WO2015085859A1 - 一种音频信号的发送、接收方法及装置 - Google Patents

一种音频信号的发送、接收方法及装置 Download PDF

Info

Publication number
WO2015085859A1
WO2015085859A1 PCT/CN2014/092091 CN2014092091W WO2015085859A1 WO 2015085859 A1 WO2015085859 A1 WO 2015085859A1 CN 2014092091 W CN2014092091 W CN 2014092091W WO 2015085859 A1 WO2015085859 A1 WO 2015085859A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
carrier signal
frequency
sample value
audio
Prior art date
Application number
PCT/CN2014/092091
Other languages
English (en)
French (fr)
Inventor
苏伟
肖德银
Original Assignee
国民技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国民技术股份有限公司 filed Critical 国民技术股份有限公司
Publication of WO2015085859A1 publication Critical patent/WO2015085859A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B11/00Transmission systems employing sonic, ultrasonic or infrasonic waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes

Definitions

  • the present invention belongs to the field of communication technologies, and in particular, to a method and an apparatus for transmitting and receiving an audio signal.
  • audio signals including microphone MIC
  • the voltage of the audio signal and the audio signal played by the speaker are relatively small, basically millivolts, and are highly susceptible to interference, and most of the sampling signals of the audio signals of the terminal devices are 44.1KHZ.
  • the number of sampling points per signal period should not be too small, which will result in a lower baud rate of communication when using these terminal devices for audio communication, and it is more susceptible to interference if the communication rate in the wireless air is increased. .
  • Embodiments of the present invention provide a method and an apparatus for transmitting and receiving an audio signal, which are intended to solve the prior art.
  • the terminal device provided has a problem that the baud rate of communication is relatively low when performing audio communication.
  • a method of transmitting an audio signal comprising:
  • Each of the data packets in each group is encoded by using a preselected carrier signal of a different frequency to obtain a coded symbol sample value, and the symbol sample value is superimposed to generate superimposed sample value data;
  • the control horn transmits the superimposed sample value data to the receiving end.
  • the method further includes the following steps:
  • the method further includes the steps of:
  • the third data packet is encoded using an intermediate frequency carrier signal.
  • each of the data packets in each group is encoded by using a preselected carrier signal of a different frequency to obtain a coded symbol sample value, and the symbol sample values are superimposed to generate a superimposed sample.
  • the point value data it also includes:
  • the control DAC converts the superimposed sample value data into an analog signal and outputs it to the horn.
  • an apparatus for transmitting an audio signal comprising:
  • a data dividing unit configured to divide audio data to be transmitted into at least two data packets
  • a packet grouping unit for dividing each two data packets into one group
  • a data packet coding unit configured to encode each of the data packets in each group by using a preselected carrier signal of a different frequency to obtain a coded symbol sample value, and superimpose the symbol sample value to generate an overlay.
  • a data sending control unit configured to control the horn to send the analog signal to the receiving end.
  • the sending device further includes:
  • An alternate data packet generating unit is configured to calculate a value after each of the two data packets is different, and the value is used as the third data packet of the group.
  • the sending device further includes:
  • a frequency selection unit for selecting carrier signals of three different frequencies of low frequency, intermediate frequency and high frequency
  • the packet encoding unit encodes the third data packet generated by the third packet generating unit by using an intermediate frequency carrier signal.
  • the sending device further includes:
  • a data output unit configured to output the superimposed sample value data to a digital to analog converter DAC
  • a data conversion unit for controlling the DAC to convert the superimposed sample value data into an analog signal and output to the horn.
  • a method for receiving an audio signal comprising:
  • Decoding threads of carrier signals of different frequencies are activated according to the frequency value of the carrier signal selected by the transmitting end, and the audio data is decoded by the decoding thread.
  • the decoding thread that starts the carrier signal of the different frequency according to the frequency value of the carrier signal selected by the transmitting end, and after the audio data is decoded by the thread further includes:
  • the data packet on the intermediate frequency carrier signal is incorrect or lost, the data packets on the low frequency and high frequency carrier signals are parsed by the high frequency and low frequency carrier signals;
  • the data packet on the carrier signal or the data packet on the remaining carrier signal is used to obtain the data packet on the other carrier signal.
  • an apparatus for receiving an audio signal comprising:
  • An audio data generating unit configured to start a recording module to perform audio signal recording, and generate audio data
  • a decoding unit configured to start, according to a frequency value of the carrier signal selected by the transmitting end, a decoding thread of a carrier signal of a different frequency, where the audio data is decoded by the decoding thread.
  • the receiving device further includes:
  • a verification unit for verifying whether the decoding result is correct
  • a first parsing unit configured to parse the data packets on the low frequency and high frequency carrier signals from the high frequency and low frequency carrier signals if the data packet on the intermediate frequency carrier signal is incorrect or lost;
  • Second parsing unit for If the data packet on the high frequency or low frequency carrier signal is incorrect or lost, the data packet on the carrier signal or the data packet on the remaining carrier signal is used to obtain the data packet on the other carrier signal.
  • each carrier signal loads different data contents, and two data packets in each group are added by means of data superposition. Simultaneously transmitting to the receiving end at the same time can increase the communication rate of the audio data. For example, taking two data packets of each group in the embodiment as an example, when the symbol rate of the communication link is the same, the time required to complete the transmission of the audio data and the data retransmission once is half of the conventional method, and the communication is half. The rate is twice the efficiency of the traditional method.
  • FIG. 1 is a flowchart showing an implementation of a method for transmitting an audio signal according to Embodiment 1 of the present invention
  • FIG. 2 is a flowchart showing an implementation of a method for transmitting an audio signal according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram showing the beneficial effects of the method for transmitting an audio signal according to Embodiment 2 of the present invention.
  • FIG. 4 is a flowchart showing an implementation of a method for receiving an audio signal according to Embodiment 3 of the present invention.
  • FIG. 5 is a structural block diagram of an apparatus for transmitting an audio signal according to Embodiment 4 of the present invention.
  • FIG. 6 is a structural block diagram of an apparatus for transmitting an audio signal according to Embodiment 5 of the present invention.
  • Figure 7 is a block diagram showing the structure of a receiving apparatus for an audio signal according to a sixth embodiment of the present invention.
  • the audio data to be transmitted is divided into a plurality of data packets, and then each two data packets are grouped into one group, and then each data packet in each group is separately encoded by using a preselected carrier of a different frequency to obtain a coded a symbol sample value, superimposing the symbol sample value, generating superimposed sample value data, and controlling the speaker to send the superimposed sample value data to the receiving end .
  • FIG. 1 is a flowchart showing an implementation of a method for transmitting an audio signal according to Embodiment 1 of the present invention. Details are as follows:
  • step S101 the audio data to be transmitted is divided into at least two data packets.
  • the audio data to be transmitted is subjected to packet processing in a predetermined length and divided into at least two data packets. For example, if the length of the audio data to be transmitted is 16 bits and the predetermined length is 4 bits, the audio data to be transmitted can be divided into four 4-bit data packets.
  • step S102 every two data packets are grouped into one group.
  • each two data packets are grouped into one group, and all data packets are divided into several groups, if step S201 The number of packets obtained by the division is an odd number, and the last packet is combined with an all-zero packet, and the two form a group.
  • two data packets are divided into one group.
  • other numbers of data packets may be divided into one group, which is not limited herein, but the number of data packets in each group is two. Only two carrier signals are needed, and when the number of data packets in each group increases, the number of carriers required is larger.
  • the working frequency of each carrier signal is different, but the modulation mode is the same, and the data content transmitted on each carrier signal is different, but the data transmitted on each carrier signal has relevance in content.
  • the data transmitted on the first carrier signal is the first data packet in each group, and the data transmitted on the second carrier signal is the second data packet in each group;
  • the data transmitted on one carrier signal is the second data packet in each group, and the data transmitted on the second carrier signal is the first data packet in each group, which is not limited herein.
  • each data packet in each group is encoded by using a preselected carrier signal of a different frequency to obtain a coded symbol sample value, and the symbol sample value is superimposed to generate superimposed sample value data.
  • the carrier signals of two frequencies can be selected in advance as two carrier signals, and the frequencies of the two carrier signals are respectively low frequency 5K. And high frequency 12K, when choosing, try to avoid the 2nd harmonic and 3rd harmonic of low frequency. Then use low frequency 5K and high frequency 12K
  • the two data packets in each group are separately modulated and coded, the symbol sample values encoded by the two data packets are calculated, and the sample values are superimposed to generate superimposed sample value data.
  • the superimposed sample value data is output to a digital to analog converter (Digital to analog Converter, DAC), and then control the DAC to convert the superimposed sample value data into an analog signal and output to the horn, and finally send the analog signal to the receiving end by the horn.
  • DAC Digital to analog Converter
  • step S104 the control horn transmits the superimposed sample value data to the receiving end.
  • the audio data to be transmitted is first divided into a plurality of data packets, and then each two data packets are grouped into one group, and then each data packet in each group is separately encoded by using a preselected carrier of a different frequency. Obtaining the encoded symbol sample value, superimposing the symbol sample value, generating superimposed sample value data, and outputting the superimposed sample value data to the speaker, and finally transmitting the superimposed sample value data by the speaker To the receiving end. Since two data packets in each group are modulated and encoded by carrier signals of different frequencies, each carrier signal loads different data contents, and two data packets are simultaneously transmitted to the receiving end at the same time by means of data superposition. Increase the communication rate of audio data.
  • the symbol rate of the communication link is the same, the time required to complete the transmission of the audio data and the data retransmission once is half of the conventional method, and the communication is half.
  • the rate is twice the efficiency of the traditional method.
  • FIG. 2 is a flowchart showing an implementation of a method for transmitting an audio signal according to Embodiment 2 of the present invention. Details are as follows:
  • step S201 the audio data to be transmitted is divided into at least two data packets.
  • step S202 every two data packets are grouped into one group.
  • step S203 the value after each of the two data packets is different, and the value is taken as the third data packet of the group.
  • the value of the XOR processing of the two data packets in each group is calculated, and the value is used as the third data packet of the group.
  • each data packet in each group is encoded by using a preselected carrier signal of a different frequency to obtain a coded symbol sample value, and the symbol sample value is superimposed to generate superimposed sample value data.
  • step S103 of the first embodiment Based on this, a frequency is selected which is used as the frequency of the carrier signal modulated and encoded for the third data packet in each group.
  • the selected frequency is an intermediate frequency of 8K. Therefore, you can use the intermediate frequency 8K separately. Modulation coding is performed on the third packet in each group.
  • the third data packet may not be placed on the intermediate frequency, but according to the actual application, when the frequency response of the mobile terminal is analyzed, the mobile terminal responds better to the intermediate frequency, so the first data packet and the second data are used.
  • the third data packet obtained after the XOR of the packet is put on the intermediate frequency for modulation and coding, and can better perform the XOR result with the other two data packets.
  • pre-selected 3 packets for each of the 3 packets in each group pre-selected 3 packets for each of the 3 packets in each group.
  • the carrier signals of different frequencies are encoded to obtain the encoded symbol sample values, and then the superposition of the sample values is performed to generate superimposed sample value data, and finally the generated superimposed sample value data is output to the digital analog conversion.
  • the DAC converts the superimposed sample value data into an analog signal by a DAC and outputs it to a horn, and finally the analog signal is sent by the horn to the receiving end.
  • the frequency of these three carrier signals is low frequency 5K Medium frequency 8K and high frequency 12K.
  • step S205 the control horn transmits the superimposed sample value data to the receiving end.
  • each carrier signal since two data packets in each group are modulated and coded by carrier signals of different frequencies, each carrier signal loads different data contents, and two data packets are simultaneously sent to the same time by data superposition. At the receiving end, the communication rate of the audio data can be increased.
  • each group includes a third data packet, the third data packet is a value obtained by XOR processing of two data packets in each group, and the receiving end receives the audio signal sent by the transmitting end. After that, even if one packet in each group is lost, the other two carrier signals can theoretically resolve the data content included in the packet of the lost packet by the algorithm relationship, thereby improving the communication success rate of the system.
  • FIG. 3 can briefly explain the effects that can be achieved by the method of the second embodiment, and the specific description is as follows:
  • the audio data to be sent as D In the traditional way, the single-carrier method is used to transmit the audio signal, and the frequency of the carrier is f0. In this embodiment, three kinds of carrier signals of different frequencies are used, so it can be called multi-carrier mode, and the frequency of the carrier signal used by the multi-carrier mode is f0, f1, f2, and the data is retransmitted once, from the figure. 3 can be seen:
  • the data to be transmitted is divided into data packets d0 and d1, where carrier f0
  • the data content sent is d0, d1; the data content sent by carrier f1 is d0 XOR d1; the data content sent by carrier f2 is d1, d0; It can be seen that in the multi-carrier mode, the time for completing one audio data transmission is T1, and the time required to complete data retransmission is T2.
  • the multi-carrier method completes the data D.
  • the time required for transmission and data retransmission is half that of the conventional method, so that the communication rate of the application data in the multi-carrier mode is twice as efficient as the conventional method.
  • FIG. 4 is a flowchart showing an implementation process of a method for receiving an audio signal according to Embodiment 3 of the present invention, where the receiving end is taken as an example for description. Details are as follows:
  • step S401 the recording module is started to perform audio signal recording to generate audio data.
  • the receiving end first performs system initialization, starts the recording module to perform audio signal recording, and generates audio data.
  • step S402 The decoding thread of the carrier signal of different frequencies is activated according to the frequency value of the carrier signal selected by the transmitting end, and the audio data is decoded by the decoding thread.
  • the receiving end may start a decoding thread of a carrier signal of a different frequency according to a frequency value of the carrier signal selected by the transmitting end, and decode the audio data by the corresponding decoding thread.
  • the transmitting end if the frequency of the carrier signal selected by the transmitting end is low frequency 5K and high frequency 12K, it indicates that the audio data is from the low frequency 5K And the high frequency 12K encoded audio data, the receiving end starts the decoding thread corresponding to the low frequency 5K and the high frequency 12K respectively, and the two threads respectively have the low frequency 5K and the high frequency 12K
  • the encoded audio data is decoded to obtain a first data packet and a second data packet in each group sent by the transmitting end.
  • the audio data is represented by the low frequency. 5K, IF 8K and high frequency 12K encoded audio data, the receiving end starts the low frequency 5K, the intermediate frequency 8K and the high frequency 12K respectively corresponding to the decoding thread, respectively, the two threads respectively to the low frequency 5K
  • the intermediate frequency 8K and the high frequency 12K encoded audio data are decoded to obtain the first data packet, the third data packet and the second data packet in each group sent by the transmitting end.
  • step S402 the following steps may be further included:
  • step S403 it is verified whether the decoding result is correct. If it is correct, step S404 is performed. Otherwise, if the data packet on the intermediate frequency carrier signal is incorrect or lost, step S405 is performed; if the data packet on the high frequency or low frequency carrier signal is incorrect or lost, step S406 is performed.
  • step S404 the decoding result is directly output.
  • step S405 the packets on the low frequency and high frequency carrier signals are resolved from the high frequency and low frequency carrier signals.
  • step S406 In the data packet on the carrier signal or the data packet on the remaining carrier signal, the data packet on the other carrier signal is obtained.
  • FIG. 5 is a diagram showing an apparatus for transmitting an audio signal according to Embodiment 4 of the present invention.
  • the specific structural block diagrams for convenience of explanation, only show parts related to the embodiments of the present invention.
  • the transmitting device 5 of the audio signal includes: a data dividing unit 51, a packet grouping unit 52, and a packet encoding unit 53 , digital to analog converter 54 and speaker 55 .
  • the data dividing unit 51 is configured to divide the audio data that needs to be transmitted into at least two data packets;
  • a packet grouping unit 52 configured to divide each two data packets into one group
  • Packet coding unit 53 For encoding each data packet in each group by using a pre-selected carrier of a different frequency, obtaining a coded symbol sample value, and superimposing the symbol sample value to generate superimposed sample value data;
  • the data sending control unit 54 is configured to control the horn to send the superimposed sample value data to the receiving end.
  • the sending device 5 further includes:
  • a data output unit configured to output the superimposed sample value data to a digital to analog converter DAC
  • a data conversion unit for controlling the DAC to convert the superimposed sample value data into an analog signal and output to the horn.
  • the apparatus for transmitting an audio signal according to the embodiment of the present invention can be applied to the foregoing corresponding method embodiment 1.
  • the description is not repeated here.
  • the transmitting device 6 of the audio signal includes the data dividing unit 51 and the packet grouping unit 52 in the fourth embodiment.
  • the packet encoding unit 53 and the data transmission control unit 54 further include an alternate packet generating unit 61.
  • the standby data packet generating unit 61 is configured to calculate the data packet grouping unit 52.
  • the value of each of the two packets in each group is different or after, and the value is taken as the third packet of the group.
  • the sending device further includes:
  • a frequency selection unit for selecting carrier signals of three different frequencies of low frequency, intermediate frequency and high frequency
  • the packet encoding unit 53 generates the generated signal by the intermediate frequency carrier signal to the spare packet generating unit 61.
  • the third packet is encoded.
  • the apparatus for transmitting an audio signal according to the embodiment of the present invention may be applied to the foregoing corresponding method embodiment 2.
  • the description is not repeated here.
  • FIG. 7 shows an audio signal receiving apparatus provided in Embodiment 6 of the present invention.
  • the receiving device 7 of the audio signal includes an audio data generating unit 71 and a decoding unit 72.
  • the audio data generating unit 71 is configured to start the recording module to perform audio signal recording, and generate audio data.
  • Decoding unit 72 And a decoding thread for starting a carrier signal of a different frequency according to a frequency value of the carrier signal selected by the transmitting end, where the decoding data is decoded by the decoding thread.
  • the device 7 further includes:
  • a verification unit for verifying whether the decoding result is correct
  • a first parsing unit configured to parse the data packets on the low frequency and high frequency carrier signals from the high frequency and low frequency carrier signals if the data packet on the intermediate frequency carrier signal is incorrect or lost;
  • Second parsing unit for If the data packet on the high frequency or low frequency carrier signal is incorrect or lost, the data packet on the carrier signal or the data packet on the remaining carrier signal is used to obtain the data packet on the other carrier signal.
  • the apparatus for receiving an audio signal according to the embodiment of the present invention may be applied to the foregoing third embodiment of the method.
  • each unit included is only divided according to functional logic, but is not limited to the above division, as long as the corresponding function can be implemented; in addition, the specific name of each functional unit It is also for convenience of distinguishing from each other and is not intended to limit the scope of protection of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Transmitters (AREA)
  • Telephone Function (AREA)

Abstract

一种音频信号的发送、接收方法及装置,该发送方法包括:将需要发送的音频数据划分成至少两个数据包(S101);将每两个数据包划分为一组(S102);对每组中的每个数据包分别采用预选的不同频率的载波进行编码,得到编码后的符号样点值,对符号样点值进行叠加处理,生成叠加样点值数据(S103);控制喇叭发送叠加样点值数据至接收端(S104)。

Description

一种音频信号的发送、接收方法及装置 技术领域
本发明属于 通信技术 领域,尤其涉及一种 音频信号的发送、接收方法及装置 。
背景技术
在智能手机普及的今天,手机对外的通信接口,外围设备也各种各样,而其中音频输入输出接口的通用性最强,基本所有的手机和平板电脑都有喇叭和麦克风这种音频输入输出接口,因此音频通信系统和应用也将慢慢普及。
但是,由于通过手机和平板电脑等终端设备的音频输入输出接口输入或者输出的音频信号(包括麦克风 MIC 录取的音频信号和喇叭播放的音频信号)的电压比较小,基本都是毫伏级的,极易受干扰,而且大部分终端设备的音频信号的采样频率大部分都是 44.1KHZ ,而每个信号周期的采样点的数目又不能太少,这将导致采用这些终端设备进行音频通信时,通信的波特率比较低,而如果提高无线空中的通信速率,又比较容易受干扰。
发明内容
本发明实施例提供了一种 音频信号的发送、接收方法及装置 ,旨在解决现有技术 提供的终端设备,在进行音频通信时,通信的波特率比较低的 问题。
一方面,提供一种 音频信号的发送 方法,所述方法包括:
将需要发送的音频数据划分成至少两个数据包;
将每两个数据包划分为一组;
对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据;
控制喇叭发送所述叠加样点值数据至接收端。
进一步地,在所述将每两个数据包划分为一组之后,还包括步骤:
计算出每两个数据包相异或后的值,将该值作为本组的第三个数据包 。
进一步地,在 将需要发送的音频数据划分成至少两个数据包之前 ,还包括步骤:
选择低频、中频和高频三个不同频率的载波信号;
采用中频的载波信号对所述第三个数据包进行编码。
进一步地,在所述对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据之后,还包括:
将所述叠加样点值数据输出至数字模拟转换器 DAC ;
控制 DAC 将所述 叠加样点值数据 转换成模拟信号并输出至喇叭 。
另一方面,提供一种音频信号的发送装置,所述发送装置包括:
数据划分单元,用于将需要发送的音频数据划分成至少两个数据包;
数据包分组单元,用于将每两个数据包划分为一组;
数据包编码单元,用于对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据;
数据发送控制单元,用于控制喇叭发送所述模拟信号至接收端。
进一步地,所述发送装置还包括:
备用数据包生成单元,用于计算出每两个数据包相异或后的值,将该值作为本组的第三个数据包 。
进一步地, 所述发送装置还包括:
频率选择单元,用于 选择低频、中频和高频三个不同频率的载波信号;
所述 数据包编码单元 采用中频的载波信号对所述 第三个数据包生成单元生成的 第三个数据包进行编码。
进一步地,所述发送装置还包括:
数据输出单元,用于将所述叠加样点值数据输出至数字模拟转换器 DAC ;
数据转换单元,用于控制 DAC 将所述 叠加样点值数据 转换成模拟信号并输出至喇叭 。
再一方面,提供一种音频信号的接收方法,所述方法包括:
启动录音模块进行音频信号的录音,生成音频数据;
根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述解码线程对所述音频数据进行解码。
进一步地,在所述根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述线程对所述音频数据进行解码之后,还包括:
验证解码结果是否正确;
如果中频载波信号上的数据包错误或者丢失,则由高频和低频载波信号解析出低频和高频载波信号上的数据包;
如果高频或者低频载波信号上的数据包错误或者丢失,用载波信号上的数据包异或其余一路载波信号上的数据包得到另外一路载波信号上的数据包。
又一方面,提供一种音频信号的接收 装置,所述装置包括:
音频数据生成单元,用于启动录音模块进行音频信号的录音,生成音频数据;
解码单元,用于根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述解码线程对所述音频数据进行解码。
进一步地,所述接收装置还包括:
验证单元,用于验证解码结果是否正确;
第一解析单元,用于如果中频载波信号上的数据包错误或者丢失,则由高频和低频载波信号解析出低频和高频载波信号上的数据包;
第二解析单元,用于 如果高频或者低频载波信号上的数据包错误或者丢失,用载波信号上的数据包异或其余一路载波信号上的数据包得到另外一路载波信号上的数据包。
在本发明实施例,由于每组中的两个数据包采用不同频率的载波信号进行调制编码,每个载波信号负载不同的数据内容,且通过数据叠加的方式将每组中的两个数据包在同一时间同时发送给接收端,可以提升音频数据的通信速率。比如,以本实施例中的每组两个数据包为例,在通信链路符号率相同的情况下,完成音频数据的发送以及数据重发一次所需要的时间均为传统方式的一半,通信速率为传统方式的两倍的效率。
附图说明
图 1 是本发明实施例一提供 音频信号 的 发送 方法的实现流程图;
图 2 是本发明实施例 二 提供 音频信号 的 发送 方法的实现流程图;
图 3 是本发明实施例 二 提供 音频信号 的 发送 方法的 有益效果示意 图;
图 4 是本发明实施例 三 提供 音频信号 的 接收 方法的实现流程图;
图 5 是本发明实施例 四 提供的 音频信号 的 发送装置 的 结构框 图 ;
图 6 是本发明实施例 五 提供的 音频信号 的 发送装置 的 结构框 图 ;
图 7 是本发明实施例 六 提供的 音频信号 的 接收装置 的 结构框 图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中, 先将需要发送的音频数据划分成多个数据包,再将每两个数据包划为一组,然后对每组中的每个数据包分别采用预选的不同频率的载波进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据,控制喇叭将所述叠加样点值数据发送至接收端 。
以下结合具体实施例对本发明的实现进行详细描述:
实施例一
图 1 示出了本发明实施例一提供的 发送音频信号的 方法的实现流程, 以发送为例来进行说明, 详述如下:
在步骤 S101 中 , 将需要发送的音频数据划分成至少两个数据包。
在 本实施例中,对需要发送的音频数据以预定的长度进行分包处理,划分成至少两个数据包 。 例如,需要发送的音频数据的长度为 16bit ,预定的长度为 4bit ,则可以将需要发送的音频数据划分成 4 个 4bit 的数据包。
在步骤 S102 中,将每两个数据包划为一组。
在本实施例中,将每两个数据包划为一个组,将所有的数据包分成若干个组,如果步骤 S201 划分得到的数据包的数目为奇数,则最后一个数据包与一个全 0 的数据包组合,两者构成一个组。
其中,本实施例中以两个数据包划分为一组,当然,也可以将其它数目个数据包划分为一组,在此不做限制,只是每一组中数据包的数目为两个时,只需要两路载波信号,而每一组中数据包的数目增多时,需要的载波的数目更多。
其中,每一路载波信号的工作频点不同,但调制方式相同,每一路载波信号上传输的数据内容不同,但每路载波信号上传输的数据在内容上存在关联性。比如,本实施例中,第一路载波信号上传输的数据是每组中的第一个数据包,第二路载波信号上传输的数据是每组中的第二个数据包;当然,第一路载波信号上传输的数据是每组中的第二个数据包,第二路载波信号上传输的数据是每组中的第一个数据包,在此不做限制。
在步骤 S103 中,对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据。
在本实施例中,可以预先选择两个频率的载波信号,作为两路载波信号,这两路载波信号的频率分别为低频 5K 和高频 12K ,选择时,尽量避开低频的 2 次谐波和 3 次谐波。然后采用低频 5K 和高频 12K 分别对每一组中的两个数据包进行调制编码,计算出两个数据包编码后的符号样点值,再对这些样点值进行叠加处理,生成叠加样点值数据。
具体的,本实施例中,将叠加样点值数据输出至数字模拟转换器( Digital to analog converter , DAC ),再控制 DAC 将所述叠加样点值数据转换成模拟信号并输出至喇叭,最后由喇叭将所述模拟信号发送到接收端。
在步骤 S104 中,控制喇叭发送所述叠加样点值数据至接收端。
本实施例,先将需要发送的音频数据划分成多个数据包,再将每两个数据包划为一组,然后对每组中的每个数据包分别采用预选的不同频率的载波进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加,生成叠加样点值数据,并将叠加样点值数据输出至喇叭,最后由喇叭将所述叠加样点值数据发送至接收端。由于每组中的两个数据包采用不同频率的载波信号进行调制编码,每个载波信号负载不同的数据内容,且通过数据叠加的方式将两个数据包在同一时间同时发送给接收端,可以提升音频数据的通信速率。比如,以本实施例中的每组两个数据包为例,在通信链路符号率相同的情况下,完成音频数据的发送以及数据重发一次所需要的时间均为传统方式的一半,通信速率为传统方式的两倍的效率。
本领域普通技术人员可以理解实现上述各实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,相应的程序可以存储于一计算机可读取存储介质中,所述的存储介质,如 ROM/RAM 、磁盘或光盘等。
实施例 二
图 2 示出了本发明实施例 二 提供的 发送音频信号的 方法的实现流程, 以发送端为例来进行说明, 详述如下:
在步骤 S201 中 , 将需要发送的音频数据划分成至少两个数据包。
在步骤 S202 中,将每两个数据包划为一组。
在步骤 S203 中,计算出每两数据包相异或后的值,将该值作为本组的第三个数据包。
在本发明实施例中,计算出每一个组中的两个数据包进行异或处理后的值,将该值作为本组的第三个数据包。
在步骤 S204 中,对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据。
在本发明实施例中,在实施例一步骤 S103 的基础上,再选定一个频率,将该频率作为对每一个组中的第三个数据包进行调制编码的载波信号的频率。
在本实施例中,该选定的频率为中频 8K 。因此,可以分别采用中频 8K 对每一个组中的第三个数据包进行调制编码。
当然,第三个数据包也可以不放在中频上,但是根据在实际应用中,对移动终端的频率响应分析时,移动终端对中频的响应较好,所以将第一数据包和第二数据包进行异或后得到的第三数据包放到中频上进行调制编码,能更好的与其它两路数据包进行异或出结果。
本步骤中,对每组中的 3 个数据包分别采用预选的 3 个不同频率的载波信号进行编码,得到编码后的符号样点值,再对这些符号样点值进行叠加处理,生成叠加样点值数据,最后并将生成叠加样点值数据输出至数字模拟转换器 DAC ,由 DAC 将所述叠加样点值数据转换成模拟信号并输出至喇叭,最后由喇叭发送所述模拟信号至接收端。其中,这 3 路载波信号的频率分别为低频 5K 、中频 8K 和高频 12K 。
在步骤 S205 中,控制喇叭发送所述叠加样点值数据至接收端。
本实施例,由于每组中的两个数据包采用不同频率的载波信号进行调制编码,每个载波信号负载不同的数据内容,且通过数据叠加的方式将两个数据包在同一时间同时发送给接收端,可以提升音频数据的通信速率。另外,每一组中都包括了第三个数据包,该第三个数据包是每组中的两个数据包进行异或处理后得到的值,接收端在接收到发送端发送的音频信号后,即使每一组中有一个数据包发生丢包,其余两路载波信号也能通过算法关系来正常解析出该丢包的数据包所包括的数据内容,提高系统的通信成功率。
图 3 可以简单的说明通过实施例二的这种方式可以达到的效果,具体说明如下:
定义需要发送的音频数据为 D ,传统方式使用单载波方式进行音频信号的发送,设该载波的频率为 f0 ,本实施例中使用 3 种不同频率的载波信号,因此可以称为多载波方式,多载波方式使用的载波信号的频率分别为 f0 , f1 , f2 ,数据重发 1 次,从图 3 中可以看出:
( 1 )、采用传统的单载波方式传输音频数据时,完成一次数据 D 发送的时间为 T2 ,以及完成数据,重发 1 次需要时间 T3 ;
( 2 )、采用多载波方式传输音频数据时,将需要发送的数据划分为数据包 d0 、 d1 ,其中载波 f0 发送的数据内容为 d0 、 d1 ;载波 f1 发送的数据内容为 d0 XOR d1 ;载波 f2 发送的数据内容为 d1 、 d0 ;由图 3 可知,在多载波方式下,完成一次音频数据发送的时间为 T1 ,完成数据重发 1 次需要时间为 T2 。
因此,在通信链路符号率相同的情况下,多载波方式完成数据 D 的发送以及数据重发一次所需要的时间均为传统方式的一半,使得在多载波方式下应用数据的通信速率为传统方式的两倍的效率。
实施例 三
图 4 示出了本发明实施例 三 提供的 音频信号的接收 方法的实现流程, 以接收端为例来进行说明, 详述如下:
在步骤 S401 中,启动录音模块进行音频信号的录音,生成音频数据。
本发明实施例中,接收端先进行系统初始化,启动录音模块进行音频信号的录音,生成音频数据。
在步骤 S402 中,根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述解码线程对所述音频数据进行解码。
本发明实施例中,接收端可以根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由相应的解码线程对音频数据进行解码。
其中,发送端如果选择的载波信号的频率是 低频 5K 和高频 12K ,则表示音频数据是由低频 5K 和高频 12K 编码的音频数据,接收端启动低频 5K 和高频 12K 分别对应的解码线程,由该两个线程分别对低频 5K 和高频 12K 编码的音频数据进行解码,得到发送端发送的每一组中的第一数据包和第二数据包。
发送端如果选择的载波信号的频率是 低频 5K 、中频 8K 和高频 12K ,则表示音频数据是由低频 5K 、中频 8K 和高频 12K 编码的音频数据,接收端启动低频 5K 、中频 8K 和高频 12K 分别对应的解码线程,由该两个线程分别对低频 5K 、中频 8K 、高频 12K 编码的音频数据进行解码,得到发送端发送的每一组中的第一数据包、第三数据包和第二数据包。
其中,作为本发明的一个优选实施例,在步骤 S402 之后,还可以包括以下步骤:
在步骤 S403 中,验证解码结果是否正确,如果正确,则执行步骤 S404 ;否则,如果中频载波信号上的数据包错误或者丢失,则执行步骤 S405 ;如果高频或者低频载波信号上的数据包错误或者丢失,则执行步骤 S406 。
在步骤 S404 中,直接输出解码结果。
在步骤 S405 中,由高频和低频载波信号解析出低频和高频载波信号上的数据包。
在步骤 S406 中,用载波信号上的数据包异或其余一路载波信号上的数据包得到另外一路载波信号上的数据包。
实施例 四
图 5 示出了本发明实施例 四 提供的 音频信号的发送装置 的具体结构框图,为了便于说明,仅示出了与本发明实施例相关的部分。 该音频信号的发送装置 5 包括:数据划分单元 51 、数据包分组单元 52 、数据包编码单元 53 、 数字模拟转换器 54 和 喇叭 55 。
其中,数据划分单元 51 ,用于将需要发送的音频数据划分成至少两个数据包;
数据包分组单元 52 ,用于将每两个数据包划分为一组;
数据包编码单元 53 ,用于对每组中的每个数据包分别采用预选的不同频率的载波进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据;
数据发 送控制单元 54 ,用于控制喇叭发送所述 叠加样点值数据 至接收端。
进一步地,所述发送装置 5 还包括:
数据输出单元,用于将所述叠加样点值数据输出至数字模拟转换器 DAC ;
数据转换单元,用于控制 DAC 将所述 叠加样点值数据 转换成模拟信号并输出至喇叭 。
本发明实施例提供的 音频信号的发送装置 可以应用在前述对应的方法实施例 一 中,详情参见上述实施例 一 的描述,在此不再赘述。
实施例 五
图 6 示出了本发明实施例 五 提供的 音频信号的发送装置 的具体结构框图,为了便于说明,仅示出了与本发明实施例相关的部分。 该音频信号的发送装置 6 包括实施例四中的数据划分单元 51 、数据包分组单元 52 、数据包编码单元 53 和 数据发送控制单元 54 ,还包括备用数据包生成单元 61 。
其中,备用数据包生成单元 61 ,用于计算出数据包分组单元 52 划分的每一组中的每两个数据包相异或后的值,将该值作为本组的第三个数据包。
进一步地,所述发送装置还包括:
频率选择单元,用于 选择低频、中频和高频三个不同频率的载波信号;
所述 数据包编码单元 53 采用中频的载波信号对所述 备用数据包生成单元 61 生成的 第三个数据包进行编码 。
本发明实施例提供的 音频信号的发送装置 可以应用在前述对应的方法实施例 二 中,详情参见上述实施例 二 的描述,在此不再赘述。
实施例 六
图 7 示出了本发明实施例 六 提供的 音频信号的接收装置 的具体结构框图,为了便于说明,仅示出了与本发明实施例相关的部分。 该音频信号的接收装置 7 包括 音频数据生成单元 71 和解码单元 72 。
其中,音频数据生成单元 71 ,用于启动录音模块进行音频信号的录音,生成音频数据;
解码单元 72 ,用于根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述解码线程对所述音频数据进行解码。
进一步地,作为本发明的一个优选实施例,所述装置 7 还包括:
验证单元,用于验证解码结果是否正确;
第一解析单元,用于如果中频载波信号上的数据包错误或者丢失,则由高频和低频载波信号解析出低频和高频载波信号上的数据包;
第二解析单元,用于 如果高频或者低频载波信号上的数据包错误或者丢失,用载波信号上的数据包异或其余一路载波信号上的数据包得到另外一路载波信号上的数据包。
本发明实施例提供的 音频信号的接收装置 可以应用在前述对应的方法实施例 三 中,详情参见上述实施例 三 的描述,在此不再赘述。
值得注意的是,上述系统实施例中,所包括的各个单元只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,各功能单元的具体名称也只是为了便于相互区分,并不用于限制本发明的保护范围。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种 音频信号的发送 方法,其特征在于,所述方法包括:
    将需要发送的音频数据划分成至少两个数据包;
    将每两个数据包划分为一组;
    对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据;
    控制喇叭发送所述叠加样点值数据至接收端。
  2. 如权利要求 1 所述的方法,其特征在于,在所述将每两个数据包划分为一组之后,还包括步骤:
    计算出每两个数据包相异或后的值,将该值作为本组的第三个数据包 。
  3. 如权利要求 2 所述的方法,其特征在于,在 将需要发送的音频数据划分成至少两个数据包之前 ,还包括步骤:
    选择低频、中频和高频三个不同频率的载波信号;
    采用中频的载波信号对所述第三个数据包进行编码。
  4. 如权利要求 1 所述的方法,其特征在于,在所述对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据之后,还包括:
    将所述叠加样点值数据输出至数字模拟转换器 DAC ;
    控制 DAC 将所述 叠加样点值数据 转换成模拟信号并输出至喇叭 。
  5. 一种音频信号的发送装置,其特征在于,所述发送装置包括:
    数据划分单元,用于将需要发送的音频数据划分成至少两个数据包;
    数据包分组单元,用于将每两个数据包划分为一组;
    数据包编码单元,用于对每组中的每个数据包分别采用预选的不同频率的载波信号进行编码,得到编码后的符号样点值,对所述符号样点值进行叠加处理,生成叠加样点值数据;
    数据发送控制单元,用于控制喇叭发送所述模拟信号至接收端。
  6. 如权利要求 5 所述的发送装置,其特征在于,所述发送装置还包括:
    备用数据包生成单元,用于计算出每两个数据包相异或后的值,将该值作为本组的第三个数据包 。
  7. 如权利要求 6 所述的发送装置,其特征在于, 所述发送装置还包括:
    频率选择单元,用于 选择低频、中频和高频三个不同频率的载波信号;
    所述 数据包编码单元 采用中频的载波信号对所述 第三个数据包生成单元生成的 第三个数据包进行编码。
  8. 如权利要求 5 所述的发送装置,其特征在于,所述发送装置还包括:
    数据输出单元,用于将所述叠加样点值数据输出至数字模拟转换器 DAC ;
    数据转换单元,用于控制 DAC 将所述 叠加样点值数据 转换成模拟信号并输出至喇叭 。
  9. 一种音频信号的接收方法,其特征在于,所述方法包括:
    启动录音模块进行音频信号的录音,生成音频数据;
    根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述解码线程对所述音频数据进行解码。
  10. 如权利要求 9 所述的方法,其特征在于,在所述根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述线程对所述音频数据进行解码之后,还包括:
    验证解码结果是否正确;
    如果中频载波信号上的数据包错误或者丢失,则由高频和低频载波信号解析出低频和高频载波信号上的数据包;
    如果高频或者低频载波信号上的数据包错误或者丢失,用载波信号上的数据包异或其余一路载波信号上的数据包得到另外一路载波信号上的数据包。
  11. 一种音频信号的接收 装置,其特征在于,所述装置包括:
    音频数据生成单元,用于启动录音模块进行音频信号的录音,生成音频数据;
    解码单元,用于根据发送端选择的载波信号的频率值,启动不同频率的载波信号的解码线程,由所述解码线程对所述音频数据进行解码。
  12. 如权利要求 11 所述的接收装置,其特征在于,所述接收装置还包括:
    验证单元,用于验证解码结果是否正确;
    第一解析单元,用于如果中频载波信号上的数据包错误或者丢失,则由高频和低频载波信号解析出低频和高频载波信号上的数据包;
    第二解析单元,用于 如果高频或者低频载波信号上的数据包错误或者丢失,用载波信号上的数据包异或其余一路载波信号上的数据包得到另外一路载波信号上的数据包。
PCT/CN2014/092091 2013-12-09 2014-11-24 一种音频信号的发送、接收方法及装置 WO2015085859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310659758.1A CN104700837B (zh) 2013-12-09 2013-12-09 一种音频信号的发送、接收方法及装置
CN201310659758.1 2013-12-09

Publications (1)

Publication Number Publication Date
WO2015085859A1 true WO2015085859A1 (zh) 2015-06-18

Family

ID=53347892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092091 WO2015085859A1 (zh) 2013-12-09 2014-11-24 一种音频信号的发送、接收方法及装置

Country Status (2)

Country Link
CN (1) CN104700837B (zh)
WO (1) WO2015085859A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790854B (zh) * 2016-03-01 2018-11-20 济南中维世纪科技有限公司 一种基于声波的短距离数据传输方法及装置
CN110007894B (zh) * 2019-03-29 2021-01-15 百度在线网络技术(北京)有限公司 用于发送音频信息的方法及装置
CN111371466A (zh) * 2020-03-09 2020-07-03 珠海格力电器股份有限公司 一种可提高单位时间通讯速率的通信方法、装置及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001553A1 (en) * 2002-07-01 2004-01-01 Jack Steentra Communication using audible tones
CN101390315A (zh) * 2006-02-22 2009-03-18 株式会社Ntt都科摩 音响信号传送系统、调制装置、解调装置以及音响信号传送方法
CN102394724A (zh) * 2011-11-01 2012-03-28 南京音优行信息技术有限公司 一种基于双音多频声波的高可靠性数据传输方法及装置
CN102546032A (zh) * 2012-01-20 2012-07-04 北京印天网真科技有限公司 无线发射、接收方法和装置以及无线通信方法和系统
CN202513951U (zh) * 2012-02-27 2012-10-31 华南理工大学 基于辅助导频的多子带水声抗多普勒调制解调装置
CN103312419A (zh) * 2012-03-07 2013-09-18 苏州汉朗光电有限公司 基于音频或超声波的数据通讯方法和系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040001553A1 (en) * 2002-07-01 2004-01-01 Jack Steentra Communication using audible tones
CN101390315A (zh) * 2006-02-22 2009-03-18 株式会社Ntt都科摩 音响信号传送系统、调制装置、解调装置以及音响信号传送方法
CN102394724A (zh) * 2011-11-01 2012-03-28 南京音优行信息技术有限公司 一种基于双音多频声波的高可靠性数据传输方法及装置
CN102546032A (zh) * 2012-01-20 2012-07-04 北京印天网真科技有限公司 无线发射、接收方法和装置以及无线通信方法和系统
CN202513951U (zh) * 2012-02-27 2012-10-31 华南理工大学 基于辅助导频的多子带水声抗多普勒调制解调装置
CN103312419A (zh) * 2012-03-07 2013-09-18 苏州汉朗光电有限公司 基于音频或超声波的数据通讯方法和系统

Also Published As

Publication number Publication date
CN104700837B (zh) 2018-04-24
CN104700837A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
US9118649B2 (en) Method and system for an electronic device with integrated security module
KR101570610B1 (ko) 2-와이어 통신 프로토콜 엔진
EP3022881A1 (en) Transmitting apparatus, receiving apparatus, and signal processing method thereof
WO2015085859A1 (zh) 一种音频信号的发送、接收方法及装置
WO2014208986A1 (en) Data structure for physical layer encapsulation, data structure generating apparatus and method thereof
WO2013168964A1 (en) Apparatus and method of transmitting and receiving packet in a broadcasting and communication system
WO2018153011A1 (zh) 一种面向对讲系统的端到端语音加密装置和加密方法
WO2016190535A1 (ko) 음파 통신 장치 및 방법
WO2016029659A1 (zh) 同步智能设备音乐播放器功能的方法、系统及蓝牙耳机
WO2011147323A1 (zh) 远程控制终端业务的接入认证方法和相关设备及通信系统
SE534566C2 (sv) Förfarande för att kryptera information, som överföres mellan två kommunikationsenheter.
WO2011162531A2 (en) Method and apparatus for transmitting and receiving uplink control information in carrier aggregation environment
CN108377180A (zh) 一种基于stm32的无线保密通信系统
WO2017014591A1 (en) Transmitting apparatus, receiving apparatus, and control methods thereof
WO2016045209A1 (zh) 一种节目切换方法、装置及终端
WO2015074617A1 (zh) 一种传输数据的方法、装置、移动终端及声波通信系统
WO2016078271A1 (zh) 信号的发送、接收方法及装置、系统
WO2015147613A1 (ko) 방송 및/또는 통신 시스템에서 패킷 생성 및 복원 방법 및 장치
WO2014010938A1 (en) Apparatus and method for transmitting/receiving packet in broadcasting and communication system
WO2010047462A1 (ko) 랩터 코드를 위한 싱글 스테이지 디코더와 이를 이용한 심볼 복원 방법 및 무선 통신 장치
WO2013097670A1 (zh) 一种信息传输方法及装置
JP6484409B2 (ja) 送信装置及び受信装置
JP2011010172A (ja) 回線エミュレーション方法および装置
JP5456538B2 (ja) インタフェース回路およびそれを用いた電子機器
WO2013165054A1 (ko) 보조서버를 포함하는 인터넷 프로토콜 사설교환기 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14868776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.16)

122 Ep: pct application non-entry in european phase

Ref document number: 14868776

Country of ref document: EP

Kind code of ref document: A1