WO2015085535A1 - 广播中间件、广播终端、广播服务器设备及广播通信方法 - Google Patents

广播中间件、广播终端、广播服务器设备及广播通信方法 Download PDF

Info

Publication number
WO2015085535A1
WO2015085535A1 PCT/CN2013/089200 CN2013089200W WO2015085535A1 WO 2015085535 A1 WO2015085535 A1 WO 2015085535A1 CN 2013089200 W CN2013089200 W CN 2013089200W WO 2015085535 A1 WO2015085535 A1 WO 2015085535A1
Authority
WO
WIPO (PCT)
Prior art keywords
broadcast
layer module
network
communication system
physical layer
Prior art date
Application number
PCT/CN2013/089200
Other languages
English (en)
French (fr)
Inventor
胡长俊
Original Assignee
北京创毅视讯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京创毅视讯科技有限公司 filed Critical 北京创毅视讯科技有限公司
Priority to PCT/CN2013/089200 priority Critical patent/WO2015085535A1/zh
Publication of WO2015085535A1 publication Critical patent/WO2015085535A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6156Network physical structure; Signal processing specially adapted to the upstream path of the transmission network
    • H04N21/6181Network physical structure; Signal processing specially adapted to the upstream path of the transmission network involving transmission via a mobile phone network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/20Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
    • H04N21/23Processing of content or additional data; Elementary server operations; Server middleware
    • H04N21/241Operating system [OS] processes, e.g. server setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N21/00Selective content distribution, e.g. interactive television or video on demand [VOD]
    • H04N21/60Network structure or processes for video distribution between server and client or between remote clients; Control signalling between clients, server and network components; Transmission of management data between server and client, e.g. sending from server to client commands for recording incoming content stream; Communication details between server and client 
    • H04N21/61Network physical structure; Signal processing
    • H04N21/6106Network physical structure; Signal processing specially adapted to the downstream path of the transmission network
    • H04N21/6131Network physical structure; Signal processing specially adapted to the downstream path of the transmission network involving transmission via a mobile phone network

Definitions

  • Broadcast middleware broadcast terminal, broadcast server device, and broadcast communication method
  • the present application relates to the field of communications technologies, and in particular, to a broadcast middleware, a broadcast terminal, a broadcast server device, a broadcast communication method applied to a broadcast receiver side, and a broadcast communication applied to a broadcast server side. method. Background technique
  • CMMB China Mobile Multimedia Broadcasting
  • the CMMB terminal is a device including a CMMB receiver, which mainly includes a CMMB one-way terminal and a CMMB two-way terminal; wherein, the CMMB one-way terminal can only receive the mobile multimedia broadcast television service without the uplink transmission channel, and can mainly include a personal digital assistant.
  • PDA Personal Digital Assistant
  • MP3 Moving Picture Experts Group Audio Layer III
  • MP4 Moving Picture Experts Group 4
  • the CMMB two-way terminal can receive both mobile multimedia broadcast TV services and uplink transmission channels, and can mainly include mobile phones.
  • the implementation method is a mobile broadcast service management system (MBBMS) jointly operated by China Broadcasting Corporation and China Mobile.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • TD-SCDMA Time Division Synchronization Code Division Multiple Access
  • the implementation of the existing CMMB terminal uplink channel is limited to the GSM/GPRS/TD-SCDMA network of mobile communication, and the implementation manner is single, and is subject to network coverage, and a large number of CMMB terminals that do not use the mobile communication network are It can only be used as a one-way terminal, such as PDA, MP3, MP4, digital camera and tablet. Therefore, the existing CMMB two-way terminal has a limited scope of application. Summary of the invention
  • the technical problem to be solved by the present application is to provide a broadcast middleware, a broadcast terminal, a broadcast server device, a broadcast communication method applied to a broadcast receiver side, and a broadcast communication method applied to a broadcast server side , can expand the implementation of the two-way channel of the broadcast and the range of the broadcast two-way terminal.
  • the present application discloses a broadcast middleware, which is applied to a broadcast receiver side for establishing a bidirectional channel between a broadcast receiver and a broadcast server, including: a presentation layer module and a transmission control layer connected in sequence Module and physical layer module;
  • the presentation layer module is configured to analyze an uplink communication request from a broadcast receiver, and generate corresponding uplink service data
  • the transmission control layer module is configured to encapsulate the uplink service data into corresponding uplink data frames according to a network protocol supported by the physical layer module;
  • the physical layer module is configured to connect to the network according to the supported network protocol, and send the uplink data frame to the broadcast server by using the connected network;
  • the physical layer module is further configured to receive, by using the connected network, a downlink data frame sent by the broadcast server;
  • the transmission control layer module is further configured to decapsulate the downlink data frame into corresponding downlink service data according to a network protocol supported by the communication system component;
  • the presentation layer module is further configured to send the downlink service data to the broadcast receiver.
  • the present application also discloses a broadcast terminal on which the aforementioned broadcast middleware is provided.
  • the present application also discloses a broadcast middleware, which is applied to the broadcast server side for establishing a bidirectional channel between the broadcast receiver side and the broadcast server side, including: a presentation layer module connected in sequence, and a transmission control Layer module and physical layer module;
  • the physical layer module is configured to connect to the network according to the supported network protocol, and receive an uplink data frame from the broadcast receiver side through the connected network;
  • the transmission control layer module is configured to decapsulate the uplink data frame into corresponding uplink service data according to a network protocol supported by the communication system component;
  • the presentation layer module is configured to send the uplink service data to a broadcast receiver, where the presentation layer module is further configured to receive downlink service data from the broadcast server, where the transmission control layer module is further configured to follow
  • the network protocol supported by the physical layer module encapsulates the downlink service data into corresponding downlink data frames;
  • the physical layer module is further configured to connect to the network according to the supported network protocol, and send the downlink data frame to the broadcast receiver through the connected network.
  • the present application also discloses a broadcast server on which the aforementioned broadcast middleware is disposed.
  • the present application also discloses a broadcast communication method applied to a broadcast receiver side, including:
  • the present application also discloses a broadcast communication method applied to a broadcast server side, including:
  • Receiving downlink service data from the broadcast server Encapsulating the downlink service data into a corresponding downlink data frame according to a network protocol supported by the physical layer module;
  • the network is connected by using a network protocol supported by the physical layer module, and the downlink data frame is sent to the broadcast receiver side through the connected network.
  • the present application has the following advantages:
  • the presentation layer module, the transmission control layer module, and the physical layer module establish a bidirectional channel between the broadcast receiver side and the broadcast server side, wherein the presentation layer module is used.
  • the transmission control layer module is responsible for the transmission control of the bidirectional channel
  • the physical layer module is used to connect to the network according to the supported network protocol, and send the uplink data frame or receive the broadcast to the broadcast server side through the connected network.
  • Downlink data frame sent by the server side limited to mobile communication compared to the prior art
  • the GSM/GPRS/TD-SCDMA network the physical layer module of the embodiment of the present application can implement a bidirectional channel for broadcasting by using various wired or wireless networks that can be connected, so that the implementation manner of the bidirectional channel of the broadcast can be expanded;
  • the above-mentioned broadcast middleware can be used to implement a bidirectional channel for broadcasting. Therefore, the present application can expand the range of the broadcast two-way terminal, thereby enhancing the broadcast service. Interactivity, and enhance the user experience.
  • FIG. 1 is a structural diagram of a broadcast middleware according to Embodiment 1 of the present application.
  • FIG. 2 is a structural diagram of a broadcast middleware provided in Embodiment 2 of the present application.
  • FIG. 3 is a structural diagram of a broadcast middleware provided in Embodiment 3 of the present application.
  • FIG. 4 is a structural diagram of a broadcast middleware provided in Embodiment 4 of the present application.
  • FIG. 5 is a structural diagram of a broadcast middleware provided in Embodiment 5 of the present application.
  • FIG. 6 is a structural diagram of a broadcast middleware provided in Embodiment 6 of the present application.
  • FIG. 7 is a structural diagram of a broadcast terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a CMMB communication system according to an embodiment of the present application
  • FIG. 9 is a flowchart of an embodiment of a broadcast communication method applied to a broadcast receiver side according to an embodiment of the present application.
  • FIG. 10 is a flowchart of an embodiment of a broadcast communication method applied to a broadcast server side according to an embodiment of the present application.
  • a structural diagram of a broadcast middleware according to Embodiment 1 of the present application is provided, which is applied to a broadcast receiver side for establishing a bidirectional channel between a broadcast receiver side and a broadcast server side, which may specifically include :
  • the presentation layer module 101, the transmission control layer module 102, and the physical layer module 103 are connected in sequence.
  • the foregoing presentation layer module 101 can be configured to generate corresponding uplink service data by analyzing an uplink communication request from a broadcast receiver.
  • the transmission control layer module 102 can be configured to perform the uplink according to a network protocol supported by the physical layer module 103.
  • the service data is encapsulated into a corresponding uplink data frame;
  • the physical layer module 103 is configured to connect to the network according to the supported network protocol, and send the uplink data frame to the broadcast server side through the connected network;
  • the physical layer module 103 is further configured to receive, by using the connected network, a downlink data frame that is sent by the broadcast server.
  • the foregoing transport control layer module 102 is further configured to use the network protocol supported by the physical layer module 103 to solve the downlink data frame. Encapsulating into the corresponding downlink service data; the foregoing presentation layer module 101 is further configured to send the downlink service data to the broadcast receiver.
  • the broadcast middleware of the embodiment of the present application is configured to establish a bidirectional channel between the broadcast receiver side and the broadcast server side, where the broadcast receiver may be an independent device or a functional module in the CMMB terminal, which may mainly include CMMB receiver, Digital Video Broadcasting (DVB), etc.
  • the present application mainly uses a CMMB receiver as an example, and other broadcast receivers can refer to each other.
  • the presentation layer module 101 and the transmission control layer module 102 can be understood as software modules, which in practice can be run in a processor of a CMMB terminal, wherein a serial peripheral interface (Serial Peripheral) can be used between the CMMB receiver and the processor.
  • the standard bus or the custom interface is connected.
  • the embodiment of the present application does not limit the operating environment of the specific presentation layer module 101 and the transmission control layer module 102 and the connection manner between the broadcast middleware and the broadcast receiver.
  • the presentation layer module 101 is mainly used to be responsible for the broadcast service logic, and one of its main functions is to convert the uplink communication request of the CMMB receiver into a general format and conform to the business logic.
  • the uplink service data is provided to the transmission control layer module 102; the second function thereof is to convert the downlink service data in the universal format and conform to the service logic into a data format recognizable by each CMMB receiver; in summary, the presentation layer module 101
  • the presence enables the transport control layer module 102 to be solely responsible for transport control without having to focus on the business logic content.
  • the presentation layer module 101 may generate uplink service data conforming to the service logic, such as the amount of data to be transmitted, the uplink service data, and the like, by analyzing the uplink communication request from the broadcast receiver, and then the foregoing service data.
  • the transmission layer is sent to the transmission control layer 102.
  • the presentation layer module 101 can also convert the downlink service data from the transmission control layer 102 into a data format recognizable by the CMMB receiver and transmit it to the CMMB receiver.
  • the transmission control layer module 102 is responsible for the transmission control of the bidirectional channel.
  • the foregoing transmission control may include: encapsulating the uplink service data into a corresponding uplink data frame according to a network protocol supported by the physical layer module 103, and decapsulating the downlink data frame into a corresponding network protocol according to the network protocol supported by the physical layer module 103. Downstream business data.
  • the physical layer module 103 can support a corresponding one or more transport protocols, for example, some WiFi component supports the 802.11a protocol, some Zigbee component supports the IEEE 802.15.4 protocol, and the like.
  • the transmission control layer may obtain and support the network protocol supported by the interface of the physical layer module 103 in advance to perform the foregoing encapsulation or decapsulation using the saved network protocol.
  • the transmission control may include the verification of the downlink data frame, the removal of the packet header, the scheduling of the multiple physical layer modules 103, and the like, and the specific transmission control of the transmission control layer module 102 in this embodiment of the present application. The process is not limited.
  • the physical layer module 103 is mainly used for transmitting uplink data frames or downlink data frames through the connected network.
  • the physical layer module 103 may specifically include various communication system components, where the communication system component may specifically include: one or more of a wireless communication system component and a wired communication system component.
  • the wireless communication system component may specifically include one or more of the following components: a 2G wireless communication system component, a 3G wireless communication system component, a 4G wireless communication system component, a wireless fidelity (WiFi) component, and a global interoperability for microwave access ( Worldwide Interoperability for Microwave Access, Wimax) components and Zigbee components.
  • a 2G wireless communication system component may specifically include one or more of the following components: a 2G wireless communication system component, a 3G wireless communication system component, a 4G wireless communication system component, a wireless fidelity (WiFi) component, and a global interoperability for microwave access ( Worldwide Interoperability for Microwave Access, Wimax) components and Zigbee components.
  • the wired communication system component may specifically include one or more of the following components: an Ethernet wired communication system component and a fiber-optic wired communication system component.
  • only one communication system component (such as a WiFi communication system component) is needed to establish a bidirectional channel.
  • the foregoing presentation layer module 101, the transmission control layer module 102, and the physical layer module 103 may be connected by using an inter-layer application program interface, where the inter-layer application program interface is used for access between two adjacent layers.
  • a node or a service providing node which may be a standard or custom application interface, or a buffer memory or a message encapsulated according to certain rules.
  • the embodiment of the present application does not limit a specific inter-layer application program interface.
  • the embodiment of the present application uses the presentation layer module 101, the transmission control layer module 102, and the physical layer module 103 to establish a bidirectional channel between the broadcast receiver side and the broadcast server side, wherein the presentation layer module 101 is responsible for the broadcast service.
  • the transmission control layer module 102 is configured to be responsible for transmission control of the bidirectional channel
  • the physical layer module 103 is configured to send an uplink data frame to the broadcast server side or receive a downlink data frame sent by the broadcast server side through the connected network;
  • the technology is limited to the GSM/GPRS/TD-SCDMA network of the mobile communication.
  • the physical layer module 103 of the embodiment of the present application can realize the bidirectional channel of the broadcast by using various wired or wireless networks that can be connected, so Expand the implementation of the two-way channel of the broadcast;
  • the above-mentioned broadcast middleware can be used to implement a bidirectional channel for broadcasting. Therefore, the present application can expand the range of the broadcast two-way terminal, thereby enhancing the broadcast service. Interactivity, and enhance the user experience.
  • the foregoing presentation layer module 101, the transmission control layer module 102, and the physical layer module 103 of the present application are used for service logic, transmission control, and transmission, respectively, and can separate business logic, transmission control, and transmission without affecting each other. It can improve the reliability of transmission and the convenience of transmission control.
  • Embodiment 2
  • FIG. 2 an optional structural diagram of a broadcast middleware provided in Embodiment 2 of the present application is shown.
  • the broadcast middleware of this embodiment may further include the following optional technical solutions on the basis of the foregoing embodiment shown in FIG.
  • the transmission control layer module 102 of this embodiment may specifically include: a network status monitoring sub-module 121, configured to monitor a network status of the physical layer module 103 by using an interface of the physical layer module 103;
  • the module 122 is configured to select a frame check algorithm according to the current network state, and perform verification of the downlink data frame by using the selected frame check algorithm.
  • Embodiment 2 selects a frame check algorithm according to the current network state, and performs verification of the downlink data frame by using the selected frame check algorithm.
  • the foregoing network status may specifically include one or more of the following states: a busy state, an available bandwidth, a signal strength, and a rate.
  • the CRC check is a commonly used frame check method. The principle is to let the receiver judge whether the data frame has an error. The judgment process is as follows: the sender uses the polynomial calculation, and the cyclic redundancy check calculation is performed, and the calculation result is written.
  • the frame check sequence (FCS) field of the data frame the receiver receives the data frame frame, and performs the same CRC calculation. If the calculation result is the same as the received FCS field, no error occurs in the data frame. If it is different, the receiver believes that the data frame must have an error and discards the data frame.
  • FCS frame check sequence
  • CRC8, CRC16, CRC32, etc. can be used for CRC check of any word length.
  • CRC8 > CRC16 > CRC32 in terms of repetition rate, wherein the principle of repetition rate is: different check values should be generated with different data, but some specific data can produce the same school.
  • the verification value is repeated, and the higher the repetition rate, the lower the error detection capability.
  • the second embodiment selects the frame check algorithm according to the current network state, and the inventive concept is as follows:
  • the symbol transmission rate (the amount of data passed per unit time) is large, and the error rate is usually abnormal.
  • the ratio of the number of bits to the total number of bits transmitted is proportional to the symbol transmission rate, that is, the higher the symbol transmission rate is, the higher the bit error rate is. Therefore, when the network state is better, the number of bits can be selected.
  • the CRC check algorithm such as CRC16;
  • a CRC check algorithm with a small number of bits, such as CRC8, can be selected. Since the frame check algorithm with high error detection capability can be used in the case of a high bit error rate, the error detection capability can be ensured to ensure the accuracy of the data frame.
  • the second embodiment can also be applied to other frame check algorithms. Since the principle is similar, mutual reference is sufficient, and no further description is provided herein.
  • Embodiment 3 In addition, a person skilled in the art can obtain network status indicators according to empirical values or historical data statistics: good network status, better network status, poor network status, poor network status, etc. The embodiment does not limit specific network status indicators and corresponding determination methods. Embodiment 3
  • Embodiment 3 of the present application an optional structural diagram of a broadcast middleware provided in Embodiment 3 of the present application is shown.
  • the broadcast middleware of this embodiment may further include the following optional technical solutions on the basis of the foregoing embodiment shown in FIG.
  • the physical layer module 103 of the present embodiment may specifically include at least two communication system components 131, wherein each of the communication system components 131 may be used to connect to a network according to a supported network protocol, and The network sends the uplink data frame to the broadcast server, or receives the downlink data frame sent by the broadcast server through the connected network.
  • the foregoing transmission control layer module 102 may specifically include: a network status monitoring sub-module 123 and a scheduling sub-module 124.
  • the network status monitoring sub-module 123 is configured to monitor the network status of the communication system component 131 through the interface of the communication system component 131.
  • the scheduling sub-module 124 is configured to select a communication system with the best network state according to the network status of each communication system component 131. Component 131, and uses the selected communication system component 131 for data transfer.
  • the communication system component 131 having the best network state can be selected to transmit the uplink data frame, and the communication system can be avoided when a certain communication system component 131 is in a busy state, the available bandwidth is low, the signal strength is weak, or the rate is low.
  • the component 131 performs data transmission (such as transmitting an uplink data frame, receiving a downlink data frame, etc.), and the communication system component 131 in a busy state, having a low available bandwidth, a weak signal strength, or a low rate cannot guarantee transmission reliability and transmission efficiency.
  • the third embodiment can improve the reliability of transmission and the transmission efficiency.
  • a broadcast server For a broadcast server, it can reside on a service gateway on various communication networks to establish a bidirectional channel with the broadcast receiver.
  • a preferred embodiment of a broadcast server side resident network is shown in the fourth embodiment.
  • a structural diagram of a broadcast middleware provided in Embodiment 4 of the present application is applied to a broadcast server side for establishing a bidirectional channel between a broadcast receiver side and a broadcast server side.
  • the method may include: a presentation layer module 401, a transmission control layer module 402, and a physical layer module 403 that are sequentially connected.
  • the physical layer module 403 can be configured to connect to the network according to the supported network protocol, and receive the uplink data frame from the broadcast receiver side through the connected network.
  • the foregoing transport control layer module 402 can be used to support according to the physical layer module 403.
  • the network protocol decapsulates the uplink data frame into corresponding uplink service data; the foregoing presentation layer module 401 can be configured to send the uplink service data to the broadcast receiver.
  • the foregoing presentation layer module 401 is further configured to receive the downlink service data from the broadcast server.
  • the transmission control layer module 402 is further configured to encapsulate the downlink service data into a corresponding downlink data frame according to a network protocol supported by the physical layer module 403.
  • the physical layer module 403 is further configured to connect to the network according to the supported network protocol, and send the downlink data frame to the broadcast receiver side through the connected network.
  • the broadcast middleware of the first embodiment is applied to the broadcast receiver side, and the broadcast middleware of the fourth embodiment is applied to the broadcast server side.
  • the data processing process is the reversible process of the broadcast middleware data processing process of the first embodiment. This is not a comment, cross-reference.
  • the CMMB server can receive uplink service data through the above-mentioned presentation layer module 401, and according to the service request type of the CMMB receiver, use the reverse process of the uplink service data for the information that needs to be fed back through the wireless or wired network.
  • the corresponding result of the service request such as authorization information, broadcast frequency, program information, etc.; and information that needs to be sent through the broadcast network, such as video and video, push information, etc., can be sent to the broadcast television transmission tower through a dedicated network, by CMMB The receiver is received over a broadcast channel.
  • Embodiment 5 Embodiment 5
  • FIG. 5 an optional structural diagram of a broadcast middleware provided in Embodiment 2 of the present application is shown.
  • the broadcast middleware of this embodiment may further include the following optional technical solutions on the basis of the foregoing embodiment shown in FIG.
  • the transmission control layer module 402 of this embodiment may specifically include: a network state monitoring submodule 421 and a frame check submodule 422.
  • the network status monitoring sub-module 421 is configured to monitor the network status of the communication system component by using the interface of the physical layer module 403.
  • the frame check sub-module 422 is configured to select a frame check algorithm according to the current network state, and utilize the selected frame.
  • the verification algorithm performs verification of the above uplink data frame.
  • the foregoing network status may specifically include one or more of the following states: a busy state, an available bandwidth, a signal strength, and a rate.
  • Embodiment 5 selects a frame check algorithm according to the current network state, and the inventive concept thereof is as follows:
  • the symbol transmission rate the amount of data passed per unit time
  • the bit error rate error bit
  • the ratio of the number to the total number of transmitted bits is proportional to the symbol transmission rate, that is, the higher the symbol transmission rate is, the higher the bit error rate is. Therefore, when the network state is better, the CRC calibration with a larger number of bits can be selected.
  • the algorithm such as CRC16;
  • FIG. 6 an optional structural diagram of a broadcast middleware provided in Embodiment 6 of the present application is shown.
  • the broadcast middleware of this embodiment may further include the following optional technical solutions on the basis of the foregoing embodiment shown in FIG.
  • the physical layer module 403 of this embodiment may specifically include at least two communication system components 431, wherein each of the communication system components 431 can be used to connect to a network according to a supported network protocol, and through the connected network. Sending the uplink data frame to the broadcast server, or receiving a downlink data frame sent by the broadcast server through the connected network.
  • the foregoing transmission control layer module 402 may specifically include: a network status monitoring submodule 423 and a scheduling submodule 424.
  • the network status monitoring sub-module 423 is configured to monitor a network status of the communication system component by using an interface of the communication system component.
  • the scheduling sub-module 424 is configured to select a communication system component with an optimal network state according to a network state of each communication system component. And use the selected communication system components for data transmission.
  • the foregoing communication system component 431 may specifically include: a wireless communication system group One or more of the components and wired communication system components;
  • the wireless communication system component may specifically include one or more of the following components: a 2G wireless communication system component, a 3G wireless communication system component, a 4G wireless communication system component, a wireless fidelity WiFi component, a microwave access global interworking Wimax component, and Purple bee Zigbee component;
  • the wired communication system component may specifically include one or more of the following components: an Ethernet wired communication system component and a fiber-optic wired communication system component.
  • the communication system component 431 having the best network state can be selected to transmit the uplink data frame, and the communication system can be avoided when a certain communication system component 431 is in a busy state, the available bandwidth is low, the signal strength is weak, or the rate is low.
  • the component 431 performs data transmission (such as receiving an uplink data frame, transmitting a downlink data frame, etc.), and the communication system component 431 in a busy state, having a low available bandwidth, a weak signal strength, or a low rate cannot guarantee transmission reliability and transmission efficiency.
  • the third embodiment can improve the reliability of transmission and the transmission efficiency.
  • the broadcast middleware provided in the first embodiment to the third embodiment may be disposed on the broadcast terminal
  • the broadcast middleware provided in the fourth embodiment to the sixth embodiment may be disposed on the broadcast server device.
  • the broadcast terminal provided with the broadcast middleware will be mainly described. Since the broadcast server device provided with the broadcast intermediate device is similar to the data transfer process of the broadcast terminal provided with the broadcast middleware, it will not be described herein and may be referred to each other.
  • a structural diagram of a broadcast terminal which may specifically include: a broadcast receiver 701, a communication system component 702, and a processor 703;
  • the processor 703 may specifically include a presentation layer module 731 and a transmission control layer module.
  • the presentation layer module 731 is configured to generate corresponding uplink service data by analyzing an uplink communication request from the broadcast receiver 701.
  • the transmission control layer module 732 is configured to encapsulate the uplink service data according to a network protocol supported by the communication system component.
  • Corresponding uplink data frame; the communication system component 702 is configured to connect to the network according to the supported network protocol, and send the uplink data frame to the broadcast server side through the connected network;
  • the communication system component 702 is further configured to receive the broadcast server side transmission through the connected network.
  • the downlink control data module 732 is further configured to decapsulate the downlink data frame into corresponding downlink service data according to a network protocol supported by the communication system component; the presentation layer module 731 is further configured to use the broadcast receiver. Send the above downlink service data.
  • the broadcast receiver 701 is a function module of the broadcast terminal; and the presentation layer module and the transmission control layer module corresponding to the broadcast middleware of the first embodiment to the third embodiment are executed as a software module in a processor of the broadcast terminal, and implemented.
  • the communication system components of the physical layer modules corresponding to the broadcast middleware in the first to third embodiments are located in the broadcast terminal.
  • a tablet terminal has other wireless communication methods such as WiFi, Wimax, and wireless USB, that is, it can include communication system components corresponding to other wireless communication methods such as WiFi, Wimax, and wireless USB.
  • control of the communication system component 702 can be implemented through an application program interface.
  • the foregoing transmission control layer module 731 may specifically include: a network status monitoring submodule, configured to monitor a network status of the communication system component through an interface of the communication system component;
  • the frame check sub-module is configured to select a frame check algorithm according to the current network state, and perform verification of the downlink data frame by using the selected frame check algorithm.
  • the type of the communication system component is greater than or equal to 2; the foregoing transmission control layer module 731 may specifically include: a network status monitoring sub-module, a scheduling sub-module, and a transmitting sub-module.
  • the network status monitoring submodule is configured to monitor the network status of the communication system component by using an interface of the communication system component; the scheduling submodule is configured to select a communication system component with the best network state according to the network status of each communication system component; The method is configured to send the uplink data frame to the selected communication system component.
  • the embodiment of the present application further provides a broadcast system, where the broadcast system may specifically include a broadcast terminal and a broadcast server, where the broadcast terminal may use the broadcast terminal of FIG. 7 and set in the broadcast terminal thereof.
  • the broadcast middleware provided in the first embodiment to the third embodiment, thereby providing a bidirectional channel function for the broadcast terminal, and the corresponding broadcast server can use various existing server devices capable of realizing the bidirectional channel function.
  • the corresponding broadcast server side may also use the broadcast middleware provided in the fourth embodiment to the sixth embodiment.
  • FIG. 8 the case in this case is shown.
  • a schematic diagram of a structure of a CMMB communication system which may specifically include:
  • CMMB terminal 801 which integrates CMMB receiver 811;
  • the first broadcast middleware 802 which is connected to the CMMB terminal 801, may specifically include: a first presentation layer module 821, a first transmission control layer module 822, and a first physical layer module 823;
  • the second broadcast middleware 803 is connected to the CMMB server 804, and specifically includes: a second presentation layer module 831, a second transmission control layer module 832, and a second physical layer module 833 connected in sequence;
  • the CMMB terminal user who integrates the CMMB receiver needs to use the push service provided by the CMMB service provider to download the HD sports program from 3: 00-4: 00 on the same day, and then send the corresponding service request to the CMMB terminal through the corresponding command, the CMMB terminal.
  • the corresponding uplink transmission process may specifically include: the first presentation layer module 821 generates uplink service data, such as time period, program content, high-definition, etc., by downloading uplink service requests from the CMMB terminal, and providing The first transmission control layer module 822 is encapsulated into an uplink data frame that can be identified by the second physical layer module 823 according to the received uplink service data, and is sent by the second physical layer module 833 through a wireless or wired network.
  • the second broadcast middleware 803 on the CMMB server side extracts the corresponding uplink service data according to the data processing process reversible with the first broadcast middleware 802, and sends the corresponding uplink service data to the CMMB server 804;
  • the corresponding downlink transmission process may specifically include: CMMB server 804 receives from CMMB After the service request of the terminal, the service database is retrieved, the relevant service data is obtained, the corresponding service data transmission time, the transmission frequency point, etc. are arranged, and on the other hand, the second broadcast middleware 803 feeds back to the CMMB terminal side, and on the other hand, the broadcast television is notified.
  • the first physical layer module 823 of the CMMB terminal side receives the downlink data frame sent by the broadcast server side through the connected network, and the first transmission control layer module 822 follows the network protocol supported by the first physical layer module 823.
  • the first presentation layer module 821 sends the downlink service data to the broadcast receiver; and after receiving the downlink service data, the broadcast receiver may pass the broadcast television transmission tower. Receive the corresponding information at the specified time and frequency.
  • the second presentation layer module 831, the second transmission control layer module 832, and the second physical layer module 833 located on the upper side of the CMMB server are used for service logic, transmission control, and transmission, respectively, the service logic, transmission control, and transmission can be independently opened. Since they do not affect each other, the reliability of transmission and the convenience of transmission control can be improved.
  • FIG. 9 a flowchart of an embodiment of a broadcast communication method applied to a broadcast receiver side according to an embodiment of the present application is provided.
  • Step 901 Generate corresponding uplink service data by analyzing an uplink communication request from a broadcast receiver.
  • Step 902 Encapsulate the uplink service data into a corresponding uplink data frame according to a network protocol supported by the physical layer module.
  • Step 903 Connect the network by using a network protocol supported by the physical layer module, and send the uplink data frame to the broadcast server side through the connected network.
  • Step 904 Receive, by using a network connected to the physical layer module, a downlink data frame sent by a broadcast server.
  • Step 905 Decapsulate the downlink data frame into corresponding downlink service data according to a network protocol supported by the physical layer module.
  • Step 906 Send the downlink service data to the broadcast receiver.
  • the execution body of the broadcast communication method applied to the broadcast receiver side of the present embodiment may be a broadcast middleware, and the technical solution of the present invention is specifically described on the broadcast receiver side.
  • the broadcast communication method applied to the broadcast receiver side of the embodiment is the same as the implementation mechanism of the related device embodiment by using the foregoing steps. For details, refer to the description of the related embodiment, and no longer Narration.
  • the physical layer module of the embodiment can realize the bidirectional channel of the broadcast by using various connectable wired or wireless networks, so that the two-way broadcast can be expanded.
  • Channel implementation
  • the above-mentioned broadcast middleware of the embodiment can be used to implement the bidirectional channel of the broadcast. Therefore, the present application can expand the range of the broadcast bidirectional terminal, thereby Enhance the interactivity of the broadcast service and enhance the user experience;
  • the above-described flow of the broadcast communication can separate the business logic, the transmission control, and the transmission without affecting each other, so that the reliability of the transmission and the convenience of the transmission control can be improved.
  • FIG. 10 a flowchart of an embodiment of a broadcast communication method applied to a broadcast server side according to an embodiment of the present application is provided, which may specifically include:
  • Step 1001 Connect to the network by using a network protocol supported by the physical layer module, and receive an uplink data frame from the broadcast receiver side through the connected network.
  • Step 1002 Decapsulate the uplink data frame into corresponding uplink service data according to a network protocol supported by the physical layer module.
  • Step 1003 Send the uplink service data to the broadcast receiver.
  • Step 1004 Receive downlink service data from the foregoing broadcast server.
  • Step 1005 The downlink service data is encapsulated into a corresponding downlink data frame according to a network protocol supported by the physical layer module.
  • Step 1006 Connect the network by using a network protocol supported by the physical layer module, and send the downlink data frame to the broadcast receiver side through the connected network.
  • the execution body of the broadcast communication method applied to the broadcast server side of the present embodiment may be a broadcast middleware, and the technical solution of the present invention is specifically described on the broadcast server side.
  • the broadcast communication method applied to the broadcast server side of the embodiment is specifically implemented by the above steps, and the implementation mechanism of the related device embodiment is the same. The description of the embodiments is not repeated here.
  • the broadcast communication method applied to the broadcast server side of the present embodiment can implement a bidirectional channel for broadcasting by using various connectable wired or wireless networks, and can independently separate business logic, transmission control, and transmission without affecting each other. Therefore, the reliability of transmission and the convenience of transmission control can be improved.
  • the various embodiments in the present specification are described in a progressive manner, and each embodiment focuses on differences from other embodiments, and the same similar parts between the various embodiments can be referred to each other.
  • the description since it is basically similar to the device embodiment, the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the above describes a broadcast middleware, a broadcast terminal, a broadcast server device, a broadcast communication method applied to a broadcast receiver side, and a broadcast communication method applied to a broadcast server side, which are provided by the present application.
  • the present invention has been described with reference to specific examples, and the principles and embodiments of the present application are explained. The description of the above embodiments is only for helping to understand the method of the present application and its core ideas; The present invention is not limited to the scope of the present application.

Abstract

 本申请提供了一种广播中间件、广播终端、广播服务器设备及广播通信方法,其中的广播中间件应用于广播接收器侧,用于在广播接收器和广播服务器之间建立双向通道,包括:依次相连的表示层模块、传输控制层模块和物理层模块;其中,所述表示层模块用于负责广播业务逻辑,传输控制层模块用于负责双向信道的传输控制,物理层模块用于通过所连接的网络向广播服务器侧发送上行数据帧或者接收广播服务器侧发送的下行数据帧。本申请能够拓展广播的双向通道的实现方式及广播双向终端的范围。

Description

广播中间件、 广播终端、 广播服务器设备及广播通信方法 技术领域
本申请涉及通信技术领域,特别是涉及一种广播中间件、一种广播终端、 一种广播服务器设备、一种应用于广播接收器侧的广播通信方法及一种应用 于广播服务器侧的广播通信方法。 背景技术
中国移动多媒体广播 ( China Mobile Multimedia Broadcasting , CMMB ) 主要面向小屏幕手持式接收终端, 提供数字广播电视节目、 综合信息和紧急 广播服务, 实现卫星传输与地面网络相结合的无缝协同覆盖。
CMMB终端为包括有 CMMB接收器的设备, 其主要包括 CMMB单向 终端和 CMMB双向终端; 其中, CMMB单向终端只能接收移动多媒体广播 电视业务而不具备上行传输通道, 主要可以包括个人数字助理 (Personal Digital Assistant, PDA ), 动态影像专家压缩标准音频层面 3 ( Moving Picture Experts Group Audio Layer III, MP3 )、 动态影像专家压缩标准音频层面 4 ( Moving Picture Experts Group 4, MP4 )和数码相机等; CMMB双向终端 既能够接收移动多媒体广播电视业务又能够具备上行传输通道,主要可以包 括手机等, 其实现方式是中广传播和中国移动合作的移动广播业务管理系统 ( Mobile Broadcast Business Management System, MBBMS ), 其核心是利用 移动通信的全球移动通信系统 ( Global System for Mobile Communications, GSM ) /通用分组无线服务技术( General Packet Radio Service, GPRS) /时分 同步码分多址 ( Time Division- Synchronous Code Division Multiple Access, TD-SCDMA )通信网络来实现上行传输通道。
可以看出, 现有 CMMB终端上行通道的实现方式仅仅局限于移动通信 的 GSM/GPRS/TD-SCDMA网络, 实现方式单一, 且受制于网络覆盖, 而大 量没有釆用移动通信网络的 CMMB终端则只能作为单向终端使用,如 PDA、 MP3、 MP4、 数码相机和平板电脑等, 因此, 现有 CMMB双向终端的适用 范围有限。 发明内容
本申请所要解决的技术问题是提供一种广播中间件、 一种广播终端、 一 种广播服务器设备、一种应用于广播接收器侧的广播通信方法及一种应用于 广播服务器侧的广播通信方法, 能够拓展广播的双向通道的实现方式及广播 双向终端的范围。
为了解决上述问题, 本申请公开了一种广播中间件, 其应用于广播接收 器侧, 用于在广播接收器和广播服务器之间建立双向通道, 包括: 依次相连 的表示层模块、 传输控制层模块和物理层模块;
所述表示层模块, 用于分析来自广播接收器的上行通信请求, 生成相应 的上行业务数据;
所述传输控制层模块,用于按照所述物理层模块支持的网络协议将所述 上行业务数据封装成对应的上行数据帧;
所述物理层模块用于依据所支持的网络协议连接网络,并通过所连接的 网络向所述广播服务器发送所述上行数据帧;
所述物理层模块,还用于通过所连接的网络接收所述广播服务器发送的 下行数据帧;
所述传输控制层模块,还用于按照所述通信体制组件支持的网络协议将 所述下行数据帧解封装成对应的下行业务数据;
所述表示层模块, 还用于向所述广播接收器发送所述下行业务数据。 另一方面, 本申请还公开了一种广播终端, 在所述广播终端上设置有前 述的广播中间件。
另一方面, 本申请还公开了一种广播中间件, 其应用于广播服务器侧, 用于在广播接收器侧和广播服务器侧之间建立双向通道, 包括: 依次相连的 表示层模块、 传输控制层模块和物理层模块;
其中, 所述物理层模块, 用于依据所支持的网络协议连接网络, 并通过 所连接的网络接收来自广播接收器侧的上行数据帧;
所述传输控制层模块,用于按照所述通信体制组件支持的网络协议将所 述上行数据帧解封装成相应的上行业务数据; 所述表示层模块, 用于向广播接收器发送所述上行业务数据; 所述表示层模块, 还用于接收来自所述广播服务器的下行业务数据; 所述传输控制层模块,还用于按照所述物理层模块支持的网络协议将所 述下行业务数据封装成相应的下行数据帧;
所述物理层模块, 还用于依据所支持的网络协议连接网络, 并通过所连 接的网络向广播接收器发送所述下行数据帧。
另一方面, 本申请还公开了一种广播服务器, 在所述广播服务器上设置 有前述的广播中间件。
另一方面, 本申请还公开了一种应用于广播接收器侧的广播通信方法, 包括:
通过分析来自广播接收器的上行通信请求, 生成相应的上行业务数据; 按照物理层模块支持的网络协议将所述上行业务数据封装成对应的上 行数据帧;
利用所述物理层模块所支持的网络协议连接网络,并通过所连接的网络 向广播服务器侧发送所述上行数据帧;
通过所述物理层模块所连接的网络接收广播服务器侧发送的下行数据 帧;
按照所述物理层模块支持的网络协议将所述下行数据帧解封装成对应 的下行业务数据;
向广播接收器发送所述下行业务数据。
另一方面, 本申请还公开了一种应用于广播服务器侧的广播通信方法, 包括:
利用物理层模块所支持的网络协议连接网络,并通过所连接的网络接收 来自广播接收器侧的上行数据帧;
按照所述物理层模块支持的网络协议将所述上行数据帧解封装成相应 的上行业务数据;
向广播接收器发送所述上行业务数据;
接收来自所述广播服务器的下行业务数据; 按照所述物理层模块支持的网络协议将所述下行业务数据封装成相应 的下行数据帧;
利用所述物理层模块所支持的网络协议连接网络, 并通过所连接的网络 向广播接收器侧发送所述下行数据帧。 与现有技术相比, 本申请具有以下优点:
本申请的广播中间件在应用于广播接收器侧时, 釆用表示层模块、 传输 控制层模块和物理层模块在广播接收器侧和广播服务器侧之间建立双向通 道, 其中的表示层模块用于负责广播业务逻辑, 传输控制层模块用于负责双 向信道的传输控制, 物理层模块用于依据所支持的网络协议连接网络, 并通 过所连接的网络向广播服务器侧发送上行数据帧或者接收广播服务器侧发 送的 下 行数据 帧 ; 相对 于现有技术局 限于移 动通信 的
GSM/GPRS/TD-SCDMA网络, 本申请实施例的该物理层模块能够利用各种 可以连接的有线或无线网络实现广播的双向通道,故能够拓展广播的双向通 道的实现方式;
对于广播终端, 无论其是否支持移动通信的 GSM/GPRS/TD-SCDMA网 络, 均可以利用上述广播中间件实现广播的双向通道, 因此, 本申请能够拓 展广播双向终端的范围, 从而能够增强广播业务的互动性, 以及提升用户体 验。 附图说明
图 1是本申请实施例一提供的广播中间件的结构图;
图 2是本申请实施例二提供的广播中间件的结构图;
图 3是本申请实施例三提供的广播中间件的结构图;
图 4是本申请实施例四提供的广播中间件的结构图;
图 5是本申请实施例五提供的广播中间件的结构图;
图 6是本申请实施例六提供的广播中间件的结构图;
图 7是本申请实施例提供的广播终端的结构图;
图 8是本申请实施例提供的 CMMB通信系统的结构示意图; 图 9是本申请实施例提供的应用于广播接收器侧的广播通信方法实施例 的流程图; 及
图 10是本申请实施例提供的应用于广播服务器侧的广播通信方法实施 例的流程图。
具体实施方式
为使本申请的上述目的、 特征和优点能够更加明显易懂, 下面结合附图 和具体实施方式对本申请作进一步佯细的说明。
实施例一
参照图 1 , 给出了本申请实施例一提供的广播中间件的结构图, 其应用 于广播接收器侧, 用于在广播接收器侧和广播服务器侧之间建立双向通道, 其具体可以包括: 依次相连的表示层模块 101、 传输控制层模块 102和物理 层模块 103。
其中, 上述表示层模块 101 , 可用于通过分析来自广播接收器的上行通 信请求, 生成相应的上行业务数据; 上述传输控制层模块 102, 可用于按照 上述物理层模块 103支持的网络协议将上述上行业务数据封装成对应的上行 数据帧; 上述物理层模块 103 , 可用于依据所支持的网络协议连接网络, 并 通过所连接的网络向广播服务器侧发送上述上行数据帧;
上述物理层模块 103, 还可用于通过所连接的网络接收广播服务器侧发 送的下行数据帧; 上述传输控制层模块 102, 还可用于按照上述物理层模块 103支持的网络协议将上述下行数据帧解封装成对应的下行业务数据; 上述 表示层模块 101 , 还可用于向广播接收器发送上述下行业务数据。
本申请实施例的广播中间件用于在广播接收器侧和广播服务器侧之间 建立双向通道, 其中, 广播接收器可以为独立的设备, 也可以为 CMMB终 端中的功能模块, 其主要可以包括 CMMB接收器、 数字视频广播(Digital Video Broadcasting, DVB )等, 本申请主要以 CMMB接收器为例进行说明, 其它广播接收器相互参照即可。 表示层模块 101和传输控制层模块 102可以理解为软件模块,其在实际 中可以运行于 CMMB终端的处理器中, 其中, CMMB接收器和处理器之间 可以通过串行外设接口(Serial Peripheral Interface , SPI) , 安全数字输入输出 卡( Secure Digital Input and Output Card, SDIO ), 通用串行总线 ( Universal Serial Bus, USB ),双倍速率同步动态随机存储器( Double Data Rate, DDR ) 等各种标准总线或自定义接口连接, 本申请实施例对具体的表示层模块 101 和传输控制层模块 102的运行环境及广播中间件与广播接收器的连接方式不 加以限制。
由于不同 CMMB接收器的数据格式不同, 故表示层模块 101主要用于 负责广播业务逻辑, 其主要作用之一是为将 CMMB接收器的上行通信请求 转换为一种通用格式的、 符合业务逻辑的上行业务数据, 并提供给传输控制 层模块 102; 其主要作用之二为将通用格式的、 符合业务逻辑的下行业务数 据转换为各 CMMB接收器能够识别的数据格式; 总之, 表示层模块 101的 存在能够使得传输控制层模块 102专门负责传输控制而无需关注业务逻辑内 容。
在具体实现中,表示层模块 101可以通过分析来自广播接收器的上行通 信请求, 生成符合业务逻辑的上行业务数据, 如所需传输的数据量、 优先级 等上行业务数据, 然后将上述业务数据发送给传输控制层 102; 表示层模块 101还可以通过分析来自传输控制层 102的下行业务数据转换为 CMMB接 收器能够识别的数据格式, 并向 CMMB接收器发送。
传输控制层模块 102用于负责双向信道的传输控制。上述传输控制主要 可以包括按照上述物理层模块 103支持的网络协议将上述上行业务数据封装 成对应的上行数据帧, 以及, 按照上述物理层模块 103支持的网络协议将上 述下行数据帧解封装成对应的下行业务数据。
物理层模块 103可以支持对应的一种或多种传输协议,例如,某种 WiFi 组件支持 802.11a协议, 某种 Zigbee组件支持 IEEE802.15.4协议等等。 在具 体实现中,传输控制层可以预先通过上述物理层模块 103的接口获取其所支 持的网络协议并保存, 以利用所保存的网络协议进行上述封装或者解封装。 当然除了上述封装或者解封装,上述传输控制还可以包括下行数据帧的 校验、 拆除包头、 多种物理层模块 103的调度等等, 本申请实施例对传输控 制层模块 102的具体的传输控制过程不加以限制。
物理层模块 103主要用于通过所连接的网络进行上行数据帧或者下行数 据帧的传输。
在实际应用中, 上述物理层模块 103具体可以包括各种通信体制组件, 其中, 所述通信体制组件具体可以包括: 无线通信体制组件和有线通信体制 组件中的一种或多种。
上述无线通信体制组件具体可以包括如下组件中的一种或多种: 2G无 线通信系统组件、 3G无线通信系统组件、 4G无线通信系统组件、 无线保真 ( WiFi )组件、 微波存取全球互通 ( Worldwide Interoperability for Microwave Access , Wimax )组件和紫蜂 Zigbee组件。
上述有线通信体制组件具体可以包括如下组件中的一种或多种: 以太网 有线通信系统组件和光纤有线通讯系统组件。
在具体实现中, 只需要一种通信体制组件(例如 WiFi通信体制组件) 就可以建立双向通道。
需要说明的是, 上述表示层模块 101、 传输控制层模块 102和物理层模 块 103之间可以釆用层间应用程序接口相连, 这里的层间应用程序接口用于 相邻两层之间的访问节点或者服务提供节点, 其可以是标准或自定义应用程 序接口, 也可以是緩冲存储器或者按照一定规则封装的消息, 本申请实施例 对具体的层间应用程序接口不加以限制。
综上, 本申请实施例釆用表示层模块 101、传输控制层模块 102和物理 层模块 103在广播接收器侧和广播服务器侧之间建立双向通道,其中的表示 层模块 101用于负责广播业务逻辑,传输控制层模块 102用于负责双向信道 的传输控制,物理层模块 103用于通过所连接的网络向广播服务器侧发送上 行数据帧或者接收广播服务器侧发送的下行数据帧;相对于现有技术局限于 移动通信的 GSM/GPRS/TD-SCDMA 网络, 本申请实施例的该物理层模块 103能够利用各种可以连接的有线或无线网络实现广播的双向通道, 故能够 拓展广播的双向通道的实现方式;
对于广播终端, 无论其是否支持移动通信的 GSM/GPRS/TD-SCDMA网 络, 均可以利用上述广播中间件实现广播的双向通道, 因此, 本申请能够拓 展广播双向终端的范围, 从而能够增强广播业务的互动性, 以及提升用户体 验。
另外, 本申请的上述表示层模块 101、 传输控制层模块 102和物理层模 块 103分别用于业务逻辑、 传输控制和传输, 能够将业务逻辑、 传输控制和 传输独立开来, 不相互影响, 因此能够提高传输的可靠性及传输控制的便利 性。 实施例二
参照图 2, 给出了本申请实施例二提供的广播中间件的可选结构图。 本 实施例的广播中间件在上述图 1所示实施例的基础上,进一步还可以包括如 下可选技术方案。
如图 2所示, 本实施例的传输控制层模块 102具体可以包括: 网络状态监控子模块 121 , 用于通过上述物理层模块 103的接口监控上 述物理层模块 103的网络状态; 帧校验子模块 122, 用于依据当前的网络状 态选择帧校验算法, 并利用所选择的帧校验算法进行上述下行数据帧的校 验。
数据传输时, 虽然数据的起始字符和结束字符可以避免参与通信的设备 收到无用的数据信息 /干扰信息,但对于起始字符和结束字符之间的数据,还 是可能受到干扰而产生错误, 因此对通信数据进行校验是非常必要的。 帧校 验是数据通信领域中最常用的一种差错校验方法, 能够保证数据帧的准确 性。
帧校验算法有很多:循环冗余校验 (Cyclic Redundancy Check, CRC)、 纵 向冗余校验 (Longitudinal Redundancy Check, LRC)、 奇偶效验、 累加和校验 等。 如何选择帧校验算法来保证检错能力以保证数据帧的准确性, 为本领域 技术人员面对的一个重要问题。 实施例二依据当前的网络状态选择帧校验算法,并利用所选择的帧校验 算法进行上述下行数据帧的校验。上述网络状态具体可以包括如下状态中的 一项或多项: 忙闲状态、 可用带宽、 信号强度和速率。
在此以 CRC校验为例说明实施例二的效果。
CRC校验为一种常用的帧校验方法,其原理是让接收方判断数据帧是否 发生了错误,判断过程如下:发送方利用多项式计算,称循环冗余校验计算, 将计算结果写入数据帧的帧检验序列 (frame check sequence, FCS ) 字段, 接收方收到该数据帧帧, 对其做相同的 CRC计算, 如果计算结果与接收的 FCS字段相同, 则该数据帧没有发生错误, 如果不同, 接收方就相信该数据 帧肯定发生了错误, 并丟弃该数据帧帧。
而在具体实施中, CRC8、 CRC16、 CRC32等都可以用于任意字长的 CRC 校验。
本申请发明人经研究发现, 在重复率方面 CRC8 > CRC16 > CRC32, 其 中, 重复率的原理为: 用不同的数据应生成不同的校验值, 但某些特定的数 据却可以生产相同的校验值, 即为重复, 重复率越高则检错能力就越低; 同 时, 由于位数越多运算时间越长, 故在检验效率方面 CRC8 > CRC16 > CRC32。
因此,实施例二依据当前的网络状态选择帧校验算法,其发明构思如下: 在网络状态较佳时码元传输速率(单位时间内通过的数据量)较大, 而通常 误码率(出错的位数与传送的总位数的比值)与码元传输速率为正比关系, 也即码元传输速率越大误码率越高, 因此, 在网络状态较佳时可以选择位数 较多的 CRC校验算法, 如 CRC16; 同理, 在网络状态较差时可以选择位数 较少的 CRC校验算法,如 CRC8。 由于能够在误码率较高的情况下釆用检错 能力高的帧校验算法, 因此能够保证检错能力以保证数据帧的准确性。
除了应用于 CRC校验为例, 实施例二还可以应用于其它帧校验算法, 由于原理类似, 故相互参照即可, 在此不作赘述。
另外,本领域技术人员可以根据经验值或者历史数据统计得到网络状态 指标: 网络状态佳、 网络状态较佳、 网络状态较差、 网络状态差等, 本申请 实施例对具体的网络状态指标及相应的确定方法不加以限制。 实施例三
参照图 3 , 给出了本申请实施例三提供的广播中间件的可选结构图。 本 实施例的广播中间件在上述图 1所示实施例的基础上,进一步还可以包括如 下可选技术方案。
如图 3所示,本实施例的上述物理层模块 103具体可以包括至少 2种通 信体制组件 131 , 其中各所述通信体制组件 131 , 可用于依据所支持的网络 协议连接网络, 并通过所连接的网络向所述广播服务器发送所述上行数据 帧, 或者, 通过所连接的网络接收所述广播服务器发送的下行数据帧。
则上述传输控制层模块 102具体可以包括: 网络状态监控子模块 123和 调度子模块 124。 网络状态监控子模块 123用于通过上述通信体制组件 131 的接口监控上述通信体制组件 131的网络状态; 调度子模块 124用于依据各 通信体制组件 131的网络状态, 选择网络状态最佳的通信体制组件 131 , 并 使用所选择的通信体制组件 131进行数据传输。
实施例三能够选择网络状态最佳的通信体制组件 131发送上述上行数据 帧, 能够在某一种通信体制组件 131处于忙碌状态、 可用带宽低、 信号强度 弱或者速率低时, 避免使用该通信体制组件 131进行数据传输(如发送上行 数据帧, 接收下行数据帧等等), 而处于忙碌状态、 可用带宽低、 信号强度 弱或者速率低的通信体制组件 131无法保证传输可靠性和传输效率, 因而实 施例三能够提高传输的可靠性和传输效率。 实施例四
对于广播服务器而言,其可以驻留在各种通讯网络上的业务网关上以建 立与广播接收器之间的双向通道。 实施例四给出了一种广播服务器侧驻留网 络的一种优选实施例。
参照图 4, 给出了本申请实施例四提供的广播中间件的结构图, 其应用 于广播服务器侧, 用于在广播接收器侧和广播服务器侧之间建立双向通道, 具体可以包括: 依次相连的表示层模块 401、 传输控制层模块 402和物理层 模块 403。
其中, 上述物理层模块 403可用于依据所支持的网络协议连接网络, 并 通过所连接的网络接收来自广播接收器侧的上行数据帧; 上述传输控制层模 块 402可用于按照上述物理层模块 403支持的网络协议将上述上行数据帧解 封装成相应的上行业务数据; 上述表示层模块 401可用于向广播接收器发送 上述上行业务数据。
上述表示层模块 401 还可用于接收来自上述广播服务器的下行业务数 据; 上述传输控制层模块 402, 还可用于按照上述物理层模块 403支持的网 络协议将上述下行业务数据封装成相应的下行数据帧;上述物理层模块 403 , 还可用于依据所支持的网络协议连接网络, 并通过所连接的网络向广播接收 器侧发送上述下行数据帧。
相对于实施例一的广播中间件应用于广播接收器侧, 实施例四的广播中 间件应用于广播服务器侧,其数据处理过程为实施例一的广播中间件数据处 理过程的可逆过程, 故在此不做赞述, 相互参照即可。
以 CMMB服务器为例, 其可以通过上述表示层模块 401接收上行业务 数据, 并根据 CMMB接收器的业务请求类型, 对于需要通过无线或有线网 络反馈的信息,利用与上行业务数据相反的过程,反馈业务请求的相应结果, 如授权信息,广播频率,节目信息等; 而对于需要通过广播网络发送的信息, 如影音视频, 推送信息等, 则可通过专用网络发送给广播电视发射塔发送, 由 CMMB接收器通过广播信道接收。 实施例五
参照图 5 , 给出了本申请实施例二提供的广播中间件的可选结构图。 本 实施例的广播中间件在上述图 4所示实施例的基础上,进一步还可以包括如 下可选技术方案。
如图 5所示, 本实施例的传输控制层模块 402具体可以包括: 网络状态 监控子模块 421和帧校验子模块 422。 网络状态监控子模块 421用于通过上述物理层模块 403的接口监控上述 通信体制组件的网络状态; 帧校验子模块 422用于依据当前的网络状态选择 帧校验算法, 并利用所选择的帧校验算法进行上述上行数据帧的校验。
在实际应用中, 上述网络状态具体可以包括如下状态中的一项或多项: 忙闲状态、 可用带宽、 信号强度和速率。
实施例五依据当前的网络状态选择帧校验算法, 其发明构思如下: 在网 络状态较佳时码元传输速率(单位时间内通过的数据量)较大, 而通常误码 率(出错的位数与传送的总位数的比值)与码元传输速率为正比关系, 也即 码元传输速率越大误码率越高, 因此, 在网络状态较佳时可以选择位数较多 的 CRC校验算法, 如 CRC16; 同理, 在网络状态较差时可以选择位数较少 的 CRC校验算法,如 CRC8。 由于能够在误码率较高的情况下釆用检错能力 高的帧校验算法, 因此能够保证检错能力以保证数据帧的准确性。 实施例六
参照图 6, 给出了本申请实施例六提供的广播中间件的可选结构图。 本 实施例的广播中间件在上述图 4所示实施例的基础上,进一步还可以包括如 下可选技术方案。
如图 6所示,本实施例的物理层模块 403具体可以包括至少 2种通信体 制组件 431 , 其中各所述通信体制组件 431可用于依据所支持的网络协议连 接网络,并通过所连接的网络向所述广播服务器发送所述上行数据帧,或者, 通过所连接的网络接收所述广播服务器发送的下行数据帧。
则上述传输控制层模块 402具体可以包括: 网络状态监控子模块 423和 调度子模块 424。
网络状态监控子模块 423用于通过上述通信体制组件的接口监控上述通 信体制组件的网络状态; 调度子模块 424, 用于依据各通信体制组件的网络 状态, 选择网络状态最佳的通信体制组件, 并使用所选择的通信体制组件进 行数据传输。
在实际应用中, 上述通信体制组件 431具体可以包括: 无线通信体制组 件和有线通信体制组件中的一种或多种;
上述无线通信体制组件具体可以包括如下组件中的一种或多种: 2G无 线通信系统组件、 3G无线通信系统组件、 4G无线通信系统组件、 无线保真 WiFi组件、 微波存取全球互通 Wimax组件和紫蜂 Zigbee组件;
上述有线通信体制组件具体可以包括如下组件中的一种或多种: 以太网 有线通信系统组件和光纤有线通讯系统组件。
实施例六能够选择网络状态最佳的通信体制组件 431发送上述上行数据 帧, 能够在某一种通信体制组件 431处于忙碌状态、 可用带宽低、 信号强度 弱或者速率低时, 避免使用该通信体制组件 431进行数据传输(如接收上行 数据帧, 发送下行数据帧等等), 而处于忙碌状态、 可用带宽低、 信号强度 弱或者速率低的通信体制组件 431无法保证传输可靠性和传输效率, 因而实 施例三能够提高传输的可靠性和传输效率。 在实际应用中, 实施例一-实施例三提供的广播中间件可设置于广播终 端之上, 实施例四-实施例六提供的广播中间件可设置于广播服务器设备之 上。 下面主要对设置有广播中间件的广播终端进行说明, 由于设置有广播中 间件的广播服务器设备与设置有广播中间件的广播终端的数据传输过程类 似, 故在此不作赘述, 相互参照即可。
参照图 7,提供了本申请实施例一种广播终端的结构图,具体可以包括: 广播接收器 701、 通信体制组件 702和处理器 703;
其中,上述处理器 703具体可以包括表示层模块 731和传输控制层模块
732;
上述表示层模块 731用于通过分析来自上述广播接收器 701的上行通信 请求, 生成相应的上行业务数据; 上述传输控制层模块 732用于按照上述通 信体制组件支持的网络协议将上述上行业务数据封装成对应的上行数据帧; 上述通信体制组件 702用于依据所支持的网络协议连接网络, 并通过所连接 的网络向广播服务器侧发送上述上行数据帧;
上述通信体制组件 702还用于通过所连接的网络接收广播服务器侧发送 的下行数据帧; 上述传输控制层模块 732还用于按照上述通信体制组件支持 的网络协议将上述下行数据帧解封装成对应的下行业务数据; 上述表示层模 块 731还用于向上述广播接收器发送上述下行业务数据。
本实施例中, 广播接收器 701为广播终端的一个功能模块; 而实施例一 至实施例三对应广播中间件的表示层模块和传输控制层模块作为软件模块 运行在广播终端的处理器中, 实施例一至实施例三对应广播中间件的物理层 模块中通信体制组件位于广播终端中。
以平板电脑终端为例, 其具有 WiFi, Wimax, 无线 USB等其他无线通 讯方式, 也即其可以包括 WiFi, Wimax, 无线 USB等其他无线通讯方式对 应的通信体制组件。 在实际中, 当广播终端需要访问网络时, 可以通过应用 程序接口实现对通信体制组件 702的控制。
在本申请的一种优选实施例中,上述传输控制层模块 731具体可以包括: 网络状态监控子模块,用于通过上述通信体制组件的接口监控上述通信 体制组件的网络状态;
帧校验子模块, 用于依据当前的网络状态选择帧校验算法, 并利用所选 择的帧校验算法进行上述下行数据帧的校验。
在本申请的另一种优选实施例中,上述通信体制组件的种类大于等于 2; 则上述传输控制层模块 731具体可以包括: 网络状态监控子模块、 调度 子模块和发送子模块。
网络状态监控子模块用于通过上述通信体制组件的接口监控上述通信 体制组件的网络状态; 调度子模块用于依据各通信体制组件的网络状态, 选 择网络状态最佳的通信体制组件; 发送子模块用于向所选择的通信体制组件 发送上述上行数据帧。
由于本实施例与实施例一至实施例三对应广播中间件的原理的输出传 输过程类似, 故在此不作赘述, 相互参照即可。 本申请实施例还提供一种广播系统,该广播系统具体可以包括广播终端 和广播服务器, 其中广播终端可釆用图 7的广播终端, 在其广播终端中设置 有实施例一-实施例三提供的广播中间件, 从而为广播终端提供了双向通道 的功能,对应的广播服务器可以釆用现有的能够实现双向通道功能的各种服 务器设备。
另外, 为了提高传输的可靠性和传输控制的便利性, 对应的广播服务器 侧还可以釆用上述实施例四-实施例六提供的广播中间件, 参照图 8, 示出了 此种情况下的 CMMB通信系统的结构示意图, 其具体可以包括:
CMMB终端 801 , 其内部集成有 CMMB接收器 811 ;
第一广播中间件 802, 其与 CMMB终端 801相连, 具体可以包括: 依 次相连的第一表示层模块 821、 第一传输控制层模块 822和第一物理层模块 823;
第二广播中间件 803 , 其与 CMMB服务器 804相连, 具体可以包括: 依次相连的第二表示层模块 831、 第二传输控制层模块 832和第二物理层模 块 833; 及
CMMB服务器 804。
假设集成 CMMB接收器的 CMMB终端用户需要利用 CMMB服务提供 商提供的推送业务下载当天下午 3: 00-4: 00的高清体育节目, 则会通过相 应指令向 CMMB终端发送相应的业务请求, CMMB终端接收到用户的业务 请求,将该业务请求作为上行通信请求递交给第一广播中间件 802的第一表 示层 821 ;
相应的上行传输流程具体可以包括: 第一表示层模块 821通过分析来自 CMMB 终端的上行通信请求, 生成相应的上行业务数据, 例如时段、 节目 内容、 高清等下载需求的上行业务数据,并提供给第一传输控制层模块 822; 第一传输控制层模块 822 根据收到的上行业务数据封装成第二物理层模块 823能够识别的上行数据帧, 由第二物理层模块 833通过无线或有线网络向 CMMB服务器侧发送; CMMB服务器侧的第二广播中间件 803收到上行数 据帧后,按照与第一广播中间件 802可逆的数据处理过程提取出相应的上行 业务数据, 并向 CMMB服务器 804发送;
相应的下行传输流程具体可以包括: CMMB服务器 804收到来自 CMMB 终端的业务请求后, 检索业务数据库, 得到相关的业务数据, 安排相应的业 务数据发送时间, 发送频点等, 一方面通过第二广播中间件 803 反馈给 CMMB终端侧, 另一方面通知广播电视发射塔相关信息; 而 CMMB终端侧 的第一物理层模块 823通过所连接的网络接收广播服务器侧发送的下行数据 帧, 第一传输控制层模块 822按照上述第一物理层模块 823支持的网络协议 将上述下行数据帧解封装成对应的下行业务数据, 由第一表示层模块 821向 广播接收器发送上述下行业务数据; 而广播接收器在接收到上述下行业务数 据后, 可以通过广播电视发射塔在指定的时间和频点接收相应的信息。
由于位于 CMMB服务器上侧的第二表示层模块 831、 第二传输控制层 模块 832和第二物理层模块 833分别用于业务逻辑、 传输控制和传输, 能够 将业务逻辑、 传输控制和传输独立开来, 不相互影响, 因此能够提高传输的 可靠性及传输控制的便利性。
参照图 9, 提供了本申请实施例一种应用于广播接收器侧的广播通信方 法实施例的流程图, 具体可以包括:
步骤 901、 通过分析来自广播接收器的上行通信请求, 生成相应的上行 业务数据;
步骤 902、 按照物理层模块支持的网络协议将上述上行业务数据封装成 对应的上行数据帧;
步骤 903、 利用上述物理层模块所支持的网络协议连接网络, 并通过所 连接的网络向广播服务器侧发送上述上行数据帧;
步骤 904、 通过上述物理层模块所连接的网络接收广播服务器侧发送的 下行数据帧;
步骤 905、 按照上述物理层模块支持的网络协议将上述下行数据帧解封 装成对应的下行业务数据;
步骤 906、 向广播接收器发送上述下行业务数据。
本实施例的应用于广播接收器侧的广播通信方法的执行主体可以为广 播中间件, 具体在广播接收器侧描述本发明的技术方案。 本实施例的应用于广播接收器侧的广播通信方法,通过如上步骤具体实 现广播通信与上述相关装置实施例的实现机制相同,佯细可以参考上述相关 实施例的记载, 在此不再——赘述。
相对于现有技术局限于移动通信的 GSM/GPRS/TD-SCDMA网络, 本实 施例的该物理层模块能够利用各种可以连接的有线或无线网络实现广播的 双向通道, 故能够拓展广播的双向通道的实现方式;
对于广播终端, 无论其是否支持移动通信的 GSM/GPRS/TD-SCDMA网 络, 均可以利用本实施例的上述广播中间件实现广播的双向通道, 因此, 本 申请能够拓展广播双向终端的范围, 从而能够增强广播业务的互动性, 以及 提升用户体验;
另外,上述广播通信的流程能够将业务逻辑、传输控制和传输独立开来, 不相互影响, 因此能够提高传输的可靠性及传输控制的便利性。
参照图 10 ,提供了本申请实施例一种应用于广播服务器侧的广播通信方 法实施例的流程图, 具体可以包括:
步骤 1001、利用物理层模块所支持的网络协议连接网络,并通过所连接 的网络接收来自广播接收器侧的上行数据帧;
步骤 1002、按照上述物理层模块支持的网络协议将上述上行数据帧解封 装成相应的上行业务数据;
步骤 1003、 向广播接收器发送上述上行业务数据;
步骤 1004、 接收来自上述广播服务器的下行业务数据;
步骤 1005、按照上述物理层模块支持的网络协议将上述下行业务数据封 装成相应的下行数据帧;
步骤 1006、利用上述物理层模块所支持的网络协议连接网络,并通过所 连接的网络向广播接收器侧发送上述下行数据帧。
本实施例的应用于广播服务器侧的广播通信方法的执行主体可以为广 播中间件, 具体在广播服务器侧描述本发明的技术方案。
本实施例的应用于广播服务器侧的广播通信方法,通过如上步骤具体实 现广播通信与上述相关装置实施例的实现机制相同,佯细可以参考上述相关 实施例的记载, 在此不再——赘述。
本实施例的应用于广播服务器侧的广播通信方法, 能够利用各种可以连 接的有线或无线网络实现广播的双向通道, 且其能够将业务逻辑、 传输控制 和传输独立开来, 不相互影响, 因此能够提高传输的可靠性及传输控制的便 利性。 本说明书中的各个实施例均釆用递进的方式描述,每个实施例重点说明 的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见 即可。 对于方法实施例而言, 由于其与设备实施例基本相似, 所以描述的比 较简单, 相关之处参见方法实施例的部分说明即可。
以上对本申请所提供的一种广播中间件、 一种广播终端、 一种广播服务 器设备、一种应用于广播接收器侧的广播通信方法及一种应用于广播服务器 侧的广播通信方法, 进行了佯细介绍, 本文中应用了具体个例对本申请的原 理及实施方式进行了阐述, 以上实施例的说明只是用于帮助理解本申请的方 法及其核心思想; 同时, 对于本领域的一般技术人员, 依据本申请的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所述, 本说明书内容不 应理解为对本申请的限制。

Claims

权 利 要 求 书
1、 一种广播中间件, 其特征在于, 其应用于广播接收器侧, 用于在广 播接收器和广播服务器之间建立双向通道, 包括: 依次相连的表示层模块、 传输控制层模块和物理层模块;
所述表示层模块, 用于分析来自广播接收器的上行通信请求, 生成相应 的上行业务数据;
所述传输控制层模块,用于按照所述物理层模块支持的网络协议将所述 上行业务数据封装成对应的上行数据帧;
所述物理层模块用于依据所支持的网络协议连接网络,并通过所连接的 网络向所述广播服务器发送所述上行数据帧;
所述物理层模块,还用于通过所连接的网络接收所述广播服务器发送的 下行数据帧;
所述传输控制层模块,还用于按照所述通信体制组件支持的网络协议将 所述下行数据帧解封装成对应的下行业务数据;
所述表示层模块, 还用于向所述广播接收器发送所述下行业务数据。
2、 如权利要求 1所述的广播中间件, 其特征在于, 所述传输控制层模 块包括:
网络状态监控子模块,用于通过所述物理层模块的接口监控所述物理层 模块的网络状态;
帧校验子模块, 用于依据当前的网络状态选择帧校验算法, 并利用所选 择的帧校验算法进行所述下行数据帧的校验。
3、 如权利要求 1所述的广播中间件, 其特征在于, 所述物理层模块包 括至少 2种通信体制组件, 其中各所述通信体制组件, 用于依据所支持的网 络协议连接网络, 并通过所连接的网络向所述广播服务器发送所述上行数据 帧, 或者, 通过所连接的网络接收所述广播服务器发送的下行数据帧; 则所述传输控制层模块包括:
网络状态监控子模块,用于通过各通信体制组件的接口监控各通信体制 组件的网络状态;
调度子模块, 用于依据各通信体制组件的网络状态, 选择网络状态最佳 的通信体制组件, 并使用所选择的通信体制组件进行数据传输。
4、 如权利要求 2或 3所述的广播中间件, 其特征在于, 所述网络状态 包括如下状态中的一项或多项: 忙闲状态、 可用带宽、 信号强度和速率。
5、 如权利要求 1或 2或 3所述的广播中间件, 其特征在于, 所述通信 体制组件包括: 无线通信体制组件和有线通信体制组件中的一种或多种; 所述无线通信体制组件包括如下组件中的一种或多种: 2G无线通信系 统组件、 3G无线通信系统组件、 4G无线通信系统组件、 无线保真 WiFi组 件、 微波存取全球互通 Wimax组件和紫蜂 Zigbee组件;
所述有线通信体制组件包括如下组件中的一种或多种: 以太网有线通信 系统组件和光纤有线通讯系统组件。
6、 一种广播终端, 其特征在于, 在所述广播终端上设置有如上权利要 求 1-5任一所述的广播中间件。
7、 一种广播中间件, 其特征在于, 其应用于广播服务器侧, 用于在广 播接收器侧和广播服务器侧之间建立双向通道, 包括: 依次相连的表示层模 块、 传输控制层模块和物理层模块;
其中, 所述物理层模块, 用于依据所支持的网络协议连接网络, 并通过 所连接的网络接收来自广播接收器侧的上行数据帧;
所述传输控制层模块,用于按照所述通信体制组件支持的网络协议将所 述上行数据帧解封装成相应的上行业务数据;
所述表示层模块, 用于向广播接收器发送所述上行业务数据; 所述表示层模块, 还用于接收来自所述广播服务器的下行业务数据; 所述传输控制层模块,还用于按照所述物理层模块支持的网络协议将所 述下行业务数据封装成相应的下行数据帧;
所述物理层模块, 还用于依据所支持的网络协议连接网络, 并通过所连 接的网络向广播接收器发送所述下行数据帧。
8、 一种广播服务器, 其特征在于, 在所述广播服务器上设置有如上权 利要求 7所述的广播中间件。
9、 一种应用于广播接收器侧的广播通信方法, 其特征在于, 包括: 通过分析来自广播接收器的上行通信请求, 生成相应的上行业务数据; 按照物理层模块支持的网络协议将所述上行业务数据封装成对应的上 行数据帧;
利用所述物理层模块所支持的网络协议连接网络,并通过所连接的网络 向广播服务器侧发送所述上行数据帧;
通过所述物理层模块所连接的网络接收广播服务器侧发送的下行数据 帧;
按照所述物理层模块支持的网络协议将所述下行数据帧解封装成对应 的下行业务数据;
向广播接收器发送所述下行业务数据。
10、 一种应用于广播服务器侧的广播通信方法, 其特征在于, 包括: 利用物理层模块所支持的网络协议连接网络,并通过所连接的网络接收 来自广播接收器侧的上行数据帧;
按照所述物理层模块支持的网络协议将所述上行数据帧解封装成相应 的上行业务数据;
向广播接收器发送所述上行业务数据;
接收来自所述广播服务器的下行业务数据;
按照所述物理层模块支持的网络协议将所述下行业务数据封装成相应 的下行数据帧;
利用所述物理层模块所支持的网络协议连接网络,并通过所连接的网络 向广播接收器侧发送所述下行数据帧。
PCT/CN2013/089200 2013-12-12 2013-12-12 广播中间件、广播终端、广播服务器设备及广播通信方法 WO2015085535A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089200 WO2015085535A1 (zh) 2013-12-12 2013-12-12 广播中间件、广播终端、广播服务器设备及广播通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089200 WO2015085535A1 (zh) 2013-12-12 2013-12-12 广播中间件、广播终端、广播服务器设备及广播通信方法

Publications (1)

Publication Number Publication Date
WO2015085535A1 true WO2015085535A1 (zh) 2015-06-18

Family

ID=53370494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089200 WO2015085535A1 (zh) 2013-12-12 2013-12-12 广播中间件、广播终端、广播服务器设备及广播通信方法

Country Status (1)

Country Link
WO (1) WO2015085535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107995026A (zh) * 2017-11-16 2018-05-04 中国银行股份有限公司 基于中间件的管控方法、管理节点、受管节点及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849825A (zh) * 2003-03-13 2006-10-18 泰拉扬信息系统公司 用于交互式hfc业务传送的瘦docsis带内管理
CN101022539A (zh) * 2007-02-15 2007-08-22 华为技术有限公司 实现业务服务控制的方法、系统、交互式epg和业务中间件
CN102624560A (zh) * 2012-03-12 2012-08-01 深圳市天威视讯股份有限公司 一种分布式部署、集中式控制的有线电视网络宽带接入系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1849825A (zh) * 2003-03-13 2006-10-18 泰拉扬信息系统公司 用于交互式hfc业务传送的瘦docsis带内管理
CN101022539A (zh) * 2007-02-15 2007-08-22 华为技术有限公司 实现业务服务控制的方法、系统、交互式epg和业务中间件
CN102624560A (zh) * 2012-03-12 2012-08-01 深圳市天威视讯股份有限公司 一种分布式部署、集中式控制的有线电视网络宽带接入系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107995026A (zh) * 2017-11-16 2018-05-04 中国银行股份有限公司 基于中间件的管控方法、管理节点、受管节点及系统
CN107995026B (zh) * 2017-11-16 2021-07-30 中国银行股份有限公司 基于中间件的管控方法、管理节点、受管节点及系统

Similar Documents

Publication Publication Date Title
JP6017731B2 (ja) 音声通信およびデータ通信を遂行するためのWi−Fiディスプレイ移送機構を使用するための方法およびシステム
US9407966B2 (en) Method and apparatus for transmitting and receiving signaling information in digital broadcasting system
JP4813602B2 (ja) 時分割多重アクセス媒体アクセス制御層における媒体アクセス制御プロトコル・データ単位集積
EP2498527B1 (en) Method and equipment for converging plural service data from machine terminal devices
TW591961B (en) Method and apparatus for transmission framing in a wireless communication system
US10470000B2 (en) Methods and apparatus for enhanced MBMS content provisioning and content ingestion
WO2015088700A1 (en) Session management and control procedures for supporting multiple groups of sink devices in a peer-to-peer wireless display system
WO2019149053A1 (zh) 一种基于融合传输系统的数据传输方法
JP2010522456A (ja) 無線通信で相異なるタイプの情報を伝送する方法およびシステム
CN103929681A (zh) 一种提升低速网络中rtp视频流处理效率的方法
WO2018018965A1 (zh) 屏幕共享方法、设备及系统
CN101371565B (zh) 接收数字电视广播服务的网关、终端及对应方法
KR20140126827A (ko) Dvb 시스템에서 mmt를 이용하여 방송 서비스를 송수신하는 방법 및 장치
JP2017038261A (ja) 情報処理装置、情報処理方法およびプログラム
CN102333209B (zh) 应用于视频监控系统的数据传输方法及设备
US20180146077A1 (en) Method and apparatus for determining processing mode for data packet
CN109804639B (zh) 用于无连接无线媒体广播的电子设备和方法
CN108112091A (zh) 一种通过wifi实现实时传输音视频的方法及系统
US11240138B2 (en) Management of network connections
CN110198384B (zh) 一种基于视联网的通讯方法和中转服务器
JP4540635B2 (ja) 適応通信方法とモジュール
WO2010108416A1 (zh) 转发可伸缩视频编码数据报文的方法、设备和通信系统
WO2015085535A1 (zh) 广播中间件、广播终端、广播服务器设备及广播通信方法
WO2015106444A1 (zh) 一种数据包的传输方法和传输设备
US20170187763A1 (en) Streaming service system, streaming service method and controller thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899295

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13899295

Country of ref document: EP

Kind code of ref document: A1