WO2015085578A1 - 一种电池放电的过流保护电路及方法 - Google Patents

一种电池放电的过流保护电路及方法 Download PDF

Info

Publication number
WO2015085578A1
WO2015085578A1 PCT/CN2013/089386 CN2013089386W WO2015085578A1 WO 2015085578 A1 WO2015085578 A1 WO 2015085578A1 CN 2013089386 W CN2013089386 W CN 2013089386W WO 2015085578 A1 WO2015085578 A1 WO 2015085578A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
battery
resistor
switch tube
overcurrent
Prior art date
Application number
PCT/CN2013/089386
Other languages
English (en)
French (fr)
Inventor
潘启辉
卢良飞
尤国雄
熊运远
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to EP13899182.3A priority Critical patent/EP3082209B1/en
Priority to US15/103,930 priority patent/US10090689B2/en
Priority to PCT/CN2013/089386 priority patent/WO2015085578A1/zh
Publication of WO2015085578A1 publication Critical patent/WO2015085578A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/093Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current with timing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Definitions

  • the present invention relates to the field of battery protection, and in particular, to an overcurrent protection circuit and method for discharging a battery.
  • the battery pole contacts are mostly blackened, which makes the electronic equipment unreliable.
  • the main reason is that the discharge current of the battery is not properly controlled. For example, when the battery is replaced by the electronic device, a large pulse current is generated at the moment when the battery pole piece contacts the battery holder of the electronic device, and the battery pole piece contacts are fired to generate high temperature oxidation, which causes the battery pole piece contact to be black.
  • a large pulse current is generated at the moment when the battery pole piece contacts the battery holder of the electronic device, and the battery pole piece contacts are fired to generate high temperature oxidation, which causes the battery pole piece contact to be black.
  • the transient high current discharged by the battery has a safety hazard to the storage and use of the battery. Therefore, how to reasonably limit the current discharged by the battery to a safe limit without affecting the normal use is a problem that the battery protection needs to be solved. Important technical issues.
  • the overcurrent protection of the existing battery discharge mainly adopts the following method: in the idle state of the battery, the discharge switch tube is normally opened. During the discharge process, after the protection circuit detects that the current discharged by the battery exceeds the designed threshold, the discharge switch tube is turned off after a certain time delay, and the battery is discharged. During the turn-off delay time, the discharge switch tube is continuously turned on, and there is a large pulse current on the discharge path.
  • the disadvantage of this method is that the battery safety is inconsistent with the delay time requirement of the charging of the capacitive load. If the delay time is designed to be short, the load with a large capacitor needs to be turned off for a long time.
  • the delay time is not enough, the load capacitor has not been fully charged, and the battery protection circuit generates current limiting protection and stops. When it is discharged, the load cannot be powered normally. If the delay time is designed to be long, the charging requirement of the large capacitive load is satisfied, but if the discharge port of the battery suddenly short-circuits, a large pulse current will be generated, which may cause a fire or burn an accident such as a human body. With such a battery, the device often suffers from poor oxidation and blackening contact of the battery pole piece contacts.
  • the technical problem to be solved by the present invention is to provide an overcurrent protection circuit and method for discharging a battery according to the defects of the prior art that the current that cannot discharge the battery is limited to a safe limit, and the battery can be well The current discharged is limited to safe limits.
  • an overcurrent protection circuit for discharging a battery comprising a discharge switch tube connected in a discharge path of the battery, the overcurrent protection circuit further comprising:
  • a discharge control module configured to detect a discharge current of the battery in real time, and determine whether an overcurrent occurs by comparing the detected discharge current with a preset threshold value, and if the overcurrent occurs, controlling the discharge switch tube to be turned on; If an overcurrent occurs, controlling the discharge switch tube to be turned off, and, when the overcurrent timeout occurs, locking the discharge switch tube in an off state;
  • the delay module is configured to determine whether the overcurrent has timed out by comparing the time when the overcurrent occurs with the preset delay time.
  • the discharge control module includes a battery protection chip, a sampling resistor, a comparator, and a current limiting control switch tube, wherein the first ends of the sampling resistors are respectively connected
  • the second end of the sampling resistor is connected to the second end of the discharge switch tube and the first input end of the comparator, and the first end of the discharge switch tube is connected to the negative end of the discharge port
  • the second input end of the comparator is connected to a reference voltage
  • the output end of the comparator is connected to the control end of the current limiting control switch tube
  • the second end of the current limiting control switch tube is grounded, the current limiting
  • the first end of the control switch tube is respectively connected to the control end of the discharge switch tube and the discharge control end of the battery protection chip.
  • the discharge control module includes a battery protection chip, a sampling resistor, a comparator, an amplifier, and a current limiting control switch, wherein the first ends of the sampling resistors are respectively Connected to the positive pole of the battery and the first input end of the amplifier, the second end of the sampling resistor is respectively connected to the positive pole of the discharge port and the second input end of the amplifier, and the output end of the amplifier is connected to the comparison
  • the first input end of the comparator, the second input end of the comparator is connected to a reference voltage
  • the output end of the comparator is connected to the control end of the current limiting control switch tube, and the second end of the current limiting control switch tube Grounding
  • the first end of the current limiting control switch tube is respectively connected to the control end of the discharge switch tube and the discharge control end of the battery protection chip
  • the first end of the discharge switch tube is connected to the negative pole of the discharge port
  • the second end of the discharge switch tube is respectively connected to the negative pole of the battery and the ground
  • the discharge control module further includes a current limiting resistor, and the first end of the current limiting resistor is connected to the discharge control end of the battery protection chip, and the limit The second end of the flow resistor is connected to the control end of the discharge switch tube and the first end of the current limiting control switch tube.
  • the delay module includes a first diode, a first switching transistor, a second switching transistor, a first capacitor, a first resistor, a second resistor, and a first resistor a third resistor and a fourth resistor, wherein the first end of the first switch tube is connected to the voltage sampling end of the battery protection chip, and the second end of the first switch tube and the second end of the second switch tube are respectively Grounding, the control end of the first switch tube and the first end of the second switch tube are connected to the negative pole of the discharge port through the first resistor; the anode of the first diode is connected to the discharge port a negative pole, a cathode of the first diode is connected to a first end of the first capacitor and a control end of the second switch through the second resistor, and a second end of the first capacitor is grounded The negative electrode of the discharge port is further connected to the voltage sampling end of the battery protection chip through the third resistor, and the fourth
  • the discharge control module includes a battery protection chip, a sampling resistor, a current limiting control switch, a fifth resistor, a sixth resistor, a second capacitor, and a second diode a tube, wherein the first end of the sampling resistor is respectively connected to the negative pole of the battery and the ground, and the second end of the sampling resistor is respectively connected to the second end of the discharge switch tube and the current limiting control switch tube
  • the second end, the first end of the discharge switch tube is connected to the negative pole of the discharge port, and the control end of the discharge switch tube is connected to the positive pole of the second diode.
  • a negative electrode of the second diode is connected to a discharge control end of the battery protection chip, and a sixth resistor is connected between a positive electrode and a negative electrode of the second diode, and the current limiting control switch tube is One end of the battery protection chip is connected to the voltage sampling end of the battery protection chip, the first end of the fifth resistor is connected to the discharge control end of the battery protection chip, and the second end of the fifth resistor is respectively connected to the current limiting control switch a control end of the tube and a first end of the second capacitor, the second end of the second capacitor being grounded .
  • the delay module includes a first diode, a second resistor, a third resistor, a fourth resistor, a first capacitor, and a second switch tube, wherein The anode of the first diode is connected to the cathode of the discharge port, and the cathode of the first diode is connected to the first end of the first capacitor and the second switch via the second resistor a control end, the second end of the first capacitor and the second end of the second switch tube are grounded, and the first end of the second switch tube is connected to the control end of the current limiting control switch tube, the discharge a cathode of the port is further connected to the voltage sampling end of the battery protection chip through the third resistor, and the fourth resistor is connected between the cathode of the first diode and the ground .
  • the discharge control module further includes a third diode and a seventh resistor, wherein a cathode of the third diode is connected to the current limiting control switch The control terminal of the tube, the anode of the third diode is connected to the cathode of the discharge port through the seventh resistor.
  • the invention also constructs a battery discharge overcurrent protection method for controlling a discharge switch tube, the discharge switch tube being connected in a battery discharge path, and when the load is connected to the battery, performing:
  • step A Control the discharge switch to turn off, and at the same time, judge whether the overcurrent has timed out by comparing the time of overcurrent and the preset delay time. If yes, perform the steps. D; if not, perform step A;
  • the step of determining whether the overcurrent has timed out by comparing the time when the overcurrent occurs with the preset delay time is:
  • the high voltage charges the first capacitor through the second resistor, and determines whether the timeout is determined by determining the voltage of the first capacitor, wherein the preset delay time and the resistance of the second resistor The value is related to the capacitance of the first capacitor.
  • Embodiment 1 is a logic diagram of Embodiment 1 of an overcurrent protection circuit for discharging a battery of the present invention
  • Figure 2 is a timing diagram of the discharge current and discharge switch tube states and loading time in Figure 1;
  • Embodiment 3 is a circuit diagram of Embodiment 2 of an overcurrent protection circuit for discharging a battery of the present invention
  • Embodiment 4 is a circuit diagram of Embodiment 3 of an overcurrent protection circuit for discharging a battery of the present invention
  • Embodiment 4 is a circuit diagram of Embodiment 4 of an overcurrent protection circuit for discharging a battery of the present invention
  • Embodiment 6 is a flow chart of Embodiment 1 of an overcurrent protection method for discharging a battery of the present invention
  • 7A and 7B are current waveform test diagrams of battery discharge in the prior art and the present invention, respectively.
  • FIG. 1 It is a logic diagram of the first embodiment of the overcurrent protection circuit for discharging the battery of the present invention.
  • the overcurrent protection circuit for discharging the battery includes a discharge switch tube (not shown), a discharge control module 10, and a delay module 20 Wherein the discharge switch tube is connected in the battery discharge path, and the discharge control module 10 For detecting the discharge current of the battery in real time, and comparing whether the detected discharge current and the preset threshold value are used to determine whether an overcurrent occurs, and if no overcurrent occurs, controlling the discharge switch tube to be turned on; if an overcurrent occurs Then, the discharge switch tube is controlled to be turned off, and when the overcurrent timeout occurs, the discharge switch tube is locked in an off state.
  • Delay module 20 Used to judge whether the overcurrent has timed out by comparing the time when the overcurrent occurs with the preset delay time.
  • the load is connected when the battery begins to discharge current i d of the battery is detected, to determine whether an overcurrent occurs, i.e., the current exceeds a threshold value i r. If no overcurrent occurs, the discharge switch tube is controlled to be turned on; if an overcurrent occurs, the discharge switch tube is controlled to be turned off, and at the same time, whether the overcurrent is timed out is determined by comparing the time of occurrence of the overcurrent with the preset delay time, if When it times out, the discharge switch is locked in the off state.
  • overcurrent and no timeout i.e., the overcurrent time (t 2 -t 1 period) occurs no more than the delay time
  • the discharge control module 10 controls the discharge switch tube to operate in a disconnected manner, and after the discharge overcurrent ends, controls the discharge switch tube to continue to be turned on.
  • the response time t 0 should be considered when controlling the discharge of the discharge switch.
  • the discharge control module 10 controls the discharge switch tube to work in a disconnected manner, and at the end of the delay time, that is, after the time t 4 , the discharge switch tube is locked in the off state. .
  • the discharge switch tube operates in a disconnected manner during the occurrence of the overcurrent, and when the overcurrent ends
  • the discharge switch tube is continuously turned on; if it times out, the discharge switch tube operates in a disconnected manner during the delay time, and the discharge switch tube is locked in the off state after the delay time is over. Therefore, when the battery charges the capacitive load, it is not a one-time full charge, but a cumulative accumulation of multiple times, thereby reducing the transient current of the battery discharge, effectively limiting the transient energy of the battery discharge, and improving the battery. Security.
  • the overcurrent protection circuit for discharging the battery comprises a discharge switch tube, a discharge control module and a delay module.
  • the battery is a rechargeable battery, and the overcurrent protection circuit further includes a charging switch tube.
  • the discharge switch tube is selected MOS tube Q2, charging switch tube selects MOS tube Q1 .
  • the charging switch can be omitted.
  • the discharge control module and the delay module are specifically described below.
  • the battery protection chip U1 can be selected as the chip of the model S8232, and, regarding the battery protection chip U1 Each port, where DO is the discharge control terminal, is used to control MOS transistor Q2.
  • CO is the charge control terminal for controlling MOS transistor Q1.
  • ICT is a timing capacitor connection.
  • the timing capacitor is capacitor C4. Changing the capacity of capacitor C4 can adjust the charge and discharge detection response time.
  • the VM is the voltage sampling terminal, and the input voltage of the port is internally set to a reference voltage (for example, 0.3V). For comparison, the comparison results are used for current threshold control.
  • VC and SENS are the battery voltage detection terminals of the battery, wherein VC is connected to the positive pole of battery B2 through resistor R3, and SENS is passed through the resistor.
  • VCC is the IC internal line supply terminal, which is connected to the positive terminal of cell B1 through resistor R2.
  • the VCC, VC, and SENS terminals respectively pass through the capacitor C2. , C3, C1 are grounded, these capacitors act as a regulator and filter, which can be omitted in other embodiments.
  • battery protection chip U1 During operation, if the state is normal, there is no discharge overcurrent or charging overcurrent, battery protection chip U1
  • the discharge control terminal (DO) and the charge control terminal (CO) both output high voltage, and control the MOS transistor Q1 and the MOS transistor Q2. Conducted to form a charging or discharging path.
  • the discharge control terminal (DO) of the battery protection chip U1 During discharge, if the cell voltage is lower than the discharge voltage threshold or the discharge current exceeds the current threshold, the discharge control terminal (DO) of the battery protection chip U1 outputs a low voltage control MOS. Tube Q2 is turned off and the battery stops discharging.
  • the charging control terminal (CO) of the battery protection chip U1 will output a low voltage to control the MOS transistor Q1. Turn off and stop charging the battery.
  • the first end of the sampling resistor R4 is connected to the negative terminal of the battery B2, and the second end of the sampling resistor R4 is connected to the MOS tube.
  • the source of Q2, the second end of the sampling resistor R4 is also connected to the first input terminal (IN+) of the comparator U2 through the resistor R10, and the second input terminal (IN-) of the comparator U2 is connected to the reference voltage.
  • Verf the drain of MOS transistor Q2 is connected to the drain of MOS transistor Q1, the source of MOS transistor Q1 is connected to the negative terminal of discharge port P-, and the gate of MOS transistor Q2 is passed through resistor.
  • R6 is connected to the discharge control terminal (DO) of the battery protection chip U1, and the gate of the MOS transistor Q1 is connected to the charge control terminal (CO) of the battery protection chip U1.
  • the output of comparator U2 is connected to MOS The gate of the transistor Q3, the source of the MOS transistor Q3 is grounded, and the drain of the MOS transistor Q3 is connected to the gate of the MOS transistor Q2.
  • the second input of comparator U2 (IN- A capacitor C7 is also connected between the ground and the ground.
  • the power supply terminal (VCC) of the comparator U2 is connected to the positive pole of the battery B1, and a capacitor C5 is connected between the power supply terminal (VCC) of the comparator U2 and the ground. .
  • the reference voltage of the comparator U2 can be provided by the voltage regulator chip or by other reference voltage sources.
  • capacitors C3, C2, C1, C7, C5 In this embodiment, voltage regulation and filtering are applied, and resistors R10 and R6 function as current limiting. These capacitors and resistors can be omitted in other embodiments.
  • the source of the MOS transistor Q5 is connected to the voltage sampling terminal (VM) of the battery protection chip U1, and the MOS transistor Q5
  • the drain is connected to the drain of the MOS transistor Q4, the source of the MOS transistor Q4 and the source of the MOS transistor Q6 are grounded, the gate of the MOS transistor Q5, the gate of the MOS transistor Q4, and The drains of MOS transistor Q6 are connected together and connected to the negative terminal P- of the discharge port through resistor R7.
  • the anode of diode D1 is connected to the negative terminal P- of the discharge port, and the negative terminal of diode D1 is connected through the resistor.
  • R8 is connected to the first end of capacitor C6 and the gate of MOS transistor Q6.
  • the second end of capacitor C6 is grounded.
  • the negative pole of discharge port P- is also connected to battery protection chip U1 through resistor R5.
  • Voltage sampling terminal (VM) Voltage sampling terminal
  • a resistor R9 is connected between the cathode of the diode D1 and the ground, and a resistor R9 provides a discharge path for C6.
  • the MOS transistors Q4, Q5 Since diodes are connected in anti-parallel, in order to prevent double-conduction, MOS transistors Q4 and Q5 are connected in series as described above. If a MOS transistor without an anti-parallel diode is selected, a MOS can be used.
  • the tube replaces the MOS tubes Q4, Q5 connected in series.
  • the battery protection chip U1 Both the charge control terminal (CO) and the discharge control terminal (DO) output a high level, and the MOS transistors Q1 and Q2 are turned on. If it is normal, that is, no discharge overcurrent occurs, the voltage on the sampling resistor R4 is lower than the comparator. U2's reference voltage, the output of the comparator U2 (OUT) outputs a low level, the MOS transistor Q3 turns off, and the MOS transistor Q2 is protected by the battery by the gate voltage U1 The high voltage of the discharge control terminal (DO) is turned on and turned on. At this time, the output voltage of the battery cell forms a discharge path through the discharge port and the MOS transistors Q1 and Q2.
  • MOS transistor Q2 As the voltage of capacitor C6 rises, MOS transistor Q2 is reached before reaching the turn-on threshold voltage of MOS transistor Q6. Work in a discontinuous shutdown state. If the voltage of the capacitor C6 reaches the turn-on threshold voltage of the MOS transistor Q6, the MOS transistor Q6 is turned on, and the MOS transistors Q4 and Q5 are turned on. The gate voltage is turned off due to its pull-down, and the resistor R5 couples the high voltage of the negative terminal P- of the discharge port to the battery protection chip U1.
  • the voltage sampling terminal (VM) when the voltage is greater than the internal reference voltage (0.3V), the discharge protection terminal (DO) of the battery protection chip U1 outputs a low level, the MOS transistor Q2 Since the gate loses its voltage and is turned off, thereafter, the voltage of the negative terminal P- of the discharge port is always applied to the voltage sampling terminal (VM) of the battery protection chip U1 through the resistor R5, so that the battery protection chip U1
  • the discharge control terminal (DO) continuously outputs a low voltage, the MOS transistor Q2 is locked in the off state, and the discharge path of the battery is locked in the off state.
  • the charging voltage on the capacitor C6 reaches the gate threshold voltage of the MOS transistor Q6, due to the MOS transistor Q4 and Q5 are in the on state, and the high voltage of the negative terminal P- of the discharge port cannot be added to the voltage sampling terminal (VM) of the battery protection chip U1, and the battery protection chip U1
  • the discharge control terminal (DO) is always high voltage, and the MOS transistor Q2 is affected by the MOS transistor Q3. The control always works in the disconnected state, the overcurrent current waveform is a continuous pulse train, and the first pulse is higher than the subsequent pulse amplitude.
  • the MOS transistor Q2 After the MOS transistor Q2 is locked in the off state, only the load connected to the discharge port is removed, and the negative pole of the discharge port P- The voltage is reduced. If the voltage of the voltage sampling terminal (VM) of the battery protection chip U1 drops below the internal reference voltage (0.3V), the discharge control terminal (DO) of the battery protection chip U1 outputs a high voltage. The MOS transistor Q2 is turned on again due to the high voltage of the gate, and the discharge path is resumed. In addition, connecting resistor R6 in series with the gate of MOS transistor Q2 can reduce MOS transistor Q2. The turn-on speed further reduces the transient peak current of the battery discharge.
  • VM voltage sampling terminal
  • DO discharge control terminal
  • FIG. 4 is a circuit diagram of a third embodiment of an overcurrent protection circuit for discharging a battery of the present invention, which is compared with FIG. 3.
  • the circuit structure of the delay module is the same, except that it is only in the discharge control module. Only the circuit structure of the discharge control module of this embodiment will be described below.
  • the operational amplifier U2 is selected as the model number.
  • the chip of the AD8566 which consists of two parts. The first part is used as an amplifier to amplify the sampling resistor. R4 The sampled voltage on the second part is used as a comparator to compare the sampled voltage with the reference voltage.
  • separate amplifiers and comparators may also be used.
  • the sampling resistor R4 Connected between the positive P+ of the discharge port and the positive terminal of the battery B1, and the first end of the sampling resistor R4 is connected to the first input of the first part of the operational amplifier U2 through the resistor R10 ( B-INPUT), the second end of the sampling resistor R4 is connected to the second input of the first part of the operational amplifier U2 through the resistor R22 (B+INPUT), and the resistor R23 is connected to the operational amplifier U2.
  • the output of the first part of the operational amplifier U2 (B OUTPUT) is connected to the first input of the second part of the operational amplifier U2 ( A+INPUT ), the second input of the second part of the operational amplifier U2 (A-INPUT) is connected to the reference voltage Verf , the output of the second part of the operational amplifier U2 (A OUTPUT) is connected to the gate of MOS transistor Q3, the source of MOS transistor Q3 is grounded, the drain of MOS transistor Q3 is connected to the gate of MOS transistor Q2, MOS transistor Q2 The drain is connected to the drain of the MOS transistor Q1, the source of the MOS transistor Q1 is connected to the negative terminal P- of the discharge port, and the gate of the MOS transistor Q2 is connected to the battery protection chip U1 through the resistor R6.
  • the discharge control terminal (DO), the gate of the MOS transistor Q1 is connected to the charge control terminal (CO) of the battery protection chip U1.
  • the operational amplifier U2 A capacitor C7 is also connected between the second input terminal (A-INPUT) of the second part and the ground, and the power terminal (V+) of the operational amplifier U2 is connected to the anode of the battery B1, and the operational amplifier U2 A capacitor C5 is also connected between the power supply terminal (V+) and the ground.
  • the operation process of the battery discharge overcurrent protection circuit of this embodiment is substantially the same as that of the second embodiment shown in FIG. 3, except that the sampling resistor R4 is different. Connected to the positive terminal of the discharge port, and an amplifier is used to acquire the sampling resistor R4 The voltage on the top, which improves the anti-interference ability.
  • the specific reason is: if the sampling resistor is set at the negative pole of the discharge port, the negative pole of the discharge port is generally directly connected with the grounding shell of the host, and the anti-interference ability is relatively poor.
  • Figure 5 It is a circuit diagram of the fourth embodiment of the overcurrent protection circuit for discharging the battery of the present invention.
  • the structure of the discharge control module and the delay module of the embodiment will be specifically described below.
  • the first end of the sampling resistor R4 is connected to the negative pole of the battery B2, and the second end of the sampling resistor R4 is connected to the MOS tube.
  • the source of Q2, the second end of the sampling resistor R4 is also connected to the source of the MOS transistor Q3, the drain of the MOS transistor Q2 is connected to the drain of the MOS transistor Q1, and the MOS transistor Q1
  • the source is connected to the negative terminal P- of the discharge port
  • the gate of the MOS transistor Q1 is connected to the charge control terminal (CO) of the battery protection chip U1
  • the gate of the MOS transistor Q2 is connected to the anode of the diode D2
  • the negative electrode of D2 is connected to the discharge control terminal (DO) of the battery protection chip U1
  • the drain of the MOS transistor Q3 is connected to the voltage sampling terminal (VM) of the battery protection chip U1 through the resistor R13, and the resistor R11
  • the resistor R6 is connected between the discharge control terminal (DO) of the battery protection chip U1 and the gate of the MOS transistor Q2 to lower the Q2.
  • the turn-on speed is used to reduce the transient current of the battery discharge.
  • the anode of diode D3 is grounded through resistor R14, and the cathode of diode D3 is connected to the gate of MOS transistor Q3.
  • the anode of diode D1 is connected to the negative terminal P- of the discharge port, and the negative terminal of diode D1 is connected through the resistor R8.
  • the first end of the capacitor C6 is connected to the gate of the MOS transistor Q6, the second end of the capacitor C6 and the source of the MOS transistor Q6 are grounded, and the drain of the MOS transistor Q6 is connected to the MOS transistor Q3.
  • the gate, the negative terminal of the discharge port P- is also connected to the voltage sampling terminal (VM) of the battery protection chip U1 through the resistor R5.
  • the resistor R9 is connected between the cathode of the diode D1 and the ground, which is C6. Provide a discharge path.
  • the battery overcurrent protection circuit of the embodiment when the load is connected to the discharge port, the battery protection chip U1 The charge control terminal (CO) and the discharge control terminal (DO) both output a high level, and the MOS transistors Q1 and Q2 are turned on. At this time, the output voltage of the battery cell passes through the discharge port, the MOS transistor Q1, Q2 forms a discharge path. If it is in the normal state, that is, when no discharge overcurrent occurs, when the discharge control terminal (DO) of the battery protection chip U1 outputs a high voltage, the resistor R11 is used as the capacitor C7.
  • the voltage on the sampling resistor R4 is higher than the internal reference voltage (0.3V) of the battery protection chip U1, and the battery protection chip
  • the discharge control terminal (DO) of U1 outputs a low level, the MOS transistor Q2 turns off, and the discharge path is turned off.
  • the MOS transistor Q2 is turned off, the sampling resistor R4
  • the discharge control terminal (DO) of the battery protection chip U1 outputs a high level again, the MOS transistor Q2. Turned on, the discharge path is turned on again. In this way, the MOS transistor Q2 operates in a disconnected state.
  • MOS transistor Q3 is continuously turned on.
  • the gate turn-on voltage also allows the high voltage of the negative terminal P- of the discharge port to charge the capacitor C7 through the resistor R14 and the diode D3.
  • MOS transistor Q6 If the turn-on threshold voltage of MOS transistor Q6 is reached, MOS transistor Q6 is turned on, MOS transistor Q3 The gate voltage is pulled low, and the resistor R5 couples the high voltage of the negative terminal P- of the discharge port to the voltage sampling terminal (VM) of the battery protection chip U1, which is greater than the internal reference voltage (0.3V).
  • VM voltage sampling terminal
  • DO discharge control terminal
  • MOS transistor Q2 When the discharge control terminal (DO) of the battery protection chip U1 outputs a low level, the MOS transistor Q2 is turned off due to the loss of its gate voltage. Thereafter, the voltage of the negative terminal P- of the discharge port is always passed through the resistor R5.
  • the voltage sampling terminal (VM) of the battery protection chip U1 is applied, so that the discharge control terminal (DO) of the battery protection chip U1 continuously outputs a low voltage, the MOS transistor Q2 It is locked in the off state, and the discharge path of the battery is locked in the off state.
  • the battery overcurrent protection circuit of this embodiment is compared with FIG. 3 and FIG. 4
  • a comparator or amplifier can be omitted, and the delay module can save some switching transistors (e.g., MOS transistors Q4, Q5), and thus, the structure is simpler.
  • Embodiment 1 is a flow chart of Embodiment 1 of an overcurrent protection method for discharging a battery of the present invention, and the method for overcurrent protection of the battery discharge includes:
  • step A Detecting the discharge current of the battery in real time, and judging whether overcurrent occurs by comparing the detected discharge current with a preset threshold value; if not, executing step B; if yes, performing step C;
  • step C you can determine if the overcurrent has timed out by the following method:
  • the high voltage charges the first capacitor through the second resistor, and determines whether the timeout is determined by determining the voltage of the first capacitor, wherein the preset delay time and the resistance of the second resistor The value is related to the capacitance of the first capacitor.
  • the delay time it is necessary to set the delay time to be large (for example, considering the effect of the mechanical vibration of the battery pole piece at the moment of battery replacement, the delay time needs to be set to 100 mS), the discharge energy of the battery will not be very large.

Abstract

一种电池放电的过流保护电路及方法。该过流保护电路包括放电开关管(Q2);放电控制模块(10),用于实时检测电池(B1,B2)的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若无发生过流,则控制放电开关管开通;若发生过流,则控制放电开关管关断,而且,在过流超时时,将放电开关管锁定在关断状态;延时模块(20),用于通过比较发生过流的时间与预设的延时时间来判断过流是否超时。

Description

一种电池放电的过流保护电路及方法 技术领域
本发明涉及电池保护领域,尤其涉及一种电池放电的过流保护电路及方法。
背景技术
用电池供电的电子设备在多次更换电池以后,大多出现电池极片触点发黑的现象,从而使电子设备上电不可靠。其主要原因是电池的放电电流没有得到合理的控制。例如,在给电子设备更换电池时,电池极片与电子设备的电池座接触的瞬间产生大的脉冲电流,电池极片触点打火产生高温氧化而引起电池极片触点发黑。在一些易燃易爆环境中使用的手持电子设备,为了安全,需要把电池放电的能量限制在一定的安全值以内。电池放电的瞬态大电流对电池的存储和使用都有安全的隐患,因此,如何合理地把电池放电的电流限制在安全的限值内,又不影响正常的使用,是电池保护需要解决的重要技术问题。
目前,现有的电池放电的过流保护主要采用以下方式:在电池的闲置状态,放电开关管是常开通的。放电过程中,保护电路检测到电池放电的电流超过设计的门限值后,放电开关管延迟一定时间再关断,中止电池放电。在关断延迟的时间内,放电开关管是持续开通的,放电通路上有大的脉冲电流。这个方法的缺点是,电池使用安全性与电容性负载的充电对延迟时间的要求相矛盾。如果延时时间设计的较短,含有大电容的负载上电时要求关断延迟时间较长,如果延迟的时间不够,负载的电容还没有来得及充满电,电池保护电路就产生限流保护而中止放电了,负载不能正常加电。如果延迟时间设计的较长,满足了大电容负载的充电要求,但若电池的放电端口突然出现短路,则将会产生大的脉冲电流,有引发火灾或烧伤人体等事故的隐患。使用这样的电池,设备常发生电池极片触点氧化发黑接触不良的现象。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述不能将电池放电的电流限制在安全的限值内的缺陷,提供一种电池放电的过流保护电路及方法,能很好地将电池放电的电流限制在安全的限值内。
本发明解决其技术问题所采用的技术方案是:构造一种电池放电的过流保护电路,包括连接在电池放电通路中的放电开关管,所述过流保护电路还包括:
放电控制模块,用于实时检测电池的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若无发生过流,则控制所述放电开关管开通;若发生过流,则控制所述放电开关管关断,而且,在过流超时时,将所述放电开关管锁定在关断状态;
延时模块,用于通过比较发生过流的时间与预设的延时时间来判断过流是否超时。
在本发明所述的电池放电的过流保护电路中,所述放电控制模块包括电池保护芯片、采样电阻、比较器、限流控制开关管,其中,所述采样电阻的第一端分别接所述电池的负极和地,所述采样电阻的第二端接所述放电开关管的第二端及所述比较器的第一输入端,所述放电开关管的第一端接放电端口的负极,所述比较器的第二输入端接参考电压,所述比较器的输出端接所述限流控制开关管的控制端,所述限流控制开关管的第二端接地,所述限流控制开关管的第一端分别接所述放电开关管的控制端和所述电池保护芯片的放电控制端。
在本发明所述的电池放电的过流保护电路中,所述放电控制模块包括电池保护芯片、采样电阻、比较器、放大器、限流控制开关管,其中,所述采样电阻的第一端分别接所述电池的正极及所述放大器的第一输入端,所述采样电阻的第二端分别接放电端口的正极及所述放大器的第二输入端,所述放大器的输出端接所述比较器的第一输入端,所述比较器的第二输入端接参考电压,所述比较器的输出端接所述限流控制开关管的控制端,所述限流控制开关管的第二端接地,所述限流控制开关管的第一端分别接所述放电开关管的控制端和所述电池保护芯片的放电控制端,所述放电开关管的第一端接放电端口的负极,所述放电开关管的第二端分别接电池的负极和地。
在本发明所述的电池放电的过流保护电路中,所述放电控制模块还包括限流电阻,所述限流电阻的第一端连接在所述电池保护芯片的放电控制端,所述限流电阻的第二端连接所述放电开关管的控制端和所述限流控制开关管的第一端。
在本发明所述的电池放电的过流保护电路中,所述延时模块包括第一二极管、第一开关管、第二开关管、第一电容、第一电阻、第二电阻、第三电阻和第四电阻,其中,所述第一开关管的第一端接所述电池保护芯片的电压采样端,所述第一开关管的第二端和第二开关管的第二端分别接地,所述第一开关管的控制端及所述第二开关管的第一端通过所述第一电阻接所述放电端口的负极;所述第一二极管的正极连接所述放电端口的负极,所述第一二极管的负极通过所述第二电阻连接所述第一电容的第一端及所述第二开关管的控制端,所述第一电容的第二端接地,所述放电端口的负极还通过所述第三电阻接所述电池保护芯片的电压采样端,所述第四电阻连接在所述第一二极管的负极和地之间。
在本发明所述的电池放电的过流保护电路中,所述放电控制模块包括电池保护芯片、采样电阻、限流控制开关管、第五电阻、第六电阻、第二电容和第二二极管,其中,所述采样电阻的第一端分别接所述电池的负极和地,所述采样电阻的第二端分别接所述放电开关管的第二端及所述限流控制开关管的第二端,所述放电开关管的第一端接放电端口的负极,所述放电开关管的控制端接所述第二二极管的正极, 所述第二二极管的负极接所述电池保护芯片的放电控制端,所述第六电阻连接在所述第二二极管的正极和负极之间,所述限流控制开关管的第一端接所述电池保护芯片的电压采样端,所述第五电阻的第一端接所述电池保护芯片的放电控制端,所述第五电阻的第二端分别接所述限流控制开关管的控制端和所述第二电容的第一端,所述第二电容的第二端接地 。
在本发明所述的电池放电的过流保护电路中,所述延时模块包括第一二极管、第二电阻、第三电阻、第四电阻、第一电容和第二开关管,其中,所述第一二极管的正极连接所述放电端口的负极,所述第一二极管的负极通过所述第二电阻连接所述第一电容的第一端及所述第二开关管的控制端,所述第一电容的第二端及所述第二开关管的第二端接地,所述第二开关管的第一端连接所述限流控制开关管的控制端,所述放电端口的负极还通过所述第三电阻接所述电池保护芯片的电压采样端,所述第四电阻连接在所述第一二极管的负极和地之间 。
在本发明所述的电池放电的过流保护电路中,所述放电控制模块还包括第三二极管和第七电阻,其中,所述第三二极管的负极接所述限流控制开关管的控制端,所述第三二极管的正极通过所述第七电阻接所述放电端口的负极。
本发明还构造一种电池放电的过流保护方法,用于控制放电开关管,所述放电开关管连接在电池放电通路中,当负载接入电池后,进行:
A. 实时检测电池的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若否,则执行步骤 B ;若是,则执行步骤 C ;
B. 控制放电开关管开通,然后执行步骤 A ;
C. 控制放电开关管关断,同时,通过比较发生过流的时间与预设的延时时间来判断过流是否超时,若是,则执行步骤 D ;若否,则执行步骤 A ;
D. 将所述放电开关管锁定在关断状态,然后结束。
在本发明所述的电池放电的过流保护方法中,通过比较发生过流的时间与预设的延时时间来判断过流是否超时的步骤为:
在放电开关管关断时,高电压通过第二电阻对第一电容进行充电,并通过判断第一电容的电压来判断是否超时,其中,预设的延时时间与所述第二电阻的阻值和所述第一电容的容值相关。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图 1 是本发明电池放电的过流保护电路实施例一的逻辑图;
图 2 是图 1 中放电电流与放电开关管状态分别与加载时间的时序图;
图 3 是本发明电池放电的过流保护电路实施例二的电路图;
图 4 是本发明电池放电的过流保护电路实施例三的电路图;
图 5 是本发明电池放电的过流保护电路实施例四的电路图;
图 6 是本发明电池放电的过流保护方法实施例一的流程图;
图 7A 、7B分别是现有技术和本发明中的电池放电的电流波形测试图。
具体实施方式
图 1 是本发明电池放电的过流保护电路实施例一的逻辑图,该电池放电的过流保护电路包括放电开关管(未示出)、放电控制模块 10 和延时模块 20 ,其中,放电开关管连接在电池放电通路中,放电控制模块 10 用于实时检测电池的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若无发生过流,则控制所述放电开关管开通;若发生过流,则控制所述放电开关管关断,而且,在过流超时时,将所述放电开关管锁定在关断状态。延时模块 20 用于通过比较发生过流的时间与预设的延时时间来判断过流是否超时 。
结合图 2 ,当负载接入电池后开始检测电池的放电电流 id ,从而判断是否发生过流,即是否超过电流的门限值 ir 。如果无发生过流,则控制放电开关管开通;如果发生过流,则控制放电开关管关断,同时,通过比较发生过流的时间与预设的延时时间来判断过流是否超时,如果超时,则将放电开关管锁定在关断状态。例如,如果在 t1 时刻发生了过流,在 t2 时刻过流结束,而且过流无超时,即,发生过流的时间( t2-t1 的时间段)无超过延时时间,则在该放电过流期间内,放电控制模块 10 控制放电开关管以间断开通的方式工作,并在放电过流结束后,控制放电开关管持续开通。在此需说明的是,在控制放电开关管动作时,应考虑响应时间 t0
再例如,如果电池的放电在 t3 时刻发生了过流,而且在 t4 时刻过流还未结束,即,发生过流的时间( t4-t3 的时间段)达到延时时间 td ,则在延时时间 td 内,放电控制模块 10 控制放电开关管以间断开通的方式工作,并在延时时间结束时,即,在 t4 时刻后,将放电开关管锁定在关断状态。
实施该实施例的技术方案,在负载接入电池后,在发生过流时,如果过流未超时,则在过流发生的期间,放电开关管以间断开通的方式工作,等过流结束时,放电开关管持续开通;如果超时,则在延时时间内,放电开关管以间断开通的方式工作,延时时间结束后,放电开关管将被锁定在关断状态。因此,在电池对电容性负载充电时,不是一次性充满电,而是多次充电的累积,因此可降低电池放电的瞬态电流,有效地限制了电池的放电的瞬态能量,提高了电池的安全性。
图 3 是本发明电池放电的过流保护电路实施例二的电路图,电池包括相串联的电芯 B1、B2 ,电芯 B1 的正极即为电池的正极,电芯 B2 的负极即为电池的负极,而且,电池的负极接地。该电池放电的过流保护电路包括放电开关管、放电控制模块和延时模块。另外,该电池是可充电电池,该过流保护电路还包括充电开关管。而且,在该实施例中,放电开关管选用 MOS 管 Q2 ,充电开关管选用 MOS 管 Q1 。当然,如果在其它实施例中该电池可以是非充电电池,此时,可省去充电开关管。下面分别具体说明放电控制模块和延时模块。
在放电控制模块中,电池保护芯片 U1 可选用型号为 S8232 的芯片,而且,关于电池保护芯片 U1 的各个端口,其中, DO 为放电控制端,用于控制 MOS 管 Q2 。 CO 是充电控制端,用于控制 MOS 管 Q1 。 ICT 是定时电容连接端, 该定时电容为电容 C4 ,改变电容 C4 的容量可调节充放电检测响应时间。 VM 为电压采样端,该端口输入电压与其内部设定的基准电压(例如为 0.3V )进行比较,比较结果用于电流的门限控制。 VC、SENS 为电池的电芯电压检测端,其中, VC 通过电阻 R3 接电芯 B2 的正极, SENS 通过电阻 R1 接电芯 B1 的正极。 VCC 是 IC 内部线路供电端,其通过电阻 R2 接电芯 B1 的正极。另外, VCC、VC 、SENS 端分别通过电容 C2 、C3 、 C1 接地,这些电容起稳压和滤波作用,在其它实施例中可省去 。
在工作时,若状态正常,即无发生放电过流也无发生充电过流,电池保护芯片 U1 的放电控制端(DO)、充电控制端(CO)均输出高电压,控制 MOS 管 Q1 和 MOS 管 Q2 导通,从而形成充电通路或放电通路。在放电时,若电芯电压低于放电电压门限或放电电流超过电流门限时,电池保护芯片 U1 的放电控制端(DO)输出低电压控制 MOS 管 Q2 关断,电池中止放电。在充电时,如果电芯电压超过充电电压门限,电池保护芯片 U1 的充电控制端( CO )将输出低电压以控制 MOS 管 Q1 关断,中止对电池的充电。
在放电控制模块中,采样电阻 R4 的第一端接电芯 B2 的负极,采样电阻 R4 的第二端接 MOS 管 Q2 的源极,采样电阻 R4 的第二端还通过电阻 R10 接比较器 U2 的第一输入端( IN+ ),比较器 U2 的第二输入端( IN- )接参考电压 Verf , MOS 管 Q2 的漏极接 MOS 管 Q1 的漏极, MOS 管 Q1 的源极接放电端口的负极 P- , MOS 管 Q2 的栅极通过电阻 R6 接电池保护芯片 U1 的放电控制端(DO), MOS 管 Q1 的栅极接电池保护芯片 U1 的充电控制端( CO )。比较器 U2 的输出端接 MOS 管 Q3 的栅极, MOS 管 Q3 的源极接地, MOS 管 Q3 的漏极接 MOS 管 Q2 的栅极。另外,比较器 U2 的第二输入端( IN- )和地之间还连接有电容 C7 ,比较器 U2 的电源端( VCC )连接电芯 B1 的正极,而且,比较器 U2 的电源端(VCC)和地之间还连接有电容 C5 。在此需说明的是,比较器 U2 的参考电压可由稳压芯片提供,也可由其它参考电压源来提供。另外,电容 C3、C2 、C1、C7 、C5 在该实施例中起稳压和滤波作用,电阻 R10、R6 起限流作用,这些电容和电阻在其它实施例中可省去。
在延时模块中,MOS 管 Q5 的源极接电池保护芯片 U1 的电压采样端(VM), MOS 管 Q5 的漏极接 MOS 管 Q4 的漏极, MOS 管 Q4 的源极及 MOS 管 Q6 的源极分别接地, MOS 管 Q5 的栅极、 MOS 管 Q4 的栅极和 MOS 管 Q6 的漏极接在一起,并且通过电阻 R7 接到放电端口的负极 P- 。二极管 D1 的正极连接放电端口的负极 P- ,二极管 D1 的负极通过电阻 R8 连接电容 C6 的第一端及 MOS 管 Q6 的栅极,电容 C6 的第二端接地,放电端口的负极 P- 还通过电阻 R5 接电池保护芯片 U1 的电压采样端(VM)。另外,二极管 D1 的负极和地之间还连接有电阻 R9 ,电阻 R9 为 C6 提供放电通路。而且,在该实施例中, MOS 管 Q4、Q5 因为都反并联有二极管,为防止双向导通,所以选用了 MOS 管 Q4、Q5 如上所述的串联连接。若选用不带反并联二极管的 MOS 管,可用一个 MOS 管来替代相串联的 MOS 管 Q4、Q5 。
下面说明该实施例的电池放电的过流保护电路的工作过程:当将负载接入放电端口后,电池保护芯片 U1 的充电控制端(CO)和放电控制端(DO)均输出高电平, MOS 管 Q1、Q2 开通。如果是正常状态,即无发生放电过流时,采样电阻 R4 上的电压低于比较器 U2 的参考电压,比较器 U2 的输出端( OUT )输出低电平, MOS 管 Q3 关断, MOS 管 Q2 因其栅极电压被电池保护芯片 U1 的放电控制端(DO)的高电压拉高而开通,此时,电池电芯的输出电压经放电端口、 MOS 管 Q1、Q2 形成放电通路。
在发生放电过流时,采样电阻 R4 上的电压大于比较器 U2 的参考电压,比较器 U2 的输出端(OUT)输出高电平, MOS 管 Q3 开通, MOS 管 Q2 因其栅极电压被 MOS 管 Q3 拉低而关断,放电通路断开。当 MOS 管 Q2 关断后,采样电阻 R4 上的电压下降,当该电压低于比较器 U2 的参考电压时,比较器 U2 再次输出低电平, MOS 管 Q3 又关断, MOS 管 Q2 因其栅极电压被电池保护芯片 U1 的放电控制端(DO)的高电压拉高而开通,放电通路再次开通。就这样, MOS 管 Q2 工作在间断开通的状态。
另外,在电池放电过流后 MOS 管 Q2 关断期间,放电端口的负极 P- 的电压被抬高,该电压通过电阻 R7 控制 MOS 管 Q4、Q5 开通,从而把电池保护芯片 U1 的电压采样端(VM)接地。同时,放电端口的负极 P- 的高电压通过二极管 D1 、电阻 R8 对电容 C6 充电。由于在过流期间 MOS 管 Q2 是间断关断的,所以,对电容 C6 的充电是多次累积的。
随着电容 C6 的电压升高,在达到 MOS 管 Q6 的导通门限电压之前, MOS 管 Q2 工作在间断关断状态。如果电容 C6 的电压达到 MOS 管 Q6 的导通门限电压,则 MOS 管 Q6 开通, MOS 管 Q4 、 Q5 因其栅极电压被拉低而关断,同时,电阻 R5 把放电端口的负极 P- 的高电压耦合到电池保护芯片 U1 的电压采样端(VM),该电压大于内部的基准电压(0.3V)时,电池保护芯片 U1 的放电控制端(DO)输出低电平, MOS 管 Q2 因其栅极失去电压而关断,此后,放电端口的负极 P- 的电压一直通过电阻 R5 加到电池保护芯片 U1 的电压采样端( VM ),使得电池保护芯片 U1 的放电控制端(DO)持续输出低电压, MOS 管 Q2 被锁定在关断状态,电池的放电通路被锁定于断开状态 。
另外,需说明的是,在电容 C6 上的充电电压达到 MOS 管 Q6 的栅极门限电压之前,由于 MOS 管 Q4 、 Q5 处于导通状态,放电端口的负极 P- 的高电压不能加到电池保护芯片 U1 的电压采样端(VM),电池保护芯片 U1 的放电控制端(DO)一直是高电压, MOS 管 Q2 因受 MOS 管 Q3 的控制而一直工作于间断开通状态,过流电流波形为连续脉串,第一个脉冲比后面的脉冲幅度高一些 。
在 MOS 管 Q2 被锁定在关断状态后,只有拆除放电端口上所接入的负载,放电端口的负极 P- 的电压才被降低,若电池保护芯片 U1 的电压采样端(VM)的电压降到内部的基准电压(0.3V)以下,电池保护芯片 U1 的放电控制端(DO)才输出高电压, MOS 管 Q2 因栅极得到高电压而重新导通,放电通路恢复开通。另外,在 MOS 管 Q2 的栅极上串接电阻 R6 可降低 MOS 管 Q2 的开通速度,进一步降低电池放电的瞬态峰值电流。
图 4 是本发明电池放电的过流保护电路实施例三的电路图,该实施例相比图 3 所示的实施例,延时模块的电路结构相同,所不同的仅是在放电控制模块。下面仅说明该实施例的放电控制模块的电路结构,在该放电控制模块中,运算放大器 U2 选用型号为 AD8566 的芯片,该芯片包括两个部分,第一部分用作放大器来放大采样电阻 R4 上的采样电压,第二部分用作比较器来比较该采样电压和参考电压。当然,在其它实施例中,也可选用分离的放大器和比较器。另外,在该实施例中,采样电阻 R4 连接在放电端口的正极 P+ 和电芯 B1 的正极之间,而且,采样电阻 R4 的第一端通过电阻 R10 接运算放大器 U2 第一部分的第一输入端( B-INPUT ),采样电阻 R4 的第二端通过电阻 R22 接运算放大器 U2 第一部分的第二输入端(B+INPUT),电阻 R23 连接在运算放大器 U2 第一部分的第二输入端( B+INPUT )和地之间,运算放大器 U2 的第一部分的输出端(B OUTPUT)接运算放大器 U2 的第二部分的第一输入端( A+INPUT ),运算放大器 U2 的第二部分的第二输入端(A-INPUT)接参考电压 Verf ,运算放大器 U2 的第二部分的输出端(A OUTPUT)接 MOS 管 Q3 的栅极, MOS 管 Q3 的源极接地, MOS 管 Q3 的漏极接 MOS 管 Q2 的栅极, MOS 管 Q2 的漏极接 MOS 管 Q1 的漏极, MOS 管 Q1 的源极接放电端口的负极 P- , MOS 管 Q2 的栅极通过电阻 R6 接电池保护芯片 U1 的放电控制端(DO), MOS 管 Q1 的栅极接电池保护芯片 U1 的充电控制端(CO)。另外,运算放大器 U2 的第二部分的第二输入端(A-INPUT)和地之间还连接有电容 C7 ,运算放大器 U2 的电源端(V+)连接电芯 B1 的正极,而且,运算放大器 U2 的电源端(V+)和地之间还连接有电容 C5 。
该实施例的电池放电的过流保护电路的工作过程与图 3 所示的实施例二大致相同,所不同的仅是,采样电阻 R4 连在放电端口的正极,同时用一个放大器来获取该采样电阻 R4 上的电压,这样可提高抗干扰能力。具体原因为:如果采样电阻设置在放电端口的负极,因放电端口的负极一般都直接与主机的接地外壳接在一起,抗干扰的能力相对较差。
图 5 是本发明电池放电的过流保护电路实施例四的电路图,下面具体说明该实施例的放电控制模块和延时模块的结构。
在该放电控制模块中,采样电阻 R4 的第一端接电芯 B2 的负极,采样电阻 R4 的第二端接 MOS 管 Q2 的源极,采样电阻 R4 的第二端还接 MOS 管 Q3 的源极, MOS 管 Q2 的漏极接 MOS 管 Q1 的漏极, MOS 管 Q1 的源极接放电端口的负极 P- , MOS 管 Q1 的栅极接电池保护芯片 U1 的充电控制端(CO), MOS 管 Q2 的栅极接二极管 D2 的正极,二极管 D2 的负极接电池保护芯片 U1 的放电控制端(DO), MOS 管 Q3 的漏极通过电阻 R13 接电池保护芯片 U1 的电压采样端(VM),电阻 R11 的第一端接电池保护芯片 U1 的放电控制端(DO),电阻 R11 的第二端分别接 MOS 管 Q3 的栅极和电容 C7 的第一端,电容 C7 的第二端接地。另外,电阻 R6 连接在电池保护芯片 U1 的放电控制端(DO)和 MOS 管 Q2 的栅极之间,以降低 Q2 的开通速度来减小电池放电的瞬态电流。二极管 D3 的正极通过电阻 R14 接地,二极管 D3 的负极接 MOS 管 Q3 的栅极。
在延时模块中,二极管 D1 的正极连接放电端口的负极 P- ,二极管 D1 的负极通过电阻 R8 连接电容 C6 的第一端及 MOS 管 Q6 的栅极,电容 C6 的第二端及 MOS 管 Q6 的源极接地, MOS 管 Q6 的漏极连接 MOS 管 Q3 的栅极,放电端口的负极 P- 还通过电阻 R5 接电池保护芯片 U1 的电压采样端(VM),电阻 R9 连接在二极管 D1 的负极和地之间,为 C6 提供放电通路 。
下面说明该实施例的电池放电的过流保护电路的工作过程:当将负载接入放电端口后,电池保护芯片 U1 的充电控制端( CO )和放电控制端( DO )均输出高电平, MOS 管 Q1 、 Q2 开通。此时,电池电芯的输出电压经放电端口、 MOS 管 Q1 、 Q2 形成放电通路。如果是正常状态,即无发生放电过流时,在电池保护芯片 U1 的放电控制端( DO )输出高电压时,通过电阻 R11 为电容 C7 充电,使电容 C7 的电压高于 MOS 管 Q3 的栅极导通电压, MOS 管 Q3 导通,采样电阻 R4 上的电压通过 MOS 管 Q3 、电阻 R13 耦合到电池保护芯片 U1 的电压采样端( VM ),若该电压低于电池保护芯片 U1 的内部的基准电压( 0.3V ),则电池保护芯片 U1 的放电控制端( DO )持续输出高电平,维持放电通路。
在发生过流时,采样电阻 R4 上的电压高于电池保护芯片 U1 的内部的基准电压(0.3V),电池保护芯片 U1 的放电控制端(DO)输出低电平, MOS 管 Q2 关断,放电通路断开。当 MOS 管 Q2 关断后,采样电阻 R4 上的电压下降,当再次低于电池保护芯片 U1 的内部的基准电压(0.3V)时,电池保护芯片 U1 的放电控制端(DO)又输出高电平, MOS 管 Q2 导通,放电通路再次开通。就这样, MOS 管 Q2 工作在间断开通的状态。在此需说明的是,在 MOS 管 Q2 断开期间,由于电容 C7 的电压不会突然变低,因此, MOS 管 Q3 是持续导通的。为了进一步保证在 MOS 管 Q2 断开期间电容 C7 的电压高于 MOS 管 Q3 的栅极导通电压,还可使放电端口的负极 P- 的高电压通过电阻 R14、二极管 D3 为电容 C7 充电。
另外,在 MOS 管 Q2 关断期间,放电端口的负极 P- 的电压被抬高,该电压通过二极管 D1、电阻 R8 对电容 C6 充电。由于在过流期间 MOS 管 Q2 是间断关断的,所以,对电容 C6 的充电是多次累积的。随着电容 C6 的电压升高,在达到 MOS 管 Q6 的导通门限电压之前, MOS 管 Q2 工作在间断关断状态。如果达到 MOS 管 Q6 的导通门限电压,则 MOS 管 Q6 开通, MOS 管 Q3 栅极电压被拉低,同时,电阻 R5 把放电端口的负极 P- 的高电压耦合到电池保护芯片 U1 的电压采样端(VM),该电压大于内部的基准电压(0.3V )时,电池保护芯片 U1 的放电控制端(DO)输出低电平, MOS 管 Q2 因其栅极失去电压而关断,此后,放电端口的负极 P- 的电压一直通过电阻 R5 加到电池保护芯片 U1 的电压采样端(VM),使得电池保护芯片 U1 的放电控制端(DO)持续输出低电压, MOS 管 Q2 被锁定在关断状态,电池的放电通路被锁定于断开状态。
该实施例的电池放电的过流保护电路相比图 3 和图 4 所示的实施例,可省去一个比较器或放大器,而且,延时模块可节省一些开关管(例如 MOS 管 Q4、Q5),因此,结构更加简单。
关于以上所示的几个电路图,应理解这只是本发明的几个实施例,在其它实施例中, MOS 管可选用其它类型的开关管来替代,一些起限流作用的电阻可省去,一些起稳压和滤波作用的电容可省去。而且,也可以使用电流传感器把放电端口的正极或放电端负极的电流转换成电压。
图 6 是本发明电池放电的过流保护方法实施例一的流程图,该电池放电的过流保护方法包括:
A. 实时检测电池的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若否,则执行步骤 B ;若是,则执行步骤 C ;
B. 控制放电开关管开通,然后执行步骤 A ;
C. 控制放电开关管关断,同时,通过比较发生过流的时间与预设的延时时间来判断过流是否超时,若是,则执行步骤 D ;若否,则执行步骤 A ;
D. 将所述放电开关管锁定在关断状态,然后结束。
在步骤 C 中,可通过下面方法来判断过流是否超时:
在放电开关管关断时,高电压通过第二电阻对第一电容进行充电,并通过判断第一电容的电压来判断是否超时,其中,预设的延时时间与所述第二电阻的阻值和所述第一电容的容值相关。
最后,在放电电流门限值为 1.9A ,延时时间为 47mS 时,对比图 7A 、 7B 分别所示的现有技术和本发明的电池放电的电流波形,在图 7A 中,电池放电电流的峰值达 16.4A ,电流脉冲宽度达 47mS 。在图 7B 中,除了第一个脉冲电流的峰值( 6.36A )较高外,后续的其它脉冲电流峰值约 2A 。因此,本发明的电池放电的过流保护方案相比现有技术的方案,放电的瞬态电流大为减小,有效地限制了电池的放电能量。即使一些情况下需要将延时时间设置的较大,(例如,考虑到在更换电池瞬间电池极片机械抖动的影响,需要将延时时间设置到 100 mS ),电池的放电能量也不会很大。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的权利要求范围之内。

Claims (10)

  1. 一种电池放电的过流保护电路,包括连接在电池放电通路中的放电开关管,其特征在于,所述过流保护电路还包括:
    放电控制模块,用于实时检测电池的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若无发生过流,则控制所述放电开关管开通;若发生过流,则控制所述放电开关管关断,而且,在过流超时时,将所述放电开关管锁定在关断状态;
    延时模块,用于通过比较发生过流的时间与预设的延时时间来判断过流是否超时。
  2. 根据权利要求1所述的电池放电的过流保护电路,其特征在于,所述放电控制模块包括电池保护芯片、采样电阻、比较器、限流控制开关管,其中,所述采样电阻的第一端分别接所述电池的负极和地,所述采样电阻的第二端接所述放电开关管的第二端及所述比较器的第一输入端,所述放电开关管的第一端接放电端口的负极,所述比较器的第二输入端接参考电压,所述比较器的输出端接所述限流控制开关管的控制端,所述限流控制开关管的第二端接地,所述限流控制开关管的第一端分别接所述放电开关管的控制端和所述电池保护芯片的放电控制端。
  3. 根据权利要求1 所述的电池放电的过流保护电路,其特征在于,所述放电控制模块包括电池保护芯片、采样电阻、比较器、放大器、限流控制开关管,其中,所述采样电阻的第一端分别接所述电池的正极及所述放大器的第一输入端,所述采样电阻的第二端分别接放电端口的正极及所述放大器的第二输入端,所述放大器的输出端接所述比较器的第一输入端,所述比较器的第二输入端接参考电压,所述比较器的输出端接所述限流控制开关管的控制端,所述限流控制开关管的第二端接地,所述限流控制开关管的第一端分别接所述放电开关管的控制端和所述电池保护芯片的放电控制端,所述放电开关管的第一端接放电端口的负极,所述放电开关管的第二端分别接电池的负极和地。
  4. 根据权利要求2或3所述的电池放电的过流保护电路,其特征在于,所述放电控制模块还包括限流电阻,所述限流电阻的第一端连接在所述电池保护芯片的放电控制端,所述限流电阻的第二端连接所述放电开关管的控制端和所述限流控制开关管的第一端。
  5. 根据权利要求2或3所述的电池放电的过流保护电路,其特征在于,所述延时模块包括第一二极管、第一开关管、第二开关管、第一电容、第一电阻、第二电阻、第三电阻和第四电阻,其中,所述第一开关管的第一端接所述电池保护芯片的电压采样端,所述第一开关管的第二端和第二开关管的第二端分别接地,所述第一开关管的控制端及所述第二开关管的第一端通过所述第一电阻接所述放电端口的负极;所述第一二极管的正极连接所述放电端口的负极,所述第一二极管的负极通过所述第二电阻连接所述第一电容的第一端及所述第二开关管的控制端,所述第一电容的第二端接地,所述放电端口的负极还通过所述第三电阻接所述电池保护芯片的电压采样端,所述第四电阻连接在所述第一二极管的负极和地之间。
  6. 根据权利要求1所述的电池放电的过流保护电路,其特征在于,所述放电控制模块包括电池保护芯片、采样电阻、限流控制开关管、第五电阻、第六电阻、第二电容和第二二极管,其中,所述采样电阻的第一端分别接所述电池的负极和地,所述采样电阻的第二端分别接所述放电开关管的第二端及所述限流控制开关管的第二端,所述放电开关管的第一端接放电端口的负极,所述放电开关管的控制端接所述第二二极管的正极,所述第二二极管的负极接所述电池保护芯片的放电控制端,所述第六电阻连接在所述第二二极管的正极和负极之间,所述限流控制开关管的第一端接所述电池保护芯片的电压采样端,所述第五电阻的第一端接所述电池保护芯片的放电控制端,所述第五电阻的第二端分别接所述限流控制开关管的控制端和所述第二电容的第一端,所述第二电容的第二端接地。
  7. 根据权利要求6所述的电池放电的过流保护电路,其特征在于,所述延时模块包括第一二极管、第二电阻、第三电阻、第四电阻、第一电容和第二开关管,其中,所述第一二极管的正极连接所述放电端口的负极,所述第一二极管的负极通过所述第二电阻连接所述第一电容的第一端及所述第二开关管的控制端,所述第一电容的第二端及所述第二开关管的第二端接地,所述第二开关管的第一端连接所述限流控制开关管的控制端,所述放电端口的负极还通过所述第三电阻接所述电池保护芯片的电压采样端,所述第四电阻连接在所述第一二极管的负极和地之间。
  8. 根据权利要求6所述的电池放电的过流保护电路,其特征在于,所述放电控制模块还包括第三二极管和第七电阻,其中,所述第三二极管的负极接所述限流控制开关管的控制端,所述第三二极管的正极通过所述第七电阻接所述放电端口的负极。
  9. 一种电池放电的过流保护方法,用于控制放电开关管,所述放电开关管连接在电池放电通路中,其特征在于,当负载接入电池后,进行:
    A. 实时检测电池的放电电流,并通过比较所检测的放电电流与预设的门限值来判断是否发生过流,若否,则执行步骤 B ;若是,则执行步骤 C ;
    B. 控制放电开关管开通,然后执行步骤 A ;
    C. 控制放电开关管关断,同时,通过比较发生过流的时间与预设的延时时间来判断过流是否超时,若是,则执行步骤 D ;若否,则执行步骤 A ;
    D. 将所述放电开关管锁定在关断状态,然后结束。
  10. 根据权利要求 9 所述的电池放电的过流保护方法,其特征在于,通过比较发生过流的时间与预设的延时时间来判断过流是否超时的步骤为:
    在放电开关管关断时,高电压通过第二电阻对第一电容进行充电,并通过判断第一电容的电压来判断是否超时,其中,预设的延时时间与所述第二电阻的阻值和所述第一电容的容值相关。
PCT/CN2013/089386 2013-12-13 2013-12-13 一种电池放电的过流保护电路及方法 WO2015085578A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13899182.3A EP3082209B1 (en) 2013-12-13 2013-12-13 Overcurrent protection circuit and method for battery discharge
US15/103,930 US10090689B2 (en) 2013-12-13 2013-12-13 Overcurrent protection circuit and method for limiting discharge current of battery within safety limiting value
PCT/CN2013/089386 WO2015085578A1 (zh) 2013-12-13 2013-12-13 一种电池放电的过流保护电路及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089386 WO2015085578A1 (zh) 2013-12-13 2013-12-13 一种电池放电的过流保护电路及方法

Publications (1)

Publication Number Publication Date
WO2015085578A1 true WO2015085578A1 (zh) 2015-06-18

Family

ID=53370527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089386 WO2015085578A1 (zh) 2013-12-13 2013-12-13 一种电池放电的过流保护电路及方法

Country Status (3)

Country Link
US (1) US10090689B2 (zh)
EP (1) EP3082209B1 (zh)
WO (1) WO2015085578A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018005409A1 (en) * 2016-06-30 2018-01-04 Westerngeco Llc Seismic sensor assembly overvoltage protection circuitry
CN107231015B (zh) 2016-09-20 2019-07-09 华为技术有限公司 一种电池、终端以及充电系统
CN106712199B (zh) * 2017-01-22 2023-12-29 湖南电将军新能源有限公司 一种用于汽车启动电源的过流保护电路及方法
CN109361252A (zh) * 2018-12-12 2019-02-19 深圳市道通智能航空技术有限公司 一种保护电路、电池及飞行器
US11088531B2 (en) * 2019-09-06 2021-08-10 Motorola Solutions, Inc. Device, battery and method for spark detection based on transient currents
US20210380060A1 (en) * 2020-06-04 2021-12-09 Veoneer Us, Inc. Sensor communication discrete control considering emc compliance for restraint control module
DE102021204455A1 (de) 2021-05-04 2022-11-10 Robert Bosch Gesellschaft mit beschränkter Haftung Überstromschutzschaltung, Managementsystem und Bordnetz für ein Kraftfahrzeug
CN113363943B (zh) * 2021-05-17 2022-06-07 深圳易马达科技有限公司 一种电池的过流保护电路及电源设备
CN116599002B (zh) * 2023-04-07 2024-02-02 惠州市乐亿通科技股份有限公司 一种短路保护电路及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956056A (ja) * 1995-08-18 1997-02-25 Fuji Photo Film Co Ltd 二次電池電源装置および保護回路ならびに異常充電保護方法
CN100394670C (zh) * 2000-05-12 2008-06-11 精工电子有限公司 充电/放电控制电路和充电式电源装置
CN101777782A (zh) * 2009-01-13 2010-07-14 索尼公司 电池组以及控制电池组的方法
CN103647323A (zh) * 2013-12-13 2014-03-19 海能达通信股份有限公司 一种电池放电的过流保护电路及方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6600641B2 (en) * 1999-10-22 2003-07-29 Motorola, Inc. Overcurrent protection for the series fuse
JP3471321B2 (ja) 2000-05-12 2003-12-02 セイコーインスツルメンツ株式会社 充放電制御回路および充電式電源装置
JP3468220B2 (ja) * 2000-12-26 2003-11-17 株式会社リコー 充放電保護回路、および該充放電保護回路を組み込んだバッテリーパック、該バッテリーパックを用いた電子機器
JP4221572B2 (ja) 2003-01-22 2009-02-12 ミツミ電機株式会社 過電流検出回路及び電池ユニット
US7215107B2 (en) 2005-07-11 2007-05-08 Power Integrations, Inc. Method and apparatus to limit output power in a switching power supply
US7629769B2 (en) * 2006-03-10 2009-12-08 Atmel Corporation Power surge filtering in over-current and short circuit protection
CN2938522Y (zh) 2006-06-08 2007-08-22 潍坊光华电池有限公司 动力锂离子电池的过电流保护电路
CN101764388A (zh) 2008-12-26 2010-06-30 环隆电气股份有限公司 过电流保护装置及其方法
CN202026077U (zh) 2010-12-10 2011-11-02 上海新进半导体制造有限公司 一种开关电源的短路保护电路及控制器、开关电源
CN102098032B (zh) 2011-02-23 2014-02-12 海能达通信股份有限公司 一种抑制上电脉冲电流的延迟开关电路
CN203839985U (zh) 2013-12-13 2014-09-17 海能达通信股份有限公司 一种电池放电的过流保护电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0956056A (ja) * 1995-08-18 1997-02-25 Fuji Photo Film Co Ltd 二次電池電源装置および保護回路ならびに異常充電保護方法
CN100394670C (zh) * 2000-05-12 2008-06-11 精工电子有限公司 充电/放电控制电路和充电式电源装置
CN101777782A (zh) * 2009-01-13 2010-07-14 索尼公司 电池组以及控制电池组的方法
CN103647323A (zh) * 2013-12-13 2014-03-19 海能达通信股份有限公司 一种电池放电的过流保护电路及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3082209A4 *

Also Published As

Publication number Publication date
US20160380451A1 (en) 2016-12-29
EP3082209A1 (en) 2016-10-19
EP3082209B1 (en) 2022-05-11
US10090689B2 (en) 2018-10-02
EP3082209A4 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
WO2015085578A1 (zh) 一种电池放电的过流保护电路及方法
CN212572075U (zh) 单晶圆电池保护电路、电池充放电电路及便携式电子设备
US9350178B2 (en) Device and method for protecting rechargeable power supply of electronic cigarette
TWI395964B (zh) 電壓檢測電路、多電池單元之電池組保護電路及保護方法
WO2016119694A1 (zh) 电池保护电路、电能提供装置与电子装置
TW200931754A (en) Over-voltage protection circuit structure and method thereof
CN103699169B (zh) 电源电路
CN104701927A (zh) 二次保护ic、二次保护ic的控制方法、保护模块及电池组
CN112467971B (zh) 一种缓启动电路
CN104770884A (zh) 电子烟控制芯片和电子烟
CN112531825A (zh) 一种电池保护电路及电池充放电电路
CN110890738A (zh) 一种充电接口过流关断保护电路
WO2024087550A1 (zh) 一种高压锂电池充电防止热插拔的控制电路
CN208046214U (zh) 一种供电模块
CN108963999B (zh) 一种浪涌电流抑制器
TW201422463A (zh) 電動車輛的電能管理裝置和方法
CN205028661U (zh) 供电电路与电源管理电路
TW201616759A (zh) 自放電電路
CN108336716A (zh) 一种供电模块
JP2011229279A (ja) 充電制御装置
CN111883085A (zh) 一种改善液晶设备稳定工作的装置
WO2014177109A2 (zh) 一种终端电池激活方法、装置和终端
CN216184510U (zh) 一种电池无开关防打火保护电路
CN115967265B (zh) 防过充软启动电路及方法及包括其的降压电路、开关电源
CN213521289U (zh) 一种输入浪涌电流抑制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899182

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15103930

Country of ref document: US