WO2015087724A1 - Magnetic loop antenna and magnetic-field communication device using same - Google Patents

Magnetic loop antenna and magnetic-field communication device using same Download PDF

Info

Publication number
WO2015087724A1
WO2015087724A1 PCT/JP2014/081654 JP2014081654W WO2015087724A1 WO 2015087724 A1 WO2015087724 A1 WO 2015087724A1 JP 2014081654 W JP2014081654 W JP 2014081654W WO 2015087724 A1 WO2015087724 A1 WO 2015087724A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic wave
antenna
magnetic
closed loop
combination
Prior art date
Application number
PCT/JP2014/081654
Other languages
French (fr)
Japanese (ja)
Inventor
河野 実則
河野 公則
Original Assignee
有限会社 アール・シー・エス
河野 実則
河野 公則
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社 アール・シー・エス, 河野 実則, 河野 公則 filed Critical 有限会社 アール・シー・エス
Priority to JP2015552393A priority Critical patent/JP6471382B2/en
Publication of WO2015087724A1 publication Critical patent/WO2015087724A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core
    • H04B5/72
    • H04B5/79

Definitions

  • the induced magnetic field signal (in the air, in a substance having a relatively large propagation loss of the electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%, or in the induction path by a combination thereof Conducts Magnetic Field Induction Communication (hereinafter referred to as “magnetic wave communication”) using a magnetic field induction signal (hereinafter referred to as “magnetic wave signal”) between a short distance of several centimeters and an intermediate distance of several km.
  • the present invention relates to a magnetic field induction antenna (hereinafter referred to as a magnetic wave antenna) and a magnetic field induction equipment (hereinafter referred to as a magnetic wave communication device).
  • the conventional inductive magnetic field communication is referred to as Near Field Communication (NFC)
  • the electromagnetic wave communication is referred to as Far Field Communication (FFC)
  • the magnetic wave communication of the present invention is an intermediate one of them. It is called Field Communication (MFC).
  • NFC Near Field Communication
  • FFC Far Field
  • Patent Documents 1 to 4 WOA 12011145515 JP-A-10-215105 11-505395 JP 2004-96182 A
  • FIG. 12 shows an example of a magnetic wave antenna used in the conventional “magnetic wave antenna and magnetic wave communication device” described in Patent Document 1.
  • the inductive magnetic field is directed to the outside by configuring the magnetic wave antenna with short loop antennas 600a and 600b, electric field shields 601a and 601b, impedance conversion transformers 603a and 603b, and impedance matching capacitors 604a and 604b as centers. It efficiently radiates and efficiently converts an external induction magnetic field into an electromotive force.
  • the displacement current radiated from the short loop antenna can not be sufficiently suppressed, and a displacement current flows to Na + ions or CL ⁇ ions present in the periphery, causing an ohmic loss, and the displacement current changes in the displacement current.
  • Acts to generate an eddy current and further, an electric field shield provided on the outer periphery of the short loop antenna also generates an eddy current, attenuating the radiation of the required magnetic wave signal while referring to a magnetic wave antenna, and inductive coupling There are problems such as increased loss.
  • the portable device uses electromagnetic coupling.
  • the base unit is further connected to a broader communication system, such as a telephone network, which achieves a more complete magnetic field and prevents parts where the mutual reactance is zero. In order to do this, a large number of transducers arranged orthogonally to one another are used, since otherwise parts with a mutual reactance of zero are present in the magnetic field.
  • the electromagnetic coupling can also be used to recharge the battery in the portable device. There is a Rukoto can be. ".
  • a magnetic signal transmission method using a low frequency magnetic field as a transmission medium of a signal tends to be generally used.
  • the magnetic field is a magnetic field with a frequency range of about 1 kHz to 10 kHz.
  • “ solenoid coil 2 2 and a series resonant circuit with this are formed.
  • the capacitor C 1 is connected.
  • the "underground / underwater antenna” described in Patent Document 2 handles electromagnetic wave signals, and therefore, in seawater, the attenuation of the electromagnetic wave signals can not escape from the serious problem.
  • the “near-field magnetic communication system” or “induction magnetic field transmission / reception antenna” described in is a system or transmission / reception antenna for performing communication using an induction magnetic field, but is intended for wireless communication in a short distance. It is not intended to realize wireless communication in an arbitrary band from narrow band to wide band between a short distance and a medium distance in a substance with a relatively large propagation loss of an electromagnetic wave signal. It is not a configuration or structure to realize.
  • Patent Document 4 since the solenoid coil 22 and the capacitor C1 are connected in series and in a resonant state, a displacement current is radiated to the outside, so that the attenuation of the magnetic field is rapid at a high frequency, and the frequency is The range is limited to about 1 kHz to 10 kHz.
  • the present invention has been made to solve the above problems, and is in the atmosphere, in a substance having a relatively large propagation loss of an electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%. Or any combination of these in a short distance of several cm to an intermediate distance of several km, in any frequency range from a few Hz or more to over 20 MHz, and any narrow bandwidth to wide bandwidth It is an object of the present invention to inexpensively provide a magnetic wave antenna that enables magnetic wave communication by or a combination thereof, and a magnetic wave communication device using the same.
  • the magnetic wave antenna and the magnetic wave communication apparatus using the same according to the present invention are in the atmosphere, in a substance having a relatively large propagation loss of an electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%, or In the induction path by these combinations, using a magnetic wave signal inductively coupled by a fluctuating magnetic field, between a short distance and an intermediate distance, a narrow band at a low frequency range of several Hz or less to an arbitrary frequency range exceeding 20 MHz.
  • a broadband baseband signal whose frequency ratio between the lower limit and the upper limit of the bandwidth is 10 or more Or, it is possible to perform these alternately.
  • eddy current loss may increase depending on the path of magnetic lines of force intersecting between the opposing magnetic wave antennas, or geomagnetism and tsunami or As the eddy current loss increases due to the interaction with the early current flow, etc., or the combination of these increases the inductive coupling loss compared to the inductive coupling loss in the atmosphere, it responds to the fluctuation of the inductive coupling loss.
  • Changing or switching the frequency of the magnetic wave signal, the signal system, the signal speed, the modulation / demodulation system, the path of intersecting magnetic lines of force, the communication route, the type of the magnetic wave antenna, the installation angle, the directivity, or a combination thereof Is required.
  • the magnetic wave antenna drives at least a closed loop antenna for efficiently radiating the magnetic wave signal to the outside and a magnetic wave signal to the closed loop antenna, and receives an electromotive force induced by the magnetic wave signal.
  • it comprises magnetic wave signal transmitting / receiving means for alternately performing these, and the closed loop antenna at least suppresses the electromagnetic wave signal or displacement current from being emitted to the outside during transmission, or reradiated to the outside during reception.
  • it has a structure, configuration, shape, characteristics, or a combination thereof for efficiently radiating the magnetic wave signal to the outside or receiving the electromotive force.
  • the magnetic wave signal transmitting / receiving means at least includes phase adjusting means, parasitic vibration suppressing means, transmission / reception switching means, magnetic wave signal oscillating means, induced electromotive force receiving means, or a combination thereof.
  • the electromagnetic wave signal or the displacement current is suppressed from being radiated or re-radiated, and the magnetic wave Lower limit and upper limit of bandwidth from narrow band which suppresses the increase of VSWR of antenna in seawater and becomes mismatch and enables wide band characterization of the magnetic wave antenna and equivalent bandwidth is several Hz or less
  • the base band signal of any bandwidth up to a wide band of 10 or more in frequency ratio is adaptively transmitted and received as a magnetic wave signal. And, or by performing these alternately, and makes it possible to force wave communication for any bandwidth from narrowband to wideband.
  • the material, the conductivity, the cross sectional area, the length, the configuration, or a combination thereof of the closed loop antenna is selected to improve the radiation efficiency of the magnetic wave signal radiated from the closed loop antenna.
  • Selecting the configuration, the circuit, the components, the material, or the combination thereof of the magnetic wave signal transmission / reception means to suppress the electromagnetic wave signal or the displacement current from being radiated or reradiated to the outside, and the magnetic wave It suppresses that the VSWR of the antenna increases and becomes mismatched in seawater, improves the radiation efficiency of the magnetic wave signal, improves the reception efficiency of the magnetic wave signal, enables wide band, and at least in any frequency region
  • magnetic wave communication can be performed with a baseband signal of any bandwidth from narrow band to wide band between a short distance of a few cm and a middle distance of a few km by inductive coupling by variable magnetic fields between magnetic wave antennas.
  • Configuration of magnetic wave antenna according to the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Configuration diagram of magnetic wave signal transmission / reception means in the first embodiment of the present invention Configuration diagram of magnetic wave signal oscillation means in the first embodiment of the present invention Another block diagram of the magnetic wave signal oscillating means in the first embodiment of the present invention Configuration diagram of the induced electromotive force receiving means in the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention Characteristic example of inductive reactance of the closed loop antenna in the first embodiment of the present invention Characteristic example of inductive coupling loss in seawater of magnetic wave signal in the first embodiment of the present invention Configuration of
  • FIG. 1 is a block diagram of a magnetic wave antenna according to a first embodiment of the present invention, wherein 605 is an electromagnetic field shield (a sectional view and a side view are shown), 700 is a closed loop antenna, and 708 is a magnetic wave signal transmitter / receiver. 709 is a baseband signal transmission / reception means, and 718 is a detuning suppression means (showing a cross sectional view and a side view).
  • 605 is an electromagnetic field shield (a sectional view and a side view are shown)
  • 700 is a closed loop antenna
  • 708 is a magnetic wave signal transmitter / receiver
  • 709 is a baseband signal transmission / reception means
  • 718 is a detuning suppression means (showing a cross sectional view and a side view).
  • the magnetic wave signal while suppressing the electromagnetic wave signal radiated to the outside at the time of transmission from the said closed loop antenna 700 or reemitted to the outside at the time of reception, the magnetic wave signal is efficiently radiated to the
  • the magnetic wave signal transmitting / receiving means 708 directly amplifies the base band signal generated by the base band signal transmitting / receiving means 709 or modulates and amplifies the carrier to drive the closed loop antenna 700 or the closed loop antenna
  • the induced electromotive force induced at 700 is directly amplified or detected / demodulated and amplified, and input as a baseband signal to the baseband signal transmitting / receiving means.
  • the closed loop antenna is housed inside the detuning suppression means 718 to suppress detuning by direct contact with seawater etc. present in the peripheral portion
  • the magnetic wave signal transmission / reception means 708 is an electromagnetic wave. It is housed in an electromagnetic shield to suppress the emission or re-emission of the signal.
  • the baseband signal output from the baseband signal transmission / reception means 709 is a wide band having an equivalent bandwidth of a few Hz or less and a wide frequency ratio of the lowest frequency to the highest frequency of 10 or more in the band.
  • Bandwidth signals are transmitted, received, or alternated.
  • the closed loop antenna shown in FIG. 1 is described using a single closed loop antenna, instead, a plurality of closed loop antennas are isolated from each other, separated at intervals, and meshed. Arranged, discrete lengths, discrete shapes, discrete angles, discrete distances, interdigitated with one another to form a coaxial cable, relatively low conductive reactance, If the impedance is relatively low impedance, connected in series, connected in parallel, or a combination thereof, and the plurality of closed loop antennas are connected in parallel, impedance of one set of the closed loop antennas Since the inductive reactance is n-fold without changing the number of turns, the closed loop ante Benefits of magnetic wave signals radiated becomes n times from is obtained.
  • the direction of the magnetic force line emitted from the closed loop antenna is the plane portion of the combination. And should be close to horizontal or parallel, not vertical.
  • FIG. 2 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 605 is an electromagnetic field shield (cross sectional view), 700 is a closed loop antenna, 707 is a magnetic substance, and 708 is a magnetic wave signal.
  • Transmission / reception means 709 is a baseband signal transmission / reception means, and 718 is a detuning suppression means.
  • the closed loop antenna 700 is provided close to the magnetic body, such as the outer periphery of the magnetic body 707 having a shape capable of efficiently radiating the magnetic wave signal to the outside, so that the radiation or re-radiation of the electromagnetic wave signal can be suppressed. It is a characteristic, and it is assumed that the phase adjustment means in the magnetic wave signal transmission / reception means 708 is connected with non-tuning or non-resonance including stray capacitance.
  • the closed loop antenna is a single-turn or multi-turn solenoid coil provided in close proximity to a magnetic body, and is a structure, structure, and characteristic that suppresses radiation or re-radiation of displacement current. , A structure, a characteristic, or a combination thereof.
  • the magnetic body is at least a bar, a polygon, and a plurality, and the plurality of magnetic bodies are arranged in a cross shape and arranged in a mesh, and the solenoid coil is at least a single layer wound. A multi-layer winding, a polyfilar winding, or a combination thereof.
  • the closed loop antenna is used for a mobile terminal, a portable terminal, or a small RFID tag, and is housed inside the detuning suppressing means 718, and in the case of a particularly small size, the outer peripheral portion is coated with an insulator.
  • FIG. 3 is a block diagram of the magnetic wave signal transmitting / receiving means in the first embodiment of the present invention, wherein 605 is an electromagnetic field shield (shown in cross section), 704 is a phase adjusting means, 705 is a parasitic vibration suppressing means, 706 Reference numeral 708 is a magnetic wave signal transmitting / receiving means, 710 is a magnetic wave signal oscillating means, 711 is an induced electromotive force receiving means, 712a, 712b are closed loop antenna connection terminals, 713a are baseband signal transmitter connection terminals, 713b Is a baseband signal receiver connection terminal.
  • 605 is an electromagnetic field shield (shown in cross section)
  • 704 is a phase adjusting means
  • 705 is a parasitic vibration suppressing means
  • Reference numeral 708 is a magnetic wave signal transmitting / receiving means
  • 710 is a magnetic wave signal oscillating means
  • 711 is an induced electromotive force receiving means
  • 712a, 712b are closed
  • a parasitic vibration suppressing means 705 is connected in parallel with the closed loop antenna to damp the closed loop antenna and suppress unnecessary parasitic vibration.
  • a phase adjusting means 704 is connected in series with the closed loop antenna to adjust the phase of the transmitted or received magnetic wave signal to improve the radiation efficiency of the magnetic wave signal or to increase the induced electromotive force, etc.
  • the closed loop antenna 700 is an inductive load in a wide range of frequencies, and as illustrated in FIG. 10, when the total length of the closed loop antenna 700 is 50 cm, the series resistance is in the range of 1 MHz to 15 MHz. Since the inductive reactance changes in the range of 3 ⁇ to 32 ⁇ while it is 1 ⁇ or less (not shown), connecting the transmission output terminal of the existing communication device directly to the closed loop antenna is sufficient for the closed loop antenna. It is difficult to oscillate various inductive currents, and problems such as damage to the transmission output stage occur.
  • a capacitor resonating with the inductive reactance of the closed loop antenna is connected in series or in parallel for resonance, and via an impedance conversion transformer or the like. It is configured to match the series resistance of the closed loop antenna with the output resistance of the communication device and to supply the output power of the communication device to the closed loop antenna with minimal loss, of the power supplied to the closed loop antenna Most are radiated or re-radiated as electromagnetic signals or displacement currents.
  • the inductive reactance of the closed loop antenna and the capacitive reactance of the capacitor are resonated or tuned, and the closed loop antenna is submerged in seawater, the emitted electromagnetic wave signal becomes Na + ions in seawater or A displacement current is passed through CL- ions etc., causing ohmic loss and attenuation, and attenuation by eddy current loss caused by the displacement current, and furthermore, the radiation impedance of the closed loop antenna is reduced due to the ohmic loss and eddy current loss. This is the reason why it can not be transmitted from seawater even with electromagnetic waves of 100 kHz or more, as well as electromagnetic waves of 100 kHz or more, which are largely changed and attenuated in a mismatch state.
  • the transmission frequency is 3.5 MHz
  • the peristaltic voltage is 1 V (rms)
  • the transmission power of the closed loop antenna is perturbed.
  • the magnetic wave antenna on the transmission side and the reception side is an air core
  • the capacitive reactance of the phase adjustment means on both the transmission side and the reception side is set to 0 ⁇ as much as possible
  • the magnetic wave antenna on the transmission side and the reception side In the non-resonant state or the untuned state, as an example, the reception input output from the reception side magnetic wave antenna vertically opposed to the transmission side magnetic wave antenna is calculated according to the following procedure.
  • D distance between opposing sides of parallelogram magnetic wave antenna
  • N 1 number of turns of transmitting magnetic wave antenna
  • R distance between opposing magnetic wave antennas
  • 2 ⁇ f is angle of magnetic wave signal Frequency
  • L inductance of transmitting magnetic wave antenna
  • Et peristaltic voltage
  • R peristaltic voltage
  • the electromotive force (Er) induced in the magnetic wave antenna on the opposite side of the receiving side is calculated according to Faraday's law of electromagnetic induction.
  • Er [ ⁇ (Et / L) (N1 * N2 * D * S2 / 2 ⁇ R ⁇ 2)] Cos ( ⁇ t- ⁇ / 2)-(2) It becomes.
  • N2 the number of turns of the magnetic wave antenna on the receiving side
  • S2 the area of the magnetic wave antenna on the receiving side.
  • the reception input (Pr) decreases at a rate of 12 dB / oct in inverse proportion to the fourth power of the distance between the opposing magnetic wave antennas in the vertical direction, but is related to the frequency of the magnetic wave signal It is possible to use a constant value, wide band magnetic wave communication, and directly radiate or modulate a carrier wave as a magnetic wave signal including a baseband signal of any bandwidth from narrow band to wide band. We show that it is possible, and confirm it also by the communication experiment using a trial production set.
  • the frequency of the magnetic wave signal is 1 kHz
  • both the transmitting and receiving closed loop antennas are square with one side of 1 m, are 50 turns, are air cores and have an inductive reactance of about 30 ⁇ .
  • the inductance is about 5 mH
  • the peristaltic voltage on the transmission side is 100 Vrms
  • the reception input (Pr) decreases at a rate of 18 dB / oct in inverse proportion to the sixth power of the distance between the horizontally opposed magnetic wave antennas, but Since the path length is the same as the distance between the magnetic wave antennas and generation of eddy current is suppressed, there is a merit that the inductive coupling loss does not increase rapidly as the distance increases. Is advantageous for long distance communication.
  • the effective permeability of the magnetic body at reception or reception of the closed loop antenna is larger than the effective permeability of the magnetic body at transmission or transmission side, and the number of turns at reception or reception of the closed loop antenna is transmission or transmission
  • the area of receiving or receiving side of the closed loop antenna is larger than the number of turns on the side, and the distance between the two opposing sides of receiving or receiving side of the closed loop antenna is the time of transmitting or transmitting side A longer distance between the two opposing sides of the pair, or a combination thereof, provides the advantage of expanding the communicable area.
  • a part of the plurality of receiving side magnetic wave antennas are perpendicular to the single transmission side magnetic wave antenna. Opposite to the direction, the rest of the plurality of receiving side magnetic wave antennas are horizontally opposed to the single transmitting side magnetic wave antenna, so that the communicable area can be expanded. Further, even when a plurality of transmission side magnetic wave antennas are opposed to a single reception side magnetic wave antenna, a part of the plurality of transmission side magnetic wave antennas is the single reception side magnetic wave antenna And the other of the plurality of transmission side magnetic wave antennas are horizontally opposed to the single reception side magnetic wave antenna, the merit that the communicable area can be expanded can be obtained.
  • an eddy current can be provided by arranging a nonmagnetic metal plate such as an aluminum plate as a reflection plate on the opposite side of the facing direction.
  • a directional antenna can be realized by reflecting magnetic lines of force emitted in the opposite direction from the magnetic wave antenna.
  • FIG. 4 is a block diagram of the magnetic wave signal pulsating means in the first embodiment of the present invention
  • 710 is a magnetic wave signal pulsating means
  • 714b is a transmission / reception switching connection terminal
  • 715a buffer amplification
  • 715b phase
  • 715b phase
  • 713a is a baseband signal connection terminal
  • a push-pull amplifier, a half bridge type amplifier circuit, a full bridge type amplifier circuit, etc. are configured as a whole.
  • a MOSFET type transistor is used as the power amplification means, which is balanced, relatively low in distortion, low in output impedance, or made high in the closed loop antenna by making the power supply voltage high.
  • the power amplification means includes a function of modulating, encoding, spectrum spreading, or a combination of these by modulating the carrier according to the input baseband signal.
  • the power amplification means can be omitted, which is inexpensive and economical.
  • FIG. 5 is another configuration diagram of the magnetic wave signal pulsating means in the first embodiment of the present invention
  • 710 is a magnetic wave signal pulsating means
  • 714b is a transmission / reception switching connection terminal
  • 715a and 715b are power amplifying means.
  • 716a and 716b are transmission line transformers or transmission line-like transformers
  • 713a are baseband signal connection terminals, and collectively constitute a push-pull amplifier, a half bridge type amplifier circuit, a full bridge type amplifier circuit or the like.
  • a MOSFET type transistor is used as the power amplification means, balanced type, low distortion, low output impedance, a transmission line transformer on the output side or a transmission line transformer 716b as a boost transformer, and a power supply voltage of high voltage It is possible to drive the closed loop antenna without damaging a large induced current, a conduction current or a magnetic wave signal by using a large capacity MOSFET transistor or a combination thereof, and the reception of the formula (4)
  • the input Pr can be increased.
  • a large magnetic wave current can be directly oscillated by replacing the output side winding of the transmission line transformer 716b with a closed loop antenna.
  • the power amplification means includes a function of directly amplifying the input baseband signal, or modulating a carrier wave, encoding, spectrum spreading, or performing amplification after performing a combination of these. .
  • the power amplification means can be omitted, which is inexpensive and economical.
  • FIG. 6 is a block diagram of an induced electromotive force receiving unit according to the first embodiment of the present invention.
  • 711 is an induced electromotive force receiving unit
  • 713b is a baseband signal connection terminal
  • 714c is a transmission / reception switching connection terminal
  • 716c is a transmission Line transformers or transmission line like transformers 717 are low noise amplification means including impedance conversion means such as voltage followers.
  • impedance conversion means such as voltage followers.
  • the parasitic vibration when the parasitic vibration is generated by the magnetic wave antenna, the parasitic vibration is generated by the transmission line transformer or the transmission line transformer, the parasitic vibration is generated by the low noise amplification means, or the parasitic vibration is generated by a combination thereof. It is necessary to add parasitic vibration suppression means to the closed loop antenna, the transformer, the low noise amplification means, or a combination thereof. Further, since the thermal noise generated from the magnetic wave antenna is caused by a series resistance and is not generated from the inductive reactance, the thermal noise output from the voltage follower is obtained by performing the impedance conversion by the voltage follower. , Due to the series resistance.
  • the frequency of the magnetic wave signal exceeds 1 MHz, the thermal noise and stray capacitance are reduced for an electronic / mechanical component, an electronic circuit, a configuration, a structure, or a combination thereof including the magnetic wave antenna. It is necessary to take measures to
  • the salt concentration is 0% in the atmosphere, in a substance having a relatively large propagation loss of the electromagnetic wave signal.
  • the magnetic wave antenna comprises at least a closed loop antenna and magnetic wave signal transmitting / receiving means,
  • the magnetic wave signal transmission / reception means at least includes phase adjustment means, parasitic vibration suppression means, transmission / reception switching means, magnetic wave signal oscillation means, induced electromotive force reception means, or a combination thereof.
  • the phase adjustment means includes a capacitive reactance due to stray capacitance in addition to its own capacitive reactance,
  • the radiation or re-radiation of the electromagnetic wave signal is suppressed by setting the inductive reactance of the closed loop antenna and the capacitive reactance of the phase adjustment means including the stray capacitance in a non-resonance state or in a non-tuning state, and A baseband signal of an arbitrary bandwidth from a narrow band having a bandwidth of several Hz or less to a wide band having a frequency ratio of the lower limit to the upper limit of 10 or more, enabling the widening of the magnetic wave antenna
  • the magnetic wave communication between the short distance and the middle distance is enabled by transmitting, receiving, or alternately performing them as a magnetic wave signal including H.
  • the magnetic wave antenna and the magnetic wave communication device using the same comprise at least a closed loop antenna and a magnetic wave signal transmitting means
  • the closed loop antenna Has at least a structure, a configuration, a shape, a characteristic, or a combination thereof for efficiently radiating a magnetic wave signal to the outside
  • the magnetic wave signal transmission means includes at least a phase adjusting means, parasitic vibration suppression Means, magnetic wave signal oscillation means, or a combination thereof
  • the phase adjustment means includes, in addition to its own capacitive reactance, a capacitive reactance due to stray capacitance, and an inductive reactance of the closed loop antenna, By setting the capacitive reactance of the phase adjustment means including the stray capacitance to a non-resonant state or a non-tuned state, By suppressing the displacement current radiated from the closed loop antenna, and suppressing the mismatch between the closed loop antenna based on the ohmic loss and eddy current loss caused by the
  • the absolute value of the capacitive reactance of the phase adjustment means including the stray capacitance is 0% to 95% of the absolute value of the inductive reactance of the closed loop antenna.
  • the baseband signal is an analog audio signal of 0.3 kHz to 3 kHz and is a pulse width modulated (PWM) digital audio signal, and is analyzed It is a digital voice signal band-compressed to 0.6 kbps to 4.8 kbps by a synthetic coding algorithm, a digital voice signal by another coding algorithm, or a combination thereof, and the magnetic wave signal oscillation Direct amplification by means, modulating and amplifying the carrier wave, or a combination of these to drive the closed loop antenna.
  • PWM pulse width modulated
  • the magnetic wave signal oscillating means is at least a phase adjusting means, a transmission line transformer or a transmission line like transformer, a push-pull amplification means, a half bridge type power Amplification means, full bridge power amplification means, DC-AC conversion means, AC-AC conversion means, analog signal amplification means, low output impedance amplification means, reactive current oscillation means, modulation means, encoding means, or combinations thereof including.
  • the magnetic wave signal is directly oscillated by replacing the output transformer of the magnetic wave signal amplification means with the closed loop antenna.
  • the induced electromotive force receiving means comprises at least a phase adjusting means, a transmission line transformer or a transmission line like transformer, an impedance converting means, a low noise amplification means, an intermediate It includes frequency amplification means, detection / demodulation means, decoding means, phase equalization means, or a combination of these. Further, as shown in FIGS. 1 to 6 and claim 7, the induced electromotive force receiving means comprises at least a phase adjusting means, a transmission line transformer or a transmission line like transformer, an impedance converting means, a low noise amplification means, an intermediate It includes frequency amplification means, detection / demodulation means, decoding means, phase equalization means, or a combination of these.
  • the input impedance of the impedance conversion means is larger than the output impedance of the closed loop antenna, and the input impedance of the impedance conversion means is the transmission line transformer or transmission line
  • the output impedance of the impedance conversion means is larger than the output impedance of the transformer, the output impedance of the low impedance amplifier is smaller than the input impedance of the receiver, or a combination thereof.
  • the closed loop antenna in the induction path by the combination, the series resistance of the closed loop antenna changes, the inductive reactance changes, and the electrical characteristics change, and VSWR
  • the closed loop antenna is housed inside the detuning suppression means, a magnetic loop antenna, and a shield loop antenna, In particular, in the case of small size, it is coated with an insulator or a combination thereof.
  • the parasitic vibration suppressing means, the closed loop antenna, the phase adjusting means, the output terminal of the magnetic wave signal oscillating means, and the induction Unnecessary parasitic vibration can be obtained by connecting in parallel or in series the input connection terminal of the power reception means, the input connection terminal of the impedance conversion means, the transmission line transformer or transmission line transformer, or a combination thereof. Suppress.
  • the magnetic wave signal transmitting / receiving means, the baseband signal transmitting / receiving means, or both of them are at least inductively coupled in the induction path with the magnetic wave signal.
  • an inductive coupling loss detection means for predicting, detecting, suppressing, or a combination of these.
  • the inductive coupling loss detection means detects a change in inductive reactance of the closed loop antenna and detects the conductivity of seawater around the closed loop antenna. The change in inductive coupling loss is detected by detecting the ion concentration of seawater around the closed loop antenna, detecting communication quality in the induction path, or detecting a combination thereof.
  • a plurality of sets of the closed loop antennas are provided, at least insulated from each other, twisted between each other, of individual lengths, individual
  • the plurality of closed loop antennas are connected in parallel, connected in series, connected in a transmission line, or the like, which is a shape, an individual angle, an individual interval, or a combination thereof. It connects by the combination of these. Further, as shown in FIGS. 1 to 6 and claim 13, a plurality of sets of the closed loop antennas are provided, at least insulated from each other, twisted between each other, of individual lengths, individual The plurality of closed loop antennas are connected in parallel, connected in series, connected in a transmission line, or the like, which is a shape, an individual angle, an individual interval, or a combination thereof. It connects by the combination of these. Further, as shown in FIGS.
  • a magnetic wave signal transmitting / receiving means is connected to each set of the plurality of closed loop antennas to form a plurality of sets of input / output terminals, at least the plurality of sets
  • the input / output terminals of are connected in parallel, connected to oscillate in phase, connected to drive in reverse phase, connected via power combining / distributing means, and connected via damping / amplifying means, By connecting via phase shift means, or by combining them in combination, the required low impedance characteristics, the required directivity, the required directional beam width, the required frequency region, the required band Implement the width, the required gain, or a combination of these.
  • the substance is a combination of these materials, and when the substance is planar or plate-like, the closed loop antenna emits magnetic lines of force in the horizontal or parallel direction toward the substance, and when the substance is liquid, The magnetic field lines are emitted from the closed loop antenna to the opposing closed loop antenna so as to cross the magnetic field lines at the shortest possible distance, or the magnetic field lines are emitted by a combination thereof. Further, as shown in FIGS.
  • the closed loop antenna is a single-turn or multi-turn solenoid coil provided close to a magnetic body, and radiation or re-emission of displacement current Is a structure that suppresses, is a configuration, is a characteristic, or a combination thereof, and is a structure that efficiently radiates a fluctuating magnetic field, is a configuration, is a characteristic, or a combination thereof.
  • the magnetic body is at least a rod-like, polygonal, hollow inside, is constituted by a plurality, and the plurality is a cross. Or a combination thereof, and the solenoid coil is at least a single-layer winding, a multi-layer winding, a polyfilar winding, a litz wire, or a combination thereof.
  • the solenoid coil is at least a single-layer winding, a multi-layer winding, a polyfilar winding, a litz wire, or a combination thereof.
  • a part or all of the magnetic wave signal transmitting / receiving means is accommodated in a hollow portion inside the magnetic body, and the closed loop antenna is outside the magnetic body. Alternatively, it is provided close to the outer peripheral portion.
  • FIG. 7 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 605 is an electromagnetic field shield (a cross sectional view), 610 is a phase shifting means, 607 is an input / output connector 700a to 700d.
  • 605 is an electromagnetic field shield (a cross sectional view)
  • 610 is a phase shifting means
  • 607 is an input / output connector 700a to 700d.
  • 701 is a radome including detuning suppression means.
  • the plurality of sets of closed loop antennas 700a to 700d are arranged at each set individual angle (in the figure, orthogonal to each other), and connected to the input / output connector 607 via the phase shift means 610 for each set.
  • the radome 701 including the detuning suppression means has at least a material and a structure for efficiently transmitting, without attenuating the magnetic wave signal radiated in the vertical direction from the closed loop antennas 700a to 700d.
  • the closed loop antennas 700a to 700d are installed vertically to the radome 701, the same effect can be obtained even if installed horizontally or at any angle.
  • a magnetic wave signal in which the magnetic wave antenna rotates to the right or to the left, Na + ions or CL-ions present in the induction path, a trace amount of metal ions, free electrons, or a combination thereof are emitted. It is expected to mitigate the increase in inductive coupling losses caused and to reliably detect conductive objects which cause eddy current losses by means of said magnetic wave signal.
  • the plurality of sets of closed loop antennas are connected to the phase shift means for each set, and at least through the radome covering the plurality of sets of closed loop antennas. It efficiently radiates the wave signal to the outside.
  • the plurality of sets of closed loop antennas are disposed vertically to the radome, horizontally to the radome, and conical or reverse to the radome.
  • a rotary magnetic wave antenna is realized which adaptively controls these combinations.
  • the rotational magnetic wave signal emitted from the closed loop antenna is reflected by the conductive object present in the induction path to generate an eddy current, and the reflected reverse is generated.
  • a plurality of sets of closed loop antennas for radiating the rotary magnetic wave signal and a plurality of sets of closed loop antennas for receiving the counter-rotating magnetic wave signal are provided. Set up in the same direction at intervals.
  • FIG. 8 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 700a to 700f are closed loop antennas, 701 is a radome including detuning suppression means, and 708a to 708f are magnetic wave signal transmitting / receiving means ( Not shown).
  • the plurality of sets of closed loop antennas 700a to 700f are arranged in an array form isolated from each other, and at least the magnetic wave signal transmitting / receiving hand 708a to 708f is connected for each set, and power combining / distributing means is provided.
  • Connect connect attenuation / amplification means, connect phase shift means, or connect a combination of them to construct an adaptive array antenna, and obtain required directivity, required directivity beam width, required The required frequency range, the required bandwidth, the required antenna gain, or a combination of these may be realized.
  • the closed loop antennas 700a to 700f are installed horizontally to the radome 701, the same effect can be obtained even if installed vertically or at an arbitrary angle. Further, as shown in FIG. 8 and claim 23, the plurality of sets of closed loop antennas are arranged in the vertical direction, the horizontal direction, or a combination thereof with respect to the radome, and at least a magnetic wave signal for each set.
  • a magnetic wave adaptive array antenna is realized which controls the beam width, controls the direction of the directional beam, controls the radiation angle of the directional beam, or controls the combination of these beams to be adaptive. Further, as shown in FIG. 8 and claim 24, the plurality of sets of closed loop antennas are installed in an array in accordance with the shape of a moving body that travels in the sea or dives in seawater.
  • FIG. 9 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 700a to 700c are closed loop antennas, 708a to 708c are magnetic wave transmitting / receiving means (not shown), and 709a to 709c are basebands.
  • Signal transmitting and receiving means (not shown 9, 605a to 605c are electromagnetic field shields (not shown), and 718a to 718c are detuning suppressing means.
  • the closed loop antenna 700a and the closed loop antennas 700b and 700c are horizontally opposed to each other, and when the distance between them changes, the reception input to the magnetic wave transmitting / receiving means 700a to 700c is 12 dB / oct. Change at the rate of
  • the closed loop antenna 700b and the closed loop antenna 700c vertically face each other, and when the distance between them changes, the reception input to the magnetic wave transmitting / receiving means 700b to 700c is 18 dB / oct. Change.
  • the closed loop antenna 700a is mounted on a mobile station on the ocean, and the closed loop antennas 700b and 700c are carried or mounted as a plurality of mobile stations in seawater, the mobile stations on the ocean and a plurality of movements in seawater are provided.
  • the distance to the station is extended to several kilometers, since the closed loop antennas face vertically in the multiple mobile stations in seawater, the path length of the magnetic field lines inductively coupled to each other becomes rapid as the distance increases. This is because the eddy current loss is increased, and the communicable distance is limited to several hundred meters, so care must be taken when constructing the system.
  • FIG. 10 shows an example of the characteristic of inductive reactance of the closed loop antenna in the first embodiment of the present invention.
  • it is the value of inductive reactance measured by changing the frequency using a closed loop antenna with a total length of 50 cm, by bundling 10 insulated copper wires with an outer diameter of 1 mm ⁇ , and the inductive reactance is approximately equal to the increase in frequency. It turns out that it is increasing proportionally.
  • a resonant circuit using a tuning capacitor is provided, and the inductive reactance is resonated to provide a matching circuit for connection to a communication device.
  • a displacement current flows through the closed loop antenna, and a displacement current is emitted to the outside or is reradiated to the outside, so that an ohmic loss is generated by Na + ions or CL ⁇ ions in seawater, Eddy current loss occurs, and the propagation loss of the electromagnetic wave signal between the antennas increases due to the ohmic loss and the eddy current loss, the tuning and matching of the antenna is broken, the VSWR becomes large, and the large matching loss occurs. There is.
  • the inductive reactance of the closed loop antenna and the capacitive reactance of the phase adjustment means are not resonated but kept non-resonant, and the inductive load current to the closed loop antenna is Is directly driven to suppress displacement current radiated or re-radiated from the closed loop antenna to an allowable value or less.
  • FIG. 11 shows a characteristic example of the inductive coupling loss of the magnetic wave signal in the first embodiment of the present invention.
  • the propagation loss of the electromagnetic wave signal in the atmosphere is 6 dB / oct in proportion to the square of the distance.
  • the inductive coupling loss of the magnetic wave signal is 12 dB in proportion to the fourth power of the distance when the transmitting side magnetic wave antenna and the receiving side magnetic wave antenna are vertically opposed to each other.
  • the propagation loss of the electromagnetic wave signal in seawater is as sharp as about 100 dB / m at 1 MHz band Since the inductive coupling loss of the magnetic wave signal attenuates gently to 12 dB / oct or 18 dB / oct compared with the above, the magnetic wave signal using inductive coupling of the fluctuating magnetic field is more advantageous in seawater, Wireless communication can be performed between a distance and a middle distance.
  • the magnetic wave signal when used, in an atmosphere, in a substance having a relatively large propagation loss of an electromagnetic wave signal, in a fresh water or seawater having a salinity concentration of 0% to 5%, or in a induction route by a combination thereof. Enables magnetic wave communication of arbitrary bandwidth from narrow band to wide band.
  • An adaptive closed loop antenna is provided, adaptive magnetic force wave signal transmitting / receiving means is provided, adaptive baseband signal transmitting / receiving means is provided, or a combination thereof is provided. It is necessary to adaptively control, change or switch the parameters of the antenna, the parameters of the magnetic wave signal, the parameters of the magnetic wave communication, or a combination thereof.
  • the adaptive control includes diversity control.
  • the magnetic wave antenna of the present invention is capable of 20 MHz from the low frequency range of several Hz or less. It is possible to efficiently radiate (transmit) the magnetic wave signal to the outside in any frequency region exceeding it and in seawater, and a wide range of practicality can be expected.
  • the closed loop antenna at least includes:
  • the magnetic wave signal transmission means is connected to the baseband signal transmission means, the magnetic wave signal reception means is connected to the baseband signal reception means, and the magnetic wave signal transmission / reception means is connected to the baseband signal transmission / reception means Or connected in a combination of these, and constitute a fixed station, a relay station, a mobile terminal, a portable terminal, a small RFID tag, or a combination thereof, and are fresh water, sea water, air, ground, Or, in the guidance route by these combinations, unidirectional communication, two-way communication, solid identification, individual management, point information management, crustal movement survey, conductor Quality exploration, marine resource exploration, or used for these combinations.
  • the magnetic wave communication is at least spread spectrum communication, secret communication, communication in seawater, and narrow band communication having an equivalent bandwidth of several Hz or less.
  • a wide band communication with a frequency ratio between the lower limit and the upper limit of the bandwidth being 10 or more, communication between short distance and middle distance, or communication by a combination of these.
  • the magnetic wave signal is composed of a baseband signal which is hard to exist in the natural world, and the induction is performed by measuring a change in propagation characteristics of the received baseband signal at the receiving side. Detects earthquakes, submarine volcano eruptions, tsunamis, movement of objects, movement of organisms, or a combination of these that occur in the path.
  • the magnetic wave antenna is used as a transmitting antenna of a wireless power feeder, is used as a receiving antenna of a wireless power feeder, and a magnetic wave communication unit is additionally used, or It is used in combination of these.
  • the magnetic wave antenna on the transmission side at least direct oscillation from a commercial power supply, oscillation from a commercial power supply via a transformer, and arranging a plurality of closed loop antennas in a mesh shape
  • the phase adjustment means are connected and oscillated, and the effective relative permeability is oscillated close to the magnetic body of 10 or more, and in the magnetic wave antenna on the receiving side, at least the number of turns on the transmitting side
  • the effective relative permeability is made larger than the effective relative permeability on the transmission side, and the opposing area is made narrower than the area on the transmitting side, or a combination thereof.
  • an adaptive closed loop antenna is provided, an adaptive magnetic wave signal transmission / reception means is provided, and an adaptive baseband signal transmission / reception is provided. Means, or a combination of these, in at least the local station, the remote station or both stations, parameters of the closed loop antenna, parameters of the magnetic wave signal, parameters of the magnetic wave communication, of the magnetic wave communication device Reliable control of magnetic wave communication is enabled by adaptively controlling, changing, or switching parameters or their combination.
  • the effective permeability of the magnetic material at the reception or reception side of the closed loop antenna is larger than the effective permeability of the magnetic material at the transmission time or transmission side, and the reception or reception time of the closed loop antenna
  • the number of turns on the side is greater than the number of turns on the transmit or transmit side
  • the area on the receive or receive side of the closed loop antenna is larger than the area on the transmit or transmit side.
  • the distance between the sides is wider than the distance between the two opposite sides at the time of transmission or transmission, or a combination thereof.
  • a part or all of the plurality of transmission side magnetic wave antennas and a part or all of the plurality of reception side magnetic wave antennas are vertically opposed, and the plurality of transmission side magnetic waves
  • the merit of the area expansion can be obtained.
  • the magnetic wave antenna is mounted on a moving body such as a ship or buoy on the ocean, and a plurality of moving bodies such as a submersible vessel or diver in seawater,
  • a magnetic wave antenna mounted on a moving body on the ocean and a magnetic wave antenna mounted on a plurality of moving bodies in the seawater face each other in the horizontal direction, and a magnetic force mounted on the plurality of moving bodies With the wave antennas facing each other in the vertical direction, all communications are monitored in the mobile on the ocean, and calls between the mobiles are conducted smoothly.
  • the eddy current can be reduced by arranging a nonmagnetic metal plate on the opposite side of the facing direction.
  • a directional antenna is realized by reflecting the magnetic field lines generated and emitted from the magnetic wave antenna in the opposite direction.
  • the present invention is configured as described above, in the atmosphere, in a substance with relatively large propagation loss of electromagnetic wave signals, in fresh water or seawater with a salinity concentration of 0% to 5%, or a combination thereof
  • the magnetic wave signal in the induction path it is in an arbitrary frequency range between a short distance and an intermediate distance, from a few Hz or less to over 20 MHz, and an arbitrary bandwidth from narrow band to wide band. Since the magnetic wave communication device using the magnetic wave signal can be realized at low cost, it has high practical value.
  • the present invention provides a communication system between a short distance and a medium distance, a collision prevention system for ships, a marine resource exploration system, biotelemetry, and the like in a guidance route by the atmosphere, fresh water, seawater, or a combination thereof.
  • Sensing networks mutual voice communication devices such as divers, RFID tag devices, communication / remote control devices with submersibles or undersea robots, search equipment for flooded or distressed persons, sounding instruments, fish finders, seafloor exploration equipment,
  • a wide range of applications are possible, such as metal detectors or wireless power feeds.
  • phase adjustment means including stray capacitance (including variable or semi-fixed) 705 Damping means 706 Transmission / reception switching means 707 Magnetic members 708, 708a to 708f Magnetic wave signal transmission / reception means 709 Base band signal transmission / reception means 710 Magnetic wave signal oscillation means

Abstract

[Purpose] The purpose of this invention is to inexpensively provide a magnetic loop antenna and a magnetic-field communication device using same that allow magnetic-field communication using magnetic-field signals with a desired bandwidth, from narrowband to wideband, at short-to-medium distances, from several centimeters to several kilometers, in an inductive channel consisting of air, a substance in which electromagnetic signals experience comparatively high propagation losses, seawater or fresh water having a salinity of 0-5%, or a combination thereof. [Solution] This magnetic loop antenna and magnetic-field communication device using same use magnetic-field signals that are inductively coupled by varying magnetic fields to implement wideband magnetic-field communication at short-to-medium distances in the abovementioned inductive channel while preventing the magnetic loop antenna from exhibiting severe mismatch loss due to radiation or reradiation of a displacement current.

Description

磁力波アンテナおよびそれを用いる磁力波通信装置Magnetic wave antenna and magnetic wave communication device using the same
 この発明は、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中あるいは海水中、あるいはこれらの組み合わせによる誘導経路中で、誘導磁界信号(Magnetic Field Induction Signal)(以後磁力波信号と称する)を用いて数cmの近距離間から数kmの中距離間での誘導磁界通信(Magnetic Field Induction Communication)(以後磁力波通信と称する)を行うための誘導磁界アンテナ(Magnetic Field Induction Antenna)(以後磁力波アンテナと称する)および誘導磁界通信装置(Magnetic Field Induction Equipment)(以後磁力波通信装置と称する)に関するものである。
 なお、従来の誘導磁界通信をNear Field Communication(NFC)と称し、電磁波通信をFar Field Communication(FFC)と称するのに対して、本発明の磁力波通信はこれらの中間的なものであり、Middle Field Communication(MFC)と称する。
According to the present invention, the induced magnetic field signal (in the air, in a substance having a relatively large propagation loss of the electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%, or in the induction path by a combination thereof Conducts Magnetic Field Induction Communication (hereinafter referred to as “magnetic wave communication”) using a magnetic field induction signal (hereinafter referred to as “magnetic wave signal”) between a short distance of several centimeters and an intermediate distance of several km. The present invention relates to a magnetic field induction antenna (hereinafter referred to as a magnetic wave antenna) and a magnetic field induction equipment (hereinafter referred to as a magnetic wave communication device).
The conventional inductive magnetic field communication is referred to as Near Field Communication (NFC), and the electromagnetic wave communication is referred to as Far Field Communication (FFC), whereas the magnetic wave communication of the present invention is an intermediate one of them. It is called Field Communication (MFC).
 従来から、誘導磁界を利用して通信するためのシステムあるいはループアンテナを利用する技術が提案されている。(例えば、特許文献1~4)
WOA12011145515号 特開平10-215105号 特表平11-505395号 特開2004-96182号
Heretofore, there have been proposed techniques for utilizing a system or loop antenna for communication using an induced magnetic field. (For example, Patent Documents 1 to 4)
WOA 12011145515 JP-A-10-215105 11-505395 JP 2004-96182 A
 図12は、特許文献1に記載されている従来の「磁力波アンテナおよび磁力波通信装置」に用いられる磁力波アンテナの実施例である。図12において、前記磁力波アンテナを短ループアンテナ600a、600b、電界シールド601a、601b、インピーダンス変換トランス603a、603b、およびインピーダンス整合コンデンサ604a、604bを中心として構成することで、誘導磁界を外部へ向けて効率よく放射し、かつ外部の誘導磁界を効率よく起電力に変換するとされている。しかしながら、これらの構成では、短ループアンテナから放射される変位電流を十分に抑制できず、周辺に存在するNa+イオンやCL-イオンに変位電流が流れてオーミックロスを生じ、前記変位電流に変動磁界が作用して渦電流が生じ、更に、短ループアンテナの外周に設けられた電界シールドによっても渦電流が生じ、磁力波アンテナと称しながら、必要とする磁力波信号の放射を減衰させ、誘導結合損を増大させるなどの問題点がある。 FIG. 12 shows an example of a magnetic wave antenna used in the conventional “magnetic wave antenna and magnetic wave communication device” described in Patent Document 1. In FIG. 12, the inductive magnetic field is directed to the outside by configuring the magnetic wave antenna with short loop antennas 600a and 600b, electric field shields 601a and 601b, impedance conversion transformers 603a and 603b, and impedance matching capacitors 604a and 604b as centers. It efficiently radiates and efficiently converts an external induction magnetic field into an electromotive force. However, in these configurations, the displacement current radiated from the short loop antenna can not be sufficiently suppressed, and a displacement current flows to Na + ions or CL − ions present in the periphery, causing an ohmic loss, and the displacement current changes in the displacement current. Acts to generate an eddy current, and further, an electric field shield provided on the outer periphery of the short loop antenna also generates an eddy current, attenuating the radiation of the required magnetic wave signal while referring to a magnetic wave antenna, and inductive coupling There are problems such as increased loss.
 一方、特許文献2に記載されている「地中・水中アンテナ」によれば、「地中や水中などに電磁波を効率的に送信し、あるいは地中や水中などからの電磁波を効率的に受信できるアンテナを提供する。」とされている。
 また、特許文献3に記載されている「近距離磁気通信システム」によれば、「携帯ユニットと、通信システムとの間で信号をやりとりするシステムおよび方法である。携帯装置は、電磁結合を用いて基礎ユニットと通信する。基礎ユニットは、電話ネットワークのようなより広域の通信システムにさらに接続されている。基礎ユニットでは、より完全な磁界を実現し、相互リアクタンスが0である部分を防止するために、多数の、互いに直交して配置されたトランスデューサが用いられる。そうしなければ、相互リアクタンスが0である部分が磁界に存在するからである。近距離電磁結合を用いることにより、電力要件を最小化し、他のソースへの妨害を制限することができる。また、電磁結合は、携帯装置内のバッテリを再充電するのに用いることもできる。」とされている。
On the other hand, according to the "underground / underwater antenna" described in Patent Document 2, "electromagnetic waves are efficiently transmitted to the ground or water, or electromagnetic waves from the ground or water are efficiently received." Provide an antenna that can be
Moreover, according to the "near-field magnetic communication system" described in Patent Document 3, "the system and method for exchanging signals between the portable unit and the communication system. The portable device uses electromagnetic coupling. The base unit is further connected to a broader communication system, such as a telephone network, which achieves a more complete magnetic field and prevents parts where the mutual reactance is zero. In order to do this, a large number of transducers arranged orthogonally to one another are used, since otherwise parts with a mutual reactance of zero are present in the magnetic field. The electromagnetic coupling can also be used to recharge the battery in the portable device. There is a Rukoto can be. ".
 また、特許文献4に記載されている「水中又は地下通信装置」によれば、「低周波磁界を信号の伝送媒体として用いる磁気信号伝送方式が一般的に用いられる傾向になりつつある。低周波磁界というのは、周波数範囲が1kHz~10kHz程度の周波数による磁界のことである。」とされており、更に、段落(0043)には、「ソレノイドコイル2 2 及びこれと直列共振回路を形成するコンデンサC 1 が接続されている。」とされている。 Further, according to the "underwater or underground communication device" described in Patent Document 4, "a magnetic signal transmission method using a low frequency magnetic field as a transmission medium of a signal tends to be generally used. The magnetic field is a magnetic field with a frequency range of about 1 kHz to 10 kHz. ”Furthermore, in paragraph (0043),“ solenoid coil 2 2 and a series resonant circuit with this are formed. The capacitor C 1 is connected.
 しかしながら、前記特許文献2に記載されている「地中・水中アンテナ」では、電磁波信号を取扱っているために、海水中では電磁波信号の減衰が激しい問題点からは逃れられず、前記特許文献3に記載されている「近距離磁気通信システム」あるいは「誘導磁界送受信アンテナ」では、誘導磁界を利用して通信を行なうためのシステムあるいは送受信アンテナであるが、近距離での無線通信を目的としているものであり、電磁波信号の伝搬損が比較的に大きい物質中で、近距離から中距離間で、狭帯域から広帯域までの任意の帯域の無線通信を実現することを目的とするものではなく、実現するための構成あるいは構造でもない。
 また、前記特許文献4では、ソレノイドコイル22とコンデンサC1が直列に接続され共振状態であるために、外部へ変位電流を放射しており、そのために高い周波数で磁界の減衰が急激であり、周波数範囲が1kHz~10kHz程度に制限されている。
However, the "underground / underwater antenna" described in Patent Document 2 handles electromagnetic wave signals, and therefore, in seawater, the attenuation of the electromagnetic wave signals can not escape from the serious problem. The “near-field magnetic communication system” or “induction magnetic field transmission / reception antenna” described in is a system or transmission / reception antenna for performing communication using an induction magnetic field, but is intended for wireless communication in a short distance. It is not intended to realize wireless communication in an arbitrary band from narrow band to wide band between a short distance and a medium distance in a substance with a relatively large propagation loss of an electromagnetic wave signal. It is not a configuration or structure to realize.
Further, in Patent Document 4, since the solenoid coil 22 and the capacitor C1 are connected in series and in a resonant state, a displacement current is radiated to the outside, so that the attenuation of the magnetic field is rapid at a high frequency, and the frequency is The range is limited to about 1 kHz to 10 kHz.
 この発明は、上記の問題点を解決するためになされたものであり、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中を、数cmの近距離間から数kmの中距離間であり、数Hz以下から20MHzを超える任意の周波数領域であり、狭帯域~広帯域の任意の帯域幅である、あるいはこれらの組合せによる磁力波通信を可能とする磁力波アンテナおよびそれを用いる磁力波通信装置を安価に提供することを目的とする。
The present invention has been made to solve the above problems, and is in the atmosphere, in a substance having a relatively large propagation loss of an electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%. Or any combination of these in a short distance of several cm to an intermediate distance of several km, in any frequency range from a few Hz or more to over 20 MHz, and any narrow bandwidth to wide bandwidth It is an object of the present invention to inexpensively provide a magnetic wave antenna that enables magnetic wave communication by or a combination thereof, and a magnetic wave communication device using the same.
 この発明に係わる磁力波アンテナおよびそれを用いる磁力波通信装置は、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中を、変動磁界によって誘導結合される磁力波信号を用い、近距離から中距離間であり、数Hz以下の低周波領域から20MHzを超える任意の周波数領域で、狭帯域から広帯域までの任意の帯域幅である磁力波通信を行うためのものであり、少なくとも、帯域幅の下限と上限との周波数比が10倍以上の広帯域のベースバンド信号を、送信し、受信し、あるいはこれらを交互に行うことを可能とするものである。 The magnetic wave antenna and the magnetic wave communication apparatus using the same according to the present invention are in the atmosphere, in a substance having a relatively large propagation loss of an electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%, or In the induction path by these combinations, using a magnetic wave signal inductively coupled by a fluctuating magnetic field, between a short distance and an intermediate distance, a narrow band at a low frequency range of several Hz or less to an arbitrary frequency range exceeding 20 MHz. To perform magnetic wave communication with an arbitrary bandwidth from the bandwidth to the broadband, and transmit and receive at least a broadband baseband signal whose frequency ratio between the lower limit and the upper limit of the bandwidth is 10 or more Or, it is possible to perform these alternately.
 なお、前記誘導経路中にNa+イオンやCL-イオンその他の導電物質が存在する場合、前記対向する磁力波アンテナ相互間で交差する磁力線の経路によっては渦電流損が増加し、あるいは地磁気と津波あるいは早い海流の流れなどとの相互作用によって渦電流損が増加し、あるいはこれらの組合せによって、大気中での誘導結合損に比較して誘導結合損が増加するため、誘導結合損の変動に対応し、前記磁力波信号の周波数、信号方式、信号速度、変復調方式、交差する磁力線の経路、通信ルート、前記磁力波アンテナの種別、設置角、指向性、あるいはこれらの組合せをアダプティブに変更しあるいは切替えることが要求される。 When Na + ions, CL-ions, or other conductive substances are present in the induction path, eddy current loss may increase depending on the path of magnetic lines of force intersecting between the opposing magnetic wave antennas, or geomagnetism and tsunami or As the eddy current loss increases due to the interaction with the early current flow, etc., or the combination of these increases the inductive coupling loss compared to the inductive coupling loss in the atmosphere, it responds to the fluctuation of the inductive coupling loss. Changing or switching the frequency of the magnetic wave signal, the signal system, the signal speed, the modulation / demodulation system, the path of intersecting magnetic lines of force, the communication route, the type of the magnetic wave antenna, the installation angle, the directivity, or a combination thereof Is required.
 また、前記磁力波アンテナは、少なくとも、前記磁力波信号を外部へ効率よく放射するための閉ループアンテナと、前記閉ループアンテナに磁力波信号を駆動し、磁力波信号によって誘起する起電力を受信し、あるいはこれらを交互に行うための磁力波信号送受信手段とから構成され、前記閉ループアンテナが、少なくとも、電磁波信号もしくは変位電流を送信時に外部へ放射しあるいは受信時に外部へ再放射するのを抑制し、かつ磁力波信号を効率よく外部へ放射しあるいは起電力を受信するための構造、構成、形状、特性、あるいはこれらの組合せを有するものとする。 Further, the magnetic wave antenna drives at least a closed loop antenna for efficiently radiating the magnetic wave signal to the outside and a magnetic wave signal to the closed loop antenna, and receives an electromotive force induced by the magnetic wave signal. Alternatively, it comprises magnetic wave signal transmitting / receiving means for alternately performing these, and the closed loop antenna at least suppresses the electromagnetic wave signal or displacement current from being emitted to the outside during transmission, or reradiated to the outside during reception. In addition, it has a structure, configuration, shape, characteristics, or a combination thereof for efficiently radiating the magnetic wave signal to the outside or receiving the electromotive force.
 また、前記磁力波信号送受信手段が、少なくとも、位相調整手段、寄生振動抑制手段、送受切替手段、磁力波信号駈動手段、誘起起電力受信手段、あるいはこれらの組合せを有し、前記閉ループアンテナの誘導性リアクタンスと、前記位相調整手段の容量性リアクタンスとを、非共振状態としあるいは非同調状態とすることによって、前記電磁波信号もしくは変位電流を放射しあるいは再放射するのを抑制し、前記磁力波アンテナのVSWRが海水中において増加してミスマッチとなるのを抑制し、前記磁力波アンテナの広帯域特性化を可能とし、かつ等価帯域幅が数Hz以下である狭帯域から、帯域幅の下限と上限との周波数比が10倍以上の広帯域までの任意の帯域幅のベースバンド信号を磁力波信号としてアダプティブに送信し、受信し、あるいはこれらを交互に行うことによって、狭帯域から広帯域までの任意の帯域幅の磁力波通信を可能とするものである。 Further, the magnetic wave signal transmitting / receiving means at least includes phase adjusting means, parasitic vibration suppressing means, transmission / reception switching means, magnetic wave signal oscillating means, induced electromotive force receiving means, or a combination thereof. By setting the inductive reactance and the capacitive reactance of the phase adjustment means in a non-resonant state or in a non-tuned state, the electromagnetic wave signal or the displacement current is suppressed from being radiated or re-radiated, and the magnetic wave Lower limit and upper limit of bandwidth from narrow band which suppresses the increase of VSWR of antenna in seawater and becomes mismatch and enables wide band characterization of the magnetic wave antenna and equivalent bandwidth is several Hz or less The base band signal of any bandwidth up to a wide band of 10 or more in frequency ratio is adaptively transmitted and received as a magnetic wave signal. And, or by performing these alternately, and makes it possible to force wave communication for any bandwidth from narrowband to wideband.
 また、前記磁力波アンテナの構成において、閉ループアンテナの材質、導電率、断面積、長さ、構成、あるいはこれらの組合せを選択して、前記閉ループアンテナから放射される磁力波信号の放射効率を改善し、前記磁力波信号送受信手段の構成、回路、部品、材料、あるいはこれらの組合せを選択することで、前記電磁波信号もしくは変位電流を外部へ放射しあるいは再放射するのを抑制し、前記磁力波アンテナのVSWRが海水中において増加してミスマッチとなるのを抑制し、磁力波信号の放射効率を改善し、磁力波信号の受信効率を高め、広帯域化を可能とし、少なくとも、任意の周波数領域であり、任意の帯域幅の磁力波信号による磁力波通信を可能にすることで、前記磁力波アンテナを用いた磁力波通信の広範囲の用途を開拓することが可能となる。
Further, in the configuration of the magnetic wave antenna, the material, the conductivity, the cross sectional area, the length, the configuration, or a combination thereof of the closed loop antenna is selected to improve the radiation efficiency of the magnetic wave signal radiated from the closed loop antenna. Selecting the configuration, the circuit, the components, the material, or the combination thereof of the magnetic wave signal transmission / reception means to suppress the electromagnetic wave signal or the displacement current from being radiated or reradiated to the outside, and the magnetic wave It suppresses that the VSWR of the antenna increases and becomes mismatched in seawater, improves the radiation efficiency of the magnetic wave signal, improves the reception efficiency of the magnetic wave signal, enables wide band, and at least in any frequency region By enabling magnetic wave communication with magnetic wave signals of arbitrary bandwidth, we will open up a wide range of applications of magnetic wave communication using the above-mentioned magnetic wave antenna. It becomes possible.
 従来、海水中での通信にはもっぱら音波あるいは超音波が用いられ、近距離での誘導磁界が用いられ、100kHz以下の極めて低い周波数帯の電磁波信号を用いることが定説であり、しかも、前記のような100kHz以下の極めて低い周波数帯の電磁波信号でも海水中からは外部へ放射出来ないと言うのが定説だった。
 本発明の磁力波アンテナおよびそれを用いる磁力波通信装置では、大気中、真水中、海水中、あるいはこれらの組合せによる誘導経路中で、かつ数Hz以下の低周波領域から20MHzを超える任意の周波領域で、磁力波アンテナ間の変動磁界による誘導結合によって、数cmの近距離間から数kmの中距離間で、狭帯域から広帯域までの任意の帯域幅のベースバンド信号による磁力波通信が可能となり、従来の音波もしくは超音波、近距離での誘導磁界、あるいは電磁波信号に代わり、海水中からの放射が可能であり、等価帯域幅が数Hz以下である狭帯域から帯域幅の下限と上限との周波数比が10倍以上の広帯域までの任意の帯域幅の通信手段を安価に実現できる利点がある。
Conventionally, sound waves or ultrasonic waves are used exclusively for communication in seawater, induction magnetic fields at short distances are used, and it is customary to use electromagnetic wave signals in an extremely low frequency band of 100 kHz or less, and, further, It is a well-known theory that even an electromagnetic wave signal of very low frequency band below 100 kHz can not be radiated to the outside from seawater.
In the magnetic wave antenna of the present invention and the magnetic wave communication apparatus using the same, any frequency over a low frequency region of several Hz or less and over 20 MHz in the induction path by the atmosphere, fresh water, seawater, or a combination thereof In the region, magnetic wave communication can be performed with a baseband signal of any bandwidth from narrow band to wide band between a short distance of a few cm and a middle distance of a few km by inductive coupling by variable magnetic fields between magnetic wave antennas. Lower limit and upper limit of the narrow band which can be emitted from seawater, instead of the conventional sound wave or ultrasonic wave, the induction magnetic field at a short distance, or the electromagnetic wave signal, and the equivalent bandwidth is several Hz or less There is an advantage that a communication means having an arbitrary bandwidth up to a wide band of 10 times or more can be realized inexpensively.
本発明の第1の実施形態における磁力波アンテナの構成図Configuration of magnetic wave antenna according to the first embodiment of the present invention 本発明の第1の実施形態における磁力波アンテナの他の構成図Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention 本発明の第1の実施形態における磁力波信号送受信手段の構成図Configuration diagram of magnetic wave signal transmission / reception means in the first embodiment of the present invention 本発明の第1の実施形態における磁力波信号駈動手段の構成図Configuration diagram of magnetic wave signal oscillation means in the first embodiment of the present invention 本発明の第1の実施形態における磁力波信号駈動手段の他の構成図Another block diagram of the magnetic wave signal oscillating means in the first embodiment of the present invention 本発明の第1の実施形態における誘起起電力受信手段の構成図Configuration diagram of the induced electromotive force receiving means in the first embodiment of the present invention 本発明の第1の実施形態における磁力波アンテナの他の構成図Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention 本発明の第1の実施形態における磁力波アンテナの他の構成図Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention 本発明の第1の実施形態における磁力波アンテナの他の構成図Another configuration diagram of the magnetic wave antenna in the first embodiment of the present invention 本発明の第1の実施形態における閉ループアンテナの誘導性リアクタンスの特性例Characteristic example of inductive reactance of the closed loop antenna in the first embodiment of the present invention 本発明の第1の実施形態における磁力波信号の海水中での誘導結合損の特性例Characteristic example of inductive coupling loss in seawater of magnetic wave signal in the first embodiment of the present invention 従来の実施例による磁力波アンテナの構成図Configuration of magnetic wave antenna according to prior art
 (実施の形態1)
 図1は、本発明の第1の実施形態における磁力波アンテナの構成図であり、605は電磁界シールド(断面図および側面図を示す)、700は閉ループアンテナ、708は磁力波信号送受信手段、709はベースバンド信号送受信手段、718は離調抑制手段(断面図および側面図を示す)である。
 図1において、前記閉ループアンテナ700から送信時に外部へ放射されあるいは受信時に外部へ再放射される電磁波信号を抑制するとともに、磁力波信号を効率よく外部へ放射し、あるいは受信した磁力波信号から効率よく誘起起電力を誘起する。
Embodiment 1
FIG. 1 is a block diagram of a magnetic wave antenna according to a first embodiment of the present invention, wherein 605 is an electromagnetic field shield (a sectional view and a side view are shown), 700 is a closed loop antenna, and 708 is a magnetic wave signal transmitter / receiver. 709 is a baseband signal transmission / reception means, and 718 is a detuning suppression means (showing a cross sectional view and a side view).
In FIG. 1, while suppressing the electromagnetic wave signal radiated to the outside at the time of transmission from the said closed loop antenna 700 or reemitted to the outside at the time of reception, the magnetic wave signal is efficiently radiated to the outside or the efficiency from the received magnetic wave signal. Often induces an induced electromotive force.
 一方、前記磁力波信号送受信手段708によって、前記ベースバンド信号送受信手段709によって生成されたベースバンド信号を直接増幅しあるいは搬送波を変調して増幅し、前記閉ループアンテナ700を駆動し、あるいは前記閉ループアンテナ700に誘起した誘起起電力を直接増幅しあるいは検波・復調して増幅し、ベースバンド信号として前記ベースバンド信号送受信手段に入力する。
 また、前記閉ループアンテナが、周辺部に存在する海水などに直接接触して離調するのを抑制するために、離調抑制手段718の内部に収納され、前記磁力波信号送受信手段708が、電磁波信号の放射もしくは再放射を抑制するために、電磁シールドに収納されている。
On the other hand, the magnetic wave signal transmitting / receiving means 708 directly amplifies the base band signal generated by the base band signal transmitting / receiving means 709 or modulates and amplifies the carrier to drive the closed loop antenna 700 or the closed loop antenna The induced electromotive force induced at 700 is directly amplified or detected / demodulated and amplified, and input as a baseband signal to the baseband signal transmitting / receiving means.
Further, the closed loop antenna is housed inside the detuning suppression means 718 to suppress detuning by direct contact with seawater etc. present in the peripheral portion, and the magnetic wave signal transmission / reception means 708 is an electromagnetic wave. It is housed in an electromagnetic shield to suppress the emission or re-emission of the signal.
 なお、前記ベースバンド信号送受信手段709から出力されるベースバンド信号は、等価帯域幅が数Hz以下の狭帯域から、帯域内の最低の周波数と最高の周波数との周波数比が10倍以上の広帯域までの任意の帯域幅の信号であり、例えば、0.3kHz~3kHzの広帯域のアナログ音声信号であり、パルス幅変調(PWM)されたデジタル音声信号であり、帯域圧縮されあるいは符号化された広帯域のデジタル音声信号であり、スペクトル拡散符号であり、帯域圧縮された画像信号であり、ベースバンド信号そのままであり、搬送波あるいは副搬送波により変調されたベースバンド信号であり、あるいはこれらの組合せを含む任意の帯域幅の信号が送信され、受信され、あるいはこれらが交互に行われる。 The baseband signal output from the baseband signal transmission / reception means 709 is a wide band having an equivalent bandwidth of a few Hz or less and a wide frequency ratio of the lowest frequency to the highest frequency of 10 or more in the band. Signals of any bandwidth up to, for example, 0.3 kHz to 3 kHz wide band analog audio signals, pulse width modulated (PWM) digital audio signals, band-compressed or encoded wide band A digital audio signal, a spread spectrum code, a band-compressed image signal, a baseband signal as it is, a baseband signal modulated by a carrier wave or a subcarrier, or any combination including a combination thereof Bandwidth signals are transmitted, received, or alternated.
 また、図1に示す閉ループアンテナでは、単一の閉ループアンテナを用いる場合について記載しているが、代わりに、複数の閉ループアンテナが、相互間が絶縁され、間隔をおいて隔離され、メッシュ状に配置され、個別の長さであり、個別の形状であり、個別の角度であり、個別の間隔であり、お互いが縒り合され、同軸ケーブルを形成し、比較的に低い導電性リアクタンスであり、比較的に低いインピーダンスであり、直列に接続され、並列に接続され、あるいはこれらの組合せであり、前記複数本の閉ループアンテナが並列に接続される場合には、前記閉ループアンテナの1組分のインピーダンスのn分の1となり、誘導性リアクタンスがn分の1となり、巻き数が変わらずに誘導性駈動電流がn倍となるので、前記閉ループアンテナから放射される磁力波信号がn倍となるメリットが得られる。 Also, although the closed loop antenna shown in FIG. 1 is described using a single closed loop antenna, instead, a plurality of closed loop antennas are isolated from each other, separated at intervals, and meshed. Arranged, discrete lengths, discrete shapes, discrete angles, discrete distances, interdigitated with one another to form a coaxial cable, relatively low conductive reactance, If the impedance is relatively low impedance, connected in series, connected in parallel, or a combination thereof, and the plurality of closed loop antennas are connected in parallel, impedance of one set of the closed loop antennas Since the inductive reactance is n-fold without changing the number of turns, the closed loop ante Benefits of magnetic wave signals radiated becomes n times from is obtained.
 また、前記閉ループアンテナから放射される磁力波信号の周辺あるいは前記誘導経路中に存在し、かつ、金属材料であり、導線性の材料であり、磁性材料であり、渦電流が生じる材料であり、あるいはこれらの組合せによる、船体構造であり、板状物体であり、面状物体であり、あるいはこれらの組合せで有る場合には、前記閉ループアンテナから放出される磁力線の方向を、前記組合せの平面部分とは、垂直方向でなく、水平方向もしくは並行方向に近づける必要がある。
In addition, it is a metal material, a conductive material, a magnetic material, and a material that generates an eddy current, which exists in the periphery of the magnetic wave signal radiated from the closed loop antenna or in the induction path, and is a conductive material. Alternatively, in the case of a hull structure, a plate-like object, a planar object, or a combination thereof by the combination thereof, the direction of the magnetic force line emitted from the closed loop antenna is the plane portion of the combination. And should be close to horizontal or parallel, not vertical.
 図2に本発明の第1の実施形態における磁力波アンテナの他の構成図を示し、605は電磁界シールド(断面図を示す)、700は閉ループアンテナ、707は磁性体、708は磁力波信号送受信手段、709はベースバンド信号送受信手段、718は離調抑制手段である。
 ここで、閉ループアンテナ700が磁力波信号を効率よく外部へ放射できる形状の磁性体707の外周など、前記磁性体に近接して設けられ、電磁波信号の放射もしくは再放射を抑制できる構成・構造・特性であり、前記磁力波信号送受信手段708内の位相調整手段とは、浮遊容量を含め、非同調あるいは非共振で接続されているものとする。
FIG. 2 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 605 is an electromagnetic field shield (cross sectional view), 700 is a closed loop antenna, 707 is a magnetic substance, and 708 is a magnetic wave signal. Transmission / reception means 709 is a baseband signal transmission / reception means, and 718 is a detuning suppression means.
Here, the closed loop antenna 700 is provided close to the magnetic body, such as the outer periphery of the magnetic body 707 having a shape capable of efficiently radiating the magnetic wave signal to the outside, so that the radiation or re-radiation of the electromagnetic wave signal can be suppressed. It is a characteristic, and it is assumed that the phase adjustment means in the magnetic wave signal transmission / reception means 708 is connected with non-tuning or non-resonance including stray capacitance.
 また、前記閉ループアンテナが磁性体に近接して設けられた単巻あるいは複数巻のソレノイドコイルであり、変位電流の放射もしくは再放射を抑制する構造であり、構成であり、特性であり、変動磁界を効率よく放射する構造であり、構成であり、特性であり、あるいはこれらの組合せである。
 また、前記磁性体が、少なくとも、棒状であり、多角形であり、複数本で構成され、前記複数本がクロスして配置され、メッシュ状に配置され、前記ソレノイドコイルが、少なくとも、単層巻であり、多層巻であり、ポリファイラ巻であり、あるいはこれらの組合せである。
In addition, the closed loop antenna is a single-turn or multi-turn solenoid coil provided in close proximity to a magnetic body, and is a structure, structure, and characteristic that suppresses radiation or re-radiation of displacement current. , A structure, a characteristic, or a combination thereof.
In addition, the magnetic body is at least a bar, a polygon, and a plurality, and the plurality of magnetic bodies are arranged in a cross shape and arranged in a mesh, and the solenoid coil is at least a single layer wound. A multi-layer winding, a polyfilar winding, or a combination thereof.
 また、前記閉ループアンテナが複数組設けられ、前記複数組が、間隔を置いて配置され、メッシュ状に配置され、直列に接続され、並列に接続され、同相で駈動され、あるいはこれらの組合せであり、磁力波信号の放射効率の良い閉ループアンテナが実現できる。
 また、前記閉ループアンテナは、移動端末、携帯端末、あるいは小型のRFIDタグに用いられ、離調抑制手段718の内部に収納され、特に小型の場合には外周部が絶縁物によりコーティングされる。
In addition, a plurality of sets of the closed loop antennas are provided, and the plurality of sets are arranged at intervals, arranged in a mesh, connected in series, connected in parallel, oscillated in phase, or a combination thereof. Thus, it is possible to realize a closed loop antenna with good radiation efficiency of the magnetic wave signal.
Further, the closed loop antenna is used for a mobile terminal, a portable terminal, or a small RFID tag, and is housed inside the detuning suppressing means 718, and in the case of a particularly small size, the outer peripheral portion is coated with an insulator.
 図3は、本発明の第1の実施形態における磁力波信号送受信手段の構成図であり、605は電磁界シールド(断面図を示す)、704は位相調整手段、705は寄生振動抑制手段、706は送受切替手段、708は磁力波信号送受信手段、710は磁力波信号駈動手段、711は誘起起電力受信手段、712a、712bは閉ループアンテナ接続端子、713aはベースバンド信号送信機接続端子、713bはベースバンド信号受信機接続端子である。 FIG. 3 is a block diagram of the magnetic wave signal transmitting / receiving means in the first embodiment of the present invention, wherein 605 is an electromagnetic field shield (shown in cross section), 704 is a phase adjusting means, 705 is a parasitic vibration suppressing means, 706 Reference numeral 708 is a magnetic wave signal transmitting / receiving means, 710 is a magnetic wave signal oscillating means, 711 is an induced electromotive force receiving means, 712a, 712b are closed loop antenna connection terminals, 713a are baseband signal transmitter connection terminals, 713b Is a baseband signal receiver connection terminal.
 前記閉ループアンテナ接続端子712a、712bに、前記閉ループアンテナ700が接続されと、寄生振動抑制手段705が前記閉ループアンテナと並列に接続されて前記閉ループアンテナをダンピングし、不要な寄生振動を抑制する。
 次に、位相調整手段704が前記閉ループアンテナと直列に接続され、送信しあるいは受信した磁力波信号の位相を調整し、磁力波信号の放射効率を改善し、あるいは誘起起電力を増大させるなどが可能となるが、前記浮遊容量を含む位相調整手段の容量性リアクタンスと、前記閉ループアンテナの誘導性リアクタンスとを共振状態としあるいは同調状態とすると、前記閉ループアンテナから、変位電流が放射もしくは再放射され、海水中でオーミックロスや渦電流が生じ、誘導結合損の増加とミスマッチの原因となるので、前記両者を非共振状態としあるいは非同調状態とすることが必須となる。
When the closed loop antenna 700 is connected to the closed loop antenna connection terminals 712a and 712b, a parasitic vibration suppressing means 705 is connected in parallel with the closed loop antenna to damp the closed loop antenna and suppress unnecessary parasitic vibration.
Next, a phase adjusting means 704 is connected in series with the closed loop antenna to adjust the phase of the transmitted or received magnetic wave signal to improve the radiation efficiency of the magnetic wave signal or to increase the induced electromotive force, etc. Although it becomes possible, when the capacitive reactance of the phase adjustment means including the stray capacitance and the inductive reactance of the closed loop antenna are brought into resonance or in a tuned state, displacement current is radiated or reradiated from the closed loop antenna. Since ohmic losses and eddy currents occur in seawater, which causes an increase in inductive coupling loss and a mismatch, it is essential to make both of them non-resonant or non-synchronous.
 ここで、前記閉ループアンテナ700は周波数の広い範囲で誘導性負荷であり、図10に例示するように、前記閉ループアンテナ700の全長が50cmの場合、周波数が1MHz~15MHzの範囲で、直列抵抗が1Ω以下(図示せず)であるのに対して、誘導性リアクタンスは3Ω~32Ωの範囲で変化するので、既存の通信機の送信出力端子を前記閉ループアンテナに直接接続すると、前記閉ループアンテナに十分な誘導電流を駈動することが難しく、しかも送信出力段を破損するなどの問題が生じる。 Here, the closed loop antenna 700 is an inductive load in a wide range of frequencies, and as illustrated in FIG. 10, when the total length of the closed loop antenna 700 is 50 cm, the series resistance is in the range of 1 MHz to 15 MHz. Since the inductive reactance changes in the range of 3Ω to 32Ω while it is 1Ω or less (not shown), connecting the transmission output terminal of the existing communication device directly to the closed loop antenna is sufficient for the closed loop antenna. It is difficult to oscillate various inductive currents, and problems such as damage to the transmission output stage occur.
 従来の設計理論によれば、前記閉ループアンテナに通信装置を接続する場合には、前記閉ループアンテナの誘導性リアクタンスと共振するコンデンサを直列あるいは並列に接続して共振させ、インピーダンス変換トランスなどを介して前記閉ループアンテナの直列抵抗と通信装置の出力抵抗とをマッチングさせ、前記通信装置の出力電力を最少の損失で前記閉ループアンテナに供給するように構成されており、前記閉ループアンテナに供給される電力のほとんどが電磁波信号もしくは変位電流として外部へ放射されあるいは再放射されることになる。 According to the conventional design theory, when a communication device is connected to the closed loop antenna, a capacitor resonating with the inductive reactance of the closed loop antenna is connected in series or in parallel for resonance, and via an impedance conversion transformer or the like. It is configured to match the series resistance of the closed loop antenna with the output resistance of the communication device and to supply the output power of the communication device to the closed loop antenna with minimal loss, of the power supplied to the closed loop antenna Most are radiated or re-radiated as electromagnetic signals or displacement currents.
 前記のように、閉ループアンテナの誘導性リアクタンスとコンデンサの容量性リアクタンスとを共振あるいは同調させた状態とし、前記閉ループアンテナを海水中に潜らせると、放射された電磁波信号が海水中のNa+イオンやCL-イオンなどに変位電流を流し、オーミックロスを生じて減衰し、前記変位電流によって生じる渦電流損によって減衰し、更に前記オーミックロスと渦電流損とのために、前記閉ループアンテナの放射インピーダンスが大きく変化してミスマッチ状態となって減衰し、100kHz以上の電磁波信号はもちろん、100kHz以下の電磁波信号でも海水中から送信できない理由であり本発明の基盤となっている。 As described above, when the inductive reactance of the closed loop antenna and the capacitive reactance of the capacitor are resonated or tuned, and the closed loop antenna is submerged in seawater, the emitted electromagnetic wave signal becomes Na + ions in seawater or A displacement current is passed through CL- ions etc., causing ohmic loss and attenuation, and attenuation by eddy current loss caused by the displacement current, and furthermore, the radiation impedance of the closed loop antenna is reduced due to the ohmic loss and eddy current loss. This is the reason why it can not be transmitted from seawater even with electromagnetic waves of 100 kHz or more, as well as electromagnetic waves of 100 kHz or more, which are largely changed and attenuated in a mismatch state.
 そこで、海水中において、電磁波信号が減衰する原因が、主に変位電流の放射もしくは再放射によるものであることを確認するために、外径が1mmφの絶縁銅線10本を撚り合わせて束ね、全長が50cm程度である閉ループアンテナを送信側用と受信側用に1対向を試作し、(1)双方ともに同調回路およびマッチング回路を設けて同調状態とし、(2)双方ともに同調回路およびマッチング回路を介さずに非共振、非同調の状態とし、送信側ではアンテナ、送信機、および電池を含めて防水ケースに収納し、受信側ではアンテナ出力をボルテージフォロアによって低インピーダンスに変換した後同軸ケーブルで引き出して別の防水ケースに収納し、塩分濃度が5%の食塩水を満たした小型のプールの中て、送信側と受信側の閉ループアンテナ間の誘導結合損の測定を実施した。 Therefore, in order to confirm that the cause of attenuation of the electromagnetic wave signal in seawater is mainly due to radiation or re-radiation of displacement current, 10 insulated copper wires with an outer diameter of 1 mmφ are twisted and bundled, A closed loop antenna with a total length of about 50 cm is prototyped for one on the transmitting side and one on the receiving side, and (1) both tuning circuits and matching circuits are provided for tuning, and (2) both tuning circuits and matching circuits In the non-resonant, non-tuned state without using the antenna, the antenna, the transmitter, and the battery are included in the waterproof case on the transmitting side, and the antenna output is converted to low impedance by the voltage follower on the receiving side and then coaxial cable In a small pool that is pulled out and stored in a separate waterproof case and filled with 5% saline solution, the closed loop on the transmit side and the receive side Measurement was carried out of the inductive coupling loss between antenna.
 前記誘導結合損の測定において、送信側では、送信周波数が3.5MHzであり、駈動電圧が1V(rms)の送信出力で前記閉ループアンテナを駈動し、受信側では、前記同軸ケーブルにスペクトルアナライザを接続し、送信側と受信側のアンテナ間の間隔を40cm程度とし、(1)双方ともに同調状態とした場合には、大気中では電磁波信号の伝搬損失に相当して緩やかに増加するのに対し、双方の防水ケースが塩水中に有るときには伝搬損失が急激に増大し、完全に不感状態となったのに対し、(2)双方とも非共振、非同調状態とした場合には、双方の防水ケースが大気中に有るときも、双方の防水ケースが塩水中に潜ったときにも、大気中の誘導結合損と変化がなく、特に前記送信側におけるミスマッチも生じないことが確認できた。
 上記の結果から、前記閉ループアンテナの誘導性リアクタンスと、前記浮遊容量を含む位相調整手段の容量性リアクタンスとを非共振あるいは非同調とし、後者の絶対値を前者の絶対値の0%~95%程度に設定して離調させることで、変位電流が外部へ放射されあるいは再放射されるのを抑制でき、前記閉ループアンテナのVSWRが海水中において著しく増加するのを抑制でき、磁力波信号の放射効率を改善できることになる。
In the measurement of the inductive coupling loss, on the transmission side, the transmission frequency is 3.5 MHz, and the peristaltic voltage is 1 V (rms), and the transmission power of the closed loop antenna is perturbed. When an analyzer is connected, and the distance between the transmitting and receiving antennas is about 40 cm, and (1) both are in the synchronized state, the propagation loss of the electromagnetic wave signal gradually increases in the atmosphere. On the other hand, when both waterproof cases are in salt water, the propagation loss increases sharply and becomes completely insensitive, whereas (2) both become non-resonant and incoherent, both It has been confirmed that there is no change in inductive coupling loss in the air, particularly when the waterproof case in the air is in the air, or when both waterproof cases are submerged in the salt water, and particularly, no mismatch occurs on the transmission side. .
From the above results, the inductive reactance of the closed loop antenna and the capacitive reactance of the phase adjustment means including the stray capacitance are made non-resonant or untuned, and the absolute value of the latter is 0% to 95% of the absolute value of the former. By setting the detuning to a certain degree, it is possible to suppress the displacement current from being radiated or reradiated to the outside, and it is possible to suppress the VSWR of the closed loop antenna from increasing significantly in seawater, and the radiation of the magnetic wave signal Efficiency can be improved.
 そこで、前記送信側と受信側の磁力波アンテナが空心であり、前記送信側と受信側との両方の位相調整手段の容量性リアクタンスを限りなく0Ωとし、前記送信側と受信側の磁力波アンテナを非共振あるいは非同調状態とした時、一例として、前記送信側磁力波アンテナと垂直方向に対向する受信側磁力波アンテナから出力される受信入力を以下の手順で算出する。
 送信側の磁力波アンテナが非共振あるいは非同調状態のままで、EtSinωtの交流電圧を駈動すると、磁力波アンテナに流れる電流(It)は、直列抵抗を無視すると、It=(Et/ωL)Sin(ωt-π/2)となる。
Therefore, the magnetic wave antenna on the transmission side and the reception side is an air core, and the capacitive reactance of the phase adjustment means on both the transmission side and the reception side is set to 0 Ω as much as possible, and the magnetic wave antenna on the transmission side and the reception side In the non-resonant state or the untuned state, as an example, the reception input output from the reception side magnetic wave antenna vertically opposed to the transmission side magnetic wave antenna is calculated according to the following procedure.
When the magnetic wave antenna on the transmission side is in non-resonance or out of phase, and the ac voltage of EtSin ωt is oscillated, the current (It) flowing to the magnetic wave antenna ignores the series resistance, It = (Et / ωL) It becomes Sin (ωt-π / 2).
 前記磁力波アンテナが平行四辺形の場合、距離R(m)離れた地点での磁界の変動dH/dtは、相対する辺の長さが無限長であると仮定すると、アンペールの法則より、
 (dH/dt)=[{1/(2π(R-D/2))}-{1/(2π(R+D/2))}](N1*dIt/dt)=[D/(2πR^2)](N1*Et/L)Cos(ωt-π/2) --(1)
となる。ここで、D=平行四辺形の磁力波アンテナの相対する辺の間隔、N1=送信側磁力波アンテナの巻き数、R=対向する磁力波アンテナ間の距離、ω=2πfは磁力波信号の角周波数、L=送信側磁力波アンテナのインダクタンス、Et=駈動電圧、R>>Dとする
When the magnetic wave antenna is a parallelogram, the variation dH / dt of the magnetic field at a point separated by a distance R (m) is assumed from the Ampere's law, assuming that the length of the opposite side is infinite.
(dH / dt) = [{1 / (2π (RD / 2))}-{1 / (2π (R + D / 2))}] (N1 * dIt / dt) = [D / (2πR ^ 2) )] (N1 * Et / L) Cos (ωt-π / 2)-(1)
It becomes. Here, D = distance between opposing sides of parallelogram magnetic wave antenna, N 1 = number of turns of transmitting magnetic wave antenna, R = distance between opposing magnetic wave antennas, ω = 2πf is angle of magnetic wave signal Frequency, L = inductance of transmitting magnetic wave antenna, Et = peristaltic voltage, R >> D
 一方、対向する受信側の磁力波アンテナに誘起する起電力(Er)は、ファラデーの電磁誘導の法則より、
 Er=[μ(Et/L)(N1*N2*D*S2/2πR^2)] Cos(ωt-π/2) --(2)
となる。ここで、N2=受信側の磁力波アンテナの巻数、S2=受信側の磁力波アンテナの面積とする。
 上記の(2)式に、L=A*N1^2*D^2を代入し、前記起電力を利得が(Gr)のボルテージフォロアによってインピーダンス変換すると、
 GrEr= [GrμEt(N1*N2*D*S2/A*N1^2D1^2)/2πR^2] Cos(ωt-π/2) --(3)
がボルテージフォロアから出力される。ここで、A=1.94*10^-6、μ=4π*10^-7とする。
On the other hand, the electromotive force (Er) induced in the magnetic wave antenna on the opposite side of the receiving side is calculated according to Faraday's law of electromagnetic induction.
Er = [μ (Et / L) (N1 * N2 * D * S2 / 2πR ^ 2)] Cos (ωt-π / 2)-(2)
It becomes. Here, N2 = the number of turns of the magnetic wave antenna on the receiving side, and S2 = the area of the magnetic wave antenna on the receiving side.
Substituting L = A * N1 ^ 2 * D ^ 2 into the above equation (2), and transforming the electromotive force by a voltage follower whose gain is (Gr),
GrEr = [GrμEt (N1 * N2 * D * S2 / A * N1 ^ 2D1 ^ 2) / 2πR ^ 2] Cos (ωt-π / 2)-(3)
Is output from the voltage follower. Here, it is assumed that A = 1.94 * 10 ^ -6 and μ = 4π * 10 ^ -7.
 前記ボルテージフォロアの出力インピーダンスを受信機の入力インピーダンス50Ωに比較して十分小さく設定し、前記ボルテージフォロアからの出力電圧を、入力インピーダンスが50Ωの受信機で受信すると、受信入力(Pr)は、
 Pr={[GrμEt(N2*S2/A*N1*D)/2πR^2]^2/50} --(4)
となる。
 上記の式(4)から、受信入力(Pr)は、垂直方向に対向する磁力波アンテナ間の距離の四乗に反比例して12dB/octの割合で減少するが、磁力波信号の周波数に関係なく一定の値となり、広帯域の磁力波通信が可能であり、狭帯域から広帯域までの任意の帯域幅のベースバンド信号を含む磁力波信号として、直接放射しあるいは搬送波を変調して放射することが可能であることを示し、試作セットを用いた通信実験でも確認している。
When the output impedance of the voltage follower is set sufficiently small compared to the input impedance 50Ω of the receiver, and the output voltage from the voltage follower is received by the receiver with an input impedance of 50Ω, the reception input (Pr) is
Pr = {[GrμEt (N2 * S2 / A * N1 * D) / 2πR ^ 2] ^ 2/50}-(4)
It becomes.
From the above equation (4), the reception input (Pr) decreases at a rate of 12 dB / oct in inverse proportion to the fourth power of the distance between the opposing magnetic wave antennas in the vertical direction, but is related to the frequency of the magnetic wave signal It is possible to use a constant value, wide band magnetic wave communication, and directly radiate or modulate a carrier wave as a magnetic wave signal including a baseband signal of any bandwidth from narrow band to wide band. We show that it is possible, and confirm it also by the communication experiment using a trial production set.
 例えば、磁力波信号の周波数が1kHzであり、送信側と受信側の閉ループアンテナの双方がともに、1辺が1mの正方形であり、50回巻であり、空心であり、誘導性リアクタンスが約30Ωであり、インダクタンスが約5mHであり、送信側駈動電圧が100Vrmsであり、Gr≒1の場合、送信側と受信側の閉ループアンテナの距離が10mとすると、前記(4)式から受信入力(Pr)を求めると、 Pr≒-36dBW=-6dBm となり、R=10mでは-6dBm、R=100mでは-46dBm、R=1000mでは-86dBmとなり、半径1000mの範囲で相互間の通信が可能となる。
 しかし、送受アンテナがお互いに垂直方向に対向している場合、送受アンテナ相互間で交差する磁力線の経路長が、距離の増加とともに急激に長くなり、渦電流による誘導結合損が急激に増加するため、受信入力が急激に低下する問題点があり、かつ前記誘導結合損の増加は磁力波信号の周波数が高くなる程顕著であり、磁力波信号の周波数を高くするには限界があることになる。
For example, the frequency of the magnetic wave signal is 1 kHz, and both the transmitting and receiving closed loop antennas are square with one side of 1 m, are 50 turns, are air cores and have an inductive reactance of about 30 Ω. Assuming that the inductance is about 5 mH, the peristaltic voltage on the transmission side is 100 Vrms, and Gr ≒ 1, the distance between the transmitting and receiving closed loop antennas is 10 m. If Pr) is obtained, Pr ≒ -36dBW = -6dBm, -6dBm at R = 10m, -46dBm at R = 100m, -86dBm at R = 1000m, and mutual communication is possible within a radius of 1000m. .
However, when the transmitting and receiving antennas face each other in the vertical direction, the path length of the magnetic lines of force intersecting each other becomes rapidly longer as the distance increases, and the inductive coupling loss due to the eddy current rapidly increases. There is a problem that the receiving input drops sharply, and the increase of the inductive coupling loss is more remarkable as the frequency of the magnetic wave signal becomes higher, and there is a limit to increase the frequency of the magnetic wave signal. .
 また、前記磁力波アンテナ磁性体の周辺に形成され、その誘導性リアクタンスと浮遊容量を含む位相調整手段の容量性リアクタンスとが非共振あるいは非同調状態とした時、垂直方向に対向する受信側の受信入力(Pr)は、
 Pr={[GrμEt(μe2*N2*S2/A*μe1*N1*S1)/2πR^2]^2/(50)} --(5)
のとおりとなる。ここで、S1=送信側磁力波アンテナの面積とする。
 一方、前記送信側磁力波アンテナと受信側磁力波アンテナとを水平方向に対向させる場合には、受信入力(Pr)は、
 Pr={[GrμEt(μe2*S2*N2/A*μe1*N1*S1)/2πR^3)]^2/(50)} --(6)
の通りとなる。
Further, when the inductive reactance and the capacitive reactance of the phase adjustment means including the stray capacitance are formed in the non-resonant or out-of-tune state formed around the magnetic wave antenna magnetic body, the receiving side facing in the vertical direction is Receive input (Pr) is
Pr = {[GrμEt (μe2 * N2 * S2 / A * μe1 * N1 * S1) / 2πR ^ 2] ^ 2 / (50)}-(5)
It will be. Here, S1 = the area of the transmission side magnetic wave antenna.
On the other hand, when the transmitting side magnetic wave antenna and the receiving side magnetic wave antenna are horizontally opposed, the receiving input (Pr) is:
Pr = {[GrμEt (μe2 * S2 * N2 / A * μe1 * N1 * S1) / 2πR ^ 3)] ^ 2 / (50)}-(6)
It will be.
 上記の式(6)より、受信入力(Pr)は、水平方向に対向する磁力波アンテナ間の距離の六乗に反比例して18dB/octの割合で減少するが、相互間で交差する磁力線の経路長が磁力波アンテナ間の距離と同じであり、渦電流の発生が抑制されるため、距離の増加によって誘導結合損が急激に増加しなくなるメリットが得られることから、水平方向に対向させる方が長距離での通信に有利である。
 また、前記閉ループアンテナの受信時もしくは受信側の磁性体の実効透磁率が送信時もしくは送信側の磁性体の実効透磁率より大きく、前記閉ループアンテナの受信時もしくは受信側の巻数が送信時もしくは送信側の巻数より多く、前記閉ループアンテナの受信時もしくは受信側の面積が送信時もしくは送信側の面積より広く、前記閉ループアンテナの受信時もしくは受信側の対向する2辺の間隔が送信時もしくは送信側の対向する2辺の間隔より長く、あるいはこれらの組合せによって、通信可能なエリアを拡大できるメリットが得られる。
From the above equation (6), the reception input (Pr) decreases at a rate of 18 dB / oct in inverse proportion to the sixth power of the distance between the horizontally opposed magnetic wave antennas, but Since the path length is the same as the distance between the magnetic wave antennas and generation of eddy current is suppressed, there is a merit that the inductive coupling loss does not increase rapidly as the distance increases. Is advantageous for long distance communication.
Further, the effective permeability of the magnetic body at reception or reception of the closed loop antenna is larger than the effective permeability of the magnetic body at transmission or transmission side, and the number of turns at reception or reception of the closed loop antenna is transmission or transmission The area of receiving or receiving side of the closed loop antenna is larger than the number of turns on the side, and the distance between the two opposing sides of receiving or receiving side of the closed loop antenna is the time of transmitting or transmitting side A longer distance between the two opposing sides of the pair, or a combination thereof, provides the advantage of expanding the communicable area.
 また、単一の送信側磁力波アンテナに対して複数の受信側磁力波アンテナが対向している場合、前記複数の受信側磁力波アンテナの一部が前記単一の送信側磁力波アンテナと垂直方向に対向し、前記複数の受信側磁力波アンテナの残りが前記単一の送信側磁力波アンテナと水平方向に対向することによって、通信可能なエリアを拡大できるメリットが得られる。
 また、単一の受信側磁力波アンテナに対して複数の送信側磁力波アンテナが対向している場合にも、前記複数の送信側磁力波アンテナの一部が前記単一の受信側磁力波アンテナと垂直方向に対向し、前記複数の送信側磁力波アンテナの残りが前記単一の受信側磁力波アンテナと水平方向に対向することによって、通信可能なエリアを拡大できるメリットが得られる。
 また、前記磁力波アンテナが相手側磁力波アンテナと対向している場合、対向している方向の反対側に、アルミ板などの非磁性体の金属板を反射板として配置することで、渦電流が生じ、前記磁力波アンテナから反対方向に放射される磁力線を反射させることで、指向性アンテナを実現できる。
When a plurality of receiving side magnetic wave antennas are opposed to a single transmitting side magnetic wave antenna, a part of the plurality of receiving side magnetic wave antennas are perpendicular to the single transmission side magnetic wave antenna. Opposite to the direction, the rest of the plurality of receiving side magnetic wave antennas are horizontally opposed to the single transmitting side magnetic wave antenna, so that the communicable area can be expanded.
Further, even when a plurality of transmission side magnetic wave antennas are opposed to a single reception side magnetic wave antenna, a part of the plurality of transmission side magnetic wave antennas is the single reception side magnetic wave antenna And the other of the plurality of transmission side magnetic wave antennas are horizontally opposed to the single reception side magnetic wave antenna, the merit that the communicable area can be expanded can be obtained.
In addition, when the magnetic wave antenna is facing the other magnetic wave antenna, an eddy current can be provided by arranging a nonmagnetic metal plate such as an aluminum plate as a reflection plate on the opposite side of the facing direction. A directional antenna can be realized by reflecting magnetic lines of force emitted in the opposite direction from the magnetic wave antenna.
 図4は、本発明の第1の実施形態における磁力波信号駈動手段の構成図であり、710は磁力波信号駈動手段、714bは送受切替接続端子、715a(緩衝増幅)、715b(位相反転増幅)は電力増幅手段、713aはベースバンド信号接続端子であり、全体で、少なくとも、プッシュプル型増幅器、ハーフブリッジ型増幅回路、あるいはフルブリッジ型増幅回路などを構成している。
 ここで、前記電力増幅手段にはMOSFET型トランジスタが用いられ、平衡型であり、比較的に歪が少なく、低い出力インピーダンスであり、あるいは電源電圧を高圧にすることで、前記閉ループアンテナに大きな誘導電流を破損することなく駆動することができる。
 また、前記電力増幅手段には、入力されたベースバンド信号によって、搬送波を変調し、符号化し、スペクトル拡散し、あるいはこれらの組合せを行う機能が含まれるものとする。
 なお、商用電源を直接駆動する場合には、前記電力増幅手段を省略できるので安価となり、経済化が図れる。
FIG. 4 is a block diagram of the magnetic wave signal pulsating means in the first embodiment of the present invention, and 710 is a magnetic wave signal pulsating means, 714b is a transmission / reception switching connection terminal, 715a (buffer amplification), 715b (phase) Inverse amplification) is a power amplification means, 713a is a baseband signal connection terminal, and at least a push-pull amplifier, a half bridge type amplifier circuit, a full bridge type amplifier circuit, etc. are configured as a whole.
Here, a MOSFET type transistor is used as the power amplification means, which is balanced, relatively low in distortion, low in output impedance, or made high in the closed loop antenna by making the power supply voltage high. It can be driven without breaking the current.
Further, the power amplification means includes a function of modulating, encoding, spectrum spreading, or a combination of these by modulating the carrier according to the input baseband signal.
In the case of directly driving a commercial power supply, the power amplification means can be omitted, which is inexpensive and economical.
 図5は、本発明の第1の実施形態における磁力波信号駈動手段の他の構成図であり、710は磁力波信号駈動手段、714bは送受切替接続端子、715a、715bは電力増幅手段、716a、716bは伝送線路トランスあるいは伝送線路的トランス、713aはベースバンド信号接続端子であり、全体でプッシュプル型増幅器、ハーフブリッジ型増幅回路、あるいはフルブリッジ型増幅回路などを構成している。 FIG. 5 is another configuration diagram of the magnetic wave signal pulsating means in the first embodiment of the present invention, and 710 is a magnetic wave signal pulsating means, 714b is a transmission / reception switching connection terminal, and 715a and 715b are power amplifying means. , 716a and 716b are transmission line transformers or transmission line-like transformers, and 713a are baseband signal connection terminals, and collectively constitute a push-pull amplifier, a half bridge type amplifier circuit, a full bridge type amplifier circuit or the like.
 ここで、前記電力増幅手段にはMOSFET型トランジスタを用い、平衡型とし、低歪であり、低出力インピーダンスとし、出力側の伝送線路トランスあるいは伝送線路的トランス716bを昇圧トランスとし、電源電圧を高圧とし、大容量のMOSFETトランジスタを用い、あるいはこれらの組合せによって、前記閉ループアンテナにより大きな誘導電流、伝導電流、あるいは磁力波信号を破損することなく駆動することが可能となり、前記(4)式の受信入力Prを増大できる。
 あるいは、伝送線路トランス716bの出力側巻線を閉ループアンテナに置換えることにより、大きな磁力波電流を直接駈動することができる。
 また、前記電力増幅手段には、入力されたベースバンド信号を直接増幅し、あるいは搬送波を変調し、符号化し、スペクトル拡散し、あるいはこれらの組合せを行った後増幅する機能が含まれるものとする。
 なお、商用電源を直接駆動する場合には、前記電力増幅手段を省略できるので安価となり、経済化が図られる。
Here, a MOSFET type transistor is used as the power amplification means, balanced type, low distortion, low output impedance, a transmission line transformer on the output side or a transmission line transformer 716b as a boost transformer, and a power supply voltage of high voltage It is possible to drive the closed loop antenna without damaging a large induced current, a conduction current or a magnetic wave signal by using a large capacity MOSFET transistor or a combination thereof, and the reception of the formula (4) The input Pr can be increased.
Alternatively, a large magnetic wave current can be directly oscillated by replacing the output side winding of the transmission line transformer 716b with a closed loop antenna.
Further, the power amplification means includes a function of directly amplifying the input baseband signal, or modulating a carrier wave, encoding, spectrum spreading, or performing amplification after performing a combination of these. .
When the commercial power source is directly driven, the power amplification means can be omitted, which is inexpensive and economical.
 図6は、本発明の第1の実施形態における誘起起電力受信手段の構成図であり、711は誘起起電力受信手段、713bはベースバンド信号接続端子、714cは送受切替接続端子、716cは伝送線路トランスもしくは伝送線路的トランス、717はボルテージフォロアなどのインピーダンス変換手段を含む低雑音増幅手段である。
 前記磁力波アンテナからの誘起起電力が誘起起電力受信手段側に切替えられると、伝送線路トランスもしくは伝送線路的トランス716cによって昇圧され、ボルテージフォロアによってインピーダンス変換され、低雑音増幅手段によって増幅され、検波・復調され、復号化され、あるいはこれらの組合せが行われ、所要のレベルにまで増幅し、ベースバンド信号として次段のベースバンド信号送受信手段に送られる。
FIG. 6 is a block diagram of an induced electromotive force receiving unit according to the first embodiment of the present invention. 711 is an induced electromotive force receiving unit, 713b is a baseband signal connection terminal, 714c is a transmission / reception switching connection terminal, and 716c is a transmission Line transformers or transmission line like transformers 717 are low noise amplification means including impedance conversion means such as voltage followers.
When the induced electromotive force from the magnetic wave antenna is switched to the induced electromotive force receiving means, it is boosted by the transmission line transformer or transmission line transformer 716c, impedance converted by the voltage follower, amplified by the low noise amplification means, and detected. The signal is demodulated, decoded or a combination thereof, amplified to a required level, and sent as a baseband signal to the baseband signal transmitting / receiving means of the next stage.
 ここで、前記磁力波アンテナによって寄生振動が生じ、前記伝送線路トランスもしくは伝送線路的トランスによって寄生振動が生じ、前記低雑音増幅手段によって寄生振動が生じ、あるいはこれらの組合せによる寄生振動が生じる場合には、前記閉ループアンテナ、前記トランス、前記低雑音増幅手段、あるいはこれらの組合せに寄生振動抑制手段を追加する必要がある。
 また、前記磁力波アンテナから生じる熱雑音は、直列抵抗によるものであり、誘導性リアクタンスからは生じないことから、前記ボルテージフォロアによりインピーダンス変換を行うことで、前記ボルテージフォロアから出力される熱雑音は、前記直列抵抗により生じるものとなる。
Here, when the parasitic vibration is generated by the magnetic wave antenna, the parasitic vibration is generated by the transmission line transformer or the transmission line transformer, the parasitic vibration is generated by the low noise amplification means, or the parasitic vibration is generated by a combination thereof. It is necessary to add parasitic vibration suppression means to the closed loop antenna, the transformer, the low noise amplification means, or a combination thereof.
Further, since the thermal noise generated from the magnetic wave antenna is caused by a series resistance and is not generated from the inductive reactance, the thermal noise output from the voltage follower is obtained by performing the impedance conversion by the voltage follower. , Due to the series resistance.
 また、前記ボルテージフォロアから出力される熱雑音には前記伝送線路トランスもしくは伝送線路的トランスによる熱雑音が付加されるとともに、内部の浮遊容量が付加されて共振状態が生ずるため、少なくとも、実効透磁率が高いトロイダルコアを用い、前記伝送線路トランスもしくは伝送線路的トランスの巻数を減らし、前記熱雑音と浮遊容量とを軽減するための対策が必要となる。
 また、前記伝送線路トランスもしくは伝送線路的トランスを用いる代わりに、受信時もしくは受信側の磁力波アンテナの、巻数を増やし、磁性体の実効比透磁率を大きくし、面積を広くし、あるいはこれらを組み合わせることによって同様な効果が得られる。
 また、磁力波信号の周波数が1MHzを超える場合には、前記磁力波アンテナを含む、電子・機構部品、電子回路、構成、構造、あるいはこれらの組合せについて、前記熱雑音と浮遊容量とを軽減するための対策が必要である。
Further, since thermal noise due to the transmission line transformer or the transmission line-like transformer is added to the thermal noise output from the voltage follower and a stray capacitance is added inside to cause a resonance state, at least the effective permeability However, it is necessary to use a high toroidal core to reduce the number of turns of the transmission line transformer or the transmission line transformer and to reduce the thermal noise and stray capacitance.
Further, instead of using the transmission line transformer or the transmission line transformer, the number of turns of the magnetic wave antenna at the time of receiving or receiving side is increased, the effective relative permeability of the magnetic body is increased, and the area is enlarged. Similar effects can be obtained by combining them.
In addition, when the frequency of the magnetic wave signal exceeds 1 MHz, the thermal noise and stray capacitance are reduced for an electronic / mechanical component, an electronic circuit, a configuration, a structure, or a combination thereof including the magnetic wave antenna. It is necessary to take measures to
 また、図1~図6、および請求項1に示すように、変動磁界によって誘導結合する磁力波信号を用い、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中を、近距離間から中距離間での無線通信を可能にする磁力波アンテナおよびそれを用いる磁力波通信装置において、前記磁力波アンテナが、少なくとも、閉ループアンテナと、磁力波信号送受信手段とから構成され、 In addition, as shown in FIGS. 1 to 6 and claim 1, using a magnetic wave signal inductively coupled by a fluctuating magnetic field, the salt concentration is 0% in the atmosphere, in a substance having a relatively large propagation loss of the electromagnetic wave signal. In a magnetic wave antenna and a magnetic wave communication apparatus using the same, which enables wireless communication between a short distance and a middle distance in a guidance route by up to 5% in fresh water or seawater, or a combination thereof The magnetic wave antenna comprises at least a closed loop antenna and magnetic wave signal transmitting / receiving means,
 前記閉ループアンテナが、少なくとも、電磁波信号を送信時に外部へ放射しあるいは受信時に外部へ再放射するのを抑制し、かつ磁力波信号を効率よく外部へ放射しあるいは外部から受信するための構造、構成、形状、特性、あるいはこれらの組合せを有し、
 前記磁力波信号送受信手段が、少なくとも、位相調整手段、寄生振動抑制手段、送受切替手段、磁力波信号駈動手段、誘起起電力受信手段、あるいはこれらの組合せを有し、
 前記位相調整手段が、自己の容量性リアクタンスの他に、浮遊容量による容量性リアクタンスを含み、
A structure and configuration for at least suppressing the radiation of the electromagnetic wave signal to the outside during transmission or the re-radiation to the outside during reception and suppressing the electromagnetic wave signal to be efficiently radiated to the outside or received from the outside. , Shape, characteristics, or a combination of these,
The magnetic wave signal transmission / reception means at least includes phase adjustment means, parasitic vibration suppression means, transmission / reception switching means, magnetic wave signal oscillation means, induced electromotive force reception means, or a combination thereof.
The phase adjustment means includes a capacitive reactance due to stray capacitance in addition to its own capacitive reactance,
 前記閉ループアンテナの誘導性リアクタンスと、前記浮遊容量を含む位相調整手段の容量性リアクタンスとを、非共振状態としあるいは非同調状態とすることによって、前記電磁波信号の放射もしくは再放射を抑制し、かつ前記磁力波アンテナの広帯域化を可能とし、帯域幅が数Hz以下である狭帯域から、帯域幅の下限と上限との周波数比が10倍以上の広帯域までの、任意の帯域幅のベースバンド信号を含む磁力波信号として送信し、受信し、あるいはこれらを交互に行うことによって、近距離間から中距離間での磁力波通信を可能にする。 The radiation or re-radiation of the electromagnetic wave signal is suppressed by setting the inductive reactance of the closed loop antenna and the capacitive reactance of the phase adjustment means including the stray capacitance in a non-resonance state or in a non-tuning state, and A baseband signal of an arbitrary bandwidth from a narrow band having a bandwidth of several Hz or less to a wide band having a frequency ratio of the lower limit to the upper limit of 10 or more, enabling the widening of the magnetic wave antenna The magnetic wave communication between the short distance and the middle distance is enabled by transmitting, receiving, or alternately performing them as a magnetic wave signal including H.
 また、図1~図6、および請求項2に示すように、前記磁力波アンテナおよびそれを用いる磁力波通信装置が、少なくとも、閉ループアンテナと、磁力波信号送信手段とから構成され、前記閉ループアンテナが、少なくとも、磁力波信号を効率よく外部へ放射するための構造、構成、形状、特性、あるいはこれらの組合せを有し、かつ前記磁力波信号送信手段が、少なくとも、位相調整手段、寄生振動抑制手段、磁力波信号駈動手段、あるいはこれらの組合せを有し、前記位相調整手段が、自己の容量性リアクタンスの他に、浮遊容量による容量性リアクタンスを含み、前記閉ループアンテナの誘導性リアクタンスと、前記浮遊容量を含む位相調整手段の容量性リアクタンスとを、非共振状態としあるいは非同調状態とすることによって、前記閉ループアンテナから放射される変位電流を抑制し、前記閉ループアンテナの周辺で前記変位電流によって生じるオーミックロスと渦電流損とに基づく前記閉ループアンテナのミスマッチとを抑制することによって、前記誘導経路中において、数Hz以下から20MHzを超える任意の周波数領域で、前記磁力波信号を効率よく外部へ放射できる。 Further, as shown in FIGS. 1 to 6 and claim 2, the magnetic wave antenna and the magnetic wave communication device using the same comprise at least a closed loop antenna and a magnetic wave signal transmitting means, and the closed loop antenna Has at least a structure, a configuration, a shape, a characteristic, or a combination thereof for efficiently radiating a magnetic wave signal to the outside, and the magnetic wave signal transmission means includes at least a phase adjusting means, parasitic vibration suppression Means, magnetic wave signal oscillation means, or a combination thereof, wherein the phase adjustment means includes, in addition to its own capacitive reactance, a capacitive reactance due to stray capacitance, and an inductive reactance of the closed loop antenna, By setting the capacitive reactance of the phase adjustment means including the stray capacitance to a non-resonant state or a non-tuned state, By suppressing the displacement current radiated from the closed loop antenna, and suppressing the mismatch between the closed loop antenna based on the ohmic loss and eddy current loss caused by the displacement current around the closed loop antenna, in the induction path The magnetic wave signal can be efficiently radiated to the outside in an arbitrary frequency range from a few Hz or more to more than 20 MHz.
 また、図1~図6、および請求項3に示すように、前記浮遊容量を含む位相調整手段の容量性リアクタンスの絶対値を、前記閉ループアンテナの誘導性リアクタンスの絶対値の0%~95%の範囲内に設定することによって、海水中において生じる前記閉ループアンテナの著しいミスマッチを抑制し、前記磁力波アンテナの利得と帯域特性とを調整する。
 また、図1~図6、および請求項4に示すように、前記ベースバンド信号が、0.3kHz~3kHzのアナログ音声信号であり、パルス幅変調(PWM)されたデジタル音声信号であり、分析合成符号化アルゴリズムにより0.6kbps~4.8kbpsに帯域圧縮されたデジタル音声信号であり、その他の符号化アルゴリズムによるデジタル音声信号であり、あるいはこれらの組合せであり、かつ、前記磁力波信号駈動手段により直接増幅し、搬送波を変調して増幅し、あるいはこれらの組合せで増幅し、前記閉ループアンテナを駆動する。
Further, as shown in FIGS. 1 to 6 and claim 3, the absolute value of the capacitive reactance of the phase adjustment means including the stray capacitance is 0% to 95% of the absolute value of the inductive reactance of the closed loop antenna. By setting it in the range of (1), significant mismatch of the closed loop antenna occurring in seawater is suppressed, and the gain and band characteristics of the magnetic wave antenna are adjusted.
In addition, as shown in FIGS. 1 to 6 and claim 4, the baseband signal is an analog audio signal of 0.3 kHz to 3 kHz and is a pulse width modulated (PWM) digital audio signal, and is analyzed It is a digital voice signal band-compressed to 0.6 kbps to 4.8 kbps by a synthetic coding algorithm, a digital voice signal by another coding algorithm, or a combination thereof, and the magnetic wave signal oscillation Direct amplification by means, modulating and amplifying the carrier wave, or a combination of these to drive the closed loop antenna.
 また、図1~図6、および請求項5に示すように、前記磁力波信号駈動手段が、少なくとも、位相調整手段、伝送線路トランスもしくは伝送線路的トランス、プッシュプル増幅手段、ハーフブリッジ型電力増幅手段、フルブリッジ型電力増幅手段、DC-AC変換手段、AC-AC変換手段、アナログ信号増幅手段、低出力インピーダンス増幅手段、無効電流駈動手段、変調手段、符号化手段、あるいはこれらの組合せを含む。
 また、図1~図6、および請求項6に示すように、前記磁力波信号増幅手段の出力側トランスを前記閉ループアンテナに置換えることによって、磁力波信号を直接駈動する。
Further, as shown in FIGS. 1 to 6 and claim 5, the magnetic wave signal oscillating means is at least a phase adjusting means, a transmission line transformer or a transmission line like transformer, a push-pull amplification means, a half bridge type power Amplification means, full bridge power amplification means, DC-AC conversion means, AC-AC conversion means, analog signal amplification means, low output impedance amplification means, reactive current oscillation means, modulation means, encoding means, or combinations thereof including.
Further, as shown in FIGS. 1 to 6 and claim 6, the magnetic wave signal is directly oscillated by replacing the output transformer of the magnetic wave signal amplification means with the closed loop antenna.
 また、図1~図6、および請求項7に示すように、前記誘起起電力受信手段が、少なくとも、位相調整手段、伝送線路トランスもしくは伝送線路的トランス、インピーダンス変換手段、低雑音増幅手段、中間周波増幅手段、検波・復調手段、復号化手段、位相等価手段、あるいはこれらの組合せを含む。
 また、図1~図6、および請求項8に示すように、前記インピーダンス変換手段の入力インピーダンスが前記閉ループアンテナの出力インピーダンスより大きく、前記インピーダンス変換手段の入力インピーダンスが前記伝送線路トランスもしくは伝送線路的トランスの出力インピーダンスより大きく、前記インピーダンス変換手段の出力インピーダンスが受信機の入力インピーダンスより小さく、前記低雑音増幅器の出力インピーダンスが受信機の入力インピーダンスより小さく、あるいはこれらの組合せである。
Further, as shown in FIGS. 1 to 6 and claim 7, the induced electromotive force receiving means comprises at least a phase adjusting means, a transmission line transformer or a transmission line like transformer, an impedance converting means, a low noise amplification means, an intermediate It includes frequency amplification means, detection / demodulation means, decoding means, phase equalization means, or a combination of these.
Further, as shown in FIGS. 1 to 6 and claim 8, the input impedance of the impedance conversion means is larger than the output impedance of the closed loop antenna, and the input impedance of the impedance conversion means is the transmission line transformer or transmission line The output impedance of the impedance conversion means is larger than the output impedance of the transformer, the output impedance of the low impedance amplifier is smaller than the input impedance of the receiver, or a combination thereof.
 また、図1~図6、および請求項9に示すように、前記組合せによる誘導経路中において、前記閉ループアンテナの、直列抵抗が変化し、誘導性リアクタンスが変化し、電気特性が変化し、VSWRが変化し、放射効率が変化し、あるいはこれらの組合せが変化するのを抑制するために、前記閉ループアンテナを、離調抑制手段の内部に収納し、マグネチックループアンテナとし、シールドループアンテナとし、特に小型の場合には絶縁物によりコーティングし、あるいはこれらを組合せる。
 また、図1~図6、および請求項10に示すように、前記寄生振動抑制手段を、前記閉ループアンテナと、前記位相調整手段と、前記磁力波信号駈動手段の出力端子と、前記誘起起電力受信手段の入力接続端子と、前記インピーダンス変換手段の入力接続端子と、前記伝送線路トランスもしくは伝送線路的トランスと、あるいはこれらの組合せと、並列あるいは直列に接続することによって、不要な寄生振動を抑制する。
Moreover, as shown in FIGS. 1 to 6 and claim 9, in the induction path by the combination, the series resistance of the closed loop antenna changes, the inductive reactance changes, and the electrical characteristics change, and VSWR In order to suppress the change in the radiation efficiency, or the change in the combination thereof, the closed loop antenna is housed inside the detuning suppression means, a magnetic loop antenna, and a shield loop antenna, In particular, in the case of small size, it is coated with an insulator or a combination thereof.
Further, as shown in FIGS. 1 to 6 and claim 10, the parasitic vibration suppressing means, the closed loop antenna, the phase adjusting means, the output terminal of the magnetic wave signal oscillating means, and the induction Unnecessary parasitic vibration can be obtained by connecting in parallel or in series the input connection terminal of the power reception means, the input connection terminal of the impedance conversion means, the transmission line transformer or transmission line transformer, or a combination thereof. Suppress.
 また、図1~図6、および請求項11に示すように、前記磁力波信号送受信手段、ベースバンド信号送受信手段、あるいはこれらの両方が、少なくとも、前記磁力波信号が前記誘導経路中において誘導結合する際に生じる誘導結合損の増加を、予測し、検知し、抑制し、あるいはこれらの組合せを行うための誘導結合損検知手段を有する。
 また、図1~図6、および請求項12に示すように、前記誘導結合損検知手段が、前記閉ループアンテナの誘導性リアクタンスの変化を検知し、前記閉ループアンテナの周辺の海水の導電度を検知し、前記閉ループアンテナの周辺の海水のイオン濃度を検知し、前記誘導経路中の通信品質を検知し、あるいはこれらの組合せを検知することによって、前記誘導結合損の変化を検知する。
Further, as shown in FIGS. 1 to 6 and claim 11, the magnetic wave signal transmitting / receiving means, the baseband signal transmitting / receiving means, or both of them are at least inductively coupled in the induction path with the magnetic wave signal. And an inductive coupling loss detection means for predicting, detecting, suppressing, or a combination of these.
Further, as shown in FIGS. 1 to 6 and claim 12, the inductive coupling loss detection means detects a change in inductive reactance of the closed loop antenna and detects the conductivity of seawater around the closed loop antenna. The change in inductive coupling loss is detected by detecting the ion concentration of seawater around the closed loop antenna, detecting communication quality in the induction path, or detecting a combination thereof.
 また、図1~図6、および請求項13に示すように、前記閉ループアンテナが複数組設けられ、少なくとも、相互間で絶縁され、相互間で撚り合され、個別の長さであり、個別の形状であり、個別の角度であり、個別の間隔であり、あるいはこれらの組合せであり、かつ前記複数組の閉ループアンテナが、並列に接続され、直列に接続され、伝送線路的に接続され、あるいはこれらの組合せで接続される。
 また、図1~図6、および請求項14に示すように、前記複数組の閉ループアンテナの各組ごとに磁力波信号送受信手段を接続して複数組の入出力端子とし、少なくとも、前記複数組の入出力端子を、並列に接続し、同相に駈動するよう接続し、逆相に駆動するよう接続し、電力合成・分配手段を介して接続し、減衰・増幅手段を介して接続し、移相手段を介して接続し、あるいはこれらを組合せて接続することによって、要求される低インピーダンス特性、要求される指向性、要求される指向性ビーム幅、要求される周波数領域、要求される帯域幅、要求される利得、あるいはこれらの組合せを実現する。
Also, as shown in FIGS. 1 to 6 and claim 13, a plurality of sets of the closed loop antennas are provided, at least insulated from each other, twisted between each other, of individual lengths, individual The plurality of closed loop antennas are connected in parallel, connected in series, connected in a transmission line, or the like, which is a shape, an individual angle, an individual interval, or a combination thereof. It connects by the combination of these.
Further, as shown in FIGS. 1 to 6 and claim 14, a magnetic wave signal transmitting / receiving means is connected to each set of the plurality of closed loop antennas to form a plurality of sets of input / output terminals, at least the plurality of sets The input / output terminals of are connected in parallel, connected to oscillate in phase, connected to drive in reverse phase, connected via power combining / distributing means, and connected via damping / amplifying means, By connecting via phase shift means, or by combining them in combination, the required low impedance characteristics, the required directivity, the required directional beam width, the required frequency region, the required band Implement the width, the required gain, or a combination of these.
 また、図1~図6、および請求項15に示すように、前記誘導経路中あるいは誘導経路の周辺に存在し、かつ、導電物質であり、磁性体であり、渦電流が生じる物質であり、あるいはこれらの組合せによる物質であり、前記物質が面状あるいは板状の場合には前記閉ループアンテナから前記物質に向けて水平方向もしくは並行する方向に磁力線を放出し、前記物質が液状の場合には前記閉ループアンテナから対向する閉ループアンテナに向けて可能な限り最短距離で磁力線が交差するよう放出し、あるいはこれらの組合せによって磁力線を放出する。
 また、図1~図6、および請求項16に示すように、前記閉ループアンテナが磁性体に近接して設けられた単巻あるいは複数巻のソレノイドコイルであり、かつ、変位電流の放射もしくは再放射を抑制する構造であり、構成であり、特性であり、あるいはこれらの組合せであり、かつ、変動磁界を効率よく放射する構造であり、構成であり、特性であり、あるいはこれらの組合せである。
In addition, as shown in FIGS. 1 to 6 and claim 15, it is a conductive substance, a magnetic substance, a substance that generates an eddy current, which exists in or around the induction path, Alternatively, the substance is a combination of these materials, and when the substance is planar or plate-like, the closed loop antenna emits magnetic lines of force in the horizontal or parallel direction toward the substance, and when the substance is liquid, The magnetic field lines are emitted from the closed loop antenna to the opposing closed loop antenna so as to cross the magnetic field lines at the shortest possible distance, or the magnetic field lines are emitted by a combination thereof.
Further, as shown in FIGS. 1 to 6 and claim 16, the closed loop antenna is a single-turn or multi-turn solenoid coil provided close to a magnetic body, and radiation or re-emission of displacement current Is a structure that suppresses, is a configuration, is a characteristic, or a combination thereof, and is a structure that efficiently radiates a fluctuating magnetic field, is a configuration, is a characteristic, or a combination thereof.
 また、図1~図6、および請求項17に示すように、前記磁性体が、少なくとも、棒状であり、多角形であり、内部に空洞があり、複数本で構成され、前記複数本がクロスして配置され、あるいはこれらの組合せであり、かつ、前記ソレノイドコイルが、少なくとも、単層巻であり、多層巻であり、ポリファイラ巻であり、リッツ線であり、あるいはこれらの組合せである。
 また、図1~図6、および請求項18に示すように、前記磁力波信号送受信手段の一部あるいは全部が前記磁性体の内部の空洞部分に収納され、前記閉ループアンテナが前記磁性体の外部あるいは外周部に近接して設けられる。
Further, as shown in FIGS. 1 to 6 and claim 17, the magnetic body is at least a rod-like, polygonal, hollow inside, is constituted by a plurality, and the plurality is a cross. Or a combination thereof, and the solenoid coil is at least a single-layer winding, a multi-layer winding, a polyfilar winding, a litz wire, or a combination thereof.
Further, as shown in FIGS. 1 to 6 and claim 18, a part or all of the magnetic wave signal transmitting / receiving means is accommodated in a hollow portion inside the magnetic body, and the closed loop antenna is outside the magnetic body. Alternatively, it is provided close to the outer peripheral portion.
 図7は本発明の第1の実施形態における磁力波アンテナの他の構成図を示し、605は電磁界シールド(断面図を示す)、610は移相手段、607は入出力コネクタ、700a~700dは閉ループアンテナ、701は離調抑制手段を含むレドームである。
 ここで、前記複数組の閉ループアンテナ700a~700dを各組個別の角度(図中ではお互いに直交する)で配置し、各組ごとに前記移相手段610を介し、前記入出力コネクタ607に接続して、回転磁力波アンテナを構成する。
 また、前記離調抑制手段を含むレドーム701は、少なくとも、閉ループアンテナ700a~700dから垂直方向に放射される磁力波信号を減衰させず、効率よく透過させるための材質および構造を有するものとする。
FIG. 7 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 605 is an electromagnetic field shield (a cross sectional view), 610 is a phase shifting means, 607 is an input / output connector 700a to 700d. Is a closed loop antenna, and 701 is a radome including detuning suppression means.
Here, the plurality of sets of closed loop antennas 700a to 700d are arranged at each set individual angle (in the figure, orthogonal to each other), and connected to the input / output connector 607 via the phase shift means 610 for each set. To construct a rotating magnetic wave antenna.
Further, the radome 701 including the detuning suppression means has at least a material and a structure for efficiently transmitting, without attenuating the magnetic wave signal radiated in the vertical direction from the closed loop antennas 700a to 700d.
 また、閉ループアンテナ700a~700dをレドーム701と垂直に設置しているが、水平あるいは任意の角度で設置しても同様な効果が得られる。
 なお、前記磁力波アンテナが右回転しあるいは左回転する磁力波信号を放射することによって、前記誘導経路中に存在するNa+イオンやCL-イオン、微量な金属イオン、自由電子、あるいはこれらの組合せによって引き起こされる誘導結合損の増加を軽減し、かつ前記磁力波信号によって渦電流損を生じる導電物体を確実に検知することが期待される。
 また、図7、および請求項19に示すように、前記複数組の閉ループアンテナが、各組毎に、前記移相手段に接続され、少なくとも、前記複数組の閉ループアンテナを蔽うレドームを通して、回転磁力波信号を効率よく外部へ放射する。
Further, although the closed loop antennas 700a to 700d are installed vertically to the radome 701, the same effect can be obtained even if installed horizontally or at any angle.
By radiating a magnetic wave signal in which the magnetic wave antenna rotates to the right or to the left, Na + ions or CL-ions present in the induction path, a trace amount of metal ions, free electrons, or a combination thereof are emitted. It is expected to mitigate the increase in inductive coupling losses caused and to reliably detect conductive objects which cause eddy current losses by means of said magnetic wave signal.
Also, as shown in FIG. 7 and claim 19, the plurality of sets of closed loop antennas are connected to the phase shift means for each set, and at least through the radome covering the plurality of sets of closed loop antennas. It efficiently radiates the wave signal to the outside.
 また、図7、および請求項20に示すように、前記複数組の閉ループアンテナを、レドームに対して垂直方向に配置し、レドームに対して水平方向に配置し、レドームに対して円錐状あるいは逆円錐状に配置し、あるいはこれらの組合せにより配置し、かつ、前記複数組の閉ループアンテナの、指向性ビーム幅を制御し、指向性ビームの方向を制御し、指向性ビームの放射角を制御し、あるいはこれらの組合わせをアダプテイブに制御する回転磁力波アンテナを実現する。
 また、図7、および請求項21に示すように、前記閉ループアンテナから放射された回転磁力波信号が、前記誘導経路中に存在する導電物体によって渦電流を生じて反射され、前記反射された逆回転する回転磁力波信号を受信することで、誘導経路中に存在する導電物体を探知する。
 また、図7、および請求項22に示すように、前記回転磁力波信号を放射するための複数組の閉ループアンテナと、前記逆回転する磁力波信号を受信するための複数組の閉ループアンテナとを、間隔を置いて同一方向に向けて設置する。
Further, as shown in FIG. 7 and claim 20, the plurality of sets of closed loop antennas are disposed vertically to the radome, horizontally to the radome, and conical or reverse to the radome. Arranged conically or by a combination thereof, and controlling the directional beam width of the plurality of closed loop antennas, controlling the direction of the directional beam, controlling the radiation angle of the directional beam Or, a rotary magnetic wave antenna is realized which adaptively controls these combinations.
Further, as shown in FIG. 7 and claim 21, the rotational magnetic wave signal emitted from the closed loop antenna is reflected by the conductive object present in the induction path to generate an eddy current, and the reflected reverse is generated. By receiving the rotating rotational magnetic wave signal, the conductive object present in the induction path is detected.
Further, as shown in FIG. 7 and claim 22, a plurality of sets of closed loop antennas for radiating the rotary magnetic wave signal and a plurality of sets of closed loop antennas for receiving the counter-rotating magnetic wave signal are provided. Set up in the same direction at intervals.
 図8は本発明の第1の実施形態における磁力波アンテナの他の構成図を示し、700a~700fは閉ループアンテナ、701は離調抑制手段を含むレドーム、708a~708fは磁力波信号送受信手段(図示せず)である。
 ここで、前記複数組の閉ループアンテナ700a~700fをお互いに絶縁してアレイ状に配置し、各組毎に、少なくとも、前記磁力波信号送受信手708a~708fを接続し、電力合成・分配手段を接続し、減衰・増幅手段を接続し、移相手段を接続し、あるいはこれらの組み合わせを接続してアダプテイブアレイアンテナを構成し、要求される指向性、要求される指向性ビーム幅、要求される周波数領域、要求される帯域幅、要求されるアンテナ利得、あるいはこれらの組合せを実現する。
FIG. 8 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 700a to 700f are closed loop antennas, 701 is a radome including detuning suppression means, and 708a to 708f are magnetic wave signal transmitting / receiving means ( Not shown).
Here, the plurality of sets of closed loop antennas 700a to 700f are arranged in an array form isolated from each other, and at least the magnetic wave signal transmitting / receiving hand 708a to 708f is connected for each set, and power combining / distributing means is provided. Connect, connect attenuation / amplification means, connect phase shift means, or connect a combination of them to construct an adaptive array antenna, and obtain required directivity, required directivity beam width, required The required frequency range, the required bandwidth, the required antenna gain, or a combination of these may be realized.
 また、閉ループアンテナ700a~700fをレドーム701と水平に設置しているが、垂直あるいは任意の角度で設置しても同様な効果が得られる。
 また、図8、および請求項23に示すように、、前記複数組の閉ループアンテナがレドームに対して垂直方向、水平方向、あるいはこれらの組合せで配置され、各組ごとに、少なくとも、磁力波信号送受信手段を接続し、電力合成・分配手段を接続し、減衰・増幅手段を接続し、移相手段を接続し、あるいはこれらの組み合わせを接続し、かつ、前記複数組の閉ループアンテナの、指向性ビーム幅を制御し、指向性ビームの方向を制御し、指向性ビームの放射角を制御し、あるいはこれらの組合わせをアダプテイブに制御する磁力波アダプテイブアレイアンテナを実現する。
 また、図8、および請求項24に示すように、前記複数組の閉ループアンテナが、海上を航行しあるいは海水中を潜航する移動体の形状に合わせてアレイ状に設置される。
Further, although the closed loop antennas 700a to 700f are installed horizontally to the radome 701, the same effect can be obtained even if installed vertically or at an arbitrary angle.
Further, as shown in FIG. 8 and claim 23, the plurality of sets of closed loop antennas are arranged in the vertical direction, the horizontal direction, or a combination thereof with respect to the radome, and at least a magnetic wave signal for each set. Connect transmitting / receiving means, connect power combining / distributing means, connect attenuation / amplifying means, connect phase shifting means, or connect a combination of these, and directivity of the plural sets of closed loop antennas A magnetic wave adaptive array antenna is realized which controls the beam width, controls the direction of the directional beam, controls the radiation angle of the directional beam, or controls the combination of these beams to be adaptive.
Further, as shown in FIG. 8 and claim 24, the plurality of sets of closed loop antennas are installed in an array in accordance with the shape of a moving body that travels in the sea or dives in seawater.
 図9は本発明の第1の実施形態における磁力波アンテナの他の構成図を示し、700a~700cは閉ループアンテナ、708a~708cは磁力波送受信手段(図示せず)、709a~709cはバースバンド信号送受信手段(図示せず9、605a~605cはで電磁界シールド(図示せず)、718a~718cは離調抑制手段である。
 ここで、前記閉ループアンテナ700aと、前記閉ループアンテナ700bおよび700cとはお互いに水平方向に対向しており、両者間の距離が変化すると、磁力波送受信手段700a~700cへの受信入力は12dB/octの割合で変化する。
FIG. 9 shows another configuration of the magnetic wave antenna according to the first embodiment of the present invention, wherein 700a to 700c are closed loop antennas, 708a to 708c are magnetic wave transmitting / receiving means (not shown), and 709a to 709c are basebands. Signal transmitting and receiving means (not shown 9, 605a to 605c are electromagnetic field shields (not shown), and 718a to 718c are detuning suppressing means.
Here, the closed loop antenna 700a and the closed loop antennas 700b and 700c are horizontally opposed to each other, and when the distance between them changes, the reception input to the magnetic wave transmitting / receiving means 700a to 700c is 12 dB / oct. Change at the rate of
 一方、前記閉ループアンテナ700bと、前記閉ループアンテナ700cとはお互いに垂直方向に対向しており、両者間の距離が変化すると、磁力波送受信手段700b~700cへの受信入力は18dB/octの割合で変化する。
 
 例えば、閉ループアンテナ700aが海洋上の移動局に搭載され、閉ループアンテナ700bおよび700cが海水中の複数の移動局として携帯されあるいは搭載されていると、海洋上の移動局と海水中の複数の移動局との距離は数kmまで延長されるが、海水中の複数の移動局間では、閉ループアンテナが垂直方向に対向するため、相互間で誘導結合する磁力線の経路長が、距離の増加とともに急激に増加し、渦電流損が増加するためであり、通信可能な距離が数100mに制限されることになるので、システム構築の際には注意を要する。
On the other hand, the closed loop antenna 700b and the closed loop antenna 700c vertically face each other, and when the distance between them changes, the reception input to the magnetic wave transmitting / receiving means 700b to 700c is 18 dB / oct. Change.

For example, when the closed loop antenna 700a is mounted on a mobile station on the ocean, and the closed loop antennas 700b and 700c are carried or mounted as a plurality of mobile stations in seawater, the mobile stations on the ocean and a plurality of movements in seawater are provided. Although the distance to the station is extended to several kilometers, since the closed loop antennas face vertically in the multiple mobile stations in seawater, the path length of the magnetic field lines inductively coupled to each other becomes rapid as the distance increases. This is because the eddy current loss is increased, and the communicable distance is limited to several hundred meters, so care must be taken when constructing the system.
 図10は本発明の第1の実施形態における閉ループアンテナの誘導性リアクタンスの特性例を示す。
 ここで、外径が1mmφの絶縁銅線10本を束ね、全長が50cmの閉ループアンテナを用い、周波数を変化させて測定した誘導性リアクタンスの値であり、前記誘導性リアクタンスが周波数の増加とともにほぼ比例して増加していることが分かる。
 従来の設計理論によれば、前記閉ループアンテナから電磁波信号を効率よく放射させるために、同調用コンデンサを用いた共振回路を設け、前記誘導性リアクタンスと共振させ、マッチング回路を設けて通信機と接続する方法が採られていた。
FIG. 10 shows an example of the characteristic of inductive reactance of the closed loop antenna in the first embodiment of the present invention.
Here, it is the value of inductive reactance measured by changing the frequency using a closed loop antenna with a total length of 50 cm, by bundling 10 insulated copper wires with an outer diameter of 1 mmφ, and the inductive reactance is approximately equal to the increase in frequency. It turns out that it is increasing proportionally.
According to the conventional design theory, in order to efficiently radiate an electromagnetic wave signal from the closed loop antenna, a resonant circuit using a tuning capacitor is provided, and the inductive reactance is resonated to provide a matching circuit for connection to a communication device. Was taken.
 従来の方法を採用すると、前記閉ループアンテナに変位電流が流れ、変位電流が外部へ放射され、あるいは外部へ再放射されるため、海水中のNa+イオンやCL-イオンによって、オーミックロスが発生し、渦電流損が発生し、前記オーミックロスと渦電流損のために、アンテナ間の電磁波信号の伝搬損が増加し、アンテナの同調とマッチングが崩れ、VSWRが大きくなり、大きなマッチング損が生じる問題点がある。
 本発明では、上記の問題点を解決するための方法として、前記閉ループアンテナの誘導性リアクタンスと位相調整手段の容量性リアクタンスとを共振させず非共振のままとし、前記閉ループアンテナに誘導性負荷電流を直接駆動し、前記閉ループアンテナから放射されあるいは再放射される変位電流を許容値以下に抑制する方法を採用する。
According to the conventional method, a displacement current flows through the closed loop antenna, and a displacement current is emitted to the outside or is reradiated to the outside, so that an ohmic loss is generated by Na + ions or CL − ions in seawater, Eddy current loss occurs, and the propagation loss of the electromagnetic wave signal between the antennas increases due to the ohmic loss and the eddy current loss, the tuning and matching of the antenna is broken, the VSWR becomes large, and the large matching loss occurs. There is.
In the present invention, as a method for solving the above-mentioned problems, the inductive reactance of the closed loop antenna and the capacitive reactance of the phase adjustment means are not resonated but kept non-resonant, and the inductive load current to the closed loop antenna is Is directly driven to suppress displacement current radiated or re-radiated from the closed loop antenna to an allowable value or less.
 図11は本発明の第1の実施形態における磁力波信号の誘導結合損の特性例を示す。ここで、大気中における電磁波信号の伝搬損と、大気中あるいは海水中における磁力波信号の誘導結合損とを比較すると、大気中の電磁波信号の伝搬損が距離の二乗に比例して6dB/octで増加するのに対して、磁力波信号の誘導結合損が、前記送信側磁力波アンテナと受信側磁力波アンテナとが垂直方向に対向している場合には距離の四乗に比例して12dB/octで増加し、あるいは前記送信側磁力波アンテナと受信側磁力波アンテナとが水平方向に対向している場合には距離の六乗に比例して18dB/octで増加するので、この点では電磁波信号の伝搬損の増加の方が緩やかであり、遠距離間通信には有利であることが分かる。 FIG. 11 shows a characteristic example of the inductive coupling loss of the magnetic wave signal in the first embodiment of the present invention. Here, when the propagation loss of the electromagnetic wave signal in the atmosphere and the inductive coupling loss of the magnetic wave signal in the air or seawater are compared, the propagation loss of the electromagnetic wave signal in the atmosphere is 6 dB / oct in proportion to the square of the distance. The inductive coupling loss of the magnetic wave signal is 12 dB in proportion to the fourth power of the distance when the transmitting side magnetic wave antenna and the receiving side magnetic wave antenna are vertically opposed to each other. In this case, it increases by / oct or 18 dB / oct in proportion to the sixth power of the distance when the transmitting side magnetic wave antenna and the receiving side magnetic wave antenna face each other in the horizontal direction. It can be seen that the increase in propagation loss of the electromagnetic wave signal is gradual, which is advantageous for long distance communication.
 一方、海水中での電磁波信号の伝搬損と、大気中あるいは海水中での磁力波信号の誘導結合損とを比較すると、電磁波信号の伝搬損が1MHz帯において約100dB/mと急激であるのに比較して、磁力波信号の誘導結合損が12dB/octあるいは18dB/octと緩やかに減衰するので、海水中においては、変動磁界の誘導結合を用いる磁力波信号の方が俄然有利となり、近距離間から中距離間の無線通信が可能となる。
 更に、前記磁力波信号を用いると、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中で、狭帯域から広帯域までの任意の帯域幅の磁力波通信を可能にする。
On the other hand, comparing the propagation loss of the electromagnetic wave signal in seawater with the inductive coupling loss of the magnetic wave signal in the atmosphere or in seawater, the propagation loss of the electromagnetic wave signal is as sharp as about 100 dB / m at 1 MHz band Since the inductive coupling loss of the magnetic wave signal attenuates gently to 12 dB / oct or 18 dB / oct compared with the above, the magnetic wave signal using inductive coupling of the fluctuating magnetic field is more advantageous in seawater, Wireless communication can be performed between a distance and a middle distance.
Furthermore, when the magnetic wave signal is used, in an atmosphere, in a substance having a relatively large propagation loss of an electromagnetic wave signal, in a fresh water or seawater having a salinity concentration of 0% to 5%, or in a induction route by a combination thereof. Enables magnetic wave communication of arbitrary bandwidth from narrow band to wide band.
 しかしながら、天然の海水中(特に港湾内等金属イオン濃度の濃いエリア、あるいは周辺に金属物体が存在するエリア)では、誘導結合損が変動し、あるいはより大きな誘導結合損を生じる場合があることから、適応型閉ループアンテナを設け、適応型磁力波信号送受信手段を設け、適応型ベースバンド信号送受信手段を設け、あるいはこれらの組合せを設け、自局、相手局、あるいは両局において、少なくとも、前記閉ループアンテナのパラメータ、前記磁力波信号のパラメータ、前記磁力波通信のパラメータ、あるいはこれらの組合せをアダプティブに制御し、変更し、あるいは切替える必要がある。なお、前記アダプティブ制御には、ダイバーシテイ制御を含むものとする。 However, in natural seawater (especially in areas with high concentration of metal ions in harbors or areas where metal objects exist in the vicinity), the inductive coupling loss may fluctuate or cause a larger inductive coupling loss. An adaptive closed loop antenna is provided, adaptive magnetic force wave signal transmitting / receiving means is provided, adaptive baseband signal transmitting / receiving means is provided, or a combination thereof is provided. It is necessary to adaptively control, change or switch the parameters of the antenna, the parameters of the magnetic wave signal, the parameters of the magnetic wave communication, or a combination thereof. The adaptive control includes diversity control.
 また、前述のように、前記閉ループアンテナから放射されあるいは再放射される変位電流によって生じるオーミックロスと渦電流損によるミスマッチのために、前記閉ループアンテナに著しいミスマッチが起こり、従来から電磁波信号でも通信が可能とされていた100kHz以下の周波数領域において、海水中で電磁波信号を送信することが不可能であるのに対して、本発明の磁力波アンテナでは、数Hz以下の低周波の領域から20MHzを超える任意の周波数領域で、しかも海水中において、効率よく磁力波信号を外部へ放射(送信)することが可能となり、広範囲の実用性が期待できる。
Also, as mentioned above, due to the mismatch caused by the ohmic loss and the eddy current loss caused by the displacement current radiated or re-radiated from the closed loop antenna, a significant mismatch occurs in the closed loop antenna, and communication is conventionally performed even with electromagnetic signals. While the electromagnetic wave signal can not be transmitted in seawater in the frequency range of 100 kHz or less, which has been made possible, the magnetic wave antenna of the present invention is capable of 20 MHz from the low frequency range of several Hz or less. It is possible to efficiently radiate (transmit) the magnetic wave signal to the outside in any frequency region exceeding it and in seawater, and a wide range of practicality can be expected.
 以上の説明では、主に、前記閉ループアンテナの周辺にNa+イオンやCL-イオンなどが存在する場合の影響と対策とについて述べたが、請求項25に示すように、前記閉ループアンテナが、少なくとも、磁力波信号送信手段を介してベースバンド信号送信手段に接続され、磁力波信号受信手段を介してベースバンド信号受信手段に接続され、磁力波信号送受信手段を介してベースバンド信号送受信手段に接続され、あるいはこれらの組合せで接続され、かつ、固定局、中継局、移動端末、携帯端末、小型のRFIDタグ、あるいはこれらの組合せを構成し、かつ、真水中、海水中、大気中、地中、あるいはこれらの組合せによる誘導経路中おいて、単方向通信、双方向通信、固体識別、個体管理、地点情報管理、地殻変動調査、導電体物質探査、海洋資源探査、あるいはこれらの組合せのために用いられる。 In the above description, although the influence and the countermeasure in the case where Na + ions or CL − ions are present around the closed loop antenna are mainly described, as indicated in claim 25, the closed loop antenna at least includes: The magnetic wave signal transmission means is connected to the baseband signal transmission means, the magnetic wave signal reception means is connected to the baseband signal reception means, and the magnetic wave signal transmission / reception means is connected to the baseband signal transmission / reception means Or connected in a combination of these, and constitute a fixed station, a relay station, a mobile terminal, a portable terminal, a small RFID tag, or a combination thereof, and are fresh water, sea water, air, ground, Or, in the guidance route by these combinations, unidirectional communication, two-way communication, solid identification, individual management, point information management, crustal movement survey, conductor Quality exploration, marine resource exploration, or used for these combinations.
 また、請求項26に示すように、前記磁力波通信が、少なくとも、スペクトル拡散通信であり、秘匿通信であり、海水中での通信であり、等価帯域幅が数Hz以下の狭帯域通信であり、帯域幅の下限と上限との周波数比が10倍以上の広帯域通信であり、近距離間から中距離間の通信であり、あるいはこれらの組合せによる通信である。
 また、請求項27に示すように、前記磁力波信号が自然界には存在しにくいベースバンド信号で構成され、受信側において受信した前記ベースバンド信号の伝搬特性の変化を測定することによって、前記誘導経路中で生じる、地震、海底火山の噴火、津波、物体の移動、生物の移動、あるいはこれらの組合せを検知する。
 また、請求項28に示すように、前記磁力波アンテナが、ワイヤレス給電装置の送信側アンテナとして用いられ、ワイヤレス給電装置の受信側アンテナとして用いられ、磁力波通信手段が付加されて用いられ、あるいはこれらの組合せで用いられる。
Further, as described in claim 26, the magnetic wave communication is at least spread spectrum communication, secret communication, communication in seawater, and narrow band communication having an equivalent bandwidth of several Hz or less. A wide band communication with a frequency ratio between the lower limit and the upper limit of the bandwidth being 10 or more, communication between short distance and middle distance, or communication by a combination of these.
Further, as shown in claim 27, the magnetic wave signal is composed of a baseband signal which is hard to exist in the natural world, and the induction is performed by measuring a change in propagation characteristics of the received baseband signal at the receiving side. Detects earthquakes, submarine volcano eruptions, tsunamis, movement of objects, movement of organisms, or a combination of these that occur in the path.
Further, as described in claim 28, the magnetic wave antenna is used as a transmitting antenna of a wireless power feeder, is used as a receiving antenna of a wireless power feeder, and a magnetic wave communication unit is additionally used, or It is used in combination of these.
 また、請求項29に示すように、前記送信側の磁力波アンテナでは、少なくとも、商用電源から直接駈動し、商用電源からトランスを介して駈動し、複数の閉ループアンテナをメッシュ状に配置して駈動し、位相調整手段を接続して駈動し、実効比透磁率が10以上の磁性体に近接して駈動し、前記受信側の磁力波アンテナでは、少なくとも、巻き数を送信側の巻数より多くし、実効比透磁率を送信側の実効比透磁率より大きくし、対向する面積を送信側が対向する面積より狭くし、あるいはこれらを組合せる。
 また、請求項30に示すように、前記誘導経路中において生じる誘導結合損の増加を軽減するために、適応型閉ループアンテナを設け、適応型磁力波信号送受信手段を設け、適応型ベースバンド信号送受信手段を設け、あるいはこれらの組合せを設け、自局、相手局、あるいは両局において、少なくとも、前記閉ループアンテナのパラメータ、前記磁力波信号のパラメータ、前記磁力波通信のパラメータ、前記磁力波通信装置のパラメータ、あるいはこれらの組合せをアダプティブに制御し、変更し、あるいは切替えることで、信頼性の高い磁力波通信を可能とする。
Further, as shown in claim 29, in the magnetic wave antenna on the transmission side, at least direct oscillation from a commercial power supply, oscillation from a commercial power supply via a transformer, and arranging a plurality of closed loop antennas in a mesh shape And the phase adjustment means are connected and oscillated, and the effective relative permeability is oscillated close to the magnetic body of 10 or more, and in the magnetic wave antenna on the receiving side, at least the number of turns on the transmitting side The effective relative permeability is made larger than the effective relative permeability on the transmission side, and the opposing area is made narrower than the area on the transmitting side, or a combination thereof.
Further, as shown in claim 30, in order to reduce an increase in inductive coupling loss occurring in the induction path, an adaptive closed loop antenna is provided, an adaptive magnetic wave signal transmission / reception means is provided, and an adaptive baseband signal transmission / reception is provided. Means, or a combination of these, in at least the local station, the remote station or both stations, parameters of the closed loop antenna, parameters of the magnetic wave signal, parameters of the magnetic wave communication, of the magnetic wave communication device Reliable control of magnetic wave communication is enabled by adaptively controlling, changing, or switching parameters or their combination.
 また、請求項31に示すように、前記閉ループアンテナの受信時もしくは受信側の磁性体の実効透磁率が送信時もしくは送信側の磁性体の実効透磁率より大きく、前記閉ループアンテナの受信時もしくは受信側の巻数が送信時もしくは送信側の巻数より多く、前記閉ループアンテナの受信時もしくは受信側の面積が送信時もしくは送信側の面積より広いく、前記閉ループアンテナの受信時もしくは受信側の対向する2辺の間隔が送信時もしくは送信側の対向する2辺の間隔より広く、あるいはこれらの組合せである。
 また、請求項32に示すように、複数の送信側磁力波アンテナの一部あるいは全部と複数の受信側磁力波アンテナの一部あるいは全部とが垂直方向に対向し、前記複数の送信側磁力波アンテナの一部あるいは全部と前記複数の受信側磁力波アンテナの一部あるいは全部とが水平方向に対向し、あるいはこれらの組合せにより対向することでエリア拡大のメリットが得られる。
Further, as described in claim 31, the effective permeability of the magnetic material at the reception or reception side of the closed loop antenna is larger than the effective permeability of the magnetic material at the transmission time or transmission side, and the reception or reception time of the closed loop antenna The number of turns on the side is greater than the number of turns on the transmit or transmit side, and the area on the receive or receive side of the closed loop antenna is larger than the area on the transmit or transmit side. The distance between the sides is wider than the distance between the two opposite sides at the time of transmission or transmission, or a combination thereof.
Further, as shown in claim 32, a part or all of the plurality of transmission side magnetic wave antennas and a part or all of the plurality of reception side magnetic wave antennas are vertically opposed, and the plurality of transmission side magnetic waves When a part or all of the antenna and a part or all of the plurality of receiving magnetic force wave antennas face each other in the horizontal direction or a combination thereof, the merit of the area expansion can be obtained.
 また、図9および請求項33に示すように、前記磁力波アンテナが、海洋上の船舶やブイなどの移動体と、海水中の潜航船やダイバーなどの複数の移動体とに搭載され、前記海洋上の移動体に搭載された磁力波アンテナと、前記海水中の複数の移動体に搭載された磁力波アンテナとが相互間で水平方向に対向し、前記複数の移動体に搭載された磁力波アンテナが相互間で垂直方向に対向することで、海洋上の移動体において全ての通信がモニタされ、移動体相互間の通話が円滑に行われる。
 また、請求項34に示すように、前記磁力波アンテナが相手側磁力波アンテナと対向している場合、対向している方向の反対側に非磁性体の金属板を配置することで渦電流が生じ、前記磁力波アンテナから反対方向に放射される磁力線を反射させることで、指向性アンテナを実現する。
Further, as shown in FIG. 9 and claim 33, the magnetic wave antenna is mounted on a moving body such as a ship or buoy on the ocean, and a plurality of moving bodies such as a submersible vessel or diver in seawater, A magnetic wave antenna mounted on a moving body on the ocean and a magnetic wave antenna mounted on a plurality of moving bodies in the seawater face each other in the horizontal direction, and a magnetic force mounted on the plurality of moving bodies With the wave antennas facing each other in the vertical direction, all communications are monitored in the mobile on the ocean, and calls between the mobiles are conducted smoothly.
According to a thirty-fourth aspect of the present invention, when the magnetic wave antenna is facing the other magnetic wave antenna, the eddy current can be reduced by arranging a nonmagnetic metal plate on the opposite side of the facing direction. A directional antenna is realized by reflecting the magnetic field lines generated and emitted from the magnetic wave antenna in the opposite direction.
 本発明は上記のように構成されているため、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中で、磁力波信号を利用することによって、近距離間から中距離間であり、数Hz以下から20MHzを超える任意の周波数領域であり、かつ狭帯域から広帯域までの任意の帯域幅の磁力波信号による磁力波通信装置が安価に実現できることから、実用的価値が高いものである。 Since the present invention is configured as described above, in the atmosphere, in a substance with relatively large propagation loss of electromagnetic wave signals, in fresh water or seawater with a salinity concentration of 0% to 5%, or a combination thereof By utilizing the magnetic wave signal in the induction path, it is in an arbitrary frequency range between a short distance and an intermediate distance, from a few Hz or less to over 20 MHz, and an arbitrary bandwidth from narrow band to wide band. Since the magnetic wave communication device using the magnetic wave signal can be realized at low cost, it has high practical value.
 また、本発明は、大気中、真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中において、近距離間から中距離間での通信システム、船舶の衝突防止システム、海洋資源探査システム、バイオテレメトリ、センシングネットワーク、ダイバーなどの相互間音声通信装置、RFIDタグ装置、潜航艇あるいは海中ロボットとの通信・遠隔制御装置、水難者あるいは遭難者の探索装置、測深機、魚群探知機、海底探査機、金属探知機、あるいはワイヤレス電力給電装置などの広範囲な適用が可能である。
Furthermore, the present invention provides a communication system between a short distance and a medium distance, a collision prevention system for ships, a marine resource exploration system, biotelemetry, and the like in a guidance route by the atmosphere, fresh water, seawater, or a combination thereof. , Sensing networks, mutual voice communication devices such as divers, RFID tag devices, communication / remote control devices with submersibles or undersea robots, search equipment for flooded or distressed persons, sounding instruments, fish finders, seafloor exploration equipment, A wide range of applications are possible, such as metal detectors or wireless power feeds.
600a~600b       短ループアンテナ
601a、601b       電界シールド
603a、603b       インピーダンス変換トランス
604a、604b       インピーダンス整合コンデンサ
605a、605b       電磁界シールド
606a、606b       入出力コネクタ
607             入力コネクタ
610             移相手段
612             距離(R)
600a to 600b short loop antenna 601a, 601b electric field shield 603a, 603b impedance conversion transformer 604a, 604b impedance matching capacitor 605a, 605b electromagnetic field shield 606a, 606b input / output connector 607 input connector 610 phase shift means 612 distance (R)
700、700a~700f   閉ループアンテナ
701             レドーム
704             浮遊容量を含む位相調整手段(可変もしくは半固定を含む)
705             ダンピング手段
706             送受切替手段
707             磁性体
708、708a~708f   磁力波信号送受信手段
709             ベースバンド信号送受信手段
710             磁力波信号駈動手段
700, 700a to 700f closed loop antenna 701 radome 704 phase adjustment means including stray capacitance (including variable or semi-fixed)
705 Damping means 706 Transmission / reception switching means 707 Magnetic members 708, 708a to 708f Magnetic wave signal transmission / reception means 709 Base band signal transmission / reception means 710 Magnetic wave signal oscillation means
711             誘起起電力受信手段
712、712a、712b   閉ループアンテナ接続端子
713、713a、713b   ベースバンド信号接続端子
714             送受信切替接続端子
715、715a、715b   電力増幅手段
716、716a~716c   伝送線路トランスもしくは伝送線路的トランス
717             インピーダンス変換手段を含む低雑音増幅手段
718             離調抑制手段
711 Induced EMF Reception Means 712, 712a, 712b Closed Loop Antenna Connection Terminals 713, 713a, 713b Baseband Signal Connection Terminals 714 Transmission / reception switching connection terminals 715, 715a, 715b Power amplification means 716, 716a to 716c Transmission line transformer or transmission line Transformer 717 Low noise amplification means 718 including impedance conversion means Detuning suppression means

Claims (34)

  1.  変動磁界によって誘導結合する磁力波信号を用い、大気中、電磁波信号の伝搬損が比較的に大きい物質中、塩分濃度が0%から5%までの真水中もしくは海水中、あるいはこれらの組み合わせによる誘導経路中を、近距離から中距離間での無線通信を可能にする磁力波アンテナおよびそれを用いる磁力波通信装置において、
     前記磁力波アンテナおよびそれを用いる磁力波通信装置が、少なくとも、閉ループアンテナと、磁力波信号送受信手段とから構成され、
     前記閉ループアンテナが、少なくとも、電磁波信号を送信時に外部へ放射しあるいは受信時に外部へ再放射するのを抑制し、かつ磁力波信号を効率よく外部へ放射しあるいは外部から受信するための構造、構成、形状、特性、あるいはこれらの組合せを有し、
     前記磁力波信号送受信手段が、少なくとも、位相調整手段、寄生振動抑制手段、送受切替手段、磁力波信号駈動手段、誘起起電力受信手段、あるいはこれらの組合せを有し、
     前記位相調整手段が、自己の容量性リアクタンスの他に浮遊容量による容量性リアクタンスを含み、前記閉ループアンテナの誘導性リアクタンスと、前記浮遊容量を含む位相調整手段の容量性リアクタンスとを、非共振状態としあるいは非同調状態とすることによって、前記電磁波信号の放射もしくは再放射を抑制し、かつ前記磁力波アンテナの広帯域化を可能とし、
     帯域幅が数Hz以下である狭帯域から、帯域幅の下限と上限との周波数比が10倍以上の広帯域までの、任意の帯域幅のベースバンド信号を含む磁力波信号として送信し、受信し、あるいはこれらを交互に行うことによって、数cmの近距離間から数kmの中距離間での磁力波通信を可能にすることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    Induction using a magnetic wave signal inductively coupled by a fluctuating magnetic field, in the atmosphere, in a substance with relatively large propagation loss of an electromagnetic wave signal, in fresh water or seawater with a salinity concentration of 0% to 5%, or a combination thereof In a magnetic wave antenna and a magnetic wave communication device using the same, which enables wireless communication between a short distance and a middle distance along the route.
    The magnetic wave antenna and a magnetic wave communication apparatus using the same comprise at least a closed loop antenna and magnetic wave signal transmitting / receiving means.
    A structure and configuration for at least suppressing the radiation of the electromagnetic wave signal to the outside during transmission or the re-radiation to the outside during reception and suppressing the electromagnetic wave signal to be efficiently radiated to the outside or received from the outside. , Shape, characteristics, or a combination of these,
    The magnetic wave signal transmission / reception means at least includes phase adjustment means, parasitic vibration suppression means, transmission / reception switching means, magnetic wave signal oscillation means, induced electromotive force reception means, or a combination thereof.
    The phase adjustment means includes a capacitive reactance due to stray capacitance in addition to its own capacitive reactance, and an inductive reactance of the closed loop antenna and a capacitive reactance of phase adjustment means including the stray capacitance in a non-resonant state By setting or setting the untuned state, it is possible to suppress the radiation or re-radiation of the electromagnetic wave signal and to widen the bandwidth of the magnetic wave antenna.
    Send and receive as a magnetic wave signal including a baseband signal of an arbitrary bandwidth from a narrow band with a bandwidth of a few Hz or less to a wide band with a frequency ratio of the lower limit to the upper limit of 10 or more. Alternatively, the magnetic wave communication between the short distance of several cm and the middle distance of several km is enabled by alternately performing the above, and the magnetic wave communication device using the same.
  2.  前記請求項第1項において、前記磁力波アンテナおよびそれを用いる磁力波通信装置が、少なくとも、閉ループアンテナと、磁力波信号送信手段とから構成され、
     前記閉ループアンテナが、少なくとも、磁力波信号を効率よく外部へ放射するための構造、構成、形状、特性、あるいはこれらの組合せを有し、かつ前記磁力波信号送信手段が、少なくとも、位相調整手段、寄生振動抑制手段、磁力波信号駈動手段、あるいはこれらの組合せを有し、
     前記位相調整手段が、自己の容量性リアクタンスの他に、浮遊容量による容量性リアクタンスを含み、前記閉ループアンテナの誘導性リアクタンスと、前記浮遊容量を含む位相調整手段の容量性リアクタンスとを、非共振状態としあるいは非同調状態とすることによって、前記閉ループアンテナから放射される変位電流を抑制し、前記閉ループアンテナの周辺で前記変位電流によって生じるオーミックロスと渦電流損とに基づく前記閉ループアンテナのミスマッチを抑制することによって、前記誘導経路中において、数Hz以下から20MHzを超える任意の周波数領域で、前記磁力波信号を効率よく外部へ放射できることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the first aspect, the magnetic wave antenna and the magnetic wave communication apparatus using the same comprise at least a closed loop antenna and a magnetic wave signal transmission means.
    The closed loop antenna has at least a structure, a configuration, a shape, a characteristic, or a combination thereof for efficiently radiating a magnetic wave signal to the outside, and the magnetic wave signal transmission means includes at least a phase adjustment means. Parasitic vibration suppressing means, magnetic wave signal oscillating means, or a combination thereof,
    The phase adjustment means includes, in addition to its own capacitive reactance, a capacitive reactance due to stray capacitance, and an inductive reactance of the closed loop antenna and a capacitive reactance of the phase adjustment means including the stray capacitance as non-resonant By setting the state or the non-tuning state, the displacement current radiated from the closed loop antenna is suppressed, and the mismatch of the closed loop antenna based on the ohmic loss and the eddy current loss caused by the displacement current around the closed loop antenna is By suppressing, the magnetic wave signal can be efficiently radiated to the outside in an arbitrary frequency range of several Hz or less to over 20 MHz in the induction path, and a magnetic wave communication device using the same. .
  3.  前記請求項第1項から第2項のいずれかにおいて、前記浮遊容量を含む位相調整手段の容量性リアクタンスの絶対値を、前記閉ループアンテナの誘導性リアクタンスの絶対値の0%~95%の範囲内に設定することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 2, the absolute value of the capacitive reactance of the phase adjustment means including the stray capacitance is in the range of 0% to 95% of the absolute value of the inductive reactance of the closed loop antenna. A magnetic wave antenna set in the inside and a magnetic wave communication device using the same.
  4.  前記請求項第1項から第3項のいずれかにおいて、前記ベースバンド信号が、0.3kHz~3kHzのアナログ音声信号であり、パルス幅変調されたデジタル音声信号であり、分析合成符号化アルゴリズムにより0.6kbps~4.8kbpsに帯域圧縮したデジタル音声信号であり、その他の符号化アルゴリズムによるデジタル音声信号であり、あるいはこれらの組合せであり、かつ、前記磁力波信号駈動手段により直接増幅し、搬送波を変調して増幅し、あるいはこれらの組合せで増幅し、前記閉ループアンテナを駆動することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 3, the baseband signal is an analog voice signal of 0.3 kHz to 3 kHz and is a pulse-width modulated digital voice signal, according to an analysis and synthesis coding algorithm. A digital audio signal band-compressed to 0.6 kbps to 4.8 kbps, a digital audio signal according to another encoding algorithm, or a combination thereof, and directly amplified by the magnetic wave signal oscillation means, A magnetic wave antenna and a magnetic wave communication apparatus using the same, comprising modulating and amplifying a carrier wave and amplifying the carrier wave and driving the closed loop antenna.
  5.  前記請求項第1項から第4項のいずれかにおいて、前記磁力波信号駈動手段が、少なくとも、位相調整手段、伝送線路トランスもしくは伝送線路的トランス、プッシュプル増幅手段、ハーフブリッジ型電力増幅手段、フルブリッジ型電力増幅手段、DC-AC変換手段、AC-AC変換手段、アナログ信号増幅手段、低出力インピーダンス増幅手段、無効電流駈動手段、変調手段、符号化手段、あるいはこれらの組合せを含むことを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 4, the magnetic wave signal oscillating means is at least a phase adjusting means, a transmission line transformer or a transmission line like transformer, a push-pull amplifying means, a half bridge type power amplifying means , Full-bridge power amplification means, DC-AC conversion means, AC-AC conversion means, analog signal amplification means, low output impedance amplification means, reactive current oscillation means, modulation means, encoding means, or a combination of these Magnetic wave antenna characterized by and magnetic wave communication apparatus using the same.
  6.  前記請求項第5項において、前記磁力波信号増幅手段の出力側トランスを前記閉ループアンテナに置換えることによって、磁力波信号を直接駈動することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    The magnetic wave wave antenna according to claim 5, wherein the magnetic wave signal is directly oscillated by replacing the output transformer of the magnetic wave signal amplification means with the closed loop antenna, and the magnetic wave using the same. Communication device.
  7.  前記請求項第1項において、前記誘起起電力受信手段が、少なくとも、位相調整手段、伝送線路トランスもしくは伝送線路的トランス、インピーダンス変換手段、低雑音増幅手段、中間周波増幅手段、検波・復調手段、復号化手段、位相等価手段、あるいはこれらの組合せを含むことを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the first aspect, the induced electromotive force receiving means includes at least a phase adjusting means, a transmission line transformer or a transmission line transformer, an impedance converting means, a low noise amplifying means, an intermediate frequency amplifying means, a detection / demodulation means. A magnetic wave antenna including a decoding means, a phase equalizing means, or a combination thereof, and a magnetic wave communication device using the same.
  8.  前記請求項第7項において、前記インピーダンス変換手段の入力インピーダンスが前記閉ループアンテナの出力インピーダンスより大きく、前記インピーダンス変換手段の入力インピーダンスが前記伝送線路トランスもしくは伝送線路的トランスの出力インピーダンスより大きく、前記インピーダンス変換手段の出力インピーダンスが受信機の入力インピーダンスより小さく、前記低雑音増幅器の出力インピーダンスが受信機の入力インピーダンスより小さく、あるいはこれらの組合せであることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the seventh aspect, the input impedance of the impedance conversion means is larger than the output impedance of the closed loop antenna, the input impedance of the impedance conversion means is larger than the output impedance of the transmission line transformer or transmission line transformer, Magnetic wave antenna characterized in that the output impedance of the conversion means is smaller than the input impedance of the receiver, and the output impedance of the low noise amplifier is smaller than the input impedance of the receiver, or a combination thereof Communication device.
  9.  前記請求項第1項から第8項までの何れかにおいて、前記組合せによる誘導経路中において、前記閉ループアンテナの、直列抵抗が変化し、誘導性リアクタンスが変化し、電気特性が変化し、VSWRが変化し、放射効率が変化し、あるいはこれらの組合せが変化するのを抑制するために、前記閉ループアンテナを、離調抑制手段の内部に収納し、マグネチックループアンテナとし、シールドループアンテナとし、特に小型の場合には絶縁物によりコーティングし、あるいはこれらを組合せることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 8, the series resistance of the closed loop antenna changes, the inductive reactance changes, the electrical characteristic changes, and the VSWR changes in the induction path of the combination. In order to suppress the change, the radiation efficiency change, or the combination of them, the closed loop antenna is housed inside the detuning suppression means, to be a magnetic loop antenna, to be a shield loop antenna, in particular A magnetic wave antenna and a magnetic wave communication device using the same, which is characterized in that it is coated with an insulator in a small size, or a combination thereof.
  10.  前記請求項第1項から第9項までの何れかにおいて、前記寄生振動抑制手段を、前記閉ループアンテナと、前記浮遊容量を含む位相調整手段と、前記磁力波信号駈動手段の出力端子と、前記誘起起電力受信手段の入力接続端子と、前記インピーダンス変換手段の入力接続端子と、前記伝送線路トランスもしくは伝送線路的トランスと、あるいはこれらの組合せと、並列あるいは直列に接続することによって、不要な寄生振動を抑制することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 9, the parasitic vibration suppressing means is the closed loop antenna, phase adjusting means including the stray capacitance, and an output terminal of the magnetic wave signal vibrating means. Unnecessary by connecting in parallel or in series with the input connection terminal of the induced electromotive force receiving means, the input connection terminal of the impedance conversion means, the transmission line transformer or transmission line transformer, or a combination thereof Magnetic wave antenna characterized by suppressing parasitic vibration and magnetic wave communication device using the same.
  11.  前記請求項第1項において、前記磁力波信号送受信手段、ベースバンド信号送受信手段、あるいはこれらの両方が、少なくとも、前記磁力波信号が前記誘導経路中において誘導結合する際に生じる誘導結合損の増加を、予測し、検知し、抑制し、あるいはこれらの組合せを行うための誘導結合損検知手段を有することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the claim 1, the magnetic wave signal transmitting / receiving means, the baseband signal transmitting / receiving means, or both of them increase at least an inductive coupling loss caused when the magnetic wave signal is inductively coupled in the induction path. A magnetic wave antenna and a magnetic wave communication apparatus using the same, comprising: inductive coupling loss detection means for predicting, detecting, suppressing, or performing a combination thereof.
  12.  前記請求第11項において、前記誘導結合損検知手段が、前記閉ループアンテナの誘導性リアクタンスの変化を検知し、前記閉ループアンテナの周辺の海水の導電度を検知し、前記閉ループアンテナの周辺の海水のイオン濃度を検知し、前記誘導経路中の通信品質を検知し、あるいはこれらの組合せを検知することによって、前記誘導結合損の変化を検知することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the eleventh aspect, the inductive coupling loss detection means detects a change in inductive reactance of the closed loop antenna, detects the conductivity of seawater around the closed loop antenna, and detects the conductivity of the seawater around the closed loop antenna. A magnetic wave antenna characterized by detecting a change in the inductive coupling loss by detecting ion concentration, detecting communication quality in the induction path, or detecting a combination thereof, and a magnetic wave using the same Communication device.
  13.  前記請求項第1項から第12項までの何れかにおいて、前記閉ループアンテナが複数組設けられ、少なくとも、相互間で絶縁され、相互間で撚り合され、個別の長さであり、個別の形状であり、個別の角度であり、個別の間隔であり、あるいはこれらの組合せであり、かつ前記複数組の閉ループアンテナが、並列に接続され、直列に接続され、伝送線路的に接続され、あるいはこれらの組合せで接続されることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 12, a plurality of sets of the closed loop antennas are provided, at least insulated from each other, twisted between each other, and have individual lengths and individual shapes. The plurality of closed loop antennas are connected in parallel, connected in series, connected in a transmission line, or the like. And a magnetic wave communication device using the same.
  14.  前記請求項第1項から第13項までの何れかにおいて、前記複数組の閉ループアンテナの各組ごとに磁力波信号送受信手段を接続して複数組の入出力端子とし、少なくとも、前記複数組の入出力端子を、並列に接続し、同相に駈動するよう接続し、逆相に駆動するよう接続し、電力合成・分配手段を介して接続し、減衰・増幅手段を介して接続し、移相手段を介して接続し、あるいはこれらを組合せて接続することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    The magnetic wave signal transmitting / receiving means is connected to each set of the plurality of sets of closed loop antennas to provide a plurality of sets of input / output terminals according to any one of claims 1 to 13; Input / output terminals are connected in parallel, connected to oscillate in phase, connected to drive in reverse phase, connected via power combining / distributing means, connected via attenuation / amplifying means, A magnetic wave antenna and a magnetic wave communication apparatus using the same, characterized in that they are connected via phase means, or a combination thereof.
  15.  前記請求項第1項から第14項までの何れかにおいて、前記誘導経路中あるいは誘導経路の周辺に存在し、かつ、導電物質であり、磁性体であり、渦電流が生じる物質であり、あるいはこれらの組合せによる物質であり、前記物質が面状あるいは板状の場合には前記閉ループアンテナから前記物質に向けて水平方向もしくは並行する方向に磁力線を放出し、前記物質が液状の場合には前記閉ループアンテナから対向する閉ループアンテナに向けて可能な限り最短距離で磁力線が交差するよう放出し、あるいはこれらの組合せによって磁力線を放出することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any of the above-mentioned claim 1 to claim 14, a conductive substance which exists in or around the induction path and which is a conductive substance, is a magnetic substance, and is a substance which generates an eddy current, or The substance is a combination of these materials, and when the substance is planar or plate-like, the closed loop antenna emits magnetic lines of force in the horizontal or parallel direction toward the substance, and when the substance is liquid, the substance is liquid. Magnetic wave antenna characterized by emitting magnetic field lines from the closed loop antenna to the opposing closed loop antenna so as to intersect magnetic field lines at the shortest possible distance, or a combination thereof, and a magnetic wave communication device using the same.
  16.  前記請求項第1項から第15項までの何れかにおいて、前記閉ループアンテナが磁性体に近接して設けられた単巻あるいは複数巻のソレノイドコイルであり、かつ、変位電流の放射もしくは再放射を抑制する構造であり、構成であり、特性であり、あるいはこれらの組合せであり、かつ、変動磁界を効率よく放射する構造であり、構成であり、特性であり、あるいはこれらの組合せであることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 15, the closed loop antenna is a single-turn or multi-turn solenoid coil provided in close proximity to a magnetic body, and radiation or re-radiation of displacement current is It is a structure that suppresses, is a configuration, is a characteristic, or a combination thereof, and is a structure that efficiently radiates a fluctuating magnetic field, is a configuration, is a characteristic, or a combination of these. Magnetic wave antenna characterized by the present invention and magnetic wave communication apparatus using the same.
  17.  前記請求項第16項において、前記磁性体が、少なくとも、棒状であり、多角形であり、内部に空洞があり、複数本で構成され、前記複数本がクロスして配置され、あるいはこれらの組合せであり、かつ、前記ソレノイドコイルが、少なくとも、単層巻であり、多層巻であり、ポリファイラ巻であり、リッツ線であり、あるいはこれらの組合せであることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the above-mentioned claim 16, the magnetic body is at least rod-like, polygon-like, has a hollow inside, is composed of a plurality of pieces, is disposed crosswise of the plurality of pieces, or a combination thereof And a magnetic wave antenna characterized in that the solenoid coil is at least a single-layer winding, a multi-layer winding, a polyfilar winding, a litz wire, or a combination thereof. Magnetic wave communication device to be used.
  18.  前記請求項第16項から第17項の何れかにおいて、前記磁力波信号送受信手段の一部あるいは全部が前記磁性体の内部の空洞部分に収納され、前記閉ループアンテナが前記磁性体の外部あるいは外周部に設けられることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    18. The magnetic wave signal transmitting / receiving means according to any one of claims 16 to 17, wherein a part or all of the magnetic wave signal transmitting / receiving means is accommodated in a hollow portion inside the magnetic body, and the closed loop antenna is outside or outside the magnetic body. A magnetic wave antenna provided in a portion and a magnetic wave communication device using the same.
  19.  前記請求項第1項から第18項の何れかにおいて、前記複数組の閉ループアンテナが、各組毎に、前記移相手段に接続され、少なくとも、前記複数組の閉ループアンテナを蔽うレドームを通して、回転磁力波信号を効率よく外部へ放射することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    22. The method according to any one of claims 1 to 18, wherein the plurality of sets of closed loop antennas are connected to the phase shift means in each set and rotated at least through a radome covering the plurality of sets of closed loop antennas. A magnetic wave antenna characterized by efficiently radiating a magnetic wave signal to the outside, and a magnetic wave communication device using the same.
  20.  前記請求項第15項あるいは第19項の何れかにおいて、前記複数組の閉ループアンテナを、レドームに対して垂直方向に配置し、レドームに対して水平方向に配置し、レドームに対して円錐状あるいは逆円錐状に配置し、あるいはこれらの組合せにより配置し、かつ、前記複数組の閉ループアンテナの、指向性ビーム幅を制御し、指向性ビームの方向を制御し、指向性ビームの放射角を制御し、あるいはこれらの組合わせをアダプテイブに制御する回転磁力波アンテナを実現することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    20. In the above-mentioned claim 15 or 19, the sets of closed loop antennas are arranged vertically to the radome, horizontally to the radome and conically Arranged in an inverted conical shape or a combination thereof, and control the directional beam width of the plurality of closed loop antennas, control the direction of the directional beam, and control the radiation angle of the directional beam Or a magnetic wave antenna for controlling a rotational magnetic wave antenna for adaptively controlling a combination thereof, and a magnetic wave communication apparatus using the same.
  21.  前記請求項第19項から第20項の何れかにおいて、前記閉ループアンテナから放射された回転磁力波信号が、前記誘導経路中に存在する導電物体によって渦電流を生じて反射され、前記反射された逆回転する回転磁力波信号を受信することで、誘導経路中に存在する導電物体を探知することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    21. The rotary magnetic wave signal radiated from the closed loop antenna according to any one of claims 19 to 20, wherein an eddy current is generated and reflected by a conductive object present in the induction path, and the reflected light is reflected. A magnetic wave antenna characterized by detecting a conductive object present in an induction path by receiving a counterrotating rotational magnetic wave signal, and a magnetic wave communication device using the same.
  22.  前記請求項第19項から第21項までの何れかにおいて、前記回転磁力波信号を放射するための複数組の閉ループアンテナと、前記逆回転する回転磁力波信号を受信するための複数組の閉ループアンテナとを間隔を置いて設置することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    A plurality of closed loop antennas for radiating the rotary magnetic wave signal and a plurality of closed loops for receiving the counter-rotating rotary magnetic wave signal according to any one of claims 19 to 21. A magnetic wave antenna and a magnetic wave communication apparatus using the same, wherein the magnetic wave antenna and the antenna are spaced apart from each other.
  23.  前記請求項第1項から第22項までの何れかにおいて、前記複数組の閉ループアンテナがレドームに対して垂直方向、水平方向、あるいはこれらの組合せで配置され、各組ごとに、少なくとも、磁力波信号送受信手段を接続し、電力合成・分配手段を接続し、減衰・増幅手段を接続し、移相手段を接続し、あるいはこれらの組み合わせを接続し、かつ、前記複数組の閉ループアンテナの、指向性ビーム幅を制御し、指向性ビームの方向を制御し、指向性ビームの放射角を制御し、あるいはこれらの組合わせをアダプテイブに制御する磁力波アダプテイブアレイアンテナを実現することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 22, the plurality of sets of closed loop antennas are arranged in the vertical direction, the horizontal direction, or a combination thereof with respect to the radome, and at least for each set, at least a magnetic wave Signal transmission / reception means are connected, power combining / distribution means are connected, attenuation / amplification means are connected, phase shift means are connected, or a combination of these is connected, and the directivity of the plurality of closed loop antennas is set. To realize a magnetic wave adaptive array antenna that controls the directivity beam width, controls the direction of the directional beam, controls the radiation angle of the directional beam, or controls the combination of these to be adaptive. Magnetic wave antenna and magnetic wave communication device using the same.
  24.  前記請求項第23項において、前記複数組の閉ループアンテナが、海上を航行しあるいは海水中を潜航する移動体の形状に合わせて設置されることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    The magnetic wave antenna according to claim 23, wherein the plurality of sets of closed loop antennas are installed in accordance with the shape of a moving body which travels over the sea or dives in seawater, and a magnetic wave using the same. Communication device.
  25.  前記請求項第1項から第24項の何れかにおいて、前記閉ループアンテナが、少なくとも、磁力波信号送信手段を介してベースバンド信号送信手段に接続され、磁力波信号受信手段を介してベースバンド信号受信手段に接続され、磁力波信号送受信手段を介してベースバンド信号送受信手段に接続され、あるいはこれらの組合せで接続され、かつ、固定局、中継局、移動端末、携帯端末、小型のRFIDタグ、あるいはこれらの組合せを構成し、かつ、真水中、海水中、大気中、地中、あるいはこれらの組合せによる誘導経路中おいて、単方向通信、双方向通信、固体識別、個体管理、地点情報管理、地殻変動調査、導電体物質探査、海洋資源探査、あるいはこれらの組合せのために用いられることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    25. In any one of claims 1 to 24, the closed loop antenna is at least connected to a baseband signal transmitting means via a magnetic wave signal transmitting means, and a baseband signal via a magnetic wave signal receiving means. Fixed station, relay station, mobile terminal, portable terminal, small-sized RFID tag, connected to the receiving means, connected to the baseband signal transmitting / receiving means via the magnetic wave signal transmitting / receiving means, or a combination thereof Alternatively, one-way communication, two-way communication, solid identification, individual management, point information management, constituting a combination thereof and in a guidance route by fresh water, seawater, air, ground, or a combination thereof , A magnetic wave antenna characterized by being used for crustal deformation survey, conductor survey, ocean resources survey, or a combination thereof Magnetic wave communication device it is.
  26.  前記請求項第1項から第25項の何れかにおいて、前記磁力波通信が、少なくとも、スペクトル拡散通信であり、秘匿通信であり、海水中での通信であり、等価帯域幅が数Hz以下の狭帯域通信であり、帯域幅の下限と上限との周波数比が10倍以上の広帯域通信であり、近距離間から中距離間の通信であり、あるいはこれらの組合せによる通信であることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    The magnetic wave communication according to any one of claims 1 to 25, wherein at least the magnetic wave communication is spread spectrum communication, secret communication, and communication in seawater, and the equivalent bandwidth is several Hz or less. Narrow-band communication; wide-band communication with a frequency ratio between the lower limit and upper limit of the bandwidth of 10 or more, communication between a short distance and a middle distance, or communication by a combination of these. Magnetic wave antenna and magnetic wave communication device using the same.
  27.  前記請求項第1項から第26項の何れかにおいて、前記磁力波信号が自然界には存在しにくいベースバンド信号で構成され、受信側において受信した前記ベースバンド信号の伝搬特性の変化を測定することによって、前記誘導経路中で生じる、地震、海底火山の噴火、津波、物体の移動、生物の移動、あるいはこれらの組合せを検知することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    27. The magnetic field wave signal according to any one of claims 1 to 26, wherein the magnetic wave signal is composed of a baseband signal which is unlikely to be present in the natural world, and the change of the propagation characteristic of the baseband signal received on the receiving side is measured. A magnetic wave antenna characterized by detecting an earthquake, an eruption of a submarine volcano, a tsunami, a movement of an object, a movement of an organism, or a combination thereof generated in the guidance route, and a magnetic wave communication device using the same .
  28.  前記請求項第1項から第27項の何れかにおいて、前記磁力波アンテナが、ワイヤレス給電装置の送信側アンテナとして用いられ、ワイヤレス給電装置の受信側アンテナとして用いられ、磁力波通信手段が付加されて用いられ、あるいはこれらの組合せで用いられることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    28. The magnetic wave antenna according to any one of claims 1 to 27, wherein the magnetic wave antenna is used as a transmitting antenna of a wireless power feeder, is used as a receiving antenna of a wireless power feeder, and a magnetic wave communication unit is added. And a magnetic wave communication device using the same.
  29.  前記請求項第28項において、前記送信側の磁力波アンテナでは、少なくとも、商用電源から直接駈動し、商用電源からトランスを介して駈動し、複数の閉ループアンテナをメッシュ状に配置して駈動し、位相調整手段を接続して駈動し、実効比透磁率が10以上の磁性体に近接して駈動し、前記受信側の磁力波アンテナでは、少なくとも、巻き数を送信側の巻数より多くし、実効比透磁率を送信側の実効比透磁率より大きくし、対向する面積を送信側が対向する面積より狭くし、あるいはこれらを組合せることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In the above-mentioned claim 28, in the magnetic wave antenna on the transmission side, at least a direct oscillation from a commercial power supply, a oscillation from a commercial power supply via a transformer, and a plurality of closed loop antennas arranged in a mesh shape Move, and connect phase adjustment means to oscillate, and oscillate close to a magnetic body having an effective relative permeability of 10 or more, and in the magnetic wave antenna on the receiving side, the number of turns is at least the number of turns on the transmitting side A magnetic wave antenna characterized by making the effective relative permeability larger than the effective relative permeability on the transmission side, making the opposing area smaller than the area on the transmitting side, or combining them Magnetic wave communication device.
  30.  前記請求項第1項から第29項の何れかにおいて、前記誘導経路中において生じる誘導結合損の増加を軽減するために、適応型閉ループアンテナを設け、適応型磁力波信号送受信手段を設け、適応型ベースバンド信号送受信手段を設け、あるいはこれらの組合せを設け、自局、相手局、あるいは両局において、少なくとも、前記閉ループアンテナのパラメータ、前記磁力波信号のパラメータ、前記磁力波通信のパラメータ、前記磁力波通信装置のパラメータ、あるいはこれらの組合せをアダプティブに制御し、変更し、あるいは切替えることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    In any one of claims 1 to 29, in order to reduce an increase in inductive coupling loss generated in the induction path, an adaptive closed loop antenna is provided, and adaptive magnetic wave signal transmission / reception means is provided, and adaptation is performed. At least a parameter of the closed loop antenna, a parameter of the magnetic wave signal, a parameter of the magnetic wave communication, at least in the own station, the opposite station or both stations. A magnetic wave antenna characterized by adaptively controlling, changing, or switching parameters of a magnetic wave communication device or a combination thereof, and a magnetic wave communication device using the same.
  31.  前記請求項第1項から第30項の何れかにおいて、前記閉ループアンテナの受信時もしくは受信側の磁性体の実効透磁率が送信時もしくは送信側の磁性体の実効透磁率より大きく、前記閉ループアンテナの受信時もしくは受信側の巻数が送信時もしくは送信側の巻数より多く、前記閉ループアンテナの受信時もしくは受信側の面積が送信時もしくは送信側の面積より広く、前記閉ループアンテナの受信時もしくは受信側の対向する2辺の間隔が送信時もしくは送信側の対向する2辺の間隔より広く、あるいはこれらの組合せであることを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    31. The closed loop antenna according to any one of claims 1 to 30, wherein the effective permeability of the magnetic body at the time of reception or reception of the closed loop antenna is larger than the effective permeability of the magnetic body at the time of transmission or transmission. At the time of reception or at the reception side is greater than the number of turns at the transmission or transmission side, the area at the reception or reception side of the closed loop antenna is wider than the area at the transmission or transmission side, at the reception or reception side of the closed loop antenna A magnetic wave antenna and a magnetic wave communication apparatus using the same, wherein the distance between the two opposing sides is wider than the distance between the opposing two sides at the time of transmission or transmission, or a combination thereof.
  32.  前記請求項第1項から第31項の何れかにおいて、複数の送信側磁力波アンテナの一部あるいは全部と複数の受信側磁力波アンテナの一部あるいは全部とが垂直方向に対向し、前記複数の送信側磁力波アンテナの一部あるいは全部と前記複数の受信側磁力波アンテナの一部あるいは全部とが水平方向に対向し、あるいはこれらの組合せにより対向することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    32. In any one of claims 1 to 31, a part or all of the plurality of transmitting side magnetic wave antennas and a part or all of the plurality of receiving side magnetic wave antennas are vertically opposed to each other, A magnetic wave antenna characterized in that a part or all of the transmitting magnetic wave antenna and a part or all of the plurality of receiving magnetic wave antennas face each other in the horizontal direction or a combination thereof. Magnetic wave communication device using
  33.  前記請求項第1項から第32項の何れかにおいて、前記磁力波アンテナが海洋上の移動体と海水中の複数の移動体とに搭載され、前記海洋上の移動体に搭載された磁力波アンテナと前記海水中の複数の移動体に搭載された磁力波アンテナとが相互間で水平方向に対向し、前記複数の移動体に搭載された磁力波アンテナが相互間で垂直方向に対向することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。
    The magnetic wave according to any one of claims 1 to 32, wherein the magnetic wave antenna is mounted on a moving body on the ocean and a plurality of moving bodies in seawater, and is mounted on the moving body on the ocean. The antenna and the magnetic wave antenna mounted on the plurality of mobile bodies in the seawater are horizontally opposed to each other, and the magnetic wave antennas mounted on the plurality of mobile bodies are vertically opposed to each other Magnetic wave antenna and magnetic wave communication device using the same.
  34.  前記請求項第1項から第33項の何れかにおいて、前記磁力波アンテナが相手側磁力波アンテナと対向している場合、対向している方向の反対側に非磁性体の金属板を配置することで渦電流が生じ、前記磁力波アンテナから反対方向に放射される磁力線を反射させることで、指向性アンテナを実現することを特徴とする磁力波アンテナおよびそれを用いる磁力波通信装置。 34. In the case of any one of claims 1 to 33, when the magnetic wave antenna is opposed to the other magnetic wave antenna, a nonmagnetic metal plate is disposed on the opposite side of the opposing direction. Thus, an eddy current is generated, and a directional antenna is realized by reflecting magnetic lines of force radiated in the opposite direction from the magnetic wave antenna, and a magnetic wave communication device using the same.
PCT/JP2014/081654 2013-12-09 2014-11-28 Magnetic loop antenna and magnetic-field communication device using same WO2015087724A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015552393A JP6471382B2 (en) 2013-12-09 2014-11-28 Magnetic wave antenna and magnetic wave communication apparatus using the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013254273 2013-12-09
JP2013-254273 2013-12-09
JP2014078266 2014-04-05
JP2014-078266 2014-04-05
JP2014139228 2014-07-06
JP2014-139228 2014-07-06

Publications (1)

Publication Number Publication Date
WO2015087724A1 true WO2015087724A1 (en) 2015-06-18

Family

ID=53371035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081654 WO2015087724A1 (en) 2013-12-09 2014-11-28 Magnetic loop antenna and magnetic-field communication device using same

Country Status (2)

Country Link
JP (1) JP6471382B2 (en)
WO (1) WO2015087724A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013825A1 (en) * 2015-07-21 2017-01-26 パナソニックIpマネジメント株式会社 Power transmission device
JP2017118171A (en) * 2015-12-21 2017-06-29 京セラ株式会社 Electronic apparatus, electronic apparatus control method, control program, and control device
RU175975U1 (en) * 2017-08-15 2017-12-25 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (СФУ) Near Field Magnetic Communication Antenna
WO2018003568A1 (en) * 2016-06-30 2018-01-04 パナソニック株式会社 Power transmission device
CN108390697A (en) * 2018-05-16 2018-08-10 德州尧鼎光电科技有限公司 A kind of bionic compound eyes antenna magnetic wave undersea communication device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102613656B1 (en) * 2020-12-17 2023-12-15 한국전자통신연구원 Magnetic field communication method and apparatus using gmi magnetometer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117635A1 (en) * 2007-03-28 2008-10-02 Radio Communication Systems Ltd. Magnetic force wave communication apparatus
JP2009225395A (en) * 2008-03-19 2009-10-01 Rcs:Kk Communication business utilizing magnetic wave propagation
WO2011145515A1 (en) * 2010-05-15 2011-11-24 有限会社 アール・シー・エス Magnetic wave antenna and magnetic wave communication device
JP2012253695A (en) * 2011-06-06 2012-12-20 Rcs:Kk Telecommunication operation utilizing magnetic wave propagation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008117635A1 (en) * 2007-03-28 2008-10-02 Radio Communication Systems Ltd. Magnetic force wave communication apparatus
JP2009225395A (en) * 2008-03-19 2009-10-01 Rcs:Kk Communication business utilizing magnetic wave propagation
WO2011145515A1 (en) * 2010-05-15 2011-11-24 有限会社 アール・シー・エス Magnetic wave antenna and magnetic wave communication device
JP2012253695A (en) * 2011-06-06 2012-12-20 Rcs:Kk Telecommunication operation utilizing magnetic wave propagation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BURHAN GULBAHAR ET AL.: "A Communication Theoretical Modeling and Analysis of Underwater Magneto-Inductive Wireless Channels", IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, vol. 11, no. 9, September 2012 (2012-09-01), pages 3326 - 3334, XP011463439, DOI: doi:10.1109/TWC.2012.070912.111943 *
VINOD PARAMESWARAN ET AL.: "Irrigation Control using Wireless Underground Sensor Networks", 2012 SIXTH INTERNATIONAL CONFERENCE ON SENSING TECHNOLOGY (ICST, 2012, pages 653 - 659, XP032330289, DOI: doi:10.1109/ICSensT.2012.6461760 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017013825A1 (en) * 2015-07-21 2017-01-26 パナソニックIpマネジメント株式会社 Power transmission device
JP2017028832A (en) * 2015-07-21 2017-02-02 パナソニックIpマネジメント株式会社 Power transmission device
US10549652B2 (en) 2015-07-21 2020-02-04 Panasonic Intellectual Property Management Co., Ltd. Power transmission device
JP2017118171A (en) * 2015-12-21 2017-06-29 京セラ株式会社 Electronic apparatus, electronic apparatus control method, control program, and control device
WO2018003568A1 (en) * 2016-06-30 2018-01-04 パナソニック株式会社 Power transmission device
JP2018007400A (en) * 2016-06-30 2018-01-11 パナソニック株式会社 Power transmission device
US10790705B2 (en) 2016-06-30 2020-09-29 Panasonic Corporation Power transmission device
JP2020178531A (en) * 2016-06-30 2020-10-29 パナソニック株式会社 Power transmission device
RU175975U1 (en) * 2017-08-15 2017-12-25 Федеральное государственное автономное образовательное учреждение высшего образования "Сибирский федеральный университет" (СФУ) Near Field Magnetic Communication Antenna
CN108390697A (en) * 2018-05-16 2018-08-10 德州尧鼎光电科技有限公司 A kind of bionic compound eyes antenna magnetic wave undersea communication device
CN108390697B (en) * 2018-05-16 2024-03-19 德州尧鼎光电科技有限公司 Bionic compound eye antenna magnetic wave undersea communication device

Also Published As

Publication number Publication date
JP6471382B2 (en) 2019-02-20
JPWO2015087724A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
WO2015087724A1 (en) Magnetic loop antenna and magnetic-field communication device using same
JP6074368B2 (en) Underwater connector device
US20110076940A1 (en) Underwater wireless communications hotspot
JP6467919B2 (en) Power transmission device and power transmission method
US20100311325A1 (en) Systems and methods for through-the-earth communications
US7830318B2 (en) Electrically small antenna
US9887681B2 (en) Power transmission system, transmission apparatus, receiving apparatus, and power transmission method
WO2011145515A1 (en) Magnetic wave antenna and magnetic wave communication device
GB2457581A (en) An array of subsea radio modems is distributed on the seabed to provide a radio communications network
US20100322293A1 (en) Communication between submerged station and airborne vehicle
US20100227552A1 (en) Underwater radio antenna
US20210281328A1 (en) Underwater communication device and underwater communication system
RU2611603C1 (en) Communication system of very low and extremely low frequency range with deep-seated and distant objects
RU2608072C1 (en) Communication system of super low frequency and extremely low frequency ranges with deeply submerged and remote objects
CN114650084B (en) Underwater magnetic induction communication omnidirectional receiving and transmitting antenna circuit
US7336198B2 (en) Magnetostatic communication
GB2445015A (en) Electromagnetic below ice communications
WO2016170769A1 (en) Wireless power supply system and wireless power supply method
JP6760806B2 (en) Wireless power supply
JP2012253695A (en) Telecommunication operation utilizing magnetic wave propagation
RU2692931C1 (en) Communication system of ultra-low frequency and ultra-rare-frequency bands with deep-loaded and remote objects -7
Manteghi An electrically small antenna for underwater applications
CA2441882C (en) Underwater magnetic field communication system
RU2007122913A (en) METHOD FOR BILATERAL COMMUNICATION WITH UNDERWATER OBJECT
de Paillette et al. Antenna adaptation circuits for high data rate magneto inductive underwater communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552393

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870393

Country of ref document: EP

Kind code of ref document: A1