WO2015086449A1 - Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai - Google Patents

Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai Download PDF

Info

Publication number
WO2015086449A1
WO2015086449A1 PCT/EP2014/076696 EP2014076696W WO2015086449A1 WO 2015086449 A1 WO2015086449 A1 WO 2015086449A1 EP 2014076696 W EP2014076696 W EP 2014076696W WO 2015086449 A1 WO2015086449 A1 WO 2015086449A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
tread
tire according
carbon fibers
layer
Prior art date
Application number
PCT/EP2014/076696
Other languages
English (en)
Inventor
Vincent Abad
Guillaume Hennebert
Original Assignee
Compagnie Generale Des Etablissements Michelin
Michelin Recherche Et Technique S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Compagnie Generale Des Etablissements Michelin, Michelin Recherche Et Technique S.A. filed Critical Compagnie Generale Des Etablissements Michelin
Priority to EP14808612.7A priority Critical patent/EP3094505B1/fr
Priority to US15/103,766 priority patent/US20160311258A1/en
Priority to CN201480067295.2A priority patent/CN105813858B/zh
Priority to JP2016538804A priority patent/JP2017500403A/ja
Publication of WO2015086449A1 publication Critical patent/WO2015086449A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/04Ingredients characterised by their shape and organic or inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2021/00Use of unspecified rubbers as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0038Plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/14Anti-skid inserts, e.g. vulcanised into the tread band
    • B60C2011/145Discontinuous fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur

Definitions

  • a tire comprising a tread made of a rubber composition comprising carbon fibers ex-fib.
  • the field of the present invention is that of tires, in particular treads for tires.
  • a particularly sought after performance of tires is wear.
  • the tread which is in contact with the running ground is the part of the tire which is primarily subject to the phenomenon of wear.
  • rubber-based materials reinforced with relatively thin fillers are typically used. These relatively thin reinforcing fillers are most often objects of small size, that is to say submicron. Conversely, the use of coarser objects of the order of one micron generally has the effect of reducing the wear resistance of the tread.
  • the manufacture of a tire requires a step of baking the tire which makes it possible to crosslink, in particular to vulcanize, the rubbery components of the tire.
  • This baking step is decisive for the performance of the tire. Indeed, the degree of crosslinking will determine the properties of the rubbery components.
  • One solution to this problem is to make certain rubbery components of the tire conductive thermally, for example by introducing into the compositions of the rubbery components of the tire thermally conductive objects.
  • the thermally conductive objects for example, carbon nanotubes, silicon carbide fibers and carbon fibers may be mentioned.
  • a first object of the invention is a tire comprising a tread which comprises a rubber composition based on at least:
  • z being the normal direction at the surface of the tread intended to be in contact with a rolling ground
  • x and y being two directions orthogonal to z, x the circumferential direction of the tire, y the axial direction relative to the tread; rotation axis of the tire,
  • Another object of the invention is a method of manufacturing the tire according to the invention.
  • the subject of the invention is also a layer consisting of the same rubber composition as the tread of the tire according to the invention, which layer has thermal diffusivity ratios C'z '/ C'x' and C'z '/ Cy' greater than 2,
  • Cx, C'y 'and Cz' being the thermal diffusivities measured at 25 ° C of the layer in the baked state in the directions x ', y' and z 'respectively,
  • x ', y' and z ' being directions orthogonal to each other, z' being the preferred direction of the carbon fibers.
  • the invention also relates to a method for manufacturing the layer according to the invention.
  • the subject of the invention is also a tread or a tread portion of a tire, which tread or tread portion consists of the juxtaposition of layers according to the invention assembled along their faces perpendicular to the tread.
  • the direction x ', x' being the direction orthogonal to the mean plane of each layer (y'z ') defined by the directions y' and z ', the direction z' coinciding with the radial direction of the tire.
  • any range of values designated by the expression “between a and b” represents the range of values greater than “a” and less than “b” (i.e., terminals a and b excluded). while any range of values designated by the term “from a to b” means the range of values from “a” to "b” (i.e. including the strict limits a and b).
  • composition-based in the present description a composition comprising the mixture and / or the reaction product in situ of the various constituents used, some of these basic constituents (for example the elastomer, the filler or other additive conventionally used in a rubber composition intended for the manufacture of tire) being capable of, or intended to react with one another, at least in part, during the different phases of manufacture of the composition intended for the manufacture of a tire .
  • Z is defined as being the normal direction on the surface of the tread intended to be in contact with a rolling ground, x and y being two directions orthogonal to z, x the circumferential direction of the tire, y the axial direction by relative to the axis of rotation of the tire.
  • Cx, Cy and Cz are the thermal diffusivities of the tread in the baked state in the x, y and z directions, respectively. They are measured at 25 ° C according to ASTM E 1641.
  • the ratios of the thermal diffusivities measured at 25 ° C. Cz / Cx and Cz / Cy are greater than 2, preferably greater than 3, more preferably greater than or equal to 4. These ratio values characterize a certain thermal anisotropy of the band. due to a preferential orientation of the carbon fibers in the direction normal to the surface of the tread.
  • the elastomeric matrix may consist of one or more elastomers which differ from each other by their macrostructure or their microstructure.
  • the elastomeric matrix preferably comprises a diene elastomer.
  • iene elastomer or indistinctly rubber
  • one or more elastomers consisting at least in part (ie, a homopolymer or a copolymer) of monomeric diene units (monomers carrying two carbon double bonds) must be understood in known manner. -carbon, conjugated or not).
  • diene elastomers can be classified into two categories: “essentially unsaturated” or “essentially saturated”. In general, we mean “essentially unsaturated”, a diene elastomer derived at least in part from conjugated diene monomers, having a level of units or units of diene origin (conjugated dienes) which is greater than 15% (mol%); Diene elastomers such as butyl rubbers or copolymers of dienes and alpha-olefins of the EPDM type do not fall within the above definition and may in particular be described as “substantially saturated” diene elastomers (diene origin ratio).
  • the term “highly unsaturated” diene elastomer is understood to mean a diene elastomer having a proportion of diene units (conjugated dienes). which is greater than 50%.
  • iene elastomer may be understood more particularly to be used in the compositions according to the invention: (a) - any homopolymer of a conjugated diene monomer, especially any homopolymer obtained by polymerization of a diene monomer conjugate having from 4 to 12 carbon atoms;
  • diene elastomer any type of diene elastomer
  • the person skilled in the tire art will understand that the present invention is preferably implemented with essentially unsaturated diene elastomers, in particular of the type (a) or (b). ) above.
  • copolymers of type (b) contain from 20 to 99% by weight of diene units and from 1 to 80% by weight of vinylaromatic units.
  • conjugated dienes 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-di (C 1 -C 5 alkyl) -1,3-butadienes, such as for example 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2- methyl-3-isopropyl-1,3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene.
  • 2,3-dimethyl-1,3-butadiene 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 2- methyl-3-isopropyl-1,3-butadiene, aryl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene.
  • Suitable vinylaromatic compounds are, for example, styrene, ortho-, meta-, para-methylstyrene, alpha-methylstyrene, the "vinyl-toluene" commercial mixture, para-tert-butylstyrene, methoxystyrenes, chlorostyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene.
  • the diene elastomer is a substantially unsaturated elastomer selected from the group consisting of polybutadienes, polyisoprenes, butadiene copolymers, isoprene copolymers, and mixtures of these elastomers.
  • diene elastomer is particularly suitable polybutadiene (BR), a copolymer of butadiene and styrene (SBR), a natural rubber (NR) or a synthetic polyisoprene (IR) preferably having a molar ratio of cis-1 , 4 greater than 90% or mixtures thereof.
  • reinforcing filler may be used any type of so-called reinforcing filler known for its ability to reinforce a rubber composition that can be used for the manufacture of tires, for example an organic filler such as carbon black, a reinforcing inorganic filler such as silica to which is associated in a known manner a coupling agent, or a mixture of these two types of filler.
  • an organic filler such as carbon black
  • a reinforcing inorganic filler such as silica to which is associated in a known manner a coupling agent, or a mixture of these two types of filler.
  • Such a reinforcing filler typically consists of nanoparticles whose average size (in mass) is less than one micrometer, generally less than 500 nm, most often between 20 and 200 nm, in particular and more preferably between 20 and 150 nm.
  • Suitable carbon blacks are all carbon blacks, especially blacks conventionally used in tires or their treads (so-called pneumatic grade blacks). Among the latter, there will be mentioned more particularly the reinforcing carbon blacks of the series 100, 200, 300, or the series blacks 500, 600 or 700 (ASTM grades), such as, for example, the blacks N115, N134, N234, N326, N330. , N339, N347, N375, N550, N683, N772). These carbon blacks can be used in the isolated state, as commercially available, or in any other form, for example as a carrier for some of the rubber additives used.
  • Reinforcing inorganic filler means any inorganic or mineral filler, irrespective of its color and origin (natural or synthetic), also called “white” filler, “clear” filler or even “non-black” filler. "as opposed to carbon black, capable of reinforcing on its own, without any other means than a intermediate coupling, a rubber composition intended for the manufacture of pneumatic tires, in other words able to replace, in its reinforcing function, a conventional carbon black of pneumatic grade; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • Suitable reinforcing inorganic fillers are in particular mineral fillers of the siliceous type, preferentially silica (SiO 2 ).
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface both less than 450 m 2 / g, preferably from 30 to 400 m 2 / g, in particular between 60 and 300 m 2 / g-A of highly dispersible precipitated silicas (called “HDS”), there may be mentioned for example the silicas “Ultrasil” 7000 and “Ultrasil” 7005 from the company Degussa, silicas “Zeosil” 1165 MP, 1135MP and 1115MP from Rhodia, the "Hi-Sil” silica EZ150G from PPG, the "Zeopol” silicas 8715, 8745 and 8755 from Huber, high surface
  • the BET surface area is determined in a known manner by gas adsorption using the Brunauer-Emmett-Teller method described in "The Journal of the American Chemical Society” Vol. 60, page 309, February 1938, specifically according to the French standard NF ISO 9277 of December 1996 (multipoint volumetric method (5 points) - gas: nitrogen - degassing: time at 160 ° C - relative pressure range p / po: 0.05 at 0.17).
  • the CTAB specific surface is the external surface determined according to the French standard NF T 45-007 of November 1987 (method B).
  • reinforcing inorganic filler is present indifferent, whether in the form of powder, microbeads, granules or beads.
  • reinforcing inorganic filler is also understood to mean mixtures of different reinforcing inorganic fillers, in particular of highly dispersible silicas as described above.
  • the reinforcing filler may comprise a carbon black, an inorganic filler or a mixture thereof, the inorganic filler preferably being a silica.
  • the inorganic filler preferably a silica
  • the carbon black is preferably used at a level of less than 20 phr, more preferably less than 10 phr (for example between 0.5 and 20 phr, in particular between 2 and 20 phr). and 10 phr). In the ranges indicated, it benefits from the coloring properties (black pigmentation agent) and anti-UV carbon blacks, without otherwise penalizing the typical performance provided by the reinforcing inorganic filler.
  • the total reinforcing filler content is preferably between 30 and 180 phr, more preferably between 40 phr and 160 phr. Within 30 phr, the reinforcement of the rubber composition may be insufficient to provide an adequate level of cohesion or wear resistance of the rubber component of the tire comprising this composition. Beyond 180 phr, there is a risk of increasing the hysteresis and therefore the rolling resistance of the tires. Even more preferably, the total reinforcing filler content is at least 50 phr and at most 160 phr.
  • the total reinforcing filler content varies in a range from 80 phr to 140 phr, especially in a composition intended for a tire tread for tourism. Any of these total reinforcing charge ratio ranges apply to any of the embodiments of the invention.
  • an at least bifunctional coupling agent (or bonding agent) is used in a well-known manner to ensure a sufficient chemical and / or physical connection between the inorganic filler (surface of its particles) and the diene elastomer.
  • organosilanes or at least bifunctional polyorganosiloxanes are used.
  • polysulfide silanes, called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • polysulphide silanes having the general formula (V) are not suitable for limiting the definition below.
  • x is an integer of 2 to 8 (preferably 2 to 5);
  • the symbols A which are identical or different, represent a divalent hydrocarbon group (preferably an alkylene Ci-Ci 8 or an arylene group C 6 -Ci2, particularly alkylene Ci-Ci 0, in particular Ci-C 4 , especially propylene);
  • radicals R 1 substituted or unsubstituted, identical or different, represent an alkyl group Ci-8 cycloalkyl, C 5 -C 8 aryl or C 6 -C 8 (preferably alkyl groups -C 6 , cyclohexyl or phenyl, especially C 1 -C 4 alkyl groups, more particularly methyl and / or ethyl).
  • radicals R 2 substituted or unsubstituted, identical or different, represent an alkoxy group or Ci-Ci 8 cycloalkoxy, C 5 -C 8 (preferably a group selected from alkoxyls and C 8 cycloalkoxyls C 5 -C 8 , more preferably still a group selected from alkoxyls in CC 4 , in particular methoxyl and ethoxyl).
  • the average value of "x" is a fractional number preferably of between 2 and 5, more preferably close to 4.
  • polysulphurized silanes mention may be made more particularly of bis (C 1 -C 4 ) alkoxy-C 1 -C 4 alkylsilyl-C 1 -C 4 alkyl (especially disulfide, trisulphide or tetrasulfide) polysulfides.
  • TESPT bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • TESPD bis (3-triethoxysilylpropyl) tetrasulfide
  • coupling agent other than polysulfurized alkoxysilane there may be mentioned in particular bifunctional POSS (polyorganosiloxanes) or hydroxysilane polysulfides as described in patent applications WO 02/30939 (or US Pat. No. 6,774,255), WO 02 / 31041 (or US 2004/051210) or silanes or POSS carrying azo-dicarbonyl functional groups, as described for example in patent applications WO 2006/125532, WO 2006/125533, WO 2006/125534.
  • the content of coupling agent is advantageously less than 20 phr, it being understood that it is generally desirable to use as little as possible.
  • the level of coupling agent is from 0.5% to 15% by weight relative to the amount of inorganic filler. Its content is preferably between 0.5 and 15 phr, more preferably in a range of from 3 to 13 phr. This level is easily adjusted by those skilled in the art according to the level of inorganic filler used in the composition.
  • the rubber composition comprises a plasticizer.
  • a plasticizer is meant one or more plasticizers.
  • the plasticizer may be a liquid plasticizer, a resin or a mixture thereof.
  • resin is hereby reserved, by definition known to those skilled in the art, to a compound that is solid at room temperature (23 ° C), as opposed to a liquid plasticizer such as an oil.
  • Hydrocarbon resins are polymers well known to those skilled in the art, essentially based on carbon and hydrogen but may include other types of atoms, used in particular as plasticizers or tackifying agents in polymeric matrices. They are inherently miscible (ie, compatible) with the levels used with the polymer compositions for which they are intended, so as to act as true diluents. They have been described for example in the book entitled "Hydrocarbon Resins" by R. Mildenberg, M. Zander and G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9) whose chapter 5 is devoted to their applications, in particular in pneumatic rubber (5.5 Rubber Tires and Mechanical Goods).
  • They may be aliphatic, cycloaliphatic, aromatic, hydrogenated aromatic, of the type aliphatic / aromatic that is to say based on aliphatic and / or aromatic monomers. They may be natural or synthetic, whether or not based on petroleum (if so, also known as petroleum resins). Their Tg is preferably greater than 0 ° C., especially greater than 20 ° C. (most often between 30 ° C. and 95 ° C.).
  • these hydrocarbon resins can also be described as thermoplastic resins in that they soften by heating and can thus be molded. They can also be defined by a point or softening point (in English, "softening point”).
  • the softening temperature of a hydrocarbon resin is generally about 40 to 60 ° C. higher than its Tg value.
  • the softening point is measured according to ISO 4625 ("Ring and Bail” method).
  • the macrostructure (Mw, Mn and Ip) is determined by size exclusion chromatography (SEC) as indicated below.
  • the SEC analysis for example, consists in separating the macromolecules in solution according to their size through columns filled with a porous gel; the molecules are separated according to their hydrodynamic volume, the larger ones being eluted first.
  • the sample to be analyzed is simply solubilized beforehand in a suitable solvent, tetrahydrofuran at a concentration of 1 g / liter. Then the solution is filtered on a 0.45 ⁇ porosity filter before injection into the apparatus.
  • the apparatus used is for example a "Waters alliance" chromatographic chain according to the following conditions:
  • differential refractometer for example “WATERS 2410”
  • operating software for example “Waters Millenium”
  • a Moore calibration is conducted with a series of low Ip (less than 1.2) polystyrene commercial standards of known molar masses covering the field of masses to be analyzed.
  • the hydrocarbon resin has at least one, more preferably all of the following characteristics:
  • Tg greater than 25 ° C (in particular between 30 ° C and 100 ° C), more preferably greater than 30 ° C (in particular between 30 C and 95 ° C);
  • a softening point greater than 50 ° C (in particular between 50 ° C and 150 ° C);
  • M n a number-average molar mass (M n) of between 400 and 2000 g / mol, preferably between 500 and 1500 g / mol;
  • hydrocarbon resins By way of examples of such hydrocarbon resins, mention may be made of those selected from the group consisting of cyclopentadiene homopolymer or copolymer resins (abbreviated to CPD), dicyclopentadiene homopolymer or copolymer resins (DCPDs). terpene homopolymer or copolymer resins, homopolymer or C5 cut copolymer resins, homopolymer or C9 cut copolymer resins, alpha-methyl-styrene homopolymer or copolymer resins and blends. of these resins.
  • CPD cyclopentadiene homopolymer or copolymer resins
  • DCPDs dicyclopentadiene homopolymer or copolymer resins
  • terpene homopolymer or copolymer resins homopolymer or C5 cut copolymer resins
  • homopolymer or C9 cut copolymer resins homopolymer or C9 cut
  • copolymer resins examples include (D) CPD / vinylaromatic copolymer resins, (D) CPD / terpene copolymer resins, terpene phenol copolymer resins. , copolymer resins (D) CPD / C5 cut, copolymer resins (D) CPD / C9 cut, terpene / vinylaromatic copolymer resins, terpene / phenol copolymer resins, C5 / vinylaromatic cut copolymer resins, and mixtures of these resins.
  • pene includes, in a known manner, the alpha-pinene, beta- pinene and limonene monomers; preferably, a limonene monomer is used which is in a known manner in the form of three possible isomers: L-limonene (laevorotatory enantiomer), D-limonene (dextrorotatory enantiomer), or the dipentene, racemic of the dextrorotatory and levorotatory enantiomers. .
  • Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ortho-methylstyrene, meta-methylstyrene, para-methylstyrene, vinyl-toluene, para-tertiarybutylstyrene, methoxystyrenes, chlorostyrenes, hydroxystyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene, any vinylaromatic monomer derived from a C 9 (or more generally from a C 8 to Ci 0).
  • the resins selected from the group consisting of homopolymer resins (D) CPD, copolymer resins (D) CPD / styrene, polylimonene resins, limonene / styrene copolymer resins, resins of limonene / D copolymer (CPD), C5 / styrene cut copolymer resins, C5 / C9 cut copolymer resins, and mixtures of these resins.
  • D homopolymer resins
  • D copolymer resins
  • D copolymer resins
  • polylimonene resins limonene / styrene copolymer resins
  • resins of limonene / D copolymer (CPD) resins of limonene / D copolymer
  • C5 / styrene cut copolymer resins C5 / C9 cut copolymer resins
  • these plasticizers or these oils are liquids (that is to say, as a reminder, substances having the capacity to eventually take on the shape of their container) , in contrast in particular to hydrocarbon plasticizing resins which are inherently solid at room temperature.
  • Liquid plasticizers selected from the group consisting of liquid diene polymers, polyolefin oils, naphthenic oils, paraffinic oils, DAE oils, M ES (Medium Extracted Solvates) oils, TDAE (Treated Distillate Aromatic) oils are particularly suitable. Extracts), Residual Aromatic Extract oils (RAE), Treated Residual Aromatic Extract (TREE) oils and Safety Residual Aromatic Extract oils (SRAE), mineral oils, vegetable oils, ether plasticizers, ester plasticizers, phosphatic plasticizers, sulphonate plasticizers and mixtures of these compounds. According to a more preferred embodiment, the liquid plasticizer is selected from the group consisting of M ES oils, TDAE oils, naphthenic oils, vegetable oils and mixtures of these oils.
  • the level of plasticizer, ie liquid plasticizer or resin or their mixture, in the rubber composition can vary widely depending on the amount of reinforcing filler and carbon fibers ex-bile introduced into the rubber composition, but also for example depending on the viscosity of the elastomeric matrix and the desired raw and baked stiffness levels of the rubber composition.
  • the amount of plasticizer is determined according to a chosen dilution ratio. The rate of dilution the ratio of the mass of the plasticizer to the sum of the masses of the plasticizer and the elastomeric matrix.
  • the amount of plasticizer in the rubber composition is adjusted so as to achieve a dilution ratio greater than 0.35.
  • the dilution ratio is preferably between 0.35 and 0.60, more preferably between 0.35 and 0.55. Due to the anisotropy of the tread of the tire caused by a preferential orientation of the carbon fibers in the direction normal to the surface of the tread, the tread of the tire according to the invention has different rigidities in the x, y, z directions. The dilution ratio makes it possible to adjust these rigidities in order to reach a compromise between these rigidities. The optimization of this compromise optimizes in turn the operation of the tire.
  • the ex-pitch carbon fibers are derived from pitches (pitch, for example coal pitches or petroleum pitches) and can be prepared according to the following process: the pitches are in a first step converted into fibrillar precursors by first melt spinning step, these fibrillary precursors are then generally thermally stabilized by a first heat treatment under an oxidizing atmosphere (100 ° C-400 ° C) before undergoing treatment at higher temperatures under an inert atmosphere carbonization (1000-1600 ° C) and graphitization (2500 ° C-3000 ° C).
  • oxidizing atmosphere 100 ° C-400 ° C
  • carbonization 1000-1600 ° C
  • graphitization 2500 ° C-3000 ° C
  • Exbricated carbon fibers are objects generally characterized by a fiber diameter of at least one micron. Their diameter may vary from 1 ⁇ to 50 ⁇ , preferably from 3 ⁇ to 20 ⁇ , more preferably from 5 ⁇ to 15 ⁇ . These preferred ranges of diameter of the carbon fibers ex brai apply to any of the embodiments of the invention.
  • the carbon fibers may have a length that varies widely.
  • the choice of length lengths of carbon fiber ex-fib is generally limited to the products offered by the suppliers. Those skilled in the art also understand that the length of the carbon fibers ex-fib is limited by the dimensions of the mixing equipment used to mix the various ingredients of the rubber composition, since it must be able to introduce them into the mixing tools.
  • the ex-bile carbon fibers having a number average length ranging from about 100 microns to a few millimeters are suitable, for example example of 50 ⁇ to 30 mm or 50 ⁇ to 3 mm.
  • Carbon fibers of length preferably varying from 50 ⁇ to 500 ⁇ , more preferably from 50 ⁇ to 250 ⁇ , are used. These preferred length ranges of carbon fibers ex-pitch apply to any of the embodiments of the invention. Chopped fibers are typically used, or milled fibers.
  • the average length of the carbon fibers ex-fib is determined according to the method described in paragraph 11.1.3, more precisely from the second operation described in subparagraph ii).
  • the mechanical action can cut the carbon fibers ex-fib into a length shorter than their original length, i.e. say the length they had before mixing.
  • the average length by number of the carbon fibers ex-fib in the rubber composition may range from 50 ⁇ to 250 ⁇ .
  • the volume fraction of the carbon fibers ex-fib in the rubber composition varies in a range from 1 to 15%. Preferably this volume fraction varies in a range from 3 to 12%.
  • the volume fraction of the carbon fibers ex-fib is defined as the ratio of the volume of the carbon fibers ex-fib on the volume of all the constituents of the rubber composition, it being understood that the volume of all the constituents is calculated by adding the volume of each of the constituents of the rubber composition. Below 1%, it is found that the rubber composition is insufficiently conductive to substantially reduce the cooking time of the tire.
  • the wear performance of the tire can be penalized as well as the adhesion performance of the tire due to too high rigidity of the rubber composition that makes up the tread.
  • the preferential range of 3 to 12% makes it possible to further optimize the compromise thermal conductivity of the tread.
  • the amount of carbon fibers ex-fibered in the rubber composition is determined by its volume fraction and thus depends on the amount of the other components of the rubber composition, including the amount of plasticizer in the rubber composition.
  • the amount of plasticizer for adjusting the stiffness of the rubber composition and its processability, the amount of carbon fiber ex-fib is adjusted according to the volume fraction of carbon fibers ex pitch in the rubber composition and according to the target stiffness and viscosity of the rubber composition. For a dilution ratio ranging from 0.35 to 0.60, the The amount of carbon fiber may vary from 4 to 160 phr, depending on the volume fraction of the carbon fiber used in the rubber composition, especially for volume fractions ranging from 1 to 15%.
  • the amount of carbon fibers ex-fib in the rubber composition can vary from 4 to 100 phr.
  • the amount of carbon fibers ex-fib in the rubber composition can vary from 7 to 160 phr.
  • the rubber composition in accordance with the invention may also comprise all or part of the usual additives normally used in elastomer compositions intended to constitute external mixtures of finished articles of rubber such as tires, in particular treads, pigments, protective agents such as anti-ozone waxes, chemical antiozonants, anti-oxidants, anti-fatigue agents, a crosslinking system, vulcanization accelerators or retarders, vulcanization activators.
  • the crosslinking system is preferably based on sulfur, but it may also be based on sulfur donors, peroxide, bismaleimides or their mixtures.
  • the mixing of the constituents of the rubber composition can be carried out as traditionally in appropriate mixers, using two successive preparation phases well known to those skilled in the art: a first phase of work or thermomechanical mixing (so-called “non-productive phase” At high temperature, up to a maximum temperature of between 130 ° C. and 200 ° C., followed by a second mechanical working phase (“productive" phase) to a lower temperature, typically less than 110 ° C. ° C, for example between 40 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system.
  • a first phase of work or thermomechanical mixing At high temperature, up to a maximum temperature of between 130 ° C. and 200 ° C.
  • a second mechanical working phase (“productive” phase) to a lower temperature, typically less than 110 ° C. ° C, for example between 40 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system.
  • the tread of the tire according to the invention may be prepared according to a method which comprises the following steps:
  • calender the mixture to form a layer having a mean plane (y'z ') defined by two directions y' and z 'orthogonal to each other, z' being the direction of the calendering, so as to orient the carbon fibers ex brai in the direction of the calendering, then cut the layer in identical portions according to a section plane perpendicular to the direction z ',
  • a layer is meant a more or less uniform extent of the composition, the thickness of which is small relative to the superficial extent.
  • a layer has a mean pla n (y'z ') defined by two directions y' and z 'orthogonal. We define x 'as the direction orthogonal to the mean plane (y'z').
  • the tread may be laid radially on the outside. of the crown reinforcement of the tire so that the carbon fibers ex preferably are oriented radially relative to the axis of rotation of the tire.
  • the thickness of the layer is adjusted during the calendering step so as to obtain the orientation of the carbon fibers in the direction of the calendering.
  • the orientation of the carbon fibers ex-fibi in the layer may be carried out typically after homogenization of the vulcanization system by passing several times the mixture in a calender still in the same direction.
  • the tread of the tire according to the invention may be prepared according to the method described above by replacing the cutting and assembly step by zigzag folding of the layer, as described, for example, in the US Pat. 6666247.
  • the tread of the tire according to the invention consists solely of the rubber composition described according to any one of the embodiments of the invention.
  • the layer another object of the invention, has the essential feature of being made of the same rubber composition as the tread of the tire according to the invention.
  • the layer according to the invention also has the essential characteristic of having thermal diffusivity ratios C'z '/ C'x' and C'z '/ C'y' greater than 2,
  • C'x, C'y 'and C'z' being the thermal diffusivities measured at 25 ° C of the layer in the baked state in the directions x ', y' and z 'respectively,
  • x ', y' and z ' being directions orthogonal to each other, z' being the preferred direction of the carbon fibers.
  • the thermal diffusivity ratios C'z '/ C'x' and C'z '/ C'y' are preferentially greater than 3, more preferably greater than or equal to 4. These preferential ratios apply to the layer consisting of a composition defined according to any one of the embodiments of the invention.
  • y 'and z' define the mean plane of the layer, x 'is the direction orthogonal to the mean plane (y'z'). This embodiment is illustrated in FIG.
  • the layer according to the invention is used as a tread element of a tire.
  • the tread or a tread portion is constituted by the juxtaposition of layers according to the invention assembled along their faces perpendicular to the direction x ', x' being the direction orthogonal to the mean plane of each layer (y'z ') defined by the directions y' and z ', the direction z' coinciding with the radial direction of the tire '.
  • x ' preferably coincides with the circumferential direction of the tire.
  • the layer may be prepared by a method which comprises the following steps:
  • the wear resistance of each tire was determined by means of a relative wear index which is a function of the remaining rubber height, after rolling on a severe circuit for wear which is very rough and whose coating is characterized by micro-roughness, at an average speed of 77 km / h and until the wear reaches the wear indicators arranged in the grooves of the treads.
  • This relative wear index was obtained by comparing the remaining tread height of the tread studied with the remaining tread height of the control tread, which by definition has a wear index of 100. 11.1. 2 Thermal diffusivity:
  • Thermal diffusivity is determined according to ASTM E 1641 at 25 ° C.
  • the thermal diffusivity of the CA or CB layer is expressed in base 100 with respect to the CT layer taken as a control. The higher the value is greater than 100, the more the plate is conductive in the direction considered.
  • the thermal anisotropy of the layer is expressed by the ratio C'z '/ C'x' and C'z '/ C'y', knowing that the direction z 'is the direction normal to a surface of the layer and corresponds in the sense of calendering.
  • the number average length of the carbon fibers in the rubber composition is determined according to the method described below.
  • the dimensions are measured according to the procedure described hereinafter in several steps.
  • the object consisting of the rubber composition after compounding the constituents of the rubber composition and after vulcanization is called the mixture.
  • the first step is to extract the carbon fibers from the mixture by operating as follows:
  • the mixture is then pyrolyzed under an inert atmosphere (N 2) at 550 ° C., so as to eliminate the organic materials by cracking: polymers, sulfur network, accelerators, residual plasticizers, etc.
  • the residue obtained then contains the carbon fibers, the carbon black and inorganic products initially present in the mixture (such as silica) or possibly formed during the pyrolysis.
  • the second step consists in preparing the sample to be placed in the scanning electron microscope (SEM) by operating as follows:
  • the carbon fibers are thus recovered on a sample holder comprising a carbon adhesive. It is also possible to directly stamp the aluminum sample holder supported by carbon adhesive on the extracted fibers.
  • the third step is to determine the dimensions of the carbon fibers:
  • compositions T, A and B are described in Table I.
  • compositions A and B both contain carbon fibers at a volume fraction of 10%. They differ in that the composition A contains carbon fibers ex PAN (polyacrylonitrile), the composition B contains ex-bile carbon fibers.
  • Composition T differs from compositions A and B in that it does not contain carbon fibers.
  • compositions A, B and T are identical (0.4).
  • compositions are prepared by thermomaxing the constituents of the composition according to the following procedure:
  • compositions are prepared in the following manner: an internal mixer (final filling ratio: approximately 70% by volume) is introduced, the initial vessel temperature of which is approximately 80 ° C., the elastomer, the reinforcing filler, the coupling agent, the plasticizers, the carbon fibers and the various other ingredients with the exception of the vulcanization system.
  • an internal mixer final filling ratio: approximately 70% by volume
  • the initial vessel temperature is approximately 80 ° C.
  • the elastomer the reinforcing filler
  • the coupling agent the plasticizers
  • carbon fibers the various other ingredients with the exception of the vulcanization system.
  • thermomechanical non-productive phase
  • the mixture thus obtained is recovered, cooled and the sulfur and the sulfenamide accelerator are incorporated on a mixer (homo-finisher) at 23 ° C., mixing the whole (productive phase) for a suitable time (for example between 5 ° C.). and 12 min).
  • This operation of homogenization of the vulcanization system consists of passing the mixture twelve times between the rolls, changing each time the direction of introduction (the mixture is recovered under the rolls, folded and reintroduced between the cylinders by changing the direction of the passage)
  • compositions A and B after homogenization of the vulcanization system, twelve additional passages are carried out without changing the direction of introduction of the mixture, in order to orient the carbon fibers (within the mixing sheet) in the direction of the calendering.
  • the CT, CA and CB layers constituted respectively of the compositions T, A and B are cut in the form of a test-tube and then vulcanized.
  • the dimensioning of a layer to the size of a specimen of 2.5 mm thickness is achieved by gradually reducing the thickness of the layer. passing the mixture in a calender keeping the direction imposed during the orientation of the carbon fibers on the homo-finisher.
  • Compositions A, B and T are used respectively as CA, CB and CT layers to form treads of a tire.
  • the layers are laid radially outside the crown reinforcement of the tire so that the carbon fibers are preferably oriented in the radial direction with respect to the axis of rotation of the tire.
  • the treads are produced according to the method described above which implements cutting and assembly steps. 11.3- Results
  • the average length in number of the carbon fibers in the rubber composition is 172 ⁇ and 100 ⁇ respectively for the CA and CB layers.
  • the C'z '/ C'x' and C'z '/ C'y' ratios of the CA and CB layers demonstrate their thermal anisotropy as well as the preferential orientation of the carbon fibers in the calendering direction.
  • the value C'z '/ C'x' and C'z '/ C'y' being equal to 1 for the CT layer, it is verified that the CT layer is isotropic.
  • the CB layer is the material that has both the best thermal diffusivity and the strongest thermal anisotropy compared to the CA layer. Wear:
  • the CA layer By using the CA layer, it was observed very quickly very important material tearing in block form, the wear test becoming unquantifiable. This very rapid and very significant deterioration shows that the CA layer used as tread of a tire is practically not resistant to wear.
  • the tread comprising the CB layer according to the invention has a certain wear resistance (index at 80), albeit a little behind the tread comprising the CT layer.
  • the tire according to the invention offers a better compromise thermal conductivity wear than the tire not according to the invention comprising carbon fibers ex PAN. Furthermore, the tire according to the invention has a compromise between improved thermal conductivity and wear relative to the control tire which does not comprise carbon fibers. The improvement of this compromise also makes it possible to improve the compromise between the productivity of the baking step in the manufacture of the tire and the wear performance of the tire.
  • Ex-pitch carbon fiber "XN-100" from Nippon Graphite Fiber Corporation;
  • Oleic sunflower oil (Lubrirob TOD 1880 from Novance);
  • Zinc oxide (industrial grade - Umicore company);

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un pneumatique comportant une bande de roulement qui comprend une composition de caoutchouc à base d'au moins une matrice élastomère, une charge renforçante, de fibres de carbone ex brai, z étant la direction normale à la surface de la bande de roulement destinée à être en contact avec un sol de roulage, x et y étant deux directions orthogonales à z, x la direction circonférentielle du pneumatique, y la direction axiale par rapport à l'axe de rotation du pneumatique, Cx, Cy et Cz étant les diffusivités thermiques mesurées à 25°C de la bande de roulement à l'état cuit dans respectivement les directions x, y et z, lequel pneumatique présente des rapports de diffusivité thermique Cz/Cx et Cz/Cy supérieurs à 2. Un tel pneumatique présente un compromis amélioré entre la productivité de l'étape de cuisson dans la confection du pneumatique et la performance d'usure du pneumatique.

Description

Pneumatique comportant une bande de roulement à base d'une composition de caoutchouc comprenant des fibres de carbone ex brai.
Le domaine de la présente invention est celui des pneumatiques, en pa rticulier des bandes de roulement pour pneumatique.
Une performance particulièrement recherchée des pneumatiques est l'usure. La bande de roulement qui est au contact même du sol de roulage est la partie du pneumatique qui est au premier chef soumise au phénomène d'usure. Pour améliorer la résistance à l'usure des bandes de roulement, on utilise typiquement des matériaux à base de caoutchouc renforcé par des charges relativement fines. Ces charges renforçantes relativement fines sont le plus souvent des objets de dimension faible, c'est à dire submicronique. A l'inverse l'utilisation d'objets plus grossiers de l'ordre du micron a généralement pour effet de réduire la résistance à l'usure de la bande de roulement.
La fabrication d'un pneumatique requiert une étape de cuisson du pneumatique qui permet de réticuler, notamment de vulcaniser, les composants caoutchouteux du pneumatique. Cette étape de cuisson est déterminante pour les performances du pneumatique. En effet le degré de réticulation va déterminer les propriétés des composants caoutchouteux. Pour rechercher des gains en productivité dans la fabrication des pneumatiques, il est d'intérêt de pouvoir réduire le temps de cette étape de cuisson sans affecter le degré de réticulation souhaité des composants caoutchouteux du pneumatique. Une solution à ce problème est de rendre certains composants caoutchouteux du pneumatique conducteurs thermiquement, par exemple en introduisant dans les compositions des composants caoutchouteux du pneumatique des objets conducteurs thermiquement. Parmi les objets conducteurs thermiquement on peut par exemple citer les nanotubes de carbone, les fibres de carbure de silicium, les fibres de carbone. Les fibres de carbone ont cependant l'inconvénient d'être des objets grossiers, notamment de l'ordre du micron. Pa r conséquent leur utilisation da ns une composition de caoutchouc pour bande de roulement a le plus souvent pour conséquence de réduire très fortement la résistance à l'usure de la bande de roulement. Les Demanderesses ont découvert que l'utilisation de fibres de carbone spécifiques orientées de façon spécifique da ns une bande de roulement d'un pneumatique permet d'offrir un compromis amélioré entre la conductivité thermique et la résistance à l'usure de la bande de roulement, sans pénaliser sensiblement par ailleurs les autres performances comme par exemple l'adhérence du pneumatique. Ainsi un premier objet de l'invention est un pneumatique comportant une bande de roulement qui comprend une composition de caoutchouc à base d'au moins :
une matrice élastomère,
une charge renforçante,
- de fibres de carbone ex brai,
facultativement un plastifiant,
z étant la direction normale à la surface de la bande de roulement destinée à être en contact avec un sol de roulage, x et y étant deux directions orthogonales à z, x la direction circonférentielle du pneumatique, y la direction axiale par rapport à l'axe de rotation du pneumatique,
Cx, Cy et Cz étant les diffusivités thermiques mesurées à 25°C de la bande de roulement à l'état cuit dans respectivement les directions x, y et z,
lequel pneumatique présente des rapports de diffusivité thermique Cz/Cx et Cz/Cy supérieurs à 2.
Un autre objet de l'invention est un procédé de fabrication du pneumatique conforme à l'invention.
L'invention a également pour objet une couche constituée de la même composition de caoutchouc que la bande de roulement du pneumatique conforme à l'invention, laquelle couche présente des rapports de diffusivité thermique C'z'/C'x' et C'z'/Cy' supérieurs à 2,
Cx, C'y' et Cz' étant les diffusivités thermiques mesurées à 25°C de la couche à l'état cuit dans respectivement les directions x', y'et z',
x', y'et z' étant des directions orthogonales entre elles, z' étant la direction préférentielle des fibres de carbone.
L'invention a aussi pour objet un procédé pour fabriquer la couche conforme à l'invention.
L'invention a aussi pour objet une bande de roulement ou une portion de bande de roulement d'un pneumatique, laquelle bande de roulement ou portion bande de roulement est constituée par la juxtaposition de couches conformes à l'invention assemblées selon leurs faces perpendiculaires à la direction x', x' étant la direction orthogonale au plan moyen de chaque couche (y'z') défini par les directions y' et z', la direction z' coïncidant avec la direction radiale du pneumatique.
I- DESCRIPTION DETAILLEE DE L'INVENTION
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse. L'abréviation "pce" signifie parties en poids pour cent parties de la matrice élastomère de la composition de caoutchouc, la matrice élastomère consistant en la totalité des élastomères présents dans la composition de caoutchouc.
D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs supérieur à "a" et inférieur à "b" (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de "a" jusqu'à "b" (c'est-à-dire incluant les bornes strictes a et b).
Par l'expression composition "à base de", il faut entendre dans la présente description une composition comportant le mélange et/ou le produit de réaction in situ des différents constituants utilisés, certains de ces constituants de base (par exemple l'élastomère, la charge ou autre additif classiquement utilisé dans une composition de caoutchouc destinée à la fabrication de pneumatique) étant susceptibles de, ou destinés à réagir entre eux, au moins en partie, lors des différentes phases de fabrication de la composition destinée à la fabrication de pneumatique.
On définit z comme étant la direction normale à la surface de la bande de roulement destinée à être en contact avec un sol de roulage, x et y comme étant deux directions orthogonales à z, x la direction circonférentielle du pneumatique, y la direction axiale par rapport à l'axe de rotation du pneumatique. Cx, Cy et Cz sont les diffusivités thermiques de la bande de roulement à l'état cuit dans respectivement les directions x, y et z. Elles sont mesurées à 25°C selon la norme ASTM E 1641.
Les rapports des diffusivités thermiques mesurées à 25°C Cz/Cx et Cz/Cy sont supérieurs à 2, de préférence supérieurs à 3, de manière plus préférentielle supérieurs ou égaux à 4. Ces valeurs de rapports caractérisent une certaine anisotropie thermique de la bande de roulement causée par une orientation préférentielle des fibres de carbone ex brai dans la direction normale à la surface de la bande de roulement. La matrice élastomère peut être constituée d'un ou plusieurs élastomères qui se différencient des uns des autres par leur macrostructure ou leur microstructure. La matrice élastomère comprend de préférence un élastomère diénique.
Par élastomère (ou indistinctement caoutchouc) "diénique", doit être compris de manière connue un (ou plusieurs) élastomère constitué au moins en partie (i.e., un homopolymère ou un copolymère) d'unités monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Ces élastomères diéniques peuvent être classés dans deux catégories : "essentiellement insaturés" ou "essentiellement saturés". On entend en général par "essentiellement insaturé", un élastomère diénique issu au moins en partie de monomères diènes conjugués, aya nt un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles) ; c'est ainsi que des élastomères diéniques tels que les caoutchoucs butyle ou les copolymères de diènes et d'a lpha-oléfines type EPDM n'entrent pas dans la définition précédente et peuvent être notamment qualifiés d'élastomères diéniques "essentiellement saturés" (taux de motifs d'origine diénique faible ou très faible, toujours inférieur à 15%). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%.
Ces définitions étant données, on entend plus particulièrement par élastomère diénique susceptible d'être utilisé dans les compositions conformes à l'invention : (a) - tout homopolymère d'un monomère diène conjugué, notamment tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant de 4 à 12 atomes de carbone;
(b) - tout copolymère obtenu pa r copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinyle a romatique ayant de 8 à 20 atomes de carbone;
(c) - un copolymère ternaire obtenu par copolymérisation d'éthylène, d'une a-oléfine aya nt de 3 à 6 atomes de ca rbone avec un monomère diène non conjugué ayant de 6 à 12 atomes de carbone, comme par exemple les élastomères obtenus à partir d'éthylène, de propylène avec un monomère diène non conjugué du type précité tel que notamment l'hexadiène-1,4, l'éthylidène norbornène, le dicyclopentadiène;
(d) - un copolymère d'isobutène et d'isoprène (caoutchouc butyle), ainsi que les versions halogénées, en particulier chlorées ou bromées, de ce type de copolymère.
Bien qu'elle s'applique à tout type d'élastomère diénique, l'homme du métier du pneumatique comprendra que la présente invention est de préférence mise en œuvre avec des élastomères diéniques essentiellement insaturés, en particulier du type (a) ou (b) ci- dessus.
Dans le cas de copolymères du type (b), ceux-ci contiennent de 20 à 99% en poids d'unités diéniques et de 1 à 80% en poids d'unités vinylaromatique.
A titre de diènes conjugués conviennent notamment le butadiène-1,3, le 2-méthyl-l,3- butadiène, les 2,3-di(alkyle en Ci-C5)-l,3-butadiènes tels que par exemple le 2,3-diméthyl- 1,3-butadiène, le 2,3-diéthyl-l,3-butadiène, le 2-méthyl-3-éthyl-l,3-butadiène, le 2- méthyl-3-isopropyl-l,3-butadiène, un aryl-l,3-butadiène, le 1,3-pentadiène, le 2,4- hexadiène.
A titre de composés vinylaromatiques conviennent par exemple le styrène, l'ortho-, méta-, para-méthylstyrène, l'alpha-méthylstyrène, le mélange commercial "vinyle-toluène", le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène.
Préférentiellement, l'élastomère diénique est un élastomère essentiellement insaturé choisi dans le groupe constitué par les polybutadiènes, les polyisoprènes, les copolymères de butadiène, les copolymères d'isoprène, et les mélanges de ces élastomères. A titre d'élastomère diénique convient tout particulièrement un polybutadiène (BR), un copolymère de butadiène et de styrène (SBR), un caoutchouc naturel (NR) ou un polyisoprène de synthèse (IR) présentant préférentiellement un taux molaire de liaison cis- 1,4 supérieur à 90% ou leurs mélanges.
A titre de charge renforçante peut être utilisée tout type de charge dite renforçante, connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques, par exemple une charge organique telle que du noir de carbone, une charge inorganique renforçante telle que de la silice à laquelle est associé de manière connue un agent de couplage, ou encore un mélange de ces deux types de charge.
Une telle charge renforçante consiste typiquement en des nanoparticules dont la taille moyenne (en masse) est inférieure au micromètre, généralement inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et plus préférentiellement comprise entre 20 et 150 nm.
Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs conventionnellement utilisés dans les pneumatiques ou leurs bandes de roulement (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200, 300, ou les noirs de série 500, 600 ou 700 (grades ASTM), comme par exemple les noirs N115, N134, N234, N326, N330, N339, N347, N375, N550, N683, N772). Ces noirs de carbone peuvent être utilisés à l'état isolé, tels que disponibles commercialement, ou sous tout autre forme, par exemple comme support de certains des additifs de caoutchouterie utilisés.
Par "charge inorganique renforçante", doit être entendu ici toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche", charge "claire" ou même charge "non-noire" par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de bandages pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (-OH) à sa surface.
Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceuse, préférentiellement la silice (Si02). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, de préférence de 30 à 400 m2/g, notamment entre 60 et 300 m2/g- A titres de silices précipitées hautement dispersibles (dites "HDS"), on citera par exemple les silices « Ultrasil » 7000 et « Ultrasil » 7005 de la société Degussa, les silices « Zeosil » 1165 M P, 1135MP et 1115MP de la société Rhodia, la silice « Hi-Sil » EZ150G de la société PPG, les silices « Zeopol » 8715, 8745 et 8755 de la Société Huber, les silices à haute surface spécifique telles que décrites dans la demande WO 03/016387.
Dans le présent exposé, la surface spécifique BET est déterminée de manière connue par adsorption de gaz à l'aide de la méthode de Brunauer-Emmett-Teller décrite dans "The Journal of the American Chemical Society" Vol. 60, page 309, février 1938, plus précisément selon la norme française NF ISO 9277 de décembre 1996 (méthode volumétrique multipoints (5 points) - gaz: azote - dégazage: lheure à 160°C - domaine de pression relative p/po : 0.05 à 0.17). La surface spécifique CTAB est la surface externe déterminée selon la norme française NF T 45-007 de novembre 1987 (méthode B).
L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, ou encore de billes. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de silices hautement dispersibles telles que décrites ci-dessus.
L'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique telle que du noir de carbone, dès lors que cette charge renforçante serait recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre la charge et l'élastomère. A titre d'exemple, on peut citer par exemple des noirs de carbone pour pneumatiques tels que décrits par exemple dans les documents brevet WO 96/37547, WO 99/28380. La charge renforçante peut comprendre un noir de carbone, une charge inorganique ou leur mélange, la charge inorganique étant de préférence une silice. Selon un mode de réalisation particulier de l'invention, la charge inorganique, préférentiellement une silice, représente plus de 50% en masse de la charge renforçante de la composition de caoutchouc. On dit alors que la charge inorganique renforçante est majoritaire. Lorsqu'il est combiné à une charge inorganique renforçante majoritaire telle que la silice, le noir de carbone est utilisé de préférence à un taux inférieur à 20 pce, plus préférentiellement inférieur à 10 pce (par exemple entre 0.5 et 20 pce, notamment entre 2 et 10 pce). Dans les intervalles indiqués, on bénéficie des propriétés colorantes (agent de pigmentation noire) et anti-UV des noirs de carbone, sans pénaliser par ailleurs les performances typiques apportées par la charge inorganique renforçante.
L'homme du métier sait ajuster le taux de charge renforçante totale dans la composition de caoutchouc en fonction de l'application visée de la composition de caoutchouc et en fonction de la quantité de plastifiant dans la composition de caoutchouc pour pouvoir réaliser la mise en œuvre de la composition de caoutchouc (en anglais « processability »). Par conséquent pour une gamme de taux de plastifiant, l'homme du métier adapte le taux de charge renforçante.
Le taux de charge renforçante total est compris préférentiellement entre 30 et 180 pce, plus préférentiellement entre 40 pce et 160 pce. En deçà de 30 pce, le renforcement de la composition de caoutchouc peut être insuffisant pour apporter un niveau de cohésion ou de résistance à l'usure adéquats du composant caoutchouteux du pneumatique comprenant cette composition. Au-delà de 180 pce, il existe un risque d'augmentation de l'hystérèse et donc de la résistance au roulement des pneumatiques. De manière encore plus préférentielle, le taux de charge renforçante totale est d'au moins 50 pce et au plus 160 pce. Avantageusement, le taux de charge renforçante totale varie dans un domaine allant de 80 pce à 140 pce, notamment dans une composition destinée à une bande de roulement pour pneumatique tourisme. L'une quelconque de ces plages de taux de charge renforçante totale s'applique à l'un quelconque des modes de réalisation de l'invention.
Pour coupler la charge inorganique renforçante à l'élastomère diénique, on utilise de manière bien connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère diénique. On utilise en particulier des organosilanes ou des polyorganosiloxanes au moins bifonctionnels. On utilise notamment des silanes polysulfurés, dits "symétriques" ou "asymétriques" selon leur structure particulière, tels que décrits par exemple dans les demandes WO03/002648 (ou US 2005/016651) et WO03/002649 (ou US 2005/016650).
Conviennent en particulier, sans que la définition ci-après soit limitative, des silanes polysulfurés répondant à la formule générale (V)
Z - A - Sx - A - Z (V)
dans laquelle :
- x est un entier de 2 à 8 (de préférence de 2 à 5) ;
- les symboles A, identiques ou différents, représentent un radical hydrocarboné divalent (de préférence un groupement alkylène en Ci-Ci8 ou un groupement arylène en C6-Ci2, plus particulièrement un alkylène en Ci-Ci0, notamment en Ci-C4, en particulier le propylène) ;
- les symboles Z, identiques ou différents, répondent à l'une des trois formules ci- après:
R1 R1 R2
— Si— R1 ; — Si— R2 ; — Si— R2 ,
R2 R2 R2 dans lesquelles:
- les radicaux R1, substitués ou non substitués, identiques ou différents entre eux, représentent un groupe alkyle en Ci-Ci8, cycloalkyle en C5-Ci8 ou aryle en C6-Ci8 (de préférence des groupes alkyle en Ci-C6, cyclohexyle ou phényle, notamment des groupes alkyle en Ci-C4, plus particulièrement le méthyle et/ou l'éthyle).
- les radicaux R2, substitués ou non substitués, identiques ou différents entre eux, représentent un groupe alkoxyle en Ci-Ci8 ou cycloalkoxyle en C5-Ci8 (de préférence un groupe choisi parmi alkoxyles en Ci-C8 et cycloalkoxyles en C5-C8, plus préférentiellement encore un groupe choisi parmi alkoxyles en C C4, en particulier méthoxyle et éthoxyle).
Dans le cas d'un mélange d'alkoxysilanes polysulfurés répondant à la formule (I) ci-dessus, notamment des mélanges usuels disponibles commercialement, la valeur moyenne des "x" est un nombre fractionnaire de préférence compris entre 2 et 5, plus préférentiellement proche de 4. Mais l'invention peut être aussi avantageusement mise en œuvre par exemple avec des alkoxysilanes disulfurés (x = 2). A titre d'exemples de silanes polysulfurés, on citera plus particulièrement les polysulfures (notamment disulfures, trisulfures ou tétrasulfures) de bis-(alkoxyl(Ci-C4)-alkyl(Ci-C4)silyl- alkyl(Ci-C4)), comme par exemple les polysulfures de bis(3-triméthoxysilylpropyl) ou de bis(3-triéthoxysilylpropyl). Parmi ces composés, on utilise en particulier le tétrasulfure de bis(3-triéthoxysilylpropyl), en abrégé TESPT, de formule [(C2H50)3Si(CH2)3S2]2 ou le disulfure de bis-(triéthoxysilylpropyle), en abrégé TESPD, de formule [(C2H50)3Si(CH2)3S]2.
A titre d'agent de couplage autre qu'alkoxysilane polysulfuré, on citera notamment des POSS (polyorganosiloxanes) bifonctionnels ou encore des polysulfures d'hydroxysilane tels que décrits dans les demandes de brevets WO 02/30939 (ou US 6,774,255), WO 02/31041 (ou US 2004/051210) ou encore des silanes ou POSS porteurs de groupements fonctionnels azo-dicarbonyle, tels que décrits par exemple dans les demandes de brevets WO 2006/125532, WO 2006/125533, WO 2006/125534. La teneur en agent de couplage est avantageusement inférieure à 20 pce, étant entendu qu'il est en général souhaitable d'en utiliser le moins possible. Typiquement le taux d'agent de couplage représente de 0,5% à 15% en poids par rapport à la quantité de charge inorganique. Son taux est préférentiellement compris entre 0,5 et 15 pce, plus préférentiellement compris dans un domaine alla nt de 3 à 13 pce. Ce taux est aisément ajusté par l'homme du métier selon le taux de charge inorganique utilisé dans la composition.
Selon un mode de réalisation de l'invention, la composition de caoutchouc comprend un plastifiant. Par un plastifiant, on entend un ou plusieurs plastifiants. Le plastifiant peut être un plastifiant liquide, une résine ou leur mélange.
La dénomination "résine" est réservée dans la présente demande, par définition connue de l'homme du métier, à un composé qui est solide à température ambiante (23°C), par opposition à un composé plastifiant liquide tel qu'une huile.
Les résines hydrocarbonées sont des polymères bien connus de l'homme du métier, essentiellement à base de carbone et hydrogène mais pouvant comporter d'autres types d'atomes, utilisables en particulier comme agents plastifiants ou agents tackifiants dans des matrices polymériques. Elles sont par nature miscibles (i.e., compatibles) aux taux utilisés avec les compositions de polymères auxquelles elles sont destinées, de manière à agir comme de véritables agents diluants. Elles ont été décrites par exemple dans l'ouvrage intitulé "Hydrocarbon Resins" de R. Mildenberg, M . Zander et G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9) dont le chapitre 5 est consacré à leurs applications, notamment en caoutchouterie pneumatique (5.5. "Rubber Tires and Mechanical Goods"). Elles peuvent être aliphatiques, cycloaliphatiques, aromatiques, aromatiques hydrogénées, du type aliphatique/aromatique c'est-à-dire à base de monomères aliphatiques et/ou aromatiques. Elles peuvent être naturelles ou synthétiques, à base ou non de pétrole (si tel est le cas, connues aussi sous le nom de résines de pétrole). Leur Tg est de préférence supérieure à 0°C, notamment supérieure à 20°C (le plus souvent comprise entre 30°C et 95°C).
De manière connue, ces résines hydrocarbonées peuvent être qualifiées aussi de résines thermoplastiques en ce sens qu'elles se ramollissent par chauffage et peuvent ainsi être moulées. Elles peuvent se définir également par un point ou température de ramollissement (en anglais, "softening point"). La température de ramollissement d'une résine hydrocarbonée est généralement supérieure d'environ 40 à 60°C à sa valeur de Tg. Le point de ramollissement est mesuré selon la norme ISO 4625 (méthode « Ring and Bail »). La macrostructure (Mw, Mn et Ip) est déterminée par chromatographie d'exclusion stérique (SEC) comme indiqué ci-après.
Pour rappel, l'analyse SEC, par exemple, consiste à séparer les macromolécules en solution suivant leur taille à travers des colonnes remplies d'un gel poreux ; les molécules sont séparées selon leur volume hydrodynamique, les plus volumineuses étant éluées en premier. L'échantillon à analyser est simplement préalablement solubilisé dans un solvant approprié, le tétrahydrofurane à une concentration de 1 g/litre. Puis la solution est filtrée sur un filtre de porosité 0,45 μιη, avant injection dans l'appareillage. L'appareillage utilisé est par exemple une chaîne chromatographique "Waters alliance" selon les conditions suivantes :
solvant d'élution : le tétrahydrofurane,
température 35°C ;
concentration 1 g/litre ;
débit :1 ml/min ;
volume injecté : 100 μΙ ;
étalonnage de Moore avec des étalons de polystyrène ;
- jeu de 3 colonnes "Waters" en série ("Styragel HR4E", "Styragel HR1" et "Styragel HR 0.5") ;
détection par réfractomètre différentiel (par exemple "WATERS 2410") pouvant être équipé d'un logiciel d'exploitation (par exemple "Waters Millenium").
Un étalonnage de Moore est conduit avec une série d'étalons commerciaux de polystyrène à faible Ip (inférieur à 1,2), de masses molaires connues, couvrant le domaine de masses à analyser. On déduit des données enregistrées (courbe de distribution massique des masses molaires) la masse molaire moyenne en masse (Mw), la masse molaire moyenne en nombre (Mn), ainsi que l'indice de polymolécularité (Ip = Mw/Mn). Toutes les valeurs de masses molaires indiquées dans la présente demande sont donc relatives à des courbes d'étalonnages réalisées avec des étalons de polystyrène.
Selon un mode de réalisation préférentiel de l'invention, la résine hydrocarbonée présente au moins une quelconque, plus préférentiellement l'ensemble des caractéristiques suivantes :
une Tg supérieure à 25°C (en particulier compris entre 30°C et 100°C), plus préférentiellement supérieure à 30°C (en particulier entre 30 C et 95°C);
un point de ramollissement supérieur à 50°C (en particulier compris entre 50°C et 150°C) ;
une masse molaire moyenne en nombre (M n) comprise entre 400 et 2000 g/mol, préférentiellement entre 500 et 1500 g/mol ;
un indice de polymolécularité (I p) inférieur à 3, préférentiellement à 2 (rappel : I p = Mw/M n avec Mw masse molaire moyenne en poids).
A titres d'exemples de telles résines hydrocarbonées, on peut citer celles choisies dans le groupe constitué par les résines d'homopolymère ou copolymère de cyclopentadiène (en abrégé CPD), les résines d'homopolymère ou copolymère de dicyclopentadiène (en a brégé DCPD), les résines d'homopolymère ou copolymère de terpène, les résines d'homopolymère ou copolymère de coupe C5, les résines d'homopolymère ou copolymère de coupe C9, les résines d'homopolymère ou copolymère d'alpha-méthyl-styrène et les mélanges de ces résines. Parmi les résines de copolymères ci-dessus, on peut citer plus particulièrement celles choisies da ns le groupe constitué par les résines de copolymère (D)CPD/ vinylaromatique, les résines de copolymère (D)CPD/ terpène, les résines de copolymère terpène phénol, les résines de copolymère (D)CPD/ coupe C5, les résines de copolymère (D)CPD/ coupe C9, les résines de copolymère terpène/ vinylaromatique, les résines de copolymère terpène/ phénol, les résines de copolymère coupe C5/ vinylaromatique, et les mélanges de ces résines. Le terme "terpène" regroupe ici de manière connue les monomères alpha-pinène, beta- pinène et limonène ; préférentiellement est utilisé un monomère limonène, composé se présentant de manière connue sous la forme de trois isomères possibles : le L-limonène (énantiomère lévogyre), le D-limonène (énantiomère dextrogyre), ou bien le dipentène, racémique des énantiomères dextrogyre et lévogyre. A titre de monomère vinylaromatique conviennent par exemple le styrène, l'alpha-méthylstyrène, l'ortho- méthylstyrène, le méta-méthylstyrène, le para-méthylstyrène, le vinyle-toluène, le para- tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, les hydroxystyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène, tout monomère vinylaromatique issu d'une coupe C9 (ou plus généralement d'une coupe C8 à Ci0). Plus particulièrement, on peut citer les résines choisies dans le groupe constitué par les résines d'homopolymère (D)CPD, les résines de copolymère (D)CPD/ styrène, les résines de polylimonène, les résines de copolymère limonène/ styrène, les résines de copolymère limonène/ D(CPD), les résines de copolymère coupe C5/ styrène, les résines de copolymère coupe C5/ coupe C9, et les mélanges de ces résines.
Toutes les résines ci-dessus sont bien connues de l'homme du métier et disponibles commercialement, par exemple vendues par la société DRT sous la dénomination "Dercolyte" pour ce qui concerne les résines polylimonène, par la société Neville Chemica l Company sous dénomination "Super Nevtac", par Kolon sous dénomination "Hikorez" ou par la société Exxon Mobil sous dénomination "Escorez" pour ce qui concerne les résines coupe C5/ styrène ou résines coupe C5/ coupe C9, ou encore par la société Struktol sous dénomination "40 MS" ou "40 NS" (mélanges de résines aromatiques et/ou aliphatiques). Tout agent plastifiant liquide, en particulier une huile, connu pour ses propriétés plastifiantes vis-à-vis d'élastomères diéniques, est utilisable. A température ambiante (23°C), ces plastifiants ou ces huiles, plus ou moins visqueux, sont des liquides (c'est-à-dire, pour rappel, des substances ayant la capacité de prendre à terme la forme de leur contenant), par opposition notamment aux résines plastifiantes hydrocarbonées qui sont par nature solides à température ambiante.
Conviennent particulièrement les agents plastifiants liquides choisis dans le groupe constitué par les polymères diéniques liquides, les huiles polyoléfiniques, les huiles naphténiques, les huiles paraffiniques, les huiles DAE, les huiles M ES (Médium Extracted Solvates), les huiles TDAE (Treated Distillate Aromatic Extracts), les huiles RAE (Residual Aromatic Extract oils), les huiles TRAE (Treated Residual Aromatic Extract) et les huiles SRAE (Safety Residual Aromatic Extract oils), les huiles minérales, les huiles végétales, les plastifiants éthers, les plastifiants esters, les plastifiants phosphates, les plastifiants sulfonates et les mélanges de ces composés. Selon un mode de réalisation plus préférentiel, l'agent plastifiant liquide est choisi dans le groupe constitué par les huiles M ES, les huiles TDAE, les huiles naphténiques, les huiles végétales et les mélanges de ces huiles.
Le taux de plastifiant, à savoir de plastifiant liquide ou de résine ou de leur mélange, dans la composition de caoutchouc peut varier largement selon la quantité de charge renforçante et de fibres de carbone ex brai introduites dans la composition de caoutchouc, mais aussi par exemple en fonction de la viscosité de la matrice élastomère et selon les niveaux de rigidité à cru et à cuit souhaités de la composition de caoutchouc. La quantité de plastifiant est déterminée selon un taux de dilution choisi. On entend par taux de dilution le rapport de la masse du plastifiant sur la somme des masses du plastifiant et de la matrice élastomère.
Selon un mode de réalisation de l'invention, la quantité de plastifiant dans la composition de caoutchouc est ajustée de façon à atteindre un taux de dilution supérieur à 0.35. Le taux de dilution est compris préférentiellement entre 0.35 et 0.60, plus préférentiellement entre 0.35 et 0.55. En raison de l'anisotropie de la bande de roulement du pneumatique causée par une orientation préférentielle des fibres de carbone ex brai dans la direction normale à la surface de la bande de roulement, la bande de roulement du pneumatique conforme à l'invention présente des rigidités différentes selon les directions x, y, z. Le taux de dilution permet de régler ces rigidités afin d'atteindre un compromis entre ces rigidités. L'optimisation de ce compromis permet d'optimiser à son tour le fonctionnement du pneumatique. Les fibres de carbone ex-brai sont issues de brais (en anglais « pitch »), par exemple de brais de charbon ou de pétrole et peuvent être préparés selon le procédé suivant : les brais sont dans une première étape transformés en précurseurs fibrillaires par une première étape de filage en fondu (« melt spinning »), ces précurseurs fibrillaires sont ensuite généralement stabilisés thermiquement par un premier traitement thermique sous atmosphère oxydante (100°C-400°C) avant de subir des traitements à plus hautes températures sous atmosphère inerte de carbonisation (1000-1600°C) puis de graphitisation (2500°C-3000°C). Le procédé de fabrication des fibres de carbone ex brai est largement décrit, par exemple dans la revue « Nippon Steel Technical Report, N°59, october 1993, page 65 » ou dans l'ouvrage de référence « Carbon Fibers » ; 1998 ; 3rd édition ; Donnet, J.-B., Wang, T. K., Rebouillat, S., Peng, J. C. M.
Les fibres de carbone ex brai sont des objets caractérisés généralement par un diamètre des fibres qui est d'au moins un micron. Leur diamètre peut varier de 1 μιη à 50 μιη, préférentiellement de 3 μιη à 20 μιη, plus préférentiellement de 5 μιη à 15 μιη. Ces plages préférentielles de diamètre des fibres de carbone ex brai s'appliquent à l'un quelconque des modes de réalisation de l'invention.
Les fibres de carbone ex brai peuvent avoir une longueur qui varie largement. Le choix de la longueur des longueurs des fibres de carbone ex brai est généralement limité aux produits proposés par les fournisseurs. L'homme du métier comprend aussi que la longueur des fibres de carbone ex brai est limitée par les dimensions du matériel de mélangeage utilisé pour mélanger les divers ingrédients de la composition de caoutchouc, car il doit pouvoir les introduire dans les outils de mélangeage. Par exemple, quel que soit le mode de réalisation de l'invention, conviennent les fibres de carbone ex brai ayant une longueur moyenne en nombre allant de la centaine de microns à quelques millimètres, par exemple de 50 μιη à 30 mm ou de 50 μιη à 3 mm. On utilise des fibres de carbone de longueur variant préférentiellement de 50 μιη à 500 μιη, plus préférentiellement de 50 μιη à 250 μιη. Ces plages préférentielles de longueur des fibres de carbone ex brai s'appliquent à l'un quelconque des modes de réalisation de l'invention. On utilise typiquement des fibres coupées (en anglais, « chopped fibers ») ou des fibres hachées (en anglais « milled fibers »).
La longueur moyenne des fibres de carbone ex brai est déterminée selon la méthode décrite dans le paragraphe 11.1.3, plus précisément à partir de la deuxième opération décrite dans le sous paragraphe ii).
Au cours du mélangeage des fibres de carbone ex brai avec les autres ingrédients de la composition de caoutchouc, l'action mécanique peut couper les fibres de carbone ex brai en une longueur plus faible que leur longueur d'origine, c'est-à-dire la longueur qu'elles avaient avant le mélangeage. La longueur moyenne en nombre des fibres de carbone ex brai dans la composition de caoutchouc peut aller de 50 μιη à 250 μιη.
Selon un mode de réalisation de l'invention applicable aux modes de réalisations décrits, la fraction volumique des fibres de carbone ex brai dans la composition de caoutchouc varie dans un domaine allant de 1 à 15%. De manière préférentielle cette fraction volumique varie dans un domaine allant de 3 à 12%. La fraction volumique des fibres de carbone ex brai est définie comme étant le rapport du volume des fibres de carbone ex brai sur le volume de l'ensemble des constituants de la composition de caoutchouc, étant entendu que le volume de l'ensemble des constituants est calculé en additionnant le volume de chacun des constituants de la composition de caoutchouc. En deçà de 1%, on constate que la composition de caoutchouc est insuffisamment conductrice pour permettre de réduire sensiblement le temps de cuisson du pneumatique. Au-delà de 15%, la performance d'usure du pneumatique peut être pénalisée ainsi que la performance d'adhérence du pneumatique en raison d'une rigidité trop élevée de la composition de caoutchouc qui compose la bande de roulement. La plage préférentielle de 3 à 12% permet d'optimiser davantage le compromis conductivité thermique usure de la bande de roulement.
La quantité de fibres de carbone ex brai dans la composition de caoutchouc est déterminée par sa fraction volumique et dépend donc de la quantité des autres composants de la composition de caoutchouc, notamment de la quantité de plastifiant dans la composition de caoutchouc. La quantité de plastifiant permettant de régler la rigidité de la composition de caoutchouc et son aptitude à être mise en œuvre (en anglais « processability »), la quantité de fibres de carbone ex brai est ajustée selon la fraction volumique visée de fibres de carbone ex brai dans la composition de caoutchouc et selon la rigidité et la viscosité visées de la composition de caoutchouc. Pour un taux de dilution allant de 0.35 à 0.60, la quantité de fibres de carbone peut varier de 4 à 160 pce selon la fraction volumique visée de fibres de carbone ex brai dans la composition de caoutchouc, notamment pour des fractions volumiques allant de 1 à 15%. Par exemple, pour un taux de dilution de 0.35, la quantité de fibres de carbone ex brai dans la composition de caoutchouc peut varier de 4 à 100 pce. Par exemple pour un taux de dilution de 0.60, la quantité de fibres de carbone ex brai dans la composition de caoutchouc peut varier de 7 à 160 pce.
La composition de caoutchouc conforme à l'invention peut comporter également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères destinées à constituer des mélanges externes d'articles finis en caoutchouc tels que des pneumatiques, en particulier de bandes de roulement, des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti-oxydants, des agents anti-fatigue, , un système de réticulation, des accélérateurs ou retardateurs de vulcanisation, des activateurs de vulcanisation. Quel que soit le mode de réalisation de l'invention décrit, le système de réticulation est de préférence à base de soufre, mais il peut être également à base de donneurs de soufre, de peroxyde, de bismaléimides ou de leurs mélanges.
Le mélangeage des constituants de la composition de caoutchouc peut être réalisé comme traditionnellement dans des mélangeurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier : une première phase de travail ou malaxage thermomécanique (phase dite « non-productive ») à haute température, jusqu'à une température maximale comprise entre 130°C et 200°C, suivie d'une seconde phase de travail mécanique (phase dite « productive ») jusqu'à une plus basse température, typiquement inférieure à 110°C, par exemple entre 40°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation.
La bande de roulement du pneumatique conforme à l'invention peut être préparée selon un procédé qui comprend les étapes suivantes :
mélanger la matrice élastomère, la charge renforçante, les fibres de carbone ex brai, le cas échéant le plastifiant pour former un mélange,
calandrer le mélange pour former une couche ayant un plan moyen (y'z') défini par deux directions y' et z' orthogonales entre elles, z' étant la direction du calandrage, de façon à orienter les fibres de carbone ex brai dans la direction du calandrage, puis découper la couche en portions identiques selon un plan de coupe perpendiculaire à la direction z',
assembler les portions en les juxtaposant deux à deux selon leurs faces respectives perpendiculaires à la direction x' orthogonale au plan moyen (y'z').
On entend par couche une étendue plus ou moins uniforme de la composition, dont l'épaisseur est faible relativement à l'étendue superficielle. De façon générale, une couche présente un pla n moyen (y'z') défini par deux directions y' et z' orthogonales. On définit x' comme étant la direction orthogonale au plan moyen (y'z').
Au cours de l'assemblage d'un pneumatique comprenant usuellement, radialement de l'extérieur vers l'intérieur, une bande de roulement, une armature de sommet et une armature de carcasse, la bande de roulement peut être posée radialement à l'extérieur de l'armature de sommet du pneumatique de manière à ce que les fibres de carbone ex brai soient orientées préférentiellement radialement par rapport à l'axe de rotation du pneumatique.
En fonction des conditions de réalisation particulières de l'invention, on ajuste l'épaisseur de la couche au cours de l'étape de calandrage de façon à obtenir l'orientation des fibres de carbone ex brai da ns le sens du calandrage. L'orientation des fibres de carbone ex brai dans la couche peut être réalisée typiquement après homogénéisation du système de vulcanisation en faisant passer plusieurs fois le mélange dans une calandre toujours dans le même sens.
Alternativement la bande de roulement du pneumatique conforme à l'invention peut être préparée selon le procédé précédemment décrit en remplaçant l'étape de découpage et d'assemblage par un pliage en zigzag de la couche, comme cela est décrit par exemple dans le brevet US 6,666,247.
Selon un mode de réalisation préférentiel de l'invention, la bande de roulement du pneumatique conforme à l'invention est constituée uniquement de la composition de caoutchouc décrite selon l'un quelconque des modes de réalisation de l'invention.
La couche, autre objet de l'invention, a pour caractéristique essentielle d'être constituée de la même composition de caoutchouc que la bande de roulement du pneumatique conforme à l'invention. La couche conforme à l'invention a aussi pour caractéristique essentielle de présenter des rapports de diffusivité thermique C'z'/C'x' et C'z'/C'y' supérieurs à 2,
C'x, C'y' et C'z' étant les diffusivités thermiques mesurées à 25°C de la couche à l'état cuit dans respectivement les directions x', y'et z',
x', y' et z' étant des directions orthogonales entre elles, z' étant la direction préférentielle des fibres de carbone.
Quel que soit le mode de réalisation de la couche conforme à l'invention, les rapports de diffusivité thermique C'z'/C'x' et C'z'/C'y', mesurées aussi à 25°C, sont préférentiellement supérieurs à 3, plus préférentiellement supérieurs ou égaux à 4. Ces rapports préférentiels s'appliquent à la couche constituée d'une composition définie selon l'un quelconque des modes de réalisation de l'invention.
Selon un mode de réalisation particulier de l'invention, y' et z' définissent le plan moyen de la couche, x' est la direction orthogonale au plan moyen (y'z'). Ce mode de réalisation est illustré par la figure 1.
Selon ce mode de réalisation particulier, la couche conforme à l'invention est utilisée comme élément d'une bande de roulement d'un pneumatique. Dans ce cas, la bande de roulement ou une portion de bande de roulement est constituée par la juxtaposition de couches conformes à l'invention assemblées selon leurs faces perpendiculaires à la direction x', x' étant la direction orthogonale au plan moyen de chaque couche (y'z') défini par les directions y' et z', la direction z' coïncidant avec la direction radiale du pneumatique'. Selon ce mode de réalisation particulier de l'invention, x' coïncide de préférence avec la direction circonférentielle du pneumatique.
La couche peut être préparée par un procédé qui comprend les étapes suivantes :
mélanger la matrice élastomère, la charge renforçante, les fibres de carbone ex brai, le cas échéant le plastifiant pour former un mélange,
calandrer le mélange pour former une couche de façon à orienter les fibres de carbone ex brai dans la direction du calandrage, z' coïncidant avec la direction du calandrage.
Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif.
II. EXEMPLES DE REALISATION DE L'INVENTION ll.l-Mesures et tests utilisés : II.1.1 Test usure :
La résistance à l'usure de chaque pneumatique a été déterminée au moyen d'un indice relatif d'usure qui est fonction de la hauteur de gomme restante, après roulage sur un circuit sévère pour l'usure qui est très virageux et dont le revêtement est caractérisé par des micro-rugosités, à une vitesse moyenne de 77 km/h et jusqu'à ce que l'usure atteigne les témoins d'usure disposés dans les rainures des bandes de roulement. Pour chacun des exemples on a obtenu cet indice relatif d'usure en comparant la hauteur de gomme restante de la bande de roulement étudiée à la hauteur de gomme restante de la bande de roulement témoin, laquelle présente par définition un indice d'usure de 100. 11.1.2 Diffusivité thermique :
La diffusivité thermique est déterminée selon la norme ASTM E 1641 à 25°C.
La diffusivité thermique de la couche CA ou CB est exprimée en base 100 par rapport à la couche CT prise comme témoin. Plus la valeur est supérieure à 100, plus la plaque est conductrice dans la direction considérée.
L'anisotropie thermique de la couche est exprimée par le rapport C'z'/C'x' et C'z'/C'y', sachant que la direction z' est la direction normale à une surface de la couche et correspond au sens du calandrage. 11.1.3 Analyse de microscopie :
La longueur moyenne en nombre des fibres de carbone dans la composition de caoutchouc est déterminée selon la méthode décrite ci-dessous.
Les dimensions sont mesurées selon le mode opératoire décrit ci-après en plusieurs étapes. On appelle mélange l'objet constitué par la composition de caoutchouc après mélangeage des constituants de la composition de caoutchouc et après vulcanisation.
II.1.3.Ï) La première étape consiste à extraire les fibres de carbone du mélange en opérant de la manière suivante :
• le mélange est découpé en petits morceaux puis une extraction à l'acétone est réalisée de façon à éliminer au maximum les additifs tels que huiles, résines, cires, anti-oxydants...
• le mélange est ensuite pyrolysé sous atmosphère inerte (N2) à 550°C, de façon à éliminer les matières organiques par cracking : polymères, réseau soufre, accélérateurs, plastifiants résiduels...
· le résidu obtenu contient alors les fibres de carbone, le noir de carbone et des produits minéraux initialement présents dans le mélange (comme la silice) ou éventuellement formés pendant la pyrolyse.
II.1.3.Û) La seconde étape consiste à préparer l'échantillon à placer dans le microscope à balayage électronique (MEB) en opérant de la manière suivante :
• A l'issu de la première étape on récupère les résidus de combustion contenant les fibres de carbone. Ceux-ci sont très légèrement comprimés à l'aide d'un mortier et d'un pilon pour séparer les fibres les unes des autres.
• Les fibres de carbone sont ainsi récupérées sur un porte échantillon comportant un adhésif carbone. Il est également possible de venir tamponner directement le porte-échantillon en aluminium supporté de l'adhésif carbone sur les fibres extraites.
• Les échantillons sont ensuite soufflés avec de l'air sec pour éliminer les fibres libres qui pourraient endommager la colonne du microscope. ll.l.3.iii) La troisième étape consiste à déterminer les dimensions des fibres de carbone :
• Les échantillons sont observés par Microscopie Electronique à Balayage (MEB-FEG) sur un microscope FEI Quanta 400 en vide dégradé. Les observations sont réalisées en contraste de topographie. On travaille principalement avec des largeurs de champs de 1mm voire 2mm, 500μιη et 250μιη afin de balayer toute la gamme de taille.
• Une fois les observations réalisées, des mesures de longueur sont réalisées par l'intermédiaire d'un logiciel de traitement d'image AnalySIS. Une observation matricielle des échantillons est réalisée : des champs adjacents ont été réalisés afin de couvrir environ 5mm2 sur le porte-échantillon, avec des champs d'observations de 500μιη. L'image matricielle a été reconstruite à l'aide du logiciel de traitement d'image AnalySIS. L'ensemble des résultats est compilé pour obtenir les données caractéristiques de la fibre extraite de mélange (longueur moyenne, longueur minimale, longueur maximale, écart-type, distribution en nombre). Pour chaque échantillon, au moins 50 objets sont mesurés. ll.2-Préparation des compositions de caoutchouc :
Les formulations (en pce) des compositions T, A et B sont décrites dans le tableau I.
Les compositions A et B contiennent toutes les deux des fibres de carbone selon une fraction volumique de 10%. Elles diffèrent en ce que la composition A contient des fibres de carbone ex PAN (polyacrylonitrile), la composition B contient des fibres de carbone ex brai.
La composition T diffère des compositions A et B en ce qu'elle ne contient pas de fibres de carbone.
Le taux de dilution des compositions A, B et T est identique (0.4).
Les compositions sont préparées par thermomalaxage des constituants de la composition selon le mode opératoire suivant :
On procède pour la fabrication de ces compositions de la manière suivante : on introduit dans un mélangeur interne (taux de remplissage final : environ 70% en volume), dont la température initiale de cuve est d'environ 80°C, l'élastomère, la charge renforçante, l'agent de couplage, les plastifiants, les fibres de carbone ainsi que les divers autres ingrédients à l'exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une étape, qui dure environ 5 min à 6 minutes, jusqu'à atteindre une température maximale de « tombée » d'environ 160°C. On récupère le mélange ainsi obtenu, on le refroidit puis on incorpore le soufre et l'accélérateur sulfénamide sur un mélangeur (homo-finisseur) à 23°C, en mélangeant le tout (phase productive) pendant un temps approprié (par exemple entre 5 et 12 min). Cette opération d'homogénéisation du système de vulcanisation (soufre et sulfénamide) consiste à faire passer le mélange douze fois entre les cylindres en changeant à chaque fois le sens d'introduction (on récupère le mélange sous les cylindres, on le plie et on réintroduit entre les cylindres en changeant le sens du passage)
Dans le cas des compositions A et B, après homogénéisation du système de vulcanisation, on effectue douze passages supplémentaires sans changer le sens d'introduction du mélange, dans le but d'orienter les fibres de carbone (au sein de la feuille de mélange) dans le sens du calandrage.
Ensuite les couches CT, CA et CB constituées respectivement des compositions T, A et B sont découpées sous forme d'éprouvette, puis vulcanisées. Dans le cas de la confection des éprouvettes à partir des couches CA et CB, la mise en dimension d'une couche à la taille d'une éprouvette de 2.5 mm d'épaisseur est réalisée par réduction progressive de l'épaisseur de la couche en passant le mélange dans une calandre en conservant le sens imposé lors de l'orientation des fibres de carbone sur l'homo-finisseur.
Les couches vulcanisées sont caractérisées pour déterminer :
leurs diffusivités thermiques respectivement selon la direction normale à la surface de la couche z', selon x' et y' directions orthogonales entre elles et à z'
ainsi que leur anisotropie thermique
Les compositions A, B et T sont utilisées respectivement comme couche CA, CB et CT pour former des bandes de roulement d'un pneumatique. Les couches sont posées radialement à l'extérieur de l'armature de sommet du pneumatique de façon à ce que les fibres de carbone soient orientées préférentiellement dans la direction radiale par rapport à l'axe de rotation du pneumatique. Les bandes de roulement sont produites selon le procédé décrit précédemment qui met en œuvre des étapes de découpage et d'assemblage. 11.3- Résultats
Les résultats figurent dans le tableau I I et le tableau II I .
La longueur moyenne en nombre des fibres de carbone dans la composition de caoutchouc est de 172 μιη et de 100 μιη respectivement pour les couches CA et CB. Diffusivité thermique et anisotropie :
Les rapports C'z'/C'x' et C'z'/C'y' des couches CA et CB démontrent leur anisotropie thermique ainsi que l'orientation préférentielle des fibres de carbone dans le sens du calandrage. La valeur C'z'/C'x' et C'z'/C'y' étant égale à 1 pour la couche CT, on vérifie bien que la couche CT est isotrope.
La couche CB constitue le matériau qui présente à la fois la meilleure diffusivité thermique et la plus forte anisotropie thermique comparativement à la couche CA. Usure :
En utilisant la couche CA, il a été observé très rapidement des arrachements de matière très importants sous forme de bloc, le test d'usure devenant non quantifiable. Cette détérioration très rapide et très importante met en évidence que la couche CA utilisée comme bande de roulement d'un pneumatique n'est quasiment pas résistante à l'usure. En revanche la bande de roulement comprenant la couche CB conformément à l'invention présente une certaine résistance à l'usure (indice à 80), certes un peu en retrait par rapport à la bande de roulement comprenant la couche CT.
On constate que le pneumatique conforme à l'invention offre un meilleur compromis conductivité thermique usure que le pneumatique non conforme à l'invention comportant des fibres de carbone ex PAN. Par ailleurs le pneumatique conforme à l'invention présente un compromis conductivité thermique usure amélioré comparativement au pneumatique témoin ne comportant pas de fibres de carbone. L'amélioration de ce compromis permet aussi d'améliorer le compromis entre la productivité de l'étape de cuisson dans la confection du pneumatique et la performance d'usure du pneumatique.
Tableau I
Figure imgf000023_0001
SBR solution à 26% de styrène et 24% de motif 1,2-butadiène de la partie butadiénique possédant une fonction -SiOH en bout de chaîne ;
Noir de carbone de type N234 ;
Silice « Zeosil 1165 MP »
Fibres de carbone ex-PAN, « SIGRAFIL C 30 APS » de la société SGL Group ;
Fibres de carbone ex-brai, « XN-100 » de la société Nippon Graphite Fiber Corporation ;
Bis(triethoxysilylpropyl)tetrasulfide, « Si69 » de la société Evonik ;
Diphénylguanidine, « Perkacit DPG » de la société Flexsys ;
Huile de tournesol oléique (Lubrirob TOD 1880 de la société Novance) ;
Résine C5/C9 « Wingtack STS » de la société Cray Valley ;
N-l,3-diméthylbutyl-N-phénylparaphénylènediamine, « Santoflex 6PPD » de la société Eastman ;
Acide stéarique ;
Oxyde de zinc (grade industriel - société Umicore) ;
N-cyclohexyl-2-benzothiazyl-sulfénamide (« Santocure CBS » de la société Flexsys) ;
Tableau II
Couche CT CA CB
C'z'/C'x' 1 2.7 5.2
C'z'/C'y' 1 2.7 5.2
C'z' 100 342 770
Tableau III
Couche CT CA CB
Usure 100 non 80 quantifiable

Claims

Revendications
Pneumatique comportant une bande de roulement qui comprend une composition de caoutchouc à base d'au moins :
une matrice élastomère,
une charge renforçante,
de fibres de carbone ex brai,
facultativement un plastifiant,
z étant la direction normale à la surface de la bande de roulement destinée à être en contact avec un sol de roulage, x et y étant deux directions orthogonales à z, x la direction circonférentielle du pneumatique, y la direction axiale par rapport à l'axe de rotation du pneumatique,
Cx, Cy et Cz étant les diffusivités thermiques mesurées à 25°C de la bande de roulement à l'état cuit dans respectivement les directions x, y et z,
lequel pneumatique présente des rapports de diffusivité thermique Cz/Cx et Cz/Cy supérieurs à 2.
Pneumatique selon la revendication 1 dans lequel la matrice élastomère comprend un élastomère diénique.
Pneumatique selon l'une quelconque des revendications 1 à 2 dans lequel la composition de caoutchouc comprend un plastifiant.
Pneumatique selon la revendication 3 dans lequel le rapport de la masse du plastifiant sur la somme des masses du plastifiant et de la matrice élastomère est supérieur à 0.35.
Pneumatique selon la revendication 4 dans lequel le rapport de la masse du plastifiant sur la somme des masses du plastifiant et de la matrice élastomère est compris entre 0.35 et 0.60, préférentiellement entre 0.35 et 0.55.
Pneumatique selon l'une quelconque des revendications 1 à 5 dans lequel la fraction volumique des fibres de carbone ex brai dans la composition de caoutchouc varie dans un domaine allant de 1 à 15%.
Pneumatique selon la revendication 6 dans lequel la fraction volumique des fibres de carbone ex brai dans la composition de caoutchouc varie dans un domaine allant de 3 à 12%.
8. Pneumatique selon l'une quelconque des revendications 1 à 7 dans lequel la charge renforçante comprend un noir de carbone.
9. Pneumatique selon l'une quelconque des revendications 1 à 8 dans lequel la charge renforçante comprend une charge inorganique.
10. Pneumatique selon la revendication 9 dans lequel la charge inorganique est une silice.
11. Pneumatique selon l'une quelconque des revendications 9 à 10 dans lequel la charge inorganique représente plus de 50% en masse de la charge renforçante.
12. Pneumatique selon l'une quelconque des revendications 9 à 11 dans lequel la composition comprend un agent de couplage. 13. Pneumatique selon l'une quelconque des revendications 11 à 12 dans lequel le taux de noir de carbone est inférieur à 20 pce, préférentiellement inférieur à 10 pce, plus préférentiellement compris entre 2 et 10 pce.
14. Pneumatique selon l'une quelconque des revendications 2 à 13 dans lequel l'élastomère diénique est essentiellement insaturé choisi dans le groupe constitué par les polybutadiènes, les polyisoprènes, les copolymères de butadiène, les copolymères d'isoprène et leurs mélanges.
15. Pneumatique selon la revendication 14 dans lequel l'élastomère diénique est un SBR, un polybutadiène, un polyisoprène de synthèse, un caoutchouc naturel ou leurs mélanges.
16. Pneumatique selon l'une quelconque des revendications 1 à 15 dans lequel les rapports de diffusivité thermique Cz/Cx et Cz/Cy sont supérieurs à 3.
17. Pneumatique selon la revendication 16 dans lequel les rapports de diffusivité thermique Cz/Cx et Cz/Cy sont supérieurs ou égaux à 4.
18. Procédé pour préparer un pneumatique selon l'une quelconque des revendications 1 à 17 qui comprend les étapes suivantes :
mélanger la matrice élastomère, la charge renforçante, les fibres de carbone ex brai, le cas échéant le plastifiant pour former un mélange,
calandrer le mélange pour former une couche ayant un plan moyen (y'z') défini par deux directions y' et z' orthogonales entre elles, z' étant la direction du calandrage, de façon à orienter les fibres de carbone ex brai dans la direction du calandrage,
puis découper la couche en portions identiques selon un plan de coupe perpendiculaire à la direction z',
- assembler les portions en les juxtaposant deux à deux selon leurs faces respectives perpendiculaires à la direction x' orthogonale au plan moyen (y'z').
19. Procédé pour préparer un pneumatique selon l'une quelconque des revendications 1 à 17 qui comprend les étapes suivantes :
- mélanger la matrice élastomère, la charge renforçante, les fibres de carbone ex brai, le cas échéant le plastifiant pour former un mélange,
calandrer le mélange pour former une couche ayant un plan moyen (y'z') défini par deux directions y' et z' orthogonales entre elles, z' étant la direction du calandrage, de façon à orienter les fibres de carbone ex brai dans la direction du calandrage,
plier en zigzag la couche.
20. Couche constituée d'une composition de caoutchouc comme définie selon l'une quelconque des revendications 1 à 17, laquelle couche présente des rapports de diffusivité thermique C'z'/C'x' et C'z'/Cy' supérieurs à 2,
C'x, C'y' et C'z' étant les diffusivités thermiques mesurées à 25°C de la couche à l'état cuit dans respectivement les directions x', y'et z',
x', y' et z' étant des directions orthogonales entre elles, z' étant la direction préférentielle des fibres de carbone.
21. Couche selon la revendication 20 dans laquelle y' et z' définissent le plan moyen de la couche, x' est la direction orthogonale au plan moyen (y'z').
22. Bande de roulement ou portion de bande de roulement d'un pneumatique constituée par la juxtaposition de couches, lesquelles couches sont définies selon la revendication
21, et sont assemblées selon leurs faces perpendiculaires à la direction x', la direction z' coïncidant avec la direction radiale du pneumatique.
23. Bande de roulement ou portion de bande de roulement d'un pneumatique selon la revendication 22 dans laquelle x' coïncide avec la direction circonférentielle du pneumatique.
24. Procédé pour préparer une couche selon la revendication 21 qui comprend les étapes suivantes : mélanger la matrice élastomère, la charge renforçante, les fibres de carbone ex brai, le cas échéant le plastifiant pour former un mélange,
calandrer le mélange pour former une couche de façon à orienter les fibres de carbone ex brai dans la direction du calandrage, z' coïncidant avec la direction du calandrage.
PCT/EP2014/076696 2013-12-10 2014-12-05 Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai WO2015086449A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP14808612.7A EP3094505B1 (fr) 2013-12-10 2014-12-05 Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai
US15/103,766 US20160311258A1 (en) 2013-12-10 2014-12-05 Tire including a tread based on a rubber composition comprising ex-pitch carbon fibers
CN201480067295.2A CN105813858B (zh) 2013-12-10 2014-12-05 包括基于包含前沥青碳纤维的橡胶组合物的胎面的轮胎
JP2016538804A JP2017500403A (ja) 2013-12-10 2014-12-05 ピッチ系炭素繊維を含むゴム組成物に基づくトレッドを含むタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1362331A FR3014442B1 (fr) 2013-12-10 2013-12-10 Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai
FR1362331 2013-12-10

Publications (1)

Publication Number Publication Date
WO2015086449A1 true WO2015086449A1 (fr) 2015-06-18

Family

ID=50482972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/076696 WO2015086449A1 (fr) 2013-12-10 2014-12-05 Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai

Country Status (6)

Country Link
US (1) US20160311258A1 (fr)
EP (1) EP3094505B1 (fr)
JP (1) JP2017500403A (fr)
CN (1) CN105813858B (fr)
FR (1) FR3014442B1 (fr)
WO (1) WO2015086449A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057812A1 (fr) 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une architecture optimisee
FR3057811A1 (fr) 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une architecture optimisee
FR3057810A1 (fr) 2016-10-21 2018-04-27 Compagnie Generale Des Etablissements Michelin Pneumatique a couches de travail comprenant une architecture optimisee
FR3067287B1 (fr) 2017-06-08 2020-09-18 Michelin & Cie Pneumatique comprenant une architecture et une sculpture optimisees
EP3724259B1 (fr) * 2017-12-11 2022-09-07 Compagnie Generale Des Etablissements Michelin Procédé de production d'une composition de caoutchouc
WO2019116420A1 (fr) * 2017-12-11 2019-06-20 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
WO2020002786A1 (fr) 2018-06-25 2020-01-02 Compagnie Generale Des Etablissements Michelin Pneumatique a architecture sommet et sculpture optimisee
CN112368158B (zh) 2018-06-25 2022-09-06 米其林集团总公司 具有优化的胎冠和胎面花纹结构的充气轮胎

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216829A (ja) * 2006-02-16 2007-08-30 Bridgestone Corp 建設車両用タイヤ及びその製造方法
JP2011225682A (ja) * 2010-04-16 2011-11-10 Sumitomo Rubber Ind Ltd ブレーカートッピング用ゴム組成物及び空気入りタイヤ
EP2546074A1 (fr) * 2010-05-18 2013-01-16 Sumitomo Rubber Industries, Ltd. Véhicule
JP2013057041A (ja) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ベーストレッドゴム組成物及びスタッドレスタイヤ
US20130319589A1 (en) * 2012-06-01 2013-12-05 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582662A (en) * 1983-05-27 1986-04-15 Mitsubishi Chemical Industries Ltd. Process for producing a carbon fiber from pitch material
US4840762A (en) * 1984-01-24 1989-06-20 Teijin Ltd. Process for preparation of high-performance grade carbon fibers
JP3390149B2 (ja) * 1999-07-27 2003-03-24 住友ゴム工業株式会社 スタッドレスタイヤ
JP3405699B2 (ja) * 1999-11-17 2003-05-12 住友ゴム工業株式会社 空気入りタイヤ
JP2002121404A (ja) * 2000-10-19 2002-04-23 Polymatech Co Ltd 熱伝導性高分子シート
JP2006142990A (ja) * 2004-11-19 2006-06-08 Bridgestone Corp 空気入りタイヤ及びその製造方法
JP2008266586A (ja) * 2007-03-27 2008-11-06 Toyoda Gosei Co Ltd 低電気伝導性高放熱性高分子材料及び成形体
JP2009149769A (ja) * 2007-12-20 2009-07-09 Bando Chem Ind Ltd エラストマー組成物、エラストマー成形体及び放熱シート
JP5443072B2 (ja) * 2009-06-22 2014-03-19 住友ゴム工業株式会社 ベーストレッド用ゴム組成物及び空気入りタイヤ
FR2968307B1 (fr) * 2010-11-26 2018-04-06 Societe De Technologie Michelin Bande de roulement de pneumatique
JP2013071977A (ja) * 2011-09-27 2013-04-22 Sumitomo Rubber Ind Ltd 空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007216829A (ja) * 2006-02-16 2007-08-30 Bridgestone Corp 建設車両用タイヤ及びその製造方法
JP2011225682A (ja) * 2010-04-16 2011-11-10 Sumitomo Rubber Ind Ltd ブレーカートッピング用ゴム組成物及び空気入りタイヤ
EP2546074A1 (fr) * 2010-05-18 2013-01-16 Sumitomo Rubber Industries, Ltd. Véhicule
JP2013057041A (ja) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ベーストレッドゴム組成物及びスタッドレスタイヤ
US20130319589A1 (en) * 2012-06-01 2013-12-05 Sumitomo Rubber Industries, Ltd. Pneumatic tire

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 200767, Derwent World Patents Index; AN 2007-712591, XP002728282 *
DATABASE WPI Week 201176, Derwent World Patents Index; AN 2011-N78688, XP002728283 *
DATABASE WPI Week 201323, Derwent World Patents Index; AN 2013-E24401, XP002728281 *

Also Published As

Publication number Publication date
JP2017500403A (ja) 2017-01-05
FR3014442B1 (fr) 2016-01-01
CN105813858B (zh) 2018-08-10
US20160311258A1 (en) 2016-10-27
EP3094505B1 (fr) 2018-02-07
CN105813858A (zh) 2016-07-27
FR3014442A1 (fr) 2015-06-12
EP3094505A1 (fr) 2016-11-23

Similar Documents

Publication Publication Date Title
EP3094505B1 (fr) Pneumatique comportant une bande de roulement a base d'une composition de caoutchouc comprenant des fibres de carbone ex brai
EP3152066B1 (fr) Pneumatique à faible résistance au roulement
EP3105066B1 (fr) Bande de roulement de pneumatique
EP3152239B1 (fr) Pneumatique à faible résistance au roulement
EP3393823B1 (fr) Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
EP3558714B1 (fr) Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
FR2984340A1 (fr) Pneumatique pourvu d'un flanc externe a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
FR2984339A1 (fr) Pneumatique pourvu d'une bande de roulement a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
WO2013087483A1 (fr) Pneumatique pourvu d'une couche interne a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
FR2969630A1 (fr) Pneumatique dont la bande de roulement comporte une resine poly (alkylene-ester)
EP2793632A1 (fr) Semelle de chaussure comportant une composition de caoutchouc a base de caoutchouc nitrile-butadiene, d'une huile et d'une resine
EP3478515B1 (fr) Pneumatique comprenant une composition comprenant un système spécifique d'élastomères
FR3081877A1 (fr) Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
WO2016096689A1 (fr) Composition de caoutchouc renforcee pour pneumatique
EP3642050B1 (fr) Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
EP3259312A1 (fr) Pneumatique dont la bande de roulement comporte un compose phenolique
FR3028860A1 (fr) Pneumatique comprenant un flanc externe qui comporte un polymere incompatible
WO2015090976A1 (fr) Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique
FR3081875A1 (fr) Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081873A1 (fr) Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081874A1 (fr) Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
FR3081876A1 (fr) Pneumatique pourvu d'un flanc externe comportant un ou plusieurs elastomeres thermoplastiques et un ou plusieurs elastomeres dieniques synthetiques
WO2019110922A1 (fr) Pneumatique pourvu d'une couche interne
WO2019073145A1 (fr) Pneumatique pourvu d'une bande de roulement comportant au moins un caoutchouc butyl et un copolymere a base de butadiene et de styrene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538804

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15103766

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014808612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014808612

Country of ref document: EP