WO2017020643A1 - 一种通信系统中同步信号的发送方法、同步方法及装置 - Google Patents

一种通信系统中同步信号的发送方法、同步方法及装置 Download PDF

Info

Publication number
WO2017020643A1
WO2017020643A1 PCT/CN2016/083930 CN2016083930W WO2017020643A1 WO 2017020643 A1 WO2017020643 A1 WO 2017020643A1 CN 2016083930 W CN2016083930 W CN 2016083930W WO 2017020643 A1 WO2017020643 A1 WO 2017020643A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
synchronization
cyclic prefix
data portion
guard interval
Prior art date
Application number
PCT/CN2016/083930
Other languages
English (en)
French (fr)
Inventor
陆海涛
郝鹏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP16832131.3A priority Critical patent/EP3319284B1/en
Priority to US15/744,072 priority patent/US10499354B2/en
Publication of WO2017020643A1 publication Critical patent/WO2017020643A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2656Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2603Signal structure ensuring backward compatibility with legacy system

Definitions

  • the present application relates to, but is not limited to, the field of wireless communication technologies, and in particular, to a method, a synchronization method and a device for transmitting a synchronization signal in a communication system.
  • UDN Ultra-Dense Network
  • 5G 5th Generation
  • TP Transmission Point
  • the air interface synchronization method between the TPs in the related art generally implements the air interface synchronization signal monitoring in a silent manner, including sub-frame level silence and special subframe GP (Guard Period) level silence.
  • the silent mode means that when the source TP sends a synchronization signal, the target small base station stops transmitting its own data for receiving the air interface synchronization signal.
  • the TP realizes multi-hop synchronization through the time division method, the lower station of the target station should also be kept silent to avoid interference. As shown in FIG.
  • TP1 sends a synchronization signal
  • TP2 silently receives the synchronization signal
  • TP3 also needs to silently not transmit data to avoid interference to TP2. Due to the silence, TP2 and TP3 cannot transmit data to the terminal at the nth subframe time, which increases the system overhead. Therefore, the TP air interface synchronization is implemented in a silent manner, which greatly reduces the wireless resources. The efficiency of the source.
  • the LTE (Long Term Evolution) Release 12 system solves the problem of fast discovery and synchronization of the terminal to the transmission node through the Discovery Reference Signal.
  • the reference signal is found by CRS (Commond Reference Signal), PSS (Primary Synchronization Signal)/SSS (Secondary Synchronization Signal), and CSI-RS (Channel State Information Reference Signal).
  • CRS Computer Reference Signal
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CSI-RS Channel State Information Reference Signal
  • the LTE system adds a CP (Cyclic Prefix cyclic prefix) in front of each OFDM (Orthogonal Frequency Division Multiplexing) symbol to solve inter-OFDM interference and inter-subcarrier interference caused by multipath delay and timing error. Interference problem.
  • the longer the CP the longer the maximum multipath delay spread supported, and the larger the corresponding coverage.
  • the longer the CP the greater the system overhead.
  • the coverage of the communication node is greatly reduced (for example, the coverage is usually several tens of meters), so there is a huge waste of the length of the conventional LTE CP.
  • This paper proposes a synchronization signal transmission and synchronization scheme for solving synchronization and/or discovery problems between communication nodes.
  • a method for transmitting a synchronization signal in a communication system comprising:
  • the communication node generates a radio frame;
  • the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals;
  • each of the OFDM symbols includes a first cyclic prefix and an OFDM symbol, respectively a data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion;
  • N, M, and P are positive integers, 0 ⁇ P ⁇ M;
  • the synchronization signal includes a second cyclic prefix and Synchronization signal data portion;
  • the communication node transmits the radio frame.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • the guard interval includes a first guard interval before the synchronization signal, or a first guard interval before the synchronization signal, and a second guard interval after the synchronization signal.
  • the guard interval includes a first guard interval before the synchronization signal, a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the length of the synchronization signal data portion 160Ts or 144Ts or 512Ts;
  • the guard interval includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal, the first guard interval, the second guard interval, the first cyclic prefix, and the first
  • the sum of the length of the two-cycle prefix and the data portion of the synchronization signal is 160Ts or 144Ts or 512Ts;
  • Ts is the LTE time domain time unit
  • Ts 1/230.72 microseconds.
  • the guard interval is used for uplink and downlink conversion time and/or to prevent interference between uplink and downlink signals.
  • a synchronization method in a communication system comprising:
  • the communication node receives a radio frame;
  • the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals;
  • each of the OFDM symbols includes a first cyclic prefix and an OFDM symbol, respectively a data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion;
  • N, M, and P are positive integers, 0 ⁇ P ⁇ M;
  • the synchronization signal includes a second cyclic prefix and Synchronization signal data portion;
  • the communication node performs synchronization processing according to the synchronization signal in the radio frame.
  • the synchronizing processing by the communications node according to the synchronization signal in the radio frame includes:
  • the communication node aligns a cyclic prefix header of the OFDM symbol, deletes the first cyclic prefix, performs OFDM data processing according to an OFDM symbol data portion, aligns a cyclic prefix header of the synchronization signal, and removes a second cyclic prefix, according to synchronization
  • the signal data portion is synchronized.
  • the synchronization signal is located at a predetermined location in the subframe.
  • the communication node when the communication node sends the synchronization signal to one of the transmission nodes that perform hierarchical synchronization and the hierarchical transmission node performs the hierarchical synchronization, when the communication node receives the radio frame, The synchronization frame is silently received by the predetermined position in each of the subframes of the radio frame.
  • the communication node transmits the synchronization signal between one of the transmission nodes that perform hierarchical synchronization and another transmission node that performs the hierarchical synchronization
  • the communication node receives the radio frame
  • the wireless frame is silenced at the predetermined position in each of the subframes.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • a first guard interval before the synchronization signal or a first guard interval before the synchronization signal and a second guard interval after the synchronization signal.
  • a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the synchronization signal length is 160Ts. Or 144Ts or 512Ts;
  • the subframe further includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal, the first guard interval, the second guard interval, the first cyclic prefix, and the first
  • the sum of the two cyclic prefix and the length of the synchronization signal is 160Ts or 144Ts or 512Ts;
  • Ts is the LTE time domain time unit
  • Ts 1/230.72 microseconds.
  • the first guard interval and the second guard interval are used for uplink and downlink transition time and/or to prevent interference between uplink and downlink signals.
  • a device for transmitting a synchronization signal in a communication system is disposed in a communication node, and includes:
  • a framing module configured to: generate a radio frame; the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first a cyclic prefix and an OFDM symbol data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; a second cyclic prefix and synchronization signal data portion;
  • the sending module is configured to: send the wireless frame.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • the guard interval includes a first guard interval before the synchronization signal, or a first guard interval before the synchronization signal, and a second guard interval after the synchronization signal.
  • the guard interval includes a first guard interval before the synchronization signal, a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the length of the synchronization signal data portion 160Ts or 144Ts or 512Ts;
  • the guard interval includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal, the first guard interval, the second guard interval, the first cyclic prefix, and the first
  • the sum of the length of the two-cycle prefix and the data portion of the synchronization signal is 160Ts or 144Ts or 512Ts;
  • Ts is the LTE time domain time unit
  • Ts 1/230.72 microseconds.
  • the guard interval is used for uplink and downlink conversion time and/or to prevent interference between uplink and downlink signals.
  • a synchronization device in a communication system disposed in the communication node, comprising:
  • a receiving module configured to: receive a radio frame; the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first loop a prefix and an OFDM symbol data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; Two cyclic prefix and sync signal data portions;
  • the processing module is configured to perform synchronization processing according to the synchronization signal in the radio frame.
  • processing module is configured to:
  • the synchronization signal is located at a predetermined location in the subframe.
  • the receiving module is configured to: when receiving the radio frame, The synchronization signal is silently received at the predetermined position in each of the subframes of the radio frame.
  • the receiving module is configured to: when receiving a radio frame, Silencing at the predetermined location in each of the subframes of the radio frame.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • a first guard interval before the synchronization signal or a first guard interval before the synchronization signal and a second guard interval after the synchronization signal.
  • the subframe further includes a first guard interval before the synchronization signal, a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the synchronization signal length 160Ts or 144Ts or 512Ts;
  • the subframe further includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal, the first guard interval, the second guard interval, the first cyclic prefix, and the first
  • the sum of the two cyclic prefix and the length of the synchronization signal is 160Ts or 144Ts or 512Ts;
  • Ts is the LTE time domain time unit
  • Ts 1/230.72 microseconds.
  • the first guard interval and the second guard interval are used for uplink and downlink transition time and/or to prevent interference between uplink and downlink signals.
  • the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first cyclic prefix and an OFDM symbol, respectively a data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; the synchronization signal includes a second cyclic prefix and Synchronize the signal data section.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • the guard interval includes a first guard interval before the synchronization signal, or a first guard interval before the synchronization signal, and a second guard interval after the synchronization signal.
  • the guard interval includes a first guard interval before the synchronization signal
  • the sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the length of the synchronization signal data portion is 160 Ts or 144 Ts or 512 Ts;
  • the guard interval includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal, the first guard interval, the second guard interval, the first cyclic prefix, and the first
  • the sum of the length of the two-cycle prefix and the data portion of the synchronization signal is 160Ts or 144Ts or 512Ts;
  • Ts is the LTE time domain time unit
  • Ts 1/230.72 microseconds.
  • the guard interval is used for uplink and downlink conversion time and/or to prevent interference between uplink and downlink signals.
  • a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement the above method.
  • the synchronization signal transmission may not occupy the existing LTE resources, but utilize the feature that the TP coverage in the UDN is small, shorten the CP length of the OFDM symbol, and use the remaining CP resources for the synchronization signal transmission.
  • the embodiment of the present invention fully utilizes the CP of the LTE system to carry the synchronization signal, which not only saves overhead, reduces interference between the synchronization signal and the data, but also ensures backward compatibility of the legacy terminal.
  • Another feature of the transmitting method of the embodiment of the present invention is that the information or the modulated information is not carried in the CP, but the synchronization signal is carried.
  • the receiving end can already know the content of the synchronization signal sent by the transmitting end before receiving the synchronization signal, and can complete the time offset or frequency by using the known synchronization signal.
  • the measurement of the partial or signal strength breaks through the viewpoint that the receiving end does not know the information content sent by the transmitting end before receiving the signal carrying the information in the conventional thinking.
  • the TP synchronization silence only occupies the remaining CP resources, does not use the existing LTE resources, does not need to perform sub-frame level silence or special subframe silence, so that synchronization can be performed between small stations.
  • FIG. 1 is a schematic diagram of a method for synchronizing a small station CRS signal in an LTE frame structure of a related art
  • FIG. 2 is a schematic structural diagram of an OFDM symbol frame of a related art LTE system
  • FIG. 3 is a schematic flowchart of a method for transmitting a synchronization signal in a communication system according to Embodiment 1;
  • FIG. 4 is a schematic diagram of a CP generated by copying a segment at the end of a data portion
  • FIG. 5 is a schematic diagram of a radio frame in the first example
  • FIG. 6 is a schematic diagram of a radio frame in the second embodiment
  • Example 7 is a schematic diagram of a radio frame in Example 3.
  • FIG. 8 is a schematic flowchart of a synchronization method in a communication system according to Embodiment 2;
  • FIG. 10 is a schematic explanatory diagram of a method for synchronizing a terminal supporting the synchronization signal and a TP according to Example 6;
  • FIG. 10 is a schematic explanatory diagram of a method for synchronizing a terminal supporting the synchronization signal and a TP according to Example 6;
  • FIG. 11 is a schematic diagram showing a synchronization method between a legacy terminal and a TP of Example 7;
  • Figure 12 is a schematic diagram of a synchronizing signal transmitting apparatus in the communication system of the third embodiment
  • Figure 13 is a diagram showing a synchronizing apparatus in the communication system of the fourth embodiment.
  • the system bandwidth configuration is 20MHz
  • the sampling rate is 30.72MHz.
  • the actual application is not limited to this.
  • each subframe includes 14 or 12 OFDM symbols, and each symbol is composed of CP and OFDM symbol data.
  • each subframe contains 14 OFDM symbols, and the length of the regular CP is 2, which are 144Ts and 160Ts respectively;
  • each subframe contains 12 OFDM symbols, and the length of the extended CP is 512Ts.
  • the embodiment of the present invention can be utilized in a UDN scenario of 5G mobile communication, the CP length can be shortened, and the remaining CP resources can transmit the synchronization signal.
  • Embodiment 1 A method for transmitting a synchronization signal in a communication system, as shown in FIG. 3, includes:
  • the communication node generates a radio frame.
  • the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first cyclic prefix and An OFDM symbol data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; and the synchronization signal includes a second loop Prefix and sync signal data portion;
  • the communication node sends the radio frame.
  • the sum of the lengths of the first cyclic prefix and the synchronization signal may be, but is not limited to, equal to the length of the cyclic prefix (conventional or extended cyclic prefix) in the related art system.
  • the first cyclic prefix is the same as the data signal of the corresponding length at the end of the OFDM symbol data portion, and can be regarded as: copying the last bit of the OFDM symbol data portion and the data signal before the last bit.
  • the corresponding length is the length of the first cyclic prefix.
  • the synchronization signal is located at a predetermined position in the subframe; the predetermined position is also referred to as a synchronization signal region hereinafter.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the data portion of the synchronization signal; and can also be regarded as: the last bit of the data portion of the synchronization signal and the last bit
  • the previous data signal is copied as the second cyclic prefix, as shown in FIG. 4; the corresponding length is the length of the second cyclic prefix.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes: a guard interval
  • the guard interval includes:
  • a first guard interval before the synchronization signal or a first guard interval before the synchronization signal and a second guard interval after the synchronization signal.
  • the guard interval includes a first guard interval before the synchronization signal, a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the length of the synchronization signal data portion 160Ts or 144Ts or 512Ts;
  • the guard interval includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal
  • the first guard interval, the second guard interval, the first cyclic prefix, and the first The sum of the length of the two-cycle prefix and the data portion of the sync signal is 160 Ts or 144 Ts or 512 Ts.
  • the guard interval is used for uplink and downlink conversion time and/or to prevent interference between uplink and downlink signals.
  • the first embodiment will be further explained by three examples.
  • Example 1 a method for transmitting a synchronization signal in a communication system, comprising:
  • the communication node transmits the signal according to the radio frame
  • the radio frame is composed of N subframes, and each subframe is composed of M OFDM symbols and P synchronization signals;
  • the OFDM symbol is composed of a CP1 and an OFDM symbol data portion, wherein CP1 is the same as a data signal at the end of the OFDM symbol data portion;
  • the synchronization signal is composed of a CP2 and a sync signal data portion, wherein the CP2 is identical to a data signal at the end of the sync signal data portion;
  • Example 2 A method for transmitting a synchronization signal in a communication system, comprising:
  • the communication node transmits the signal according to the radio frame
  • the radio frame is composed of N subframes, and each subframe is composed of M OFDM symbols, P synchronization signals, and a GP;
  • the OFDM symbol is composed of a CP1 and an OFDM symbol data portion, wherein CP1 is the same as a data signal at the end of the OFDM symbol data portion;
  • the synchronization signal is composed of a CP2 and a sync signal data portion, wherein the CP2 is identical to a data signal at the end of the sync signal data portion;
  • the GP includes GP1 and GP2; GP1 is located before the synchronization signal, and provides uplink and downlink switching protection for the previous OFDM symbol data and the current synchronization signal data; GP2 is located after the synchronization signal, before CP1, for the current synchronization signal data and The current OFDM symbol data provides uplink and downlink handover protection;
  • the lengths of the CP1, CP2, GP1, GP2, and sync signal data portions are defined as Table 2:
  • Example 3 A method for transmitting a synchronization signal in a communication system according to an embodiment of the present invention includes:
  • the communication node transmits the signal according to the radio frame
  • the radio frame is composed of N subframes, and each subframe is composed of M OFDM symbols, P synchronization signals, and a GP;
  • the OFDM symbol is composed of a CP1 and an OFDM symbol data portion, wherein CP1 is the same as a data signal at the end of the OFDM symbol data portion;
  • the synchronization signal is composed of a CP2 and a sync signal data portion, wherein the CP2 is identical to a data signal at the end of the sync signal data portion;
  • the GP is located before the synchronization signal, and provides uplink and downlink handover protection for the previous OFDM symbol data and the current synchronization signal data, and the uplink and downlink handover protection of the current synchronization signal data and the current OFDM symbol data is completed by processing the synchronization signal data in advance;
  • the lengths of the CP1, CP2, GP, and sync signal data portions are defined as Table 3:
  • Embodiment 2 A synchronization method in a communication system, as shown in FIG. 8, includes:
  • the communication node receives a radio frame.
  • the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first cyclic prefix and An OFDM symbol data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; and the synchronization signal includes a second loop Prefix and sync signal data portion;
  • the communication node performs synchronization processing according to the synchronization signal in the radio frame.
  • the S220 includes:
  • the communication node aligns a cyclic prefix header of the OFDM symbol, deletes the first cyclic prefix, performs OFDM data processing according to an OFDM symbol data portion, aligns a cyclic prefix header of the synchronization signal, and removes a second cyclic prefix, according to synchronization
  • the signal data portion is synchronized.
  • the synchronization process may be to continue to send the synchronization signal to the next-level transmission node of the hierarchical synchronization according to the method of the first embodiment; if the communication node is the terminal, the synchronization process may be timing/ Frequency synchronization.
  • the communication node is a legacy terminal
  • the first cyclic prefix and the synchronization signal are directly discarded, and synchronization processing is not performed according to the synchronization signal.
  • the synchronization signal is located at a predetermined position in the subframe
  • the communication node transmits the synchronization signal to one of the transmission nodes that perform hierarchical synchronization and the hierarchical transmission node performs the hierarchical synchronization
  • the communication node receives the radio frame
  • each of the radio frames The predetermined position in the subframe silently receives the synchronization signal; in addition, if the communication node is not the last-level transmission node of the hierarchical synchronization, the grading will continue to be performed at the next moment after reception
  • the synchronized next-level transmission node transmits the synchronization signal as described in the first embodiment.
  • the communication node transmits the synchronization signal between one of the transmission nodes that perform hierarchical synchronization and another transmission node that performs the hierarchical synchronization
  • the communication node receives the radio frame
  • the wireless frame is silenced at the predetermined position in each of the subframes.
  • the communication node comprises a transmission node and/or a terminal.
  • radio frame may be referred to the first embodiment.
  • the method for synchronizing according to the synchronization signal and the synchronization method of the related art do not need to perform subframe silence or special subframe silence, thereby reducing system overhead and improving system throughput.
  • 1 is a method for synchronizing a transmission node CRS signal in an LTE frame structure of the related art, as follows:
  • TP1, TP2, TP3 there are three TPs (TP1, TP2, TP3) for hierarchical synchronization, that is, TP2 is synchronized to TP1, and TP3 is synchronized to TP2;
  • TP1 sends a CRS synchronization signal to TP2, where TP1 is the sender TX, TP2 is the receiver RX, and TP2 is silently defined at the nth subframe time. For monitoring, TP2 cannot send downlink data to the terminal, which introduces system overhead.
  • TP3 is also silently defined as not transmitting, and TP3 cannot send downlink data to the terminal, which also increases system overhead;
  • TP2 sends a CRS synchronization signal to TP3, where TP2 is the sender TX, TP3 is the receiver RX, and TP3 is silently defined as the listener at the n+1th time, then TP3 cannot Sending downlink data to the terminal, introducing system overhead;
  • TP1 is also silently defined as not transmitting, and TP1 cannot send downlink data to the terminal, which also increases the system overhead.
  • the TP inter-synchronization method of the related art increases the system overhead, and the synchronization method according to the synchronization signal in this embodiment does not need to perform subframe muting or special subframe muting, but only the CP is silent, and the CP itself does not occupy system overhead. Therefore, the synchronization method of the embodiment does not occupy system overhead, and the system throughput is improved compared to the related art synchronization method.
  • the second embodiment will be further explained by four examples.
  • Example 4 A synchronization method between communication nodes is implemented based on the synchronization signal, as follows:
  • the communication node receives the synchronization signal; the manner of receiving includes one of the following ways:
  • the synchronization signal data portion, the CP in the synchronization signal, and the CP in the adjacent OFDM symbol are deleted.
  • the communication node includes a transmission node and/or a terminal
  • the transmission node may include one or more of the following: a base station and a relay node of different forms, such as a macro base station, a micro base station, a pico base station, a femto base station, a home base station, and a relay station.
  • Example 5 A method for synchronizing TP and TP according to the synchronization signal is as follows:
  • TP1, TP2, TP3 there are three TPs (TP1, TP2, TP3) for hierarchical synchronization, that is, TP2 is synchronized to TP1, and TP3 is synchronized to TP2;
  • each subframe there are M synchronization signals and M OFDM symbols;
  • TP1 transmits a synchronization signal to the TP2 in the synchronization signal region
  • the synchronization signal region of TP2 is defined as silent reception
  • the synchronization signal region of TP3 is defined as silent transmission.
  • the OFDM symbol area of TP1, TP2, and TP3 is transmitted or received according to the normal definition, and does not affect the normal data transmission of the TP and the terminal;
  • TP2 sends a synchronization signal to the TP3 in the synchronization signal region, the synchronization signal region of TP3 is defined as silent reception, and the synchronization signal region of TP1 is defined as silent transmission, to avoid interference to TP3; and TP1, TP2
  • the OFDM symbol area of TP3 is sent or received according to the normal definition, and does not affect the normal data transmission of the TP and the terminal;
  • the synchronization method of the present example reduces the silent overhead of the subframe or the special subframe compared to the related art synchronization method, and improves the system throughput.
  • Example 6 is a method for performing synchronization between a terminal and a TP according to the synchronization signal, where the terminal is a terminal supporting the synchronization signal, as follows:
  • the TP sends the synchronization signal and the OFDM symbol data according to the format of the radio frame as shown in FIG. 6;
  • the terminal receives a synchronization signal and OFDM symbol data
  • the processing mode of the terminal after receiving the synchronization signal is as shown in FIG. 10, including: aligning the CP header of the OFDM symbol data, removing the CP1, receiving the OFDM symbol data for OFDM data processing, aligning the CP header of the synchronization signal, removing the CP2, and receiving the synchronization signal. Synchronous processing;
  • the OFDM data processing is the same as the OFDM symbol data processing procedure of the existing LTE system;
  • the synchronization process includes: supporting timing synchronization between the synchronization signal terminal and the TP, and the accuracy meets the timing synchronization requirement specified by the LTE R12 system;
  • the synchronization process further includes: supporting frequency synchronization between the synchronization signal terminal and the TP, and the accuracy meets the frequency synchronization requirement specified by the LTE R12 system;
  • the synchronization signal processing further includes a process of supporting the synchronization signal terminal to perform intensity measurement on the synchronization signal sent by the TP.
  • Example 7 A method for synchronizing a legacy terminal and a TP according to the synchronization signal is as follows:
  • the TP sends the synchronization signal and the OFDM symbol data according to the format of the radio frame as shown in FIG. 6;
  • the legacy terminal receives a synchronization signal and OFDM symbol data
  • the processing mode after the conventional terminal receives the synchronization signal is as shown in FIG. 11 , which includes: Aligning the CP header of the OFDM symbol data, removing the CP1, CP2, and synchronization signal data, and receiving the OFDM symbol data. Perform OFDM data processing;
  • the OFDM data processing is the same as the OFDM symbol data processing procedure of the existing LTE system, including a PSS/SSS based synchronization processing procedure.
  • the synchronization method of the embodiment of the present invention only discards the synchronization signal, does not affect the CP protection, and the received signal processing is consistent with the related technical process. Therefore, the synchronization signal transmission method and the synchronization method of the embodiment of the present invention are conventional. Terminal processing has no impact and is compatible with legacy terminals.
  • Embodiment 3 A device for transmitting a synchronization signal in a communication system is disposed in a communication node, as shown in FIG. 12, and includes:
  • the framing module 121 is configured to: generate a radio frame; the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first a cyclic prefix and an OFDM symbol data portion, wherein the first cyclic prefix is identical to a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; Include a second cyclic prefix and a sync signal data portion;
  • the sending module 122 is configured to: send the radio frame.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • the guard interval includes: a first guard interval before the synchronization signal, or is located at a first guard interval before the synchronization signal and a second guard interval after the synchronization signal.
  • the guard interval includes a first guard interval before the synchronization signal, a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the length of the synchronization signal data portion 160Ts or 144Ts or 512Ts;
  • the guard interval includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal
  • the first guard interval, the second guard interval, the first cyclic prefix, and the first The sum of the length of the two-cycle prefix and the data portion of the sync signal is 160 Ts or 144 Ts or 512 Ts.
  • the guard interval is used for uplink and downlink conversion time and/or to prevent interference between uplink and downlink signals.
  • Embodiment 4 A synchronization device in a communication system is disposed in a communication node, as shown in FIG. 13, and includes:
  • the receiving module 131 is configured to: receive a radio frame; the radio frame includes N subframes, each subframe includes M orthogonal frequency division multiplexing OFDM symbols and P synchronization signals; each of the OFDM symbols includes a first a cyclic prefix and an OFDM symbol data portion, wherein the first cyclic prefix is the same as a data signal of a corresponding length at the end of the OFDM symbol data portion; N, M, and P are positive integers, 0 ⁇ P ⁇ M; a second cyclic prefix and synchronization signal data portion;
  • the processing module 132 is configured to perform synchronization processing according to the synchronization signal in the radio frame.
  • the processing module 132 is configured to: align a cyclic prefix header of the OFDM symbol data, delete the first cyclic prefix, perform OFDM data processing according to OFDM symbol data, and align a cyclic prefix header of the synchronization signal, The second cyclic prefix is removed, and synchronization processing is performed according to the data portion of the synchronization signal.
  • the synchronization signal is located at a predetermined location in the subframe.
  • the receiving module 131 is configured to: when receiving a radio frame And receiving the synchronization signal silently at the predetermined position in each of the subframes of the radio frame.
  • the receiving module 131 is configured to: when receiving a radio frame Silencing at the predetermined location in each of the subframes of the radio frame.
  • the communication node comprises a transmission node and/or a terminal.
  • the length of the radio frame is 10 milliseconds
  • the length of the subframe is 1 millisecond
  • the M 14 or 12.
  • the second cyclic prefix is the same as the data signal of the corresponding length at the end of the synchronization signal data portion.
  • the synchronization signal is located before the OFDM symbol.
  • the subframe further includes:
  • a first guard interval before the synchronization signal or a first guard interval before the synchronization signal and a second guard interval after the synchronization signal.
  • a sum of the first guard interval, the first cyclic prefix, the second cyclic prefix, and the synchronization signal length is 160Ts. Or 144Ts or 512Ts;
  • the subframe further includes a first guard interval before the synchronization signal and a second guard interval after the synchronization signal, the first guard interval, the second guard interval, the first cyclic prefix, and the first
  • the sum of the two cyclic prefix and the length of the synchronization signal is 160 Ts or 144 Ts or 512 Ts.
  • the first guard interval and the second guard interval are used for uplink and downlink transition time and/or to prevent interference between uplink and downlink signals.
  • the embodiment of the present invention further provides a radio frame structure, and the radio frame structure can be referred to the first embodiment.
  • the present invention also provides a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement a method of transmitting a synchronization signal in the communication system.
  • the present invention also provides a computer readable storage medium storing computer executable instructions that, when executed by a processor, implement a synchronization method in the communication system described above.
  • the synchronization signal transmission may not occupy the existing LTE resources, but utilize the feature that the TP coverage in the UDN is small, shorten the CP length of the OFDM symbol, and use the remaining CP resources for the synchronization signal transmission.
  • the embodiment of the present invention fully utilizes the CP of the LTE system to carry the synchronization signal, which not only saves overhead, reduces interference between the synchronization signal and the data, but also ensures backward compatibility of the legacy terminal.
  • Another feature of the transmitting method of the embodiment of the present invention is that the information or the modulated information is not carried in the CP, but the synchronization signal is carried.
  • the receiving end can already know the content of the synchronization signal sent by the transmitting end before receiving the synchronization signal, and can complete the time offset or frequency by using the known synchronization signal. Measurement of bias or signal strength, which breaks the signal that the receiving end receives the bearer information in the traditional thinking I did not know the point of view of the content of the information sent by the sender.
  • the TP synchronization silence only occupies the remaining CP resources, does not use the existing LTE resources, does not need to perform sub-frame level silence or special subframe silence, so that synchronization can be performed between small stations.
  • the target cell and the lower layer cell need to perform subframe level silence or special sub- The frame is silent, and the target cell cannot transmit data in the corresponding subframe, which reduces the problem of system throughput.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本文公布一种通信系统中同步信号的发送方法、同步方法及装置;所述发送方法包括:通信节点生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;各所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;所述通信节点发送所述无线帧。

Description

一种通信系统中同步信号的发送方法、同步方法及装置 技术领域
本申请涉及但不限于无线通信技术领域,特别是一种通信系统中同步信号的发送方法、同步方法及装置。
背景技术
UDN(Ultra-Dense Network,超密集网络)是5G(5th Generation,第五代)移动通信的关键技术之一,在写字楼、超级市场、火车站、体育馆、密集住宅区等室内人流密集场景进行大量TP(Transmission Point,传输节点)的部署,提高覆盖及增加数据业务传输速率,以适应未来5G移动通信的1000倍数据业务量需求。在UDN网络中需要解决通信节点(TP或终端)间同步/发现问题。
相关技术的TP间同步方法有三种:一是通过卫星导航同步;二是通过理想有线回程,利用IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)1588V2标准实现同步;三是TP间通过在空中接口监听同步信号实现同步(简称空口同步)。在超密集网络有可能部署在室内等遮挡严重的区域,卫星信号很弱或没有,无法实现卫星导航同步;而且由于受到部署成本的限制,很难为超密集网络的所有TP安装理想有线回程。因此,目前主要考虑TP间空口同步方式。
相关技术TP间的空口同步方法一般采用静默方式实现空口同步信号监听,其中包括子帧级静默和特殊子帧GP(Guard Period,保护间隔)级静默两种方式。静默方式指的是:当源TP发送同步信号时,目标小基站就停止发送自身数据,用于接收空口同步信号。同时,当TP通过时分方式实现多跳同步时,目标小站的下层小站也要保持相应静默,避免产生干扰。如图1所示,在第n(n为大于或等于1的正整数)子帧时刻,TP1发送同步信号,TP2静默来接收同步信号,TP3也需要静默不发送数据来避免对TP2产生干扰。由于静默,在第n子帧时刻TP2、TP3都无法向终端传输数据,增大了系统开销。因此,通过静默方式实现TP间空口同步,极大的降低了无线资 源的使用效率。
LTE(Long Term Evolution,长期演进)Release 12系统通过Discovery Reference Signal(发现参考信号)解决终端对传输节点的快速发现和同步问题。发现参考信号由CRS(Commond Reference Signal,公共参考信号),PSS(Primary Synchronization Signal,主同步信号)/SSS(Secondary Synchronization Signal,辅同步信号),CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号)组成,开销较大,并且会产生发现参考信号之间以及发现参考信号与数据之间的干扰。
LTE系统在每个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号前加入CP(Cyclic Prefix循环前缀),用于解决多径延迟及定时误差所造成的OFDM符号间干扰及子载波间干扰问题。CP越长,支持的最大多径延迟扩展越长,对应的覆盖越大。但另一方面,CP越长,系统开销也越大。根据宏覆盖的要求,LTE系统支持两种CP长度,即常规CP,长度为144Ts或160Ts和扩展CP,长度为512Ts,Ts为LTE时域时间单位,Ts=1/30.72微秒。但在UDN中,通信节点的覆盖范围大大减小(比如覆盖范围通常为几十米),因此传统LTE CP长度存在巨大浪费。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
如何实现UDN网络中通信节点之间的同步和/或发现,有效的避免不同通信节点的同步/发现参考信号之间或同步/发现参考信号与数据信号之间的干扰,在保证后向兼容的同时提高系统资源的使用效率,是一个亟待解决的问题。
本文提出一种同步信号的发送及同步方案,用于解决通信节点之间的同步和/或发现问题。
一种通信系统中同步信号的发送方法,包括:
通信节点生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
所述通信节点发送所述无线帧。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts、或144Ts、或512Ts,其中Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述子帧还包括:
保护间隔;
所述保护间隔包括:位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔。
可选地,当所述保护间隔包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
当所述保护间隔包括位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
其中,Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
一种通信系统中的同步方法,包括:
通信节点接收无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
所述通信节点根据所述无线帧中的所述同步信号进行同步处理。
可选地,所述通信节点根据所述无线帧中的所述同步信号进行同步处理包括:
所述通信节点对齐所述OFDM符号的循环前缀头,删除所述第一循环前缀,根据OFDM符号数据部分进行OFDM数据处理;对齐所述同步信号的循环前缀头,去掉第二循环前缀,根据同步信号数据部分进行同步处理。
可选地,所述同步信号位于所述子帧中的预定位置。
可选地,当所述通信节点为进行分级同步的传输节点之一、且进行所述分级同步的上一级传输节点发送所述同步信号时,所述通信节点接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默接收所述同步信号。
可选地,当所述通信节点为进行分级同步的传输节点之一、且其它进行所述分级同步的传输节点之间传输所述同步信号时,所述通信节点接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号的长度之和为160Ts、或144Ts、或512Ts,其中Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述子帧还包括:
位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔。
可选地,当所述子帧还包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号长度之和为160Ts或144Ts或512Ts;
当所述子帧还包括位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号长度之和为160Ts或144Ts或512Ts;
其中,Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述第一保护间隔和所述第二保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
一种通信系统中同步信号的发送装置,设置于通信节点中,包括:
组帧模块,设置为:生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
发送模块,设置为:发送所述无线帧。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts、或144Ts、或512Ts,其中Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述子帧还包括:
保护间隔;
所述保护间隔包括:位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔。
可选地,当所述保护间隔包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
当所述保护间隔包括位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
其中,Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
一种通信系统中的同步装置,设置于通信节点中,包括:
接收模块,设置为:接收无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
处理模块,设置为:根据所述无线帧中的所述同步信号进行同步处理。
可选地,所述处理模块设置为:
对齐所述OFDM符号的循环前缀头,删除所述第一循环前缀,根据OFDM符号数据部分进行OFDM数据处理;对齐所述同步信号的循环前缀头,去掉第二循环前缀,根据同步信号数据部分进行同步处理。
可选地,所述同步信号位于所述子帧中的预定位置。
可选地,当所述通信节点为进行分级同步的传输节点之一、且进行所述分级同步的上一级传输节点发送所述同步信号时,所述接收模块设置为:接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默接收所述同步信号。
可选地,当所述通信节点为进行分级同步的传输节点之一、且其它进行所述分级同步的传输节点之间传输所述同步信号时,所述接收模块设置为:接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号的长度之和为160Ts、或144Ts、或512Ts,其中Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述子帧还包括:
位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔。
可选地,当所述子帧还包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号长度之和 为160Ts或144Ts或512Ts;
当所述子帧还包括位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号长度之和为160Ts或144Ts或512Ts;
其中,Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述第一保护间隔和所述第二保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
一种无线帧结构,所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts、或144Ts、或512Ts,其中Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述子帧还包括:
保护间隔;
所述保护间隔包括:位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔。
可选地,当所述保护间隔包括位于所述同步信号之前的第一保护间隔 时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
当所述保护间隔包括位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
其中,Ts为LTE时域时间单位,Ts=1/30.72微秒。
可选地,所述保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述方法。
本发明实施例提供的发送方法中,同步信号传输可以不占用已有LTE资源,而是利用UDN中TP覆盖范围小的特点,缩短OFDM符号的CP长度,将剩余的CP资源用于同步信号传输。本发明实施例充分利用LTE系统的CP来承载同步信号,不仅节省开销,减少同步信号和数据之间的干扰,还可以保证传统终端后向兼容。本发明实施例的发送方法的另一个特点是不在CP中承载信息或调制后的信息,而是承载同步信号。由于同步信号的内容可以是事先约定或配置好的,因此接收端在接收到同步信号之前,已经可以知道发送端所发送的同步信号的内容,并可以利用已知的同步信号完成时偏或频偏或信号强度的测量,这突破了传统思维中接收端在接收到承载信息的信号之前并不知道发送端发送的信息内容的观点。
本发明实施例提供的同步方法中,TP同步静默也仅是占用剩余CP资源,不使用已有LTE资源,不需要进行子帧级静默或特殊子帧静默,做到小站间即可以进行同步处理,又能同时向终端发送数据,不降低系统吞吐量,提高TP系统效率,避免了相关技术的TP同步方法(如CRS同步)中,目标小区和下层小区需要进行子帧级静默或特殊子帧静默,目标小区在对应的子 帧不能发送数据,减少系统吞吐量的问题。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是相关技术LTE帧结构下的小站CRS信号同步方法示意图;
图2是相关技术LTE系统的OFDM符号帧结构示意图;
图3是实施例一的通信系统中同步信号的发送方法的流程示意图;
图4是CP由数据部分末尾一段复制生成的示意图;
图5是实例一中的无线帧的示意图;
图6是实例二中的无线帧的示意图;
图7是实例三中的无线帧的示意图;
图8是实施例二的通信系统中的同步方法的流程示意图;
图9是实例五的TP间的同步方法的说明示意图;
图10是实例六的支持所述同步信号的终端与TP间的同步方法的说明示意图;
图11是实例七的传统终端与TP间的同步方法的说明示意图;
图12是实施例三的通信系统中同步信号的发送装置的示意图;
图13是实施例四的通信系统中的同步装置的示意图。
本发明的实施方式
下面将结合附图及实施例对本发明的实施方式进行说明。
需要说明的是,如果不冲突,本发明实施例以及实施例中的特征可以相互结合,均在本申请的保护范围之内。另外,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在以下LTE系统的说明中,为了简化说明,都假定系统带宽配置是 20MHz,采样率是30.72MHz。实际应用时不限于此。
图2是相关技术LTE系统的OFDM符号帧结构示意图,一个无线帧包含10个子帧,每个子帧包含有14或12个OFDM符号,每个符号由CP和OFDM符号数据组成。对于常规CP,每个子帧包含14个OFDM符号,常规CP的长度有2种,分别是144Ts和160Ts;对于扩展CP,每个子帧包含12个OFDM符号,扩展CP的长度是512Ts。
本发明实施例可以利用在5G移动通信的UDN场景中,CP长度可以缩短,剩余CP资源就可以传输同步信号。
实施例一、一种通信系统中同步信号的发送方法,如图3所示,包括:
S110、通信节点生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
S120、所述通信节点发送所述无线帧。
本实施例中,第一循环前缀与同步信号的长度之和可以但不限于等于相关技术系统中循环前缀(常规或扩展循环前缀)的长度。
本实施例中,所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同可以看成是:将OFDM符号数据部分的最后一位及该最后一位之前的数据信号复制后作为所述第一循环前缀,如图4所示;所述相应长度即所述第一循环前缀的长度。
可选地,所述同步信号位于所述子帧中的预定位置;后文中也将该预定位置称为同步信号区域。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同;也同样可以看成是:将同步信号数据部分的最后一位及该最后一位 之前的数据信号复制后作为所述第二循环前缀,如图4所示;所述相应长度即所述第二循环前缀的长度。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号数据部分的的长度之和为160Ts、或144Ts、或512Ts,其中Ts=1/30.72微秒。
可选地,所述子帧还包括:保护间隔;
所述保护间隔包括:
位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔。
可选地,当所述保护间隔包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
当所述保护间隔包括位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts。
可选地,所述保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
下面用三个实例进一步说明实施例一。
实例一,一种通信系统中同步信号的发送方法,包括:
通信节点按照无线帧来发送信号;
如图5所示,所述无线帧由N个子帧组成,每个子帧由M个OFDM符号和P个同步信号组成;
所述OFDM符号由CP1和OFDM符号数据部分组成,其中CP1与OFDM符号数据部分末尾一段数据信号相同;
所述同步信号由CP2和同步信号数据部分组成,其中CP2与同步信号数据部分末尾一段数据信号相同;
其中,0≤P≤M;
所述CP1与CP2与同步信号数据部分的长度之和为144Ts、或160Ts、或512Ts,其中Ts=1/30.72us(微秒),并且144Ts和160Ts对应于LTE系统的常规CP,512Ts对应于LTE系统的扩展CP;
所述CP1、CP2和同步信号数据部分的长度定义如表一:
表一、CP1、CP2和同步信号数据部分的长度
长度之和 144Ts 160Ts 512Ts
CP2 40Ts 40Ts 128Ts
同步信号数据部分 64Ts 64Ts 256Ts
CP1 40Ts 56Ts 128Ts
实例二,一种通信系统中同步信号的发送方法,包括:
通信节点按照无线帧来发送信号;
如图6所示,所述无线帧由N个子帧组成,每个子帧由M个OFDM符号、P个同步信号及GP组成;
所述OFDM符号由CP1和OFDM符号数据部分组成,其中CP1与OFDM符号数据部分末尾一段数据信号相同;
所述同步信号由CP2和同步信号数据部分组成,其中CP2与同步信号数据部分末尾一段数据信号相同;
所述GP包括GP1和GP2;GP1位于所述同步信号之前,为前一OFDM符号数据和当前同步信号数据提供上下行切换保护;GP2位于所述同步信号之后、CP1之前,为当前同步信号数据和当前OFDM符号数据提供上下行切换保护;
其中,0≤P≤M;
所述CP1、CP2、GP1、GP2与同步信号数据部分的长度之和为144Ts、或160Ts、或512Ts,其中Ts=1/30.72us(微秒),并且144Ts和160Ts对应于LTE系统的常规CP,512Ts对应于LTE系统的扩展CP;
所述CP1、CP2、GP1、GP2和同步信号数据部分的长度定义如表二:
表二、CP1、CP2、GP1、GP2和同步信号数据部分的长度
长度之和 144Ts 160Ts 512Ts
GP1 16Ts 16Ts 32Ts
CP2 32Ts 32Ts 64Ts
同步信号数据部分 62Ts 62Ts 256Ts
GP2 2Ts 2Ts 32Ts
CP1 32Ts 48Ts 128Ts
实例三,本发明实施例的一种通信系统中同步信号的发送方法,包括:
通信节点按照无线帧来发送信号;
如图7所示,所述无线帧由N个子帧组成,每个子帧由M个OFDM符号、P个同步信号及GP组成;
所述OFDM符号由CP1和OFDM符号数据部分组成,其中CP1与OFDM符号数据部分末尾一段数据信号相同;
所述同步信号由CP2和同步信号数据部分组成,其中CP2与同步信号数据部分末尾一段数据信号相同;
所述GP位于同步信号之前,为前一OFDM符号数据和当前同步信号数据提供上下行切换保护,而当前同步信号数据和当前OFDM符号数据的上下行切换保护则通过对同步信号数据提前处理完成;
其中,0≤P≤M;
所述CP1、CP2、GP与同步信号数据部分的长度之和为144Ts、或160Ts、或512Ts,其中Ts=1/30.72us(微秒),并且144Ts和160Ts对应于LTE系统的常规CP,512Ts对应于LTE系统的扩展CP;
所述CP1、CP2、GP和同步信号数据部分的长度定义如表三:
表三、CP1、CP2、GP和同步信号数据部分的长度
长度之和 144Ts 160Ts 512Ts
GP 16Ts 16Ts 64Ts
CP2 32Ts 32Ts 64Ts
同步信号数据部分 64Ts 64Ts 256Ts
CP1 32Ts 48Ts 128Ts
实施例二、一种通信系统中的同步方法,如图8所示,包括:
S210、通信节点接收无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
S220、所述通信节点根据所述无线帧中的所述同步信号进行同步处理。
可选地,所述S220包括:
所述通信节点对齐所述OFDM符号的循环前缀头,删除所述第一循环前缀,根据OFDM符号数据部分进行OFDM数据处理;对齐所述同步信号的循环前缀头,去掉第二循环前缀,根据同步信号数据部分进行同步处理。
如果所述通信节点为传输节点,则同步处理可以是继续向分级同步的下一级传输节点按照实施例一的方法发送同步信号;如果所述通信节点为终端,则同步处理可以是进行定时/频率同步。
当所述通信节点为传统终端时,直接丢弃所述第一循环前缀及所述同步信号,不根据所述同步信号进行同步处理。
可选地,所述同步信号位于所述子帧中的预定位置;
当所述通信节点为进行分级同步的传输节点之一、且进行所述分级同步的上一级传输节点发送所述同步信号时,所述通信节点接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默接收所述同步信号;另外,如果所述通信节点不是所述分级同步的最后一级传输节点,则接收后还将在下一时刻继续向进行所述分级同步的下一级传输节点按照实施例一中的描述发送所述同步信号。
可选地,当所述通信节点为进行分级同步的传输节点之一、且其它进行所述分级同步的传输节点之间传输所述同步信号时,所述通信节点接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的其它特征可以参见实施例一。
本实施例根据所述同步信号进行同步的方法和相关技术的同步方法(如CRS同步)相比,不需要进行子帧静默或特殊子帧静默,减少系统开销,提高系统吞吐量。
图1是相关技术LTE帧结构下的传输节点CRS信号同步方法,如下所述:
假定有3个TP(TP1、TP2、TP3)进行分级同步,即TP2向TP1同步,TP3向TP2同步;
在第n(n为大于或等于1的正整数)子帧时刻,TP1向TP2发送CRS同步信号,此时TP1为发送方TX,TP2为接收方RX,TP2在第n子帧时刻要静默定义为监听,则TP2不能向终端发送下行数据,引入了系统开销;
同时在第n子帧时刻为避免TP3对TP2接收同步信号的干扰,TP3也要静默定义为不发送,则TP3也不能向终端发送下行数据,这也增加了系统开销;
同样地,在第n+1子帧时刻,TP2向TP3发送CRS同步信号,此时TP2为发送方TX,TP3为接收方RX,TP3在第n+1时刻要静默定义为监听,则TP3不能向终端发送下行数据,引入了系统开销;
同时在第n+1子帧时刻为避免TP1对TP3接收同步信号的干扰,TP1也要静默定义为不发送,则TP1也不能向终端发送下行数据,这也增加了系统开销。
可见相关技术的TP间同步方法要增加系统开销,而本实施例的根据所述同步信号的同步方法,不需要进行子帧静默或特殊子帧静默,而只是CP静默,CP本身不占用系统开销,因此本实施例的同步方法不占用系统开销,相比于相关技术同步方法提高了系统吞吐量。
下面用四个实例进一步说明实施例二。
实例四,一种通信节点间的同步方法,基于所述同步信号实现,如下所述:
通信节点接收所述同步信号;接收的方式包括如下方式之一:
将所述同步信号中的CP、相邻OFDM符号中的CP删除;
将所述同步信号数据部分、同步信号中的CP、相邻OFDM符号中的CP删除。
所述通信节点包括传输节点和/或终端;
所述传输节点可以包括以下一种或多种:宏基站、微基站、微微基站、毫微微基站、家庭基站、中继站等不同形态的基站和中继结点。
实例五,根据所述同步信号进行TP与TP间同步的方法,如下所述:
假定有3个TP(TP1、TP2、TP3)进行分级同步,即TP2向TP1同步,TP3向TP2同步;
如图9所示,在每个子帧中,有M个同步信号和M个OFDM符号;
在第k(k为大于或等于1的正整数)个同步信号时刻,TP1在同步信号区域发送向TP2同步信号,TP2的同步信号区域定义为静默接收,TP3的同步信号区域定义为静默不发送,以避免对TP2的干扰;同时TP1、TP2、TP3的OFDM符号区域按正常定义发送或接收,不影响TP与终端的正常数据发送;
在第k+1时刻,TP2在同步信号区域向TP3发送同步信号,TP3的同步信号区域定义为静默接收,TP1的同步信号区域定义为静默不发送,以避免对TP3的干扰;同时TP1、TP2、TP3的OFDM符号区域按正常定义发送或接收,不影响TP与终端的正常数据发送;
依此类推,在使用本实例的根据所述同步信号进行TP同步的过程中,都不需要对子帧或特殊子帧进行静默设置。
因此,本实例的同步方法相比于相关技术同步方法,减少了子帧或特殊子帧静默开销,提高了系统吞吐量。
实例六,根据所述同步信号进行终端与TP间同步的方法,所述终端为支持所述同步信号的终端,如下所述:
所述TP按照如图6所示的无线帧的格式发送同步信号及OFDM符号数据;
所述终端接收同步信号及OFDM符号数据;
终端接收同步信号后的处理方式如图10所示,包括:OFDM符号数据的CP头对齐,去掉CP1,接收OFDM符号数据进行OFDM数据处理;同步信号的CP头对齐,去掉CP2,接收同步信号进行同步处理;
所述OFDM数据处理和已有LTE系统的OFDM符号数据处理流程相同;
所述同步处理包括:所述支持同步信号终端与TP间的定时同步,精度满足LTE R12系统规定定时同步要求;
所述同步处理还包括:所述支持同步信号终端与TP间的频率同步,精度满足LTE R12系统规定的频率同步要求;
所述同步信号处理,还包括所述支持同步信号终端对TP发送的同步信号进行强度测量的过程。
实例七,根据所述同步信号进行传统终端与TP间同步的方法,如下所述:
所述TP按照如图6所示的无线帧的格式发送同步信号及OFDM符号数据;
所述传统终端接收同步信号及OFDM符号数据;
传统终端接收同步信号后的处理方式如图11所示,包括:OFDM符号数据的CP头对齐,去掉CP1、CP2及同步信号数据,接收OFDM符号数据 进行OFDM数据处理;
所述OFDM数据处理和已有LTE系统的OFDM符号数据处理流程相同,包括基于PSS/SSS的同步处理过程。
可以看出,本发明实施例的同步方法对相关技术终端处理只是丢弃同步信号,不影响CP保护,接收信号处理和相关技术过程一致,因此本发明实施例的同步信号发送方法及同步方法对传统终端处理不产生影响,和传统终端是可以兼容的。
实施例三、一种通信系统中同步信号的发送装置,设置于通信节点中,如图12所示,包括:
组帧模块121,设置为:生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
发送模块122,设置为:发送所述无线帧。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts、或144Ts、或512Ts,其中Ts=1/30.72微秒。
可选地,所述子帧还包括:
保护间隔;
所述保护间隔包括:位于所述同步信号之前的第一保护间隔,或者位于 所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔。
可选地,当所述保护间隔包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
当所述保护间隔包括位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts。
可选地,所述保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
其它实施细节可参见实施例一。
实施例四、一种通信系统中的同步装置,设置于通信节点中,如图13所示,包括:
接收模块131,设置为:接收无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
处理模块132,设置为:根据所述无线帧中的所述同步信号进行同步处理。
可选地,所述处理模块132设置为:对齐所述OFDM符号数据的循环前缀头,删除所述第一循环前缀,根据OFDM符号数据进行OFDM数据处理;对齐所述同步信号的循环前缀头,去掉第二循环前缀,根据同步信号数据部分进行同步处理。
可选地,所述同步信号位于所述子帧中的预定位置。
可选地,当所述通信节点为进行分级同步的传输节点之一、且进行所述分级同步的上一级传输节点发送所述同步信号时,所述接收模块131设置为:接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默接收所述同步信号。
可选地,当所述通信节点为进行分级同步的传输节点之一、且其它进行所述分级同步的传输节点之间传输所述同步信号时,所述接收模块131设置为;接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默。
可选地,所述通信节点包括传输节点和/或终端。
可选地,所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
可选地,所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
可选地,所述子帧中,所述同步信号位于所述OFDM符号之前。
可选地,所述第一循环前缀、第二循环前缀与所述同步信号的长度之和为160Ts、或144Ts、或512Ts,其中Ts=1/30.72微秒。
可选地,所述子帧还包括:
位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔。
可选地,当所述子帧还包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号长度之和为160Ts或144Ts或512Ts;
当所述子帧还包括位于所述同步信号之前的第一保护间隔及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号长度之和为160Ts或144Ts或512Ts。
可选地,所述第一保护间隔和所述第二保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
其它实施细节可参见实施例二。
本发明实施例还提供一种无线帧结构,所述无线帧结构可参见实施例一。
本发明实施还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述通信系统中同步信号的发送方法。
本发明实施还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被处理器执行时实现上述通信系统中的同步方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本申请不限制于任何特定形式的硬件和软件的结合。
虽然本申请所揭露的实施方式如上,但所述的内容仅为便于理解本申请而采用的实施方式,并非用以限定本申请。任何本申请所属领域内的技术人员,在不脱离本申请所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
本发明实施例提供的发送方法中,同步信号传输可以不占用已有LTE资源,而是利用UDN中TP覆盖范围小的特点,缩短OFDM符号的CP长度,将剩余的CP资源用于同步信号传输。本发明实施例充分利用LTE系统的CP来承载同步信号,不仅节省开销,减少同步信号和数据之间的干扰,还可以保证传统终端后向兼容。本发明实施例的发送方法的另一个特点是不在CP中承载信息或调制后的信息,而是承载同步信号。由于同步信号的内容可以是事先约定或配置好的,因此接收端在接收到同步信号之前,已经可以知道发送端所发送的同步信号的内容,并可以利用已知的同步信号完成时偏或频偏或信号强度的测量,这突破了传统思维中接收端在接收到承载信息的信号 之前并不知道发送端发送的信息内容的观点。本发明实施例提供的同步方法中,TP同步静默也仅是占用剩余CP资源,不使用已有LTE资源,不需要进行子帧级静默或特殊子帧静默,做到小站间即可以进行同步处理,又能同时向终端发送数据,不降低系统吞吐量,提高TP系统效率,避免了相关技术的TP同步方法(如CRS同步)中,目标小区和下层小区需要进行子帧级静默或特殊子帧静默,目标小区在对应的子帧不能发送数据,减少系统吞吐量的问题。

Claims (20)

  1. 一种通信系统中同步信号的发送方法,包括:
    通信节点生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
    所述通信节点发送所述无线帧。
  2. 如权利要求1所述的方法,其中:
    所述通信节点包括传输节点和/或终端。
  3. 如权利要求1所述的方法,其中:
    所述无线帧的长度为10毫秒,所述子帧的长度为1毫秒,所述M=14或12。
  4. 如权利要求1所述的方法,其中:
    所述第二循环前缀与同步信号数据部分末尾相应长度的数据信号相同。
  5. 如权利要求1所述的方法,其中:
    所述子帧中,所述同步信号位于所述OFDM符号之前。
  6. 如权利要求1所述的方法,其中:
    所述第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts、或144Ts、或512Ts,其中Ts为LTE时域时间单位,Ts=1/30.72微秒。
  7. 如权利要求1所述的方法,其中,所述子帧还包括:
    保护间隔;
    所述保护间隔包括:位于所述同步信号之前的第一保护间隔,或者位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔。
  8. 如权利要求7所述的方法,其中:
    当所述保护间隔包括位于所述同步信号之前的第一保护间隔时,所述第一保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
    当所述保护间隔包括位于所述同步信号之前的第一保护间隔、及位于所述同步信号之后的第二保护间隔时,所述第一保护间隔、第二保护间隔、第一循环前缀、第二循环前缀与所述同步信号数据部分的长度之和为160Ts或144Ts或512Ts;
    其中,Ts为LTE时域时间单位,Ts=1/30.72微秒。
  9. 如权利要求7所述的方法,其中:
    所述保护间隔用于上下行转换时间和/或防止上下行信号之间的干扰。
  10. 一种通信系统中的同步方法,包括:
    通信节点接收无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
    所述通信节点根据所述无线帧中的所述同步信号进行同步处理。
  11. 如权利要求10所述的方法,其中,所述通信节点根据所述无线帧中的所述同步信号进行同步处理包括:
    所述通信节点对齐所述OFDM符号的循环前缀头,删除所述第一循环前缀,根据OFDM符号数据部分进行OFDM数据处理;对齐所述同步信号的循环前缀头,去掉第二循环前缀,根据同步信号数据部分进行同步处理。
  12. 如权利要求10所述的方法,其中:
    所述同步信号位于所述子帧中的预定位置。
  13. 如权利要求12所述的方法,其中:
    当所述通信节点为进行分级同步的传输节点之一、且进行所述分级同步 的上一级传输节点发送所述同步信号时,所述通信节点接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默接收所述同步信号。
  14. 如权利要求12所述的方法,其中:
    当所述通信节点为进行分级同步的传输节点之一、且其它进行所述分级同步的传输节点之间传输所述同步信号时,所述通信节点接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默。
  15. 一种通信系统中同步信号的发送装置,设置于通信节点中,包括:
    组帧模块,设置为:生成无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
    发送模块,设置为:发送所述无线帧。
  16. 一种通信系统中的同步装置,设置于通信节点中,包括:
    接收模块,设置为:接收无线帧;所述无线帧包括N个子帧,每个子帧包括M个正交频分复用OFDM符号和P个同步信号;每个所述OFDM符号分别包括第一循环前缀和OFDM符号数据部分,其中所述第一循环前缀与所述OFDM符号数据部分末尾相应长度的数据信号相同;N、M和P为正整数,0≤P≤M;所述同步信号包括第二循环前缀和同步信号数据部分;
    处理模块,设置为:根据所述无线帧中的所述同步信号进行同步处理。
  17. 如权利要求16所述的装置,其中,
    所述处理模块设置为:对齐所述OFDM符号的循环前缀头,删除所述第一循环前缀,根据OFDM符号数据部分进行OFDM数据处理;对齐所述同步信号的循环前缀头,去掉第二循环前缀,根据同步信号数据部分进行同步处理。
  18. 如权利要求16所述的装置,其中:
    所述同步信号位于所述子帧中的预定位置。
  19. 如权利要求18所述的装置,其中:
    当所述通信节点为进行分级同步的传输节点之一、且进行所述分级同步的上一级传输节点发送所述同步信号时,所述接收模块设置为:接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默接收所述同步信号。
  20. 如权利要求18所述的装置,其中:
    当所述通信节点为进行分级同步的传输节点之一、且其它进行所述分级同步的传输节点之间传输所述同步信号时,所述接收模块设置为:接收无线帧时,在所述无线帧每个所述子帧中的所述预定位置静默。
PCT/CN2016/083930 2015-07-31 2016-05-30 一种通信系统中同步信号的发送方法、同步方法及装置 WO2017020643A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP16832131.3A EP3319284B1 (en) 2015-07-31 2016-05-30 Synchronization signal transmission method in communication system, and synchronization method and device
US15/744,072 US10499354B2 (en) 2015-07-31 2016-05-30 Synchronization signal transmission method in communication system, and synchronization method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510464785.2 2015-07-31
CN201510464785.2A CN106411445B (zh) 2015-07-31 2015-07-31 一种通信系统中同步信号的发送方法、同步方法及装置

Publications (1)

Publication Number Publication Date
WO2017020643A1 true WO2017020643A1 (zh) 2017-02-09

Family

ID=57942363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/083930 WO2017020643A1 (zh) 2015-07-31 2016-05-30 一种通信系统中同步信号的发送方法、同步方法及装置

Country Status (4)

Country Link
US (1) US10499354B2 (zh)
EP (1) EP3319284B1 (zh)
CN (1) CN106411445B (zh)
WO (1) WO2017020643A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324909A (zh) * 2018-03-29 2019-10-11 维沃移动通信有限公司 上行信号传输方法及用户设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658697B (zh) * 2015-11-04 2020-11-17 中兴通讯股份有限公司 同步信号发送、检测方法、基站及终端
US10631173B2 (en) 2016-09-02 2020-04-21 Qualcomm Incorporated Radio (NR) procedures for shared spectrum
CN113612593B (zh) * 2017-03-24 2023-01-13 展讯通信(上海)有限公司 5g系统中同步信号块的发送方法、接收方法及装置
CN112311712B (zh) * 2019-08-01 2022-02-08 大唐移动通信设备有限公司 一种信号的发送、接收方法、终端及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001234A (zh) * 2006-01-10 2007-07-18 中兴通讯股份有限公司 正交频分复用系统发送信号的方法及小区搜索的方法
CN101018221A (zh) * 2006-02-10 2007-08-15 中兴通讯股份有限公司 正交频分复用系统发送信号的方法及小区搜索的方法
CN101035371A (zh) * 2007-03-28 2007-09-12 中兴通讯股份有限公司 一种时分双工系统同步信号发送方法
WO2014021632A1 (ko) * 2012-07-31 2014-02-06 엘지전자 주식회사 데이터 송신 및 수신 방법 및 장치

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19916064C2 (de) 1999-04-09 2003-02-20 Siemens Ag Synchronisationsverfahren für Basisstationen
EP1283614A1 (en) * 2001-08-10 2003-02-12 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Channel estimation in a multicarrier transmit diversity system
US7606138B2 (en) * 2003-09-29 2009-10-20 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry, Through The Communications Research Centre Canada Multi-symbol encapsulated OFDM system
CN101060513A (zh) * 2006-04-17 2007-10-24 北京三星通信技术研究有限公司 传送循环前缀信息的方法
CN101286787A (zh) * 2007-04-11 2008-10-15 北京三星通信技术研究有限公司 传输同步信道的设备和方法
JP4814176B2 (ja) * 2007-05-01 2011-11-16 株式会社エヌ・ティ・ティ・ドコモ 基地局装置および同期チャネル送信方法
CN101110666A (zh) * 2007-06-22 2008-01-23 北京创毅视讯科技有限公司 一种移动多媒体系统的数据发送方法
US8369301B2 (en) * 2007-10-17 2013-02-05 Zte (Usa) Inc. OFDM/OFDMA frame structure for communication systems
US8743855B2 (en) * 2007-12-17 2014-06-03 Lg Electronics Inc. Method of generating data and transmitting synchronization channel in mobile communication system
DE602008004083D1 (de) * 2008-02-18 2011-02-03 Ericsson Telefon Ab L M Verfahren und Gerät zur Bestimmung der Konfiguration eines Unterrahmens
US8170592B2 (en) * 2008-09-12 2012-05-01 Broadcom Corporation Method and system for frame timing acquisition in evolved universal terrestrial radio access (EUTRA)
US8576786B2 (en) 2008-12-31 2013-11-05 Mediatek Synchronization channel for advanced wireless OFDM/OFDMA systems
US8462647B2 (en) * 2009-07-28 2013-06-11 Broadcom Corporation Method and system for multiple frequency hypothesis testing with full synch acquisition in an E-UTRA/LTE UE receiver
KR20110109820A (ko) * 2010-03-31 2011-10-06 엘지에릭슨 주식회사 백홀링크 타이밍 제어 방법 및 그를 위한 릴레이 시스템
US9295014B2 (en) * 2010-04-16 2016-03-22 Qualcomm Incorporated Diminishing the impact of timing delay in downlink signals
US8548511B2 (en) * 2010-06-21 2013-10-01 Qualcomm Incorporated Energy saving mode with maintained number of advertised transmit antennas
US20130018862A1 (en) * 2011-07-13 2013-01-17 Jean Alexandera Munemann Human Filtered Community Based Search and Discovery Engine
US9014110B2 (en) * 2011-07-18 2015-04-21 Qualcomm Incorporated Enabling half-duplex operation
KR20140101830A (ko) * 2011-08-12 2014-08-20 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 융통성있는 대역폭 동작을 위한 다운링크 리소스 할당
KR101762935B1 (ko) * 2011-12-15 2017-07-31 한국전자통신연구원 무선 통신 시스템에서 릴레이앰블을 이용한 초기 동기 획득 방법 및 장치
US20130188624A1 (en) * 2012-01-20 2013-07-25 Jung Seung Lee Apparatus and method for searching neighbor cells of small cell base station
US9515761B2 (en) * 2012-02-29 2016-12-06 Lg Electronics Inc. Communication method in consideration of carrier types and apparatus for same
US9622230B2 (en) * 2012-05-17 2017-04-11 Qualcomm Incorporated Narrow band partitioning and efficient resource allocation for low cost user equipments
CN103517398B (zh) * 2012-06-20 2017-04-26 华为技术有限公司 终端到终端的通信方法及终端
CN109104268B (zh) * 2013-01-18 2021-08-13 华为技术有限公司 公共控制信道的检测方法、传输方法及装置
US9832629B2 (en) * 2014-01-28 2017-11-28 Qualcomm Incorporated Discovery signals and network synchronization signals design in LTE
CN105101389B (zh) * 2014-05-08 2020-04-03 索尼公司 无线通信系统中的方法和装置
US10003986B2 (en) * 2014-09-26 2018-06-19 Futurewei Technologies, Inc. Device, network, and method for communications with variable-duration reference signals
US9713108B2 (en) * 2014-10-10 2017-07-18 Mediatek Singapore Pte. Ltd. Synchronization for low coverage machine type communication devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101001234A (zh) * 2006-01-10 2007-07-18 中兴通讯股份有限公司 正交频分复用系统发送信号的方法及小区搜索的方法
CN101018221A (zh) * 2006-02-10 2007-08-15 中兴通讯股份有限公司 正交频分复用系统发送信号的方法及小区搜索的方法
CN101035371A (zh) * 2007-03-28 2007-09-12 中兴通讯股份有限公司 一种时分双工系统同步信号发送方法
WO2014021632A1 (ko) * 2012-07-31 2014-02-06 엘지전자 주식회사 데이터 송신 및 수신 방법 및 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3319284A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110324909A (zh) * 2018-03-29 2019-10-11 维沃移动通信有限公司 上行信号传输方法及用户设备
US11432343B2 (en) 2018-03-29 2022-08-30 Vivo Mobile Communication Co., Ltd. Uplink signal transmission method and user equipment

Also Published As

Publication number Publication date
US20180213494A1 (en) 2018-07-26
CN106411445A (zh) 2017-02-15
CN106411445B (zh) 2019-08-27
EP3319284A1 (en) 2018-05-09
EP3319284A4 (en) 2018-06-27
US10499354B2 (en) 2019-12-03
EP3319284B1 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US20230142356A1 (en) Radio communication system, base station and communication terminal
US8989085B2 (en) Downlink network synchronization mechanism for femtocell in cellular OFDM systems
WO2017020643A1 (zh) 一种通信系统中同步信号的发送方法、同步方法及装置
RU2638030C1 (ru) Способ и устройство для синхронизации связи усройство-устройство
WO2017167010A1 (zh) 信息的传输方法、用户设备和网络设备
CN101689935B (zh) 移动通信系统中的延迟控制
WO2015076587A1 (en) Method and apparatus for network synchronization
WO2018177406A1 (zh) 信号传输方法和设备
TWI434578B (zh) 用於不同無線電存取技術之間的共存的設備和方法
WO2011000216A1 (zh) 空口同步方法、设备及系统
JPWO2017183252A1 (ja) 端末装置、基地局装置、通信方法
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
EP3065427A1 (en) Radio base station, user terminal, and radio communication method
WO2015003492A1 (zh) 一种同步信号的发送、基站间同步的方法和设备
WO2015032271A1 (zh) 一种多载波中参考运营的信令发送方法、系统和网络侧
US20110223903A1 (en) Apparatus And Method For Synchronization
EP3963798A1 (en) Muting pattern signaling in iab inter-node measurement
WO2011006418A1 (zh) 中继链路的同步信号映射方法及装置
KR20160018353A (ko) 단말 간 직접 통신 방법 및 장치
WO2015042954A1 (zh) 站间同步的方法及基站
US10314010B2 (en) Apparatus for radio communication systems
KR102047959B1 (ko) 동기 채널 송신 방법 및 장치, 그리고 동기 채널 수신 방법 및 장치
CN110505636A (zh) 一种用于中继通信的同步控制方法
WO2013135185A1 (zh) 通信方法、用户设备和网络侧设备
KR102127901B1 (ko) 기지국장치 및 기지국장치의 데이터 송수신 지원 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15744072

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016832131

Country of ref document: EP