状態が明確に観察される。一方、ポリイミド基板越しに見たときの視認性が不良であれば、明度が銅箔端部付近で一気に「高」から「低」へ急に下がるのではなく、低下の状態が緩やかとなり、明度の低下状態が不明確となってしまう。 In the above image taken with a CCD camera, the brightness is high where there is no copper foil, but the brightness decreases as soon as the end of the copper foil is reached. If the visibility when viewed through the polyimide substrate is good, such a lowered state of brightness is clearly observed. On the other hand, if the visibility when viewed through the polyimide substrate is poor, the brightness does not suddenly drop from “high” to “low” at the end of the copper foil, but the state of decline is moderate and the brightness is low. The state of decline becomes unclear.
 本発明はこのような知見に基づき、本発明の表面処理銅箔は、表面処理が行われている表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドを積層させた後、銅箔をポリイミド越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、銅箔の端部から銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上に制御されている。または、本発明の表面処理銅箔は、上記Sv値が3.0以上に制御されている。 The present invention is based on such knowledge, and the surface-treated copper foil of the present invention is a polyimide having a ΔB (PI) of 50 or more and 65 or less before being bonded to the copper foil from the surface side where the surface treatment is performed. After laminating, when the copper foil was photographed with a CCD camera over polyimide, the brightness of each observation point was measured along the direction perpendicular to the direction in which the observed copper foil stretched for the image obtained by photographing. In the observed observation point-brightness graph, the difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the lightness curve generated from the end of the copper foil to the portion without the copper foil is 40 or more. It is controlled. Alternatively, in the surface-treated copper foil of the present invention, the Sv value is controlled to 3.0 or more.
 このような構成によれば、基板樹脂の種類や厚みの影響を受けずに、CCDカメラによるポリイミド越しの銅箔の識別力が向上する。このため、ポリイミド基板越しから観察する際の良好な視認性が得られ、電子基板製造工程等でポリイミド基板に所定の処理を行う場合の銅箔によるマーキング等の位置決め精度が向上し、これによって歩留まりが向上する等の効果が得られる。 According to such a configuration, the discriminating power of the copper foil through the polyimide by the CCD camera is improved without being affected by the type and thickness of the substrate resin. For this reason, good visibility when observing from a polyimide substrate is obtained, and positioning accuracy such as marking with a copper foil is improved when a predetermined treatment is performed on a polyimide substrate in an electronic substrate manufacturing process, thereby yield. The effect of improving is obtained.
 本発明において、Svは好ましくは3.5以上、より好ましくは3.9以上、より好ましくは4.5以上、より好ましくは5.0以上、より好ましくは5.5以上である。Svの上限は特に限定する必要はないが、例えば15以下、10以下である。このような構成によれば、銅箔と銅箔で無い部分との境界がより明確になり、位置決め精度が向上して、銅箔画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。
 なお、表面処理銅箔をポリイミドの両表面に積層させた後、両表面の銅箔をエッチングで除去して一方の表面の銅箔のみ回路状に成形し、当該回路状の銅箔をポリイミド越しに観察して得られる視認性が良好であれば、そのような表面処理銅箔は、ポリイミドに積層させた後、ポイリミド越しに観察して得られる視認性が良好となる。
In the present invention, Sv is preferably 3.5 or more, more preferably 3.9 or more, more preferably 4.5 or more, more preferably 5.0 or more, and more preferably 5.5 or more. The upper limit of Sv is not particularly limited, but is, for example, 15 or less and 10 or less. According to such a configuration, the boundary between the copper foil and the non-copper foil becomes clearer, the positioning accuracy is improved, the error due to the copper foil image recognition is reduced, and the alignment can be performed more accurately. become.
In addition, after laminating the surface-treated copper foil on both surfaces of the polyimide, the copper foil on both surfaces is removed by etching, and only the copper foil on one surface is formed into a circuit shape. If the visibility obtained by observation is good, such a surface-treated copper foil has good visibility obtained by laminating it on polyimide and then observing through polyimide.
 〔表面積比〕
 銅箔の一方の表面の三次元表面積Aと二次元表面積Bとの比A/Bは、上述の樹脂の透明性に大いに影響を及ぼす。すなわち、表面粗さRzが同じであれば、比A/Bが小さい銅箔ほど、上述の樹脂の透明性が良好となる。このため、本発明の表面処理銅箔は、当該比A/Bが1.0~1.7であるのが好ましく、1.0~1.6であるのがより好ましい。ここで、表面処理側の表面の粗化粒子の三次元表面積Aと二次元表面積Bとの比A/Bは、例えば当該表面が粗化処理されている場合、粗化粒子の表面積Aと、銅箔を銅箔表面側から平面視したときに得られる面積Bとの比A/Bとも云うことができる。
[Surface area ratio]
The ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B on one surface of the copper foil greatly affects the transparency of the resin. That is, if the surface roughness Rz is the same, the smaller the ratio A / B, the better the transparency of the resin. For this reason, in the surface-treated copper foil of the present invention, the ratio A / B is preferably 1.0 to 1.7, and more preferably 1.0 to 1.6. Here, the ratio A / B between the three-dimensional surface area A and the two-dimensional surface area B of the roughened particles on the surface treated surface is, for example, when the surface is roughened, and the surface area A of the roughened particles, It can also be referred to as the ratio A / B with the area B obtained when the copper foil is viewed in plan from the copper foil surface side.
 粒子形成時などの表面処理時の電流密度とメッキ時間とを制御することで、粒子の形態や形成密度、表面の凹凸状態などの表面状態が決まり、上記表面粗さRz、光沢度及び銅箔表面の表面積比A/Bを制御することができる。 By controlling the current density and plating time during surface treatment such as particle formation, the surface state such as particle morphology, formation density, and surface roughness is determined, and the surface roughness Rz, glossiness and copper foil are determined. The surface area ratio A / B of the surface can be controlled.
 本発明の表面処理銅箔は、銅箔の、樹脂基板と接着する面の反対側の表面(本発明では、当該面を「他方の表面」とも呼ぶ)にも表面処理が行われている。表面処理銅箔を一方の表面側から樹脂基板に貼り合わせる際、一般に、樹脂基板/表面処理銅箔/保護フィルムをこの順で積層し、当該保護フィルム側からラミネートロールにより熱と圧力をかけながら貼り合わせる。このとき、表面処理銅箔の樹脂基板側とは反対側の表面(他方の表面)に保護フィルムが貼り付いてしまう(表面処理銅箔と保護フィルムとの間で滑らなくなる)という問題が生じることがある。このような問題が生じると、銅箔の他方の表面にシワやスジが発生してしまう。これに対し、本発明の表面処理銅箔は他方の表面が表面処理されており、銅箔と保護フィルムとの間の接触面積を増やすことで、樹脂基板との積層工程の際の銅箔に保護フィルムが貼り付いてしまうという問題を良好に抑制することができる。 The surface-treated copper foil of the present invention is also subjected to a surface treatment on the surface of the copper foil opposite to the surface to be bonded to the resin substrate (in the present invention, this surface is also referred to as “the other surface”). When the surface-treated copper foil is bonded to the resin substrate from one surface side, generally, the resin substrate / surface-treated copper foil / protective film is laminated in this order, and heat and pressure are applied from the protective film side by a laminating roll. to paste together. At this time, there arises a problem that the protective film adheres to the surface (the other surface) opposite to the resin substrate side of the surface-treated copper foil (it does not slip between the surface-treated copper foil and the protective film). There is. When such a problem occurs, wrinkles and streaks occur on the other surface of the copper foil. On the other hand, the other surface of the surface-treated copper foil of the present invention is surface-treated, and by increasing the contact area between the copper foil and the protective film, the copper foil during the lamination process with the resin substrate is used. The problem that a protective film sticks can be suppressed favorably.
 本発明の表面処理銅箔は、一側面において、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である。このような構成により、銅箔と保護フィルムとの間の接触面積をより増やすことで、樹脂基板との積層工程の際の銅箔に保護フィルムが貼り付いてしまうという問題をより良好に抑制することができる。本発明の表面処理銅箔は、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.40μm以上であるのがより好ましく、0.50μm以上であるのが更により好ましく、0.60μm以上であるのが更により好ましく、0.8μm以上であるのが更により好ましく、典型的には0.40~4.0μmであり、より典型的には0.50~3.0μmである。なお、本発明の表面処理銅箔の、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzの上限は特に限定する必要は無いが、典型的には4.0μm以下であり、より典型的には3.0μm以下であり、より典型的には2.5μm以下であり、より典型的には2.0μm以下である。 The surface-treated copper foil of the present invention has, on one side, a TD ten-point average roughness Rz measured by a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface of 0.35 μm. That's it. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to. The surface-treated copper foil of the present invention has a TD ten-point average roughness Rz of 0.40 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment. Is more preferably 0.50 μm or more, still more preferably 0.60 μm or more, still more preferably 0.8 μm or more, typically 0.40 to 4. 0 μm, more typically 0.50 to 3.0 μm. The upper limit of the TD ten-point average roughness Rz of the surface-treated copper foil of the present invention measured with a laser microscope having a laser beam wavelength of 405 nm on the other surface-treated copper foil surface must be specifically limited. Is typically 4.0 μm or less, more typically 3.0 μm or less, more typically 2.5 μm or less, and more typically 2.0 μm or less. .
 本発明の表面処理銅箔は、別の側面において、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である。このような構成により、銅箔と保護フィルムとの間の接触面積をより増やすことで、樹脂基板との積層工程の際の銅箔に保護フィルムが貼り付いてしまうという問題をより良好に抑制することができる。本発明の表面処理銅箔は、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.08μm以上であるのがより好ましく、0.10μm以上であるのが更により好ましく、0.20μm以上であるのが更により好ましく、0.30μm以上であるのが更により好ましい。なお、本発明の表面処理銅箔の、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaの上限は特に限定する必要は無いが、典型的には0.80μm以下であり、より典型的0.65μm以下であり、より典型的には0.50μm以下であり、より典型的には0.40μm以下である。 In another aspect of the surface-treated copper foil of the present invention, the arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.05 μm. That's it. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to. In the surface-treated copper foil of the present invention, the arithmetic average roughness Ra of TD measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 μm or more. More preferably, it is still more preferably 0.10 μm or more, still more preferably 0.20 μm or more, and still more preferably 0.30 μm or more. In addition, the upper limit of the arithmetic average roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the surface-treated copper foil of the present invention on the other surface-treated copper foil is 405 nm needs to be specifically limited. None, but typically 0.80 μm or less, more typically 0.65 μm or less, more typically 0.50 μm or less, and more typically 0.40 μm or less.
 本発明の表面処理銅箔は、別の側面において、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である。このような構成により、銅箔と保護フィルムとの間の接触面積をより増やすことで、樹脂基板との積層工程の際の銅箔に保護フィルムが貼り付いてしまうという問題をより良好に抑制することができる。本発明の表面処理銅箔は、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.10μm以上であるのがより好ましく、0.15μm以上であるのが更により好ましく、0.20μm以上であるのが更により好ましく、0.30μm以上であるのが更により好ましく、典型的には0.08~0.60μmであり、より典型的には0.10~0.50μmである。なお、本発明の表面処理銅箔の、他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqの上限は特に限定をする必要は無いが、典型的には0.80μm以下であり、より典型的には0.60μm以下であり、より典型的には0.50μm以下であり、より典型的には0.40μm以下である。 In another aspect of the surface-treated copper foil of the present invention, the root mean square height Rq of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the other surface-treated copper foil is 0.00. It is 08 μm or more. With such a configuration, by further increasing the contact area between the copper foil and the protective film, the problem of the protective film sticking to the copper foil during the lamination process with the resin substrate is better suppressed. be able to. In the surface-treated copper foil of the present invention, the root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the other copper foil is 0.10 μm or more. Is more preferably 0.15 μm or more, still more preferably 0.20 μm or more, still more preferably 0.30 μm or more, and typically 0.08 to 0.003. 60 μm, more typically 0.10 to 0.50 μm. In addition, the upper limit of the root mean square height Rq of TD measured with the laser microscope whose wavelength of the laser beam of the surface treated copper foil of the present invention is 405 nm is particularly limited. Although not required, it is typically 0.80 μm or less, more typically 0.60 μm or less, more typically 0.50 μm or less, and more typically 0.40 μm or less. is there.
 本発明の表面処理銅箔における他方の表面処理としては、特に限定されず、粗化処理であってもよく、粗化処理を省略して、めっき(正常めっき、粗化めっきでないめっき)により耐熱層または防錆層を設ける処理であってもよい。
 例えば、硫酸銅と硫酸水溶液を含むめっき液を用いて粗化処理を行ってもよく、また硫酸銅と硫酸水溶液から成るめっき液を用いて粗化処理を行ってもよい。銅-コバルト-ニッケル合金めっきや銅-ニッケル-りん合金めっき、ニッケル-亜鉛合金めっき等の合金めっきでもよい。また、好ましくは銅合金めっきにより行うことができる。銅合金めっき浴としては例えば銅と銅以外の元素を一種以上含むめっき浴、より好ましくは銅とコバルト、ニッケル、砒素、タングステン、クロム、亜鉛、リン、マンガンおよびモリブデンからなる群から選択されたいずれか1種以上とを含むめっき浴を用いることが好ましい。
The other surface treatment in the surface-treated copper foil of the present invention is not particularly limited and may be a roughening treatment, omitting the roughening treatment, and heat resistant by plating (plating that is not normal plating or roughening plating). The process which provides a layer or a rust prevention layer may be sufficient.
For example, the roughening treatment may be performed using a plating solution containing copper sulfate and an aqueous sulfuric acid solution, or the roughening treatment may be performed using a plating solution comprising copper sulfate and an aqueous sulfuric acid solution. Alloy plating such as copper-cobalt-nickel alloy plating, copper-nickel-phosphorus alloy plating, nickel-zinc alloy plating may be used. Moreover, Preferably it can carry out by copper alloy plating. As the copper alloy plating bath, for example, a plating bath containing one or more elements other than copper and copper, more preferably any selected from the group consisting of copper and cobalt, nickel, arsenic, tungsten, chromium, zinc, phosphorus, manganese and molybdenum It is preferable to use a plating bath containing at least one kind.
 また本発明の表面処理銅箔における他方の表面処理としては、上記の粗化処理やめっき処理以外の表面処理であってもよい。
 他方の表面に凹凸を形成するための表面処理としては、電解研磨による表面処理を行ってもよい。例えば、硫酸銅と硫酸水溶液から成る溶液中で、銅箔の他方の表面を電解研磨することにより、銅箔の他方の表面に凹凸を形成させることができる。一般に電解研磨は平滑化を目的とするが、本発明の他方の表面処理では電解研磨により凹凸を形成するので、通常とは逆の考え方である。電解研磨により凹凸を形成する方法は公知の技術で行っても良い。前記凹凸を形成するための電解研磨の公知の技術の例としては特開2005-240132、特開2010-059547、特開2010-047842に記載の方法が挙げられる。電解研磨で凹凸を形成させる処理の具体的な条件としては、例えば、
  ・処理溶液:Cu:20g/L、H2SO4:100g/L、温度:50℃
  ・電解研磨電流:15A/dm2
  ・電解研磨時間:15秒
などが挙げられる。
In addition, the other surface treatment in the surface-treated copper foil of the present invention may be a surface treatment other than the above roughening treatment and plating treatment.
As a surface treatment for forming irregularities on the other surface, a surface treatment by electropolishing may be performed. For example, unevenness can be formed on the other surface of the copper foil by electropolishing the other surface of the copper foil in a solution composed of copper sulfate and an aqueous sulfuric acid solution. In general, electropolishing aims at smoothing, but the other surface treatment of the present invention forms concavities and convexities by electropolishing. The method for forming the irregularities by electrolytic polishing may be performed by a known technique. Examples of known techniques of electropolishing for forming the unevenness include the methods described in JP-A-2005-240132, JP-A-2010-059547, and JP-A-2010-047842. As specific conditions for the treatment for forming irregularities by electrolytic polishing, for example,
Treatment solution: Cu: 20 g / L, H 2 SO 4 : 100 g / L, temperature: 50 ° C.
-Electropolishing current: 15 A / dm 2
-Electropolishing time: 15 seconds etc. are mentioned.
 他方の表面に凹凸を形成するための表面処理としては、例えば、他方の表面を機械研磨することで凹凸を形成しても良い。機械研磨は公知の技術で行ってもよい。
 なお、本発明の表面処理銅箔における他方の表面処理後に、耐熱層や防錆層や耐候性層を設けても良い。耐熱層や防錆層および耐候性層は、上記記載や実験例記載の方法でもよいし、公知の技術の方法でもよい。
As the surface treatment for forming the unevenness on the other surface, for example, the unevenness may be formed by mechanically polishing the other surface. Mechanical polishing may be performed by a known technique.
In addition, you may provide a heat-resistant layer, a rust prevention layer, and a weather resistant layer after the other surface treatment in the surface-treated copper foil of this invention. The heat-resistant layer, the rust-proof layer, and the weather-resistant layer may be the method described in the above description or experimental example, or may be a known technique.
 本発明の表面処理銅箔を、一方の表面側から絶縁樹脂基板に貼り合わせて積層体を製造することができる。絶縁樹脂基板はプリント配線板等に適用可能な特性を有するものであれば特に制限を受けないが、例えば、リジッドPWB用に紙基材フェノール樹脂、紙基材エポキシ樹脂、合成繊維布基材エポキシ樹脂、ガラス布・紙複合基材エポキシ樹脂、ガラス布・ガラス不織布複合基材エポキシ樹脂及びガラス布基材エポキシ樹脂等を使用し、FPC用にポリエステルフィルムやポリイミドフィルム、液晶ポリマー(LCP)フィルム、テフロン(登録商標)フィルム等を使用する事ができる。 The laminate can be produced by bonding the surface-treated copper foil of the present invention to an insulating resin substrate from one surface side. The insulating resin substrate is not particularly limited as long as it has characteristics applicable to a printed wiring board or the like. For example, for a rigid PWB, a paper base phenol resin, a paper base epoxy resin, a synthetic fiber cloth base epoxy Resin, glass cloth / paper composite base material epoxy resin, glass cloth / glass nonwoven fabric composite base material epoxy resin and glass cloth base material epoxy resin, etc., polyester film, polyimide film, liquid crystal polymer (LCP) film for FPC, Teflon (registered trademark) film or the like can be used.
 貼り合わせの方法は、リジッドPWB用の場合、ガラス布などの基材に樹脂を含浸させ、樹脂を半硬化状態まで硬化させたプリプレグを用意する。銅箔を被覆層の反対側の面からプリプレグに重ねて加熱加圧させることにより行うことができる。FPCの場合、ポリイミドフィルム等の基材に接着剤を介して、又は、接着剤を使用せずに高温高圧下で銅箔に積層接着して、又は、ポリイミド前駆体を塗布・乾燥・硬化等を行うことで積層板を製造することができる。
 ポリイミド基材樹脂の厚みは特に制限を受けるものではないが、一般的に25μmや50μmが挙げられる。
In the case of the rigid PWB, a prepreg is prepared by impregnating a base material such as a glass cloth with a resin and curing the resin to a semi-cured state. It can be carried out by superposing a copper foil on the prepreg from the opposite surface of the coating layer and heating and pressing. In the case of FPC, it is laminated on a copper foil under high temperature and high pressure without using an adhesive on a substrate such as a polyimide film, or a polyimide precursor is applied, dried, cured, etc. A laminated board can be manufactured by performing.
The thickness of the polyimide base resin is not particularly limited, but generally 25 μm or 50 μm can be mentioned.
 本発明の積層体は各種のプリント配線板(PWB)に使用可能であり、特に制限されるものではないが、例えば、導体パターンの層数の観点からは片面PWB、両面PWB、多層PWB(3層以上)に適用可能であり、絶縁基板材料の種類の観点からはリジッドPWB、フレキシブルPWB(FPC)、リジッド・フレックスPWBに適用可能である。本発明の電子機器は、このようなプリント配線板を用いて作製することができる。 The laminate of the present invention can be used for various printed wiring boards (PWB) and is not particularly limited. For example, from the viewpoint of the number of layers of the conductor pattern, the single-sided PWB, the double-sided PWB, and the multilayer PWB (3 It is applicable to rigid PWB, flexible PWB (FPC), and rigid flex PWB from the viewpoint of the type of insulating substrate material. The electronic device of the present invention can be manufactured using such a printed wiring board.
 また、本発明のプリント配線板は、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、絶縁樹脂基板越しの銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、銅回路を、絶縁樹脂基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、銅回路の端部から銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となる。このようなプリント配線板を用いると、プリント配線板の位置決めをより正確に行うことが出来る。 Moreover, the printed wiring board of the present invention is a printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit is connected to one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate with a CCD camera. In the observation point-lightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by shooting, The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the portion to the portion where there is no copper circuit is 40 or more. When such a printed wiring board is used, the printed wiring board can be positioned more accurately.
 また、本発明のプリント配線板は、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となる。このようなプリント配線板を用いると、プリント配線板の位置決めをより正確に行うことが出来る。
  Sv=(ΔB×0.1)/(t1-t2)   (1)
Moreover, the printed wiring board of the present invention is a printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate, and the copper circuit is connected to one surface on the insulating resin substrate side. The color difference ΔE * ab based on JIS Z8730 of the surface of the copper circuit over the insulating resin substrate is 50 or more, and the copper circuit is passed through the insulating resin substrate. An observation point-brightness graph produced by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends for the image obtained by the CCD camera. , The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb), and the observation point−light In the degree graph, the value indicating the position of the intersection closest to the copper circuit among the intersections of the lightness curve and Bt is t1, and the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt , When the value indicating the position of the intersection closest to the copper circuit is t2 among the intersections of the lightness curve and 0.1 ΔB, Sv defined by the following equation (1) is 3.0 or more . When such a printed wiring board is used, the printed wiring board can be positioned more accurately.
Sv = (ΔB × 0.1) / (t1-t2) (1)
 また、本発明の銅張積層板は、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、絶縁樹脂基板越しの銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、絶縁樹脂基板越しにCCDカメラで撮影したとき、撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、ライン状の銅箔の端部からライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となる。
 上記本発明の銅張積層板の銅箔は、本発明の表面処理銅箔を用いることができる。
 このような銅張積層板を用いてプリント配線板を製造すると、プリント配線板の位置決めをより正確に行うことが出来る。
Moreover, the copper clad laminate of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil being one of the insulating resin substrates. The surface of the copper foil over the insulating resin substrate, the color difference ΔE * ab based on JIS Z8730 is 50 or more, and the copper foil of the copper-clad laminate is Then, after forming a line-shaped copper foil by etching and taking a picture with a CCD camera through an insulating resin substrate, the image obtained by the shooting is along a direction perpendicular to the direction in which the observed line-shaped copper foil extends. In the observation point-lightness graph prepared by measuring the lightness at each observation point, the top average value Bt and the bottom average value of the lightness curve that occurs from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Difference from Bb ΔB (Δ B = Bt−Bb) is 40 or more.
The surface-treated copper foil of the present invention can be used for the copper foil of the copper clad laminate of the present invention.
When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately.
 また、本発明の銅張積層板は、絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となる。
 上記本発明の銅張積層板の銅箔は、本発明の表面処理銅箔を用いることができる。
 このような銅張積層板を用いてプリント配線板を製造すると、プリント配線板の位置決めをより正確に行うことが出来る。
  Sv=(ΔB×0.1)/(t1-t2)   (1)
Moreover, the copper clad laminate of the present invention is a copper clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate, the copper foil being one of the insulating resin substrates. A color difference ΔE * ab based on JIS Z8730 of the surface of the copper foil over the insulating resin substrate is 50 or more, and the surface of the copper-clad laminate has the surface and the other surface subjected to surface treatment. After the copper foil is formed into a line-shaped copper foil by etching and then photographed with a CCD camera through the insulating resin substrate, the observed direction of the line-shaped copper foil extends for the image obtained by the photographing. In the observation point-lightness graph prepared by measuring the lightness at each observation point along the vertical direction, the top of the lightness curve generated from the end of the line-shaped copper foil to the portion without the line-shaped copper foil Average value Bt The difference ΔB (ΔB = Bt−Bb) from the Tom average value Bb is a value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the brightness curve and Bt in the observation point-lightness graph. Is the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ΔB in the depth range from the intersection of the lightness curve and Bt to 0.1 ΔB with reference to Bt Sv defined by the following formula (1) is 3.0 or more when a value indicating the value is t2.
The surface-treated copper foil of the present invention can be used for the copper foil of the copper clad laminate of the present invention.
When a printed wiring board is manufactured using such a copper-clad laminate, the printed wiring board can be positioned more accurately.
Sv = (ΔB × 0.1) / (t1-t2) (1)
 また、上述の本発明のプリント配線板又は銅張積層板は、銅回路又は銅箔の、樹脂基板と接着する面の反対側の表面(他方の表面)にも表面処理が行われている。プリント配線板又は銅張積層板をロールtoロールの製造ラインに通過させるときに、製造ライン中の搬送ロールと、プリント配線板又は銅張積層板の樹脂基板側とは反対側の表面との間で貼りついてしまう(滑らなくなる)という問題が生じることがある。このような問題が生じると、銅回路又は銅箔の他方の表面にシワやスジが発生してしまう。これに対し、本発明のプリント配線板又は銅張積層板は他方の表面が表面処理されており、銅回路又は銅箔と保護フィルムとの間の接触面積を増やすことで、製造ライン中の搬送ロールに貼りついて(滑らなくなって)しまうという問題を良好に抑制することができる。さらに、他方の表面と、ドライフィルム、カバーレイとの密着性が良好となるため、プリント配線板又は銅張積層板の耐候性が向上する。 In the above-described printed wiring board or copper clad laminate of the present invention, the surface of the copper circuit or copper foil opposite to the surface to be bonded to the resin substrate (the other surface) is also subjected to surface treatment. When passing a printed wiring board or copper-clad laminate through a roll-to-roll production line, between the transport roll in the production line and the surface opposite to the resin substrate side of the printed wiring board or copper-clad laminate The problem of sticking (cannot slip) may occur. When such a problem arises, wrinkles and streaks occur on the other surface of the copper circuit or copper foil. On the other hand, the other surface of the printed wiring board or the copper clad laminate of the present invention is surface-treated, and by increasing the contact area between the copper circuit or the copper foil and the protective film, it is conveyed in the production line. The problem of sticking to the roll (no longer slipping) can be satisfactorily suppressed. Furthermore, since the adhesion between the other surface, the dry film, and the coverlay is improved, the weather resistance of the printed wiring board or the copper clad laminate is improved.
 (積層体及びそれを用いたプリント配線板の位置決め方法)
 本発明の金属と樹脂との積層体の位置決めをする方法について説明する。まず、金属と樹脂との積層体を準備する。金属と樹脂との積層体としては、樹脂に金属を貼り合わせて構成されているものであれば、特に形態は限定されない。本発明の金属と樹脂との積層体の具体例としては、本体基板と付属の回路基板と、それらを電気的に接続するために用いられる、ポリイミド等の樹脂の少なくとも一方の表面に銅等の金属配線が形成されたフレキシブルプリント基板とで構成される電子機器において、フレキシブルプリント基板を正確に位置決めして当該本体基板及び付属の回路基板の配線端部に圧着させて作製される積層体が挙げられる。すなわち、この場合であれば、積層体は、フレキシブルプリント基板及び本体基板の配線端部が圧着により貼り合わせられた積層体、或いは、フレキシブルプリント基板及び回路基板の配線端部が圧着により貼り合わせられた積層体となる。積層体は、当該金属配線の一部や別途材料で形成したマークを有している。マークの位置については、当該積層体を構成する樹脂越しにCCDカメラ等の撮影手段で撮影可能な位置であれば特に限定されない。
(Laminated body and printed wiring board positioning method using the same)
A method for positioning the laminate of the metal and resin of the present invention will be described. First, a laminate of metal and resin is prepared. The form of the laminate of the metal and the resin is not particularly limited as long as it is configured by bonding the metal to the resin. As a specific example of the laminate of the metal and resin of the present invention, copper or the like is used on at least one surface of a resin such as polyimide, which is used to electrically connect the main body substrate and the attached circuit board, and the circuit board. In an electronic device composed of a flexible printed circuit board on which metal wiring is formed, there is a laminate produced by accurately positioning the flexible printed circuit board and crimping it to the wiring ends of the main circuit board and the attached circuit board. It is done. That is, in this case, the laminate is a laminate in which the wiring end portions of the flexible printed circuit board and the main body substrate are bonded together by pressure bonding, or the wiring edge portions of the flexible printed circuit board and the circuit board are bonded together by pressure bonding. It becomes a laminated body. The laminate has a mark formed of a part of the metal wiring and a separate material. The position of the mark is not particularly limited as long as it can be photographed by photographing means such as a CCD camera through the resin constituting the laminate.
 このように準備された積層体において、上述のマークを樹脂越しに撮影手段で撮影し、前記撮影によって得られた画像について、観察された前記マークが伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して観察地点-明度グラフを作製し、前記マークの端部から前記マークがない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めをする。 In the laminated body thus prepared, the above-mentioned mark is photographed by the photographing means through the resin, and the image obtained by the photographing is observed for each observation point along the direction perpendicular to the direction in which the observed mark extends. Is measured to produce an observation point-lightness graph, and a difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a lightness curve generated from an end portion of the mark to a portion without the mark. ) Is used to detect the position of the mark, and the laminate of the metal and the resin is positioned based on the detected position of the mark.
 また、このとき、上記Sv値のみを用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めを行ってもよく、上記ΔB値とSv値との両方を用いて前記マークの位置を検出して、前記検出されたマークの位置に基づき金属と樹脂との積層体の位置決めをしてもよい。 At this time, the position of the mark may be detected using only the Sv value, and the laminate of the metal and the resin may be positioned based on the detected position of the mark. The position of the mark may be detected using both the value and the laminate of the metal and the resin may be positioned based on the detected position of the mark.
 このような位置決め方法によれば、マークとマークでない部分との境界がより明確になり、位置決め精度が向上して、マーク画像認識による誤差が少なくなり、より正確に位置合わせができるようになる。例えば、ΔB値、Sv値、或いは、ΔB値及びSv値の値が所定の値以上の場合は、マークが当該位置に存在するという判定を、位置を検出する装置が行うことが出来る。具体的には、例えば、ΔB値のみで判定を行う場合はΔBが40以上のとき、Sv値のみで判定を行う場合はSvが3.0以上のとき、或いは、ΔB値とSv値とで判定を行う場合はΔBが40以上且つSvが3.0以上のときにマークが当該位置に存在するという判定を、位置を検出する装置が行うことが出来る。このような位置決め方法を用いると、プリント配線板の位置決めをより正確に行うことが出来る。 According to such a positioning method, the boundary between the mark and the non-mark portion becomes clearer, the positioning accuracy is improved, the error due to the mark image recognition is reduced, and the alignment can be performed more accurately. For example, when the ΔB value, the Sv value, or the ΔB value and the Sv value are equal to or greater than a predetermined value, the apparatus for detecting the position can determine that the mark is present at the position. Specifically, for example, when the determination is made only with the ΔB value, when ΔB is 40 or more, when the determination is made with only the Sv value, when the Sv is 3.0 or more, or with the ΔB value and the Sv value, When the determination is performed, the device for detecting the position can determine that the mark is present at the position when ΔB is 40 or more and Sv is 3.0 or more. When such a positioning method is used, the printed wiring board can be positioned more accurately.
 そのため、一つのプリント配線板ともう一つのプリント配線板を接続する際に、接続不良が低減し、歩留まりが向上すると考えられる。このとき、銅箔は、表面処理を行ったものであってもよい。なお、一つのプリント配線板ともう一つのプリント配線板を接続する方法としては半田付けや異方性導電フィルム(Anisotropic Conductive Film、ACF)を介した接続、異方性導電ペースト(Anisotropic Conductive Paste、ACP)を介した接続または導電性を有する接着剤を介しての接続など公知の接続方法を用いることができる。なお、本発明において、「プリント配線板」には部品が装着されたプリント配線板およびプリント回路板およびプリント基板も含まれることとする。また、本発明のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造することができ、また、本発明のプリント配線板を少なくとも1つと、もう一つの本発明のプリント配線板又は本発明のプリント配線板に該当しないプリント配線板とを接続することができ、このようなプリント配線板を用いて電子機器を製造することもできる。なお、本発明において、「銅回路」には銅配線も含まれることとする。 Therefore, it is considered that when one printed wiring board and another printed wiring board are connected, the connection failure is reduced and the yield is improved. At this time, the copper foil may have been subjected to a surface treatment. In addition, as a method for connecting one printed wiring board and another printed wiring board, soldering, connection through an anisotropic conductive film (Anisotropic Conductive Film, ACF), anisotropic conductive paste (Anisotropic Conductive Paste, A known connection method such as connection via ACP) or connection via a conductive adhesive can be used. In the present invention, the “printed wiring board” includes a printed wiring board, a printed circuit board, and a printed board on which components are mounted. Also, it is possible to manufacture a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to the present invention, and at least one printed wiring board according to the present invention. One printed wiring board of the present invention or a printed wiring board not corresponding to the printed wiring board of the present invention can be connected, and an electronic apparatus can be manufactured using such a printed wiring board. In the present invention, “copper circuit” includes copper wiring.
 なお、本発明の実施の形態に係る位置決め方法は積層体(銅と樹脂の積層体やプリント配線板を含む)を移動させる工程を含んでいてもよい。移動工程においては例えばベルトコンベヤーやチェーンコンベヤーなどのコンベヤーにより移動させてもよく、アーム機構を備えた移動装置により移動させてもよく、気体を用いて積層体を浮遊させることで移動させる移動装置や移動手段により移動させてもよく、略円筒形などの物を回転させて積層体を移動させる移動装置や移動手段(コロやベアリングなどを含む)、油圧を動力源とした移動装置や移動手段、空気圧を動力源とした移動装置や移動手段、モーターを動力源とした移動装置や移動手段、ガントリ移動型リニアガイドステージ、ガントリ移動型エアガイドステージ、スタック型リニアガイドステージ、リニアモーター駆動ステージなどのステージを有する移動装置や移動手段などにより移動させてもよい。また、公知の移動手段による移動工程を行ってもよい。
 なお、本発明の実施の形態に係る位置決め方法は表面実装機やチップマウンターに用いてもよい。
 また、本発明において位置決めされる前記金属と樹脂との積層体が、樹脂板及び前記樹脂板の上に設けられた回路を有するプリント配線板であってもよい。また、その場合、前記マークが前記回路であってもよい。
The positioning method according to the embodiment of the present invention may include a step of moving a laminated body (including a laminated body of copper and resin and a printed wiring board). In the moving process, for example, it may be moved by a conveyor such as a belt conveyor or a chain conveyor, may be moved by a moving device equipped with an arm mechanism, or may be moved by floating a laminate using gas. The moving device may be moved by a moving means, such as a moving device or moving means (including a roller or a bearing) that moves a laminated body by rotating an object such as a substantially cylindrical shape, a moving device or moving means that uses hydraulic pressure as a power source, Moving devices and moving means powered by air pressure, moving devices and moving means powered by motors, gantry moving linear guide stages, gantry moving air guide stages, stacked linear guide stages, linear motor drive stages, etc. It may be moved by a moving device or moving means having a stage. Moreover, you may perform the movement process by a well-known moving means.
The positioning method according to the embodiment of the present invention may be used for a surface mounter or a chip mounter.
Moreover, the printed wiring board which has the circuit provided on the resin board and the said resin board may be sufficient as the laminated body of the said metal and resin positioned in this invention. In that case, the mark may be the circuit.
 本発明において「位置決め」とは「マークや物の位置を検出すること」を含む。また、本発明において、「位置合わせ」とは、「マークや物の位置を検出した後に、前記検出した位置に基づいて、当該マークや物を所定の位置に移動すること」を含む。 In the present invention, “positioning” includes “detecting the position of a mark or an object”. In the present invention, “alignment” includes “after detecting the position of a mark or object, moving the mark or object to a predetermined position based on the detected position”.
 実施例1~9及び比較例1~6として、各銅箔を準備し、一方の表面に、粗化処理として表2及び表3に記載の条件にてめっき処理を行った。 As Examples 1 to 9 and Comparative Examples 1 to 6, each copper foil was prepared, and one surface was plated under the conditions described in Tables 2 and 3 as a roughening treatment.
 圧延銅箔は以下のように製造した。所定の銅インゴットを製造し、熱間圧延を行った後、300~800℃の連続焼鈍ラインの焼鈍と冷間圧延を繰り返して1~2mm厚の圧延板を得た。この圧延板を300~800℃の連続焼鈍ラインで焼鈍して再結晶させ、表1の厚みまで最終冷間圧延し、銅箔を得た。表1の「タフピッチ銅」はJIS H3100 C1100に規格されているタフピッチ銅を示す。表1の「無酸素銅」はJIS H3100 C1020に規格されている無酸素銅を示す。表1に記載の添加元素の「ppm」は、質量ppmを示す。また、例えば表1の金属箔(表面処理前)の種類欄の「タフピッチ銅+Ag180ppm」はタフピッチ銅にAgを180質量ppmを添加したことを意味する。 Rolled copper foil was manufactured as follows. A predetermined copper ingot was manufactured and hot-rolled, and then annealing and cold rolling of a continuous annealing line at 300 to 800 ° C. were repeated to obtain a rolled sheet having a thickness of 1 to 2 mm. This rolled sheet was annealed in a continuous annealing line at 300 to 800 ° C. and recrystallized, and finally cold-rolled to the thickness shown in Table 1 to obtain a copper foil. “Tough pitch copper” in Table 1 indicates tough pitch copper standardized in JIS H3100 C1100. “Oxygen-free copper” in Table 1 represents oxygen-free copper standardized in JIS H3100 C1020. “Ppm” of the additive element described in Table 1 indicates mass ppm. For example, “Tough pitch copper + Ag 180 ppm” in the type column of the metal foil (before surface treatment) in Table 1 means that 180 mass ppm of Ag is added to the tough pitch copper.
 電解銅箔は、以下の条件にて作製した。
 ・電解液組成(銅:100g/L、硫酸:100g/L、塩素:50ppm、レベリング剤1(ビス(3スルホプロピル)ジスルフィド):10~30ppm、レベリング剤2(アミン化合物):10~30ppm)
 ・電解液温度:50~60℃
 ・電流密度:70~100A/dm2
 ・電解時間:1分
 ・電解液線速:4m/秒
 なお、アミン化合物には以下のアミン化合物を用いた。
Figure JPOXMLDOC01-appb-C000003

(上記化学式中、R1及びR2はヒドロキシアルキル基、エーテル基、アリール基、芳香族置換アルキル基、不飽和炭化水素基、アルキル基からなる一群から選ばれるものである。)
The electrolytic copper foil was produced under the following conditions.
Electrolyte composition (copper: 100 g / L, sulfuric acid: 100 g / L, chlorine: 50 ppm, leveling agent 1 (bis (3sulfopropyl) disulfide): 10-30 ppm, leveling agent 2 (amine compound): 10-30 ppm)
・ Electrolyte temperature: 50-60 ℃
・ Current density: 70 to 100 A / dm 2
Electrolysis time: 1 minute Electrolytic solution linear velocity: 4 m / sec The following amine compounds were used as amine compounds.
Figure JPOXMLDOC01-appb-C000003

(In the above chemical formula, R 1 and R 2 are selected from the group consisting of a hydroxyalkyl group, an ether group, an aryl group, an aromatic substituted alkyl group, an unsaturated hydrocarbon group, and an alkyl group.)
 表1に、一方の表面における、表面処理前の銅箔作製工程のポイントを記載した。「高光沢圧延」は、最終の冷間圧延(最終の再結晶焼鈍後の冷間圧延)を記載の油膜当量の値で行ったことを意味する。
 また、比較例5については上記実施例2と同様の表面処理を行い、比較例6については上記実施例6と同様の表面処理を行った。
In Table 1, the point of the copper foil preparation process before surface treatment in one surface was described. “High gloss rolling” means that the final cold rolling (cold rolling after the final recrystallization annealing) was performed at the value of the oil film equivalent.
Further, for Comparative Example 5, the same surface treatment as in Example 2 was performed, and for Comparative Example 6, the same surface treatment as in Example 6 was performed.
 また、実施例については、銅箔の他方の表面に、以下の表面処理を行った。
 ・表面処理条件
  めっき液浴例
  Cu:15g/L、Co:9g/L、Ni:9g/L
  pH:3
  温度:38℃
  電流密度:25A/dm2
  めっき時間:1秒
Moreover, about the Example, the following surface treatment was performed to the other surface of copper foil.
-Surface treatment conditions Example of plating bath Cu: 15 g / L, Co: 9 g / L, Ni: 9 g / L
pH: 3
Temperature: 38 ° C
Current density: 25 A / dm 2
Plating time: 1 second
 上述のようにして作製した実施例及び比較例の各サンプルについて、各種評価を下記の通り行った。
・表面粗さ(Rz)の測定;
 各実施例、比較例の表面処理後の銅箔について、株式会社小阪研究所製接触式粗さ計Surfcorder SE-3Cを使用してJIS B0601-1994に準拠して十点平均粗さを一方の表面について測定した。測定基準長さ0.8mm、評価長さ4mm、カットオフ値0.25mm、送り速さ0.1mm/秒の条件で、圧延銅箔については圧延方向と垂直な方向(TD)に測定位置を変えて、または、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)に測定位置を変えて、それぞれ10回行い、10回の測定での値を求めた。
 なお、表面処理前の銅箔についても、同様にして表面粗さ(Rz)を求めておいた。
Various evaluation was performed as follows about each sample of the Example and comparative example which were produced as mentioned above.
-Measurement of surface roughness (Rz);
For the copper foils after the surface treatment of each example and comparative example, one-point average roughness was measured according to JIS B0601-1994 using a contact type roughness meter Surfcoder SE-3C manufactured by Kosaka Laboratory Ltd. The surface was measured. On the condition of measurement standard length 0.8mm, evaluation length 4mm, cut-off value 0.25mm, feed rate 0.1mm / sec, the measurement position is in the direction perpendicular to the rolling direction (TD) for rolled copper foil. For the electrolytic copper foil, change the measurement position in the direction (TD) perpendicular to the traveling direction of the electrolytic copper foil in the electrolytic copper foil manufacturing apparatus, and perform the measurement 10 times for each value. Asked.
In addition, the surface roughness (Rz) was calculated | required similarly about the copper foil before surface treatment.
 また、各実施例、比較例の表面処理後の他方の表面については非接触式の方法を用いて表面の粗さを測定することが好ましい。具体的にはレーザー顕微鏡で測定した粗さの値で各実施例、比較例の表面処理後の他方の表面の状態を評価する。表面の状態をより詳細に評価することができるからである。
 表面処理銅箔の他方の表面について、オリンパス社製レーザー顕微鏡OLS4000にて、表面粗さ(十点平均粗さ)RzをJIS B0601 1994に準拠して測定した。対物レンズ50倍を使用して、銅箔表面の観察において評価長さ258μm、カットオフ値ゼロの条件で、圧延銅箔については圧延方向と垂直な方向(TD)の測定で、または、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。なお、レーザー顕微鏡による表面粗さRzの測定環境温度は23~25℃とした。Rzを任意に10箇所測定し、そのRzの10箇所の平均値を表面粗さ(十点平均粗さ)Rzの値とした。また、測定に用いたレーザー顕微鏡のレーザー光の波長は405nmとした。
Moreover, about the other surface after the surface treatment of each Example and a comparative example, it is preferable to measure the surface roughness using a non-contact type method. Specifically, the state of the other surface after the surface treatment of each example and comparative example is evaluated by the roughness value measured with a laser microscope. This is because the state of the surface can be evaluated in more detail.
About the other surface of the surface-treated copper foil, surface roughness (ten-point average roughness) Rz was measured based on JIS B0601 1994 with an Olympus laser microscope OLS4000. Using an objective lens 50 times, in the observation of the copper foil surface, the evaluation length is 258 μm, the cut-off value is zero, and the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction or electrolytic copper About foil, the value was calculated | required by the measurement of the direction (TD) perpendicular | vertical to the advancing direction of the electrolytic copper foil in the manufacturing apparatus of electrolytic copper foil, respectively. The measurement environment temperature of the surface roughness Rz with a laser microscope was 23 to 25 ° C. Rz was arbitrarily measured at 10 locations, and the average value at 10 locations of Rz was defined as the value of surface roughness (10-point average roughness) Rz. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
・表面の二乗平均平方根高さRqの測定;
 各実施例、比較例の銅箔の他方の表面について、オリンパス社製レーザー顕微鏡OLS4000にて、銅箔表面の二乗平均平方根高さRqをJIS B0601 2001に準拠して測定した。対物レンズ50倍を使用して、銅箔表面の観察において評価長さ258μm、カットオフ値ゼロの条件で、圧延銅箔については圧延方向と垂直な方向(TD)の測定で、または、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。なお、レーザー顕微鏡による表面の二乗平均平方根高さRqの測定環境温度は23~25℃とした。Rqを任意に10箇所測定し、そのRqの10箇所の平均値を二乗平均平方根高さRqの値とした。また、測定に用いたレーザー顕微鏡のレーザー光の波長は405nmとした。
Measurement of the root mean square height Rq of the surface;
About the other surface of the copper foil of each Example and a comparative example, the root mean square height Rq of the copper foil surface was measured based on JIS B0601 2001 with the Olympus laser microscope OLS4000. Using an objective lens 50 times, in the observation of the copper foil surface, the evaluation length is 258 μm, the cut-off value is zero, and the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction or electrolytic copper About foil, the value was calculated | required by the measurement of the direction (TD) perpendicular | vertical to the advancing direction of the electrolytic copper foil in the manufacturing apparatus of electrolytic copper foil, respectively. The measurement environment temperature of the root mean square height Rq of the surface with a laser microscope was 23 to 25 ° C. Rq was measured arbitrarily at 10 locations, and the average value at 10 locations of the Rq was taken as the value of the root mean square height Rq. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
・表面の算術平均粗さRaの測定;
 各実施例、比較例の表面処理後の銅箔の他方の表面について、表面粗さRaを、JIS B0601-1994に準拠して、オリンパス社製レーザー顕微鏡OLS4000にて測定した。対物レンズ50倍を使用して、銅箔表面の観察において評価長さ258μm、カットオフ値ゼロの条件で、圧延銅箔については圧延方向と垂直な方向(TD)の測定で、また、電解銅箔については電解銅箔の製造装置における電解銅箔の進行方向と垂直な方向(TD)の測定で、それぞれ値を求めた。なお、レーザー顕微鏡による表面の算術平均粗さRaの測定環境温度は23~25℃とした。Raを任意に10箇所測定し、そのRaの10箇所の平均値を算術平均粗さRaの値とした。また、測定に用いたレーザー顕微鏡のレーザー光の波長は405nmとした。
-Measurement of arithmetic mean roughness Ra of the surface;
The surface roughness Ra of the other surface of the copper foil after the surface treatment of each example and comparative example was measured with an Olympus laser microscope OLS4000 in accordance with JIS B0601-1994. Using an objective lens 50 times, in the observation of the copper foil surface, the evaluation length is 258 μm, the cut-off value is zero, and the rolled copper foil is measured in the direction (TD) perpendicular to the rolling direction. About foil, the value was calculated | required by the measurement of the direction (TD) perpendicular | vertical to the advancing direction of the electrolytic copper foil in the manufacturing apparatus of electrolytic copper foil, respectively. Note that the measurement environment temperature of the arithmetic average roughness Ra of the surface with a laser microscope was set to 23 to 25 ° C. Ra was measured arbitrarily at 10 locations, and the average value of 10 locations of Ra was used as the value of arithmetic average roughness Ra. Further, the wavelength of the laser beam of the laser microscope used for the measurement was 405 nm.
・ポリイミド越しの色差ΔE*abの測定;
 表面処理銅箔と、銅箔に張り合わせ前のΔB(PI)が50以上65以下であるポリイミドフィルム(カネカ製厚み25μmまたは50μm)とを積層して構成した銅張積層板における、ポリイミドフィルム越しの表面のJIS Z8730に基づく色差ΔE*abを測定した。色差ΔE*abの測定は、HunterLab社製色差計MiniScan XE Plusを使用して、JIS Z8730に準拠して行った。なお、前述の色差計では、白色板の測定値をΔE*ab=0、黒い袋で覆って暗闇で測定したときの測定値をΔE*ab=90として、色差を校正する。ΔE*abは、L*a*b表色系を用い、ΔL:白黒、Δa:赤緑、Δb:黄青として、下記式に基づいて測定した。ここで色差ΔE*abは白色をゼロ、黒色を90で定義される;
Figure JPOXMLDOC01-appb-M000004
 なお、銅回路表面のJIS Z8730に基づく色差ΔE*abは、例えば日本電色工業株式会社製の微小面分光色差計(型式:VSS400など)やスガ試験機株式会社製の微小面分光測色計(型式:SC-50μなど)など公知の測定装置を用いて測定をすることができる。
・ Measurement of color difference ΔE * ab over polyimide;
Over the polyimide film in the copper clad laminate formed by laminating the surface-treated copper foil and a polyimide film (Kaneka thickness 25 μm or 50 μm) having a ΔB (PI) of 50 to 65 before bonding to the copper foil The color difference ΔE * ab based on JIS Z8730 on the surface was measured. The color difference ΔE * ab was measured according to JIS Z8730 using a color difference meter MiniScan XE Plus manufactured by HunterLab. In the above color difference meter, the measured value of the white plate is ΔE * ab = 0, and the measured value when measured in the dark with a black bag covered is ΔE * ab = 90, and the color difference is calibrated. ΔE * ab was measured based on the following formula using the L * a * b color system, ΔL: black and white, Δa: reddish green, Δb: yellow blue. Where the color difference ΔE * ab is defined as zero for white and 90 for black;
Figure JPOXMLDOC01-appb-M000004
Note that the color difference ΔE * ab based on JIS Z8730 on the surface of a copper circuit is, for example, a small surface spectral colorimeter (model: VSS400, etc.) manufactured by Nippon Denshoku Industries Co., Ltd. or a small surface spectral colorimeter manufactured by Suga Test Instruments Co., Ltd. Measurement can be performed using a known measuring device such as (model: SC-50μ, etc.).
・銅箔表面の面積比(A/B);
 銅箔の一方の表面の表面積はレーザー顕微鏡による測定法を使用した。各実施例、比較例の表面処理後の銅箔の一方の表面について、オリンパス社製レーザー顕微鏡OLS4000を用いて処理表面の倍率20倍における647μm×646μm相当面積B(実データでは417,953μm2)における三次元表面積Aを測定して、三次元表面積A÷二次元表面積B=面積比(A/B)とする手法により設定を行った。なお、レーザー顕微鏡による三次元表面積Aの測定環境温度は23~25℃とした。
-Area ratio (A / B) of copper foil surface;
The surface area of one surface of the copper foil was measured by a laser microscope. About one surface of the copper foil after the surface treatment of each Example and Comparative Example, using an Olympus laser microscope OLS4000, an area B equivalent to 647 μm × 646 μm at a magnification of 20 times the treated surface (417,953 μm 2 in actual data) The three-dimensional surface area A was measured, and setting was performed by a method of three-dimensional surface area A ÷ two-dimensional surface area B = area ratio (A / B). The measurement environment temperature of the three-dimensional surface area A with a laser microscope was 23 to 25 ° C.
・光沢度;
 JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用し、圧延銅箔については、圧延方向(圧延時の銅箔の進行方向、すなわち幅方向)に直角な方向(TD)の入射角60度で表面処理前の一方の表面について測定した。また、電解銅箔については、電解処理時の銅箔運搬方向に直角な方向(すなわち幅方向)(TD)の入射角60度で表面処理前の表面(マット面)について測定した。
・ Glossiness;
A gloss meter PG-1 made by Nippon Denshoku Industries Co., Ltd. compliant with JIS Z8741 is used, and the rolled copper foil is perpendicular to the rolling direction (the traveling direction of the copper foil during rolling, ie, the width direction). Measurement was performed on one surface before surface treatment at an incident angle of 60 degrees in the direction (TD). Moreover, about the electrolytic copper foil, it measured about the surface (mat surface) before surface treatment by the incident angle of 60 degree | times of the direction (namely, width direction) (TD) orthogonal to the copper foil conveyance direction at the time of electrolytic treatment.
・明度曲線の傾き
 作製した銅箔を一方の表面側からポリイミドフィルムに向けてポリイミドフィルムの両面に積層した。
 ここで、上記ポリイミドフィルムについては、カネカ製厚み25μmまたは50μmのポリイミドフィルム〔PIXEO(ポリイミドタイプ:FRS)、銅張積層板用接着層付ポリイミドフィルム、PMDA(ピロメリット酸無水物)系のポリイミドフィルム(PMDA-ODA(4、4’-ジアミノジフェニルエーテル)系のポリイミドフィルム)〕を使用した。
 なお、後述の「視認性(樹脂透明性)」、「ピール強度(接着強度)」、及び、「歩留まり」の評価において、各試験例に関する表面処理銅箔の表面を貼り合わせるポリイミドフィルムは、当該「明度曲線の傾き」の評価において使用したポリイミドフィルムと同様のものである。
 そして、一方の面の銅箔を全てエッチングにより除去した。また、他方の面の銅箔をエッチングして幅0.3mmのライン状にした。その後、幅0.3mmのライン状にした銅箔の背面に白紙を敷き、当該ポリイミドフィルム越しにCCDカメラ(8192画素のラインCCDカメラ)で撮影し、撮影によって得られた画像について、観察された銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、マークの端部からマークがない部分にかけて生じる明度曲線からΔB及びt1、t2、Svを測定した。このとき用いた撮影装置の構成及び明度曲線の測定方法を表す模式図を図3に示す。なお、明度曲線の傾きの評価に用いた厚さ25μmまたは50μmのポリイミドは、銅箔に張り合わせ前のポリイミドについてのΔB(PI)が50以上65以下であるポリイミドを用いた。なお、当該銅箔に張り合わせ前のポリイミドについてのΔB(PI)の測定の際には幅0.3mmのライン状の銅箔の代わりに、幅0.3mmのライン状の黒色の印を白紙に印刷したもの(ライン状の黒色マークを印刷した印刷物)を用いて、ΔB(PI)の測定を行った。
-Inclination of brightness curve The produced copper foil was laminated | stacked on both surfaces of the polyimide film toward the polyimide film from the one surface side.
Here, about the said polyimide film, Kaneka-made polyimide film with a thickness of 25 μm or 50 μm [PIXEO (polyimide type: FRS), polyimide film with adhesive layer for copper-clad laminate, PMDA (pyromellitic anhydride) -based polyimide film (PMDA-ODA (4,4′-diaminodiphenyl ether) based polyimide film)] was used.
In addition, in the evaluation of “visibility (resin transparency)”, “peel strength (adhesion strength)”, and “yield” described later, the polyimide film that bonds the surface of the surface-treated copper foil for each test example is It is the same as the polyimide film used in the evaluation of “lightness curve inclination”.
And all the copper foil of one side was removed by the etching. Further, the copper foil on the other surface was etched to form a line having a width of 0.3 mm. Thereafter, a white paper was laid on the back of the 0.3 mm wide line-shaped copper foil, and was photographed with a CCD camera (line CCD camera of 8192 pixels) through the polyimide film, and an image obtained by photographing was observed. In an observation point-brightness graph produced by measuring the lightness at each observation point along the direction perpendicular to the direction in which the copper foil extends, ΔB and t1, t2 from the lightness curve generated from the end of the mark to the portion without the mark. , Sv was measured. FIG. 3 is a schematic diagram showing the configuration of the photographing apparatus used at this time and the measurement method of the brightness curve. The polyimide having a thickness of 25 μm or 50 μm used for the evaluation of the slope of the lightness curve was a polyimide having a ΔB (PI) of 50 or more and 65 or less with respect to the polyimide before being bonded to the copper foil. In addition, when measuring ΔB (PI) for the polyimide before being bonded to the copper foil, instead of a 0.3 mm wide line-shaped copper foil, a 0.3 mm wide line-shaped black mark is used on a blank sheet. ΔB (PI) was measured using the printed material (printed material printed with a line-shaped black mark).
 また、ΔB及びt1、t2、Svは、下記撮影装置で測定した。なお、横軸の1ピクセルは10μm長さに相当する。
 また、上記「幅0.3mmのライン状にした銅箔の背面」に敷いた「白紙」には光沢度43.0±2の白色の光沢紙を用いた。
 上記「ライン状の黒色マークを印刷した印刷物」は、光沢度43.0±2の白色の光沢紙上にJIS P8208(1998)(図1 きょう雑物計測図表のコピー)及びJIS P8145(2011)(附属書JA(規定)目視法異物比較チャート 図JA.1-目視法異物比較チャートのコピー)のいずれにも採用されている図6に示す透明フィルムに各種の線等が印刷されたきょう雑物(夾雑物)(株式会社朝陽会製 品名:「きょう雑物測定図表-フルサイズ判」 品番:JQA160-20151-1(独立行政法人国立印刷局で製造された))を載せたものを使用した。
 上記光沢紙の光沢度は、JIS Z8741に準拠した日本電色工業株式会社製光沢度計ハンディーグロスメーターPG-1を使用し、入射角60度で測定した。
Further, ΔB, t1, t2, and Sv were measured with the following photographing apparatus. One pixel on the horizontal axis corresponds to a length of 10 μm.
In addition, white glossy paper having a gloss level of 43.0 ± 2 was used for the “white paper” laid on the “back surface of a 0.3 mm wide lined copper foil”.
The above-mentioned “printed matter printed with a line-shaped black mark” is printed on white glossy paper having a glossiness of 43.0 ± 2 according to JIS P8208 (1998) (a copy of the dust measurement chart of FIG. 1) and JIS P8145 (2011) ( Annex JA (normative) Visual foreign matter comparison chart Figure JA.1-Copy of visual foreign matter comparison chart) Dirt with various lines printed on the transparent film shown in Fig. 6 (Contamination) (Product name: Choyokai Co., Ltd., product name: “Measurement chart of dust-full size”, product number: JQA160-20151-1 (manufactured by the National Printing Bureau)) was used. .
The glossiness of the glossy paper was measured at an incident angle of 60 degrees using a gloss meter PG-1 manufactured by Nippon Denshoku Industries Co., Ltd. in accordance with JIS Z8741.
 撮影装置は、CCDカメラ、サンプルの銅箔を積層したポリイミド基板を置く白紙(銅箔を積層したポリイミド基板はライン状の銅箔を有する面とは反対側の面をCCDカメラに向けて置かれる)、ポリイミド基板の撮影部に光を照射する照明用電源、撮影対象の銅箔及びポリイミド基板をステージ上に搬送する搬送機(不図示)を備えている。当該撮影装置の主な仕様を以下に示す:
・撮影装置:株式会社ニレコ製シート検査装置Mujiken
・ラインCCDカメラ:8192画素(160MHz)、1024階調ディジタル(10ビット)
・照明用電源:高周波点灯電源(電源ユニット×2)
・照明:蛍光灯(30W、形名:FPL27EX-D、ツイン蛍光灯)
The photographing device is a CCD camera, a white paper on which a polyimide substrate laminated with a sample copper foil is placed (the polyimide substrate laminated with a copper foil is placed with the surface opposite to the surface having a line-shaped copper foil facing the CCD camera. ), An illumination power source for irradiating light to the imaging part of the polyimide substrate, a copper foil to be imaged, and a transporter (not shown) for transporting the polyimide substrate onto the stage. The main specifications of the camera are as follows:
・ Photographing device: Sheet inspection device Mujken manufactured by Nireco Corporation
Line CCD camera: 8192 pixels (160 MHz), 1024 gradation digital (10 bits)
・ Power supply for lighting: High-frequency lighting power supply (power supply unit x 2)
・ Illumination: fluorescent lamp (30W, model name: FPL27EX-D, twin fluorescent lamp)
 ΔB(PI)測定用のラインは、0.7mm2の図5の夾雑物に描かれた矢印で示すラインを使用した。当該ラインの幅は0.3mmである。また、ラインCCDカメラ視野は図5の点線の配置とした。
 ラインCCDカメラによる撮影では、フルスケール256階調にて信号を確認し、測定対象のポリイミドフィルム(ポリイミド基板)を置かない状態で、印刷物の黒色マークが存在しない箇所(上記白色の光沢紙の上に上記透明フィルムを載せ、透明フィルム側から夾雑物に印刷されているマーク外の箇所をCCDカメラで測定した場合)のピーク階調信号が230±5に収まるようにレンズ絞りを調整した。カメラスキャンタイム(カメラのシャッターが開いている時間、光を取り込む時間)は250μ秒固定とし、上記階調以内に収まるようにレンズ絞りを調整した。
 なお、図3に示された明度について、0は「黒」を意味し、明度255は「白」を意味し、「黒」から「白」までの灰色の程度(白黒の濃淡、グレースケール)を256階調に分割して表示している。
As a line for ΔB (PI) measurement, a line indicated by an arrow drawn on the contaminant of FIG. 5 of 0.7 mm 2 was used. The width of the line is 0.3 mm. Further, the line CCD camera field of view is arranged in a dotted line in FIG.
When shooting with a line CCD camera, the signal is confirmed at 256 gradations on the full scale, and the place where the black mark of the printed matter does not exist (on the white glossy paper above) without placing the polyimide film (polyimide substrate) to be measured. The lens aperture was adjusted so that the peak gradation signal of 230 ± 5 falls within the range (when a portion outside the mark printed on the contaminants is measured with a CCD camera from the transparent film side). The camera scan time (the time when the camera shutter is open and the time when light is captured) is fixed at 250 μs, and the lens aperture is adjusted so that it falls within the above gradation.
For the lightness shown in FIG. 3, 0 means “black”, lightness 255 means “white”, and the gray level from “black” to “white” (black and white shading, gray scale) Is divided into 256 gradations for display.
・視認性(樹脂透明性);
 銅箔を一方の表面側からポリイミドフィルムの両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)で除去してサンプルフィルムを作成した。得られた樹脂層の一面に印刷物(直径6cmの黒色の円)を貼り付け、反対面から樹脂層越しに印刷物の視認性を判定した。印刷物の黒色の円の輪郭が円周の90%以上の長さにおいてはっきりしたものを「◎」、黒色の円の輪郭が円周の80%以上90%未満の長さにおいてはっきりしたものを「○」(以上合格)、黒色の円の輪郭が円周の0~80%未満の長さにおいてはっきりしたもの及び輪郭が崩れたものを「×」(不合格)と評価した。
・ Visibility (resin transparency);
The copper foil was bonded to both surfaces of the polyimide film from one surface side, and the copper foil was removed by etching (ferric chloride aqueous solution) to prepare a sample film. A printed material (black circle with a diameter of 6 cm) was attached to one surface of the obtained resin layer, and the visibility of the printed material was judged from the opposite surface through the resin layer. “◎” indicates that the outline of the black circle of the printed material is clear when the length is 90% or more of the circumference, and “Clear” indicates that the outline of the black circle is clear when the length is 80% or more and less than 90% of the circumference. “O” (passed above), a black circle with a clear outline of 0 to less than 80% of the circumference and a broken outline were evaluated as “x” (failed).
・ピール強度(接着強度);
 IPC-TM-650に準拠し、引張り試験機オートグラフ100で常態ピール強度を測定し、上記常態ピール強度が0.7N/mm以上を積層基板用途に使用できるものとした。なお、本ピール強度の測定にはポリイミドフィルムと本発明の実験例に係る表面処理銅箔の一方の表面である表面処理面とを貼り合わせたサンプルを用いた。なお、ピール強度の測定は銅箔厚みを18μmとして測定を行った。厚みが18μmに満たない銅箔については銅めっきを行って銅箔厚みを18μmとした。また、厚みが18μmよりも大きい場合にはエッチングを行って銅箔厚みを18μmとした。
・ Peel strength (adhesive strength);
In accordance with IPC-TM-650, the normal peel strength was measured with a tensile tester Autograph 100, and the normal peel strength of 0.7 N / mm or more could be used for laminated substrates. In addition, the sample which bonded together the polyimide film and the surface treatment surface which is one surface of the surface treatment copper foil which concerns on the experiment example of this invention was used for the measurement of this peel strength. The peel strength was measured with a copper foil thickness of 18 μm. About the copper foil whose thickness is less than 18 micrometers, copper plating was performed and copper foil thickness was 18 micrometers. Moreover, when thickness was larger than 18 micrometers, it etched and copper foil thickness was 18 micrometers.
・歩留まり;
 銅箔の一方の表面側からポリイミドフィルムの両面に貼り合わせ、銅箔をエッチング(塩化第二鉄水溶液)して、L/Sが30μm/30μmの回路幅のFPCを作成した。その後、20μm×20μm角のマークをポリイミド越しにCCDカメラで検出することを試みた。10回中9回以上検出できた場合には「◎」、7~8回検出できた場合には「○」、6回検出できた場合には「△」、5回以下検出できた場合には「×」とした。
 なお、プリント配線板または銅張積層板においては、樹脂を溶かして除去することで、銅回路または銅箔表面について、前述の(1)表面粗さ(Rz)、(3)銅箔表面の面積比(A/B)を測定することができる。
・ Yield;
The copper foil was bonded to both sides of the polyimide film from one surface side of the copper foil, and the copper foil was etched (ferric chloride aqueous solution) to prepare an FPC having a circuit width of L / S of 30 μm / 30 μm. After that, an attempt was made to detect a 20 μm × 20 μm square mark with a CCD camera through polyimide. “◎” if 9 or more out of 10 times can be detected, “○” if 7 to 8 times can be detected, “△” if 6 times can be detected, or if 5 times or less can be detected. Is “×”.
In the printed wiring board or the copper-clad laminate, the above-mentioned (1) surface roughness (Rz) and (3) the area of the copper foil surface can be obtained by dissolving and removing the resin. The ratio (A / B) can be measured.
・ラミネート加工による銅箔シワ等の評価;
 厚さ25μmのポリイミド樹脂の両表面に、それぞれ実施例、比較例の表面処理銅箔を、一方の表面側から積層し、さらに、各表面処理銅箔の他方の表面側へ厚さ125μmの保護フィルム(ポリイミド製)を積層させた状態、すなわち、保護フィルム/表面処理銅箔/ポリイミド樹脂/表面処理銅箔/保護フィルムの5層とした状態で、両方の保護フィルムの外側からラミネートロールを用いて熱と圧力をかけながら貼り合わせ加工(ラミネート加工)を行い、ポリイミド樹脂の両面に表面処理銅箔を貼り合わせた。続いて、両表面の保護フィルムを剥がした後、表面処理銅箔の他方の表面を目視観察し、シワ又はスジの有無を確認し、シワ又はスジが全く発生しないときを◎、銅箔長さ5mあたりにシワ又はスジが1箇所だけ観察されるときを○、銅箔5mあたりシワ又はスジが2箇所以上観察されるときを×と評価した。
 上記各試験の条件及び評価を表1~4に示す。
-Evaluation of copper foil wrinkles by laminating;
The surface-treated copper foils of Examples and Comparative Examples were laminated on both surfaces of a polyimide resin with a thickness of 25 μm from one surface side, respectively, and further the protection with a thickness of 125 μm was applied to the other surface side of each surface-treated copper foil. In a state where films (made of polyimide) are laminated, that is, in a state of five layers of protective film / surface-treated copper foil / polyimide resin / surface-treated copper foil / protective film, a laminate roll is used from the outside of both protective films. Bonding (laminating) was performed while applying heat and pressure, and surface-treated copper foil was bonded to both sides of the polyimide resin. Subsequently, after peeling off the protective films on both surfaces, visually observe the other surface of the surface-treated copper foil, confirm the presence or absence of wrinkles or lines, and when no wrinkles or lines occur at all, the length of the copper foil The case where only one wrinkle or streak was observed per 5 m was evaluated as “◯”, and the case where two or more wrinkles or streaks were observed per 5 m of the copper foil was evaluated as “x”.
Tables 1 to 4 show the conditions and evaluation of each test.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 (評価結果)
 実施例1~9は、いずれもポリイミド越しの色差ΔE*abが50以上であり、且つ、ΔBが40以上であり、視認性が良好であった。また、他方の表面に表面処理が形成されているため、両面ラミネート工法における銅箔の当該他方の表面にシワやスジの発生が良好に抑制されていた。
 比較例1~4は、ポリイミド越しの色差ΔE*abが50未満、または、ΔBが40未満であり、視認性が不良であった。
 また、比較例1~4及び比較例5及び6は、他方の表面に表面処理が形成されていないため、両面ラミネート工法における銅箔の当該他方の表面に生じるシワやスジの発生が抑制できなかった。
(Evaluation results)
In each of Examples 1 to 9, the color difference ΔE * ab over polyimide was 50 or more and ΔB was 40 or more, and the visibility was good. Moreover, since the surface treatment was formed in the other surface, generation | occurrence | production of a wrinkle and a stripe was suppressed favorably on the said other surface of the copper foil in the double-sided laminating method.
In Comparative Examples 1 to 4, the color difference ΔE * ab over polyimide was less than 50 or ΔB was less than 40, and the visibility was poor.
In Comparative Examples 1 to 4 and Comparative Examples 5 and 6, since the surface treatment is not formed on the other surface, the generation of wrinkles and lines on the other surface of the copper foil in the double-sided laminating method cannot be suppressed. It was.
 図4に、上記Rz評価の際の、(a)比較例1、(b)実施例1の銅箔表面のSEM観察写真をそれぞれ示す。
 また、上記実施例1~9において、幅0.3mmのライン状にした銅箔であるマーク並びに夾雑物のマークの幅を0.3mmから0.16mm(夾雑物のシートの面積0.5mm2の0.5の記載に近いほうから3番目のマーク(図6の矢印が指すマーク))に変更して同様のΔB(PI)、Sv値およびΔB値の測定を行ったが、いずれもΔB(PI)、Sv値およびΔB値はマークの幅を0.3mmとした場合と同じ値となった。
 さらに、上記実施例1~9において、「明度曲線のトップ平均値Bt」について、マークの両側の端部位置から50μm離れた位置を、100μm離れた位置、300μm離れた位置、500μm離れた位置として、当該位置から、それぞれ30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値に変更して同様のΔB(PI)、Sv値およびΔB値の測定を行ったが、いずれもΔB(PI)、Sv値およびΔB値は、マークの両側の端部位置から50μm離れた位置から30μm間隔で5箇所(両側で合計10箇所)測定したときの明度の平均値を「明度曲線のトップ平均値Bt」とした場合のΔB(PI)、Sv値およびΔB値と同じ値となった。
In FIG. 4, the SEM observation photograph on the copper foil surface of (a) Comparative example 1 and (b) Example 1 in the case of said Rz evaluation is shown, respectively.
Further, in Examples 1 to 9, the width of the mark made of a copper foil formed into a line having a width of 0.3 mm and the mark of the contaminants were changed from 0.3 mm to 0.16 mm (the area of the contaminant sheet was 0.5 mm 2). In the same manner, ΔB (PI), Sv value, and ΔB value were measured by changing to the third mark (mark indicated by the arrow in FIG. 6) from the side closest to the description of 0.5. The (PI), Sv value, and ΔB value were the same as when the mark width was 0.3 mm.
Further, in Examples 1 to 9, with respect to the “top average value Bt of the lightness curve”, a position 50 μm away from the end positions on both sides of the mark is defined as a position 100 μm apart, a position 300 μm apart, and a position 500 μm apart. From this position, the same ΔB (PI), Sv value and ΔB value were measured by changing to the average value of the brightness when measured at 5 locations (total 10 locations on both sides) at 30 μm intervals. ΔB (PI), Sv value, and ΔB value are average values of brightness when measured at 5 locations at a distance of 30 μm from a position 50 μm away from the end positions on both sides of the mark (total 10 locations on both sides). The value was the same as ΔB (PI), Sv value, and ΔB value in the case of “top average value Bt”.
 なお、前記各実施例と同じ銅箔を用いて一方の表面について表面処理を行ったのと同じ条件で銅箔の両面に、表面処理を行い、表面処理銅箔を製造して評価した結果、両面共に前記各実施例の一方の表面と同じ評価結果が得られた。なお、銅箔について電解研磨または化学研磨を行っている場合には、両面に電解研磨または化学研磨を行った後に表面処理を行った。また、実施例8については銅箔の光沢面(電解銅箔製造時にドラムと接触している側の面)について電解研磨および/または化学研磨を行うことにより、そのTDの粗さRzと光沢度を析出面と同じとした後に所定の表面処理または中間層等の形成を行った。
 銅箔の両面に粗化処理等の表面処理を行う場合、両面に同時に表面処理をしてもよく、一方の面と、他方の面とに、それぞれ別々に表面処理を行ってもよい。なお、両面に同時に表面処理を行う場合には、銅箔の両面側にアノードを設けた、表面処理装置(めっき装置)を用いて表面処理を行うと良い。なお、本実施例では、同時に両面に表面処理を行った。
In addition, as a result of performing the surface treatment on both surfaces of the copper foil under the same conditions as the surface treatment for one surface using the same copper foil as each of the above examples, and producing and evaluating the surface-treated copper foil, The same evaluation result as that of one surface of each example was obtained on both sides. When electrolytic polishing or chemical polishing was performed on the copper foil, surface treatment was performed after electrolytic polishing or chemical polishing was performed on both surfaces. In Example 8, the glossy surface of the copper foil (the surface on the side in contact with the drum during the production of the electrolytic copper foil) is subjected to electrolytic polishing and / or chemical polishing, whereby the TD roughness Rz and glossiness are obtained. After the same as the precipitation surface, a predetermined surface treatment or formation of an intermediate layer or the like was performed.
When surface treatment such as roughening treatment is performed on both surfaces of the copper foil, the surface treatment may be performed on both surfaces simultaneously, or the surface treatment may be separately performed on one surface and the other surface. In addition, when performing surface treatment on both surfaces simultaneously, it is good to perform surface treatment using the surface treatment apparatus (plating apparatus) which provided the anode on both surfaces side of copper foil. In this example, surface treatment was performed on both sides simultaneously.
 また、各実施例の粗化処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzは、いずれも0.35μm以上であった。また、各実施例の粗化処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaは、いずれも0.05μm以上であった。また、各実施例の粗化処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqは、いずれも0.08μm以上であった。 Further, the ten-point average roughness Rz of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the roughening treatment in each example was 0.35 μm or more. Moreover, arithmetic mean roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the roughened copper foil surface of each Example was 405 nm was all 0.05 micrometer or more. Moreover, the root mean square height Rq of TD measured with the laser microscope whose wavelength of the laser beam of the roughened copper foil surface of each Example was 405 nm was 0.08 micrometer or more in all.

Claims (45)

  1.  一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
     表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
     前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔。
    A surface-treated copper foil in which surface treatment is performed on one surface and the other surface,
    JIS of the surface over the said polyimide in the copper clad laminated board comprised by laminating | stacking the surface treatment copper foil from the said one surface side with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50-65. The color difference ΔE * ab based on Z8730 is 50 or more,
    When photographed with a CCD camera over the polyimide laminated the copper foil from one surface side,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends,
    The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper foil to the portion without the copper foil is 40 or more,
    The surface-treated copper foil whose 10-point average roughness Rz of TD measured with the laser microscope whose wavelength of the laser beam of the said other surface-treated copper foil surface is 405 nm is 0.35 micrometer or more.
  2.  一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
     表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
     前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である表面処理銅箔。
    A surface-treated copper foil in which surface treatment is performed on one surface and the other surface,
    JIS of the surface over the said polyimide in the copper clad laminated board comprised by laminating | stacking the surface treatment copper foil from the said one surface side with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50-65. The color difference ΔE * ab based on Z8730 is 50 or more,
    When the copper foil was photographed with a CCD camera through the polyimide laminated from one surface side,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends,
    The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper foil to the portion without the copper foil is ΔB (ΔB = Bt−Bb). The value indicating the position of the intersection closest to the copper foil among the intersections of the curve and Bt is t1, and in the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB on the basis of Bt, Sv defined by the following equation (1) is 3.0 or more when the value indicating the position of the closest intersection to the copper foil is 0.12 among the intersections with 0.1 ΔB,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    The surface-treated copper foil whose 10-point average roughness Rz of TD measured with the laser microscope whose wavelength of the laser beam of the said other surface-treated copper foil surface is 405 nm is 0.35 micrometer or more.
  3.  前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である請求項1又は2に記載の表面処理銅箔。 3. The surface treatment according to claim 1, wherein an arithmetic average roughness Ra of TD measured by a laser microscope having a laser light wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.05 μm or more. Copper foil.
  4.  一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
     表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
     前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔。
    A surface-treated copper foil in which surface treatment is performed on one surface and the other surface,
    JIS of the surface over the said polyimide in the copper clad laminated board comprised by laminating | stacking the surface treatment copper foil from the said one surface side with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50-65. The color difference ΔE * ab based on Z8730 is 50 or more,
    When photographed with a CCD camera over the polyimide laminated the copper foil from one surface side,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends,
    The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper foil to the portion without the copper foil is 40 or more,
    The surface-treated copper foil whose arithmetic mean roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the said other surface-treated copper foil surface is 405 nm is 0.05 micrometer or more.
  5.  一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
     表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
     前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である表面処理銅箔。
    A surface-treated copper foil in which surface treatment is performed on one surface and the other surface,
    JIS of the surface over the said polyimide in the copper clad laminated board comprised by laminating | stacking the surface treatment copper foil from the said one surface side with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50-65. The color difference ΔE * ab based on Z8730 is 50 or more,
    When the copper foil was photographed with a CCD camera through the polyimide laminated from one surface side,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends,
    The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper foil to the portion without the copper foil is ΔB (ΔB = Bt−Bb). The value indicating the position of the intersection closest to the copper foil among the intersections of the curve and Bt is t1, and in the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB on the basis of Bt, Sv defined by the following equation (1) is 3.0 or more when the value indicating the position of the closest intersection to the copper foil is 0.12 among the intersections with 0.1 ΔB,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    The surface-treated copper foil whose arithmetic mean roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the said other surface-treated copper foil surface is 405 nm is 0.05 micrometer or more.
  6.  前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である請求項1~5のいずれか一項に記載の表面処理銅箔。 6. The root mean square height Rq of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 μm or more. The surface-treated copper foil as described in the item.
  7.  一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
     表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
     前記銅箔を一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔。
    A surface-treated copper foil in which surface treatment is performed on one surface and the other surface,
    JIS of the surface over the said polyimide in the copper clad laminated board comprised by laminating | stacking the surface treatment copper foil from the said one surface side with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50-65. The color difference ΔE * ab based on Z8730 is 50 or more,
    When photographed with a CCD camera over the polyimide laminated the copper foil from one surface side,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends,
    The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper foil to the portion without the copper foil is 40 or more,
    The surface-treated copper foil whose TD root mean square height Rq measured with the laser microscope whose wavelength of the laser beam of the said other surface-treated copper foil surface is 405 nm is 0.08 micrometer or more.
  8.  一方の表面および他方の表面にそれぞれ表面処理が行われた表面処理銅箔であって、
     表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが50以上となり、
     前記銅箔を、一方の表面側から積層させた前記ポリイミド越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅箔の端部から前記銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である表面処理銅箔。
    A surface-treated copper foil in which surface treatment is performed on one surface and the other surface,
    JIS of the surface over the said polyimide in the copper clad laminated board comprised by laminating | stacking the surface treatment copper foil from the said one surface side with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50-65. The color difference ΔE * ab based on Z8730 is 50 or more,
    When the copper foil was photographed with a CCD camera through the polyimide laminated from one surface side,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper foil extends,
    The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end portion of the copper foil to the portion without the copper foil is ΔB (ΔB = Bt−Bb). The value indicating the position of the intersection closest to the copper foil among the intersections of the curve and Bt is t1, and in the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB on the basis of Bt, Sv defined by the following equation (1) is 3.0 or more when the value indicating the position of the closest intersection to the copper foil is 0.12 among the intersections with 0.1 ΔB,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    The surface-treated copper foil whose TD root mean square height Rq measured with the laser microscope whose wavelength of the laser beam of the said other surface-treated copper foil surface is 405 nm is 0.08 micrometer or more.
  9.  前記他方の表面の表面処理が粗化処理である請求項1~8のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 1 to 8, wherein the surface treatment of the other surface is a roughening treatment.
  10.  前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となる請求項1、3、4、6、7及び9のいずれか一項に記載の表面処理銅箔。
      Sv=(ΔB×0.1)/(t1-t2)   (1)
    In the observation point-lightness graph, the value indicating the position of the intersection closest to the copper foil among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt Sv defined by the following equation (1) is 3. where the value indicating the position of the intersection closest to the copper foil in the intersection of the lightness curve and 0.1 ΔB in the depth range is t2. The surface-treated copper foil as described in any one of Claim 1, 3, 4, 6, 7, and 9 which becomes zero or more.
    Sv = (ΔB × 0.1) / (t1-t2) (1)
  11.  前記表面処理銅箔を前記一方の表面側から、銅箔に張り合わせ前の下記ΔB(PI)が50以上65以下であるポリイミドと積層して構成した銅張積層板における、前記ポリイミド越しの表面のJIS Z8730に基づく色差ΔE*abが53以上となる請求項1~10のいずれか一項に記載の表面処理銅箔。 In the copper clad laminated board which laminated | stacked the said surface treatment copper foil from the said one surface side, and laminated | stacked with the polyimide whose following (DELTA) B (PI) before bonding to copper foil is 50 or more and 65 or less, The surface-treated copper foil according to any one of claims 1 to 10, wherein a color difference ΔE * ab based on JIS Z8730 is 53 or more.
  12.  前記明度曲線における(1)式で定義されるSvが3.5以上となる請求項2、3、5、6、8~11のいずれか一項に記載の表面処理銅箔。 The surface-treated copper foil according to any one of claims 2, 3, 5, 6, and 8 to 11, wherein Sv defined by the formula (1) in the brightness curve is 3.5 or more.
  13.  前記明度曲線における(1)式で定義されるSvが3.9以上となる請求項12に記載の表面処理銅箔。 The surface-treated copper foil according to claim 12, wherein Sv defined by the formula (1) in the lightness curve is 3.9 or more.
  14.  前記明度曲線における(1)式で定義されるSvが5.0以上となる請求項13に記載の表面処理銅箔。 The surface-treated copper foil according to claim 13, wherein Sv defined by the formula (1) in the brightness curve is 5.0 or more.
  15.  前記一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.20~0.64μmであり、前記銅箔表面の三次元表面積Aと二次元表面積Bとの比A/Bが1.0~1.7である請求項1~14のいずれか一項に記載の表面処理銅箔。 The ten-point average roughness Rz of TD measured with a contact roughness meter on one surface is 0.20 to 0.64 μm, and the ratio A between the three-dimensional surface area A and the two-dimensional surface area B of the copper foil surface The surface-treated copper foil according to any one of claims 1 to 14, wherein / B is 1.0 to 1.7.
  16.  前記一方の表面の接触式粗さ計で測定したTDの十点平均粗さRzが0.26~0.62μmである請求項15に記載の表面処理銅箔。 The surface-treated copper foil according to claim 15, wherein the ten-point average roughness Rz of TD measured by a contact-type roughness meter on the one surface is 0.26 to 0.62 µm.
  17.  前記A/Bが1.0~1.6である請求項15又は16に記載の表面処理銅箔。 The surface-treated copper foil according to claim 15 or 16, wherein the A / B is 1.0 to 1.6.
  18.  請求項1~17のいずれか一項に記載の表面処理銅箔と樹脂基板とを積層して構成した銅張積層板。 A copper clad laminate comprising a laminate of the surface-treated copper foil according to any one of claims 1 to 17 and a resin substrate.
  19.  請求項1~17のいずれか一項に記載の表面処理銅箔を用いたプリント配線板。 A printed wiring board using the surface-treated copper foil according to any one of claims 1 to 17.
  20.  請求項19に記載のプリント配線板を少なくとも1つ用いた電子機器。 An electronic device using at least one printed wiring board according to claim 19.
  21.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
     前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板。
    A printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate,
    The copper circuit has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 of the copper circuit surface over the insulating resin substrate is 50 or more,
    When the copper circuit is photographed with a CCD camera through the insulating resin substrate,
    For the image obtained by the photographing, in the observation point-brightness graph, which was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
    The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is 40 or more, and the other surface treatment is performed. A printed wiring board having a TD ten-point average roughness Rz of 0.35 μm or more measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit.
  22.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
     前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上であるプリント配線板。
    A printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate,
    The copper circuit has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 of the copper circuit surface over the insulating resin substrate is 50 or more,
    When the copper circuit is photographed with a CCD camera through the insulating resin substrate,
    For the image obtained by the photographing, in the observation point-brightness graph, which was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
    The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb). The value indicating the position of the intersection closest to the copper circuit among the intersections of the curve and Bt is t1, and in the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB with reference to Bt, When the value indicating the position of the intersection closest to the copper circuit among the intersections with 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    A printed wiring board having a ten-point average roughness Rz of TD of 0.35 μm or more measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
  23.  前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である請求項21又は22に記載のプリント配線板。 23. The printed wiring according to claim 21, wherein an arithmetic average roughness Ra of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.05 μm or more. Board.
  24.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
     前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板。
    A printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate,
    The copper circuit has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 of the copper circuit surface over the insulating resin substrate is 50 or more,
    When the copper circuit is photographed with a CCD camera through the insulating resin substrate,
    For the image obtained by the photographing, in the observation point-brightness graph, which was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
    The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is 40 or more, and the other surface treatment is performed. A printed wiring board having an arithmetic average roughness Ra of TD of 0.05 μm or more measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit.
  25.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
     前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上であるプリント配線板。
    A printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate,
    The copper circuit has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 of the copper circuit surface over the insulating resin substrate is 50 or more,
    When the copper circuit is photographed with a CCD camera through the insulating resin substrate,
    For the image obtained by the photographing, in the observation point-brightness graph, which was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
    The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb). The value indicating the position of the intersection closest to the copper circuit among the intersections of the curve and Bt is t1, and in the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB with reference to Bt, When the value indicating the position of the intersection closest to the copper circuit among the intersections with 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    A printed wiring board having an arithmetic average roughness Ra of TD of 0.05 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
  26.  前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である請求項21~25のいずれか一項に記載のプリント配線板。 26. The root mean square height Rq of TD measured with a laser microscope having a laser light wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment is 0.08 μm or more. Printed wiring board according to item.
  27.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
     前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板。
    A printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate,
    The copper circuit has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 of the copper circuit surface over the insulating resin substrate is 50 or more,
    When the copper circuit is photographed with a CCD camera through the insulating resin substrate,
    For the image obtained by the photographing, in the observation point-brightness graph, which was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
    The difference ΔB (ΔB = Bt−Bb) between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is 40 or more, and the other surface treatment is performed. A printed wiring board having a root mean square height Rq of TD of 0.08 μm or more measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit.
  28.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅回路とを有するプリント配線板であって、
     前記銅回路は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅回路表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅回路を、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記銅回路が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記銅回路の端部から前記銅回路がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差をΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記銅回路に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記銅回路に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅回路表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上であるプリント配線板。
    A printed wiring board having an insulating resin substrate and a copper circuit provided on the insulating resin substrate,
    The copper circuit has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 of the copper circuit surface over the insulating resin substrate is 50 or more,
    When the copper circuit is photographed with a CCD camera through the insulating resin substrate,
    For the image obtained by the photographing, in the observation point-brightness graph, which was prepared by measuring the brightness at each observation point along the direction perpendicular to the direction in which the observed copper circuit extends,
    The difference between the top average value Bt and the bottom average value Bb of the brightness curve generated from the end of the copper circuit to the portion without the copper circuit is ΔB (ΔB = Bt−Bb). The value indicating the position of the intersection closest to the copper circuit among the intersections of the curve and Bt is t1, and in the depth range from the intersection of the brightness curve and Bt to 0.1 ΔB with reference to Bt, When the value indicating the position of the intersection closest to the copper circuit among the intersections with 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    A printed wiring board having a root mean square height Rq of TD of 0.08 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper circuit subjected to the other surface treatment.
  29.  前記他方の表面の表面処理が粗化処理である請求項21~28のいずれか一項に記載のプリント配線板。 The printed wiring board according to any one of claims 21 to 28, wherein the surface treatment of the other surface is a roughening treatment.
  30.  請求項21~29のいずれか一項に記載のプリント配線板を2つ以上接続して、プリント配線板が2つ以上接続したプリント配線板を製造する方法。 A method of manufacturing a printed wiring board in which two or more printed wiring boards are connected by connecting two or more printed wiring boards according to any one of claims 21 to 29.
  31.  請求項21~29のいずれか一項に記載のプリント配線板を少なくとも1つと、もう一つの請求項21~29のいずれか一項に記載のプリント配線板又請求項21~29のいずれか一項に記載のプリント配線板に該当しないプリント配線板とを接続する工程を少なくとも含む、プリント配線板が2つ以上接続したプリント配線板を製造する方法。 30. At least one printed wiring board according to any one of claims 21 to 29 and another printed wiring board according to any one of claims 21 to 29 or any one of claims 21 to 29. A method for producing a printed wiring board in which two or more printed wiring boards are connected, comprising at least a step of connecting a printed wiring board not corresponding to the printed wiring board described in the section.
  32.  請求項21~29のいずれか一項に記載のプリント配線板が少なくとも1つ接続したプリント配線板を1つ以上用いた電子機器。 An electronic device using one or more printed wiring boards to which at least one printed wiring board according to any one of claims 21 to 29 is connected.
  33.  請求項21~29のいずれか一項に記載のプリント配線板に用いられている表面処理銅箔。 A surface-treated copper foil used for the printed wiring board according to any one of claims 21 to 29.
  34.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
     前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板。
    A copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate,
    The copper foil has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 on the surface of the copper foil through the insulating resin substrate is 50 or more,
    When the copper foil of the copper-clad laminate is made into a line-shaped copper foil by etching and then taken with a CCD camera over the insulating resin substrate,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along a direction perpendicular to the direction in which the observed line-shaped copper foil extends,
    A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped copper foil to a portion where there is no line-shaped copper foil is 40 or more, A copper clad laminate having a TD ten-point average roughness Rz of 0.35 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the other surface treated copper foil surface.
  35.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
     前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの十点平均粗さRzが、0.35μm以上である銅張積層板。
    A copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate,
    The copper foil has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 on the surface of the copper foil through the insulating resin substrate is 50 or more,
    When the copper foil of the copper-clad laminate is made into a line-shaped copper foil by etching and then taken with a CCD camera over the insulating resin substrate,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along a direction perpendicular to the direction in which the observed line-shaped copper foil extends,
    A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped copper foil to a portion where the line-shaped copper foil is not present, and the observation point− In the lightness graph, a value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt In the depth range, when the value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    A copper-clad laminate having a TD ten-point average roughness Rz of 0.35 μm or more as measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  36.  前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である請求項34又は35に記載の銅張積層板。 36. The copper-clad wire according to claim 34 or 35, wherein an arithmetic average roughness Ra of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.05 μm or more. Laminated board.
  37.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
     前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板。
    A copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate,
    The copper foil has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 on the surface of the copper foil through the insulating resin substrate is 50 or more,
    When the copper foil of the copper-clad laminate is made into a line-shaped copper foil by etching and then taken with a CCD camera over the insulating resin substrate,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along a direction perpendicular to the direction in which the observed line-shaped copper foil extends,
    A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped copper foil to a portion where there is no line-shaped copper foil is 40 or more, The copper clad laminated board whose arithmetic mean roughness Ra of TD measured with the laser microscope whose wavelength of the laser beam of the other surface-treated copper foil surface is 405 nm is 0.05 micrometer or more.
  38.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
     前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの算術平均粗さRaが、0.05μm以上である銅張積層板。
    A copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate,
    The copper foil has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 on the surface of the copper foil through the insulating resin substrate is 50 or more,
    When the copper foil of the copper-clad laminate is made into a line-shaped copper foil by etching and then taken with a CCD camera over the insulating resin substrate,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along a direction perpendicular to the direction in which the observed line-shaped copper foil extends,
    A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped copper foil to a portion where the line-shaped copper foil is not present, and the observation point− In the lightness graph, a value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt In the depth range, when the value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    A copper-clad laminate having an arithmetic average roughness Ra of TD of 0.05 μm or more measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  39.  前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である請求項34~38のいずれか一項に記載の銅張積層板。 39. The root mean square height Rq of TD measured with a laser microscope having a laser beam wavelength of 405 nm on the surface of the copper foil subjected to the other surface treatment is 0.08 μm or more. The copper-clad laminate according to item.
  40.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
     前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)が40以上となり、前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板。
    A copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate,
    The copper foil has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 on the surface of the copper foil through the insulating resin substrate is 50 or more,
    When the copper foil of the copper-clad laminate is made into a line-shaped copper foil by etching and then taken with a CCD camera over the insulating resin substrate,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along a direction perpendicular to the direction in which the observed line-shaped copper foil extends,
    A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped copper foil to a portion where there is no line-shaped copper foil is 40 or more, A copper clad laminate having a root mean square height Rq of TD of 0.08 μm or more measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  41.  絶縁樹脂基板と、絶縁樹脂基板上に設けられた銅箔とを有する銅張積層板であって、
     前記銅箔は、前記絶縁樹脂基板側の一方の表面と、表面処理が行われた他方の表面とを有し、
     前記絶縁樹脂基板越しの前記銅箔の表面のJIS Z8730に基づく色差ΔE*abが50以上であり、
     前記銅張積層板の前記銅箔を、エッチングによりライン状の銅箔とした後に、前記絶縁樹脂基板越しにCCDカメラで撮影したとき、
     前記撮影によって得られた画像について、観察された前記ライン状の銅箔が伸びる方向と垂直な方向に沿って観察地点ごとの明度を測定して作製した、観察地点-明度グラフにおいて、
     前記ライン状の銅箔の端部から前記ライン状の銅箔がない部分にかけて生じる明度曲線のトップ平均値Btとボトム平均値Bbとの差ΔB(ΔB=Bt-Bb)とし、前記観察地点-明度グラフにおいて、明度曲線とBtとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt1として、明度曲線とBtとの交点からBtを基準に0.1ΔBまでの深さ範囲において、明度曲線と0.1ΔBとの交点の内、前記ライン状の銅箔に最も近い交点の位置を示す値をt2としたときに、下記(1)式で定義されるSvが3.0以上となり、
      Sv=(ΔB×0.1)/(t1-t2)   (1)
     前記他方の表面処理がされた銅箔表面のレーザー光の波長が405nmであるレーザー顕微鏡で測定したTDの二乗平均平方根高さRqが、0.08μm以上である銅張積層板。
    A copper-clad laminate having an insulating resin substrate and a copper foil provided on the insulating resin substrate,
    The copper foil has one surface on the insulating resin substrate side and the other surface subjected to surface treatment,
    The color difference ΔE * ab based on JIS Z8730 on the surface of the copper foil through the insulating resin substrate is 50 or more,
    When the copper foil of the copper-clad laminate is made into a line-shaped copper foil by etching and then taken with a CCD camera over the insulating resin substrate,
    For the image obtained by the photographing, an observation point-brightness graph prepared by measuring the brightness for each observation point along a direction perpendicular to the direction in which the observed line-shaped copper foil extends,
    A difference ΔB (ΔB = Bt−Bb) between a top average value Bt and a bottom average value Bb of a brightness curve generated from an end portion of the line-shaped copper foil to a portion where the line-shaped copper foil is not present, and the observation point− In the lightness graph, a value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and Bt is t1, and from the intersection of the lightness curve and Bt to 0.1 ΔB based on Bt In the depth range, when the value indicating the position of the intersection closest to the line-shaped copper foil among the intersections of the lightness curve and 0.1 ΔB is t2, Sv defined by the following equation (1) is 3.0 or more,
    Sv = (ΔB × 0.1) / (t1-t2) (1)
    A copper-clad laminate having a root mean square height Rq of TD of 0.08 μm or more measured with a laser microscope having a wavelength of laser light of 405 nm on the surface of the copper foil subjected to the other surface treatment.
  42.  前記他方の表面の表面処理が粗化処理である請求項34~41のいずれか一項に記載の銅張積層板。 The copper clad laminate according to any one of claims 34 to 41, wherein the surface treatment of the other surface is a roughening treatment.
  43.  請求項34~42のいずれか一項に記載の銅張積層板に用いられている表面処理銅箔。 A surface-treated copper foil used in the copper-clad laminate according to any one of claims 34 to 42.
  44.  請求項34~42のいずれか一項に記載の銅張積層板を用いて製造したプリント配線板。 A printed wiring board manufactured using the copper-clad laminate according to any one of claims 34 to 42.
  45.  請求項44に記載のプリント配線板を用いた電子機器。 An electronic device using the printed wiring board according to claim 44.
PCT/JP2014/082766 2013-12-10 2014-12-10 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method WO2015087942A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167015615A KR101944166B1 (en) 2013-12-10 2014-12-10 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP2015520739A JP5819571B1 (en) 2013-12-10 2014-12-10 Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
CN201480067242.0A CN105980609B (en) 2013-12-10 2014-12-10 The manufacturing method of surface treatment copper foil, copper-cover laminated plate, printing distributing board, e-machine and printing distributing board
MYPI2016702133A MY183375A (en) 2013-12-10 2014-12-10 Surface treated copper foil, copper clad laminate, printed wiring board, electronic apparatus and method for manufacturing printed wiring board
PH12016501130A PH12016501130A1 (en) 2013-12-10 2016-06-10 Surface treated copper foil, copper clad laminate, printed wiring board, electronic apparatus and method for manufacturing printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013255472 2013-12-10
JP2013-255472 2013-12-10

Publications (1)

Publication Number Publication Date
WO2015087942A1 true WO2015087942A1 (en) 2015-06-18

Family

ID=53371241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082766 WO2015087942A1 (en) 2013-12-10 2014-12-10 Treated surface copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method

Country Status (7)

Country Link
JP (1) JP5819571B1 (en)
KR (1) KR101944166B1 (en)
CN (1) CN105980609B (en)
MY (1) MY183375A (en)
PH (1) PH12016501130A1 (en)
TW (1) TWI573500B (en)
WO (1) WO2015087942A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805414A (en) * 2018-09-28 2021-05-14 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and circuit substrate using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet
JP2012211351A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil and method for producing electrolytic copper foil
JP2012212529A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil for secondary battery negative electrode collector and manufacturing method therefor
JP2012224941A (en) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp Copper foil and copper laminated plate using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301046C (en) 2002-05-13 2007-02-14 三井金属鉱业株式会社 Flexible printed wiring board for chip-on-film
JP2004098659A (en) 2002-07-19 2004-04-02 Ube Ind Ltd Copper-clad laminate and its manufacturing process
JP3977790B2 (en) * 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
MY150825A (en) * 2008-11-25 2014-02-28 Jx Nippon Mining & Metals Corp Copper foil for printed circuit
TWI503062B (en) * 2012-05-21 2015-10-01 Jx Nippon Mining & Metals Corp Surface treatment of copper foil and the use of its laminated board, printed wiring board, electronic equipment and manufacturing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987889A (en) * 1995-09-28 1997-03-31 Nikko Gould Foil Kk Treatment of copper foil for printed circuit
JP2011240625A (en) * 2010-05-19 2011-12-01 Jx Nippon Mining & Metals Corp Copper-clad laminated sheet
JP2012224941A (en) * 2011-03-23 2012-11-15 Jx Nippon Mining & Metals Corp Copper foil and copper laminated plate using the same
JP2012211351A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil and method for producing electrolytic copper foil
JP2012212529A (en) * 2011-03-30 2012-11-01 Jx Nippon Mining & Metals Corp Electrolytic copper foil for secondary battery negative electrode collector and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112805414A (en) * 2018-09-28 2021-05-14 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and circuit substrate using same
CN112805414B (en) * 2018-09-28 2022-06-24 古河电气工业株式会社 Surface-treated copper foil, and copper-clad plate and circuit substrate using same

Also Published As

Publication number Publication date
PH12016501130A1 (en) 2016-07-18
KR20160086378A (en) 2016-07-19
JPWO2015087942A1 (en) 2017-03-16
CN105980609B (en) 2018-08-07
KR101944166B1 (en) 2019-01-30
MY183375A (en) 2021-02-18
JP5819571B1 (en) 2015-11-24
CN105980609A (en) 2016-09-28
TW201532485A (en) 2015-08-16
TWI573500B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP5362898B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, and copper-clad laminate
JP5819569B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362924B1 (en) Surface-treated copper foil and laminate using the same
JP6393126B2 (en) Surface-treated rolled copper foil, laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP5362921B1 (en) Surface-treated copper foil and laminate using the same
JP5417538B1 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5475897B1 (en) Surface-treated copper foil and laminate using the same, copper foil, printed wiring board, electronic device, and method for manufacturing printed wiring board
JP5362899B1 (en) Surface-treated copper foil and laminate using the same
JP5855244B2 (en) Surface-treated copper foil, laminate using the same, printed wiring board, electronic device, and method for producing printed wiring board
JP5432357B1 (en) Surface-treated copper foil and laminated board, copper-clad laminated board, printed wiring board and electronic device using the same
JP5362922B1 (en) Surface-treated copper foil and laminate using the same
JP2014065974A (en) Surface-treated copper foil, and laminate, copper-clad laminate, printed-wiring board, and electronic apparatus using the same
WO2014073696A1 (en) Surface-treated copper foil and laminate using same
JP5819571B1 (en) Surface-treated copper foil, copper-clad laminate, printed wiring board, electronic device, and printed wiring board manufacturing method
JP6081883B2 (en) Copper foil, laminated board using the same, method for manufacturing electronic device, and method for manufacturing printed wiring board
JP2014148747A (en) Surface-treated copper foil and laminate, printed wiring board, and electronic apparatus with use of the foil, and manufacturing method of printed wiring board

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015520739

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868859

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12016501130

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20167015615

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14868859

Country of ref document: EP

Kind code of ref document: A1