WO2015085653A1 - 碳-分子气化燃烧锅炉发电方法 - Google Patents

碳-分子气化燃烧锅炉发电方法 Download PDF

Info

Publication number
WO2015085653A1
WO2015085653A1 PCT/CN2014/001103 CN2014001103W WO2015085653A1 WO 2015085653 A1 WO2015085653 A1 WO 2015085653A1 CN 2014001103 W CN2014001103 W CN 2014001103W WO 2015085653 A1 WO2015085653 A1 WO 2015085653A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
gas
boiler
gasification
molecular
Prior art date
Application number
PCT/CN2014/001103
Other languages
English (en)
French (fr)
Inventor
陈涛
陈科斌
陈俊丽
张健
Original Assignee
陈涛
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310653009.8A external-priority patent/CN103980943B/zh
Priority claimed from CN201410400491.9A external-priority patent/CN104152181A/zh
Application filed by 陈涛 filed Critical 陈涛
Priority to EA201691227A priority Critical patent/EA201691227A1/ru
Priority to KR1020167018557A priority patent/KR20160107179A/ko
Priority to AU2014361632A priority patent/AU2014361632A1/en
Priority to US15/102,616 priority patent/US20160298040A1/en
Priority to CA2933108A priority patent/CA2933108A1/en
Priority to CN201480065842.3A priority patent/CN107001956B/zh
Publication of WO2015085653A1 publication Critical patent/WO2015085653A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/723Controlling or regulating the gasification process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K5/00Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type
    • F01K5/02Plants characterised by use of means for storing steam in an alkali to increase steam pressure, e.g. of Honigmann or Koenemann type used in regenerative installation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/164Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
    • C10J2300/1643Conversion of synthesis gas to energy
    • C10J2300/1653Conversion of synthesis gas to energy integrated in a gasification combined cycle [IGCC]
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1671Integration of gasification processes with another plant or parts within the plant with the production of electricity
    • C10J2300/1675Integration of gasification processes with another plant or parts within the plant with the production of electricity making use of a steam turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/99011Combustion process using synthetic gas as a fuel, i.e. a mixture of CO and H2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the priority of the invention is two Chinese invention patent applications: 201310653009.8, a carbon-based gasification combustion method for a coal-based boiler of a power plant; 201410400491.9, a carbon-molecular gasification combustion boiler (kiln) method.
  • the invention relates to a clean coal-fired power generation method, in particular to a gasification combustion boiler power generation method designed from the molecular level of coal.
  • China's energy status is coal, oil, and poverty. It is a coal-based energy production and consumption country. Coal consumption has accounted for half of the world's total, and more than 80% still use traditional direct combustion methods (grate fire, fluidized bed combustion, pulverized coal combustion, briquette and coal water slurry combustion). Environmental science believes that this direct combustion of coal is also a major source of pollution in China.
  • the present invention proposes the concept of energy utilization and environmental protection of coal:
  • the technical route to achieve this goal is: firstly add the desulfurizer raw coal to the molecular gasifier to remove sulfur and turn it into clean hot gas, and then spray it into the boiler for combustion.
  • the high temperature flue gas is heated by the heat transfer surface of the boiler from the chimney.
  • Discharge, steam (hot water) generated by the boiler drives the steam turbine to generate electricity (heat supply).
  • the molecular gasification furnace adopts a large-interface thin material layer complete oxidation reaction coupling small-section thick layer positive-reduction reaction mechanism gasification; the molecular gasification furnace reduction zone adds a ring temperature measurement point, and the oxidation zone corresponds
  • the annular steam injection hole is also arranged. During operation, it can be regulated by steam according to the temperature change of the measuring point. This regional regulation can meet the process requirements in a timely and balanced manner, ensuring stable gasification reaction; the molecular gasification furnace is lacking.
  • Desulfurization is used to remove sulfur under oxygen conditions (Ca/S is close to 1 proportioning component); the hot gas is burned in the furnace of the boiler with a low excess air coefficient ( ⁇ close to 1), which saves more than 10%.
  • Air which reduces the production of toxic and harmful substances related to oxygen; the boiler has a decoking (dust) chamber added in the lower part, which has the functions of refining coal char and dust removal; the operation process can be based on coal quality and needs. Refined coal char can also be converted to combustion dust removal function at any time.
  • Figure 1 is a flow chart showing the power generation process of a typical gasification combustion boiler of the present invention.
  • Figure 2 is a diagram of a typical modified molecular gasifier and conditioning system of the present invention.
  • Figure 3 is a structural view of a typical symmetrical arrangement of burners from both sides of the boiler of the present invention.
  • Figure 4 is a structural view of a typical burner of the present invention arranged from the three sides of the boiler.
  • Figure 5 is a structural view of a burner arranged on the side of a boiler (kiln) of the present invention.
  • Figure 6 is a structural view of a four-sided symmetrically arranged burner of a very large boiler of the present invention.
  • the raw coal is separated into the granular coal A through the screening process, and the pulverized coal with less than 10 mm is added with calcium (Ca/S is close to 1 proportioning component) to make the briquettes B, and the waste heat is used to bake the qualified dry coal ball C with water (this kind of coal preparation system ratio)
  • the coal milling system saves more than 50% of electricity), and then the granular coal A and the dry coal ball C are fed into the molecular gasifier 1 by the coal feeder; the gasifying agent is fed from the bottom of the furnace through the furnace (this fuel is produced).
  • the gasification agent pressure of gas is generally less than 0.5kpa, which is 58% lower than the existing pulverized coal and fluidized bed combustion technology ⁇ 1.2kpa, corresponding to 58% power saving; the slag is discharged from the bottom of the furnace.
  • the molecular gasifier 1 adopts an original large-interface thin-layer layer complete oxidation reaction 1-6 coupling small-section thick layer forward reduction reaction 1-5 mechanism gasification, this gasification process designed from the molecular level, It can ensure the orderly reaction in the furnace, so as to improve the gasification output with high efficiency (same coal quality, same output, running power consumption less than 1% of existing high temperature, high pressure gas flow bed and fluidized bed gasification);
  • the large interface thin layer complete oxidation reaction 1-6 is based on the structure of the lower oxidation section of the molecular gasification furnace 1, the raw material is spread into a thin layer in a large area, which is the inner furnace 1-8 and the outer furnace 1-7
  • the small-section thick layer positive reduction reaction 1-5 It is formed and realized by the structure of the upper part of the molecular gasifier 1 : it
  • the molecular gasifier 1 has an annular temperature measurement point 1-2 added in the upper reduction zone.
  • the annular steam injection hole 1-1 is also arranged corresponding to the oxidation zone below.
  • the steam of 1-1 is regulated (this kind of regional regulation is timely, accurate and effective); the molecular gasifier 1 is used to desulfurize coal by adding calcium and calcium under anoxic conditions, so it can be based on the sulfur content of the raw coal. And the emission index, according to the ratio of Ca/S close to 1 design, which achieves the goal of sulfur removal by high efficiency; the furnace containing calcium slag is discharged from the bottom of the furnace and reused as cement raw material; 2, through the decoking (dust) cavity (combustion chamber) 6 (the decoking chamber 6 has the function of refining coal coke and dust removal: 1) closing the air valve of the outer burner 2 according to the coal quality and needs To exert its inertial force to extract coal char, this coal , is the raw material for the production of coal-based activated carbon; 2 can also convert the function according to requirements at any time, open and regulate the air combined with hot gas combustion and dust removal), and then enter the internal burner 5 to burn out in the furnace; the hot gas is low in excess The
  • Figure 2 is a diagram showing a typical modified molecular gasifier 1 and control system of the present invention
  • 1-1 is an annular steam injection hole
  • 1-2 is a circular temperature measuring hole
  • 1-3 is a coal filling port
  • 4 is the gas outlet
  • 1-5 is the small section thick layer reduction reaction zone
  • 1-6 is the large interface thin layer oxidation reaction zone
  • 1-7 is the outer furnace
  • 1-8 is the inner furnace
  • the slag is from the furnace The bottom is discharged; the gasifying agent is sprayed through the furnace.
  • the molecular gasification furnace 1 and the gasification method can produce clean hot gas, high-efficiency combustion boilers and various kiln furnaces; and can also be applied to gas-fired internal combustion engines and gas turbine power generation systems to produce required cold gas; Chemical raw material gas; its gasification output is large, the gasification intensity index is 1000 ⁇ 2600kg/m 2 ⁇ h, it can be enlarged (several furnace several thousand tons/day); the operating cost is low (electric power consumption is not the same as coal quality, the same Yield of the entrained flow bed and 1% of the fluidized bed).
  • FIG 3 is a structural view of a typical external burner arranged symmetrically from both sides of the boiler, 2 is an external burner that can switch and regulate the downward injection of gas to the air; 3 is a boiler furnace; 4 is a coke (dust) ) mouth; 5 is the inner burner; 6 It is a cavity (combustion chamber) which can remove coal char (dust); 7 is a gas chamber of the burner; 8 is an air chamber of the burner; 9 is a wall shell of the inner burner, and air nozzle holes are arranged on the wall shell; It is the air chamber of the inner burner.
  • Figure 4 is a structural view of an exemplary outer burner disposed on three sides of the boiler of the present invention, 2 being an outer burner blown downward; and 3 being a boiler hearth.
  • Figure 5 is a structural view showing a burner arranged on one side of the small boiler of the present invention, 2 is an outer burner which is blown downward; and 3 is a boiler furnace.
  • Figure 6 is a structural view of a burner of a super-large boiler which is arranged in a four-sided symmetrically downward direction, 2 is an outer burner which is blown downward; and 3 is a boiler furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Fuel Combustion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种碳-分子气化燃烧发电方法,该方法包括以下主要工艺:加脱硫剂煤炭,先在分子气化炉内除硫气化成清洁煤气;热煤气与低过量空气混合,在锅炉的炉膛燃烧;根据煤质和需要,可提炼煤焦和除尘;高温烟气经锅炉受热面换热,从烟囱达标排出;锅炉产生的蒸汽,带动汽轮机发电。所述气化方法也可配套应用在燃气内燃机和燃气轮机发电系统,制造所需的冷煤气,还能生产化工原料气。该方法应用面广阔,工艺简单,操作安全,环保节能。

Description

碳-分子气化燃烧锅炉发电方法
本发明申请相互参考
本发明优先权是两项中国发明专利申请:201310653009.8,电厂煤基锅炉碳分子气化燃烧方法;201410400491.9,碳-分子气化燃烧锅炉(窑炉)方法。
技术领域
本发明涉及一种清洁燃煤发电方法,特别是一种煤炭从分子水平设计的气化燃烧锅炉发电方法。
背景技术
当前,气候变化、环境恶化、资源紧缺已成为世界性难题。节能减排、应对气候变化,也已经成为从技术转变为国际政治的一个热点和焦点。
中国的能源现状是煤多、油少、气贫,是以煤炭为主的能源生产和消费大国。煤炭消耗已经占到世界总量的一半,而且80%以上仍是采用传统的直接燃烧方式(炉排层燃、流化床燃烧、煤粉燃烧、型煤和水煤浆燃烧等)。环境科学认为:煤炭的这种直接燃烧方式,也是目前中国产生灰霾的一个主要污染源。
然而,这种直接燃煤方式,未来还要被全世界沿用。如国际能源署2021-2050年高效低排放燃煤发电技术路线,仍采用循环流化床锅炉和煤粉锅炉的直接燃烧技术。中国也把这种循环流化床锅炉和煤粉锅炉作为今后发展的重要技术。这主要是没有从基础理论上认识到:直接燃烧法,是将煤炭中的固相物和热解的气相物混杂在一起,在同一个炉膛内进行燃烧,违背了气固两相物各自燃烧的特性、规律。要把这种直接燃烧进行完全,就要采用过量的空气(α≥1.2),结果顾此失彼,反而造成在燃烧过程先要大量产生与氧有关的有毒有害污染物(SOx、NOx等),然后再进行治理。这样不但工艺复杂,而且成本高,甚至还造成“治污又生污”排放不稳定、治污难达标的状况。
目前全世界发展的煤基IGCC技术,虽然发电效率较高,但效益不一定高。而且,因工艺复杂、操作困难、运行成本高、投资大等问题,目前推广应用受到很大限制。探究其根本原因:是由于沿用了传统的高比表面、高温、高压的煤气化技术所致。
对上述技术工艺,全世界习惯的效率思维和常用标准是这样衡量:
Q实用煤炭能量/(Q煤炭原始总能量)=最大
(B利用煤炭污染排放量)/B煤炭原始污染物总量=最小
发明内容
针对上述现状,本发明提出煤炭利用按能源环保效益理念:
Q实用煤炭能量/(Q煤炭原始总能量+Q利用煤炭过程的总能耗量 )=最大
(B利用煤炭污染排放量+B治污排放总量 )/B煤炭原始污染物总量=最小
进行全面量化考核和发展。从而创新工艺,提出一种从分子水平设计的煤炭气化燃烧锅炉发电方法。其工艺优势是:源头防控污染,元素减量,高效益实现环保节能。
实现这个目标的技术路线是:先将加脱硫剂原料煤,送进分子气化炉除硫气化成清洁热煤气,然后再喷进锅炉燃烧,高温烟气经锅炉的受热面换热从烟囱达标排出,锅炉产生的蒸汽(热水)带动汽轮机发电(供热)。
所述的分子气化炉是采用大界面薄料层完全氧化反应耦合小截面厚料层正向还原反应机理造气;所述的分子气化炉还原区增设了环形温度测量点,氧化区对应也设置了环形蒸汽喷孔,运行中,可根据测点温度变化用蒸汽调控,这种区域调控能及时、均衡满足工艺要求,确保气化反应稳定进行;所述的分子气化炉是在缺氧条件下用脱硫剂除硫(Ca/S接近1配比组分);所述的热煤气在锅炉的炉膛,采用低过量空气系数(α接近1)燃烧,这即节约了10%以上的空气,又减少了与氧有关的有毒有害物的产生;所述的锅炉在下部增设了除焦(尘)腔体,它具有提炼煤焦和除尘双作用;运行过程,可根据煤质和需要提炼煤焦,也可随时转为燃烧除尘功能。
附图说明
附图1是本发明的一种典型气化燃烧锅炉发电工艺流程图。
附图2是本发明的一种典型的改进型分子气化炉和调控系统图。
附图3是本发明的一种典型从锅炉两边对称布置燃烧器的结构图。
附图4是本发明的一种典型从锅炉三边布置燃烧器的结构图。
附图5是本发明的一种从锅炉(窑炉)一边布置燃烧器的结构图。
附图6是本发明的一种超大型锅炉四边对称布置燃烧器的结构图。
具体实施方式
下面结合附图1、2、3和具体实施例对本发明详细叙述:
原煤经过筛工序分出粒煤A,小于10mm的粉煤加钙(Ca/S接近1配比组份)制成煤球B,用废热烘成含水合格的干煤球C(这种备煤系统比煤制粉系统节电50%以上),再把粒煤A和干煤球C用加煤机送进分子气化炉1造气;气化剂从炉底经炉篦送入(这种制造燃料气的气化剂压力一般小于0.5kpa,它比现有煤粉和流化床燃烧技术的风压≥1.2kpa降低了58%,相应节电58%);炉渣用炉篦从炉底排出。所述的分子气化炉1采用独创的大界面薄 料层完全氧化反应1-6耦合小截面厚料层正向还原反应1-5机理造气,这种从分子水平设计的气化工艺,能确保炉内反应有序进行,从而高效益提高气化产量(同煤质、同产量,运行电耗不到现有高温、高压气流床和流化床气化的1%);所述的大界面薄料层完全氧化反应1-6,是靠分子气化炉1下部氧化段的结构,将原料大面积摊成薄层,这就与内炉篦1-8和外炉篦1-7喷进的气化剂的一次接触界面增大,从而加快氧化反应C+O2=CO2+Q的进行速度,使之更加完全;所述的小截面厚料层正向还原反应1-5,是靠分子气化炉1上部的结构形成和实现:它使CO2+C=2CO-Q的反应物之间的接触时间延长;并提高了上升热流体的流速,从而加快对流换热和传质效果,使还原段原料柱的温度升高;同时又快速补足了反应物二氧化碳的数量,这些因素必然加快还原反应的速度,使反应进行的既充分又完全;为了确保反应温度均衡满足工艺要求,所述的分子气化炉1在上部还原区增置了环形测温点1-2,对应下面的氧化区也设置了环形蒸汽喷孔1-1,运行中,当测点温度超过规定值和环形温差超过一定数(根据煤质定)时,控制系统自动(手动)开启下部喷管1-1的蒸汽进行调控(这种区域调控及时、准确、有效);所述的分子气化炉1是在缺氧条件下用煤炭加钙除硫造气,因此可根据原煤的含硫量和排放指标,按Ca/S接近1的配比设计组份,这就高效益实现了达标除硫目标;含钙炉渣用炉篦从炉底排出,作为水泥原料再利用;热煤气进外燃烧器2,经除焦(尘)的腔体(燃烧室)6(所述的除焦腔体6具有提炼煤焦和除尘双作用:1根据煤质和需要,关闭外燃烧器2的空气阀门,使其发挥惯性冲力作用提炼煤焦,这种煤焦,是生产煤基活性炭的原料;2还可根据要求随时转化功能,开启和调控空气配合热煤气燃烧和除尘),再进内燃烧器5在炉膛燃尽;所述的热煤气是采用低过量空气系数(α接近1)燃烧(这即节约了10%以上的空气,相应减少了与氧有关的有毒有害物SOx、NOx等的产生),高温烟气经锅炉3的受热面换热从烟囱达标排出。气化燃烧过程从源头防控污染,元素减量,高效益实现环保节能。锅炉3产生的蒸汽(热水)带动汽轮机发电(供热)。
图2是本发明的一种典型的改进型分子气化炉1和控制系统图,1-1是环形蒸汽喷孔;1-2是环形测温孔;1-3是加煤口;1-4是煤气出口;1-5是小截面厚料层还原反应区;1-6是大界面薄料层氧化反应区;1-7是外炉篦;1-8是内炉篦;炉渣从炉底排出;气化剂经炉篦喷进。这种分子气化炉1和气化方法,即可生产清洁热煤气,高效益燃烧锅炉和各种窑炉;也能配套应用在燃气内燃机和燃气轮机发电系统,制造所需的冷煤气;还能生产化工原料气;其气化产量大,气化强度指标是1000~2600kg/m2·h,可以大型化(单炉数千吨/天);运行成本低(电耗不到同煤质、同产量气流床和流化床的1%)。
图3是本发明的一种典型从锅炉两边对称布置外燃烧器的结构图,2是可开关和调控空气的向下喷吹煤气的外燃烧器;3是锅炉炉膛;4是排焦(尘)口;5是内燃烧器;6 是可除煤焦(尘)的腔体(燃烧室);7是燃烧器的煤气腔;8是燃烧器的空气室;9是内燃烧器的壁壳,壁壳上布置空气喷孔;10是内燃烧器的空气室。
附图4是本发明的一种典型从锅炉三边布置外燃烧器的结构图,2是向下喷吹的外燃烧器;3是锅炉炉膛。
附图5是本发明的小型锅炉一边布置燃烧器的结构图,2是向下喷吹的的外燃烧器;3是锅炉炉膛。
附图6是本发明的一种超大型锅炉四边对称布置向下喷吹的燃烧器的结构图,2是向下喷吹的外燃烧器;3是锅炉炉膛。
由于碳-分子气化燃烧技术,实现了从源头防控、元素减量,科学根治污染,全过程环保节能;而且成本低,长周期运行稳定可靠;还能气化燃烧各种煤、生物质和其它有机物(废弃物);还能根据煤质和需要,在锅炉里提炼煤焦和转化功能除尘。
因此,本发明的应用面极其广阔,几乎所有产煤国都有市场,几乎用煤、油、气、电作燃料的设备都可用。而且环保效益和经济效益巨大。

Claims (8)

  1. 一种碳-分子气化燃烧锅炉发电方法,主要工艺包括:
    ①加脱硫剂煤炭,先在分子气化炉内除硫气化成清洁煤气;
    ②热煤气与低过量空气混合,在锅炉的炉膛燃烧;
    ③根据煤质和需要,可提炼煤焦和除尘;
    ④高温烟气经锅炉受热面换热,从烟囱达标排出;
    ⑤锅炉产生的蒸汽(热水),带动汽轮机发电(供热)。
  2. 根据权利要求1所述的碳-分子气化燃烧锅炉发电方法,其特征在于:所述的工艺采用煤炭先气化再燃烧锅炉(窑炉);分子气化炉在缺氧条件下固硫(Ca/S接近1,配比组分);燃烧室用α接近1的低过量空气燃烧;全过程从源头防控污染,元素减量,实现环保节能。
  3. 根据权利要求1或2所述的碳-分子气化燃烧锅炉发电方法,其特征在于:所述的分子气化炉增设了气化工艺调控方法,在上部还原区增设环形测温孔,下部氧化区对应增设环形蒸汽喷孔;根据测点温度变化,采用蒸汽及时进行调控,确保大界面薄料层完全氧化反映耦合小截面厚料层正向还原反应稳定进行。
  4. 根据权利要求1至3所述的碳-分子气化燃烧锅炉发电方法,其特征在于:锅炉的炉膛下部布置了除焦(尘)腔体(燃烧室),所述的除焦(尘)腔体具有提炼煤焦或除尘双作用。
  5. 权利要求1至4所述的碳-分子气化燃烧锅炉发电方法,其特征在于:在除焦(尘)腔体(燃烧室)的顶部靠周边布置可开关和调控空气的向下喷吹热煤气的外燃烧器,所述的外燃烧器可在锅炉三边布置,也可双边、四边对称布置,还可在锅炉(窑炉)的一边布置。
  6. 权利要求1至5所述的碳-分子气化燃烧锅炉发电方法,其特征在于:提炼煤焦或除尘是随时可以互换的;关闭外燃烧器的空气阀,使其发挥惯性冲力作用可提炼煤焦;还可根据要求随时开启和调控空气配合热煤气清洁燃烧除尘。
  7. 改进型分子气化炉和气化方法,可生产燃烧各种锅炉(窑炉)的热煤气;也可配套应用在燃气内燃机和燃气轮机发电系统,制造所需的冷煤气;还能生产化工原料气。
  8. 权力要求1至7所述的碳-分子气化燃烧锅炉发电方法,是按照能源环保效益理念:
    Q实用煤炭能量/(Q煤炭原始总能量+Q利用煤炭过程的总能耗量 )=最大
    (B利用煤炭污染排放量+B治污排放总量 )/B煤炭原始污染物总量=最小
    进行工艺设计和发展。
PCT/CN2014/001103 2013-12-09 2014-12-08 碳-分子气化燃烧锅炉发电方法 WO2015085653A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EA201691227A EA201691227A1 (ru) 2013-12-09 2014-12-08 Способ выработки электроэнергии в котле сжиганием полученного газификацией молекулярного углерода
KR1020167018557A KR20160107179A (ko) 2013-12-09 2014-12-08 탄소 분자 가스화 연소 보일러를 위한 발전 방법
AU2014361632A AU2014361632A1 (en) 2013-12-09 2014-12-08 Power generating method of carbon-molecule gasification combustion boiler
US15/102,616 US20160298040A1 (en) 2013-12-09 2014-12-08 Power generating method of carbon-molecule gasification combustion boiler
CA2933108A CA2933108A1 (en) 2013-12-09 2014-12-08 Power generating method of carbon-molecule gasification combustion boiler
CN201480065842.3A CN107001956B (zh) 2014-08-15 2014-12-08 碳-分子气化燃烧锅炉发电方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310653009.8A CN103980943B (zh) 2013-12-09 2013-12-09 电厂煤基锅炉碳分子气化燃烧方法
CN201310653009.8 2013-12-09
CN201410400491.9A CN104152181A (zh) 2014-08-15 2014-08-15 碳-分子气化燃烧锅炉(窑炉)方法
CN201410400491.9 2014-08-15

Publications (1)

Publication Number Publication Date
WO2015085653A1 true WO2015085653A1 (zh) 2015-06-18

Family

ID=53370560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/001103 WO2015085653A1 (zh) 2013-12-09 2014-12-08 碳-分子气化燃烧锅炉发电方法

Country Status (6)

Country Link
US (1) US20160298040A1 (zh)
KR (1) KR20160107179A (zh)
AU (1) AU2014361632A1 (zh)
CA (1) CA2933108A1 (zh)
EA (1) EA201691227A1 (zh)
WO (1) WO2015085653A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361730A (zh) * 2017-12-29 2018-08-03 长沙卡特尔环保科技有限公司 一种生物质颗粒锅炉助燃控制方法
CN108329949A (zh) * 2018-03-27 2018-07-27 广州优的新能源科技有限公司 生物质自主除尘气化炉
CN110436412A (zh) * 2019-07-25 2019-11-12 张达积 锅炉烟气改质器
CN110906319B (zh) * 2019-12-15 2024-04-19 清华大学 基于生物质分布式供热的模块化无废锅炉工艺系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120403A (ja) * 1998-10-16 2000-04-25 Toshiba Corp ガス化複合発電システム
JP2000297610A (ja) * 1999-04-13 2000-10-24 Hitachi Ltd 石炭ガス化複合プラント及びその運転制御方法
CN1277339A (zh) * 2000-07-28 2000-12-20 中国国际工程咨询公司 部分气化空气预热燃煤联合循环发电系统及方法
CN1521446A (zh) * 2003-01-27 2004-08-18 中国科学院工程热物理研究所 内外燃煤一体化联合循环发电系统及发电方法
CN201190153Y (zh) * 2008-04-14 2009-02-04 山东联合能源技术有限公司 高效清洁区域整体煤气化联合循环热电油气多联产系统
CN101993730A (zh) * 2009-08-12 2011-03-30 中国科学院工程热物理研究所 基于化石燃料化学能适度转化的多功能能源系统
CN103980943A (zh) * 2013-12-09 2014-08-13 陈涛 电厂煤基锅炉碳分子气化燃烧方法
CN104152181A (zh) * 2014-08-15 2014-11-19 陈涛 碳-分子气化燃烧锅炉(窑炉)方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2429993C3 (de) * 1974-06-22 1984-01-05 Krupp-Koppers Gmbh, 4300 Essen Verfahren zum Erzeugen elektrischer Energie
US4442665A (en) * 1980-10-17 1984-04-17 General Electric Company Coal gasification power generation plant
US4489562A (en) * 1982-11-08 1984-12-25 Combustion Engineering, Inc. Method and apparatus for controlling a gasifier
JP2680782B2 (ja) * 1994-05-24 1997-11-19 三菱重工業株式会社 燃料改質器を組み合せた石炭焚きコンバインド発電プラント
JP4745940B2 (ja) * 2006-11-09 2011-08-10 三菱重工業株式会社 石炭ガス化複合発電システム及びその運転制御方法
MY153097A (en) * 2008-03-28 2014-12-31 Exxonmobil Upstream Res Co Low emission power generation and hydrocarbon recovery systems and methods

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000120403A (ja) * 1998-10-16 2000-04-25 Toshiba Corp ガス化複合発電システム
JP2000297610A (ja) * 1999-04-13 2000-10-24 Hitachi Ltd 石炭ガス化複合プラント及びその運転制御方法
CN1277339A (zh) * 2000-07-28 2000-12-20 中国国际工程咨询公司 部分气化空气预热燃煤联合循环发电系统及方法
CN1521446A (zh) * 2003-01-27 2004-08-18 中国科学院工程热物理研究所 内外燃煤一体化联合循环发电系统及发电方法
CN201190153Y (zh) * 2008-04-14 2009-02-04 山东联合能源技术有限公司 高效清洁区域整体煤气化联合循环热电油气多联产系统
CN101993730A (zh) * 2009-08-12 2011-03-30 中国科学院工程热物理研究所 基于化石燃料化学能适度转化的多功能能源系统
CN103980943A (zh) * 2013-12-09 2014-08-13 陈涛 电厂煤基锅炉碳分子气化燃烧方法
CN104152181A (zh) * 2014-08-15 2014-11-19 陈涛 碳-分子气化燃烧锅炉(窑炉)方法

Also Published As

Publication number Publication date
AU2014361632A2 (en) 2017-01-05
CA2933108A1 (en) 2015-06-18
EA201691227A1 (ru) 2016-11-30
KR20160107179A (ko) 2016-09-13
US20160298040A1 (en) 2016-10-13
AU2014361632A1 (en) 2016-07-28

Similar Documents

Publication Publication Date Title
CN202203950U (zh) 一种有机固体废物热解气化装置
CN102746903B (zh) 一种大型、无废气和二噁英排放的生活垃圾干馏-气化炉
CN107760387B (zh) 一种高氮生物质废弃物气化燃烧供热系统及工艺
CN105627280B (zh) 一种褐煤半焦贫氧燃烧锅炉
WO2015085653A1 (zh) 碳-分子气化燃烧锅炉发电方法
WO2017161633A1 (zh) 旋风燃烧装置、燃烧设备和燃烧方法
CN101666489A (zh) 石油焦浆燃烧装置
CN104745209A (zh) 一种煤热解制气、炼油、半焦高温旋流再燃燃烧集成工艺方法及装置
CN204786347U (zh) 生物质气化分相燃烧炉
CN102746902B (zh) 一种有机废弃物的气化方法及专用气化炉
CN109735371A (zh) 一种生物质循环流化床直燃锅炉及其与气化炉耦合发电联产活性炭系统
CN206768039U (zh) 一种热电联产的生物质气化炉
CN103642530B (zh) 反烧式煤炭气化炉装置及工艺
CN107001956B (zh) 碳-分子气化燃烧锅炉发电方法
WO2011060688A1 (zh) 使用高温烟气作低阶煤提质补充燃料的方法
CN202494117U (zh) 并列式半气化生活垃圾消解炉
CN103148696B (zh) 一种粘土矿物粉体干燥热风制备装置
CN205191592U (zh) 带高位埋管的循环流化床生活垃圾锅炉
CN205447700U (zh) 一种褐煤半焦贫氧燃烧锅炉
CN108659887A (zh) 一种燃煤锅炉掺烧低品质煤等离子气化燃气的系统及方法
CN103980943B (zh) 电厂煤基锅炉碳分子气化燃烧方法
CN203571714U (zh) 大型生物质气化炉燃烧器
CN203224118U (zh) 一种粘土矿物粉体干燥热风制备装置
CN105402703A (zh) 立式无烟囱生物质燃气锅炉
CN207405131U (zh) 富氧气化煤气发生炉装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869530

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2933108

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15102616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167018557

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691227

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 2014361632

Country of ref document: AU

Date of ref document: 20141208

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14869530

Country of ref document: EP

Kind code of ref document: A1