WO2015085877A1 - 一种测试有源天线系统共存共址杂散指标的方法 - Google Patents

一种测试有源天线系统共存共址杂散指标的方法 Download PDF

Info

Publication number
WO2015085877A1
WO2015085877A1 PCT/CN2014/092655 CN2014092655W WO2015085877A1 WO 2015085877 A1 WO2015085877 A1 WO 2015085877A1 CN 2014092655 W CN2014092655 W CN 2014092655W WO 2015085877 A1 WO2015085877 A1 WO 2015085877A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
active antenna
antenna system
location
coexistence
Prior art date
Application number
PCT/CN2014/092655
Other languages
English (en)
French (fr)
Inventor
白雪
王鹏
侯建平
刘平
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015085877A1 publication Critical patent/WO2015085877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements

Definitions

  • the invention relates to the technical field of wireless index testing of an active antenna system, and in particular to a method for testing a coexistence co-location spur index of an active antenna system.
  • the active antenna system is different from the traditional wireless base station. As shown in FIG. 1 , it integrates the multi-channel digital intermediate frequency processing module and the multi-channel analog transceiver module with the antenna array, and has many advantages. First, the active antenna system saves the installation area of the antenna field and reduces the labor cost of installation and maintenance. Second, the active antenna system divides the transceiver channel to the antenna element level, saving multi-channel transceivers (including The RF jumper between the multi-channel digital intermediate frequency processing module and the multi-channel analog transceiver module and the antenna eliminates unnecessary power loss. Third, the beam can be flexibly controlled by different configurations of the antenna elements of the active antenna system. And MIMO (Multiple-input Multiple-output) and other functions, to achieve more flexible resource dynamic configuration and sharing, to achieve the lowest cost of the entire network.
  • MIMO Multiple-input Multiple-output
  • the interface between the multi-channel transceiver and the antenna array becomes the internal interface of the system, and the only external interface is the antenna radiation interface.
  • the traditional active antenna system test separates the active and passive parts, and conducts the conduction test of the active part multi-channel transceiver and the radiation field test of the passive part antenna array respectively, destroying the active antenna.
  • the signal is composed of multiple channels in space, so the resulting spurs (coexisting co-located spurs are one of the spurs) consist of correlated spurious and uncorrelated spurs.
  • uncorrelated spurs the spurious level formed in space is uniformly distributed in multiple directions; for related spurs, the spurious level distribution formed in space is compared with the signal of each channel in practical applications. Relevant to the extent of relevance. We are unable to estimate the level distribution of spurs in space based on the spurious performance of the main beam direction. Therefore, when measuring the coexistence co-location spurs of an active antenna system, in addition to testing the coexistence co-location spur performance index of the main beam direction, the coexistence co-location spur performance index of the non-main beam direction must also be tested.
  • an embodiment of the present invention provides a method for testing a coexistence co-location spur performance index of an active antenna system.
  • Embodiments of the present invention provide a method for testing a coexistence co-location spur performance index of an active antenna system, where the method includes:
  • the active antenna system transmits a wireless beam
  • the coexisting co-location spur performance index of the active antenna system in a wide frequency band can be comprehensively tested, and the performance of the active antenna system can be accurately and comprehensively measured.
  • Figure 1 is a schematic diagram of the structure of an active antenna system
  • FIG. 2 is a schematic flowchart of a method for testing a coexistence co-location spur index of an active antenna system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the working principle of the test environment calibration method 1 according to the embodiment of the present invention.
  • FIG. 4 is a flowchart of a test environment calibration method 1 according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a working principle of a test environment calibration method 2 according to an embodiment of the present invention.
  • FIG. 6 is a flowchart of a second test method calibration method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing the working principle of a method for coexisting co-located spur index of an active antenna system according to an embodiment of the present invention.
  • FIG. 8 is a flowchart of a method for testing a coexistence co-location spur index of a main beam direction of an active antenna system according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for testing a coexistence co-location spur index of a non-main beam direction of an active antenna system according to an embodiment of the present invention.
  • the embodiment of the present invention combines the definition of EIRP to propose a calculation method of equivalent isotropic radiated power (EIRPs), that is, the active antenna system is The sum of the stray power of the antenna feed port and the absolute gain of the stray frequency of the antenna array in a given direction.
  • EIRPs equivalent isotropic radiated power
  • Ps is the stray power of the active antenna system at the antenna feed port
  • Gs is the absolute gain of the antenna array for the spurious frequencies in a given direction.
  • the tester sets the active antenna system in a test environment in which the calibration parameters can be obtained, adjusts the system to be tested, causes the active antenna system to transmit a wireless beam, transmits the space to the receiving antenna, and receives according to the receiving antenna.
  • the signal and test environment calibration parameters are obtained to determine the coexistence co-location spurious performance indicator of the active antenna system.
  • test method of the embodiment of the present invention is as shown in FIG. 2, and mainly includes the following steps:
  • Step S201 testing environment calibration to obtain calibration parameters
  • Step S202 adjusting the active antenna system and the receiving antenna in the calibrated test environment to obtain test data
  • Step S203 obtaining coexistence co-location spur indicators by using the obtained test data and environmental calibration parameters.
  • test environment Since the test needs to create a test environment first, the corresponding test environment will generate calibration parameters. The establishment of the test environment and the acquisition of the test environment calibration parameters will be described below with reference to the accompanying drawings.
  • the broadband gain reference antenna 302 is mounted on the antenna turntable 306 in an anechoic chamber or in a test field environment 301 with no signal interference, and is connected to one end (port one) of the vector network analyzer 308 via the radio frequency cable 304, and the other end.
  • the receiving antenna 303 is mounted on the antenna mount 307 and connected to the other end (port 2) of the vector network analyzer 308 via the RF cable 305.
  • Step S401 the tester adjusts the antenna turntable 306 and the antenna support 307 such that the wideband gain reference antenna 302 and the receive antenna 303 are forwardly aligned;
  • Step S402 the tester reads out the calibration parameters of the test environment by using the vector network analyzer 308, for example, the insertion loss S21, the space loss, the cable insertion loss, and the receiving antenna gain of the test environment in the coexisting co-located spurious frequency band to be tested. And recording these parameters; wherein S21 is recorded as a function of frequency;
  • the S21 is the insertion loss of the port one to the port two of the vector network analyzer 308.
  • Step S403 analyzing the recorded data to obtain an environmental calibration parameter.
  • Gt is the gain of the wideband gain reference antenna
  • Ly is the insertion loss of the radio frequency cable 304
  • Lx is the insertion loss of the RF cable 305
  • Ls is the spatial path loss in the test environment.
  • Gh is the gain of the receiving antenna
  • Gt is the standard gain of the wideband gain reference antenna. It can be known from the specification or nameplate of the antenna, and the Lx can be measured by the measuring instrument in the field.
  • This parameter ⁇ Pc is the calibration parameter of the test environment (including space loss, cable insertion loss, receive antenna gain, etc.) in a specific test environment, which is a function of frequency.
  • the working frequency band of a wideband gain reference antenna can cover the frequency band of the coexisting co-located spurs to be tested, only one wideband gain reference antenna can be used; if it is unable to cover the frequency band of the coexisting co-located spurs to be tested, multiple The gain reference antenna constitutes a wideband gain reference antenna, and all working frequency bands of the plurality of gain reference antennas can cover the frequency band of the coexisting co-located spurs to be tested. If N gain reference antennas are used, the working frequency bands are respectively band 1 to band N, and all working bands can cover all frequency bands of coexisting co-location spurs to be tested.
  • the first gain reference antenna (band 1) is used first, and steps S401 to S403 are performed, where Gt is the gain of the current gain reference antenna, and the calibration parameter ⁇ Pc1 corresponding to the band 1 is obtained. Then, using other gain reference antennas (band 2 to band N) in sequence, steps S401 to S403 are repeatedly performed to obtain calibration parameters ⁇ Pc2 to ⁇ PcN corresponding to other frequency bands. The ⁇ Pc1 ⁇ ⁇ PcN is interpolated and fitted, and finally the environmental calibration parameter ⁇ Pc curve of the coexisting co-located spur frequency band to be tested can be obtained.
  • the vector network analyzer in the above test environment can be replaced with a signal source and a spectrum analyzer.
  • the test environment is established as shown in FIG.
  • the broadband gain reference antenna 302 is mounted on the antenna turntable 306 in the anechoic chamber or in the open test room environment 301 without signal interference, and is connected to the signal source 508 via the RF cable 304.
  • the receive antenna 303 is mounted on the antenna mount.
  • it is connected to the spectrum analyzer 509 via a radio frequency cable 305.
  • step S601 the tester adjusts the turntable 306 and the antenna mount 307 such that the gain reference antenna 302 is positively aligned with the receive antenna 303.
  • Step S602 the tester sets the signal source 508 to be a continuous analog signal of a certain power, and sweeps the frequency at a certain frequency in the coexisting co-located spurious frequency band to be tested, and receives the signal input to the spectrum analysis through the receiving antenna 303 at the other end.
  • Instrument 509 the tester sets the signal source 508 to be a continuous analog signal of a certain power, and sweeps the frequency at a certain frequency in the coexisting co-located spurious frequency band to be tested, and receives the signal input to the spectrum analysis through the receiving antenna 303 at the other end.
  • Instrument 509 the tester sets the signal source 508 to be a continuous analog signal of a certain power, and sweeps the frequency at a certain frequency in the coexisting co-located spurious frequency band to be tested, and receives the signal input to the spectrum analysis through the receiving antenna 303 at the other end.
  • Instrument 509 the tester sets the signal source 508 to be a continuous analog signal of a certain power, and sweeps the frequency at
  • step S603 the spectrum analyzer 509 measures the received power and records the power value as a discrete function of the frequency.
  • Step S604 analyzing the recorded data, and the calculation method is as follows:
  • Px is a signal source 408 that outputs the power value of the continuous analog signal as a function of frequency
  • Pg is the power value of the spectrum analyzer 409 as a function of frequency
  • Pg and Px are read in real time through the meter.
  • Gt is the standard gain of the wideband gain reference antenna. It can be learned from the specification or nameplate of the antenna. Lx can be measured on site by using a measuring instrument.
  • Step S605 performing discrete point interpolation fitting on ⁇ Pc' to obtain a ⁇ Pc curve, which is frequency Continuous function, this parameter is the calibration parameter for the active antenna coexistence co-location spurious performance test in the test environment.
  • the wideband gain reference antenna 302 of Figure 5 can also be one or more.
  • the tester replaces the gain reference antenna with active antenna system 702 on antenna turntable 306 and is coupled to baseband processing unit 708 via fiber 704, as shown in FIG.
  • test process includes:
  • step S801 the active antenna system and the baseband processing unit are activated and start working, and the tester adjusts the system to be tested, so that the active antenna system is in the transmitting mode, and transmits the fixed-oriented wireless beam.
  • step S802 the tester adjusts the antenna turntable so that the active antenna system and the receiving antenna reach the best direction (main beam direction) and polarization alignment on the horizontal and vertical directions.
  • the tester configures the active antenna system parameters to generate carrier signals of different standards (GSM, CDMA, WCDMA or LTE, etc.), and the active antenna system generates spatial beams.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • step S804 the tester reads the power value Pg of the coexisting co-located spurious frequency point through the spectrum analyzer, and records it as a function of frequency.
  • the recorded Pg is the spurious power of the active antenna system at the antenna feed port (the test link between the active antenna system and the baseband processing unit is connected by fiber, the fiber link is not attenuated), and the gain obtained by the transmit antenna array is obtained.
  • the formula is expressed as:
  • the EIRPs of the main beam direction can be obtained by the above formula, which is a function of frequency. According to this, the coexistence co-location spurious performance of the main beam direction of the active antenna system can be tested.
  • test environment When testing coexisting co-location spurs in the non-main beam direction, the test environment is also set up as shown in Figure 7.
  • test process includes:
  • Step S901 the tester places the active antenna system horizontally (or vertically) on the antenna turntable, adjusts the system to be tested, enables the active antenna system and the baseband processing unit to start up and work normally, and configures parameters such that the active antenna system is in the transmitting mode. And emit a fixed-pointing wireless beam.
  • Step S902 the tester adjusts the antenna turntable so that the active antenna system and the receiving antenna reach the optimal pointing (main beam direction) and polarization alignment in the horizontal and vertical directions, and ensure the measured power value Pg of the spectrum analyzer at the signal frequency point. For the biggest.
  • the tester configures the active antenna system parameters to generate carrier signals of different standards (GSM, CDMA, WCDMA or LTE, etc.), and the active antenna system generates spatial beams.
  • GSM Global System for Mobile Communications
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • Step S904 testing the turntable in the plane of the vertical direction (or horizontal direction) of the active antenna (clockwise or counterclockwise), measuring the coexisting co-located spurious frequency power value Pg by the spectrum analyzer, and using it as the frequency And the function of the angle is recorded, and the EIRPs of the non-main beam direction of the vertical plane (or horizontal plane) of the active antenna system can be calculated by the formula (7), which is a function of frequency and angle. According to this, the coexistence co-location spurious performance test of the non-main beam direction of the active antenna system can be implemented.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may employ hardware embodiments, software embodiments, or junctions. In the form of an embodiment of the software and hardware aspects. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种测试有源天线系统共存共址杂散性能指标的方法。所述测试方法包括:通过构建测试环境校准获得环境校准参数、测试人员将有源天线系统设置在获得了校准参数的测试环境中,调整待测系统,使有源天线系统发射无线波束,经过空间传输给接收天线,根据接收天线接收到的信号和测试环境校准参数,确定有源天线系统的共存共址杂散性能指标。

Description

一种测试有源天线系统共存共址杂散指标的方法 技术领域
本发明涉及有源天线系统的无线指标测试技术领域,尤其涉及一种测试有源天线系统共存共址杂散指标的方法。
背景技术
有源天线系统区别于传统无线基站,如图1所示它将多通道数字中频处理模块、多通道模拟收发模块与天线阵列集成,具备很多优点。其一,有源天线系统节省了天线外场的安装面积,降低了安装和维护的人力成本投入;其二,有源天线系统将收发通道划分到天线振子级别,节省了多通道收发信机(包含多通道数字中频处理模块和多通道模拟收发模块)与天线之间的射频跳线,消除了不必要的功率损耗;其三,通过对有源天线系统天线振子的不同配置,可以实现波束灵活控制和MIMO(Multiple-input Multiple-output,多入多出)等功能,完成更加灵活的资源动态配置和共享,以达到全网性能最优成本最低的目标。
由于有源天线系统将多通道收发信机和天线阵列集成,多通道收发信机和天线阵列之间接口变成系统内部接口,其唯一的对外接口就是天线辐射界面。传统的有源天线系统测试是将有源和无源部分分开,分别进行有源部分多通道收发信机的传导测试和无源部分天线阵列的辐射场测试两项测试内容,破坏了有源天线系统的完整性,且无法通过有源部分准确地计算并配置各天线振子权值(信号的幅度和相位)来实现无源部分的性能指标测试。
为了避免传统有源天线系统测试的局限性,业界已经在有源天线系统测试中引入无线性能OTA(Over The Air)测试方法和装置。该测试方法和 装置基于EIRP(Effective Isotropic Radiated Power,等效全向辐射功率)的定义,可以将所有下行测试项都在这个基础上统一衡量。在频段密集分配的现实条件下,多种通信制式(多个工作频段)共小区或者共基站时互相产生的杂散干扰,即共存共址杂散在很大程度上影响着通信质量。然而,前述的测试方法和装置仅适用于单频点或者一定工作带宽内的下行无线性能指标测试,无法正确衡量出共存共址杂散这种多种制式(多个频段)共存时的宽频段杂散指标。
对于有源天线系统,其信号是由多通道在空间中进行信号合成,因此其产生的杂散(共存共址杂散是杂散的一种)由相关杂散和不相关杂散组成。对于不相关的杂散,其在空间中形成的杂散电平呈现多方向均匀分布;对于相关的杂散,其在空间中形成的杂散电平分布情况则与实际应用中各通道信号的相关程度有关。我们无法根据主波束方向的杂散性能评估出杂散在空间的电平分布情况。因此,在衡量有源天线系统的发射共存共址杂散特性时,除了需要测试主波束方向的共存共址杂散性能指标,还必须测试非主波束方向的共存共址杂散性能指标。
发明内容
为解决现有存在的技术问题,本发明实施例提供一种测试有源天线系统共存共址杂散性能指标的方法。
本发明实施例提供了一种测试有源天线系统共存共址杂散性能指标的方法,所述方法包括:
测试环境校准,获得环境校准参数;
设置有源天线系统在获得了环境校准参数的测试环境中;
有源天线系统发射无线波束;
测量接收天线接收到的无线波束信号;
根据环境校准参数和接收天线接收到的无线波束信号测量值确定有源 天线系统的共存共址杂散性能指标。
采用本发明实施例所述的方法,能够全面测试有源天线系统在宽频带的共存共址杂散性能指标,实现精确全面的衡量有源天线系统的性能。
附图说明
图1是有源天线系统结构原理图;
图2是本发明实施例所述有源天线系统共存共址杂散指标测试方法流程示意图;
图3是本发明实施例所述测试环境校准方法一的工作原理示意图;
图4是本发明实施例所述测试环境校准方法一的流程图;
图5是本发明实施例所述测试环境校准方法二的工作原理示意图;
图6是本发明实施例所述测试环境校准方法二的流程图;
图7是本发明实施例所述有源天线系统共存共址杂散指标测试方法的工作原理示意图;
图8是本发明实施例所述有源天线系统主波束方向的共存共址杂散指标测试方法流程图;
图9是本发明实施例所述有源天线系统非主波束方向的共存共址杂散指标测试方法流程图。
具体实施方式
在共存共址杂散概念的基础上,本发明实施例结合EIRP的定义,提出EIRPs(Effective Isotropic Radiated Power of Spurious)等效全向杂散辐射功率)的计算方法,即,有源天线系统在天馈口的杂散功率与天线阵列在给定方向上杂散频点的绝对增益之和。用公式表示为:
EIRPs(dBm)=Ps(dBm)+Gs(dBi)     (1)
其中,Ps为有源天线系统在天馈口的杂散功率;
Gs为给定方向上杂散频点的天线阵列绝对增益。
在本发明实施例中,测试人员将有源天线系统设置在可以获得校准参数的测试环境中,调整待测系统,使有源天线系统发射无线波束,经过空间传输给接收天线,根据接收天线接收到的信号和测试环境校准参数,确定有源天线系统的共存共址杂散性能指标。
本发明实施例的测试方法如图2所示,主要包含以下步骤:
步骤S201,测试环境校准,获得校准参数;
步骤S202,在已校准的测试环境中调整有源天线系统和接收天线,获得测试数据;
步骤S203,利用获得的测试数据和环境校准参数获得共存共址杂散指标。
由于测试需要先创建测试环境,相应的测试环境会产生校准参数,下面结合附图对测试环境的建立和测试环境校准参数的获得进行说明。
如附图3所示建立测试环境。在吸波暗室或者空旷无信号干扰的测试场环境301下,安装宽带增益基准天线302在天线转台306上,并通过射频线缆304和矢量网络分析仪308的一端(端口一)相连,另一端与射频线缆305相连,接收天线303安装在天线支架307上,通过射频线缆305连接到矢量网络分析仪308的另一端(端口二)上。
按照图3搭建好测试环境后,按照图4的处理流程进行环境校准:
步骤S401,测试人员调整天线转台306和天线支架307使得宽带增益基准天线302与接收天线303正向对准;
步骤S402,测试人员通过矢量网络分析仪308读出测试环境的校准参数,例如:测试环境在待测共存共址杂散频段的插入损耗S21、空间损耗、线缆插损以及接收天线增益等,并记录这些参数;其中,把S21作为频率的函数记录下来;
所述S21为矢量网络分析仪308的端口一到端口二的插入损耗。
步骤S403,分析已记录的数据,获得环境校准参数。
S21=Gt-Lx-Ls-Ly+Gh=(-Ls+Gh-Ly)+Gt–Lx     (2)
其中,
Gt为宽带增益基准天线的增益;
Ly为射频线缆304的插入损耗;
Lx为射频线缆305的插入损耗;
Ls为测试环境中空间路径损耗。
Gh为接收天线的增益;
上式中,S21已测,Gt是宽带增益基准天线的标准增益,可以从该天线的说明书或铭牌标识获知,Lx可以现场用测量仪器测量得到。
ΔPc=-Ls+Gh-Ly=S21-Gt+Lx     (3)
此参数ΔPc就是在具体的测试环境下测试环境(包括空间损耗、线缆插损、接收天线增益等)的校准参数,它是频率的函数。
若一个宽带增益基准天线的工作频段能够覆盖待测共存共址杂散的频段,只需要使用一个宽带增益基准天线即可;若不能够覆盖待测共存共址杂散的频段,则需要多个增益基准天线构成宽带增益基准天线,多个增益基准天线的所有工作频段能够覆盖待测共存共址杂散的频段。若使用N个增益基准天线,其工作频段分别为频段1~频段N,所有工作频段能够覆盖待测共存共址杂散的所有频段。测试环境校准过程中,先使用第一个增益基准天线(频段1),执行步骤S401~S403,其中Gt为当前增益基准天线的增益,得到频段1对应的校准参数ΔPc1。然后依次使用其它增益基准天线(频段2~频段N),重复执行步骤S401~S403,得到其它频段对应的校准参数ΔPc2~ΔPcN。将ΔPc1~ΔPcN进行插值拟合,最终可以得到待测共存共址杂散频段的环境校准参数ΔPc曲线。
上述测试环境中的矢量网络分析仪可以用信号源和频谱分析仪替代。如附图5所示建立测试环境。在吸波暗室或者空旷无信号干扰的测试场环境301下,安装宽带增益基准天线302在天线转台306上,并通过射频线缆304和信号源508相连;另一端,接收天线303安装在天线支架307上,通过射频线缆305连接到频谱分析仪509上。
按照图5搭建好测试环境后,按照图6的处理流程进行环境校准:
步骤S601,测试人员调整转台306和天线支架307使得增益基准天线302与接收天线303正向对准。
步骤S602,测试人员设置信号源508为一定功率的连续模拟信号,在待测共存共址杂散频段内以一定的频率步进扫频,通过另一端的接收天线303接收此信号输入给频谱分析仪509。
步骤S603,频谱分析仪509测量接收功率,并作为频率的离散函数记录功率值。
步骤S604,分析记录数据,计算方法如下:
Pg-Px=-Lx+Gt-Ls+Gh–Ly=(-Ls+Gh-Ly)+Gt–Lx     (4)
其中,
Px为信号源408输出连续模拟信号的功率值,为频率的函数;
Pg为频谱分析仪409的功率值,为频率的函数;
公式(3)中,Pg和Px通过仪表实时读取,Gt是宽带增益基准天线的标准增益,可以从该天线的说明书或铭牌标识获知,Lx可以现场通过利用测量仪器测量得到,
ΔPc’=(-Ls+Gh-Ly)=Pg–Px-Gt+Lx     (5)
这样可以得到测试环境链路(包括空间损耗、线缆插损、接收天线增益等)的校准参数ΔPc,它是频率的离散函数。
步骤S605,对ΔPc’进行离散点插值拟合,得到ΔPc曲线,它是频率的 连续函数,此参数就是在测试环境下进行有源天线共存共址杂散性能测试的校准参数。
图5中的宽带增益基准天线302,同样可以为一个或多个。
获取上述吸波暗室或者空旷无信号干扰的测试场的校准参数的方法有多种,不限于上述实施例所描述的方法,也可以采用以前测试的校准参数或者根据经验估计的校准参数ΔPc。
在经过校准的测试环境中,测试人员用有源天线系统702替换增益基准天线安装在天线转台306上,并通过光纤704和基带处理单元708相连,如图7所示。
以下结合图8说明测试过程。如图8所示,该测试过程包括:
步骤S801,有源天线系统和基带处理单元启动并开始工作,测试人员调整待测系统,使得有源天线系统处于发射模式,并发射固定指向的无线波束。
步骤S802,测试人员调整天线转台,使有源天线系统与接收天线在水平和俯仰上达到最佳指向(主波束方向)且极化对准。
步骤S803,测试人员配置有源天线系统参数使其产生不同制式(GSM,CDMA,WCDMA或LTE等)的载波信号,有源天线系统产生空间波束。
步骤S804,测试人员通过频谱分析仪读出共存共址杂散频点的功率值Pg,把它作为频率的函数记录下来。
记录下来的Pg为有源天线系统在天馈口的杂散功率(测试环节有源天线系统与基带处理单元之间用光纤连接,该光纤链路无衰减)经过发射天线阵列获得的增益,再经过空间传输的衰减,又经接收天线的增益和线缆的衰弱后的功率,用公式表示为:
Pg=Ps+Gs+(-Ls+Gh-Ly)=Ps+Gs+ΔPc     (6)
EIRPs的计算方法如下:
EIRPs=Ps+Gs=Pg-ΔPc     (7)
通过以上公式计算可以得到主波束方向的EIRPs,它是频率的函数。据此可以实现有源天线系统主波束方向的共存共址杂散性能的测试。
测试非主波束方向上的共存共址杂散指标时,同样按照图7所示搭建测试环境。
以下结合图9说明测试过程。如图9所示,该测试过程包括:
步骤S901,测试人员将有源天线系统水平(或垂直)放置在天线转台上,调整待测系统,使有源天线系统和基带处理单元启动并正常工作,配置参数使得有源天线系统处于发射模式,并发射固定指向的无线波束。
步骤S902,测试人员调整天线转台,使有源天线系统与接收天线在水平和俯仰上达到最佳指向(主波束方向)且极化对准,保证频谱分析仪在信号频点的测量功率值Pg为最大。
步骤S903,测试人员配置有源天线系统参数使其产生不同制式(GSM,CDMA,WCDMA或LTE等)的载波信号,有源天线系统产生空间波束。
步骤S904,在有源天线的垂直方向图(或水平方向图)面内旋转(顺时针或逆时针)测试转台,通过频谱分析仪测量共存共址杂散频点功率值Pg,把它作为频率和角度的函数记录下来,通过公式(7)可以计算得到有源天线系统垂直面(或水平面)非主波束方向的EIRPs,它是频率和角度的函数。据此可以实现有源天线系统非主波束方向的共存共址杂散性能测试。
通过具体实施方式的说明,应当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图示仅是提供参考与说明之用,并非用来对本发明加以限制。同时在不冲突的情况下,实施例和实施例中的特征可以相互组合。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结 合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (10)

  1. 一种测试有源天线系统共存共址杂散性能指标的方法,所述方法包括:
    测试环境校准,获得环境校准参数;
    设置有源天线系统在获得了环境校准参数的测试环境中;
    有源天线系统发射无线波束;
    测量接收天线接收到的无线波束信号;
    根据所述环境校准参数和接收天线接收到的无线波束信号测量值,确定有源天线系统的共存共址杂散性能指标。
  2. 根据权利要求1所述的方法,其中,所述共存共址杂散性能指标是指:有源天线系统全频段共存共址杂散性能指标。
  3. 根据权利要求1所述的方法,其中,所述的测试环境为:吸波暗室或空旷无信号干扰的测试环境。
  4. 根据权利要求1所述的方法,其中,所述的测试环境校准包括:
    在测试场设置发射天线和接收天线,其中所述的发射天线通过射频线缆连接到矢量网络分析仪的第一端口,接收天线通过射频线缆连接到矢量网络分析仪的第二端口;
    调整转台使得发射天线的主波束跟接收天线正向对准;
    通过矢量网络分析仪获得整个校准系统在待测共存共址杂散频段的插入损耗;
    获得校准参数。
  5. 根据权利要求4所述的方法,其中,所述的发射天线为:增益标准天线;所述发射天线的数目为:一个或多个;所述发射天线工作的频点覆盖待测共存共址杂散的频段。
  6. 根据权利要求4所述的方法,其中,所述的矢量网络分析仪为:信号源和频谱分析仪,相应的,
    所述发射天线通过射频线缆跟信号源连接,所述接收天线通过射频线缆跟频谱分析仪连接。
  7. 根据权利要求1所述的方法,其中,所述共存共址杂散性能指标包括:主波束方向共存共址杂散性能指标和非主波束方向共存共址杂散性能指标。
  8. 根据权利要求1所述的方法,其中,所述的有源天线系统共存共址杂散性能指标的确定,包括:根据EIRPs=Pg-ΔPc进行计算;其中,
    所述ΔPc为测试环境校准参数,是频率的函数;所述Pg为频谱分析仪的功率值。
  9. 根据权利要求7所述的方法,其中,所述的非主波束方向共存共址杂散性能指标测试包括:
    将有源天线系统水平或垂直放置在天线转台上;
    使有源天线系统处于发射模式,并发射固定指向的无线波束;
    在有源天线的垂直方向图或水平方向图面内旋转测试转台;
    获取不同角度的发射共存共址杂散频点的功率值;
    根据获得的不同角度的功率值和环境校准参数ΔPc获取非主波束方向共存共址杂散性能指标。
  10. 根据权利要求9所述的方法,其中,所述的在有源天线的垂直方向图或水平方向图面内旋转测试转台为:
    在有源天线的垂直方向图或水平方向图面内顺时针、或逆时针旋转测试转台。
PCT/CN2014/092655 2013-12-13 2014-12-01 一种测试有源天线系统共存共址杂散指标的方法 WO2015085877A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310688319.3 2013-12-13
CN201310688319.3A CN104717025A (zh) 2013-12-13 2013-12-13 一种测试有源天线系统共存共址杂散指标的方法

Publications (1)

Publication Number Publication Date
WO2015085877A1 true WO2015085877A1 (zh) 2015-06-18

Family

ID=53370613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092655 WO2015085877A1 (zh) 2013-12-13 2014-12-01 一种测试有源天线系统共存共址杂散指标的方法

Country Status (2)

Country Link
CN (1) CN104717025A (zh)
WO (1) WO2015085877A1 (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796995A (zh) * 2017-11-30 2018-03-13 上海英恒电子有限公司 微波暗室及相应的天线测试系统
EP3561528A1 (en) * 2018-04-25 2019-10-30 Rohde & Schwarz GmbH & Co. KG Measurement arrangement and measurement method
CN110673136A (zh) * 2019-09-18 2020-01-10 闫军 一种无人机动态rcs及频域的检测系统及方法
CN110932803A (zh) * 2019-11-29 2020-03-27 Oppo广东移动通信有限公司 干扰强度获取方法、装置、终端及存储介质
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试系统、方法、毫米波雷达和计算机可读存储介质
CN112014650A (zh) * 2020-07-14 2020-12-01 深圳捷豹电波科技有限公司 一种天线性能的检测装置及检测方法
CN112461864A (zh) * 2020-10-16 2021-03-09 合肥联宝信息技术有限公司 微波频率信号穿透率测量系统
CN112630548A (zh) * 2020-12-04 2021-04-09 北京无线电计量测试研究所 一种外推法天线增益测量装置及其测量方法
CN113092878A (zh) * 2021-03-31 2021-07-09 北京环境特性研究所 一种w波段环境电磁辐射的测试方法及检测装置
CN113890640A (zh) * 2021-12-08 2022-01-04 深圳东昇射频技术有限公司 一种测试系统构建方法、装置、设备和存储介质
CN114726456A (zh) * 2021-01-05 2022-07-08 中国移动通信有限公司研究院 有源天线测试方法、装置、终端、系统、设备和存储介质
CN116429795A (zh) * 2023-03-27 2023-07-14 中国舰船研究设计中心 一种平板吸波材料现场局部反射率测试系统及方法
CN112816958B (zh) * 2021-01-04 2024-01-30 西安电子科技大学 外场目标与背景复合散射特性的测量方法、系统及应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899362A (zh) * 2015-12-21 2017-06-27 上海新蓦尔通信技术有限公司 一种空中下载测试方法及其装置
CN105703853A (zh) * 2015-12-30 2016-06-22 国网智能电网研究院 一种用于变电站现场的宽频段无线信道衰减测试系统
CN108574541B (zh) * 2017-03-14 2021-07-06 航天信息股份有限公司 天线性能测试装置、方法及系统
CN107991658B (zh) * 2017-11-24 2020-04-24 上海机电工程研究所 毫米波阵列天线径向距离校准方法
CN108375759B (zh) * 2018-04-09 2023-08-01 中国电子科技集团公司第三十八研究所 一种高集成度列线源自动测试装置及测试方法
CN110418364B (zh) * 2019-08-30 2022-07-29 京信网络系统股份有限公司 Ota测试系统及校准、测试方法和装置
CN110730045B (zh) * 2019-10-10 2024-06-28 国家无线电监测中心检测中心 一种无线设备的带外无用发射指标的空中ota性能测试系统
CN113242098B (zh) * 2020-01-22 2024-03-15 南京捷希科技股份有限公司 一种射频性能测试系统及方法
CN111351991A (zh) * 2020-02-17 2020-06-30 中国信息通信研究院 辐射杂散功率测试系统、方法及测试系统的控制方法
CN115060985B (zh) * 2022-06-21 2023-03-24 北京电磁方圆科技有限公司 多通道天线的测试方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684800A (zh) * 2012-03-16 2012-09-19 中兴通讯股份有限公司 有源天线系统下行、上行无线指标的测试方法及装置
CN102830298A (zh) * 2012-07-27 2012-12-19 中兴通讯股份有限公司 一种有源天线系统射频指标及无线指标的测试方法与装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101124010B1 (ko) * 2011-10-21 2012-03-23 네트웍오앤에스 주식회사 불요파 검출 장치용 안테나

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684800A (zh) * 2012-03-16 2012-09-19 中兴通讯股份有限公司 有源天线系统下行、上行无线指标的测试方法及装置
CN102830298A (zh) * 2012-07-27 2012-12-19 中兴通讯股份有限公司 一种有源天线系统射频指标及无线指标的测试方法与装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107796995A (zh) * 2017-11-30 2018-03-13 上海英恒电子有限公司 微波暗室及相应的天线测试系统
EP3561528A1 (en) * 2018-04-25 2019-10-30 Rohde & Schwarz GmbH & Co. KG Measurement arrangement and measurement method
CN110673136A (zh) * 2019-09-18 2020-01-10 闫军 一种无人机动态rcs及频域的检测系统及方法
CN110673136B (zh) * 2019-09-18 2023-01-24 闫军 一种无人机动态rcs及频域的检测系统及方法
CN110932803A (zh) * 2019-11-29 2020-03-27 Oppo广东移动通信有限公司 干扰强度获取方法、装置、终端及存储介质
CN111610377A (zh) * 2020-04-27 2020-09-01 宁波锐眼电子科技有限公司 天线测试系统、方法、毫米波雷达和计算机可读存储介质
CN112014650A (zh) * 2020-07-14 2020-12-01 深圳捷豹电波科技有限公司 一种天线性能的检测装置及检测方法
CN112461864A (zh) * 2020-10-16 2021-03-09 合肥联宝信息技术有限公司 微波频率信号穿透率测量系统
CN112461864B (zh) * 2020-10-16 2022-11-04 合肥联宝信息技术有限公司 微波频率信号穿透率测量系统
CN112630548A (zh) * 2020-12-04 2021-04-09 北京无线电计量测试研究所 一种外推法天线增益测量装置及其测量方法
CN112630548B (zh) * 2020-12-04 2023-11-21 北京无线电计量测试研究所 一种外推法天线增益测量装置及其测量方法
CN112816958B (zh) * 2021-01-04 2024-01-30 西安电子科技大学 外场目标与背景复合散射特性的测量方法、系统及应用
CN114726456B (zh) * 2021-01-05 2024-05-14 中国移动通信有限公司研究院 有源天线测试方法、装置、终端、系统、设备和存储介质
CN114726456A (zh) * 2021-01-05 2022-07-08 中国移动通信有限公司研究院 有源天线测试方法、装置、终端、系统、设备和存储介质
CN113092878A (zh) * 2021-03-31 2021-07-09 北京环境特性研究所 一种w波段环境电磁辐射的测试方法及检测装置
CN113092878B (zh) * 2021-03-31 2023-01-20 北京环境特性研究所 一种w波段环境电磁辐射的测试方法及检测装置
CN113890640A (zh) * 2021-12-08 2022-01-04 深圳东昇射频技术有限公司 一种测试系统构建方法、装置、设备和存储介质
CN116429795A (zh) * 2023-03-27 2023-07-14 中国舰船研究设计中心 一种平板吸波材料现场局部反射率测试系统及方法

Also Published As

Publication number Publication date
CN104717025A (zh) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2015085877A1 (zh) 一种测试有源天线系统共存共址杂散指标的方法
CN107566053B (zh) 射频指标的测试方法、系统及计算机可读存储介质
JP5947978B2 (ja) アクティブアンテナシステム無線周波数インデックスの試験方法及び装置
US11784712B2 (en) Modular cell site installation, testing, measurement, and maintenance tool
US10935584B2 (en) System and method for determining beam dynamics and multi-user performance of base station
US10935583B2 (en) Measurement system and method for performing test measurements
JP5881680B2 (ja) 複数のプローブのネットワークを含む電磁環境をシミュレートするシステム
CN102158242B (zh) 测试ism频段无线通信产品抗干扰能力的系统及测试方法
CN106788791B (zh) 暗室多波面控制器测试系统、方法及装置
CN107959515B (zh) 多天线噪声功率的测量方法和装置
CN103906091A (zh) 一种wifi中无线ap性能检测方法及检测系统
KR20210093346A (ko) 무선 단말의 무선 성능을 테스트하는 방법 및 시스템
US10470009B2 (en) Test device and test method
CN204681386U (zh) 一种卫星定位导航产品空间辐射性能测试工具
EP3522400B1 (en) Beamforming antenna, measurement device, antenna measurement system and method
CN114205859B (zh) 一种无线通信性能多指标测试系统
US10079646B2 (en) System and method for testing antenna arrays
CN107070566B (zh) 智能测试管理
CN107592165B (zh) 一种测试路由器发送功率的方法及系统
US9078218B1 (en) Gain measurement of distributed antenna system (DAS) segments during active communications employing autocorrelation on a combined test signal and communications signal
CN115913421A (zh) 射频指标测量方法、装置、系统、电子设备及存储介质
CN106850095B (zh) X波段月球探测器通信接收与发射兼容性测试和分析方法
Rumney et al. Advances in antenna pattern-based MIMO OTA test methods
US20240171291A1 (en) Method and apparatus for multiple-input multiple-output (mimo) testing user equipment (ue)
US11237197B1 (en) Method and systems for making improved quasi-linear/nonlinear measurements on integrated antenna arrays and elements

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14870427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14870427

Country of ref document: EP

Kind code of ref document: A1