WO2015085511A1 - 一种基于时分多址通信系统的通信方法及终端 - Google Patents

一种基于时分多址通信系统的通信方法及终端 Download PDF

Info

Publication number
WO2015085511A1
WO2015085511A1 PCT/CN2013/089070 CN2013089070W WO2015085511A1 WO 2015085511 A1 WO2015085511 A1 WO 2015085511A1 CN 2013089070 W CN2013089070 W CN 2013089070W WO 2015085511 A1 WO2015085511 A1 WO 2015085511A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
communication terminal
signaling
embedded
embedded signaling
Prior art date
Application number
PCT/CN2013/089070
Other languages
English (en)
French (fr)
Inventor
于洋
徐燕
罗正华
杨帆
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to PCT/CN2013/089070 priority Critical patent/WO2015085511A1/zh
Priority to EP13899054.4A priority patent/EP3082364B1/en
Priority to US15/102,421 priority patent/US10298342B2/en
Publication of WO2015085511A1 publication Critical patent/WO2015085511A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0652Synchronisation among time division multiple access [TDMA] nodes, e.g. time triggered protocol [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • H04B7/2656Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA] for structure of frame, burst
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates to the field of communication technologies, and in particular, to a communication method and terminal based on a time division multiple access communication system. Background technique
  • DMR Digital Mobile Radio
  • burst A indicates the start of the superframe
  • the middle portion of A transmits the sync word (SYNC)
  • burst B to F intermediate transport embeds the signaling.
  • the DMR voice setup communication processing scheme is: first find burst A, find burst A and synchronize to the air interface timing, then start receiving B, C, D, E, F, and then parse the link control start/stop indication (Link) Control Start/Stop, LCSS) is the four embedded signaling of "start-intermediate-intermediate-end", and the link control (LC) signaling is obtained according to the decoding of four embedded signaling.
  • the Protocol Data Unit (PDU) in the LC signaling determines whether it is a call of the communication terminal.
  • the Common Announcement Channel establishes a communication processing scheme: first, it is determined that the CACH frame that receives the short embedded signaling with the LCSS identifier as the start is received, and then the LCSS identifier is sequentially received as "intermediate-intermediate- The CACH frame of the short embedded signaling is terminated, and the short LC signaling is decoded according to the four short embedded signaling, and finally, whether the call of the communication terminal is determined according to the compressed address in the short LC signaling.
  • the communication schemes of the existing time division multiple access communication systems are similar to those adopted by the above DMR system, and must be processed in strict receiving order, resulting in a long access time of the communication terminal, which seriously affects the access performance of the system.
  • the present invention provides a communication method and terminal based on a time division multiple access communication system to reduce terminal The access time improves the access performance of the time division multiple access communication system.
  • the technical solution adopted by the present invention is:
  • the present invention provides a communication method based on a time division multiple access communication system, the method comprising:
  • the communication terminal receives the embedded signaling frame, and performs embedded information parsing on the embedded signaling frame to obtain embedded signaling and control information;
  • the communication terminal buffers the embedded signaling to a corresponding buffer area according to the control information; when each of the corresponding buffer areas has buffered the embedded signaling, the communication terminal embeds in all the buffer areas
  • the signaling performs embedded signaling decoding to obtain control signaling.
  • the communication terminal caches the embedded signaling to the corresponding buffer area according to the control information, including:
  • the communication terminal caches the current embedded signaling to a buffer area corresponding to the location according to the location identified by the current control information;
  • the communication terminal adjusts the location of the cached current embedded signaling according to the location identified by the current control information and the location identified by the next control information.
  • the method before the receiving, by the communications terminal, the embedded signaling frame, the method further includes: saving, by the communications terminal, an air interface timing of the current channel;
  • the communication terminal estimates the air interface timing of the to-be-switched channel according to the saved air interface timing of the current channel, and synchronizes to the to-be-switched channel according to the estimated air interface timing.
  • the communication terminal estimates the air interface timing of the to-be-switched channel according to the saved air interface timing of the current channel, including:
  • the communication terminal estimates that the air interface timing of the to-be-switched channel is equal to the saved current channel air interface timing
  • the communication terminal determines the air interface timing of the channel to be switched according to the time slot relationship between the current channel and the channel to be switched.
  • the method further includes: the communication terminal checking whether the protocol data unit information in the control signaling indicates a call of the communication terminal;
  • the communication terminal When the protocol data unit information indicates a call of the communication terminal, the communication terminal is turned on The terminal speaker accesses the voice call.
  • the method further includes: the communication terminal checking whether the compressed address in the link control signaling is a compressed address of the communication terminal;
  • the communication terminal scans the next channel.
  • the present invention provides a communication terminal based on a time division multiple access communication system, the terminal comprising:
  • a receiving unit configured to receive an embedded signaling frame
  • a parsing unit configured to perform embedded information parsing on the embedded signaling frame to obtain embedded signaling and control information
  • a buffering unit configured to buffer the embedded signaling to a corresponding buffer area according to the control information
  • a decoding unit configured to: when each of the corresponding buffer areas has buffered the embedded signaling, in all the buffer areas The embedded signaling performs embedded signaling decoding to obtain control signaling.
  • the cache unit includes:
  • a storage module configured to cache the current embedded signaling to a buffer corresponding to the location according to the location identified by the current control information
  • an adjustment module configured to adjust the current embedded signaling according to the location identified by the current control information and the location identified by the next control information.
  • the terminal further includes:
  • a saving unit configured to save an air interface timing of the current channel
  • An estimating unit configured to estimate an air interface timing of the to-be-switched channel according to the saved air interface timing of the current channel
  • a synchronization unit configured to synchronize to the to-be-switched channel according to the estimated air interface timing.
  • the estimating unit includes:
  • a first estimating module configured to: if the current channel and the channel to be switched are channels of the same frequency simultaneous slot, estimate that the air interface timing of the channel to be switched is equal to the saved current channel air interface timing;
  • the terminal further includes: a first viewing unit, configured to check whether the protocol data unit information in the control signaling indicates a call of the communication terminal;
  • a first control unit configured to: when the protocol data unit information indicates a call of the communication terminal, open the terminal speaker to access the voice call.
  • the terminal when the embedded signaling frame is a common notification channel frame, the terminal further includes: a second viewing unit, configured to check whether the compressed address in the link control signaling is a compressed address of the communication terminal ;
  • a second control unit configured to scan the next channel when the compressed address is not the compressed address of the communication terminal.
  • the invention provides a communication method and a terminal based on a time division multiple access communication system, in order to shorten the communication establishment time and improve the access performance of the system.
  • the communication terminal receives the embedded signaling frame, performs embedded information analysis on the embedded signaling frame to obtain embedded signaling and control information, and prepares technical preparation for the subsequent cache embedded signaling. After parsing the embedded signaling, the The communication terminal caches the embedded signaling to the corresponding buffer area according to the control information, and when each of the corresponding buffer areas has buffered the embedded signaling, the communication terminal embeds signaling in all the buffer areas.
  • the communication terminal of the present invention does not need to wait for the synchronization frame to receive the parsing of the subsequently received embedded signaling frame, but directly parses and caches the received embedded signaling frame.
  • the embedded signaling that is resolved can shorten the communication setup time and improve the system access performance.
  • Embodiment 1 is a flow chart of Embodiment 1 of a communication method based on a time division multiple access communication system according to an embodiment of the present invention
  • Embodiment 2 is a flow chart of Embodiment 2 of a communication method based on a time division multiple access communication system according to an embodiment of the present invention
  • FIG. 3 is a flowchart of Embodiment 3 of a communication method based on a time division multiple access communication system according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a comparison between the prior art and the technical solution of the present invention
  • FIG. 5 is a flow chart of Embodiment 4 of a communication method based on a time division multiple access communication system according to an embodiment of the present invention
  • Embodiment 6 is a flow chart of Embodiment 5 of a communication method based on a time division multiple access communication system according to an embodiment of the present invention
  • Embodiment 7 is a structural diagram of Embodiment 1 of a communication terminal based on a time division multiple access communication system according to an embodiment of the present invention
  • Figure 8 is a structural diagram of Embodiment 2 of a communication terminal based on a time division multiple access communication system according to an embodiment of the present invention.
  • the communication establishment method based on the time division multiple access communication system provided by the invention can be applied to a communication system using time division multiple access technology, such as: Digital Mobile Radio (DMR), terrestrial trunk radio system (Trans European) Trunked Radio, TETRA), police cluster system, etc.
  • DMR Digital Mobile Radio
  • Terrestrial Terrestrial
  • Trunked Radio TETRA
  • police cluster system etc.
  • Embodiment 1 of a communication method based on a time division multiple access communication system includes:
  • Step 101 The communication terminal receives the embedded signaling frame, and performs embedded information parsing on the embedded signaling frame to obtain embedded signaling and control information.
  • the communication terminal receives the embedded signaling frame from the receiving base station, and further determines the normal signaling according to the embedded signaling carried in the embedded signaling frame, where the embedded signaling frame is
  • the method may include: a short link control signaling frame and a voice embedded signaling frame, also referred to as a voice superframe. Since different communication systems may have different communication standards, voice superframes and short link control signals specified by different communication standards may be used.
  • the frame structure may be different, for example, the subframe position carrying the embedded signaling, the number of subframes carrying the embedded signaling may be different, and the like.
  • the embedded signaling frame in any system includes embedded signaling and control information, wherein the control information is used to indicate which location of the entire embedded signaling is currently embedded signaling.
  • the present embodiment will be explained below by taking only the DMR system as an example.
  • the structure of the embedded signaling frame used by different vendors is also different. The following describes the present embodiment by taking the most commonly used voice superframe as an example.
  • the speech superframe in DMR is composed of 6 bursts, which are identified by the letters A to F in turn, where: burst A indicates the start of the superframe, and the middle portion of A transmits the sync word (SYNC), burst B to E
  • the intermediate transmission embeds signaling and control information, wherein the control information is a Link Control Start/Stop (LCSS), which is sequentially identified as "Start-Intermediate-Intermediate-End" to indicate that each burst is carried.
  • LCSS Link Control Start/Stop
  • Step 102 The communication terminal caches the embedded signaling to a corresponding buffer area according to the control information.
  • the first implementation manner is as follows: The first implementation manner may include: the communication terminal buffers the current embedded signaling to a buffer area corresponding to the location according to the location identified by the current control information; The location of the cached current embedded signaling is adjusted according to the location identified by the current control information and the location identified by the next control information.
  • the second implementation manner may include: the communication terminal sequentially buffers the embedded signaling that is parsed; and the communication terminal adjusts each embedded signaling that is buffered according to the location identified by the control information embedded in each signaling. position.
  • C, D, and E carry embedded signaling 1, 2, 3, and 4 in turn, and the control information is sequentially identified as "start-intermediate-intermediate-end" and sequentially corresponds to the buffer area 1, 2, 3, 4, due to the buffer area 2 And the 3 unreachable area is which embedded signaling should be buffered, so the control information of the next embedded signaling must be combined to make an adaptive adjustment.
  • the parsed embedded signaling 3 is first buffered in the buffer area 2
  • the parsed embedded signaling 4 is buffered in the buffer area 4.
  • the four embedded signalings that are parsed may be cached first in order, and then the embedded signaling buffer location is adjusted according to the control information relationship, for example, the receiving order is C, D, E, F, A. B, where the embedded signaling is ⁇ , D, E, B, and the signaling sequence of the buffer is also 2341, and then the buffer position of each signaling is adjusted according to the indication of the control information, and the adjusted sequence is BCDE.
  • the carried embedded signaling 1234 is sequentially cached in the corresponding buffer 1234.
  • Step 103 When each of the corresponding buffer areas has buffered the embedded signaling, the communication terminal performs embedded signaling decoding on the embedded signaling in all the buffer areas to obtain control signaling.
  • the embedded signaling is buffered, indicating that the decoding link control signaling is currently satisfied.
  • the communication terminal performs embedded signaling decoding on the embedded signaling 1, 2, 3, and 4 buffered in the buffer areas 1, 2, 3, and 4 to obtain control signaling, and the communication terminal can perform control signaling according to the control. Further communication processing.
  • the communication method based on the time division multiple access communication system is: substantially, the communication terminal receives the embedded signaling, performs embedded information analysis on the embedded signaling frame to obtain embedded signaling and control information, and then according to the The control information buffers the embedded signaling to a corresponding buffer area; the communication terminal does not need to receive the parsing process in order from the beginning to the end in strict accordance with the embedded signaling identifier, but first parses each embedded signaling frame received. The embedded signaling carried by it, and then the embedded signaling is cached, to avoid the situation that the signaling frame is discarded when the received embedded signaling frame is not in the order from the beginning to the end.
  • the communication terminal When each of the corresponding buffer areas has buffered the embedded signaling, the communication terminal performs embedded signaling decoding on the embedded signaling in all the buffer areas to obtain control signaling, so that the processing can shorten the communication establishment time and improve System access performance. Since the communication terminal needs to switch channels or perform scanning, it first needs to detect synchronization first, and adjust its own timing and air interface timing alignment to receive the embedded signaling frame normally. Generally, the way to synchronize to the channel is that the communication terminal first searches for the switching channel. The air interface timing is then adjusted to the air interface timing of the switching channel. The synchronization to the channel is time-consuming and affects the communication quality. In order to shorten the synchronization time, the embodiment of the present invention provides a preferred solution. Referring to FIG. 2, a flowchart of Embodiment 2 of a communication method based on a time division multiple access communication system is shown, and the method may include:
  • Step 201 The communication terminal saves an air interface sequence of a current channel.
  • Step 202 The communication terminal estimates the air interface timing of the to-be-switched channel according to the saved air interface timing of the current channel, and synchronizes to the to-be-switched channel according to the estimated air interface timing.
  • the communication terminal switches from channel 1 to channel 2, which clears the air interface timing of channel 1, first detects the air interface timing in channel 2, and then synchronizes its own reception timing to The detected air interface timing of channel 2, thus realizing the communication terminal and the letter Synchronization of channel 2, before the synchronization is detected, the physical layer does not upload data to the link layer.
  • the communication terminal After the synchronization is detected, that is, the communication terminal synchronizes its own reception timing to the air interface timing of channel 2, the physical layer
  • the received data is transmitted to the link layer for processing, and the communication terminal can receive the embedded signaling frame. Therefore, in order to receive the embedded signaling frame more quickly, it is necessary to synchronize to the channel more quickly.
  • the step 202 may include:
  • the communication terminal estimates that the air interface timing of the to-be-switched channel is equal to the saved current channel air interface timing
  • the communication terminal determines the air interface timing of the channel to be switched according to the time slot relationship between the current channel and the channel to be switched.
  • Step 203 The communication terminal receives the embedded signaling, performs embedded information parsing on the embedded signaling, and obtains embedded signaling and control information.
  • Step 204 The communication terminal caches the embedded signaling to a corresponding buffer area according to the control information.
  • Step 205 When each of the corresponding buffer areas has buffered the embedded signaling, the communication terminal performs embedded signaling decoding on the embedded signaling in all the buffer areas to obtain control signaling.
  • Steps 203 to 205 are the same as steps 101 to 103 described above, and are not mentioned here.
  • the communication method based on the time division multiple access communication system in the embodiment of the present invention can not only shorten the time of decoding control signaling, but also shorten the channel of the communication terminal at the same time, specifically, the same frequency scanning or the same frequency in the transit mode by the communication terminal
  • the air interface timing of the current channel is saved, and the air interface timing is adaptively adjusted according to the saved air interface timing to synchronize to the channel to be switched, and there is no need to search for the air interface timing, so that the communication terminal ensures that the communication terminal accesses the channel as soon as possible. Receive embedded signaling frames as soon as possible.
  • the communication terminal decodes and obtains control signaling, and further judgment according to the control signaling is required, and different judgments are required for different types of control signaling. Based on this technical problem, the present invention also provides the following preferred solutions.
  • the method may further include: The communication terminal checks whether the protocol data unit information in the control signaling indicates a call of the communication terminal; when the protocol data unit information indicates a call of the communication terminal, the communication terminal opens the terminal speaker access Voice call.
  • the method may further include:
  • the communication terminal checks whether the compressed address in the link control signaling is a compressed address of the communication terminal; when the compressed address is not the compressed address of the communication terminal, the communication terminal scans the next channel.
  • the communication terminal can quickly determine whether to join the call or know the forwarding condition of the downlink channel in advance, thereby improving the communication quality of the system.
  • the communication method of the present invention is further explained by taking an application scenario in which the specific voice is late, as an example.
  • the voice late entry control method of the embodiment of the present invention is a flowchart of Embodiment 3 of a communication method based on a time division multiple access communication system according to an embodiment of the present invention, where the method may include:
  • Step 301 The communication terminal saves the air interface timing of the current channel, and synchronizes to the air interface timing of the channel to be switched according to the air interface timing of the current channel.
  • the communication terminal switches from channel 1 to channel
  • the physical layer does not upload data to the link layer. After the synchronization is detected, that is, the terminal synchronizes its own reception timing to the air interface timing of the channel 2, The physical layer will pass the received data to the link layer for processing, and the communication terminal can receive the voice burst.
  • the synchronization between the communication terminal and the channel to be switched can be implemented in the following manner: the communication terminal saves the air interface timing of the current channel, and determines whether the current channel and the channel to be switched are channels of different time slots in the same frequency;
  • the communication terminal synchronizes to the channel to be switched according to the saved air interface timing of the current channel
  • the communication terminal increases the air interface timing of the saved current channel by 30 ms, and synchronizes to the channel to be switched.
  • the current channel in which the communication terminal is located is channel 1
  • the channel to be switched is channel 2
  • the reception timing is synchronized to the air interface slot 1 Timing
  • the communication terminal only receives voice or data in time slot 1.
  • channel 1 and channel 2 are intra-frequency simultaneous slots, their reception timing can remain unchanged, that is, according to the saved channel.
  • the reception timing of 1 can be synchronized to channel 2, so that it is not necessary to regain the air interface timing of channel 2 by detecting synchronization.
  • channel 1 and channel 2 are different time slots of the same frequency, since the time slot 2 of channel 2 and the time slot 1 of channel 1 are different by 30 ms, it is only necessary to set the time of the saved channel 1 to the right for 30 ms. Obtain the air interface reception timing of channel 2. In the case where the air interface timing of the current channel is known, even if the voice synchronization A is not detected, the voice burst can be received first for the embedded signaling information analysis to ensure that the communication terminal accesses the call as soon as possible.
  • Step 302 The communication terminal receives a voice burst, and performs embedded information parsing on the voice burst to obtain an embedded signaling and a link control start/stop indication.
  • the speech superframe is in units of six speech bursts, the six speech bursts are identified by the letters ABCDEF, the speech is cyclically transmitted in the order of ABCDEF, the burst A carries the synchronization information is the synchronization frame, and there are four bursts in the burst BCDEF.
  • the bearer carries embedded signaling, and all of the four voice bursts carry a Link Control Start/Stop (LCSS), and the LCSS is used to indicate that the voice burst is in a complete voice. Start, middle or end.
  • the burst BCDE carries the embedded signaling
  • the BCDE carries the LCSS.
  • the embedded signaling location of the burst F is empty.
  • the BDEF carries the embedded signaling, and the embedded signaling position of the burst C is empty.
  • the standard is not specifically limited in this embodiment.
  • burst BCDE carries an embedded signal
  • the embedded signaling position of the burst F is empty
  • the following processing is performed in the order of receiving the voice burst:
  • the parsing burst B gets the embedded signaling 1 and the LCSS is 1; the LCSS is 1 to identify the embedded signaling 1 is the first slice of the embedded signaling, that is, the LCSS indication is the start.
  • Parsing burst C gets embedded signaling 2 and LCSS is 3; LCSS is 3 to identify the embedded signaling 1 is the intermediate slice of embedded signaling, that is, the LCSS indication is intermediate.
  • the parsing burst D gets embedded signaling 3 and the LCSS is 3; the LCSS is 3 to identify the embedded signaling 3 is the intermediate slice of the embedded signaling, that is, the LCSS indication is intermediate.
  • the parsing burst E gets embedded signaling 4 and the LCSS is 2; the LCSS is 2 to identify the embedded signaling 4 is the last piece of embedded signaling, ie the LCSS indication is the end.
  • Step 103 The communication terminal buffers the embedded signaling to a corresponding buffer area according to the link control start/stop indication, and determines that four buffer areas store corresponding embedded signaling.
  • step 303 can include:
  • the LCSS indication is started, and the embedded signaling is buffered to the first buffer area;
  • the embedded signaling is buffered to the second buffer area
  • the embedded signaling is buffered to the third buffer area
  • the LCSS indicates ending, buffering the embedded signaling to the fourth buffer area; determining that the four buffer areas cache the corresponding embedded signaling.
  • the LCSS of the received voice burst is parsed.
  • the foregoing operation according to step 303 may include: the LCSS indication of the first burst is started, and the embedded signaling 1 is buffered in the first buffer area; The burst LCSS indication is in the middle, and the LCSS indication of the next burst is also in the middle, then the embedded signaling 2 is buffered in the second buffer area; the LCSS indication of the third burst is the middle, and the next burst When the LCSS indication is ended, the embedded signaling 2 is buffered in the third buffer area; the LCSS indication of the third burst is ended, and the embedded signaling 4 is buffered in the fourth buffer area.
  • the LCSS indication is intermediate, the embedded signaling is first buffered to the second buffer area, and the next LCSS indication of receiving the burst E is ended, and the signaling is embedded in the burst E. Cache to the fourth buffer area. If the third buffer area is empty and the fourth buffer area is full, indicating that the buffer location of the burst D is in error, the data of the second buffer area needs to be copied to the third buffer area, and at the same time The data in the second buffer area is cleared. That is to say, when the LCSS indication is intermediate, the buffer of the embedded signaling needs to be adjusted according to the LCSS indication of the next burst.
  • bursts F, A, B, C if the LCSS of the burst B is started, buffering the embedded signaling carried by it to the first buffer area, if the burst C is The LCSS is in the middle, and the embedded signaling carried by it is buffered to the second buffer area.
  • the data of the four buffer areas buffers the corresponding embedded signaling.
  • Step 304 The communication terminal decodes the embedded signaling in the four buffer areas to obtain link control signaling.
  • the embedded signaling stored in each buffer area is 32 bits, and the four buffer areas are 128 bits in total. By decoding 128 bits of embedded signaling, a 72-bit link control signaling is generated.
  • the burst A carrying the synchronization information must be found before the subsequent received bursts are parsed; if the first received speech burst is burst B, it must be in order.
  • the embedded signaling of the LCSS identifier as "start-intermediate-intermediate-end" can be obtained according to the parsing, and then the four embedded instructions are decoded to generate link control signaling.
  • start-intermediate-intermediate-end can be obtained according to the parsing, and then the four embedded instructions are decoded to generate link control signaling.
  • the present invention can save 360 ms compared with the prior art; if the first one receives burst E, the present invention and the existing Compared with technology, it can save 60ms.
  • the communication terminal in the embodiment of the present invention directly parses the received voice burst to obtain embedded signaling, and caches the buffer according to the embedded signaling LCSS in the corresponding buffer area; when the four buffer areas are filled up At the time, the embedded signaling is decoded to obtain link control signaling.
  • the invention has been in the air interface timing In the known case, it is not necessary to find the burst A carrying the synchronization information, and it is not necessary to wait until the burst A is received before parsing the received burst carrying the embedded signaling, but directly parsing the received voice burst. And the method of buffering the parsed embedded signaling is processed, and therefore, the present invention can shorten the access time for establishing communication.
  • the present invention is explained by taking an application scenario of preferential retrace as an example.
  • the retrace process is: the communication terminal is currently on the channel F1. If the priority retrace timer expires, the priority channel F2 is retraced. If the priority call of the terminal exists in the channel F2, the terminal accesses the call on the channel F2, to be completed. After the call, switch to channel F1; if there is no priority call of the terminal in channel F2, the terminal switches to channel F1 to continue receiving voice, and then retries channel F2 again when the next retrace interval comes. Since the voice interruption time of the prioritized retrace scheme is too long to affect the communication quality, the present invention also provides the following preferred schemes for reducing the voice interruption time in the priority retrace and ensuring the communication quality.
  • Embodiment 4 of a communication method based on a time division multiple access communication system is shown, and the method may include:
  • Step 401 The communication terminal saves the air interface timing of the current channel F1, and switches to the priority channel F2 for detection.
  • the communication terminal When the communication terminal detects that there is a voice call of the terminal on the channel F1 after the scan is started, the communication terminal stops scanning and turns on the speaker, starts to access and plays the voice, and the communication terminal switches the state to the scan stay state, and starts the priority retrace timer. When the priority retrace timer expires, the terminal starts the priority retrace.
  • the terminal saves the air interface timing of the current channel F1 before performing the priority retrace, and then switches to the priority channel F2 for detection, and simultaneously switches the state to the priority retrace state.
  • Step 402 When the communication terminal detects that the air interface has a voice signal, sequentially receiving the voice burst and performing embedded information analysis on the voice burst to obtain an embedded signaling and a link control start/stop indication LCSS;
  • Step 403 The communication terminal caches the embedded signaling to a corresponding buffer area according to the link control start/stop indication, and determines that four buffer areas store corresponding embedded signaling.
  • Step 404 The communication terminal decodes the embedded signaling in the four buffer areas to obtain link control signaling.
  • Step 405 The communication terminal parses the protocol data unit information in the link control signaling, and determines, according to the protocol data unit information, whether it is a call of the local terminal.
  • Step 406 if yes, the communication terminal opens the speaker of the terminal to access the voice call, and enters a scanning stay state;
  • Step 407 if not, the communication terminal switches back to the channel F1, restores the air interface timing of the channel F1, sequentially receives the voice burst, and performs embedded information analysis on the voice burst to obtain embedded signaling, and link control start/stop.
  • the indication and voice payload are decoded and sent to the speaker.
  • the terminal receives A, B, C, D, E, and F. Only the E-frame parses out the link control signaling protocol data unit information, determines that it is a terminal call, notifies that the speaker is turned on, and when F is received, F is The voice information on both sides is decoded and sent to the speaker.
  • Step 408 The communication terminal caches the embedded signaling to a corresponding buffer area according to the link control start/stop indication, and determines that four buffer areas store corresponding embedded signaling.
  • Step 409 The communication terminal decodes the embedded signaling in the four buffer areas to obtain link control signaling.
  • the communication method provided by the present invention can receive voice bursts in time without resynchronizing waiting for synchronization frames when switching channels, thereby greatly reducing the voice interruption time.
  • the present invention is explained by taking the late application of the short-link control signaling as an example.
  • the access scheme of the short-link control signaling in the prior art is briefly introduced.
  • the existing solution is as follows: Scan, when scanning to the transit channel, receive 4 common notification channels (Common Announcement Channel) according to the LCSS identifier as "Start-Intermediate-Intermediate-End".
  • short embedded signaling is obtained by performing embedded information parsing on the CACH, and four short embedded signalings are continuously received to parse one
  • the short link control signaling determines whether the compressed address carried by the short link control signaling is the local terminal, and if not, starts scanning the next channel.
  • the following embodiments of the present invention provide the following preferred solutions.
  • a flowchart of a fifth embodiment of a communication method based on a time division multiple access communication system may include:
  • Step 501 The communication terminal sequentially receives the public notification channel frame, and performs embedded information parsing on the common notification channel frame to obtain a short embedded signaling and a link control start/stop indication.
  • Step 502 The communication terminal caches the short embedded signaling to the corresponding buffer area according to the link control start/stop indication, and determines that the four buffer areas store the corresponding short embedded signaling.
  • Step 502 can include:
  • the communication terminal buffers the short embedded signaling to the first buffer area;
  • the communication terminal buffers the short embedded signaling to the second buffer area;
  • the communication terminal buffers the short embedded signaling to the third buffer area;
  • the communication terminal buffers the short embedded signaling to a fourth buffer area
  • the communication terminal determines that the four buffer areas are buffered corresponding to the short embedded signaling.
  • the embedded signaling of the received first CACH frame is cached in the second cache.
  • the area, the embedded signaling of the received second CACH frame is buffered in the third buffer area.
  • Step 503 The communication terminal decodes the short embedded signaling in the four buffer areas to obtain short link control signaling.
  • the method further includes:
  • the processing is not left unprocessed, and the LCSS identifiers that are subsequently received by the subsequent CACH parsing are intermediate-end, and are not retained.
  • the CACH frame received after parsing is processed, and finally the "start-intermediate-intermediate-end" pair is received according to the LCSS identifier.
  • the short embedded signaling in the four CACH frames is decoded to obtain short link control signaling.
  • the prior art solution needs to receive 7 CACH frames in order to decode the short link control signaling, and the present invention only needs to receive 4 CACH frames to decode the short link control signaling.
  • the present invention can shorten the access time of short LC in CACH.
  • the embodiment of the present invention corresponds to the communication method based on the time division multiple access communication system, and the embodiment of the present invention provides a communication terminal based on the time division multiple access communication system. Referring to FIG. 7, the time division multiple access communication system is shown.
  • a structural diagram of the communication terminal embodiment 1, the communication terminal may include: a receiving unit 701, a parsing unit 702, a buffer unit 703, and a decoding unit 704.
  • the internal structure and its connection relationship are further introduced below in conjunction with the working principle of the device.
  • the receiving unit 701 is configured to receive an embedded signaling frame.
  • the parsing unit 702 is configured to perform embedded information parsing on the embedded signaling frame to obtain embedded signaling and control information.
  • the buffer unit 703 is configured to cache the embedded signaling to the corresponding buffer area according to the control information.
  • the decoding unit 704 is configured to: when each of the corresponding buffer areas has buffered the embedded signaling, perform embedded signaling decoding on the embedded signaling in all the buffer areas to obtain control signaling.
  • the cache unit may include:
  • a first storage module configured to cache the current embedded signaling to a buffer corresponding to the location according to the location identified by the current control information
  • a first adjustment module configured to identify the location and the next control information according to the current control information The identified location adjusts the cached current embedded signaling.
  • the cache unit may include:
  • a second storage module configured to sequentially cache the embedded signaling that is parsed
  • a second adjusting module configured to adjust a location of each of the buffered embedded signaling according to a location identified by each embedded signaling control information.
  • the terminal may further include: a first viewing unit, configured to check whether protocol data unit information in the control signaling is indicated by the communication terminal Call
  • a first control unit configured to: when the protocol data unit information indicates a call of the communication terminal, open the terminal speaker to access the voice call.
  • the terminal may further include: a second viewing unit, configured to check whether the compressed address in the link control signaling is compression of the communication terminal Address
  • a second control unit configured to scan the next channel when the compressed address is not the compressed address of the communication terminal.
  • the communications terminal receives the embedded signaling frame, performs embedded information parsing on the embedded signaling frame to obtain embedded signaling and control information, and then performs the embedded signaling according to the control information. Cache to the corresponding buffer area; the communication terminal does not need to receive the parsing process in order from the beginning to the end in strict accordance with the embedded signaling identifier, but first parses the embedded signaling carried by each embedded signaling frame received, and then The embedded signaling is buffered to avoid the situation where the signaling frame is discarded when the received embedded signaling frame is not in the order from the beginning to the end.
  • the embodiment of the present invention provides a communication terminal based on a time division multiple access communication system, and a time division multiple access communication system based on the time division multiple access communication system is shown in FIG.
  • a structural diagram of the communication terminal embodiment 2 the communication terminal may include: a storage unit 801, an estimation unit 802, a synchronization unit 803, a receiving unit 804, a parsing unit 805, and a The storage unit 806 and the decoding unit 807.
  • the internal structure and its connection relationship are further introduced below in conjunction with the working principle of the device.
  • a saving unit 801 configured to save an air interface timing of the current channel
  • the estimating unit 802 is configured to estimate an air interface timing of the to-be-switched channel according to the saved air interface timing of the current channel.
  • the synchronization unit 803 is configured to synchronize to the to-be-switched channel according to the estimated air interface timing.
  • the receiving unit 804 is configured to receive an embedded signaling frame.
  • the parsing unit 805 is configured to perform embedded information parsing on the embedded signaling frame to obtain embedded signaling and control information.
  • the buffer unit 806 is configured to buffer the embedded signaling to a corresponding buffer according to the control information.
  • the decoding unit 807 is configured to: when each of the corresponding buffer areas has buffered the embedded signaling, perform embedded signaling decoding on the embedded signaling in all the buffer areas to obtain control signaling.
  • the above 804 to 807 are the same as the above-described embodiments 701 to 704, and are not described herein again.
  • the estimating unit includes:
  • a first estimating module configured to: if the current channel and the channel to be switched are channels of the same frequency simultaneous slot, estimate that the air interface timing of the channel to be switched is equal to the saved current channel air interface timing;
  • a second estimating module configured to determine an air interface timing of the to-be-switched channel according to a time slot relationship between the current channel and the to-be-switched channel, if the current channel and the channel to be switched are channels of different time slots of the same frequency.
  • the communication terminal of the embodiment of the present invention can not only shorten the time of decoding control signaling, but also shorten the time of channel synchronization of the communication terminal, specifically, saving the current channel by performing the same frequency scanning or the channel of the same frequency in the same mode in the transit mode.
  • the air interface timing is adaptively adjusted according to the saved air interface timing to synchronize to the channel to be switched, so that the communication terminal can quickly access the channel to shorten the access time.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

本发明实施例公开了一种基于时分多址通信系统的通信方法及终端,其中方法包括:通信终端接收嵌入信令帧,对所述嵌入信令帧进行嵌入式信息解析得到嵌入信令和控制信息;所述通信终端依据所述控制信息将所述嵌入信令緩存至对应的緩存区;当每一个对应的緩存区都已緩存所述嵌入信令时,所述通信终端对所有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。本发明的技术方案能够缩短时分多址通信系统的终端接入时间,提高时分多址通信系统的接入性能。

Description

一种基于时分多址通信系统的通信方法及终端 技术领域
本发明涉及通信技术领域, 特别是涉及一种基于时分多址通信系统的通 信方法及终端。 背景技术
为了满足欧洲各国的中低端专业及商业用户对移动通信的需要, 欧洲通 信标准协会 (European Telecommunication Standards Institute, ETSI) 制定了开 放性标准数字移动无线电 (Digital Mobile Radio , DMR) 标准, 以适用于公共 事业、 学校、 医院、 酒店、 物业等行业。 DMR语音采用超帧结构传输, 每个超帧是由 6个突发组成, 依次用字母
A〜F标识,其中:突发 A表示超帧的开始, A的中间部分传送同步字(SYNC), 突发 B至 F的中间传送嵌入信令。 DMR语音建立通信处理方案是: 首先查找 突发 A , 找到突发 A并同步到空口时序, 再开始接收 B、 C、 D、 E、 F, 然后 依次解析得到链路控制开始 /停止指示 (Link Control Start/Stop, LCSS)为 "开始 -中间-中间-结束" 的四个嵌入式信令, 根据四个嵌入式信令解码得到链路控 制(Link Control, LC)信令,最后才艮据 LC信令中的协议数据单元(Protocol Data Unit, PDU) 判断是否是本通信终端的呼叫。 类似的, 公用通知信道 (Common Announcement Channel, CACH)建立通信 处理方案是: 首先必须确定接收到携带 LCSS 标识为开始的短嵌入信令的 CACH帧, 然后依次接收携带 LCSS标识为 "中间-中间-结束" 的短嵌入信令 的 CACH帧, 再才艮据四个短嵌入信令解码得到短 LC信令, 最后才艮据短 LC信 令中的压缩地址判断是否是本通信终端的呼叫。 现有的时分多址通信系统的通信方案都类似于上述 DMR 系统所采用的 方案, 都必须按照严格的接收顺序进行处理, 导致通信终端的接入时间较长, 严重影响系统的接入性能。
发明内容 本发明提供了基于时分多址通信系统的通信方法及终端, 以减少终端的 接入时间, 提高时分多址通信系统的接入性能。
为了解决以上技术问题, 本发明采取的技术方案是:
第一方面, 本发明提供一种基于时分多址通信系统的通信方法, 所述方 法包括:
通信终端接收嵌入信令帧, 对所述嵌入信令帧进行嵌入式信息解析得到 嵌入信令和控制信息;
所述通信终端依据所述控制信息将所述嵌入信令緩存至对应的緩存区; 当每一个对应的緩存区都已緩存所述嵌入信令时, 所述通信终端对所有 緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
优选的, 所述通信终端依据所述控制信息将所述嵌入信令緩存至对应的 緩存区, 包括:
所述通信终端依据当前控制信息所标识的位置, 将当前嵌入信令緩存至 与所述位置对应的緩存区;
所述通信终端依据当前控制信息所标识的位置和下一个控制信息所标识 的位置, 调整所緩存的当前嵌入信令的位置。
优选的, 在所述通信终端接收嵌入信令帧之前, 所述方法还包括: 所述通信终端保存当前信道的空口时序;
所述通信终端依据所保存的当前信道的空口时序估计待切换信道的空口 时序, 按照所估计的空口时序同步至所述待切换信道。
优选的, 所述通信终端依据所保存的当前信道的空口时序估计待切换信 道的空口时序, 包括:
若当前信道和待切换信道是同频同时隙的信道, 所述通信终端估计待切 换信道的空口时序等于所保存的当前信道空口时序;
若当前信道和待切换信道是同频不同时隙的信道, 所述通信终端依据当 前信道和待切换信道的时隙关系, 确定所述待切换信道的空口时序。
优选的, 当所述嵌入信令帧为语音超帧时, 所述方法还包括: 所述通信终端查看所述控制信令中的协议数据单元信息是否指示为本通 信终端的呼叫;
当所述协议数据单元信息指示是本通信终端的呼叫, 所述通信终端打开 本终端扬声器接入语音呼叫。
优选的, 当所述嵌入信令帧为公用通知信道帧时, 所述方法还包括: 所述通信终端查看所述链路控制信令中的压缩地址是否为本通信终端的 压缩地址;
当所述压缩地址不是本通信终端的压缩地址时, 所述通信终端扫描下一 个信道。 第二方面, 本发明提供了一种基于时分多址通信系统的通信终端, 所述 终端包括:
接收单元, 用于接收嵌入信令帧;
解析单元, 用于对所述嵌入信令帧进行嵌入式信息解析得到嵌入信令和 控制信息;
緩存单元,用于依据所述控制信息将所述嵌入信令緩存至对应的緩存区; 解码单元, 用于当每一个对应的緩存区都已緩存所述嵌入信令时, 对所 有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
优选的, 所述緩存单元, 包括:
储存模块, 用于依据当前控制信息所标识的位置, 将当前嵌入信令緩存 至与所述位置对应的緩存区;
调整模块, 用于依据当前控制信息所标识的位置和下一个控制信息所标 识的位置, 调整緩存所述当前嵌入信令。
优选的, 所述终端, 还包括:
保存单元, 用于保存当前信道的空口时序;
估计单元, 用于依据所保存的当前信道的空口时序估计待切换信道的空 口时序;
同步单元, 用于按照所估计的空口时序同步至所述待切换信道。
优选的, 所述估计单元, 包括:
第一估计模块, 用于若当前信道和待切换信道是同频同时隙的信道时, 估计待切换信道的空口时序等于所保存的当前信道空口时序;
第二估计模块,用于若当前信道和待切换信道是同频不同时隙的信道时, 依据当前信道和待切换信道的时隙关系确定所述待切换信道的空口时序。 优选的, 当所述嵌入信令帧为语音超帧时, 所述终端还包括: 第一查看单元, 用于查看所述控制信令中的协议数据单元信息是否指示 为本通信终端的呼叫;
第一控制单元, 用于当所述协议数据单元信息指示是本通信终端的呼叫 时, 打开本终端扬声器接入语音呼叫。
优选的, 当所述嵌入信令帧为公用通知信道帧时, 所述终端还包括: 第二查看单元, 用于查看所述链路控制信令中的压缩地址是否为本通信 终端的压缩地址;
第二控制单元, 用于当所述压缩地址不是本通信终端的压缩地址时, 扫 描下一个信道。
本发明提供的一种基于时分多址通信系统的通信方法及终端, 为了缩短 通信建立时间, 提高系统的接入性能。 通信终端接收嵌入信令帧, 对所述嵌 入信令帧进行嵌入式信息解析得到嵌入信令和控制信息, 为后面的緩存嵌入 信令做好技术准备, 在解析出嵌入信令后, 所述通信终端依据所述控制信息 将所述嵌入信令緩存至对应的緩存区, 当每一个对应的緩存区都已緩存所述 嵌入信令时, 所述通信终端对所有緩存区中的嵌入信令进行嵌入式信令解码 得到控制信令, 本发明的通信终端无需等待接收到同步帧之后才对后续接收 到嵌入信令帧进行解析, 而是直接对接收到的嵌入信令帧进行解析并緩存所 解析到的嵌入信令, 能够缩短通信建立时间, 提高系统接入性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1 为本发明实施例基于时分多址通信系统的通信方法实施例 1 的流程 图;
图 2为本发明实施例基于时分多址通信系统的通信方法实施例 2的流程 图;
图 3为本发明实施例基于时分多址通信系统的通信方法实施例 3的流程 图;
图 4为本发明揭示的现有技术与本发明技术方案的对比示意图; 图 5为本发明实施例基于时分多址通信系统的通信方法实施例 4的流程 图;
图 6为本发明实施例基于时分多址通信系统的通信方法实施例 5的流程 图;
图 7为本发明实施例基于时分多址通信系统的通信终端实施例 1 的结构 图;
图 8为本发明实施例基于时分多址通信系统的通信终端实施例 2的结构 图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案, 下面结合附 图和实施方式对本发明实施例作进一步描述的详细描述。
本发明提供的一种基于时分多址通信系统的通信建立方法可以适用于采 用时分多址技术的通信系统中, 比如: 数字移动对讲机系统 (Digital Mobile Radio, DMR)、 陆地集群无线电系统 (Trans European Trunked Radio, TETRA)、 警用集群系统等。
参阅图 1, 示出的本发明实施例基于时分多址通信系统的通信方法实施 例 1的流程图, 该方法包括:
步骤 101, 通信终端接收嵌入信令帧,对所述嵌入信令帧进行嵌入式信息 解析得到嵌入信令和控制信息。
在时分多址通信系统中, 通信终端会接收基站发送嵌入信令帧, 再才艮据 该嵌入信令帧携带的嵌入信令做出进一步的判断以进行正常通信, 所述嵌入 信令帧, 可包括: 短链路控制信令帧和语音嵌入信令帧也称为语音超帧, 由 于不同的通信系统遵循的通信标准可能不同, 不同通信标准所规定的语音超 帧、 短链路控制信令帧帧结构可能不同, 比如: 携带嵌入信令的子帧位置、 携带嵌入信令的子帧个数可能都不相同等等。 但是, 不论哪种系统中嵌入信 令帧都包括嵌入信令和控制信息, 其中控制信息是用于指示当前嵌入信令处 于整个嵌入信令中的哪个位置。 为了便于描述下面仅以 DMR系统为例, 对本实施例进行解释说明。 在 DMR系统中, 不同厂家所采用的嵌入信令帧的结构也不同, 下面仅 以最普遍使用的一种语音超帧为例对本实施例进行解释说明。 DMR中的语音 超帧是由 6个突发组成, 依次用字母 A〜F标识, 其中: 突发 A表示超帧的开 始, A的中间部分传送同步字 (SYNC) , 突发 B至 E的中间传送嵌入信令和 控制信息, 其中控制信息为链路控制开始 /停止指示 (Link Control Start/Stop, LCSS) , 依次标识为 "开始-中间-中间-结束" 指示每个突发中携带的嵌入信令 在整个链路嵌入信令中的位置。
步骤 102,所述通信终端依据所述控制信息将所述嵌入信令緩存至对应的 緩存区。
本步骤有以下两种实现方式, 第一种实现方式可包括: 所述通信终端依 据当前控制信息所标识的位置, 将当前嵌入信令緩存至与所述位置对应的緩 存区; 所述通信终端依据当前控制信息所标识的位置和下一个控制信息所标 识的位置, 调整所緩存的当前嵌入信令的位置。
第二种实现方式可包括: 所述通信终端依次緩存所解析到的嵌入信令; 所述通信终端依据每一个嵌入信令的控制信息所标识的位置, 调整所緩存的 每一个嵌入信令的位置。
下面以具体的实现场景对这两种实现方式分别进行解释说明。 比如, Β、
C、 D、 E中依次携带嵌入信令 1、 2、 3、 4, 控制信息依次标识为 "开始-中 间-中间-结束" 且依次对应緩存区 1、 2、 3、 4, 由于緩存区域 2和 3无法区域 是应该緩存哪个嵌入信令, 所以必须结合下一个嵌入信令的控制信息以做出 适应性的调整。 比如: 当接收到的第一个是 D时, 则将解析的嵌入信令 3先 緩存在緩存区 2中, 紧接着接收到下一个是 E则将解析的嵌入信令 4緩存在 緩存区 4中, 并调整之前 B的嵌入信令 2緩存在緩存区 3中即可。 当然, 也 可以按照顺序依次将解析到的四个嵌入信令先进行緩存, 最后再根据控制信 息关系对嵌入信令緩存位置作整体调整, 比如: 接收顺序是 C、 D、 E、 F、 A、 B,其中携带嵌入信令的是< 、 D、 E、 B,緩存的信令顺序也依次是 2341, 则根 据控制信息的指示调整每个信令的緩冲位置, 调整后的顺序为 BCDE携带嵌 入信令 1234依次緩存在对应的緩冲区 1234中。 步骤 103, 当每一个对应的緩存区都已緩存所述嵌入信令时, 所述通信终 端对所有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
B、 C、 D、 E中依次携带的语音信令 1、 2、 3、 4所对应的緩存区 1、 2、 3、 4中都已緩存嵌入信令, 表示当前满足解码链路控制信令的需求, 则通信 终端对緩存区 1、 2、 3、 4中緩存的嵌入信令 1、 2、 3、 4进行嵌入式信令解 码得到控制信令, 通信终端可才艮据控制信令做出进一步的通信处理。
本发明实施例基于时分多址通信系统的通信方法, 实质上是通信终端接 收嵌入信令†贞, 对所述嵌入信令巾贞进行嵌入式信息解析得到嵌入信令和控制 信息, 然后依据所述控制信息将所述嵌入信令緩存至对应的緩存区; 通信终 端无需严格按照嵌入信令标识从开始到结束的顺序依次接收解析处理, 而是 对于接收到的每一个嵌入信令帧首先解析其携带的嵌入信令, 然后再緩存该 嵌入信令, 避免对于接收到嵌入信令帧不是从开始到结束的顺序时丟弃信令 帧的情况发生。 当每一个对应的緩存区都已緩存所述嵌入信令时, 所述通信 终端对所有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令, 这样处 理能够缩短通信建立时间, 提高系统接入性能。 由于通信终端要切换信道或者进行扫描时, 首先都需要先检测到同步, 并调整自身时序和空口时序对齐, 才能够正常接收嵌入信令帧, 一般同步到 信道的方式是通信终端先搜索切换信道的空口时序, 然后调节自身的空口时 序与切换信道的空口时序对齐, 这种同步到信道的方式耗时比较长, 影响通 信质量, 为了缩短同步所需时间, 本发明实施例提供一种优选方案, 参阅图 2 , 示出的基于时分多址通信系统的通信方法实施例 2的流程图, 所述方法可 包括:
步骤 201, 所述通信终端保存当前信道的空口时序;
步骤 202,所述通信终端依据所保存的当前信道的空口时序估计待切换信 道的空口时序, 按照所估计的空口时序同步至所述待切换信道。
在现有的数字时分多址通信系统 DMR中,通信终端从信道 1切换到信道 2 , 它会将信道 1的空口时序清除, 在信道 2中首先检测空口时序, 然后将自 身的接收时序同步到检测到的信道 2的空口时序, 这样就实现通信终端与信 道 2的同步, 在未检测到同步前, 物理层不会上传数据给链路层, 只有检测 到同步之后, 也就是, 通信终端将自身的接收时序同步到信道 2的空口时序 之后, 物理层才会将接收到的数据传给链路层进行处理, 通信终端才能够接 收到嵌入信令帧, 因此, 为了更快的接收到嵌入信令帧, 需要更快地同步到 信道。
在实际应用中, 优选的, 所述步骤 202可包括:
若当前信道和待切换信道是同频同时隙的信道, 所述通信终端估计待切 换信道的空口时序等于所保存的当前信道空口时序;
若当前信道和待切换信道是同频不同时隙的信道, 所述通信终端依据当 前信道和待切换信道的时隙关系, 确定所述待切换信道的空口时序。
步骤 203, 所述通信终端接收嵌入信令†贞,对所述嵌入信令†贞进行嵌入式 信息解析得到嵌入信令和控制信息;
步骤 204,所述通信终端依据所述控制信息将所述嵌入信令緩存至对应的 緩存区;
步骤 205, 当每一个对应的緩存区都已緩存所述嵌入信令时, 所述通信终 端对所有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
步骤 203 〜205与上述步骤 101〜103相同, 在此不再赞述。
本发明实施例基于时分多址通信系统的通信方法, 不仅能缩短解码控制 信令的时间, 还能够缩短通信终端的信道同时间, 具体是通过通信终端在中 转模式进行同频扫描或者同频不同时隙的信道时,保存当前信道的空口时序, 依据所保存的空口时序适应性调整空口时序以同步到待切换信道的方式, 无 需再搜索空口时序, 这样处理保证通信终端尽快接入信道, 以尽快接收嵌入 信令帧。 上述实施例 1和实施例 2中, 通信终端解码得到控制信令, 需要依据该 控制信令进行进一步的判断, 针对不同类型的控制信令, 需要作不同的判断。 基于此技术问题, 本发明还提供了以下优选方案。
在上述实施例 1或者实施例 2的基础上, 当所述嵌入信令帧为语音超帧 时, 所述方法还可包括: 所述通信终端查看所述控制信令中的协议数据单元信息是否指示为本通 信终端的呼叫; 当所述协议数据单元信息指示是本通信终端的呼叫, 所述通 信终端打开本终端扬声器接入语音呼叫。
在上述实施例 1或者实施例 2的基础上, 当所述嵌入信令帧为公用通知 信道帧时, 所述方法还可包括:
所述通信终端查看所述链路控制信令中的压缩地址是否为本通信终端的 压缩地址; 当所述压缩地址不是本通信终端的压缩地址时, 所述通信终端扫 描下一个信道。
按照上述方法处理, 能够使得通信终端快速判断是否加入呼叫或者提前 获知下行信道的转发情况, 提高了系统的通信质量。 下面以具体的语音迟后进入的应用场景为例, 对本发明的通信方法进一 步进行解释说明, 为了更明显地对比分析本发明实施例的有益效果, 首先简 单介绍一下现有的 DMR 系统中语音迟后进入的处理方案, 该方案是: 通信 终端切换信道时, 必须要先找到同步帧 A, 因为只有 A帧才有语音同步, 同 步空口时序后才能够开始接收 B,C,D,E,F, 解析嵌入式信令区域的链路控制开 始 /结束指示 (LCSS) , 按照 LCSS 为 "开始-中间-中间-结束" 的顺序依次接 收, 然后当这四个嵌入信令都接收到时, 再进行嵌入式信令解码, 最终还原 出链路控制头, 通信终端根据这个链路控制头中的协议数据单元信息判断是 否是本通信终端的呼叫, 如果是, 则打开本通信终端的扬声器进行接收语音。 本发明实施例的语音迟后进入控制方法, 参阅图 3, 示出的本发明实施例的 基于时分多址通信系统的通信方法实施例 3的流程图, 该方法可包括:
步骤 301, 通信终端保存当前信道的空口时序, 并依据当前信道的空口时 序同步到待切换信道的空口时序。
在现有的数字时分多址通信系统 DMR中,通信终端从信道 1切换到信道
2 , 它会将信道 1的空口时序清除, 在信道 2中首先检测空口时序, 然后将自 身的接收时序同步到检测到的信道 2的空口时序, 这样就实现通信终端与信 道 2的同步, 在未检测到同步前, 物理层不会上传数据给链路层, 只有检测 到同步之后, 也就是, 终端将自身的接收时序同步到信道 2的空口时序之后, 物理层才会将接收到的数据传给链路层进行处理, 通信终端才能够接收到语 音突发。
而本步骤可以通过以下方式实现通信终端与待切换信道之间的同步: 所述通信终端保存当前信道的空口时序, 并判断当前信道与待切换信道 是否是同频不同时隙的信道;
若当前信道和待切换信道是同频同时隙的信道, 所述通信终端才艮据保存 的当前信道的空口时序同步到待切换信道;
若当前信道和待切换信道是同频不同时隙的信道, 所述通信终端将所述 保存的当前信道的空口时序增加 30ms, 并同步到待切换信道。
以 2个时隙的 DMR时分多址通信系统为例,通信终端所处的当前信道为 信道 1、 待切换信道为信道 2, 通信终端在信道 1 时, 将接收时序同步到空口 时隙 1的时序, 通信终端只在时隙 1接收语音或数据, 当需要切换到信道 2 时, 若信道 1和信道 2是同频同时隙, 他们的接收时序可以保持不变, 也就 是说按照保存的信道 1的接收时序就可以同步到信道 2,从而不需要通过检测 同步来重新获得信道 2的空口时序。
若信道 1和信道 2是同频不同时隙时, 由于信道 2的时隙 2和信道 1的 时隙 1空口上相差 30ms, 因此, 只需要将保存的信道 1的时序向右 30ms, 就 可获得信道 2的空口接收时序。 在这种当前信道的空口时序已知的情况下, 即便未检测到语音同步 A, 仍然可以先接收语音突发进行嵌入式信令信息解 析, 确保通信终端尽快接入呼叫。
步骤 302, 所述通信终端接收语音突发, 并对所述语音突发进行嵌入式信 息解析得到嵌入信令和链路控制开始 /停止指示。
DMR中语音超帧以六个语音突发为单位,六个语音突发用字母 ABCDEF 标识, 语音按照 A-B-C-D-E-F的顺序循环发送, 突发 A携带同步信息是同步 帧, 突发 BCDEF中有四个突发携带嵌入信令, 且这四个语音突发中都携带 链路控制开始 /停止指示 (Link Control Start/Stop , LCSS) , LCSS用于指示语音 突发在一个完整语音中所处的位置是开始、 中间或者结束。 如突发 BCDE都 携带嵌入信令, BCDE都携带有 LCSS,突发 F的嵌入信令位置为空;如 BDEF 都携带嵌入信令, 突发 C的嵌入信令位置为空。 当然不同的厂家采用不同的 标准, 在本实施例中对此不做具体限定。
为了方便理解本发明实施例的方案, 下面以 "突发 BCDE都携带嵌入信 令, 突发 F的嵌入信令位置为空" 类型为例进行解释说明。
若接收到的第一个语音突发为突发 B , 则按照接收语音突发的顺序依次 进行如下处理:
解析突发 B得到嵌入信令 1和 LCSS为 1; LCSS为 1标识该嵌入信令 1 是嵌入信令的第一片, 即 LCSS指示为开始。
解析突发 C得到嵌入信令 2和 LCSS为 3 ; LCSS为 3标识该嵌入信令 1 是嵌入信令的中间片, 即 LCSS指示为中间。
解析突发 D得到嵌入信令 3和 LCSS为 3; LCSS为 3标识该嵌入信令 3 是嵌入信令的中间片, 即 LCSS指示为中间。
解析突发 E得到嵌入信令 4和 LCSS为 2 ; LCSS为 2标识该嵌入信令 4 是嵌入信令的最后一片, 即 LCSS指示为结束。
步骤 103, 所述通信终端依据所述链路控制开始 /停止指示将所述嵌入信 令緩存至对应的緩存区, 并确定四个緩存区储存对应的嵌入信令。
优选的, 步骤 303可以包括:
所述 LCSS指示为开始, 将所述嵌入信令緩存至第一緩存区;
所述 LCSS指示为中间且下一个 LCSS指示为中间时, 将所述嵌入信令緩 存至第二緩存区;
所述 LCSS指示为中间且下一个 LCSS指示为结束时, 将所述嵌入信令緩 存至第三緩存区;
所述 LCSS指示为结束, 将所述嵌入信令緩存至第四緩存区;确定四个緩 存区都緩存对应的嵌入信令。
才艮据步骤 302解析接收到的语音突发的 LCSS , 按照步骤 303的上述操作 可以包括:第一个突发的 LCSS指示为开始,将嵌入信令 1緩存在第一緩存区; 第二个突发的 LCSS指示为中间, 且下一个突发的 LCSS指示也为中间, 则将 嵌入信令 2緩存在第二緩存区; 第三个突发的 LCSS指示为中间, 且下一个突 发的 LCSS指示为结束, 则将嵌入信令 2緩存在第三緩存区; 第三个突发的 LCSS指示为结束, 将嵌入信令 4緩存在第四緩存区。 由于,语音超帧中有两个语音突发的 LCSS指示都为中间,所以为了准确 地将每个突发携带的嵌入信令緩存到对应的緩存区中, 需要利用下一个突发 的 LCSS指示进行判断调整。
比如:如果首先接收到突发 D , 所述 LCSS指示为中间, 先将嵌入信令緩 存到第二緩存区, 下一个接收到突发 E的 LCSS指示为结束, 将突发 E中嵌 入信令緩存到第四緩存区, 如果第三緩存区为空且第四緩存区填满, 表明突 发 D放的緩存位置出错, 需要将第二緩存区的数据拷贝到第三緩存区, 同时 将第二緩存区的数据清空。也就是说, 当 LCSS指示为中间时, 需要根据下一 个突发的 LCSS指示来调整嵌入信令的緩存区。后续依次接收到突发 F,A,B,C, 如果所述突发 B的所述 LCSS为开始, 将它携带的嵌入信令緩存到第一緩存 区, 如果所述突发 C的所述 LCSS为中间, 将它携带的嵌入信令緩存到第二 緩存区, 至此, 四个緩存区的数据都緩存对应的嵌入信令。
步骤 304,所述通信终端对所述四个緩存区中的嵌入信令进行解码得到链 路控制信令。
每个緩存区中储存的嵌入信令为 32比特, 四个緩存区共 128比特, 通过 解码 128比特的嵌入信令, 生成一个 72比特的链路控制信令。
为了更为清楚地分析本发明上述实施例的有益效果, 下面将本发明上述 实施例的方案与现有技术中的建立通信方案进行对比分析,具体请参阅图 4 , 示出的现有技术与本发明方案的对比示意图。
采用现有技术的方案, 必须先找到携带同步信息的突发 A, 才对后续接 收到的突发进行解析处理; 若接收到的第一个语音突发是突发 B时, 则必须 按照顺序再接收到的 C-D-E-F-A-B-C-D-E之后才能够按照解析得到 LCSS标识 为 "开始-中间-中间-结束" 的嵌入信令, 再对四个嵌入指令进行解码生成链 路控制信令。 如图 4中所示, 若第一个接收到的是突发 B , 则本发明与现有 技术相比可以节省 360ms ;若第一个接收到的是突发 E,则本发明与现有技术 相比可以节省 60ms。
由此可见: 本发明实施例通信终端对接收到的语音突发直接进行解析得 到嵌入信令,并依据该嵌入信令的 LCSS将其緩存在对应的緩存区中; 当四个 緩存区填满时, 进行嵌入信令解码得到链路控制信令。 本发明在空口时序已 知的情况下, 无需查找携带同步信息的突发 A, 也无需等到接收到突发 A之 后才对接收到的携带嵌入信令的突发进行解析处理, 而是以直接解析接收的 语音突发, 并緩存解析得到的嵌入信令的方式进行处理, 因此, 本发明能够 缩短建立通信的接入时间。 下面以优先回扫的应用场景为例对本发明进行解释说明。 优选回扫过程 是: 通信终端当前处于信道 F1 上, 若优先回扫定时器超时, 回扫优先信道 F2 , 若信道 F2中有本终端的优先呼叫存在, 终端在信道 F2接入呼叫, 待完 成呼叫之后再切换至信道 F1上; 若信道 F2中没有本终端的优先呼叫存在, 终端切换至信道 F1上继续接收语音,直到下一个回扫间隔到来时再次回扫信 道 F2。 由于现有优先回扫方案的语音间断时间过长影响通信质量, 基于此技 术问题, 本发明还提供了以下优选方案, 用以减小优先回扫中语音间断时间, 保证通信质量。
参阅图 5, 示出的本发明实施例的基于时分多址通信系统的通信方法实 施例 4的流程图, 该方法可包括:
步骤 401, 通信终端保存当前信道 F1的空口时序, 切换至优先信道 F2 进行检测。
通信终端在开启扫描后检测到信道 F1上有本终端的语音呼叫时,停止扫 描并打开扬声器, 开始接入并播放语音, 同时通信终端切换状态到扫描停留 状态, 启动优先回扫定时器, 若优先回扫定时器超时, 终端就开始进行优先 回扫, 终端进行优先回扫前先保存当前所在信道 F1的空口时序, 然后再切换 至优先信道 F2进行检测, 同时切换状态至优先回扫状态。
步骤 402, 当所述通信终端检测空口有语音信号时,依次接收语音突发并 对所述语音突发进行嵌入式信息解析得到嵌入信令和链路控制开始 /停止指 示 LCSS ;
步骤 403, 所述通信终端依据所述链路控制开始 /停止指示将所述嵌入信 令緩存至对应的緩存区, 并确定四个緩存区储存对应的嵌入信令;
步骤 404,所述通信终端对所述四个緩存区中的嵌入信令进行解码得到链 路控制信令; 步骤 405, 所述通信终端解析所述链路控制信令中的协议数据单元信息, 依据所述协议数据单元信息判断是否是本终端的呼叫;
步骤 406, 若是, 所述通信终端打开本终端扬声器接入语音呼叫, 进入扫 描停留状态;
步骤 407,若否,所述通信终端切换回信道 F1,恢复信道 F1的空口时序, 依次接收语音突发并对所述语音突发进行嵌入式信息解析得到嵌入信令、 链 路控制开始 /停止指示和语音有效载荷,对所述语音有效载荷进行解码发送至 扬声器。
现有技术是只有解析出链路控制信令中的协议数据单元信息, 判断是呼 叫本终端的呼叫, 才通知打开扬声器, 当接收到下一个语音突发时, 将它的 有效语音载荷进行解码发送到扬声器。 比如终端接收到 A, B , C , D , E , F, 只有在 E帧解析出链路控制信令协议数据单元信息, 判断是终端呼叫, 通知 打开扬声器, 当接收到 F时, 才将 F两边的语音信息解码输送到扬声器。
本实施例中无需等待解析出链路控制信令中的协议数据单元信息, 判断 是本终端的呼叫, 才通知打开扬声器, 而是同步至信道 F1之后就将解析到的 语音有效载荷解码发送至扬声器, 这样使得通信终端切换回信道 F1时, 能够 快速进行语音连接。
步骤 408, 所述通信终端依据所述链路控制开始 /停止指示将所述嵌入信 令緩存至对应的緩存区, 并确定四个緩存区储存对应的嵌入信令;
步骤 409, 所述通信终端对所述四个緩存区中的嵌入信令进行解码得 到链路控制信令。
通过上述实施例可以看出: 将本发明提供的通信方法在切换信道时无需 在重新同步等待同步帧, 能够及时接收语音突发, 从而大大减小语音间断时 间。 下面以短链路控制信令的迟后进入应用场景为例对本发明进行解释说 明, 首先对现有技术中短链路控制信令的接入方案进行简单介绍, 现有方案 是: 通信终端开启扫描, 当扫描到中转信道, 按照 LCSS标识为 "开始-中间- 中间 -结束" 依次接收 4 个公用通知信道 (Common Announcement Channel, CACH)帧 (每一个 30ms的语音或数据突发都携带一个 CACH帧), 通过对所 述 CACH†贞进行嵌入信息解析得到短嵌入信令, 连续接收 4个短嵌入信令就 可以解析出一个短链路控制信令, 判断短链路控制信令携带的压缩地址是否 是本终端的, 若不是就开始扫描下一个信道。 为了缩短短链路控制信令的接 入时间, 提高扫描性能, 本发明实施例提供以下优选方案。
参阅图 6, 示出的本发明实施例的基于时分多址通信系统的通信方法实 施例 5的流程图, 该方法可包括:
步骤 501, 通信终端依次接收公用通知信道帧, 并对所述公用通知信道帧 进行嵌入式信息解析得到短嵌入信令和链路控制开始 /停止指示;
步骤 502, 所述通信终端依据链路控制开始 /停止指示将所述短嵌入信令 緩存至对应的緩存区, 并确定四个緩存区储存对应的短嵌入信令。
步骤 502可以包括:
当所述 LCSS指示为开始,所述通信终端将所述短嵌入信令緩存至第一緩 存区;
当所述 LCSS指示为中间且下一个 LCSS指示为中间时, 所述通信终端将 所述短嵌入信令緩存至第二緩存区;
当所述 LCSS指示为中间且下一个 LCSS指示为结束时, 所述通信终端将 所述短嵌入信令緩存至第三緩存区;
当所述 LCSS指示为结束,所述通信终端将所述短嵌入信令緩存至第四緩 存区;
所述通信终端确定四个緩存区都緩存对应的短嵌入信令。
例如: 当接收到的第一个 CACH帧解析得到的 LCSS标识为中间时, 接 收到下一个 CACH帧的 LCSS标识为中间, 则接收到的第一个 CACH帧的嵌 入信令緩存在第二緩存区, 将接收到的第二个 CACH帧的嵌入信令緩存在第 三緩存区。
步骤 503,所述通信终端对所述四个緩存区中的短嵌入信令进行解码得到 短链路控制信令。
优选的, 所述方法还包括:
解析所述短链路控制信令中的压缩地址, 并判断所述压缩地址是否是本 终端的压缩地址, 若不是, 所述通信终端扫描下一个信道。
为了对比本发明上述实施例的有益效果下面对现有技术中的 CACH解析 短 LC处理方法进行简单分析。
现有的方案当接收到的第一个 CACH帧解析得到的 LCSS标识为中间时, 则不保留不做处理, 紧接着接收后续的 CACH解析的到的 LCSS标识依次为 中间-结束, 都不保留不作处理, 直到接收到第四个 CACH帧解析得到 LCSS 标识为 "开始" 之后, 才对之后接收到的 CACH帧进行解析处理, 最终按照 LCSS标识依次 "开始-中间-中间-结束"对接收到的四个 CACH帧中的短嵌入 信令进行解码得到短链路控制信令。 可见: 现有技术方案在此种情况下需要 接收 7个 CACH帧才能解码得到短链路控制信令, 而本发明只需要接收 4个 CACH帧就能够解码得到短链路控制信令,相比之下,本发明能够缩短 CACH 中短 LC的接入时间。 与本发明实施例基于时分多址通信系统的通信方法实施例 1 相对应, 本 发明实施例提供了基于时分多址通信系统的通信终端, 参阅图 7, 示出的基 于时分多址通信系统的通信终端实施例 1 的结构图, 该通信终端可包括: 接 收单元 701、 解析单元 702、 緩存单元 703和解码单元 704。 下面结合该装置 的工作原理进一步介绍其内部结构及其连接关系。
接收单元 701, 用于接收嵌入信令帧;
解析单元 702,用于对所述嵌入信令帧进行嵌入式信息解析得到嵌入信令 和控制信息;
緩存单元 703,用于依据所述控制信息将所述嵌入信令緩存至对应的緩存 区;
解码单元 704, 用于当每一个对应的緩存区都已緩存所述嵌入信令时,对 所有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
优选的, 所述緩存单元, 可包括:
第一储存模块, 用于依据当前控制信息所标识的位置, 将当前嵌入信令 緩存至与所述位置对应的緩存区;
第一调整模块, 用于依据当前控制信息所标识的位置和下一个控制信息 所标识的位置, 调整緩存所述当前嵌入信令。
优选的, 所述緩存单元, 可包括:
第二储存模块, 用于依次緩存所解析到的嵌入信令;
第二调整模块, 用于依据每一个嵌入信令的控制信息所标识的位置, 调 整所緩存的每一个嵌入信令的位置。
优选的, 当所述嵌入信令帧为语音超帧时, 所述终端, 还可包括: 第一查看单元, 用于查看所述控制信令中的协议数据单元信息是否指示 为本通信终端的呼叫;
第一控制单元, 用于当所述协议数据单元信息指示是本通信终端的呼叫 时, 打开本终端扬声器接入语音呼叫。
优选的, 当所述嵌入信令帧为公用通知信道帧时, 所述终端还可包括: 第二查看单元, 用于查看所述链路控制信令中的压缩地址是否为本通信 终端的压缩地址;
第二控制单元, 用于当所述压缩地址不是本通信终端的压缩地址时, 扫 描下一个信道。
通过上述本发明实施例可以看出: 通信终端接收嵌入信令帧, 对所述嵌 入信令帧进行嵌入式信息解析得到嵌入信令和控制信息, 然后依据所述控制 信息将所述嵌入信令緩存至对应的緩存区; 通信终端无需严格按照嵌入信令 标识从开始到结束的顺序依次接收解析处理, 而是对于接收到的每一个嵌入 信令帧首先解析其携带的嵌入信令, 然后再緩存该嵌入信令, 避免对于接收 到嵌入信令帧不是从开始到结束的顺序时丟弃信令帧的情况发生。 当每一个 对应的緩存区都已緩存所述嵌入信令时, 所述通信终端对所有緩存区中的嵌 入信令进行嵌入式信令解码得到控制信令, 这样处理缩短了解码控制信令的 时间, 能够提高通信质量。 与本发明实施例基于时分多址通信系统的通信方法实施例 2相对应, 本 发明实施例提供了基于时分多址通信系统的通信终端, 参阅图 8, 示出的基 于时分多址通信系统的通信终端实施例 2 的结构图, 该通信终端可包括: 保 存单元 801、 估计单元 802、 同步单元 803、 接收单元 804、 解析单元 805、 緩 存单元 806和解码单元 807。下面结合该装置的工作原理进一步介绍其内部结 构及其连接关系。
保存单元 801, 用于保存当前信道的空口时序;
估计单元 802,用于依据所保存的当前信道的空口时序估计待切换信道的 空口时序。
同步单元 803, 用于按照所估计的空口时序同步至所述待切换信道。
接收单元 804, 用于接收嵌入信令帧;
解析单元 805,用于对所述嵌入信令帧进行嵌入式信息解析得到嵌入信令 和控制信息;
緩存单元 806,用于依据所述控制信息将所述嵌入信令緩存至对应的緩存 区;
解码单元 807,用于当每一个对应的緩存区都已緩存所述嵌入信令时,对 所有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
上述 804〜807与上述实施例 701〜704相同, 在此不再贅述。
所述估计单元, 包括:
第一估计模块, 用于若当前信道和待切换信道是同频同时隙的信道时, 估计待切换信道的空口时序等于所保存的当前信道空口时序;
第二估计模块,用于若当前信道和待切换信道是同频不同时隙的信道时, 依据当前信道和待切换信道的时隙关系确定所述待切换信道的空口时序。
本发明实施例的通信终端不仅能缩短解码控制信令的时间, 还能够缩短 通信终端信道同步的时间, 具体是通过在中转模式进行同频扫描或者同频不 同时隙的信道时保存当前信道的空口时序, 依据所保存的空口时序作出适应 性调整以同步到待切换信道的方式, 实现通信终端快速接入信道, 以缩短接 入时间。
需要说明的是, 在本文中诸如第一和第二等之类的关系术语仅仅用来将 一个实体或者操作与另一个实体或操作区分开来, 而不一定要求或者暗示这 些实体或操作之间存在任何这种实际的关系或者顺序。 而且, 术语 "包括" 、 "包含" 或者其任何其他变体意在涵盖非排他性的包含, 从而使得包括一系 列要素的过程、 装置、 物品或者设备不仅包括那些要素, 而且还包括没有明 确列出的其他要素, 或者是还包括为这种过程、 装置、 物品或者设备所固有 的要素。 在没有更多限制的情况下, 由语句 "包括一个 · · ·· · · " 限定的要素, 并不排除在包括所述要素的过程、 装置、 物品或者设备中还存在另外的相同 要素。
需要说明的是, 本领域普通技术人员可以理解实现上述实施例装置中的 全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成, 所述的 程序可存储于计算机可读取存储介质中, 该程序在执行时, 可包括如上述各 装置的实施例的流程。 其中, 所述的存储介质可为磁碟、 光盘、 只读存储记 忆体 (Read-Only Memory , ROM)或随机存储记忆体 (Random Access Memory , RAM) 等。
以上对本发明所提供的一种基于时分多址通信系统的通信方法和终端进 阐述, 以上实施例的说明只是用于帮助理解本发明的装置及其核心思想; 同 时, 对于本领域的一般技术人员, 依据本发明的思想, 在具体实施方式及应 用范围上均会有改变之处, 综上所述, 本说明书内容不应理解为对本发明的 限制。

Claims

权 利 要 求
1、 一种基于时分多址通信系统的通信方法, 其特征在于, 包括: 通信终端接收嵌入信令巾贞, 对所述嵌入信令†贞进行嵌入式信息解析得到 嵌入信令和控制信息;
所述通信终端依据所述控制信息将所述嵌入信令緩存至对应的緩存区; 当每一个对应的緩存区都已緩存所述嵌入信令时, 所述通信终端对所有 緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
2、 根据权利要求 1所述的方法, 其特征在于, 所述通信终端依据所述控 制信息将所述嵌入信令緩存至对应的緩存区, 包括:
所述通信终端依据当前控制信息所标识的位置, 将当前嵌入信令緩存至 与所述位置对应的緩存区;
所述通信终端依据当前控制信息所标识的位置和下一个控制信息所标识 的位置, 调整所緩存的当前嵌入信令的位置。
3、 才艮据权利要求 1或者 2所述的方法, 其特征在于, 在所述通信终端接 收嵌入信令帧之前, 所述方法还包括:
所述通信终端保存当前信道的空口时序;
所述通信终端依据所保存的当前信道的空口时序估计待切换信道的空口 时序, 按照所估计的空口时序同步至所述待切换信道。
4、 根据权利要求 3所述的方法, 其特征在于, 所述通信终端依据所保存 的当前信道的空口时序估计待切换信道的空口时序, 包括:
若当前信道和待切换信道是同频同时隙的信道, 所述通信终端估计待切 换信道的空口时序等于所保存的当前信道空口时序;
若当前信道和待切换信道是同频不同时隙的信道, 所述通信终端依据当 前信道和待切换信道的时隙关系, 确定所述待切换信道的空口时序。
5、 才艮据权利要求 1或者 2所述的方法, 其特征在于, 当所述嵌入信令帧 为语音超帧时, 所述方法还包括:
所述通信终端查看所述控制信令中的协议数据单元信息是否指示为本通 信终端的呼叫;
当所述协议数据单元信息指示是本通信终端的呼叫, 所述通信终端打开 本终端扬声器接入语音呼叫。
6、 才艮据权利要求 1或者 2所述的方法, 其特征在于, 当所述嵌入信令帧 为公用通知信道帧时, 所述方法还包括:
所述通信终端查看所述链路控制信令中的压缩地址是否为本通信终端的 压缩地址;
当所述压缩地址不是本通信终端的压缩地址时, 所述通信终端扫描下一 个信道。
7、 一种基于时分多址通信系统的通信终端, 其特征在于, 包括: 接收单元, 用于接收嵌入信令帧;
解析单元, 用于对所述嵌入信令帧进行嵌入式信息解析得到嵌入信令和 控制信息;
緩存单元,用于依据所述控制信息将所述嵌入信令緩存至对应的緩存区; 解码单元, 用于当每一个对应的緩存区都已緩存所述嵌入信令时, 对所 有緩存区中的嵌入信令进行嵌入式信令解码得到控制信令。
8、 才艮据权利要求 7所述的终端, 其特征在于, 所述緩存单元, 包括: 储存模块, 用于依据当前控制信息所标识的位置, 将当前嵌入信令緩存 至与所述位置对应的緩存区;
调整模块, 用于依据当前控制信息所标识的位置和下一个控制信息所标 识的位置, 调整緩存所述当前嵌入信令。
9、 才艮据权利要求 7或者 8所述的终端, 其特征在于, 所述终端, 还包括: 保存单元, 用于保存当前信道的空口时序;
估计单元, 用于依据所保存的当前信道的空口时序估计待切换信道的空 口时序;
同步单元, 用于按照所估计的空口时序同步至所述待切换信道。
10、 根据权利要求 9所述的终端, 其特征在于, 所述估计单元, 包括: 第一估计模块, 用于若当前信道和待切换信道是同频同时隙的信道时, 估计待切换信道的空口时序等于所保存的当前信道空口时序;
第二估计模块,用于若当前信道和待切换信道是同频不同时隙的信道时, 依据当前信道和待切换信道的时隙关系确定所述待切换信道的空口时序。
11、 根据权利要求 7或者 8所述的终端, 其特征在于, 当所述嵌入信令 帧为语音超帧时, 所述终端还包括:
第一查看单元, 用于查看所述控制信令中的协议数据单元信息是否指示 为本通信终端的呼叫;
第一控制单元, 用于当所述协议数据单元信息指示是本通信终端的呼叫 时, 打开本终端扬声器接入语音呼叫。
12、 根据权利要求 7或者 8所述的终端, 其特征在于, 当所述嵌入信令 帧为公用通知信道帧时, 所述终端还包括:
第二查看单元, 用于查看所述链路控制信令中的压缩地址是否为本通信 终端的压缩地址;
第二控制单元, 用于当所述压缩地址不是本通信终端的压缩地址时, 扫 描下一个信道。
PCT/CN2013/089070 2013-12-11 2013-12-11 一种基于时分多址通信系统的通信方法及终端 WO2015085511A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/089070 WO2015085511A1 (zh) 2013-12-11 2013-12-11 一种基于时分多址通信系统的通信方法及终端
EP13899054.4A EP3082364B1 (en) 2013-12-11 2013-12-11 Communication method based on time division multiple access communication system, and terminal
US15/102,421 US10298342B2 (en) 2013-12-11 2013-12-11 Communication method based on time division multiple access communication system, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/089070 WO2015085511A1 (zh) 2013-12-11 2013-12-11 一种基于时分多址通信系统的通信方法及终端

Publications (1)

Publication Number Publication Date
WO2015085511A1 true WO2015085511A1 (zh) 2015-06-18

Family

ID=53370474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089070 WO2015085511A1 (zh) 2013-12-11 2013-12-11 一种基于时分多址通信系统的通信方法及终端

Country Status (3)

Country Link
US (1) US10298342B2 (zh)
EP (1) EP3082364B1 (zh)
WO (1) WO2015085511A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600788B (zh) * 2018-12-28 2020-08-18 北京交通大学 一种警用数字集群空口一致性测试的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358277A (ja) * 1999-06-15 2000-12-26 Sharp Corp 無線端末装置
CN1678973A (zh) * 2002-07-03 2005-10-05 科马塞克有限公司 用于执行数字调制和解调的灵活方法及装置
CN1816992A (zh) * 2003-06-06 2006-08-09 摩托罗拉公司 具有流量指示符标志的信标分组
CN102984682A (zh) * 2012-10-29 2013-03-20 苏州坤里达信息科技有限公司 一种移动通信系统中的信令采集仪的数据存取方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914650A (en) 1988-12-06 1990-04-03 American Telephone And Telegraph Company Bandwidth allocation and congestion control scheme for an integrated voice and data network
DE69025311T2 (de) * 1989-08-25 1996-08-22 Nippon Telegraph & Telephone Regelungsverfahren eines funkkanalschalters
US20030031175A1 (en) * 2001-08-01 2003-02-13 Masato Hayashi Method of multicasting
US7697447B2 (en) * 2001-08-10 2010-04-13 Motorola Inc. Control of jitter buffer size and depth
GB0311090D0 (en) * 2003-05-14 2003-06-18 Nokia Corp Antenna down tilting
US7626539B2 (en) * 2003-11-07 2009-12-01 Global Locate, Inc. Method and apparatus for managing time in a satellite positioning system
US7327310B2 (en) * 2003-11-07 2008-02-05 Global Locate, Inc. Method and apparatus for managing time in a satellite positioning system
US20090146871A1 (en) * 2007-12-07 2009-06-11 Charles Abraham Method and apparatus for managing time in a satellite positioning system
US20090219916A1 (en) 2008-02-29 2009-09-03 Motorola, Inc. Method to scan for critical transmissions while transmitting on a conventional time division multiple access channel
US8605650B2 (en) * 2008-06-10 2013-12-10 Motorola Solutions, Inc. System and method for interrupting a transmitting device in a communication system
US8265214B2 (en) * 2008-07-01 2012-09-11 Qualcomm Incorporated Method and apparatus for adaptive timing synchronization in a communication network
US8861445B2 (en) * 2009-03-11 2014-10-14 Sony Cororation Multi-channel single radio communication in home mesh network
CN102869083B (zh) * 2011-07-06 2015-04-29 华为技术有限公司 信道转换时参数配置的方法及基站和无线网络控制器
US9665331B2 (en) * 2012-06-25 2017-05-30 Salesforce.Com, Inc. Systems, methods, and apparatuses for accepting late joiners with screen sharing

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358277A (ja) * 1999-06-15 2000-12-26 Sharp Corp 無線端末装置
CN1678973A (zh) * 2002-07-03 2005-10-05 科马塞克有限公司 用于执行数字调制和解调的灵活方法及装置
CN1816992A (zh) * 2003-06-06 2006-08-09 摩托罗拉公司 具有流量指示符标志的信标分组
CN102984682A (zh) * 2012-10-29 2013-03-20 苏州坤里达信息科技有限公司 一种移动通信系统中的信令采集仪的数据存取方法

Also Published As

Publication number Publication date
EP3082364A4 (en) 2016-12-14
US20160323054A1 (en) 2016-11-03
EP3082364B1 (en) 2018-10-31
US10298342B2 (en) 2019-05-21
EP3082364A1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5394524B2 (ja) ブロードキャスト通信システムにおいてハードハンドオフするための方法およびシステム
RU2390938C2 (ru) Способ и устройство для выполнения процедуры временной синхронизации восходящей линии связи при передаче обслуживания в системе мобильной связи
US20080267105A1 (en) Active mode discontinuous reception synchronization and resynchronization operation
WO2008011798A1 (fr) Procédé et dispositif de synchronisation initiale entre un système gsm et un système td-scdma
US20080084849A1 (en) Autonomous timing advance adjustment during handover
US20190021134A1 (en) User plane optimization for narrowband internet of things
WO2012075940A1 (zh) 基站间同步的方法、装置及系统
US10735120B1 (en) Reducing end-to-end delay for audio communication
WO2009097812A1 (zh) 无线通信系统、空中接口同步调整方法、基站及其控制装置
JP2008048018A (ja) 通信端末装置、基地局および通信方法
WO2011107018A1 (zh) 语音通信方法、设备及系统
WO2017020643A1 (zh) 一种通信系统中同步信号的发送方法、同步方法及装置
US7822011B2 (en) Self-synchronized streaming architecture
WO2015100526A1 (zh) 移动终端及其天线切换方法
CN103634878B (zh) 一种基于时分多址通信系统的通信方法及终端
CN102186236B (zh) 一种微蜂窝基站间定时同步方法及装置
WO2015035567A1 (zh) 一种终端接入基站系统的方法、装置及系统
WO2015085511A1 (zh) 一种基于时分多址通信系统的通信方法及终端
WO2018071102A1 (en) Split dwell time scan optimization for delay sensitive traffic
WO2015149299A1 (zh) 数据传输方法和基站
CN112996098B (zh) 一种用于高塔高功率的5g广播单频网延时调整方法
US9094904B2 (en) Adaptive maintenance of uplink time alignment
WO2011012009A1 (zh) 无线视频通讯系统中差错控制的方法、装置及系统
US11968731B2 (en) Wireless communication apparatus, wireless communication system, and processing method
WO2015013863A1 (zh) 一种通信方法与接入设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15102421

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013899054

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899054

Country of ref document: EP