WO2015084115A1 - 배터리 용량 퇴화 추정 장치 및 방법 - Google Patents

배터리 용량 퇴화 추정 장치 및 방법 Download PDF

Info

Publication number
WO2015084115A1
WO2015084115A1 PCT/KR2014/011969 KR2014011969W WO2015084115A1 WO 2015084115 A1 WO2015084115 A1 WO 2015084115A1 KR 2014011969 W KR2014011969 W KR 2014011969W WO 2015084115 A1 WO2015084115 A1 WO 2015084115A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
capacity
date
estimating
days
Prior art date
Application number
PCT/KR2014/011969
Other languages
English (en)
French (fr)
Inventor
이현철
박정민
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US14/779,825 priority Critical patent/US20160054392A1/en
Priority to EP14866824.7A priority patent/EP3002600A4/en
Publication of WO2015084115A1 publication Critical patent/WO2015084115A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery capacity deterioration estimating technique, and more particularly, to an apparatus and method for estimating battery capacity deterioration for quickly and easily estimating capacity deterioration of an unused battery.
  • втори ⁇ ески ⁇ в ⁇ ол ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ ество ⁇ оло ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ е ⁇ елов batteries lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. It is attracting much attention because of its low self discharge rate and high energy density.
  • nickel cadmium batteries nickel hydride batteries
  • nickel zinc batteries nickel zinc batteries
  • lithium secondary batteries have almost no memory effect compared to nickel-based secondary batteries, and thus are free of charge and discharge. It is attracting much attention because of its low self discharge rate and high energy density.
  • the capacity degeneration degree which is expressed as a state of health (SOH)
  • SOH state of health
  • the battery can be replaced at an appropriate time using the SOH, and the overcharge and overdischarge of the battery can be prevented by adjusting the charge / discharge capacity of the battery according to the use period of the battery.
  • the method of estimating SOH includes a method of estimating SOH using a battery's internal resistance and temperature, and a method of estimating SOH through a full discharge test.
  • the conventional SOH estimation method mainly measures the electrical parameters of the battery and then estimates the SOH through a complicated calculation process.
  • Such a method has a disadvantage in that the computational process is complicated and a high-performance computing device is required to implement the technology.
  • the conventional SOH estimation method has been developed based on a technique for accurately estimating SOH under the assumption that the SOH changes irregularly according to the use of the battery. Is not enough. That is, according to the prior art, even when an unused battery naturally degenerates with time, there is a inconvenience in estimating the SOH of the battery using a complicated estimation method.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a battery capacity deterioration estimating apparatus that can more easily and quickly estimate the capacity deterioration of an unused battery.
  • a battery capacity deterioration estimating apparatus comprising: a storage unit configured to estimate a capacity deterioration degree of an unused battery, the storage unit storing date of manufacture of the battery; An estimated date input module for receiving date information for estimating capacity deterioration of the battery; An elapsed days calculation module configured to calculate an elapsed days from the date of manufacture of the battery to the day from which the capacity degeneration is to be estimated using the date information on which the capacity degeneration is to be estimated and the date of manufacture of the battery; And a capacity deterioration estimation module for estimating capacity degeneration of the battery using the elapsed days calculated by the day calculation module. Characterized in that it comprises a.
  • the elapsed days calculation module calculates the elapsed days through the following relationship, Wherein Y N , M N and D N represent year, month and day for which capacity deterioration is to be estimated, respectively, and Y I , M I and D I represent year, month and day of manufacture of battery, respectively. It features.
  • the storage unit may further store a capacity degeneration table indicating a number of days elapsed from the date of manufacture of the battery and a capacity degeneration degree corresponding to the elapsed days, and the capacity deterioration estimation module may calculate the elapsed days.
  • the capacity degeneration degree of the battery is estimated by querying the elapsed days calculated by the module in the capacity deterioration table.
  • the date for estimating the capacity degradation degree is a date for performing the estimation of the capacity degradation degree of the battery.
  • the estimated date input module is characterized in that to receive the date information from the BMS provided in the battery pack.
  • a battery pack according to another aspect of the present invention for achieving the above object includes the above-described battery capacity deterioration estimating apparatus.
  • a method of estimating battery capacity deterioration comprising: storing the date of manufacture of the battery; Receiving date information for estimating capacity decay of the battery; Calculating the number of days that elapse from the date of manufacture of the battery to the day from which the capacity deterioration is to be estimated using the date information on which the capacity degeneration is to be estimated and the date of manufacture of the battery; Estimating capacity decay of the battery using the elapsed days calculated in the elapsed days calculation step; Characterized in that it comprises a.
  • the step of calculating the number of days calculate the number of days through the following relationship, Wherein Y N , M N and D N represent year, month and day for which capacity deterioration is to be estimated, respectively, and Y I , M I and D I represent year, month and day of manufacture of battery, respectively. It features.
  • the method may further include storing a capacity deterioration table indicating a number of days elapsed from the date of manufacture of the battery and a degree of capacity degeneration corresponding to the elapsed days, wherein the step of estimating capacity deterioration may include: The capacity degeneration degree of the battery may be estimated by querying the elapsed days calculated in the calculation step in the capacity degeneration table.
  • the date for estimating the capacity deterioration is a date for performing the estimation of the capacity deterioration of the battery.
  • the step of receiving the date information to be estimated characterized in that receiving the date information from the BMS provided in the battery pack.
  • capacity deterioration of an unused battery can be estimated without using a complicated SOH estimation method. Therefore, the capacity deterioration degree of the unused battery can be estimated more easily and quickly.
  • the present invention measures the capacity deterioration of the battery by using the date to estimate the capacity deterioration of the battery and the date on which the battery is manufactured, rather than using a calendar date according to an almanac. According to one aspect, it is possible to estimate the capacity deterioration of the battery more easily and quickly than when the calendar date according to the almanac is accurately used.
  • FIG. 1 is a block diagram schematically illustrating a functional configuration of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing an embodiment of a dose degeneration table according to the present invention.
  • FIG. 3 is a diagram schematically illustrating a method of estimating battery capacity deterioration according to an embodiment of the present invention.
  • FIG. 1 is a block diagram schematically illustrating a functional configuration of an apparatus for estimating battery capacity according to an embodiment of the present invention.
  • the battery capacity deterioration estimation apparatus includes a storage unit 300, an estimated date input module 110, an elapsed days calculation module 210, and a capacity deterioration estimation module 220.
  • the battery capacity deterioration estimating apparatus according to the present invention is an apparatus for estimating the capacity deterioration degree of an unused battery.
  • the storage unit 300 may store manufacturing date information of the battery.
  • the manufacturing date information of the battery is information on the date when the battery is in a state that can be charged and discharged through various processes, and includes manufacturing year, month, and day information.
  • the storage unit 300 may store information, such as 2013, August, and 31st.
  • the storage unit 300 may be implemented by various devices that perform a storage function, and of course, may store information other than the manufacturing date information of the battery.
  • the estimated date input module 110 may receive date information for estimating a capacity deterioration degree of a battery.
  • the date information for estimating the capacity degeneration of the battery includes year, month and day information for estimating the capacity deterioration of the battery. For example, if a battery was manufactured on August 31, 2013, and you want to know the battery capacity deterioration of a specific day after August 31, 2013, such as August 31, 2014, the user may enter 2014, August and 31 may be input date information, and the estimated date input module 110 may receive the date information to estimate the capacity deterioration of the battery from the user.
  • the date for estimating the capacity degeneration of the battery is a date for performing the estimation of the capacity deterioration of the battery. This is because a specific point in time for estimating capacity degeneration is more often present than a specific day in the past or a specific day in the future. That is, in the above example, August 31, 2014 is preferably a date to estimate the capacity deterioration of the battery.
  • the estimation date input module 110 may receive date information for estimating the capacity deterioration degree of the battery by various means and / or methods.
  • the estimated date input module 110 may directly receive date information from a user, as described above, may receive date information of a current point in time from a network such as a mobile communication network, and are not listed herein. Date information may be input by various means and / or methods.
  • the estimated date input module 110 the date information is input from the battery management system (BMS) provided in the battery pack. That is, since the battery capacity deterioration estimation apparatus according to the present invention may be included as one component of the battery pack, in this case, the estimated date input module 110 communicates with the BMS included in the battery pack to obtain date information from the BMS. Can be input.
  • BMS battery management system
  • the estimation date input module 110 receives the date information at the time of performing the estimation of the capacity degradation.
  • the elapsed days calculation module 210 may calculate the elapsed days from the date on which the battery is manufactured to the day on which the capacity degeneration is to be estimated. In this case, the elapsed days calculation module 210 may calculate the elapsed days by using the date of manufacture of the battery stored in the storage unit 300 and the date information received by the estimated date input module 110. .
  • the storage unit 300 may store a rule relating to an almanac, and the elapsed days calculation module 210 may be configured to estimate capacity deterioration from a date of manufacturing a battery according to an inverse method. You can calculate the elapsed days of. More specifically, the storage unit 300 may store calendar information about a solar calendar, and calculate an elapsed days from a date of manufacturing a battery to a day of estimating capacity degradation.
  • the method of calculating the number of days elapsed is not limited to this example, it can be calculated by a variety of other methods, of course.
  • the elapsed days calculation module 210 may calculate the elapsed days through the following relational expression.
  • Y N , M N and D N represent year, month and day for which capacity deterioration is to be estimated, respectively
  • Y I , M I and D I represent year, month and day of manufacture of the battery, respectively.
  • the relational expression above does not calculate the number of days elapsed by the exact inverse method, but calculates the degeneracy degree in days assuming 365 days a year and 365/12 days in a year, and The elapsed days are calculated by calculating the difference between the date on which the battery is manufactured and the number of days.
  • the manufacturing date of the battery is August 31, 2013, and the current date to estimate the capacity deterioration is February 15, 2014.
  • the value of the date information to estimate the capacity deterioration in days is 2014 ⁇ 365 + 2 ⁇ (365/12) +15
  • an error of 1.5 days exists between the elapsed days according to the above relational expression and the exact elapsed days.
  • the error of 1.5 days can be regarded as a negligible error.
  • In order to store the rules for the inverse method to calculate the exact number of days according to the inverse method, and to calculate the elapsed days according to the inverse method not only a lot of memory is required, but also a high-end computing device capable of performing complex operations.
  • the capacity deterioration estimation module 220 may estimate the capacity deterioration degree of the battery using the elapsed days calculated by the elapsed days calculation module 210 described above. For example, assuming that the battery degenerates linearly, the deterioration of the capacity of the battery may be estimated using the ratio of days to elapsed days from when the battery is manufactured to when the battery is no longer available. Can be.
  • the capacity deterioration estimation module 220 may estimate the capacity deterioration degree of the battery by querying the capacity deterioration degree table 320 for the elapsed days calculated by the elapsed days calculation module 210 described above.
  • the capacity degeneration table 320 is a table representing capacity degeneration corresponding to the number of days elapsed from the date of manufacture of the battery, and may be composed of repetitive experiments and / or simulation results.
  • the capacity degeneration table 320 may be prepared in advance and stored in the storage 300. That is, the storage unit 300 may store the capacity deterioration degree table 320 indicating the number of days elapsed from the date of manufacture of the battery and the degree of capacity degeneration corresponding to the number of days.
  • FIG. 2 is a view schematically showing an embodiment of a dose degeneration table according to the present invention.
  • a capacity degeneration table 320 showing the number of days elapsed from the date of manufacture of a battery and the amount of capacity degeneration corresponding to the number of days elapsed from the date of manufacture of a battery. If the elapsed days are zero, the SOH is 100% because the capacity of the battery is not deteriorated since the day the battery was manufactured. Thereafter, as the number of days elapsed, the battery naturally degenerates, thereby decreasing the SOH. In the example of FIG. 2, after 7300 days, that is, after 20 years, the SOH decreases to 20%. At this time, the battery may be evaluated as unable to properly function as a secondary battery, and the user may replace the battery.
  • the capacity deterioration estimation module 220 may estimate the SOH by querying 166.5 days from the capacity degeneration table 320. There are no 166.5 days in the capacity degeneration table 320, but since there are 166 days and 167 days, the capacity degeneration degree estimation module 220 calculates an SOH by calculating an arithmetic mean value of SOH of 166 days and SOH of 167 days, for example. It can be estimated. Therefore, it can be estimated that SOH having an elapsed day of 166.5 days is 95.5%.
  • the battery pack according to the present invention may include the battery capacity deterioration estimating apparatus described above. That is, the above-described battery capacity deterioration estimating apparatus may be a component of a battery pack. In this case, the above-described battery capacity deterioration estimating apparatus may be implemented as a BMS and a storage device existing in the battery pack. That is, since each component of the battery capacity deterioration estimating apparatus described above is a logically divided component rather than a physically divided component, each component may be implemented as a component of the battery pack.
  • FIG. 3 is a diagram schematically illustrating a method of estimating battery capacity deterioration according to an embodiment of the present invention.
  • the method of estimating battery capacity deterioration is a method of estimating the capacity deterioration degree of an unused battery, and may first store manufacturing date information of the battery (S110). Subsequently, date information for estimating the capacity deterioration degree of the battery may be input (S130).
  • the date for estimating the capacity deterioration degree of the battery may be a date at the time of performing the estimation of the capacity deterioration degree of the battery.
  • the step (S130) of receiving date information for estimating capacity deterioration of the battery may be performed in various ways. Preferably, the date information may be received from a BMS provided in the battery pack.
  • the number of days that elapse from the date of manufacture of the battery to the day on which the capacity degeneration is to be estimated may be calculated (S140).
  • the elapsed days may be calculated using the manufacturing date information of the battery stored in the above-described step S110 and the date information received in the step S120.
  • the elapsed days calculation step (S140) may calculate the elapsed days through the following relational expression.
  • Y N , M N and D N represent year, month and day for which capacity deterioration is to be estimated, respectively
  • Y I , M I and D I represent year, month and day of manufacture of battery, respectively.
  • the capacity deterioration degree of the battery may be estimated using the elapsed days calculated in the aforementioned elapsed days calculation step (S140) (S150).
  • the capacity degeneration degree of the battery may be estimated by querying the capacity deterioration degree table 320 for the elapsed days calculated in the above-described elapsed days calculation step.
  • the method may further include storing the capacity deterioration degree table 320 indicating the number of days elapsed from the date of manufacture of the battery and the degree of capacity degeneration corresponding to the number of days (S120).
  • step S120 is illustrated as being performed after step S110 in FIG. 3, the order of steps S110 and S120 may be reversed and both steps may be performed simultaneously.

Abstract

본 발명은 미사용 배터리의 용량 퇴화도를 보다 간편하고 신속하게 추정할 수 있도록 하는 배터리 용량 퇴화 추정 장치를 개시한다. 본 발명에 따른 배터리 용량 퇴화 추정 장치는, 미사용 배터리의 용량 퇴화도를 추정하는 장치로서, 상기 배터리의 제조일자 정보를 저장하는 저장부; 상기 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받는 추정일자 입력 모듈; 상기 용량 퇴화도를 추정하고자 하는 일자 정보 및 상기 배터리의 제조일자 정보를 이용하여 상기 배터리가 제조된 날로부터 상기 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산하는 경과 일수 계산 모듈; 및 상기 일수 계산 모듈이 계산한 경과 일수를 이용하여 상기 배터리의 용량 퇴화도를 추정하는 용량 퇴화도 추정 모듈;을 포함하는 것을 특징으로 한다.

Description

배터리 용량 퇴화 추정 장치 및 방법
본 발명은 배터리 용량 퇴화 추정 기술에 관한 것으로서, 보다 상세하게는 미사용인 배터리의 용량 퇴화도를 신속하고 용이하게 추정할 수 있도록 하는 배터리 용량 퇴화 추정 장치 및 방법에 관한 것이다.
본 출원은 2013년 12월 05일에 출원된 한국특허출원 제10-2013-0150672호에 기초한 우선권 주장을 하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.
근래에 들어서, 노트북, 비디오 카메라, 휴대용 전화기 등과 같은 휴대용 전자 제품의 수요가 급격하게 증대되고, 에너지 저장용 축전지, 로봇, 위성 등의 개발이 본격화됨에 따라, 반복적인 충방전이 가능한 고성능 이차 전지에 대한 연구가 활발히 진행되고 있다.
현재 상용화된 이차 전지로는 니켈 카드뮴 전지, 니켈 수소 전지, 니켈 아연 전지, 리튬 이차 전지 등이 있는데, 이 중에서 리튬 이차 전지는 니켈 계열의 이차 전지에 비해 메모리 효과가 거의 일어나지 않아 충방전이 자유롭고, 자가 방전율이 매우 낮으며 에너지 밀도가 높다는 등의 장점으로 인해 많은 각광을 받고 있다.
그런데, 이러한 이차 전지는 시간의 흐름으로 인해 자연 퇴화되거나, 충방전을 반복함에 따라 퇴화되어 그 성능이 저하된다. 따라서, 이차 전지를 사용함에 있어서 용량 퇴화 정도를 정량적으로 평가하는 기술이 요구된다.
일반적으로 SOH(State Of Health)라고 표현되는 용량 퇴화도는 배터리의 용량 특성 변화를 정량적으로 나타내주는 파라미터로서, 배터리의 용량이 어느 정도 퇴화되었는지를 알 수 있도록 해준다. 따라서, 이러한 SOH를 이용하여 적절한 시점에 배터리를 교체할 수 있고, 배터리의 사용기간에 따라 배터리의 충방전 용량을 조절하여 배터리의 과충전과 과방전을 방지할 수 있다.
이러한 SOH를 추정하는 방법은 매우 다양한데, SOH를 추정하는 방법의 예로는, 배터리의 내부저항과 온도를 이용하여 SOH를 추정하는 방법, 완전방전테스트를 통해 SOH를 추정하는 방법 등이 존재한다. 그런데, 종래의 SOH 추정 방법은 주로 배터리의 전기적 파라미터 등을 측정한 다음, 복잡한 연산 과정을 거쳐 SOH를 추정하는 것이다. 이러한 방법은 계산 과정이 복잡할 뿐만 아니라 기술 구현을 위해서는 고사양의 연산장치가 필요하다는 단점이 있다.
또한, 종래의 SOH 추정방법에 관한 기술은, 배터리의 사용에 따라 SOH가 불규칙하게 변화할 경우를 전제로 하여 SOH를 정확하게 추정하는 기술을 중심으로 발전되어 왔을 뿐, 미사용 배터리의 용량 퇴화에 관한 연구는 미흡한 실정이다. 즉, 종래기술에 따르면, 미사용 배터리가 시간의 경과에 따라 자연적으로 퇴화하는 경우에도, 복잡한 추정방법을 이용하여 배터리의 SOH를 추정해야 하는 불편이 존재하게 된다.
본 발명은 상기와 같은 문제점을 인식하여 창안된 것으로서, 미사용 배터리의 용량 퇴화도를 보다 간편하고 신속하게 추정할 수 있도록 하는 배터리 용량 퇴화 추정 장치를 제공하는 것을 목적으로 한다.
본 발명의 다른 목적 및 장점들은 하기의 설명에 의해서 이해될 수 있으며, 본 발명의 실시예에 의해 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 수단 및 그 조합에 의해 실현될 수 있음을 쉽게 알 수 있을 것이다.
상기 목적을 달성하기 위한 본 발명의 일 측면에 따른 배터리 용량 퇴화 추정 장치는, 미사용 배터리의 용량 퇴화도를 추정하는 장치로서, 상기 배터리의 제조일자 정보를 저장하는 저장부; 상기 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받는 추정일자 입력 모듈; 상기 용량 퇴화도를 추정하고자 하는 일자 정보 및 상기 배터리의 제조일자 정보를 이용하여 상기 배터리가 제조된 날로부터 상기 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산하는 경과 일수 계산 모듈; 및 상기 일수 계산 모듈이 계산한 경과 일수를 이용하여 상기 배터리의 용량 퇴화도를 추정하는 용량 퇴화도 추정 모듈; 을 포함하는 것을 특징으로 한다.
바람직하게는, 상기 경과 일수 계산 모듈은, 다음 관계식을 통하여 상기 경과 일수를 연산하되,
Figure PCTKR2014011969-appb-I000001
여기서, 상기 YN, MN 및 DN은 각각 용량 퇴화도를 추정하고자 하는 년, 월 및 일을, 상기 YI, MI 및 DI는 각각 배터리가 제조된 년, 월 및 일을 나타내는 것을 특징으로 한다.
또한 바람직하게는, 상기 저장부는, 배터리의 제조일자로부터의 경과 일수와 상기 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블을 더 저장하고, 상기 용량 퇴화도 추정 모듈은, 상기 경과 일수 계산 모듈이 계산한 경과 일수를 상기 용량 퇴화도 테이블에서 조회하여 상기 배터리의 용량 퇴화도를 추정하는 것을 특징으로 한다.
또한 바람직하게는, 상기 용량 퇴화도를 추정하고자 하는 일자는, 상기 배터리의 용량 퇴화도의 추정을 수행하는 일자인 것을 특징으로 한다.
더욱 바람직하게는, 상기 추정일자 입력 모듈은, 배터리 팩에 구비된 BMS로부터 일자 정보를 입력받는 것을 특징으로 한다.
상기 목적을 달성하기 위한 본 발명의 다른 측면에 따른 배터리 팩은, 상술한 배터리 용량 퇴화도 추정 장치를 포함한다.
상기 목적을 달성하기 위한 본 발명의 또 다른 측면에 다른 배터리 용량 퇴화 추정 방법은, 미사용 배터리의 용량 퇴화도를 추정하는 방법으로서, 상기 배터리의 제조일자 정보를 저장하는 단계; 상기 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받는 단계; 상기 용량 퇴화도를 추정하고자 하는 일자 정보 및 상기 배터리의 제조일자 정보를 이용하여 상기 배터리가 제조된 날로부터 상기 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산하는 단계; 및 상기 경과 일수 계산 단계에서 계산한 경과 일수를 이용하여 상기 배터리의 용량 퇴화도를 추정하는 단계; 를 포함하는 것을 특징으로 한다.
바람직하게는, 상기 경과 일수 계산 단계는, 다음 관계식을 통하여 상기 일수를 연산하되,
Figure PCTKR2014011969-appb-I000002
여기서, 상기 YN, MN 및 DN은 각각 용량 퇴화도를 추정하고자 하는 년, 월 및 일을, 상기 YI, MI 및 DI는 각각 배터리가 제조된 년, 월 및 일을 나타내는 것을 특징으로 한다.
또한 바람직하게는, 배터리의 제조일자로부터의 경과 일수와 상기 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블을 저장하는 단계;를 더 포함하고, 상기 용량 퇴화도 추정 단계는, 상기 경과 일수 계산 단계에서 계산한 경과 일수를 상기 용량 퇴화도 테이블에서 조회하여 상기 배터리의 용량 퇴화도를 추정하는 것을 특징으로 한다.
또한 바람직하게는, 상기 용량 퇴화도를 추정하고자 일자는, 상기 배터리의 용량 퇴화도의 추정을 수행하는 일자인 것을 특징으로 한다.
더욱 바람직하게는, 상기 추정하고자 하는 일자 정보를 입력받는 단계는, 배터리 팩에 구비된 BMS로부터 일자 정보를 입력받는 것을 특징으로 한다.
본 발명에 따르면, 복잡한 SOH 추정방법을 사용하지 않고도, 미사용 배터리의 용량 퇴화도를 추정할 수 있다. 따라서, 미사용 배터리의 용량 퇴화도를 보다 간편하고 신속하게 추정할 수 있다.
특히, 본 발명은, 역법(almanac)에 따른 달력 일자를 정확하게 이용하는 것이 아니라 배터리의 용량 퇴화도를 추정하고자 하는 일자 및 배터리가 제조된 일자를 이용하여 배터리의 용량 퇴화도를 측정하므로, 본 발명의 일 측면에 따르면, 역법(almanac)에 따른 달력 일자를 정확하게 이용하는 경우에 비해 더욱 간편하고 신속하게 배터리의 용량 퇴화도를 추정할 수 있다.
이외에도 본 발명은 다른 다양한 효과를 가질 수 있으며, 이러한 본 발명의 다른 효과들은 하기의 설명에 의해서 이해될 수 있고, 본 발명의 실시예에 의해 보다 분명하게 알 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은, 본 발명의 일 실시예에 따른 배터리 용량 퇴화 추정 장치의 기능적 구성을 개략적으로 나타낸 블록도이다.
도 2는, 본 발명에 따른 용량 퇴화도 테이블의 일 실시예를 개략적으로 나타낸 도면이다.
도 3은 본 발명의 일 실시예에 따른 배터리 용량 퇴화 추정 방법을 개략적으로 나타낸 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은, 본 발명의 일 실시예에 따른 배터리 용량 퇴화 추정 장치의 기능적 구성을 개략적으로 나타낸 블록도이다.
도 1을 참조하면, 본 발명에 따른 배터리 용량 퇴화 추정 장치는 저장부(300), 추정일자 입력 모듈(110), 경과 일수 계산 모듈(210) 및 용량 퇴화도 추정 모듈(220)을 포함한다. 특히, 본 발명에 따른 배터리 용량 퇴화 추정 장치는, 미사용 배터리의 용량 퇴화도를 추정하는 장치이다.
상기 저장부(300)는, 배터리의 제조일자 정보를 저장할 수 있다. 여기서, 배터리의 제조일자 정보는, 여러 공정을 거쳐 배터리로서 충방전을 수행할 수 있을 정도의 상태가 된 일자에 관한 정보로서, 제조년, 월, 일 정보를 포함한다. 예를 들어, 2013년 8월 31일에 배터리가 제조된 경우, 저장부(300)는, 2013년, 8월, 31일이라는 정보를 저장할 수 있다. 이러한 저장부(300)는, 저장기능을 수행하는 다양한 장치로 구현될 수 있으며, 상술한 배터리의 제조일자 정보 이외의 정보도 저장할 수 있음은 물론이다.
상기 추정일자 입력 모듈(110)은, 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받을 수 있다. 여기서, 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보는, 배터리의 용량 퇴화도를 추정하고자 하는 연도, 월, 일 정보를 포함한다. 예를 들어, 배터리가 2013년 8월 31일에 제조된 경우, 2013년 8월 31일 이후의 특정일, 예컨대 2014년 8월 31일의 배터리 용량 퇴화도를 알고 싶은 경우, 사용자는 2014년, 8월, 31일이라는 일자 정보를 입력할 수 있고, 추정일자 입력 모듈(110)은 사용자로부터 이러한 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받을 수 있다.
바람직하게는, 배터리의 용량 퇴화도를 추정하고자 하는 일자는, 배터리의 용량 퇴화도의 추정을 수행하는 일자이다. 용량 퇴화도를 추정하고자 하는 특정 시점은 과거의 특정일이나 미래의 특정일보다는 현재시점인 경우가 많기 때문이다. 즉, 상기의 예에서 2014년 8월 31일은 배터리의 용량 퇴화도의 추정을 수행하는 일자인 것이 바람직하다.
또한, 상기 추정일자 입력 모듈(110)은, 다양한 수단 및/또는 방법에 의해 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받을 수 있다. 예를 들어, 추정일자 입력 모듈(110)은, 상술한 바와 같이, 사용자로부터 일자 정보를 직접 입력받을 수도 있고, 이동통신망과 같은 네트워크로부터 현재시점의 날짜 정보를 입력받을 수도 있으며 본 명세서에 열거되지 않은 다양한 수단 및/또는 방법에 의해 일자 정보를 입력받을 수 있다. 바람직하게는, 상기 추정일자 입력 모듈(110)은, 배터리 팩에 구비된 BMS(Battery Management System)로부터 일자 정보를 입력받는 것이 좋다. 즉, 본 발명에 따른 배터리 용량 퇴화도 추정 장치는 배터리 팩의 일 구성요소로 포함될 수 있으므로, 이러한 경우, 추정일자 입력 모듈(110)은, 배터리 팩에 구비된 BMS와 통신하여 BMS로부터 일자 정보를 입력받을 수 있다. 추정일자 입력 모듈(110)은, 특히, 용량 퇴화도의 추정을 수행하는 시점의 일자 정보를 입력받는 것이 바람직하다.
상기 경과 일수 계산 모듈(210)은, 배터리가 제조된 날로부터 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산할 수 있다. 이때, 상기 경과 일수 계산 모듈(210)은, 상술한 저장부(300)에 저장된 배터리의 제조일자 정보 및 상술한 추정일자 입력 모듈(110)이 입력받은 일자 정보를 이용하여 경과 일수를 계산할 수 있다.
일 예로, 상술한 저장부(300)는 역법(almanac)에 관한 규칙을 저장하고, 상기 경과 일수 계산 모듈(210)은, 역법에 따라 배터리가 제조된 날로부터 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산할 수 있다. 보다 구체적으로는, 저장부(300)는, 태양력(solar calendar)에 관한 달력 정보를 저장하고, 배터리가 제조된 날로부터 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산할 수 있다.
예를 들어, 배터리의 제조일자가 2013년 8월 31일이고, 용량 퇴화도를 추정하고자 하는 현재 일자가 2014년 2월 15일이라고 가정한다. 태양력에 따르면, 9월은 30일이고, 10월은 31일, 11월은 30일, 12월은 31일이고, 1월은 31일이다. 현재 일자가 2014년 2월 15일이므로, 2월의 경과 일수는 15일이다. 따라서, 이를 모두 합하면 168(30+31+30+31+31+15)일로서, 배터리가 제조된 날로부터 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수는 168일이다.
한편, 이와 같은 경과 일수를 계산하는 방식은 이러한 예시에 한정되지 않으며, 이외의 다양한 방법에 의해 계산될 수 있음은 물론이다.
바람직하게는, 상기 경과 일수 계산 모듈(210)은, 다음과 같은 관계식을 통하여 경과 일수를 연산할 수 있다.
Figure PCTKR2014011969-appb-I000003
여기서, YN, MN 및 DN은 각각 용량 퇴화도를 추정하고자 하는 년, 월 및 일을 나타내고, 상기 YI, MI 및 DI는 각각 배터리가 제조된 년, 월 및 일을 나타낸다.
즉, 상기의 관계식은, 정확한 역법에 의해 경과 일수를 계산하는 것이 아니라, 1년을 365일로, 1월을 365/12일로 가정하여 용량 퇴화도를 추정하고자 하는 일자 정보를 일수로 환산한 값과 배터리가 제조된 일자 정보를 일수로 환산한 값의 차를 계산하여 경과 일수를 계산한다.
상술한 역법에 따른 경과 일수 계산 방법에서의 예시와 동일한 예시를 들어보면, 배터리의 제조일자는 2013년 8월 31일이고, 용량 퇴화도를 추정하고자 하는 현재 일자는 2014년 2월 15일이다. 용량 퇴화도를 추정하고자 하는 일자 정보를 일수로 환산한 값은 2014×365+2×(365/12)+15이고, 배터리가 제조된 일자 정보를 일수로 환산한 값은 2013×365+8×(365/12)2014+31이므로, 용량 퇴화도를 추정하고자 하는 일자 정보를 일수로 환산한 값(2014×365+2×(365/12)+15 = 735185.83333)과 배터리가 제조된 일자 정보를 일수로 환산한 값(2013×365+8×(365/12)2014+31 = 735019.33)의 차는 166.5이다. 즉, 상기의 관계식에 의한 경과 일수는 166.5일이 된다.
상술한 역법에 따른 정확한 경과 일수 계산 방법과 비교하면, 상기의 관계식에 의한 경과 일수와 정확한 경과 일수 사이에는 1.5일의 오차가 존재한다. 다만, 미사용의 배터리가 자연적으로 퇴화하여 배터리로서 기능하기 어렵게 되려면, 10년 내지 20년 이상이 소요된다는 점을 고려할 때, 1.5일의 오차는 무시할 수 있을 정도의 오차라고 볼 수 있다. 역법에 따라 정확한 경과 일수를 계산하기 위해 역법에 관한 규칙을 저장하고, 역법에 따라 경과 일수를 계산하려면, 많은 메모리가 필요할 뿐만 아니라, 복잡한 연산을 수행할 수 있는 고사양의 연산장치가 필요하다. 특히, 통상적으로 널리 사용되는 태양력을 이용할 경우, 윤년과 윤달에 관한 정보를 모두 저장하고, 이를 경과 일수 연산시 고려해야 한다는 점을 고려하면 더욱 많은 메모리와 고사양의 연산장치가 필요하다. 따라서, 상기의 관계식을 이용하면, 최소한의 메모리와 저사양의 연산장치를 사용하여, 무시할 수 있는 오차를 갖는 경과 일수를 계산할 수 있는 장점이 있다.
상기 용량 퇴화도 추정 모듈(220)은, 상술한 경과 일수 계산 모듈(210)이 계산한 경과 일수를 이용하여 배터리의 용량 퇴화도를 추정할 수 있다. 일 예로, 배터리가 선형적(linear)으로 퇴화한다고 가정하여, 배터리가 제조된 시점으로부터 배터리를 더 이상 사용할 수 없는 시점까지의 경과 일수와 경과 일수의 비를 이용하여 배터리의 용량 퇴화도를 추정할 수 있다.
한편, 이와 같은 용량 퇴화도 추정 방식은 이러한 예시에 한정되지 않으며, 이외의 다양한 방법에 의해 추정될 수 있음은 물론이다.
바람직하게는, 상기 용량 퇴화도 추정 모듈(220)은, 상술한 경과 일수 계산 모듈(210)이 계산한 경과 일수를 용량 퇴화도 테이블(320)에서 조회하여 배터리의 용량 퇴화도를 추정할 수 있다. 여기서, 용량 퇴화도 테이블(320)은, 배터리의 제조일자로부터의 경과 일수에 대응하는 용량 퇴화도를 나타내는 테이블로서, 반복적인 실험 및/또는 시뮬레이션 결과로 구성될 수 있다. 또한, 이러한 용량 퇴화도 테이블(320)은, 미리 작성되어 저장부(300)에 저장될 수 있다. 즉, 상술한 저장부(300)는, 배터리의 제조일자로부터의 경과 일수와 이러한 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블(320)을 저장할 수 있다.
도 2는, 본 발명에 따른 용량 퇴화도 테이블의 일 실시예를 개략적으로 나타낸 도면이다.
도 2를 참조하면, 배터리의 제조일자로부터의 경과 일수와 이러한 배터리의 제조일자로부터의 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블(320)이 도시되어 있다. 경과 일수가 0인 경우는, 배터리가 제조된 당일이므로 배터리의 용량 퇴화가 이루어지지 않았기 때문에 SOH는 100%이다. 이후, 경과 일수가 증가할수록 배터리는 자연적으로 퇴화되고, 이에 따라 SOH가 감소한다. 도 2의 실시예에서 7300일이 지나면 즉, 20년이 지나면 SOH는 20%로 감소하게 된다. 이때, 배터리는 이차 전지로서의 기능을 제대로 수행할 수 없다고 평가될 수 있고, 사용자는 배터리를 교체할 수 있다.
한편, 상기의 예에서 경과 일수가 166.5일이었으므로, 상기 용량 퇴화도 추정 모듈(220)은, 용량 퇴화도 테이블(320)에서 166.5일을 조회하여 SOH를 추정할 수 있다. 용량 퇴화도 테이블(320)에는 166.5일이 없지만, 166일과 167일이 존재하므로, 상기 용량 퇴화도 추정 모듈(220)은, 예컨대, 166일의 SOH와 167일의 SOH의 산술평균값을 구하여 SOH를 추정할 수 있다. 따라서, 경과 일수가 166.5일인 SOH는 95.5%라고 추정할 수 있다.
본 발명에 따른 배터리 팩은 상술한 배터리 용량 퇴화 추정 장치를 포함할 수 있다. 즉, 상술한 배터리 용량 퇴화 추정 장치는 배터리 팩의 일 구성요소가 될 수 있다. 이때, 상술한 배터리 용량 퇴화 추정 장치는 배터리 팩에 존재하는 BMS 및 저장장치로 구현될 수도 있음은 물론이다. 즉, 상술한 배터리 용량 퇴화 추정 장치의 각 구성요소는 물리적으로 구분되는 구성이라기 보다는 논리적으로 구분되는 구성요소이기 때문에 각 구성요소는 배터리 팩의 구성요소로 구현될 수 있다.
이하에서는, 도 3을 참조하여 본 발명에 따른 배터리 용량 퇴화 추정 방법을 설명하도록 한다. 도 3에서, 각 단계의 주체는 상술한 배터리 용량 퇴화 추정 장치의 각 구성요소일 수 있으므로, 전술한 내용과 중복되는 설명은 생략하도록 한다.
도 3은 본 발명의 일 실시예에 따른 배터리 용량 퇴화 추정 방법을 개략적으로 나타낸 도면이다.
도 3을 참조하면, 본 발명에 따른 배터리 용량 퇴화 추정 방법은, 미사용 배터리의 용량 퇴화도를 추정하는 방법으로서, 먼저, 배터리의 제조일자 정보를 저장할 수 있다(S110). 이어서, 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받을 수 있다(S130). 여기서, 배터리의 용량 퇴화도를 추정하고자 하는 일자는, 배터리의 용량 퇴화도의 추정을 수행하는 당시의 일자인 것이 좋다. 또한, 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력 받는 단계(S130)는, 다양한 방식으로 수행될 수 있는데, 바람직하게는, 배터리 팩에 구비된 BMS로부터 일자 정보를 입력받을 수 있다.
다음으로, 배터리가 제조된 날로부터 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산할 수 있다(S140). 이러한 경과 일수 계산 단계(S140)는, 상술한 S110 단계에서 저장한 배터리의 제조일자 정보 및 S120 단계에서 입력받은 일자 정보를 이용하여 경과 일수를 계산할 수 있다.
바람직하게는, 경과 일수 계산 단계(S140)는, 다음 관계식을 통하여 경과 일수를 계산할 수 있다.
Figure PCTKR2014011969-appb-I000004
여기서, 상기 YN, MN 및 DN은 각각 용량 퇴화도를 추정하고자 하는 년, 월 및 일을 나타내고, 상기 YI, MI 및 DI는 각각 배터리가 제조된 년, 월 및 일을 나타낸다.
그 다음으로, 상술한 경과 일수 계산 단계(S140)에서 계산한 경과 일수를 이용하여 배터리의 용량 퇴화도를 추정할 수 있다(S150).
바람직하게는, 배터리의 용량 퇴화도 추정 단계(S150)는, 상술한 경과 일수 계산 단계에서 계산한 경과 일수를 용량 퇴화도 테이블(320)에서 조회함으로써 배터리의 용량 퇴화도를 추정할 수 있다.
한편, 상기 S130 단계 이전에, 배터리의 제조일자로부터의 경과 일수와 이러한 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블(320)을 저장하는 단계를 더 포함할 수 있다(S120). 비록, 도 3에서 S110 단계 이후에 S120 단계가 수행되는 것으로 도시되어 있으나, S110 단계와 S120 단계의 순서가 바뀔수도 있으며 양 단계가 동시에 수행될 수도 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
본 명세서의 개별적인 실시예에서 설명된 특징들은 단일 실시예에서 결합되어 구현될 수 있다. 반대로, 본 명세서에서 단일 실시예에서 설명된 다양한 특징들은 개별적으로 다양한 실시예에서 구현되거나, 적절한 부결합(subcombination)에서 구현될 수 있다.

Claims (11)

  1. 미사용 배터리의 용량 퇴화도를 추정하는 장치에 있어서,
    상기 배터리의 제조일자 정보를 저장하는 저장부;
    상기 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받는 추정일자 입력 모듈;
    상기 용량 퇴화도를 추정하고자 하는 일자 정보 및 상기 배터리의 제조일자 정보를 이용하여 상기 배터리가 제조된 날로부터 상기 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산하는 경과 일수 계산 모듈; 및
    상기 일수 계산 모듈이 계산한 경과 일수를 이용하여 상기 배터리의 용량 퇴화도를 추정하는 용량 퇴화도 추정 모듈;
    을 포함하는 것을 특징으로 하는 배터리 용량 퇴화 추정 장치.
  2. 제 1 항에 있어서,
    상기 경과 일수 계산 모듈은, 다음 관계식을 통하여 상기 경과 일수를 연산하되,
    Figure PCTKR2014011969-appb-I000005
    여기서, 상기 YN, MN 및 DN은 각각 용량 퇴화도를 추정하고자 하는 년, 월 및 일을, 상기 YI, MI 및 DI는 각각 배터리가 제조된 년, 월 및 일을 나타내는 것을 특징으로 하는 배터리 용량 퇴화 추정 장치.
  3. 제 1 항에 있어서,
    상기 저장부는, 배터리의 제조일자로부터의 경과 일수와 상기 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블을 더 저장하고,
    상기 용량 퇴화도 추정 모듈은, 상기 경과 일수 계산 모듈이 계산한 경과 일수를 상기 용량 퇴화도 테이블에서 조회하여 상기 배터리의 용량 퇴화도를 추정하는 것을 특징으로 하는 배터리 용량 퇴화 추정 장치.
  4. 제 1 항에 있어서,
    상기 용량 퇴화도를 추정하고자 하는 일자는, 상기 배터리의 용량 퇴화도의 추정을 수행하는 일자인 것을 특징으로 하는 배터리 용량 퇴화 추정 장치.
  5. 제 4 항에 있어서,
    상기 추정일자 입력 모듈은,
    배터리 팩에 구비된 BMS로부터 상기 일자 정보를 입력받는 것을 특징으로 하는 배터리 용량 퇴화 추정 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 따른 배터리 용량 퇴화 추정 장치를 포함하는 배터리 팩.
  7. 미사용 배터리의 용량 퇴화도를 추정하는 방법에 있어서,
    상기 배터리의 제조일자 정보를 저장하는 단계;
    상기 배터리의 용량 퇴화도를 추정하고자 하는 일자 정보를 입력받는 단계;
    상기 용량 퇴화도를 추정하고자 하는 일자 정보 및 상기 배터리의 제조일자 정보를 이용하여 상기 배터리가 제조된 날로부터 상기 용량 퇴화도를 추정하고자 하는 날까지의 경과 일수를 계산하는 단계; 및
    상기 경과 일수 계산 단계에서 계산한 경과 일수를 이용하여 상기 배터리의 용량 퇴화도를 추정하는 단계;
    를 포함하는 것을 특징으로 하는 배터리 용량 퇴화 추정 방법.
  8. 제 7 항에 있어서,
    상기 경과 일수 계산 단계는, 다음 관계식을 통하여 상기 경과 일수를 계산하되,
    Figure PCTKR2014011969-appb-I000006
    여기서, 상기 YN, MN 및 DN은 각각 용량 퇴화도를 추정하고자 하는 년, 월 및 일을, 상기 YI, MI 및 DI는 각각 배터리가 제조된 년, 월 및 일을 나타내는 것을 특징으로 하는 배터리 용량 퇴화 추정 방법.
  9. 제 7 항에 있어서,
    배터리의 제조일자로부터의 경과 일수와 상기 경과 일수에 대응하는 용량 퇴화도를 나타내는 용량 퇴화도 테이블을 저장하는 단계;를 더 포함하고,
    상기 용량 퇴화도 추정 단계는, 상기 경과 일수 계산 단계에서 계산한 경과 일수를 상기 용량 퇴화도 테이블에서 조회하여 상기 배터리의 용량 퇴화도를 추정하는 것을 특징으로 하는 배터리 용량 퇴화 추정 방법.
  10. 제 7 항에 있어서,
    상기 용량 퇴화도를 추정하고자 일자는, 상기 배터리의 용량 퇴화도의 추정을 수행하는 일자인 것을 특징으로 하는 배터리 용량 퇴화 추정 방법.
  11. 제 10 항에 있어서,
    상기 추정하고자 하는 일자 정보를 입력받는 단계는,
    배터리 팩에 구비된 BMS로부터 상기 일자 정보를 입력받는 것을 특징으로 하는 배터리 용량 퇴화 추정 방법.
PCT/KR2014/011969 2013-12-05 2014-12-05 배터리 용량 퇴화 추정 장치 및 방법 WO2015084115A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/779,825 US20160054392A1 (en) 2013-12-05 2014-12-05 Apparatus and method for estimating state of health of battery
EP14866824.7A EP3002600A4 (en) 2013-12-05 2014-12-05 Device and method for estimating capacity degradation of battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130150672A KR101665566B1 (ko) 2013-12-05 2013-12-05 배터리 용량 퇴화 추정 장치 및 방법
KR10-2013-0150672 2013-12-05

Publications (1)

Publication Number Publication Date
WO2015084115A1 true WO2015084115A1 (ko) 2015-06-11

Family

ID=53273786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011969 WO2015084115A1 (ko) 2013-12-05 2014-12-05 배터리 용량 퇴화 추정 장치 및 방법

Country Status (4)

Country Link
US (1) US20160054392A1 (ko)
EP (1) EP3002600A4 (ko)
KR (1) KR101665566B1 (ko)
WO (1) WO2015084115A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548899A (zh) * 2016-01-04 2016-05-04 杭州亚美利嘉科技有限公司 一种机器人的电池管理方法及装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182025B2 (ja) * 2013-09-05 2017-08-16 カルソニックカンセイ株式会社 バッテリの健全度推定装置および健全度推定方法
WO2017010583A1 (ko) * 2015-07-13 2017-01-19 주식회사 엘지화학 배터리 잔존 수명 추정 장치 및 방법
KR101701377B1 (ko) * 2015-07-30 2017-02-01 주식회사 엘지화학 배터리 잔존 수명 추정 장치 및 방법
US10416753B1 (en) * 2015-12-10 2019-09-17 Amazon Technologies, Inc. Date-based computing device charge management
CN107783051B (zh) * 2016-08-30 2020-08-21 太普动力新能源(常熟)股份有限公司 满充电容量校准方法
KR102032505B1 (ko) 2016-09-19 2019-10-15 주식회사 엘지화학 배터리 테스트 장치 및 방법
JP2019118170A (ja) * 2017-12-26 2019-07-18 パナソニックIpマネジメント株式会社 電力制御装置、電力制御方法、プログラム
JP6722954B1 (ja) * 2019-04-02 2020-07-15 東洋システム株式会社 バッテリー残存価値決定システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211091A (ja) * 1996-02-07 1997-08-15 Matsushita Electric Ind Co Ltd 蓄電池の寿命予告方法および寿命予告装置
US20020002421A1 (en) * 2000-01-17 2002-01-03 Nobuo Murofushi Electronic shelf label system
JP2003022486A (ja) * 2001-07-09 2003-01-24 Yazaki Corp 電池式co警報器
JP2009193919A (ja) * 2008-02-18 2009-08-27 Panasonic Corp 残寿命推定回路、及び残寿命推定方法
KR20130071957A (ko) * 2011-12-21 2013-07-01 주식회사 엘지화학 배터리의 퇴화도를 이용한 배터리 관리 장치 및 배터리 관리 방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130378A (ja) * 1993-10-28 1995-05-19 Canon Inc 部品またはこの部品を用いたユニットの寿命推定装置
JPH08136629A (ja) * 1994-11-11 1996-05-31 Kyushu Electric Power Co Inc 蓄電池寿命診断装置
KR100889179B1 (ko) * 2007-05-29 2009-03-16 김금수 배터리 수명 추정을 위한 인버터 회로의 제어 장치 및 그인버터 회로
US7761389B2 (en) * 2007-08-23 2010-07-20 Gm Global Technology Operations, Inc. Method for anomaly prediction of battery parasitic load
FR2938658B1 (fr) * 2008-11-17 2010-11-05 Peugeot Citroen Automobiles Sa Procede pour determiner l'etat de sante d'une source electrochimique pour la traction electrique de vehicules
EP2738908A1 (en) * 2011-07-28 2014-06-04 Sanyo Electric Co., Ltd Battery system, battery control device, electric vehicle, mobile body, and power source device
KR101493355B1 (ko) * 2011-12-26 2015-02-13 주식회사 케이티 에너지 저장 장치의 soc 보정 방법 및 이를 이용하는 soc 보정 시스템
JP5919566B2 (ja) * 2012-05-31 2016-05-18 パナソニックIpマネジメント株式会社 制御方法およびそれを利用した制御装置
US9772666B1 (en) * 2012-09-07 2017-09-26 Google Inc. Multi-level battery management
KR20150128160A (ko) * 2014-05-08 2015-11-18 삼성에스디아이 주식회사 배터리 관리 장치
WO2017010583A1 (ko) * 2015-07-13 2017-01-19 주식회사 엘지화학 배터리 잔존 수명 추정 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09211091A (ja) * 1996-02-07 1997-08-15 Matsushita Electric Ind Co Ltd 蓄電池の寿命予告方法および寿命予告装置
US20020002421A1 (en) * 2000-01-17 2002-01-03 Nobuo Murofushi Electronic shelf label system
JP2003022486A (ja) * 2001-07-09 2003-01-24 Yazaki Corp 電池式co警報器
JP2009193919A (ja) * 2008-02-18 2009-08-27 Panasonic Corp 残寿命推定回路、及び残寿命推定方法
KR20130071957A (ko) * 2011-12-21 2013-07-01 주식회사 엘지화학 배터리의 퇴화도를 이용한 배터리 관리 장치 및 배터리 관리 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3002600A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105548899A (zh) * 2016-01-04 2016-05-04 杭州亚美利嘉科技有限公司 一种机器人的电池管理方法及装置

Also Published As

Publication number Publication date
KR101665566B1 (ko) 2016-10-12
US20160054392A1 (en) 2016-02-25
EP3002600A1 (en) 2016-04-06
EP3002600A4 (en) 2017-03-08
KR20150065398A (ko) 2015-06-15

Similar Documents

Publication Publication Date Title
WO2015084115A1 (ko) 배터리 용량 퇴화 추정 장치 및 방법
WO2014065615A1 (ko) 배터리 잔존 용량 추정 장치 및 방법
WO2015002334A1 (ko) 전지 soc 추정 방법 및 시스템
EP3056918A1 (en) Apparatus for estimating state of hybrid secondary battery and method therefor
WO2016064104A1 (ko) 이차전지의 퇴화에 따른 soc-ocv 프로파일 추정 방법
WO2016091116A1 (zh) 锂离子电池筛选方法
WO2013115585A1 (ko) 배터리의 수명 예측 방법 및 장치, 이를 이용한 배터리 관리 시스템
WO2012093795A2 (ko) 배터리 가용시간 추정 장치 및 방법
WO2013051828A2 (ko) 배터리 관리 시스템 및 배터리 관리 방법
CA2757967A1 (en) Battery pack manager unit and method for using same to extend the life of a battery pack
US10073146B2 (en) Apparatus for estimating voltage of hybrid secondary battery and method thereof
WO2012091434A2 (ko) 2차 전지의 잔존용량 연산 방법 및 장치
CN113030742B (zh) 电池容量的估算方法、装置及设备
WO2013147395A1 (ko) 배터리 특성 자동 인식 시스템, 이에 적용되는 배터리 정보 저장 장치 및 이를 이용한 배터리 관리 장치의 최적화 방법
WO2017010583A1 (ko) 배터리 잔존 수명 추정 장치 및 방법
WO2019212148A1 (ko) 이차 전지 테스트 장치 및 방법
KR102630222B1 (ko) 배터리 진단 장치 및 방법
US20170199250A1 (en) Apparatus and method for estimating open circuit voltage
CN108226788A (zh) 基于充电侧充电状态计算电池soc的方法、装置及系统
WO2021201387A1 (ko) 신경망 기반의 배터리 용량 추정 방법 및 장치
CN109148978A (zh) 一种电池组的容量均衡方法及系统
CN110198068B (zh) 一种充电控制方法及充电装置
WO2019050279A1 (ko) 배터리 재사용 수명 진단 방법
WO2018164346A1 (ko) 배터리 셀 전압 데이터 처리 장치 및 방법
CN111145507A (zh) 一种基于大数据的锂电池过充预警系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14866824

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14779825

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014866824

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE