WO2015087894A1 - 周波数可変フィルタ - Google Patents

周波数可変フィルタ Download PDF

Info

Publication number
WO2015087894A1
WO2015087894A1 PCT/JP2014/082620 JP2014082620W WO2015087894A1 WO 2015087894 A1 WO2015087894 A1 WO 2015087894A1 JP 2014082620 W JP2014082620 W JP 2014082620W WO 2015087894 A1 WO2015087894 A1 WO 2015087894A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance circuit
point
resonance
frequency
arm resonance
Prior art date
Application number
PCT/JP2014/082620
Other languages
English (en)
French (fr)
Inventor
谷将和
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to DE112014005637.5T priority Critical patent/DE112014005637B4/de
Priority to JP2015552473A priority patent/JP6308221B2/ja
Priority to CN201480067558.XA priority patent/CN105850040B/zh
Publication of WO2015087894A1 publication Critical patent/WO2015087894A1/ja
Priority to US15/178,113 priority patent/US10171062B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/542Filters comprising resonators of piezoelectric or electrostrictive material including passive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material
    • H03H9/58Multiple crystal filters
    • H03H9/60Electric coupling means therefor
    • H03H9/605Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/01Tuned parameter of filter characteristics
    • H03H2210/012Centre frequency; Cut-off frequency
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H2210/00Indexing scheme relating to details of tunable filters
    • H03H2210/02Variable filter component
    • H03H2210/025Capacitor

Definitions

  • the present invention relates to a frequency variable filter using a piezoelectric resonator.
  • various high-frequency filters using a piezoelectric resonator having a resonance point and an anti-resonance point have been devised.
  • various frequency variable filters capable of adjusting filter characteristics have been devised.
  • the filter characteristics include, for example, pass characteristics, attenuation characteristics, insertion loss, and the like.
  • the frequency variable filters described in Patent Documents 1 and 2 have a resonance circuit in which a variable capacitor is connected in series or in parallel to a piezoelectric resonator.
  • a series arm resonance circuit connected in series between two high frequency input / output terminals, and a transmission line connecting the series arm resonance circuit and the high frequency input / output terminals and a ground are connected.
  • a parallel arm resonance circuit is connected in series between two high frequency input / output terminals, and a transmission line connecting the series arm resonance circuit and the high frequency input / output terminals and a ground.
  • the resonance point and antiresonance point of the series arm resonance circuit and the resonance point and antiresonance point of the parallel arm resonance circuit are appropriately combined to pass as a frequency variable filter.
  • the frequency band and the frequency of the attenuation pole are set.
  • FIG. 10 is a diagram showing the principle of setting the passband and attenuation pole of a conventional frequency variable filter.
  • the horizontal axis represents frequency
  • the vertical axis represents insertion loss and impedance.
  • the solid line indicates the pass characteristic (frequency characteristic of insertion loss) FC of the frequency variable filter
  • the broken line indicates the impedance characteristic (frequency characteristic of impedance) ICrp of the parallel arm resonance circuit
  • the alternate long and short dash line indicates the impedance characteristic ICrs of the series arm resonance circuit. Indicates.
  • the resonance point fsr of the series arm resonance circuit is lower than the antiresonance point fsa, and the resonance point fpr of the parallel arm resonance circuit is lower than the antiresonance point fpa.
  • the transmission loss between the two high-frequency input / output terminals is low near the resonance point fsr, and the transmission loss between the two high-frequency input / output terminals is high near the anti-resonance point fsa.
  • the transmission loss between the two high-frequency input / output terminals is high near the resonance point fpr, and the transmission loss between the two high-frequency input / output terminals is low near the anti-resonance point fpa.
  • the resonance point fsr of the series arm resonance circuit and the anti-resonance point fpa of the parallel arm resonance circuit are matched or brought close to each other to form the pass band BWpass of the frequency variable filter.
  • an attenuation pole fap H on the high frequency side with respect to the passband BWpass of the frequency variable filter is formed by the antiresonance point fsa of the series arm resonance circuit.
  • the attenuation pole fap L on the low frequency side with respect to the passband BWpass of the frequency variable filter is formed by the resonance point fpr of the parallel arm resonance circuit.
  • the resonance point fsr, antiresonance point fsa, and The resonance point fpr and antiresonance point fpa of the parallel arm resonance circuit can be adjusted. Therefore, in the conventional frequency variable filter, the pass band BWpass and the attenuation poles fap H and fap H of the frequency variable filter are adjusted by changing the capacitances of the variable capacitors of the series arm resonance circuit and the parallel arm resonance circuit.
  • JP 2009-130831 A Japanese Patent No. 4053504
  • the frequency variable width is substantially the same as the variable width of the resonance point and antiresonance point of the series arm resonance circuit and the parallel arm resonance circuit. Therefore, in order to increase the frequency variable width in the frequency variable filter, the variable width of the capacitance of the variable capacitor must be increased.
  • the Q of the variable capacitor is lower than the Q of the piezoelectric resonator, and the Q is further deteriorated as the variable width of the capacitance is increased. For this reason, the pass characteristic and the attenuation characteristic as the frequency variable filter are deteriorated as compared with the filter using only the piezoelectric resonator. In particular, as the frequency variable width increases, the pass characteristic and the attenuation characteristic deteriorate more greatly.
  • An object of the present invention is to provide a frequency variable filter that suppresses deterioration of pass characteristics and attenuation characteristics.
  • the frequency variable filter according to the present invention has the following configuration.
  • a series arm resonance circuit and a parallel arm resonance circuit are provided.
  • the series arm resonance circuit is connected between the first input / output terminal and the second input / output terminal.
  • the parallel arm resonance circuit is connected between the transmission line connecting either the first input / output terminal or the second input / output terminal and the series arm resonance circuit and the ground.
  • the frequency variable filter is a filter capable of adjusting a pass band and an attenuation band.
  • the series arm resonance circuit and the parallel arm resonance circuit include a piezoelectric resonator, an inductor connected in series or parallel to the piezoelectric resonator, and a variable capacitor connected in series or parallel to the piezoelectric resonator.
  • the frequency variable filter has a sub-resonance point or sub-anti-resonance point of the series arm resonance circuit or a parallel arm resonance circuit of at least one communication band of the plurality of communication bands to be filtered by the frequency variable filter.
  • the pass band and the attenuation band are adjusted using at least one of the sub-resonance point and the sub-anti-resonance point.
  • the pass band and the attenuation band can be set for a plurality of communication bands to be filtered as a frequency variable filter. Then, the variable frequency width at the resonance point and the antiresonance point is narrowed, so that the Q of each resonance circuit is improved, and the pass characteristic and the attenuation characteristic are improved.
  • the frequency variable filter of the present invention can be configured as follows.
  • the parallel arm resonance circuit of the frequency variable filter includes an inductor connected in parallel to the piezoelectric resonator of the parallel arm resonance circuit, and generates a secondary antiresonance point on a lower frequency side than the resonance point of the parallel arm resonance circuit. And the pass band of a frequency variable filter is set using this subantiresonance point.
  • the frequency variable filter sets the passband by bringing the secondary anti-resonance point of the parallel arm resonance circuit close to the resonance point of the series arm resonance circuit.
  • the frequency variable filter sets an attenuation region on the high frequency side of the pass band by bringing the antiresonance point of the series arm resonance circuit and the resonance point of the parallel arm resonance circuit close to each other.
  • the frequency variable width of the passband can be increased even if the frequency variable width of the anti-resonance point of the parallel arm resonance circuit is small.
  • the frequency variable filter of the present invention can be configured as follows.
  • the series arm resonance circuit of the frequency variable filter includes an inductor connected in series to the piezoelectric resonator of the series arm resonance circuit, and generates a sub-resonance on a higher frequency side than the antiresonance point of the series arm resonance circuit. And a pass band is set using this sub-resonance point.
  • the frequency variable filter sets the passband by bringing the sub-resonance point of the series arm resonance circuit close to the anti-resonance point of the parallel arm resonance circuit.
  • the frequency variable filter sets an attenuation region on the lower side of the pass band by bringing the antiresonance point of the series arm resonance circuit and the resonance point of the parallel arm resonance circuit close to each other.
  • the frequency variable filter of the present invention can be configured as follows.
  • the series arm resonance circuit of the frequency variable filter includes an inductor connected in parallel to the piezoelectric resonator of the series arm resonance circuit, and generates a secondary antiresonance point on a lower frequency side than the resonance point of the series arm resonance circuit. Then, an attenuation region is set using this auxiliary antiresonance point.
  • the frequency variable filter sets the passband by bringing the resonance point of the series arm resonance circuit close to the anti-resonance point of the parallel arm resonance circuit.
  • the frequency variable filter sets an attenuation region on the low frequency side of the pass band by bringing the auxiliary antiresonance point of the series arm resonance circuit close to the resonance point of the parallel arm resonance circuit.
  • the frequency variable width of the attenuation region can be increased even if the frequency variable width of the antiresonance point of the series arm resonance circuit is small.
  • the frequency variable filter of the present invention can be configured as follows.
  • the parallel arm resonance circuit of the frequency variable filter includes an inductor connected in series to the piezoelectric resonator of the parallel arm resonance circuit, and generates a sub-resonance on a higher frequency side than the antiresonance point of the parallel arm resonance circuit. Then, an attenuation region is set using this sub-resonance point.
  • the frequency variable filter sets the passband by bringing the resonance point of the series arm resonance circuit close to the anti-resonance point of the parallel arm resonance circuit.
  • the attenuation band on the high frequency side of the pass band is set using the secondary resonance point of the parallel arm resonance circuit.
  • the frequency variable width of the attenuation region can be increased even if the frequency variable width of the resonance point of the parallel arm resonance circuit is small.
  • variable range of the pass band can be widened without increasing the variable capacitance range of the variable capacitor of the series arm resonant circuit or the parallel arm resonant circuit.
  • variable frequency filter having excellent pass characteristics and attenuation characteristics can be realized.
  • FIG. 1 is a circuit diagram of a frequency variable filter according to an embodiment of the present invention.
  • the frequency variable filter 10 includes a series arm resonance circuit 21 and a parallel arm resonance circuit 22.
  • the serial arm resonance circuit 21 is connected between the first input / output terminal P1 and the second input / output terminal P2. That is, the series arm resonance circuit 21 is connected in series with the transmission line of the high frequency signal.
  • the parallel arm resonance circuit 22 is connected between a transmission line connecting the series arm resonance circuit 21 and the second input / output terminal P2 and the ground. That is, the parallel arm resonance circuit 22 is shunt-connected to the transmission line.
  • the series arm resonance circuit 21 includes a piezoelectric resonator 211, inductors 212 and 213, and variable capacitors 214 and 215.
  • the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in series between the first input / output terminal P1 and the second input / output terminal P2. At this time, the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in this order from the first input / output terminal P1 side.
  • the inductor 212 is connected in parallel to the piezoelectric resonator 211.
  • the variable capacitor 214 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
  • the parallel arm resonance circuit 22 includes a piezoelectric resonator 221, inductors 222 and 223, and variable capacitors 224 and 225.
  • the piezoelectric resonator 221, the inductor 223, and the variable capacitor 225 are connected in series between the transmission line and the ground. At this time, the piezoelectric resonator 221, the inductor 223, and the variable capacitor 225 are connected in this order from the ground side.
  • the inductor 222 is connected in parallel to the piezoelectric resonator 221.
  • the variable capacitor 224 is connected in parallel to the series circuit of the piezoelectric resonator 221 and the inductor 223.
  • the piezoelectric resonators 211 and 221 are realized by SAW resonators or BAW resonators.
  • SAW resonators it is realized by forming a comb-shaped electrode on the surface of a lithium niobate substrate that has been subjected to a predetermined cut (for example, Y cut).
  • the inductors 212, 213, 221, and 223 are realized by, for example, electrode patterns formed on a mounting board on which the piezoelectric resonators 211 and 221 are mounted, and chip parts mounted on the surface of the mounting board.
  • the variable capacitors 214, 215, 224, and 225 are realized by, for example, chip parts mounted on the surface of the mounting substrate on which the piezoelectric resonators 211 and 221 are mounted.
  • the inductors 212 and 213 are so-called extension inductors.
  • the frequency of the antiresonance point of the circuit including the piezoelectric resonator 211 and the inductor 212 is higher than the frequency of the antiresonance point of the piezoelectric resonator 211.
  • the frequency of the resonance point of the circuit including the piezoelectric resonator 211, the inductor 212, and the inductor 213 is lower than the frequency of the resonance point of the circuit including the piezoelectric resonator 211 and the inductor 212.
  • the series arm resonance circuit 21 includes the variable capacitor 214, so that the antiresonance point of the circuit including the piezoelectric resonator 211, the inductors 212 and 213, and the variable capacitor 214 is a circuit including the piezoelectric resonator 211 and the inductors 212 and 213.
  • the frequency is lower than the antiresonance point, and the frequency is higher than the resonance point of the circuit including the piezoelectric resonator 211 and the inductors 212 and 213.
  • the frequency of the resonance point can be adjusted within this frequency range by changing the capacitance of the variable capacitor 214. That is, the frequency fsa of the antiresonance point of the series arm resonance circuit 21 can be adjusted.
  • the series arm resonance circuit 21 includes the variable capacitor 215 so that the frequency of the anti-resonance point of the circuit including the piezoelectric resonator 211, the inductors 212 and 213, and the variable capacitors 214 and 215, that is, the series arm resonance circuit 21, is piezoelectric.
  • the frequency of the resonance point of the circuit composed of the resonator 211, the inductors 212 and 213, and the variable capacitor 214 is higher than the frequency of the anti-resonance point of the circuit composed of the piezoelectric resonator 211, the inductors 212 and 213, and the variable capacitor 214. Lower.
  • the frequency of the resonance point can be adjusted within this frequency range by changing the capacitance of the variable capacitor 215.
  • the series arm resonance circuit 21 includes inductors 212 and 213 together with the piezoelectric resonator 211, so that the sub resonance point fsr CO and the sub antiresonance point fsa CO appear.
  • the sub-resonance point fsr CO closest to the anti-resonance point fsa of the series arm resonance circuit 21 appears on the higher frequency side than the anti-resonance point fsa.
  • the sub antiresonance point fsa CO closest to the resonance point fsr and the antiresonance point fsa of the series arm resonance circuit 21 appears on the lower frequency side than the resonance point fsr.
  • the inductors 222 and 223 are so-called extension inductors.
  • the frequency of the antiresonance point of the circuit including the piezoelectric resonator 221 and the inductor 222 is higher than the frequency of the antiresonance point of the piezoelectric resonator 221.
  • the inductor 223 the frequency of the resonance point of the circuit composed of the piezoelectric resonator 221, the inductor 222, and the inductor 223 becomes lower than the frequency of the resonance point of the circuit composed of the piezoelectric resonator 221 and the inductor 222.
  • the frequency variable range of the resonance point and the anti-resonance point can be widened.
  • the frequency of the antiresonance point of the circuit including the piezoelectric resonator 221, the inductors 222 and 223, and the variable capacitor 224 is determined from the piezoelectric resonator 221 and the inductors 222 and 223. It is lower than the frequency of the antiresonance point of the circuit, and higher than the frequency of the resonance point of the circuit composed of the piezoelectric resonator 221 and the inductors 222 and 223.
  • the antiresonance point can be adjusted within this frequency range. That is, the antiresonance point fpa of the parallel arm resonance circuit 22 can be adjusted.
  • the parallel arm resonance circuit 22 includes the variable capacitor 225, the frequency of the resonance point of the circuit including the piezoelectric resonator 221, the inductors 222 and 223, and the variable capacitors 224 and 225, that is, the parallel arm resonance circuit 22, is piezoelectric resonance. Higher than the frequency of the resonance point of the circuit composed of the element 221, the inductors 222 and 223, and the variable capacitor 224, and lower than the frequency of the anti-resonance point of the circuit composed of the piezoelectric resonator 221, the inductors 222 and 223, and the variable capacitor 224. Become. At this time, the frequency fpr of the resonance point can be adjusted within this frequency range by changing the capacitance of the variable capacitor 215.
  • the parallel arm resonance circuit 22 includes inductors 222 and 223 together with the piezoelectric resonator 221, so that a secondary resonance point fpr CO and a secondary antiresonance point fpa CO appear.
  • the sub resonance point fpr CO closest to the resonance point fpr and the antiresonance point fpa of the parallel arm resonance circuit 22 appears on the higher frequency side than the antiresonance point fpa.
  • the sub antiresonance point fpa CO closest to the resonance point fpr and the antiresonance point fpa of the parallel arm resonance circuit 22 appears on the lower frequency side than the resonance point fpr.
  • the series arm secondary resonance point fsr CO of the resonance circuit 21 at least one secondary anti-resonance point fsa CO, the secondary resonance point fpr CO or secondary anti-resonance point fpa CO of the parallel arm resonator circuit 22
  • the filter characteristics are set using one of them.
  • the sub-antiresonance point fpa CO of the secondary resonance point fsr CO and parallel arm resonator circuit 22 of the series arm resonator circuit 21 utilizes the set of passband sub-antiresonance point fsa CO and of the series arm resonator circuit 21
  • the sub-resonance point fpr CO of the parallel arm resonance circuit 22 is used for setting the attenuation region.
  • the sub-resonance points fsr CO and fpr CO can shift the frequency in the same manner as the resonance points fsr and fpr due to the capacitance of the variable capacitor.
  • the sub-resonance points fsr CO and fpr CO appear on the high frequency band side opposite to the resonance points fsr and fpr with respect to the anti-resonance points fsa and fpa.
  • the sub antiresonance points fsa CO and fpa CO can be shifted in frequency similarly to the antiresonance points fsa and fpa by the capacitance of the variable capacitor.
  • the sub antiresonance points fsa CO and fpa CO appear on the lower frequency band side opposite to the antiresonance points fsa and fpa with respect to the resonance points fsr and fpr.
  • the resonant The filter characteristics can be varied over a wider frequency range than when only the points fsr and fpr and the antiresonance points fsa and fpa are set.
  • the frequency variable range of the resonance points fsr, fpr and the anti-resonance points fsa, fpa is conventionally changed even for a plurality of communication bands corresponding only by the variable of the conventional resonance points fsr, fpr and the anti-resonance points fsa, fpa. It can respond without expanding like a structure. Thereby, the capacitance variable range of the variable capacitor can be narrowed, the Q of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 can be improved, and the pass characteristic and attenuation characteristic of the frequency variable filter 10 can be improved.
  • the horizontal axis represents frequency
  • the vertical axis represents insertion loss and impedance.
  • the solid line indicates the pass characteristic (frequency characteristic of insertion loss) FC of the frequency variable filter
  • the broken line indicates the impedance characteristic (frequency characteristic of impedance) ICrp of the parallel arm resonance circuit
  • the alternate long and short dash line indicates the impedance characteristic ICrs of the series arm resonance circuit.
  • fsr is a resonance point (resonance frequency) of the series arm resonance circuit
  • fsa is an antiresonance point (antiresonance frequency) of the series arm resonance circuit
  • fpr is a resonance point (resonance frequency) of the parallel arm resonance circuit
  • fpa is a parallel arm resonance circuit.
  • fsr CO is a sub-resonance point (sub-resonance frequency) of the series arm resonance circuit
  • fsa CO is a sub-anti-resonance point (sub-anti-resonance frequency) of the series arm resonance circuit.
  • fpr CO is a sub-resonance point (sub-resonance frequency) of the parallel arm resonance circuit
  • fpa CO is a sub-anti-resonance point (sub-anti-resonance frequency) of the parallel arm resonance circuit.
  • FIG. 2 is a characteristic diagram of insertion loss and impedance for explaining a first setting mode of the variable frequency filter according to the embodiment of the present invention.
  • the secondary anti-resonance point fpa CO of the parallel arm resonance circuit 22 is used.
  • the resonance point fsr of the series arm resonance circuit 21 and the auxiliary antiresonance point fpa CO of the parallel arm resonance circuit 22 are brought close to each other with a predetermined frequency width. Thereby, the pass band BWpass of the frequency variable filter 10 is formed. Furthermore, the frequency of the resonance point fpr of the parallel arm resonance circuit 22 and the frequency of the antiresonance point fsa of the series arm resonance circuit 21 are made to substantially coincide. Thereby, an attenuation pole fap H on the high frequency side of the pass band BWpass is formed.
  • the anti-resonance points fsa are kept substantially matched, and the variable capacitors of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 are adjusted to adjust the frequency of the passband BWpass and the attenuation pole fap H , that is, the frequency variable.
  • the pass characteristic FC of the filter can be adjusted.
  • the attenuation characteristic on the high frequency side of the passband BWpass can be made particularly steep.
  • the attenuation pole fap L on the low frequency side of the pass band BWpass is, for example, a secondary antiresonance point (not shown) of the series arm resonance circuit 21 or a resonance point (not shown) of the parallel arm resonance circuit 22. It can be formed by using.
  • FIG. 3 is a characteristic diagram of insertion loss and impedance for explaining a second setting mode of the variable frequency filter according to the embodiment of the present invention.
  • the sub resonance point fsr CO of the series arm resonance circuit 21 is used.
  • the sub-resonance point fsr CO of the series arm resonance circuit 21 and the antiresonance point fpa of the parallel arm resonance circuit 22 are brought close to each other with a predetermined frequency width. Thereby, the pass band BWpass of the frequency variable filter 10 is formed. Further, the resonance point fpr of the parallel arm resonance circuit 22 and the anti-resonance point fsa of the series arm resonance circuit 21 are substantially matched. As a result, an attenuation pole fap L on the low frequency side of the pass band BWpass is formed.
  • the sub-resonance point fsr CO of the series arm resonance circuit 21 and the anti-resonance point fpa of the parallel arm resonance circuit 22 are brought close to each other, and the resonance point fpr of the parallel arm resonance circuit 22 and the series arm resonance circuit
  • the anti-resonance point fsa of 21 is substantially matched, and the variable capacitors of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 are adjusted, so that the passband BWpass and the attenuation pole fap L , that is, the frequency variable filter It is possible to adjust the pass characteristic FC.
  • the attenuation characteristic on the low frequency side of the passband BWpass can be made particularly steep.
  • the attenuation pole fap H on the high frequency side of the passband BWpass can be formed by using, for example, a sub-resonance point (not shown) of the parallel arm resonance circuit 22.
  • FIG. 4 is a characteristic diagram of insertion loss and impedance for explaining a third setting mode of the variable frequency filter according to the embodiment of the present invention.
  • the secondary antiresonance point fsa CO of the series arm resonance circuit 21 is used.
  • the resonance point fsr of the series arm resonance circuit 21 and the antiresonance point fpa of the parallel arm resonance circuit 22 are brought close to each other with a predetermined frequency width. Thereby, the pass band BWpass of the frequency variable filter 10 is formed. Further, the resonance point fpr of the parallel arm resonance circuit 22 and the secondary anti-resonance point fsa CO of the series arm resonance circuit 21 are substantially matched. As a result, an attenuation pole fap L on the low frequency side of the pass band BWpass is formed.
  • the anti-resonance point fsa of the series arm resonance circuit 21 forms an attenuation pole fap H on the high frequency side of the pass band BWpass.
  • the resonance point fsr of the series arm resonance circuit 21 and the antiresonance point fpa of the parallel arm resonance circuit 22 are brought close to each other, and the resonance point fpr of the parallel arm resonance circuit 22 and the secondary antiresonance of the series arm resonance circuit 21.
  • the frequency of the passband BWpass and the attenuation poles fap L and fap H is adjusted by adjusting the variable capacitors of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 while maintaining the point fsa CO substantially matched.
  • the pass characteristic FC of the variable filter can be adjusted.
  • the attenuation characteristic on the low frequency side of the passband BWpass can be made particularly steep.
  • FIG. 5 is a characteristic diagram of insertion loss and impedance for explaining a fourth setting mode of the variable frequency filter according to the embodiment of the present invention.
  • the sub resonance point fpr CO of the parallel arm resonance circuit 22 is used.
  • the resonance point fsr of the series arm resonance circuit 21 and the antiresonance point fpa of the parallel arm resonance circuit 22 are close to each other or substantially coincident with each other. Thereby, the pass band BWpass of the frequency variable filter 10 is formed.
  • the pass band BWpass of the frequency variable filter 10 is formed.
  • an attenuation pole fap H on the high frequency side of the pass band BWpass is formed by the sub resonance point fpr CO of the parallel arm resonance circuit 22.
  • an attenuation pole fap L on the low frequency side of the pass band BWpass is formed by the resonance point fpr of the parallel arm resonance circuit 22.
  • the state where the resonance point fsr of the series arm resonance circuit 21 and the antiresonance point fpa of the parallel arm resonance circuit 22 are close or substantially matched is maintained, and the series arm resonance circuit 21 and the parallel arm resonance circuit 22 are maintained.
  • the variable capacitor By adjusting the variable capacitor, it is possible to adjust the passband BWpass and the frequencies of the attenuation poles fap L and fap H , that is, the pass characteristic FC of the frequency variable filter.
  • the horizontal axis represents frequency
  • the vertical axis represents insertion loss and impedance.
  • the solid line indicates the characteristics when performing the first filter processing corresponding to the first communication band
  • the broken line indicates the characteristics when performing the second filter processing corresponding to the second communication band
  • the alternate long and short dash line is The characteristic in the case of performing the 3rd filter process corresponding to a 3rd communication band.
  • (A) shows the insertion loss characteristic (pass characteristic) of the frequency variable filter
  • (B) shows the impedance characteristic of the series arm resonance circuit
  • (C) shows the impedance characteristic of the parallel arm resonance circuit. Show.
  • FIG. 6 is a characteristic diagram of insertion loss and impedance in the first specific embodiment when used in a plurality of communication bands.
  • a passband BWpass A is formed by the resonance point fsrA of the series arm resonance circuit 21 and the sub-antiresonance point fpa CO A of the parallel arm resonance circuit 22.
  • an attenuation pole fap LA on the low frequency side is formed by the secondary antiresonance point fsa CO A of the series arm resonance circuit 21.
  • the high-frequency attenuation pole fap HA is formed by the resonance point fprA of the parallel arm resonance circuit 22.
  • a pass band BWpass B is formed by the resonance point fsrB of the series arm resonance circuit 21 and the antiresonance point fpaB of the parallel arm resonance circuit 22. Further, the attenuation pole fap LB on the low frequency side is formed by the resonance point fprB of the parallel arm resonance circuit 22. Further, the anti-resonance point fsaB of the series arm resonance circuit 22 forms an attenuation pole fap HB on the high frequency side.
  • a passband BWpass C is formed by the resonance point fsrC of the series arm resonance circuit 21 and the sub-antiresonance point fpaC of the parallel arm resonance circuit 22.
  • the attenuation pole fap LC on the low frequency side is formed by the resonance point fprC of the parallel arm resonance circuit 22.
  • the anti-resonance point fsaC of the series arm resonance circuit 22 forms an attenuation pole fap HC on the high frequency side.
  • the anti-resonance point fpaA of the parallel arm resonance circuit 22 and the series arm resonance circuit 21 When the anti-resonance point fsaA of the arm resonance circuit 21 is used, that is, compared with the case where only the resonance point and the anti-resonance point are used, the variable width of the capacitance necessary for obtaining a desired filter characteristic can be reduced, and a wider passage can be achieved. A filter characteristic having a band can be realized. Since the variable width of the capacitance can be reduced, the Q of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 can be improved, and the deterioration of the insertion loss of the frequency variable filter 10 can be suppressed.
  • FIG. 7 is a characteristic diagram of insertion loss and impedance in the second specific example when used in a plurality of communication bands.
  • a passband BWpass A is formed by the resonance point fsrA of the series arm resonance circuit 21 and the antiresonance point fpaA of the parallel arm resonance circuit 22. Further, the attenuation pole fap LA on the low frequency side is formed by the resonance point fprA of the parallel arm resonance circuit 22. Further, the anti-resonance point fsaA of the series arm resonance circuit 21 forms a high frequency side attenuation pole fap HA .
  • a pass band BWpass B is formed by the resonance point fsrB of the series arm resonance circuit 21 and the antiresonance point fpaB of the parallel arm resonance circuit 22. Further, the attenuation pole fap LB on the low frequency side is formed by the resonance point fprB of the parallel arm resonance circuit 22. Further, the anti-resonance point fsaB of the series arm resonance circuit 22 forms an attenuation pole fap HB on the high frequency side.
  • a passband BWpass C is formed by the sub-resonance point fsr CO C of the series arm resonance circuit 21 and the sub-antiresonance point fpaC of the parallel arm resonance circuit 22. Further, an attenuation pole fap LC on the low frequency side is formed by the antiresonance point fsaC of the series arm resonance circuit 21. Furthermore, the attenuation pole fap HC on the high frequency side is formed by the sub-resonance point fpr CO C of the parallel arm resonance circuit 22.
  • 22 resonance points fprC are used, that is, the variable width of the capacitance can be made smaller than when only the resonance point and the antiresonance point are used, and filter characteristics having a wider pass band can be realized. Since the variable width of the capacitance can be reduced, the Q of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 can be improved, and the deterioration of the insertion loss of the frequency variable filter 10 can be suppressed.
  • FIG. 8 is a characteristic diagram of insertion loss and impedance in a third specific example when used in a plurality of communication bands.
  • a passband BWpass A is formed by the resonance point fsrA of the series arm resonance circuit 21 and the antiresonance point fpaA of the parallel arm resonance circuit 22.
  • the resonance pole fprA of the parallel arm resonance circuit 22 and the auxiliary anti-resonance point fsa CO A of the series arm resonance circuit 21 are substantially matched to form the attenuation pole fap LA on the low frequency side.
  • the anti-resonance point fsaA of the series arm resonance circuit 21 forms a high frequency side attenuation pole fap HA .
  • a pass band BWpass B is formed by the resonance point fsrB of the series arm resonance circuit 21 and the antiresonance point fpaB of the parallel arm resonance circuit 22. Further, the attenuation pole fap LB on the low frequency side is formed by the resonance point fprB of the parallel arm resonance circuit 22. Further, the anti-resonance point fsaB of the series arm resonance circuit 22 forms an attenuation pole fap HB on the high frequency side.
  • a passband BWpass C is formed by the resonance point fsrC of the series arm resonance circuit 21 and the sub-antiresonance point fpaC of the parallel arm resonance circuit 22.
  • the attenuation pole fap LC on the low frequency side is formed by the resonance point fprC of the parallel arm resonance circuit 22.
  • the anti-resonance point fsaC of the series arm resonance circuit 21 forms a high frequency side attenuation pole fap HC .
  • variable width of the capacitance can be reduced, and a filter characteristic having a wider pass band can be realized. Since the variable width of the capacitance can be reduced, the Q of the series arm resonance circuit 21 and the parallel arm resonance circuit 22 can be improved, and the deterioration of the insertion loss of the frequency variable filter 10 can be suppressed.
  • FIG. 9 is a diagram illustrating a circuit configuration example of the resonance circuit according to the embodiment of the present invention. In the following, a derivation example of the series arm resonance circuit 21 is shown, but a similar derivation example can be realized for the parallel arm resonance circuit 22.
  • the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in series.
  • the inductor 212 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
  • the variable capacitor 214 is connected in parallel to the series circuit of the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215.
  • the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in series.
  • the inductor 212 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
  • the inductor 212 is connected in parallel to the series circuit of the piezoelectric resonator 211 and the inductor 213.
  • the variable capacitor 214 is connected in parallel to the inductor 212.
  • the piezoelectric resonator 211, the inductor 213, and the variable capacitor 215 are connected in series.
  • Inductor 212 and variable capacitor 214 are connected in parallel to the series circuit of piezoelectric resonator 211, inductor 213, and variable capacitor 215.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Filters And Equalizers (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

周波数可変フィルタ(10)は、直列腕共振回路(21)と並列腕共振回路(22)を備える。直列腕共振回路(21)と並列腕共振回路(22)は、それぞれに圧電共振子、インダクタ、および可変キャパシタを備える。周波数可変フィルタ(10)の通過帯域(BWpass)は、直列腕共振回路(21)の共振点(fsr)と並列腕共振回路(22)の副反共振点(fpaCO)によって形成される。通過帯域(BWpass)の高周波数側の減衰極(fap)は、直列腕共振回路(21)の反共振点(fsa)と並列腕共振回路(22)の共振点(fpr)によって形成される。

Description

周波数可変フィルタ
 本発明は、圧電共振子を利用した周波数可変フィルタに関する。
 従来、共振点と反共振点を有する圧電共振子を用いた高周波フィルタが各種考案されている。このような圧電共振子を有する高周波フィルタとして、フィルタ特性を調整可能な周波数可変フィルタが各種考案されている。なお、フィルタ特性とは、例えば通過特性や減衰特性、挿入損失等である。
 特許文献1,2に記載の周波数可変フィルタは、圧電共振子に対して可変キャパシタを直列接続や並列接続した共振回路を有する。特許文献1,2では、2つの高周波入出力端子間に直列接続された直列腕共振回路と、当該直列腕共振回路と高周波入出力端子とを接続する伝送ラインとグランドとの間に接続された並列腕共振回路とを備える。
 特許文献1,2に記載の周波数可変フィルタでは、直列腕共振回路の共振点および反共振点と、並列腕共振回路の共振点および反共振点とを適宜組み合わせることで、周波数可変フィルタとしての通過周波数帯域および減衰極の周波数を設定している。
 図10は、従来の周波数可変フィルタの通過帯域および減衰極の設定原理を示す図である。図10において、横軸は周波数であり、縦軸は挿入損失およびインピーダンスである。実線は、周波数可変フィルタの通過特性(挿入損失の周波数特性)FCを示し、破線は並列腕共振回路のインピーダンス特性(インピーダンスの周波数特性)ICrpを示し、一点鎖線は直列腕共振回路のインピーダンス特性ICrsを示す。
 図10に示すように、圧電共振子を用いているので、直列腕共振回路の共振点fsrは反共振点fsaよりも低く、並列腕共振回路の共振点fprは反共振点fpaよりも低い。
 そして、直列腕共振回路においては、共振点fsr付近で、2つの高周波入出力端子間での伝送損失が低く、反共振点fsa付近で、2つの高周波入出力端子間での伝送損失が高くなる。一方、並列腕共振回路においては、共振点fpr付近で、2つの高周波入出力端子間での伝送損失が高く、反共振点fpa付近で、2つの高周波入出力端子間での伝送損失が低くなる。
 この特性を利用して、直列腕共振回路の共振点fsrと、並列腕共振回路の反共振点fpaとを一致もしくは近接させ、周波数可変フィルタの通過帯域BWpassを形成する。また、直列腕共振回路の反共振点fsaによって、周波数可変フィルタの通過帯域BWpassに対する高周波数側の減衰極fapを形成する。さらに、並列腕共振回路の共振点fprによって、周波数可変フィルタの通過帯域BWpassに対する低周波数側の減衰極fapを形成する。
 ここで、直列腕共振回路および並列腕共振回路の圧電共振子に直列接続または並列接続された可変キャパシタのキャパシタンスを変化させることで、直列腕共振回路の共振点fsr、反共振点fsa、および、並列腕共振回路の共振点fpr、反共振点fpaは調整が可能である。したがって、従来の周波数可変フィルタでは、直列腕共振回路および並列腕共振回路の可変キャパシタのキャパシタンスを変化させることで、周波数可変フィルタの通過帯域BWpassおよび減衰極fap,fapを調整している。
特開2009-130831号公報 特許第4053504号明細書
 しかしながら、上述のような回路構成からなる周波数可変フィルタでは、周波数可変幅は、直列腕共振回路および並列腕共振回路の共振点および反共振点の可変幅と略同じである。したがって、周波数可変フィルタにおける周波数可変幅を大きくしようとすると、可変キャパシタのキャパシタンスの可変幅を大きくしなければならない。
 可変キャパシタのQは、圧電共振子のQと比較して低く、キャパシタンスの可変幅が大きくなるほど、Qはさらに劣化してしまう。このため、周波数可変フィルタとしての通過特性および減衰特性は、圧電共振子のみを用いたフィルタと比較して劣化してしまう。特に、周波数可変幅が大きくなるほど、通過特性および減衰特性がより大きく劣化してしまう。
 本発明の目的は、通過特性および減衰特性の劣化を抑制した周波数可変フィルタを提供することにある。
 この発明の周波数可変フィルタは、次の構成を備えることを特徴としている。直列腕共振回路と並列腕共振回路を備える。直列腕共振回路は、第1入出力端子と第2入出力端子との間に接続されている。並列腕共振回路は、第1入出力端子と第2入出力端子のいずれかと直列腕共振回路とを接続する伝送ラインとグランドとの間に接続されている。周波数可変フィルタは、通過帯域および減衰域を調整可能なフィルタである。直列腕共振回路と並列腕共振回路とは、圧電共振子と、該圧電共振子に直列接続または並列接続されるインダクタと、圧電共振子に直列接続または並列接続される可変キャパシタと、を備える。周波数可変フィルタは、当該周波数可変フィルタがフィルタ処理する複数の通信バンドの内の少なくとも1つの通信バンドに対して、直列腕共振回路の副共振点または副反共振点、もしくは、並列腕共振回路の副共振点または副反共振点の少なくとも1つを用いて、通過帯域および減衰域を調整する。
 この構成では、共振点と反共振点だけでなく、反共振点よりも高周波数側に現れる副共振点、または共振点よりも低周波数側に現れる副反共振点も、通過帯域および減衰域の設定に利用できる。したがって、共振点および反共振点の可変周波数幅を狭くしても、周波数可変フィルタとしてフィルタ処理する複数の通信バンドに対する通過帯域および減衰域の設定を行うことができる。そして、共振点および反共振点の可変周波数幅が狭くなることで、各共振回路のQが改善され、通過特性および減衰特性が向上する。
 また、この発明の周波数可変フィルタは、次の構成とすることができる。この周波数可変フィルタの並列腕共振回路は、該並列腕共振回路の圧電共振子に並列接続するインダクタを備え、並列腕共振回路の共振点よりも低周波数側に副反共振点を発生させる。そして、この副反共振点を用いて、周波数可変フィルタの通過帯域を設定する。
 より具体的な一態様としては、次の構成であることが好ましい。
 周波数可変フィルタは、並列腕共振回路の副反共振点と直列腕共振回路の共振点とを近接させることで、通過帯域を設定する。周波数可変フィルタは、直列腕共振回路の反共振点と並列腕共振回路の共振点とを近接させることで、通過帯域の高周波数側の減衰域を設定する。
 この構成では、並列腕共振回路の副反共振点を用いることで、並列腕共振回路の反共振点の周波数可変幅が小さくても、通過帯域の周波数可変幅を大きく取ることができる。
 また、この発明の周波数可変フィルタは、次の構成とすることができる。この周波数可変フィルタの直列腕共振回路は、該直列腕共振回路の圧電共振子に直列接続するインダクタを備え、直列腕共振回路の反共振点よりも高周波数側に副共振を発生させる。そして、この副共振点を用いて通過帯域を設定する。
 より具体的な一態様としては、次の構成であることが好ましい。
 周波数可変フィルタは、直列腕共振回路の副共振点と並列腕共振回路の反共振点とを近接させることで、通過帯域を設定する。周波数可変フィルタは、直列腕共振回路の反共振点と並列腕共振回路の共振点とを近接させることで、通過帯域の低域側の減衰域を設定する。
 この構成では、直列腕共振回路の副共振点を用いることで、直列腕共振回路の共振点の周波数可変幅が小さくても、通過帯域の周波数可変幅を大きく取ることができる。
 また、この発明の周波数可変フィルタは、次の構成とすることができる。この周波数可変フィルタの直列腕共振回路は、該直列腕共振回路の圧電共振子に並列接続するインダクタを備え、直列腕共振回路の共振点よりも低周波数側に副反共振点を発生させる。そして、この副反共振点を用いて減衰域を設定する。
 より具体的な一態様としては、次の構成であることが好ましい。
 周波数可変フィルタは、直列腕共振回路の共振点と並列腕共振回路の反共振点とを近接させることで、通過帯域を設定する。周波数可変フィルタは、直列腕共振回路の副反共振点と並列腕共振回路の共振点とを近接させることで、通過帯域の低周波数側の減衰域を設定する。
 この構成では、直列腕共振回路の副反共振点を用いることで、直列腕共振回路の反共振点の周波数可変幅が小さくても、減衰域の周波数可変幅を大きく取ることができる。
 また、この発明の周波数可変フィルタは、次の構成とすることができる。この周波数可変フィルタの並列腕共振回路は、該並列腕共振回路の圧電共振子に直列接続するインダクタを備え、並列腕共振回路の反共振点よりも高周波数側に副共振を発生させる。そして、この副共振点を用いて減衰域を設定する。
 より具体的な一態様としては、次の構成であることが好ましい。
 周波数可変フィルタは、直列腕共振回路の共振点と並列腕共振回路の反共振点とを近接させることで、通過帯域を設定する。並列腕共振回路の副共振点を用いて通過帯域の高周波数側の減衰域を設定する。
 この構成では、並列腕共振回路の副共振点を用いることで、並列腕共振回路の共振点の周波数可変幅が小さくても、減衰域の周波数可変幅を大きく取ることができる。
 このようないずれの態様であっても、直列腕共振回路または並列腕共振回路の可変キャパシタのキャパシタンス可変範囲を大きくせずに、通過帯域の可変範囲を広くすることができる。
 この発明によれば、優れた通過特性および減衰特性を有する周波数可変フィルタを実現することができる。
本発明の実施形態に係る周波数可変フィルタの回路図である。 本発明の実施形態に係る周波数可変フィルタの第1設定態様を説明するための挿入損失およびインピーダンスの特性図である。 本発明の実施形態に係る周波数可変フィルタの第2設定態様を説明するための挿入損失およびインピーダンスの特性図である。 本発明の実施形態に係る周波数可変フィルタの第3設定態様を説明するための挿入損失およびインピーダンスの特性図である。 本発明の実施形態に係る周波数可変フィルタの第4設定態様を説明するための挿入損失およびインピーダンスの特性図である。 複数の通信バンドで利用する場合の第1の具体的な実施例における挿入損失およびインピーダンスの特性図である。 複数の通信バンドで利用する場合の第2の具体的な実施例における挿入損失およびインピーダンスの特性図である。 複数の通信バンドで利用する場合の第3の具体的な実施例における挿入損失およびインピーダンスの特性図である。 本発明の実施形態に係る共振回路の回路構成例を示す図である。 従来の周波数可変フィルタの通過帯域および減衰極の設定原理を示す図である。
 本発明の実施形態に係る周波数可変フィルタについて、図を参照して説明する。図1は、本発明の実施形態に係る周波数可変フィルタの回路図である。
 図1に示すように、周波数可変フィルタ10は、直列腕共振回路21、および並列腕共振回路22を備える。
 直列腕共振回路21は、第1入出力端子P1と第2入出力端子P2との間に接続されている。すなわち、直列腕共振回路21は、高周波信号の伝送ラインに対してシリーズ接続されている。並列腕共振回路22は、直列腕共振回路21と第2入出力端子P2とを接続する伝送ラインとグランドとの間に接続されている。すなわち、並列腕共振回路22は、伝送ラインに対してシャント接続されている。
 直列腕共振回路21は、圧電共振子211、インダクタ212,213、可変キャパシタ214,215を備える。圧電共振子211、インダクタ213、および、可変キャパシタ215は、第1入出力端子P1と第2入出力端子P2との間に直列接続されている。この際、第1入出力端子P1側から、圧電共振子211、インダクタ213、可変キャパシタ215の順で接続されている。インダクタ212は、圧電共振子211に並列接続されている。可変キャパシタ214は、圧電共振子211とインダクタ213の直列回路に対して、並列接続されている。
 並列腕共振回路22は、圧電共振子221、インダクタ222,223、可変キャパシタ224,225を備える。圧電共振子221、インダクタ223、および可変キャパシタ225は、伝送ラインとグランドとの間に直列接続されている。この際、グランド側から、圧電共振子221、インダクタ223、可変キャパシタ225の順に接続されている。インダクタ222は、圧電共振子221に並列接続されている。可変キャパシタ224は、圧電共振子221とインダクタ223の直列回路に対して、並列接続されている。
 圧電共振子211,221は、SAW共振子やBAW共振子によって実現される。例えば、SAW共振子の場合には、所定カット(例えば、Yカット)がなされたニオブ酸リチウム基板の表面に、櫛形電極を形成することにより実現される。
 インダクタ212,213,221,223は、例えば、圧電共振子211,221を実装する実装基板に形成した電極パターンや、実装基板の表面に実装したチップ部品によって実現される。可変キャパシタ214,215,224,225は、例えば、圧電共振子211,221を実装する実装基板の表面に実装したチップ部品によって実現される。
 直列腕共振回路21において、インダクタ212,213は、所謂、伸長のインダクタと呼ばれるものである。インダクタ212を備えることで、圧電共振子211とインダクタ212からなる回路の反共振点の周波数は、圧電共振子211の反共振点の周波数よりも高くなる。インダクタ213を備えることで、圧電共振子211、インダクタ212、およびインダクタ213からなる回路の共振点の周波数は、圧電共振子211およびインダクタ212からなる回路の共振点の周波数よりも低くなる。このようなインダクタ212,213を備えることで、共振点および反共振点の周波数可変範囲を広くすることができる。
 直列腕共振回路21では、可変キャパシタ214を備えることで、圧電共振子211、インダクタ212,213、および可変キャパシタ214からなる回路の反共振点は、圧電共振子211とインダクタ212,213からなる回路の反共振点よりも周波数が低く、圧電共振子211とインダクタ212,213からなる回路の共振点よりも周波数が高くなる。この際、可変キャパシタ214のキャパシタンスを変化させることで、この周波数範囲内で、共振点の周波数を調整することができる。すなわち、直列腕共振回路21の反共振点の周波数fsaを調整することできる。
 直列腕共振回路21では、可変キャパシタ215を備えることで、圧電共振子211、インダクタ212,213、および可変キャパシタ214,215からなる回路、すなわち直列腕共振回路21の反共振点の周波数は、圧電共振子211、インダクタ212,213、および可変キャパシタ214からなる回路の共振点の周波数よりも高く、圧電共振子211、インダクタ212,213、および可変キャパシタ214からなる回路の反共振点の周波数よりも低くなる。この際、可変キャパシタ215のキャパシタンスを変化させることで、この周波数範囲内で、共振点の周波数を調整することができる。
 さらに、直列腕共振回路21は、圧電共振子211とともに、インダクタ212,213を備えることで、副共振点fsrCOおよび副反共振点fsaCOが現れる。直列腕共振回路21の反共振点fsaに最も近い副共振点fsrCOは、反共振点fsaよりも高周波数側に現れる。直列腕共振回路21の共振点fsrおよび反共振点fsaに最も近い副反共振点fsaCOは、共振点fsrよりも低周波数側に現れる。
 並列腕共振回路22において、インダクタ222,223は、所謂、伸長のインダクタと呼ばれるものである。インダクタ222を備えることで、圧電共振子221とインダクタ222からなる回路の反共振点の周波数は、圧電共振子221の反共振点の周波数よりも高くなる。インダクタ223を備えることで、圧電共振子221、インダクタ222、およびインダクタ223からなる回路の共振点の周波数は、圧電共振子221およびインダクタ222からなる回路の共振点の周波数よりも低くなる。このようなインダクタ222,223を備えることで、共振点および反共振点の周波数可変範囲を広くすることができる。
 並列腕共振回路22では、可変キャパシタ224を備えることで、圧電共振子221、インダクタ222,223、および可変キャパシタ224からなる回路の反共振点の周波数は、圧電共振子221とインダクタ222,223からなる回路の反共振点の周波数よりも低く、圧電共振子221とインダクタ222,223からなる回路の共振点の周波数よりも高くなる。この際、可変キャパシタ224のキャパシタンスを変化させることで、この周波数範囲内で、反共振点を調整することができる。すなわち、並列腕共振回路22の反共振点fpaを調整することできる。
 並列腕共振回路22では、可変キャパシタ225を備えることで、圧電共振子221、インダクタ222,223、および可変キャパシタ224,225からなる回路、すなわち並列腕共振回路22の共振点の周波数は、圧電共振子221、インダクタ222,223、および可変キャパシタ224からなる回路の共振点の周波数よりも高く、圧電共振子221、インダクタ222,223、および可変キャパシタ224からなる回路の反共振点の周波数よりも低くなる。この際、可変キャパシタ215のキャパシタンスを変化させることで、この周波数範囲内で、共振点の周波数fprを調整することができる。
 さらに、並列腕共振回路22は、圧電共振子221とともに、インダクタ222,223を備えることで、副共振点fprCOおよび副反共振点fpaCOが現れる。並列腕共振回路22の共振点fprおよび反共振点fpaに最も近い副共振点fprCOは、反共振点fpaよりも高周波数側に現れる。並列腕共振回路22の共振点fprおよび反共振点fpaに最も近い副反共振点fpaCOは、共振点fprよりも低周波数側に現れる。
 本実施形態の周波数可変フィルタ10は、直列腕共振回路21の副共振点fsrCO、副反共振点fsaCO、並列腕共振回路22の副共振点fprCOまたは副反共振点fpaCOの少なくとも1つを利用して、フィルタ特性を設定している。この際、直列腕共振回路21の副共振点fsrCOおよび並列腕共振回路22の副反共振点fpaCOは、通過帯域の設定に利用し、直列腕共振回路21の副反共振点fsaCOおよび並列腕共振回路22の副共振点fprCOは減衰域の設定に利用する。
 副共振点fsrCO,fprCOは、可変キャパシタのキャパシタンスにより、共振点fsr,fprと同じように、周波数をシフトすることができる。そして、副共振点fsrCO,fprCOは、反共振点fsa,fpaを基準にして、共振点fsr,fprと反対側の高い周波数帯域側に現れる。
 同様に、副反共振点fsaCO,fpaCOも、可変キャパシタのキャパシタンスにより、反共振点fsa,fpaと同じように、周波数をシフトすることができる。そして、副反共振点fsaCO,fpaCOは、共振点fsr,fprを基準にして、反共振点fsa,fpaと反対側の低い周波数帯域側に現れる。
 したがって、直列腕共振回路21の副共振点fsrCO、副反共振点fsaCO、並列腕共振回路22の副共振点fprCOまたは副反共振点fpaCOの少なくとも1つを利用することで、共振点fsr,fprと反共振点fsa,fpaのみで設定するよりも、広い周波数範囲でフィルタ特性を可変することができる。
 言い換えれば、従来の共振点fsr,fprと反共振点fsa,fpaの可変のみによって対応した複数の通信バンドに対しても、共振点fsr,fprと反共振点fsa,fpaの周波数可変範囲を従来構成のように広げることなく対応することができる。これにより、可変キャパシタのキャパシタンス可変範囲を狭くすることができ、直列腕共振回路21や並列腕共振回路22のQを改善でき、周波数可変フィルタ10の通過特性および減衰特性を向上させることができる。
 次に、具体的な設定態様を、図を参照して説明する。なお、以下の各設定態様を説明する特性図では、横軸は周波数であり、縦軸は挿入損失およびインピーダンスである。実線は、周波数可変フィルタの通過特性(挿入損失の周波数特性)FCを示し、破線は並列腕共振回路のインピーダンス特性(インピーダンスの周波数特性)ICrpを示し、一点鎖線は直列腕共振回路のインピーダンス特性ICrsを示す。fsrは直列腕共振回路の共振点(共振周波数)、fsaは直列腕共振回路の反共振点(反共振周波数)、fprは並列腕共振回路の共振点(共振周波数)、fpaは並列腕共振回路の反共振点(反共振周波数)である。fsrCOは、直列腕共振回路の副共振点(副共振周波数)、fsaCOは、直列腕共振回路の副反共振点(副反共振周波数)である。fprCOは、並列腕共振回路の副共振点(副共振周波数)、fpaCOは、並列腕共振回路の副反共振点(副反共振周波数)である。
 (第1設定態様)
 図2は、本発明の実施形態に係る周波数可変フィルタの第1設定態様を説明するための挿入損失およびインピーダンスの特性図である。
 第1設定態様では、並列腕共振回路22の副反共振点fpaCOを利用する。
 図2に示すように、直列腕共振回路21の共振点fsrと並列腕共振回路22の副反共振点fpaCOを、所定の周波数幅をもって近接させる。これにより、周波数可変フィルタ10の通過帯域BWpassを形成する。さらに、並列腕共振回路22の共振点fprの周波数と直列腕共振回路21の反共振点fsaの周波数を略一致させる。これにより、通過帯域BWpassの高周波数側の減衰極fapを形成する。
 そして、このような直列腕共振回路21の共振点fsrと並列腕共振回路22の副反共振点fpaCOを近接させた状態、および、並列腕共振回路22の共振点fprと直列腕共振回路21の反共振点fsaを略一致させた状態を維持して、直列腕共振回路21および並列腕共振回路22の可変キャパシタを調整することで、通過帯域BWpassおよび減衰極fapの周波数、すなわち周波数可変フィルタの通過特性FCを調整することができる。
 また、このような構成を用いることで、通過帯域BWpassの高周波数側の減衰特性を特に急峻にすることができる。
 なお、通過帯域BWpassの低周波数側の減衰極fapは、例えば、直列腕共振回路21の副反共振点(図示せず)、または、並列腕共振回路22の共振点(図示せず)を用いることで形成できる。
 (第2設定態様)
 図3は、本発明の実施形態に係る周波数可変フィルタの第2設定態様を説明するための挿入損失およびインピーダンスの特性図である。
 第2設定態様では、直列腕共振回路21の副共振点fsrCOを利用する。
 図3に示すように、直列腕共振回路21の副共振点fsrCOと並列腕共振回路22の反共振点fpaを所定の周波数幅をもって近接させる。これにより、周波数可変フィルタ10の通過帯域BWpassを形成する。さらに、並列腕共振回路22の共振点fprと直列腕共振回路21の反共振点fsaを略一致させる。これにより、通過帯域BWpassの低周波数側の減衰極fapを形成する。
 そして、このような直列腕共振回路21の副共振点fsrCOと並列腕共振回路22の反共振点fpaを、近接させた状態、および、並列腕共振回路22の共振点fprと直列腕共振回路21の反共振点fsaを略一致させた状態を維持して、直列腕共振回路21および並列腕共振回路22の可変キャパシタを調整することで、通過帯域BWpassおよび減衰極fap、すなわち周波数可変フィルタの通過特性FCを調整することができる。
 また、このような構成を用いることで、通過帯域BWpassの低周波数側の減衰特性を特に急峻にすることができる。
 なお、通過帯域BWpassの高周波数側の減衰極fapは、例えば、並列腕共振回路22の副共振点(図示せず)を用いることで形成できる。
 (第3設定態様)
 図4は、本発明の実施形態に係る周波数可変フィルタの第3設定態様を説明するための挿入損失およびインピーダンスの特性図である。
 第3設定態様では、直列腕共振回路21の副反共振点fsaCOを利用する。
 図4に示すように、直列腕共振回路21の共振点fsrと並列腕共振回路22の反共振点fpaを、所定の周波数幅をもって近接させる。これにより、周波数可変フィルタ10の通過帯域BWpassを形成する。さらに、並列腕共振回路22の共振点fprと直列腕共振回路21の副反共振点fsaCOを略一致させる。これにより、通過帯域BWpassの低周波数側の減衰極fapを形成する。
 さらに、直列腕共振回路21の反共振点fsaによって、通過帯域BWpassの高周波数側の減衰極fapを形成する。
 そして、このような直列腕共振回路21の共振点fsrと並列腕共振回路22の反共振点fpaを近接させた状態、並列腕共振回路22の共振点fprと直列腕共振回路21の副反共振点fsaCOを略一致させた状態を維持して、直列腕共振回路21および並列腕共振回路22の可変キャパシタを調整することで、通過帯域BWpassおよび減衰極fap,fapの周波数、すなわち周波数可変フィルタの通過特性FCを調整することができる。
 また、このような構成を用いることで、通過帯域BWpassの低周波数側の減衰特性を特に急峻にすることができる。
 (第4設定態様)
 図5は、本発明の実施形態に係る周波数可変フィルタの第4設定態様を説明するための挿入損失およびインピーダンスの特性図である。
 第4設定態様では、並列腕共振回路22の副共振点fprCOを利用する。
 図5に示すように、直列腕共振回路21の共振点fsrと並列腕共振回路22の反共振点fpaを近接もしくは略一致させる。これにより、周波数可変フィルタ10の通過帯域BWpassを形成する。略一致させる態様を用いることで、通過帯域BWpassの幅を狭くし、さらに挿入損失を低減させることができる。さらに、並列腕共振回路22の副共振点fprCOにより、通過帯域BWpassの高周波数側の減衰極fapを形成する。
 さらに、並列腕共振回路22の共振点fprによって、通過帯域BWpassの低周波数側の減衰極fapを形成する。
 そして、このような直列腕共振回路21の共振点fsrと並列腕共振回路22の反共振点fpaを近接もしくは略一致させた状態を維持して、直列腕共振回路21および並列腕共振回路22の可変キャパシタを調整することで、通過帯域BWpassおよび減衰極fap,fapの周波数、すなわち周波数可変フィルタの通過特性FCを調整することができる。
 次に、複数の通信バンドで利用する場合の具体的な特性の設定例について説明する。なお、以下の各具体的な特性の設定例を説明する特性図では、横軸は周波数であり、縦軸は挿入損失およびインピーダンスである。また、実線は、第1通信バンドに対応する第1フィルタ処理を行う場合の特性を示し、破線は、第2通信バンドに対応する第2フィルタ処理を行う場合の特性を示し、一点鎖線は、第3通信バンドに対応する第3フィルタ処理を行う場合の特性を示す。また、各図において、(A)は周波数可変フィルタの挿入損失特性(通過特性)を示し、(B)は直列腕共振回路のインピーダンス特性を示し、(C)は並列腕共振回路のインピーダンス特性を示す。
 (第1実施例)
 図6は、複数の通信バンドで利用する場合の第1の具体的な実施例における挿入損失およびインピーダンスの特性図である。
 第1通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrAと、並列腕共振回路22の副反共振点fpaCOAによって、通過帯域BWpassを形成する。また、直列腕共振回路21の副反共振点fsaCOAによって、低周波数側の減衰極fapLAを形成する。さらに、並列腕共振回路22の共振点fprAによって、高周波数側の減衰極fapHAを形成する。
 第2通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrBと、並列腕共振回路22の反共振点fpaBによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprBによって、低周波数側の減衰極fapLBを形成する。さらに、直列腕共振回路22の反共振点fsaBによって、高周波数側の減衰極fapHBを形成する。
 第3通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrCと、並列腕共振回路22の副反共振点fpaCによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprCによって、低周波数側の減衰極fapLCを形成する。さらに、直列腕共振回路22の反共振点fsaCによって、高周波数側の減衰極fapHCを形成する。
 このような構成とすることで、異なる周波数帯域を通過帯域とする帯域通過フィルタを実現できる。この際、各通過帯域への調整は、直列腕共振回路21および並列腕共振回路22に含まれる可変キャパシタのキャパシタンスのみで調整される。
 そして、並列腕共振回路22の副反共振点fpaCOA、および、直列腕共振回路21の副反共振点fsaCOAを用いることで、並列腕共振回路22の反共振点fpaA、および、直列腕共振回路21の反共振点fsaAを用いる場合、すなわち、共振点と反共振点のみを用いる場合よりも所望のフィルタ特性を得るのに必要となるキャパシタンスの可変幅を小さくできたり、より広い通過帯域を持つフィルタ特性を実現できる。そして、キャパシタンスの可変幅を小さくできることにより、直列腕共振回路21および並列腕共振回路22のQを改善でき、周波数可変フィルタ10の挿入損失の劣化を抑制することができる。
 (第2実施例)
 図7は、複数の通信バンドで利用する場合の第2の具体的な実施例における挿入損失およびインピーダンスの特性図である。
 第1通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrAと、並列腕共振回路22の反共振点fpaAによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprAによって、低周波数側の減衰極fapLAを形成する。さらに、直列腕共振回路21の反共振点fsaAによって、高周波数側の減衰極fapHAを形成する。
 第2通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrBと、並列腕共振回路22の反共振点fpaBによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprBによって、低周波数側の減衰極fapLBを形成する。さらに、直列腕共振回路22の反共振点fsaBによって、高周波数側の減衰極fapHBを形成する。
 第3通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の副共振点fsrCOCと、並列腕共振回路22の副反共振点fpaCによって、通過帯域BWpassを形成する。また、直列腕共振回路21の反共振点fsaCによって、低周波数側の減衰極fapLCを形成する。さらに、並列腕共振回路22の副共振点fprCOCによって、高周波数側の減衰極fapHCを形成する。
 このような構成とすることで、異なる周波数帯域を通過帯域とする帯域通過フィルタを実現できる。この際、各通過帯域への調整は、直列腕共振回路21および並列腕共振回路22に含まれる可変キャパシタのキャパシタンスのみで調整される。
 そして、直列腕共振回路21の副共振点fsrCOC、および、並列腕共振回路22の副共振点fprCOCを用いることで、直列腕共振回路21の共振点fsrC、および、並列腕共振回路22の共振点fprCを用いる場合、すなわち、共振点と反共振点のみを用いる場合よりもキャパシタンスの可変幅を小さくできたり、より広い通過帯域を持つフィルタ特性を実現できる。キャパシタンスの可変幅を小さくできることにより、直列腕共振回路21および並列腕共振回路22のQを改善でき、周波数可変フィルタ10の挿入損失の劣化を抑制することができる。
 (第3実施例)
 図8は、複数の通信バンドで利用する場合の第3の具体的な実施例における挿入損失およびインピーダンスの特性図である。
 第1通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrAと、並列腕共振回路22の反共振点fpaAによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprAと直列腕共振回路21の副反共振点fsaCOAを略一致させることによって、低周波数側の減衰極fapLAを形成する。さらに、直列腕共振回路21の反共振点fsaAによって、高周波数側の減衰極fapHAを形成する。
 第2通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrBと、並列腕共振回路22の反共振点fpaBによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprBによって、低周波数側の減衰極fapLBを形成する。さらに、直列腕共振回路22の反共振点fsaBによって、高周波数側の減衰極fapHBを形成する。
 第3通信バンドを通過させるフィルタを形成する場合、直列腕共振回路21の共振点fsrCと、並列腕共振回路22の副反共振点fpaCによって、通過帯域BWpassを形成する。また、並列腕共振回路22の共振点fprCによって、低周波数側の減衰極fapLCを形成する。さらに、直列腕共振回路21の反共振点fsaCによって、高周波数側の減衰極fapHCを形成する。
 このような構成とすることで、異なる周波数帯域を通過帯域とする帯域通過フィルタを実現できる。この際、各通過帯域への調整は、直列腕共振回路21および並列腕共振回路22に含まれる可変キャパシタのキャパシタンスのみで調整される。
 そして、直列腕共振回路21の副反共振点fsaCOAを用いることで、直列腕共振回路21の反共振点fsaCOAのみを用いる場合、すなわち、共振点と反共振点のみを用いる場合よりもキャパシタンスの可変幅を小さくできたり、より広い通過帯域を持つフィルタ特性を実現できる。キャパシタンスの可変幅を小さくできることにより、直列腕共振回路21および並列腕共振回路22のQを改善でき、周波数可変フィルタ10の挿入損失の劣化を抑制することができる。
 さらに、第3実施例に示すように、反共振点とこれに対応する副反共振点を組み合わせて用いることで、さらに多様な通過特性および減衰特性を実現することができる。なお、共振点と副共振点を組み合わせても、同様に、さらに多様な通過特性および減衰特性を実現することができる。
 なお、上述の直列腕共振回路21および並列腕共振回路22は、上述の構成に限ることなく、図9(A),(B),(C)に示す構成であってもよい。図9は、本発明の実施形態に係る共振回路の回路構成例を示す図である。なお、以下では、直列腕共振回路21の派生例を示すが、並列腕共振回路22についても同様の派生例を実現することができる。
 図9(A)に示す周波数可変共振回路21Aでは、圧電共振子211、インダクタ213、および可変キャパシタ215は、直列接続されている。インダクタ212は、圧電共振子211、インダクタ213の直列回路に並列接続されている。可変キャパシタ214は、圧電共振子211、インダクタ213、および可変キャパシタ215の直列回路に対して並列接続されている。
 図9(B)に示す周波数可変共振回路21Bでは、圧電共振子211、インダクタ213、および可変キャパシタ215は、直列接続されている。インダクタ212は、圧電共振子211、インダクタ213の直列回路に並列接続されている。インダクタ212は、圧電共振子211、インダクタ213の直列回路に並列接続されている。可変キャパシタ214は、インダクタ212に並列接続されている。
 図9(C)に示す周波数可変共振回路21Cでは、圧電共振子211、インダクタ213、および可変キャパシタ215は、直列接続されている。インダクタ212および可変キャパシタ214は、圧電共振子211、インダクタ213、および可変キャパシタ215の直列回路に対して並列接続されている。
 なお、上述の各実施形態では、複数の通信バンドに対応する周波数可変型の帯域通過フィルタを形成する例を示したが、複数の通信バンドに対応する周波数可変型の低域通過フィルタや高域通過フィルタに適用することもできる。
10:周波数可変フィルタ
21,21A,21B,21C:直列腕共振回路
22:並列腕共振回路
211,221:圧電共振子
212,213,222,223:インダクタ(伸長のインダクタ)
214,215,224,225:可変キャパシタ

Claims (9)

  1.  第1入出力端子と第2入出力端子との間に接続された直列腕共振回路と、
     前記第1入出力端子と前記第2入出力端子のいずれかと前記直列腕共振回路とを接続する伝送ラインとグランドとの間に接続された並列腕共振回路と、を備え、通過帯域および減衰域を調整可能な周波数可変フィルタであって、
     前記直列腕共振回路と前記並列腕共振回路とは、圧電共振子と、該圧電共振子に直列接続または並列接続されるインダクタと、前記圧電共振子に直列接続または並列接続される可変キャパシタと、を備え、
     前記直列腕共振回路の副共振点または副反共振点、もしくは、前記並列腕共振回路の副共振点または副反共振点の少なくとも1つを用いて、通過帯域または減衰域を調整する、周波数可変フィルタ。
  2.  前記並列腕共振回路は、該並列腕共振回路の圧電共振子に並列接続する前記インダクタを備え、前記並列腕共振回路の共振点よりも低周波数側に副反共振を発生させ、
     副反共振点を用いて、前記通過帯域を設定する、
     請求項1に記載の周波数可変フィルタ。
  3.  前記並列腕共振回路の副反共振点と前記直列腕共振回路の共振点とを近接させることで、前記通過帯域を設定し、
     前記直列腕共振回路の反共振点と前記並列腕共振回路の共振点とを近接させることで、前記通過帯域の高周波数側の前記減衰域を設定する、
     請求項2に記載の周波数可変フィルタ。
  4.  前記直列腕共振回路は、該直列腕共振回路の圧電共振子に直列接続する前記インダクタを備え、前記直列腕共振回路の反共振点よりも高周波数側に副共振を発生させ、
     副共振点を用いて前記通過帯域を設定する、
     請求項1に記載の周波数可変フィルタ。
  5.  前記直列腕共振回路の副共振点と前記並列腕共振回路の反共振点とを近接させることで、前記通過帯域を設定し、
     前記直列腕共振回路の反共振点と前記並列腕共振回路の共振点とを近接させることで、前記通過帯域の低域側の前記減衰域を設定する、
     請求項4に記載の周波数可変フィルタ。
  6.  前記直列腕共振回路は、該直列腕共振回路の圧電共振子に並列接続する前記インダクタを備え、前記直列腕共振回路の共振点よりも低周波数側に副反共振を発生させ、
     副反共振点を用いて前記減衰域を設定する、
     請求項1に記載の周波数可変フィルタ。
  7.  前記直列腕共振回路の共振点と前記並列腕共振回路の反共振点とを近接させることで、前記通過帯域を設定し、
     前記直列腕共振回路の副反共振点と前記並列腕共振回路の共振点とを近接させることで、前記通過帯域の低周波数側の前記減衰域を設定する、
     請求項6に記載の周波数可変フィルタ。
  8.  前記並列腕共振回路は、該並列腕共振回路の圧電共振子に直列接続する前記インダクタを備え、前記並列腕共振回路の反共振点よりも高周波数側に副共振を発生させ、
     副共振点を用いて前記減衰域を設定する、
     請求項1に記載の周波数可変フィルタ。
  9.  前記直列腕共振回路の共振点と前記並列腕共振回路の反共振点とを近接させることで、前記通過帯域を設定し、
     前記並列腕共振回路の副共振点を用いて前記通過帯域の高周波数側の前記減衰域を設定する、
     請求項8に記載の周波数可変フィルタ。
PCT/JP2014/082620 2013-12-13 2014-12-10 周波数可変フィルタ WO2015087894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112014005637.5T DE112014005637B4 (de) 2013-12-13 2014-12-10 Frequenzvariables Filter
JP2015552473A JP6308221B2 (ja) 2013-12-13 2014-12-10 周波数可変フィルタ
CN201480067558.XA CN105850040B (zh) 2013-12-13 2014-12-10 频率可变滤波器
US15/178,113 US10171062B2 (en) 2013-12-13 2016-06-09 Variable-frequency filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013257769 2013-12-13
JP2013-257769 2013-12-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/178,113 Continuation US10171062B2 (en) 2013-12-13 2016-06-09 Variable-frequency filter

Publications (1)

Publication Number Publication Date
WO2015087894A1 true WO2015087894A1 (ja) 2015-06-18

Family

ID=53371196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082620 WO2015087894A1 (ja) 2013-12-13 2014-12-10 周波数可変フィルタ

Country Status (5)

Country Link
US (1) US10171062B2 (ja)
JP (1) JP6308221B2 (ja)
CN (1) CN105850040B (ja)
DE (1) DE112014005637B4 (ja)
WO (1) WO2015087894A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037968A1 (ja) * 2016-08-26 2018-03-01 株式会社村田製作所 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
WO2018061878A1 (ja) * 2016-09-29 2018-04-05 株式会社村田製作所 弾性波装置、高周波フロントエンド回路および通信装置
WO2018135538A1 (ja) * 2017-01-19 2018-07-26 株式会社村田製作所 高周波フィルタ、高周波フロントエンド回路、および通信装置
CN110383687A (zh) * 2017-03-01 2019-10-25 株式会社村田制作所 高频滤波器、多工器、高频前端电路以及通信装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016114662B4 (de) * 2016-08-08 2022-03-03 Snaptrack, Inc. Rekonfigurierbares mikroakustisches Filter und Duplexer mit rekonfigurierbarem mikroakustischem Filter
WO2019188029A1 (ja) * 2018-03-28 2019-10-03 株式会社村田製作所 電圧変換器
KR20190122493A (ko) * 2018-04-20 2019-10-30 삼성전기주식회사 하이 패스 필터
KR102100125B1 (ko) * 2018-09-04 2020-04-13 삼성전기주식회사 필터
US11817893B2 (en) * 2021-03-29 2023-11-14 Psemi Corporation Hybridized wideband notch filter topologies and methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173245A (ja) * 2002-10-30 2004-06-17 Murata Mfg Co Ltd ラダー型フィルタ、分波器、および通信機
JP2007036856A (ja) * 2005-07-28 2007-02-08 Fujitsu Media Device Kk 共振器、フィルタおよびアンテナ分波器
JP2010011300A (ja) * 2008-06-30 2010-01-14 Murata Mfg Co Ltd 共振器、該共振器を用いるフィルタ及びデュプレクサ
WO2012079038A2 (en) * 2010-12-10 2012-06-14 Peregrine Semiconductor Corporation Method, system, and apparatus for resonator circuits and modulating resonators

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933062A (en) * 1997-11-04 1999-08-03 Motorola Inc. Acoustic wave ladder filter with effectively increased coupling coefficient and method of providing same
JP2002223147A (ja) * 2001-01-29 2002-08-09 Oki Electric Ind Co Ltd 弾性表面波フィルタ
US7030718B1 (en) * 2002-08-09 2006-04-18 National Semiconductor Corporation Apparatus and method for extending tuning range of electro-acoustic film resonators
JP4170865B2 (ja) * 2002-09-18 2008-10-22 日本電波工業株式会社 Sawフィルタ
JP4053504B2 (ja) 2004-01-30 2008-02-27 株式会社東芝 チューナブルフィルタ
JP2009130831A (ja) * 2007-11-27 2009-06-11 Samsung Electronics Co Ltd チューナブルフィルタ
EP2530838B1 (en) * 2010-01-28 2018-11-07 Murata Manufacturing Co., Ltd. Tunable filter
CN105474541B (zh) * 2013-08-21 2018-01-12 株式会社村田制作所 可调谐滤波器
JP6187594B2 (ja) * 2013-09-26 2017-08-30 株式会社村田製作所 共振器及び高周波フィルタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004173245A (ja) * 2002-10-30 2004-06-17 Murata Mfg Co Ltd ラダー型フィルタ、分波器、および通信機
JP2007036856A (ja) * 2005-07-28 2007-02-08 Fujitsu Media Device Kk 共振器、フィルタおよびアンテナ分波器
JP2010011300A (ja) * 2008-06-30 2010-01-14 Murata Mfg Co Ltd 共振器、該共振器を用いるフィルタ及びデュプレクサ
WO2012079038A2 (en) * 2010-12-10 2012-06-14 Peregrine Semiconductor Corporation Method, system, and apparatus for resonator circuits and modulating resonators

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018037968A1 (ja) * 2016-08-26 2018-03-01 株式会社村田製作所 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路および通信装置
CN109643987A (zh) * 2016-08-26 2019-04-16 株式会社村田制作所 弹性波滤波器装置、多工器、高频前端电路以及通信装置
US10862456B2 (en) 2016-08-26 2020-12-08 Murata Manufacturing Co., Ltd. Acoustic wave filter device, multiplexer, radio frequency front-end circuit, and communication device
CN109643987B (zh) * 2016-08-26 2023-01-03 株式会社村田制作所 弹性波滤波器装置、多工器、高频前端电路以及通信装置
WO2018061878A1 (ja) * 2016-09-29 2018-04-05 株式会社村田製作所 弾性波装置、高周波フロントエンド回路および通信装置
US10979027B2 (en) 2016-09-29 2021-04-13 Murata Manufacturing Co., Ltd. Acoustic wave device, radio frequency front-end circuit, and communication device
WO2018135538A1 (ja) * 2017-01-19 2018-07-26 株式会社村田製作所 高周波フィルタ、高周波フロントエンド回路、および通信装置
US11012050B2 (en) 2017-01-19 2021-05-18 Murata Manufacturing Co., Ltd. Radio-frequency filter, radio-frequency front-end circuit, and communication apparatus
CN110383687A (zh) * 2017-03-01 2019-10-25 株式会社村田制作所 高频滤波器、多工器、高频前端电路以及通信装置
CN110383687B (zh) * 2017-03-01 2023-02-17 株式会社村田制作所 高频滤波器、多工器、高频前端电路以及通信装置

Also Published As

Publication number Publication date
JPWO2015087894A1 (ja) 2017-03-16
US20160294357A1 (en) 2016-10-06
CN105850040A (zh) 2016-08-10
DE112014005637T5 (de) 2016-08-25
JP6308221B2 (ja) 2018-04-11
US10171062B2 (en) 2019-01-01
CN105850040B (zh) 2018-11-16
DE112014005637B4 (de) 2020-10-08

Similar Documents

Publication Publication Date Title
JP6308221B2 (ja) 周波数可変フィルタ
JP6323464B2 (ja) 高周波フィルタ
JP5896039B2 (ja) フィルタ装置
US20160218695A1 (en) Ladder filter
KR102254694B1 (ko) 탄성파 필터 장치
JP6380400B2 (ja) 周波数可変フィルタ
JP6187594B2 (ja) 共振器及び高周波フィルタ
WO2018051846A1 (ja) 弾性波フィルタ装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP6900580B2 (ja) Rfフィルタおよびrfフィルタを設計する方法
JP6187593B2 (ja) 共振回路及び高周波フィルタ
US20010012237A1 (en) Surface acoustic wave filter and communication device
US7414497B2 (en) Piezoelectric thin-film filter
WO2017084882A1 (en) Filter circuit with additional poles outside passband
KR101905320B1 (ko) 탄성파 필터 장치
JP6654935B2 (ja) ノッチフィルタ
WO2021006073A1 (ja) ラダー型フィルタ及び複合フィルタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869322

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005637

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869322

Country of ref document: EP

Kind code of ref document: A1