WO2015087681A1 - 波長多重伝送システム - Google Patents

波長多重伝送システム Download PDF

Info

Publication number
WO2015087681A1
WO2015087681A1 PCT/JP2014/080771 JP2014080771W WO2015087681A1 WO 2015087681 A1 WO2015087681 A1 WO 2015087681A1 JP 2014080771 W JP2014080771 W JP 2014080771W WO 2015087681 A1 WO2015087681 A1 WO 2015087681A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
ber
transceivers
transceiver
outside
Prior art date
Application number
PCT/JP2014/080771
Other languages
English (en)
French (fr)
Inventor
周作 林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480066914.6A priority Critical patent/CN105830366B/zh
Priority to EP14869023.3A priority patent/EP3082276A4/en
Priority to JP2015552377A priority patent/JP6072302B2/ja
Priority to US15/026,646 priority patent/US20160254862A1/en
Publication of WO2015087681A1 publication Critical patent/WO2015087681A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0799Monitoring line transmitter or line receiver equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/67Optical arrangements in the receiver
    • H04B10/671Optical arrangements in the receiver for controlling the input optical signal
    • H04B10/672Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal
    • H04B10/674Optical arrangements in the receiver for controlling the input optical signal for controlling the power of the input optical signal using a variable optical attenuator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems

Definitions

  • the present invention relates to a wavelength division multiplex transmission system including an optical transceiver having a plurality of transponders each including a plurality of optical transceivers.
  • Optical submarine cable transmission systems can be broadly divided into non-relay transmission systems that are applied to short-distance crossing straits and relay transmission systems that are applied to long-distance transoceanic crossings.
  • the optical submarine cable transmission system of the relay transmission system is composed of a submarine relay transmission line and land coastal station devices at both ends thereof.
  • the submarine relay apparatus is arranged for each relay span of about 50 km. The configuration is common.
  • wavelength division multiplexing optical transmission (WDM) technology is generally used.
  • FIG. 5 is a schematic diagram showing the configuration of the WDM apparatus.
  • the WDM apparatus includes a plurality of optical transceivers 101, an optical wavelength multiplexing / demultiplexing apparatus 102, an optical wavelength multiplexing / demultiplexing apparatus 103, and a plurality of optical transceivers 104.
  • Each of the plurality of optical transceivers 101 includes a laser and emits laser beams having different wavelengths. Then, the optical transceiver 101 modulates the laser light to generate a transmission signal. Thereafter, the plurality of transmission signals are multiplexed by the optical wavelength demultiplexing device 102. Thereafter, the multiplexed transmission signal is transmitted through the optical submarine cable.
  • the multiplexed transmission signal is separated into optical signals of respective wavelengths by the optical wavelength demultiplexing device 103.
  • Each optical signal is received by a plurality of optical transceivers 104 and converted into an electrical signal by a built-in light receiving element.
  • This WDM technology has the advantage of enabling large-capacity information transmission from a small amount of cable resources.
  • optical submarine cable transmission system using WDM technology it is possible to increase the communication capacity by a method of densely multiplexing with a narrow wavelength interval or a method of increasing the bit rate of the optical transceiver 101. is there.
  • optical submarine cable transmission systems having transmission speeds of 40 Gbps and 100 Gbps have been realized.
  • the transmitted light power increases. For example, if the transmission light power per wave is +10 dBm and the multiplexing number is 64, the transmission light power reaches +28 dBm.
  • the transmission light power reaches +28 dBm.
  • the S / N ratio Signal to Noise
  • DP-QPSK Dual Polarization Quadrature Phase Shift Keying
  • DP-BPSK Double Palliation Binary Phase Shift Modulation method method
  • a multi-carrier scheme has been proposed in which a plurality of optical transceivers are provided in one transponder, and the bit rate is increased by transmitting signals at a plurality of wavelengths. For example, when the number of multicarriers is 2, two optical transceivers are provided in one transponder and signals are transmitted at two wavelengths.
  • the transmitting side in the transponder 105 outputs a plurality of optical signals from the same number of optical transmitters 1051 as the number of carriers, and the optical tunable filter 1052 suppresses inter-carrier interference.
  • the spectral narrowing of the optical signal is performed, and each optical signal is multiplexed by the optical coupler 1053.
  • the transmitted optical signal is demultiplexed into a plurality of optical signals by the optical coupler 1054, only the optical signals received by the optical tunable filter 1055 are extracted, and the same number of optical receivers 1056 as the number of carriers are extracted. Receive an optical signal.
  • this configuration has a problem that the optical tunable filters 1052 and 1055 having two times the number of carriers and the two optical couplers 1053 and 1054 are required in the transponder 105, which is complicated and expensive.
  • the factors that degrade the transmission characteristics are the loss of spectral balance during wavelength multiplexing due to the difference in optical power between carriers, and the polarization or modulation between carriers.
  • An example is an increase in nonlinear penalty due to long-distance transmission due to matching timing.
  • the optical tunable filters 1052 and 1055 and the optical couplers 1053 and 1054 are required in the transponder 105, and the configuration is complicated and expensive.
  • the power balance between carriers causes the spectral balance to be lost during wavelength multiplexing, and the non-linear penalty increases due to the coincidence of polarization or modulation timing between carriers, resulting in degradation of transmission characteristics. There was also a problem to do.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a multi-carrier wavelength division multiplexing transmission system that suppresses deterioration of transmission characteristics with a simple and inexpensive configuration.
  • the wavelength division multiplexing transmission system includes an optical transceiver having a plurality of transponders incorporating a plurality of optical transceivers, a BER monitor device for monitoring the BER of each optical transceiver, and outputs from each optical transceiver A variable optical attenuator that attenuates the optical signal, a control unit that controls the attenuation amount of the variable optical attenuator so that the total BER of each optical transceiver monitored by the BER monitor device is reduced, and attenuation by the variable optical attenuator And an optical multiplexing / demultiplexing device that multiplexes and sends the optical signals to the outside, demultiplexes the optical signals from the outside, and sends them to the optical transceivers.
  • the wavelength division multiplexing transmission system includes an optical transceiver having a plurality of transponders including a plurality of optical transceivers, and the polarization of the optical signal output from each optical transceiver for each transponder at equal intervals.
  • a polarization control unit that controls the optical signal to be shifted, and each optical signal whose polarization is controlled by the polarization control unit is multiplexed and sent to the outside, and the optical signal from the outside is demultiplexed to each optical transceiver And an optical multiplexing / demultiplexing device to be sent.
  • a wavelength division multiplexing transmission system includes an optical transceiver having a plurality of transponders incorporating a plurality of optical transceivers, a timing monitor for monitoring the modulation timing of each optical transceiver, and monitoring by the timing monitor.
  • a timing control unit that controls the modulated modulation timing to be shifted between each optical transceiver, and the optical signal output from each optical transceiver is multiplexed and sent to the outside, and the optical signal from the outside is demultiplexed
  • an optical multiplexer / demultiplexer for sending to each of the optical transceivers.
  • FIG. 1 is a diagram showing an outline of a wavelength division multiplexing transmission system according to Embodiment 1 of the present invention.
  • the function of multiplexing / demultiplexing each carrier is not the transponder 11 but the external optical multiplexing / demultiplexing device 2 (optical multiplexer 21, optical multiplexer). It is provided in the duplexer 22).
  • a general interleaver, AWG Arrayed-Waveguide Gating
  • a simple and inexpensive system can be provided.
  • a function of monitoring the BER of each carrier and optimizing the optical output power of each carrier is provided.
  • the function of optimizing the optical output power of each carrier is described as being provided in the optical multiplexer / demultiplexer 2, but may be provided in the transponder 11.
  • FIG. 2 shows a wavelength division multiplexing transmission system in which the number of multicarriers is m.
  • the wavelength multiplexing transmission system includes an optical transmission / reception device 1, an optical multiplexing / demultiplexing device 2, and a BER monitor device 3.
  • the optical transceiver 1 includes n transponders 11 each including m optical transceivers 111, and transmits and receives optical signals. In FIG. 1, only one transponder 11 is shown.
  • Each optical transceiver 111 emits laser beams having different wavelengths, modulates the laser beams to generate a transmission signal (optical signal), and sends the signal to the optical multiplexing / demultiplexing device 2. Is received and converted into an electrical signal by a built-in light receiving element.
  • the number of multicarrier optical signals output from the optical transceiver 1 is m ⁇ n.
  • Each optical transceiver 111 of the optical transmission / reception apparatus 1 also has a function of transmitting information (reception BER information) related to the partner's BER to the BER monitor apparatus 3.
  • the optical multiplexer / demultiplexer 2 is provided outside the optical transmitter / receiver 1, multiplexes the optical signals from the optical transceivers 111 and sends them to the outside, demultiplexes the optical signals from the outside, and the optical transceivers 111 is sent.
  • the optical multiplexer / demultiplexer 2 includes an optical multiplexer 21, an optical demultiplexer 22, a variable optical attenuator (VOA) 23, and a control unit 24.
  • VOA variable optical attenuator
  • the optical multiplexer 21 multiplexes the optical signals output from the respective optical transceivers 111 and attenuated by the variable optical attenuator 14.
  • the optical signal combined by the optical multiplexer 21 is sent to the outside.
  • the optical demultiplexer 22 demultiplexes an optical signal from the outside.
  • the optical signal demultiplexed by the optical demultiplexer 22 is sent to each optical transceiver 111.
  • the VOA 23 is provided corresponding to each optical transceiver 111 and attenuates an optical signal from the corresponding optical transceiver 111.
  • the control unit 24 controls the attenuation amount of the VOA 23 so that the total BER of each optical transceiver 111 monitored by the BER monitor device 3 becomes small.
  • the BER monitor device 3 monitors the BER of each optical transceiver 111 based on the received BER information from the optical transceiver 1.
  • the optical transceiver 1 of the wavelength division multiplexing transmission system has n transponders 11 including m optical transceivers 111, and the optical transceiver 1 outputs m ⁇ n multi-carrier optical signals. Is done.
  • the m ⁇ n multicarriers output from the optical transmitter / receiver 1 have different optical output power due to variations in the optical transmitter / receiver 111 in each carrier. If long-distance transmission is performed with the optical output power of each carrier being different, the optical output power is not evenly amplified in the submarine repeater provided at intervals of about 50 km.
  • the BER of each optical transceiver 111 is monitored by the BER monitor device 3.
  • the control unit 24 controls each VOA 23 according to the monitoring result of the BER monitor device 3.
  • the control unit 24 can optimize the optical output power of each carrier by controlling the VOA 23 so that the total BER of each optical transceiver 111 monitored by the BER monitor device 3 is minimized. It becomes possible.
  • each optical signal whose optical output power is optimized is multiplexed by the optical multiplexing / demultiplexing device 2 and transmitted as one optical signal, so that deterioration of transmission characteristics can be suppressed, and long-distance transmission can be performed. It becomes possible.
  • Patent Document 1 discloses a configuration that simplifies the apparatus in the station by converting the apparatus in the station to a high-speed signal, reducing the number of optical fibers, and reducing the speed between stations having a long distance by multiplexing. .
  • the technique disclosed in Patent Document 1 is similar to the present invention only as a wavelength multiplexing technique.
  • the present invention is significantly different from the technique disclosed in Patent Document 1 in that the carrier demultiplexing function of the transponder 11 is performed outside the transponder 11.
  • the VOA 23, the control unit 24, and the BER monitor device 3 are mounted, the BER of each carrier is monitored, and the VOA 23 is controlled so that the total of the BER becomes small.
  • the long-distance transmission penalty caused by the difference in the optical output power between the transmission-side carriers can be reduced.
  • the optical multiplexing / demultiplexing device 2 outside the optical transmitting / receiving device 1, a complicated and expensive configuration using a tunable filter that is twice the number of conventional carriers can be replaced with an interleaver and an AWG. And an inexpensive configuration can be realized.
  • Embodiment 2 shows a case where a function of controlling the polarization of each carrier is provided in order to suppress the nonlinear penalty by shifting the polarization between carriers at equal intervals.
  • FIG. 3 is a diagram showing a configuration of a wavelength division multiplexing transmission system according to Embodiment 2 of the present invention. FIG. 3 shows only the configuration related to the transmission side in the configuration of the wavelength division multiplexing transmission system.
  • the wavelength division multiplexing transmission system according to the second embodiment shown in FIG. 3 deletes the VOA 23, the control unit 24, and the BER monitor device 3 from the wavelength multiple reception transmission system according to the first embodiment shown in FIG. 2, a polarization control unit 25 is added.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the polarization controller 25 is provided corresponding to each optical transceiver 111, and for each transponder 11, the polarization of m optical signals from each optical transceiver 111 is equally spaced (including the meaning of substantially uniform spacing). ), The polarization of the optical signal from the corresponding optical transceiver 111 is controlled.
  • the m multicarriers output from the transponder 11 are each in a random polarization state.
  • the nonlinear penalty in long-distance transmission increases in proportion to the magnitude of optical power per polarization. For this reason, when the polarizations of the m multicarriers coincide with each other, the non-linear penalty increases and the transmission characteristics deteriorate.
  • the polarization control unit 25 is used to shift the polarizations of m multicarriers at equal intervals. Thereby, a nonlinear penalty can be suppressed and deterioration of transmission characteristics can be suppressed.
  • Embodiment 3 In the first embodiment, in order to prevent the deterioration of transmission characteristics due to the power difference between the carriers in the AWG, the case where the BER of each carrier is monitored and the function of controlling the VOA 23 so as to reduce the total BER is shown. .
  • Embodiment 3 shows a case where a function for monitoring the modulation timing of each carrier and controlling the modulation timing is provided in order to suppress the nonlinear penalty by shifting the modulation timing between carriers.
  • FIG. 4 is a diagram showing a configuration of a wavelength division multiplexing transmission system according to Embodiment 3 of the present invention. FIG. 4 shows only the configuration related to the transmission side in the configuration of the wavelength division multiplexing transmission system.
  • the wavelength division multiplexing transmission system according to Embodiment 3 shown in FIG. 4 deletes the VOA 23, the control unit 24, and the BER monitor device 3 from the wavelength multiple reception transmission system according to Embodiment 1 shown in FIG. 2, a timing monitor unit 26 is added, and a timing control unit 12 is added to the optical transceiver 1.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the timing monitor unit 26 is provided corresponding to each transponder 11 and monitors the modulation timing of each optical transceiver 111 of the corresponding transponder 11.
  • the timing control unit 12 is provided corresponding to each transponder 11 and controls the modulation timing monitored by the timing monitor unit 26 to be shifted between the optical transceivers 111 of the corresponding transponder 11.
  • the modulation timings of the m multicarriers output from the transponder 11 are random.
  • the nonlinear penalty in long-distance transmission increases in proportion to the magnitude of optical power. For this reason, when the modulation timings of the m multicarriers coincide with each other, the non-linear penalty increases and the transmission characteristics deteriorate.
  • the timing monitoring unit 26 is used to monitor the modulation timing of each carrier, and the modulation timing of the transponder 11 is controlled by the timing control unit 12 according to the result. Further, by shifting the modulation timing of m multicarriers, it is possible to suppress the nonlinear penalty and suppress the deterioration of the transmission characteristics.
  • a wavelength division multiplexing transmission system has a simple and inexpensive configuration, can suppress deterioration of transmission characteristics, and includes a wavelength division multiplexing transmission including an optical transmission / reception apparatus having a plurality of transponders with a plurality of optical transceivers built-in. Suitable for use in systems and the like.
  • 1 optical transceiver 1 optical transceiver, 2 optical multiplexer / demultiplexer, 3 BER monitor device, 11 transponder, 12 timing controller, 21 optical multiplexer, 22 optical demultiplexer, 23 variable optical attenuator (VOA), 24 controller, 25 bias Wave control unit, 26 timing monitor unit, 111 optical transceiver.
  • VOA variable optical attenuator

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

 複数の光送受信機111を内蔵した複数のトランスポンダ11を有する光送受信装置1と、各光送受信機111のBERをモニタするBERモニタ装置3と、各光送受信機111からの光信号を減衰する可変光減衰器23と、BERモニタ装置3によりモニタされた各光送受信機のBERの合計が小さくなるよう可変光減衰器23の減衰量を制御する制御部24と、可変光減衰器23により減衰された各光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機111に送る光合分波装置2とを備えた。

Description

波長多重伝送システム
 この発明は、複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置を備えた波長多重伝送システムに関するものである。
 光海底ケーブル伝送システムは、短距離向けに海峡横断などに適用する無中継伝送方式と、長距離向けに大洋横断などに適用する中継伝送方式に大別される。中継伝送方式の光海底ケーブル伝送システムは、海底中継伝送路とその両端の陸地の海岸局装置等から構成され、海底中継伝送路では、海底中継装置が50km程度の中継スパンごとに配設される構成が一般的である。光海底ケーブル伝送システムでは、波長分割多重光伝送(WDM)技術が一般的に用いられる。
 図5はWDM装置の構成を示す概略図である。WDM装置は、複数の光送受信機101、光波長多重分離装置102、光波長多重分離装置103及び複数の光送受信機104から構成される。複数の光送受信機101はそれぞれレーザを備え、互いに異なった波長のレーザ光を発光する。そして、光送受信機101は、当該レーザ光を変調して送信信号を生成する。その後、光波長多重分離装置102で上記複数の送信信号が多重化される。その後、多重化された送信信号は光海底ケーブルを伝送する。一方、受信側では、多重化された送信信号を光波長多重分離装置103で各波長の光信号に分離する。そして、各光信号を複数の光送受信機104でそれぞれ受信し、内蔵する受光素子により電気信号に変換する。このWDM技術は、少量のケーブルリソースから大容量の情報伝送を可能にする利点がある。
 WDM技術を用いた光海底ケーブル伝送システムにおいては、波長間隔を狭くして密に多重化する方法や、光送受信機101のビットレートを高速化する方法によって、通信容量の大容量化が可能である。現在では、40Gbps、100Gbpsの伝送速度を有する光海底ケーブル伝送システムが実現されている。
 一方、波長間隔を狭くし多重化を密にすると送信光パワーが増加する。例えば1波あたりの送信光パワーを+10dBmとし多重数を64とすると、送信光パワーは+28dBmにも達する。しかしながら、光ファイバに入力する光パワーを大きくするとファイバの非線形効果が顕著に現れ伝送特性を悪化させるため、送信光パワーには限界がある。そのため、1波あたりの送信光パワーを落とす必要がある。しかしながら、送信光パワーを落とせば、S/N比(Signal to Noise)を劣化させるため、過度に送信光パワーを低減すると、伝送特性が悪化する課題がある。
 また、ビットレートを高速化させると送信光のスペクトル幅が大きくなる。そのため、従来の変調方式であるOOK(ON-OFF Keying)やDPSK(Differential Phase Shift Keying)を用いると、波長間隔を狭くできず、波長多重数を稼げない欠点がある。
 これらを解決する手段として、デジタルコヒーレント方式の一つであるDP-QPSK(Dual Polalization Quadrature Phase Shift Keying)変調方式、DP-BPSK(Dual Polalization Binary Phase Shift Keying)変調方式などの多値変調を用いる方法が提案されている。さらに、1つのトランスポンダ内に複数の光送受信機を備え、複数の波長で信号を伝送することでビットレートを上げるマルチキャリア方式も提案されている。例えば、マルチキャリア数が2である場合、2台の光送受信機を1台のトランスポンダに備え、2波長で信号を伝送する。
 従来、マルチキャリア方式を用いる場合、光波長多重分離装置を用いない場合を考慮して、トランスポンダ内でキャリアの多重及び分離を行い1つの入出力を行う構成としている。この場合、図6に示すように、トランスポンダ105内の送信側では、キャリア数と同数の光送信機1051から複数の光信号を出力し、光チューナブルフィルタ1052によりキャリア間干渉を抑制するために光信号のスペクトル狭窄を行い、光カプラ1053で各光信号を合波する。また、受信側では、送信された光信号を光カプラ1054により複数の光信号に分波し、光チューナブルフィルタ1055で受信する光信号のみを抽出し、キャリア数と同数の光受信機1056により光信号を受信する。
 しかしながら、この構成では、キャリア数の2倍の光チューナブルフィルタ1052,1055と2つの光カプラ1053,1054がトランスポンダ105内に必要となり、複雑かつコストがかかるという課題がある。また、従来のマルチキャリア方式の波長多重伝送システムでは、伝送特性が劣化する要因として、キャリア間の光パワー差の発生による波長多重の際のスペクトルのバランスの崩れや、キャリア間の偏波もしくは変調タイミングが一致することによる長距離伝送による非線形ペナルティの増大などが挙げられる。
特開2001-230759号公報
 上述の通り、従来のマルチキャリア方式を用いた波長多重伝送システムでは、トランスポンダ105内に光チューナブルフィルタ1052,1055及び光カプラ1053,1054が必要となり、複雑かつコストのかかる構成となる。また、従来、キャリア間のパワー差が発生することで波長多重の際にスペクトルのバランスが崩れ、また、キャリア間の偏波もしくは変調タイミングが一致することで非線形ペナルティが大きくなり、伝送特性が劣化する課題もあった。
 この発明は、上記のような課題を解決するためになされたもので、簡素で安価な構成で、伝送特性の劣化を抑制したマルチキャリア方式の波長多重伝送システムを提供することを目的としている。
 この発明に係る波長多重伝送システムは、複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置と、各光送受信機のBERをモニタするBERモニタ装置と、各光送受信機から出力された光信号を減衰する可変光減衰器と、BERモニタ装置によりモニタされた各光送受信機のBERの合計が小さくなるよう可変光減衰器の減衰量を制御する制御部と、可変光減衰器により減衰された各光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機に送る光合分波装置とを備えたものである。
 また、この発明に係る波長多重伝送システムは、複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置と、トランスポンダ毎に、各光送受信機から出力された光信号の偏波を等間隔でずらすよう制御する偏波制御部と、偏波制御部により偏波が制御された各光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機に送る光合分波装置とを備えたものである。
 また、この発明に係る波長多重伝送システムは、複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置と、各光送受信機の変調タイミングをモニタするタイミングモニタ部と、タイミングモニタ部によりモニタされた変調タイミングを、各光送受信機間でずらすよう制御するタイミング制御部と、各光送受信機から出力された光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機に送る光合分波装置とを備えたものである。
 この発明によれば、上記のように構成したので、簡素で安価な構成で、伝送特性の劣化を抑制することができる。
この発明の実施の形態1に係る波長多重伝送システムの概要を示す図である。 この発明の実施の形態1に係る波長多重伝送システムの構成を示す図である。 この発明の実施の形態2に係る波長多重伝送システムの構成を示す図である。 この発明の実施の形態3に係る波長多重伝送システムの構成を示す図である。 従来のWDM装置の構成を示す概略図である。 従来の波長多重伝送システムのトランスポンダの構成を示す図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係る波長多重伝送システムの概要を示す図である。
 本発明の波長多重伝送システムでは、図1に示すように、各キャリア(光信号)を合分波する機能を、トランスポンダ11内ではなく、外部の光合分波装置2(光合波器21、光分波器22)に備える。これにより、キャリア数の2倍のチューナブルフィルタを用いる構成ではなく、一般的なインターリーバ、AWG(Arrayed-Waveguide Gating)で代替可能となり、簡素で安価なシステムを提供することができる。
 また、実施の形態1では、AWG内部のキャリア間のパワー差による伝送特性の劣化を防ぐために、各キャリアのBERをモニタして当該各キャリアの光出力パワーを最適にする機能を設ける。なお以下では、各キャリアの光出力パワーを最適にする機能は、光合分波装置2に備えられるものとして説明するが、トランスポンダ11内に備えられてもよい。
 次に、上記を実現する波長多重伝送システムについて、図2を参照しながら説明する。
 なお図2では、マルチキャリア数がmの波長多重伝送システムを示している。
 波長多重伝送システムは、図2に示すように、光送受信装置1、光合分波装置2及びBERモニタ装置3から構成されている。
 光送受信装置1は、m個の光送受信機111が内蔵されたトランスポンダ11をn個有し、光信号の送受信を行うものである。なお図1では、1つのトランスポンダ11のみを図示している。各光送受信機111は、互いに異なった波長のレーザ光を発光し、当該レーザ光を変調して送信信号(光信号)を生成して光合分波装置2に送り、また、光合分波装置2からの光信号を受信し、内蔵する受光素子により電気信号に変換するものである。
 この光送受信装置1から出力されるマルチキャリアの光信号数は、m×n本である。また、光送受信装置1の各光送受信機111は、相手のBERに関する情報(受信BER情報)をBERモニタ装置3に送信する機能も有している。
 光合分波装置2は、光送受信装置1の外部に設けられ、各光送受信機111からの光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機111に送るものである。この光合分波装置2は、光合波器21、光分波器22、可変光減衰器(VOA)23及び制御部24から構成されている。
 光合波器21は、各光送受信機111から出力され可変光減衰器14により減衰された光信号を合波するものである。この光合波器21により合波された光信号は外部に送られる。
 光分波器22は、外部からの光信号を分波するものである。この光分波器22により分波された光信号は各光送受信機111に送られる。
 VOA23は、各光送受信機111に対応して設けられ、当該対応する光送受信機111からの光信号を減衰するものである。
 制御部24は、BERモニタ装置3によりモニタされた各光送受信機111のBERの合計が小さくなるようVOA23の減衰量を制御するものである。
 BERモニタ装置3は、光送受信装置1からの受信BER情報に基づいて、各光送受信機111のBERをモニタするものである。
 次に、上記のように構成された波長多重伝送システムによる効果について説明する。
 波長多重伝送システムの光送受信装置1は、m個の光送受信機111を内蔵したトランスポンダ11をn個有しており、当該光送受信装置1からはm×n本のマルチキャリアの光信号が出力される。この光送受信装置1から出力されるm×n本のマルチキャリアは、各キャリアで光送受信機111のばらつきにより光出力パワーが異なる。そして、各キャリアの光出力パワーが異なったまま長距離伝送を行うと、50km程度の間隔で備え付けられた海底中継装置での光出力パワーの増幅が均等に行われない。その結果、キャリア間の出力バランスが崩れ、さらに長距離伝送により発生する非線形ペナルティが大きくなり、伝送特性の劣化を招いてしまう。これらの劣化を抑制するためには、各キャリアの光出力パワーを最適にする必要がある。
 そこで、本発明では、BERモニタ装置3にて各光送受信機111のBERをモニタする。ここで、WDMの多くは双方向通信を行っていることから、各光送受信機111から相手のBERに関する情報を得ることができ、そのBERの値をBERモニタ装置3にてモニタすることが可能である。
 そして、制御部24は、BERモニタ装置3のモニタ結果に応じて各VOA23を制御する。この際、制御部24は、BERモニタ装置3によりモニタされた各光送受信機111のBERの合計が最小となるようにVOA23を制御することで、各キャリアの光出力パワーを最適化することが可能になる。これにより、光出力パワーが最適化された各光信号が光合分波装置2で合波され、1本の光信号として送信されるため、伝送特性の劣化を抑えることができ、長距離伝送が可能となる。
 なお特許文献1には、局内の装置を高速信号化して光ファイバの本数を減らし、距離の長い局間を多重化により低速化することで、局内の装置を簡素化した構成が開示されている。この特許文献1に開示された技術は、本発明と波長多重技術として構成のみ類似している。しかしながら、本発明は、特許文献1に開示された技術に対し、トランスポンダ11のキャリア多重分離機能をトランスポンダ11外で行うという目的に大きな相違点がある。
 以上のように、この実施の形態1によれば、VOA23、制御部24及びBERモニタ装置3を実装し、各キャリアのBERをモニタし、そのBERの合計が小さくなるようVOA23を制御することで、送信側のキャリア間で光出力パワーが異なることにより生じる長距離伝送ペナルティを低減させることができる。また、光合分波装置2を光送受信装置1外に置くことで、従来のキャリア数の2倍のチューナブルフィルタを用いた複雑で高価な構成を、インターリーバ、AWGに置き換えることができ、簡素で安価な構成を実現することができる。
実施の形態2.
 実施の形態1では、AWG内部のキャリア間のパワー差による伝送特性の劣化を防ぐために、各キャリアのBERをモニタし、そのBERの合計が小さくなるようVOA23を制御する機能を備える場合について示した。それに対し、実施の形態2では、キャリア間の偏波を等間隔にずらして非線形ペナルティを抑制するために、各キャリアの偏波を制御する機能を備える場合について示す。
 図3はこの発明の実施の形態2に係る波長多重伝送システムの構成を示す図である。なお図3では、波長多重伝送システムの構成のうち、送信側に関する構成についてのみ図示している。図3に示す実施の形態2に係る波長多重伝送システムは、図2に示す実施の形態1に係る波長多受伝送システムからVOA23、制御部24及びBERモニタ装置3を削除し、光合分波装置2に偏波制御部25を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 偏波制御部25は、各光送受信機111に対応して設けられ、トランスポンダ11毎に各光送受信機111からのm本の光信号の偏波を等間隔(略均一の間隔の意味を含む)でずらすように、当該対応する光送受信機111からの光信号の偏波を制御するものである。
 ここで、トランスポンダ11から出力されるm本のマルチキャリアは、それぞれランダムな偏波状態である。一方、長距離伝送における非線形ペナルティは、偏波あたりの光パワーの大きさに比例して大きくなる。そのため、m本のマルチキャリア間で偏波が一致した場合は、非線形ペナルティが大きくなり伝送特性の劣化を招いてしまう。
 これらの劣化を抑制するためには、各キャリアの偏波をそれぞれ異なる偏波状態にする必要がある。そこで、偏波制御部25を用いて、m本のマルチキャリアの偏波を等間隔にずらす。これにより、非線形ペナルティを抑制することができ、伝送特性の劣化を抑制することができる。
実施の形態3.
 実施の形態1では、AWG内部のキャリア間のパワー差による伝送特性の劣化を防ぐために、各キャリアのBERをモニタし、そのBERの合計が小さくなるようVOA23を制御する機能を備える場合について示した。それに対し、実施の形態3では、キャリア間の変調タイミングをずらして非線形ペナルティを抑制するために、各キャリアの変調タイミングをモニタしてその変調タイミングを制御する機能を備える場合について示す。
 図4はこの発明の実施の形態3に係る波長多重伝送システムの構成を示す図である。なお図4では、波長多重伝送システムの構成のうち、送信側に関する構成についてのみ図示している。図4に示す実施の形態3に係る波長多重伝送システムは、図2に示す実施の形態1に係る波長多受伝送システムからVOA23、制御部24及びBERモニタ装置3を削除し、光合分波装置2にタイミングモニタ部26を追加し、光送受信装置1にタイミング制御部12を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 タイミングモニタ部26は、各トランスポンダ11に対応して設けられ、当該対応するトランスポンダ11の各光送受信機111の変調タイミングをモニタするものである。
 タイミング制御部12は、各トランスポンダ11に対応して設けられ、タイミングモニタ部26によりモニタされた変調タイミングを、当該対応するトランスポンダ11の光送受信機111間でずらすよう制御するものである。
 ここで、トランスポンダ11から出力されるm本のマルチキャリアの変調タイミングは、それぞれランダムである。一方、長距離伝送における非線形ペナルティは、光パワーの大きさに比例して大きくなる。そのので、m本のマルチキャリア間で変調タイミングが一致した場合は、非線形ペナルティが大きくなり伝送特性の劣化を招いてしまう。
 これらの劣化を抑制するためには、各キャリアをそれぞれ異なる変調タイミングにして出力する必要がある。そこで、タイミングモニタ部26を用いて、各キャリアの変調タイミングをモニタし、その結果に応じてタイミング制御部12によりトランスポンダ11の変調タイミングを制御する。そして、m本のマルチキャリアの変調タイミングをずらすことで、非線形ペナルティを抑制することができ、伝送特性の劣化を抑制することができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る波長多重伝送システムは、簡素で安価な構成で、伝送特性の劣化を抑制することができ、複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置を備えた波長多重伝送システム等に用いるのに適している。
 1 光送受信装置、2 光合分波装置、3 BERモニタ装置、11 トランスポンダ、12 タイミング制御部、21 光合波器、22 光分波器、23 可変光減衰器(VOA)、24 制御部、25 偏波制御部、26 タイミングモニタ部、111 光送受信機。

Claims (3)

  1.  複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置と、
     前記各光送受信機のBERをモニタするBERモニタ装置と、
     前記各光送受信機から出力された光信号を減衰する可変光減衰器と、
     前記BERモニタ装置によりモニタされた前記各光送受信機のBERの合計が小さくなるよう前記可変光減衰器の減衰量を制御する制御部と、
     前記可変光減衰器により減衰された各光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機に送る光合分波装置とを備えた
     ことを特徴とする波長多重伝送システム。
  2.  複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置と、
     前記トランスポンダ毎に、前記各光送受信機から出力された光信号の偏波を等間隔でずらすよう制御する偏波制御部と、
     前記偏波制御部により偏波が制御された各光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機に送る光合分波装置とを備えた
     ことを特徴とする波長多重伝送システム。
  3.  複数の光送受信機を内蔵した複数のトランスポンダを有する光送受信装置と、
     前記各光送受信機の変調タイミングをモニタするタイミングモニタ部と、
     前記タイミングモニタ部によりモニタされた変調タイミングを、前記各光送受信機間でずらすよう制御するタイミング制御部と、
     前記各光送受信機から出力された光信号を合波して外部に送り、外部からの光信号を分波して当該各光送受信機に送る光合分波装置とを備えた
     ことを特徴とする波長多重伝送システム。
PCT/JP2014/080771 2013-12-10 2014-11-20 波長多重伝送システム WO2015087681A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480066914.6A CN105830366B (zh) 2013-12-10 2014-11-20 波分复用传输系统
EP14869023.3A EP3082276A4 (en) 2013-12-10 2014-11-20 Wavelength-multiplexed transport system
JP2015552377A JP6072302B2 (ja) 2013-12-10 2014-11-20 波長多重伝送システム
US15/026,646 US20160254862A1 (en) 2013-12-10 2014-11-20 Wavelength multiplexing transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013255123 2013-12-10
JP2013-255123 2013-12-10

Publications (1)

Publication Number Publication Date
WO2015087681A1 true WO2015087681A1 (ja) 2015-06-18

Family

ID=53370995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080771 WO2015087681A1 (ja) 2013-12-10 2014-11-20 波長多重伝送システム

Country Status (5)

Country Link
US (1) US20160254862A1 (ja)
EP (1) EP3082276A4 (ja)
JP (1) JP6072302B2 (ja)
CN (1) CN105830366B (ja)
WO (1) WO2015087681A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163423A (ja) * 2016-03-10 2017-09-14 富士通株式会社 伝送装置および波長設定方法
JP2018042104A (ja) * 2016-09-07 2018-03-15 富士通株式会社 光通信システム
EP3301851B1 (en) * 2016-10-03 2020-12-23 ID Quantique S.A. Apparatus and method for direct quantum cryptography system implementation over wdm telecommunication network
CA3057833C (en) 2017-03-24 2020-04-21 Cable Television Laboratories, Inc. System and methods for coherent pon architecture and burst-mode reception
US10476588B2 (en) * 2018-04-13 2019-11-12 Cisco Technology, Inc. Automatic bandwidth optimization for optical networks

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230759A (ja) 2000-02-17 2001-08-24 Hitachi Ltd 波長多重伝送システム、それに用いる装置
JP2002057624A (ja) * 2000-08-08 2002-02-22 Fujitsu Ltd 波長多重光通信システムおよび波長多重光通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7206517B1 (en) * 2001-03-16 2007-04-17 University Of Southern California (La) Monitoring and in-line compensation of polarization dependent loss for lightwave systems
US20020178417A1 (en) * 2001-05-22 2002-11-28 Jacob John M. Communication channel optimization using forward error correction statistics
FR2832274B1 (fr) * 2001-11-15 2006-08-25 Alcatel Optronics Procede de controle dynamique d'un module optique
JP4010877B2 (ja) * 2002-06-03 2007-11-21 富士通株式会社 光伝送システム
JP3898137B2 (ja) * 2003-03-06 2007-03-28 富士通株式会社 自動出力復帰方法および光通信システム
EP1639730B1 (en) * 2003-06-30 2018-01-10 Fujitsu Limited Optical regenerator in optical fiber communication system
US7522846B1 (en) * 2003-12-23 2009-04-21 Nortel Networks Limited Transmission power optimization apparatus and method
JP4340567B2 (ja) * 2004-03-17 2009-10-07 富士通株式会社 端局装置、光出力パワーの制御方法及び光出力パワー制御プログラム
JP2007097068A (ja) * 2005-09-30 2007-04-12 Fujitsu Ltd 波長分割多重装置
CN101043288B (zh) * 2006-03-20 2011-09-21 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法
WO2008105027A1 (ja) * 2007-02-27 2008-09-04 Fujitsu Limited Wdm伝送装置
US8406637B2 (en) * 2008-05-27 2013-03-26 Xtera Communications, Inc. Automatic pre-emphasis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230759A (ja) 2000-02-17 2001-08-24 Hitachi Ltd 波長多重伝送システム、それに用いる装置
JP2002057624A (ja) * 2000-08-08 2002-02-22 Fujitsu Ltd 波長多重光通信システムおよび波長多重光通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082276A4 *

Also Published As

Publication number Publication date
EP3082276A4 (en) 2017-11-08
JP6072302B2 (ja) 2017-02-01
EP3082276A1 (en) 2016-10-19
CN105830366B (zh) 2018-12-11
US20160254862A1 (en) 2016-09-01
CN105830366A (zh) 2016-08-03
JPWO2015087681A1 (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP7070599B2 (ja) 光送受信器および光送受信方法
US8625996B2 (en) Optical transmitter, optical transmission method, and wavelength-selective variable delayer
JP6299358B2 (ja) 可変的サブキャリア電力レベルを利用する光ネットワークにおけるクロストーク低減
JP6072302B2 (ja) 波長多重伝送システム
EP3605879B1 (en) Optical transmission system
Dong et al. 8$\,\times\, $9.95-Gb/s Ultra-Dense WDM-PON on a 12.5-GHz Grid With Digital Pre-Equalization
JP5414373B2 (ja) 光アクセス網、光通信方法および光加入者装置
Abdulla et al. Asymmetric 160/80 Gbps TWDM PON utilizing dispersion compensation technique
Kawahara et al. First investigation and reduction of inter-WSS crosstalk in multiple-arrayed WSSs for large-scale optical node
US10069589B2 (en) Method and apparatus for increasing a transmission performance of a hybrid wavelength division multiplexing system
Ziaie et al. Adaptive Stokes space based polarization demultiplexing for flexible UDWDM metro-access networks
Al-Qazwini et al. 10-Gbps single-feeder, full-duplex WDM-PON using directly modulated laser and RSOA
US20110044689A1 (en) Method and system for cross-phase-modulation noise reduced transmission in hybrid networks
Asif et al. λ-selection strategy in C+ L band 1-Pbit/s (448 WDM/19-core/128 Gbit/s/channel) flex-grid space division multiplexed transmission
Chandrasekhar et al. 40 Gb/s DBPSK and DQPSK formats for transparent 50 GHz DWDM transmission
Zhang et al. Commercial Open Line System Optimization for High Speed Data Center Optical Transmission
Zhang et al. 1500-km transmission of 100-Gb/s coherent PM-QPSK with 10 cascaded 50-GHz wavelength selective switches
Ahmed et al. Sixteen-Channel 1920 Gbps Full-Duplex Optical Fiber Coherent Communication System Based on Dual Polarization-64 Quadrature Amplitude Modulation for 5G Fronthaul
Garg Energy Efficient & Flexible Gigabit Optical Access Networks...
Rapisarda et al. Impact of Crosstalk in SDM Short-Reach Systems in Presence of Multicarrier Transmission
Ļašuks et al. Investigation of Spectrum-slicedWDM System
LLAH et al. PERFORMANCE LIMITATIONS OF AN OPTICAL PSK HETERODYNE WDM SYSTEM DUE TO RAMAN AMPLIFIER INDUCED CROSSTALK
Sagir et al. 3.52 TBPS hybrid OFDM WDM PON covering 120-km long-reach distance using 4-ary QAM & direct detection technique for beyond NG-PON-2 applications
Hoxha et al. Software defined transceivers for high-speed flexible optical networks
Chowdhury et al. Performance analysis of an optical cross connect at DWDM system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015552377

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014869023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014869023

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15026646

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE