WO2015087642A1 - 溶射装置 - Google Patents
溶射装置 Download PDFInfo
- Publication number
- WO2015087642A1 WO2015087642A1 PCT/JP2014/079583 JP2014079583W WO2015087642A1 WO 2015087642 A1 WO2015087642 A1 WO 2015087642A1 JP 2014079583 W JP2014079583 W JP 2014079583W WO 2015087642 A1 WO2015087642 A1 WO 2015087642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- injection
- raw material
- material powder
- mixture
- thermal spraying
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/26—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with means for mechanically breaking-up or deflecting the jet after discharge, e.g. with fixed deflectors; Breaking-up the discharged liquid or other fluent material by impinging jets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/14—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
- B05B7/1404—Arrangements for supplying particulate material
- B05B7/1477—Arrangements for supplying particulate material means for supplying to several spray apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/14—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
- B05B7/1481—Spray pistols or apparatus for discharging particulate material
- B05B7/1486—Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
- F27D1/1636—Repairing linings by projecting or spraying refractory materials on the lining
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
- F27D1/1678—Increasing the durability of linings; Means for protecting
- F27D1/1684—Increasing the durability of linings; Means for protecting by a special coating applied to the lining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/14—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
- B05B7/1404—Arrangements for supplying particulate material
Definitions
- the present invention relates to a thermal spraying apparatus for forming a refractory composition.
- a thermal spraying apparatus for forming a refractory composition a raw material powder containing a flammable powder (for example, a metal powder) and a refractory powder (a refractory aggregate) is used as a combustion-supporting carrier gas (
- a thermal spraying apparatus that forms a refractory composition by being transported, injected, and ignited and melted by oxygen gas (for example, Patent Document 1).
- carrier gas is guided into an ejector by an ejection nozzle, raw material powder and carrier gas are mixed in the ejector, and the mixed mixture is guided downstream along a flow path, and an injection unit. Describes a technique for injecting a mixture and combusting the injected mixture to form a refractory composition.
- Patent Document 2 describes a technique of performing thermal spraying by inserting a lance from the bottom to the top of the furnace.
- the heap width means the maximum length of the width of the welded portion on the work surface when the raw material powder is sprayed onto the work surface. The larger the heap width, the smaller the amount of welding per unit area of the work surface, so the heap width needs to be small.
- mass injection the injection that achieves smooth construction with a large injection amount of the raw material powder and a small heap width is referred to as mass injection.
- solid-gas ratio the ratio of the raw material powder in the mixture
- a problem to be solved by the present invention is to provide a thermal spraying device capable of preventing the occurrence of ignition when mass injection is performed.
- a thermal spraying apparatus that forms a refractory composition by injecting and burning a mixture of a raw material powder containing a refractory powder and a combustible powder, and a carrier-supporting carrier gas.
- a plurality of dispensing units for dispensing the raw material powder, and each of the dispensing units mixes the raw material powder dispensed from the dispensing unit and the carrier gas to form the mixture, and
- an injection means for injecting the mixture generated by the mixture generation means, and the distance between the centers of the injection ports of these injection means is not less than 1.4 times the inner diameter of the injection port and is 5.3.
- a thermal spraying device that is less than double is provided.
- the injection direction of the injection means is 50 degrees or more and 95 degrees or less with respect to a straight line connecting the centers of the injection ports.
- the solid-gas ratio is increased by providing a plurality of dispensing sections for dispensing the raw material powder, connecting the ejection means to each dispensing section, and optimizing the arrangement of the ejection ports of each ejection means. Mass injection can be performed. Moreover, since it is not necessary to increase the solid-gas ratio, the occurrence of ignition can be prevented.
- FIG. 1 is a conceptual diagram showing an embodiment of the thermal spraying apparatus of the present invention.
- the thermal spraying apparatus shown in the figure has two thermal sprayer main bodies 10, and the spraying means 40 is connected to each thermal sprayer main body 10 via a transport hose 20 and a lance 30.
- Each injection means 40 has an injection port 41. These injection ports 41 are arranged in parallel in the horizontal direction and have the same inner diameter.
- FIG. 2 is a cross-sectional view showing a configuration example of the thermal sprayer main body 10.
- the thermal sprayer main body 10 shown in the figure includes a hopper 11 as a storage means for storing the raw material powder A and an ejector 12 as a mixture generating means.
- the raw material powder A includes combustible powder (for example, metal powder) and refractory powder (refractory aggregate).
- the hopper 11 has a dispensing part 11a for dispensing the raw material powder A at the bottom.
- the ejector 12 sucks the raw material powder A from the dispensing part 11a by the flow of pressurized carrier gas (oxygen gas), and mixes the carrier gas and the raw material powder A to form a mixture.
- pressurized carrier gas oxygen gas
- the ejector 12 includes a container part 12a having an internal space communicating with the dispensing part 11a at the bottom of the hopper 11, a tapered jet nozzle 12b for jetting pressurized carrier gas from the tip to the internal space of the container part 12a, and a container part A discharge conduit 12c is provided which has one end communicating with the internal space of 12a and guides the mixture from the one end to the other end along the flow path. That is, in the internal space of the container portion 12a, the carrier gas is ejected at a high speed from the nozzle hole at the distal end of the tapered ejection nozzle 12b toward one end (base end) of the discharge conduit 12c, whereby the internal space of the container portion 12a is discharged.
- Negative pressure here, pressure lower than atmospheric pressure
- the dispensing part 11a of the hopper 11 communicates with the internal space of the container part 12a via the vertical transfer pipe 11b.
- the ejector 12 sucks the raw material powder A from the dispensing part 11a into the internal space of the container part 12a by the flow of the pressurized carrier gas, and ejects the carrier gas and the raw material powder from the nozzle hole at the tip of the ejection nozzle 12b.
- A is mixed in the internal space of the container portion 12a to form a mixture.
- This mixture is supplied to the conveying hose 20 via the horizontal transfer pipe 13, and further supplied to the injection means 40 via the lance 30 shown in FIG. 1, from the injection port 41 of the injection means 40 toward the work surface B. Be injected.
- the horizontal transfer pipe 13 can be omitted, and the conveyance hose 20 may be directly connected to the outlet side of the ejector 12.
- FIG. 3 is an explanatory diagram showing the positional relationship of the injection ports 41 of the injection means 40.
- the center-to-center distance L of the injection ports 41 is set to 1.4 to 5.3 times the inner diameter D of the injection ports 41. If L exceeds 5.3 times D, the target mass injection cannot be realized. That is, when L exceeds 5.3 times D, the raw material powder injected from each injection port 41 is close to being individually injected onto the work surface, and mass injection cannot be realized.
- L is set to be 1.4 times or more than D due to design restrictions as an actual machine. That is, there is a limit to disposing the injection means 40 close to each other due to the design as an actual machine.
- the inner diameters of the injection ports 41 are basically the same. This is because uniform spraying cannot be performed if the inner diameters of the injection ports 41 are different. However, the inner diameter of each injection port 41 may be slightly different as long as the uniformity of spraying is not impaired. In this case, the inner diameter D used when the distance L between the centers of the injection ports 41 is defined may be an average value of the inner diameters of the injection ports 41.
- the injection ports 41 are arranged in parallel as shown in FIG.
- the parallel direction may be a vertical direction or an oblique direction.
- FIG. 4 is an explanatory view showing the injection direction of the injection means 40.
- the injection direction of the injection means 40 is preferably 50 degrees or more and 95 degrees or less with respect to a straight line connecting the centers of the injection ports 41. That is, it is preferable that the angle ⁇ shown in FIG. 4 is not less than 50 degrees and not more than 95 degrees. This angle ⁇ is not expected to exceed 90 degrees from the point of realizing the mass injection intended by the present invention. However, when design restrictions and manufacturing errors are taken into consideration, the range up to 95 is acceptable.
- the angle ⁇ is preferably set so that the raw material powder injected from each injection port 41 converges on the work surface B at one point.
- R is the distance to the work surface.
- the distance R to the work surface is generally 50 to 200 mm.
- the center-to-center distance L of the injection ports 41 varies depending on the inner diameter D of the injection ports 41, but D is generally equivalent to 10A (12.7 mm) to 15A (16.1 mm).
- two sprayer main bodies 10 are provided, but can be integrated into one sprayer main body 50 as shown in FIG. 5. That is, two discharging parts 51a are provided in a hopper 51 as a storing means for storing the raw material powder A, and an ejector 52 as a mixture generating means is connected to each discharging part 51a.
- the configuration of the ejector 52 may be the same as that of the ejector 12 shown in FIG.
- the mixture generating means is not limited to an ejector.
- the ejector also has an action of sucking the raw material powder from the dispensing unit, but when using a mixture generating unit other than the ejector, a dispensing unit such as a table feeder or a screw feeder can be installed in the dispensing unit.
- a dispensing unit such as a table feeder or a screw feeder can be installed in the dispensing unit.
- a raw material powder (particles of 0.1 mm or less: 20% by mass) composed of silica (SiO 2 ): 85% by mass as a refractory powder and 15% by mass of metal Si as a combustible powder,
- the raw material powder was injected by flowing a carrier gas (oxygen gas) of 0.5 MPa.
- spraying was performed from one spraying means 40 using only one sprayer main body 10 in the spraying apparatus of FIG.
- the injection amount of the raw material powder was 50 kg / h per sprayer main body except for Comparative Example 2, and 100 kg / h in Comparative Example 2.
- Table 1 shows the inner diameter of the injection port 41 of the injection means 40, the center-to-center distance of the injection port 41, the spraying distance (distance R to the work surface described in FIG. 4), and the injection angle (angle ⁇ described in FIG. 4). It is as follows.
- the presence or absence of ignition the presence or absence of sparks in the vicinity of the injection means 40 was visually confirmed. If ignition occurs, the spark travels through the transport hose 20 and the lance 30 and is confirmed near the injection means 40.
- the heap width means the maximum length of the width of the welded portion to the work surface when spraying while moving the spraying means (jet nozzle) in one direction as shown in FIG.
- the heap width of each example was converted into an index with a width of 100. The larger the heap width is, the smaller the amount of welding per unit area of the work surface is. In this test, it was evaluated that the effect of mass injection was not obtained when the heap width exceeded 150 in terms of an index.
- Comparative Example 1 is not an example of mass injection because there is one injection means 40 and the injection amount is 50 kg / h.
- Comparative Example 2 is an example in which the number of injection means 40 is one and the injection amount is increased to 100 / kg, but ignition occurred because of the large solid-gas ratio.
- Comparative Example 3 is an example in which the distance between the centers of the injection ports 41 is too large, and the heap width is 180, and the effect of mass injection cannot be obtained.
- Comparative Example 4 is an example in which the injection angle is 44 degrees smaller than 50 degrees. In this case, before reaching the construction surface B, the injected raw material powder collides with each other and scatters. For this reason, the heap width was 210, and the effect of mass injection was not obtained.
- the thermal spraying technology of the present invention is a combustible combustor such as a coke oven, converter, melting furnace, AOD furnace, ladle, tundish, vacuum degassing furnace, kneading car, electric furnace, incinerator, induction furnace, heating furnace, glass furnace, etc. It can be used in industrial kilns and the like in which a conductive metal powder-containing thermal spray is used.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Nozzles (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
本発明は大量噴射を行う場合において、発火の発生を防止できる溶射装置を提供する。本発明の溶射装置では、原料紛体を払い出す払出部を複数設け、それぞれの払出部に、当該払出部から払い出された原料粉体と前記キャリアガスとを混合し前記混合物とする混合物生成手段と、当該混合物生成手段により生成された前記混合物を噴射する噴射手段40とを接続し、これらの噴射手段40の噴射口41の中心間距離を噴射口41の内径の1.4倍以上5.3倍以下とした。
Description
本発明は、耐火組成物を形成するための溶射装置に関する。
従来、耐火組成物を形成するための溶射装置として、可燃性粉体(例えば、金属粉末)と耐火性粉体(耐火性骨材)とを含む原料粉体を、支燃性のキャリアガス(酸素ガス)によって搬送し噴射して着火溶融することで耐火組成物を形成する溶射装置が知られている(例えば、特許文献1)。
具体的に特許文献1には、キャリアガスを噴出ノズルによりエジェクター内に導き、エジェクター内で原料粉体とキャリアガスとを混合し、混合した混合物を流路に沿って下流側に導き、噴射手段により混合物を噴射し、噴射した混合物を燃焼させて耐火組成物を形成する技術が記載されている。
また、その他の溶射技術として、フレームガンニング法(火炎溶射法)により耐火物内張を補修する技術が知られている(例えば、特許文献2参照)。具体的に特許文献2には、炉の下方から上方に向かってランスを挿入して溶射を行う技術が記載されている。
このような溶射技術においては、目的とする耐火組成物を効率的かつ迅速に形成するために、耐火組成物の元になる原料紛体の噴射量を多く噴射することが必要である。また、原料粉体を多く噴射する際、被施工面におけるヒープ幅は小さく、噴射された原料粉体を被施工面へ平滑に施工する必要がある。ここで、ヒープ幅とは、原料粉体を被施工面に溶射したときにおける被施工面への溶着部の幅の最大長のことをいう。ヒープ幅が大きいほど被施工面の単位面積当たりの溶着量が少なくなるので、ヒープ幅は小さい必要がある。
以下、本明細書では、原料粉体の噴射量が多く、ヒープ幅が小さく、平滑な施工を実現する噴射を大量噴射という。大量噴射を行うには、混合物中の原料紛体の割合(以下「固気比」という。)を大きくすることが有効である。しかし、固気比を大きくすると原料粉体同士が摩擦する頻度が高くなり、発火を生じる危険性が高くなる。
以下、本明細書では、原料粉体の噴射量が多く、ヒープ幅が小さく、平滑な施工を実現する噴射を大量噴射という。大量噴射を行うには、混合物中の原料紛体の割合(以下「固気比」という。)を大きくすることが有効である。しかし、固気比を大きくすると原料粉体同士が摩擦する頻度が高くなり、発火を生じる危険性が高くなる。
そこで本発明が解決しようとする課題は、大量噴射を行う場合において、発火の発生を防止できる溶射装置を提供することにある。
本発明の一観点によれば、耐火性粉体及び可燃性粉体を含む原料粉体と、支燃性のキャリアガスとを混合した混合物を噴射し燃焼させて耐火組成物を形成する溶射装置であって、前記原料紛体を払い出す払出部を複数有し、それぞれの払出部に、当該払出部から払い出された原料粉体と前記キャリアガスとを混合し前記混合物とする混合物生成手段と、当該混合物生成手段により生成された前記混合物を噴射する噴射手段とを接続してなり、これらの噴射手段の噴射口の中心間距離が、前記噴射口の内径の1.4倍以上5.3倍以下である溶射装置が提供される。
本発明において前記噴射手段の噴射方向は、前記噴射口の中心間を結ぶ直線に対して50度以上95度以下であることが好ましい。
本発明によれば、原料紛体を払い出す払出部を複数設け、各払出部に噴射手段を接続し、かつ各噴射手段の噴射口の配置を適正化したことで、固気比を大きくすることなく大量噴射を行うことができる。また、固気比を大きくする必要がないので、発火の発生を防止できる。
図1は、本発明の溶射装置の一実施形態を示す概念図である。同図の溶射装置は、2台の溶射機本体10を有し、各溶射機本体10に、搬送ホース20及びランス30を介して噴射手段40が接続されている。各噴射手段40は噴射口41を有する。これらの噴射口41は水平方向に並列して配置され、その内径は同一である。
図2は、溶射機本体10の構成例を示す断面図である。同図に示す溶射機本体10は、原料粉体Aを貯蔵する貯蔵手段としてのホッパー11と、混合物生成手段としてのエジェクター12とを備える。
原料粉体Aは、可燃性粉体(例えば、金属粉末)と耐火性粉体(耐火性骨材)とを含んでなる。ホッパー11は、その底部に原料粉体Aを払い出す払出部11aを有する。エジェクター12は、加圧されたキャリアガス(酸素ガス)の流れにより払出部11aから原料粉体Aを吸入し、キャリアガスと原料粉体Aとを混合し混合物とする。
エジェクター12は、ホッパー11底部の払出部11aに連通する内部空間を有する容器部12aと、加圧されたキャリアガスを先端から容器部12aの内部空間に噴出する先細りの噴出ノズル12bと、容器部12aの内部空間に一端が連通し前記混合物を流路に沿って前記一端から他端へ導く吐出導管12cとを備える。すなわち、容器部12aの内部空間において、キャリアガスは、先細りの噴出ノズル12b先端のノズル孔から吐出導管12cの一端(基端)に向けて高速で噴出し、それによって容器部12aの内部空間を負圧(ここでは大気圧よりも低い圧力)にする。一方、容器部12aの内部空間には垂直移送管11bを介してホッパー11の払出部11aが連通している。このためエジェクター12は、加圧されたキャリアガスの流れにより払出部11aから原料粉体Aを容器部12aの内部空間に吸入し、噴出ノズル12b先端のノズル孔から噴出するキャリアガスと原料粉体Aとが容器部12aの内部空間にて混合され混合物となる。
この混合物が水平移送管13を介して搬送ホース20に供給され、更に図1に示したランス30を介して噴射手段40に供給され、噴射手段40の噴射口41から被施工面Bに向けて噴射される。なお、水平移送管13は省略することができ、エジェクター12の出側に搬送ホース20を直接接続してもよい。
図3は、噴射手段40の噴射口41の位置関係を示す説明図である。本発明において、噴射口41の中心間距離Lは、噴射口41の内径Dの1.4倍以上5.3倍以下に設定する。LがDの5.3倍を超えると目的とする大量噴射を実現できない。すなわち、LがDの5.3倍を超えると、各噴射口41から噴射される原料紛体が被施工面に対して個別に噴射されるのに近い状態となり、大量噴射を実現できない。一方、実機としての設計上の制約から、LはDの1.4倍以上とする。すなわち、実機としての設計上、噴射手段40を近接して配置することには限界がある。
本発明において各噴射口41の内径は同一であることが基本である。各噴射口41の内径が異なると均一な溶射が行えないからである。ただし、溶射の均一性が損なわれない程度であれば、各噴射口41の内径は若干異なっていてもよい。この場合、噴射口41の中心間距離Lを規定するときに使用する内径Dは、各噴射口41の内径の平均値とすればよい。
同様に溶射の均一性を確保する点から、各噴射口41は図3に示したように並列配置することが基本である。ただし、その並列の方向は鉛直方向や斜め方向であってもよい。
図4は、噴射手段40の噴射方向を示す説明図である。本発明において、噴射手段40の噴射方向は、噴射口41の中心間を結ぶ直線に対して50度以上95度以下であることが好ましい。すなわち、図4に示す角度θが50度以上95度以下であることが好ましい。この角度θは、本発明が目的とする大量噴射を実現する点から90度を超えることは想定されない。ただし、設計上の制約及び製作上の誤差を考慮すると、95までは許容範囲である。
また、本発明が目的とする大量噴射を実現する点から、角度θは、各噴射口41から噴射された原料紛体が被施工面B上において一点に集束するように設定することが好ましい。このための条件は、被施工面までの距離をRとすると、下記式(1)で表される。
R=0.5L・tanθ …(1)
R=0.5L・tanθ …(1)
ここで、被施工面までの距離Rは一般的に50~200mmである。また、噴射口41の中心間距離Lは、噴射口41の内径Dによって変わるが、Dは一般的に10A相当(12.7mm)ないし15A相当(16.1mm)である。この場合、噴射口41の中心間距離Lの最大値は16.1×5.3=85.3mmとなり、被施工面までの距離Rを最小の50mmとすると、角度θは上記式(1)より50度となる。このことから、角度θは50度以上であることが好ましい。
なお、図1の実施形態では溶射機本体10を2台設けたが、図5に示すように1台の溶射機本体50に統合することができる。すなわち、原料粉体Aを貯蔵する貯蔵手段としてのホッパー51に2個の払出部51aを設け、それぞれの払出部51aに混合物生成手段としてのエジェクター52を接続する。エジェクター52の構成は図2に示したエジェクター12と同一でよい。ただし、本発明において混合物生成手段はエジェクターには限定されない。エジェクターは払出部から原料粉末を吸引する作用も有するが、エジェクター以外の混合物生成手段を使用するときは、払出部にテーブルフィーダやスクリューフィーダ等の払出手段を設置することもできる。
図1の溶射装置にて試験を行い、発火の有無を確認するとともに施工体の平滑性及びヒープ幅を評価した。その結果を表1に示す。
試験では、耐火性粉体としてシリカ(SiO2):85質量%と可燃性粉体として金属Si:15質量%とからなる原料粉体(0.1mm以下の粒子:20質量%)を用い、0.5MPaのキャリアガス(酸素ガス)を流すことで原料粉体を噴射した。なお、比較例1及び比較例2では、図1の溶射装置において一方の溶射機本体10のみを使用して1個の噴射手段40から噴射した。
原料紛体の噴射量は、比較例2を除き溶射機本体1台あたり50kg/hとし、比較例2は100kg/hとした。噴射手段40の噴射口41の内径、噴射口41の中心間距離、溶射距離(図4で説明した被施工面までの距離R)、及び噴射角度(図4で説明した角度θ)は表1のとおりである。
発火の有無については、噴射手段40付近で火花発生の有無を目視で確認した。発火が発生すれば、その火花が搬送ホース20及びランス30内を進み、噴射手段40付近で確認される。
施工体の平滑性については、施工体の凹凸の大きさが3mm以下であると優良(◎)、3mm超5mm以下であると良(○)と評価した。
ヒープ幅とは、図6に示すように噴射手段(噴射ノズル)を一方向に移動しながら溶射したときの被施工面への溶着部の幅の最大長のことをいい、比較例1のヒープ幅を100として、各例のヒープ幅を指数換算した。このヒープ幅が大きいほど被施工面の単位面積あたりの溶着量が少ないということであり、本試験ではヒープ幅が指数換算値で150を超えると大量噴射の効果が得られていないと評価した。
表1に示すとおり、本発明の範囲内にある実施例1~8は、いずれも発火は確認されず、平滑性も良好であった。また、ヒープ幅は150未満であり、大量噴射の効果も得られた。
比較例1は、噴射手段40が1個、噴射量が50kg/hであり、大量噴射の例ではない。比較例2は、噴射手段40が1個で、噴射量を100/kgに増加させた例であるが、固気比が大きいため発火が生じた。
比較例3は、噴射口41の中心間距離が大きすぎる例であり、ヒープ幅が180となり大量噴射の効果が得られなかった。比較例4は、噴射角度が50度よりも小さい44度の例である。この場合、被施工面Bに到達する前に、噴射された原料粉体が互いに衝突して飛散する。このため、ヒープ幅は210となり大量噴射の効果が得られなかった。
本発明の溶射技術は、コークス炉、転炉、溶解炉、AOD炉、取鍋、タンデッシュ、真空脱ガス炉、混銑車、電気炉、焼却炉、誘導炉、加熱炉、ガラス炉などの工可燃性金属粉体含有溶射が使用される工業窯炉等に利用可能である。
10 溶射機本体
11 ホッパー
11a 払出部
11b 垂直移送管
12 エジェクター(混合物生成手段)
12a 容器部
12b 噴出ノズル
12c 吐出導管
13 水平移送管
20 搬送ホース
30 ランス
40 噴射手段
41 噴射口
50 溶射機本体
51 ホッパー
52 エジェクター
A 原料紛体
B 被施工面
11 ホッパー
11a 払出部
11b 垂直移送管
12 エジェクター(混合物生成手段)
12a 容器部
12b 噴出ノズル
12c 吐出導管
13 水平移送管
20 搬送ホース
30 ランス
40 噴射手段
41 噴射口
50 溶射機本体
51 ホッパー
52 エジェクター
A 原料紛体
B 被施工面
Claims (2)
- 耐火性粉体及び可燃性粉体を含む原料粉体と、支燃性のキャリアガスとを混合した混合物を噴射し燃焼させて耐火組成物を形成する溶射装置であって、
前記原料紛体を払い出す払出部を複数有し、
それぞれの払出部に、当該払出部から払い出された原料粉体と前記キャリアガスとを混合し前記混合物とする混合物生成手段と、当該混合物生成手段により生成された前記混合物を噴射する噴射手段とを接続してなり、
これらの噴射手段の噴射口の中心間距離が、前記噴射口の内径の1.4倍以上5.3倍以下である溶射装置。 - 前記噴射手段の噴射方向が、前記噴射口の中心間を結ぶ直線に対して50度以上95度以下である請求項1に記載の溶射装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201480056851.6A CN105637109A (zh) | 2013-12-11 | 2014-11-07 | 热喷涂装置 |
KR1020167005488A KR20160038042A (ko) | 2013-12-11 | 2014-11-07 | 용사 장치 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013256191A JP5767689B2 (ja) | 2013-12-11 | 2013-12-11 | 溶射装置 |
JP2013-256191 | 2013-12-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015087642A1 true WO2015087642A1 (ja) | 2015-06-18 |
Family
ID=53370957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/079583 WO2015087642A1 (ja) | 2013-12-11 | 2014-11-07 | 溶射装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5767689B2 (ja) |
KR (1) | KR20160038042A (ja) |
CN (1) | CN105637109A (ja) |
WO (1) | WO2015087642A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6429317B2 (ja) * | 2013-12-25 | 2018-11-28 | Jfeスチール株式会社 | 炉壁の溶射補修方法 |
JP6560802B1 (ja) * | 2018-10-12 | 2019-08-14 | 黒崎播磨株式会社 | 溶射方法 |
JP6619901B1 (ja) * | 2019-05-21 | 2019-12-11 | 黒崎播磨株式会社 | 溶射方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820183B2 (ja) * | 1985-01-26 | 1996-03-04 | グラヴルベル | 耐火体成形方法および粒状発熱性酸化材料溶射用ランス |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4269867A (en) * | 1979-09-04 | 1981-05-26 | Texasgulf Inc. | Metallizing of a corrodible metal with a protective metal |
BE883848A (nl) * | 1980-06-17 | 1980-10-16 | Smeets Gerardus J L | Spuitstuk |
JPH09248497A (ja) * | 1996-01-12 | 1997-09-22 | Sumitomo Metal Ind Ltd | 耐火物溶射方法および装置 |
JP2000345312A (ja) * | 1999-06-08 | 2000-12-12 | Nippon Steel Hardfacing Co Ltd | パネル化されたボイラーチューブ外周面連続溶射方法およびその溶射装置 |
BRPI0212785B1 (pt) * | 2001-10-17 | 2015-10-27 | Krosakiharima Corp | método de aplicar um material refratário monolítico a um recipiente para metais em fusão |
-
2013
- 2013-12-11 JP JP2013256191A patent/JP5767689B2/ja active Active
-
2014
- 2014-11-07 CN CN201480056851.6A patent/CN105637109A/zh active Pending
- 2014-11-07 KR KR1020167005488A patent/KR20160038042A/ko not_active Application Discontinuation
- 2014-11-07 WO PCT/JP2014/079583 patent/WO2015087642A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0820183B2 (ja) * | 1985-01-26 | 1996-03-04 | グラヴルベル | 耐火体成形方法および粒状発熱性酸化材料溶射用ランス |
Also Published As
Publication number | Publication date |
---|---|
CN105637109A (zh) | 2016-06-01 |
JP5767689B2 (ja) | 2015-08-19 |
KR20160038042A (ko) | 2016-04-06 |
JP2015113490A (ja) | 2015-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013027450A1 (ja) | 溶射装置、溶射方法及び溶射材料 | |
TWI666407B (zh) | 氣體燃料燃燒器、及氣體燃料燃燒器的加熱方法 | |
WO2013027451A1 (ja) | 溶射装置 | |
JP5767689B2 (ja) | 溶射装置 | |
JP6560802B1 (ja) | 溶射方法 | |
JP2007275816A (ja) | 溶射装置 | |
JP3189729B2 (ja) | 耐火物補修用溶射装置及び耐火物の溶射による補修法 | |
JP2019203169A (ja) | 精錬用ランス、精錬用ランス装置、及びrh型精錬装置 | |
JP6429317B2 (ja) | 炉壁の溶射補修方法 | |
KR20190027916A (ko) | 전기로용 조연 버너 | |
JP6882877B2 (ja) | 溶射装置 | |
JP4915905B2 (ja) | 溶射装置 | |
JP3171530U (ja) | 溶射装置 | |
WO2020235493A1 (ja) | 溶射方法 | |
JPH09248497A (ja) | 耐火物溶射方法および装置 | |
TWI691677B (zh) | 氧氣燃燒器及氧氣燃燒器之運轉方法 | |
JP2014124583A (ja) | 粉粒体輸送装置及び粉粒体輸送方法 | |
JP2007284707A (ja) | 溶射方法 | |
JP3173312U (ja) | 溶射装置 | |
KR20100020604A (ko) | 내화재 스프레이 설비의 워터 노즐 | |
JP2004294042A (ja) | 加熱炉用の燃焼装置 | |
JP7182743B1 (ja) | 吹付装置及び吹付材料 | |
JP4427469B2 (ja) | 高炉微粉炭吹込み用バーナー及びこれを用いた微粉炭吹込み方法 | |
JP3232272U (ja) | 溶射装置 | |
CN103561889A (zh) | 燃烧装置及熔融金属容器的浇道洗净方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14868880 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167005488 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14868880 Country of ref document: EP Kind code of ref document: A1 |