WO2015082190A1 - Schaltungsanordnung - Google Patents

Schaltungsanordnung Download PDF

Info

Publication number
WO2015082190A1
WO2015082190A1 PCT/EP2014/074563 EP2014074563W WO2015082190A1 WO 2015082190 A1 WO2015082190 A1 WO 2015082190A1 EP 2014074563 W EP2014074563 W EP 2014074563W WO 2015082190 A1 WO2015082190 A1 WO 2015082190A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
low
circuit arrangement
flyback
flyback converter
Prior art date
Application number
PCT/EP2014/074563
Other languages
English (en)
French (fr)
Inventor
Tobias Richter
Stefan Butzmann
Stefan Aldinger
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US15/101,486 priority Critical patent/US9843320B2/en
Priority to CN201480066512.6A priority patent/CN106416073B/zh
Publication of WO2015082190A1 publication Critical patent/WO2015082190A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/567Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • H03K17/162Modifications for eliminating interference voltages or currents in field-effect transistor switches without feedback from the output circuit to the control circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0063High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0072Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load

Definitions

  • the invention relates to a circuit arrangement, in particular for driving an electrical machine, comprising at least one high-voltage semiconductor bridge circuit having a low-side semiconductor switch and a high-side semiconductor switch, the low-side semiconductor switch, a low-side gate driver and the high-side semiconductor switch, a high-side gate driver assigned.
  • Circuit arrangements of the aforementioned type are known from the prior art.
  • Semiconductor bridge circuits are often used in inverters to switch the phases of an electrical machine in operation.
  • gate drivers are generally provided which are suitable for a fast and optimum switching of the phases.
  • modern vehicles which also has one or more electric
  • a subnetwork with a higher voltage level is used to operate an electric drive machine, which has a much higher energy requirement than components of the electrical system. Usually, therefore, are the
  • the driving of the gate driver itself is usually done by the low-voltage electrical system of the vehicle using flow or flyback converters, which must overcome a necessary isolation barrier between low-voltage and high-voltage network.
  • the flyback converters also called boosters or step-down converters, form a galvanic isolation between the two networks, so that in particular a voltage overload of the low-voltage network is avoided.
  • the circuit arrangement according to the invention with the features of claim 1 has the advantage that the flyback converter does not have to overcome the isolation barrier and therefore require less space in particular with comparable performance.
  • the flyback converters of the circuit arrangement according to the invention are preferably designed to provide a functional insulation instead of a
  • a high-side flyback converter and the low-side gate driver are preceded by a low-side flyback converter, at least one of the flyback converters, ie the high-side flyback converter or the low-side flyback converter being designed as a high-voltage flyback converter or by a traction voltage network or high voltage network is fed.
  • the two gate drivers is thus each associated with a flyback converter, of which at least one is also designed as a high-voltage flyback converter and insofar is also arranged high-voltage side.
  • flyback converter as a high-voltage flyback converter, the space requirement is reduced and at least this flyback converter does not have the isolation barrier of the
  • High-voltage network / traction network are assigned.
  • the space requirement is further optimized and maximizes the advantage in terms of isolation barrier.
  • the high-voltage semiconductor bridge circuit has a logic unit which is connected to its Voltage supply is connected to at least one of the flyback converter.
  • the power supply of the high-voltage logic unit is thus ensured by the flyback converter of the high-voltage half-bridge circuit.
  • the logic unit is designed as a microcontroller or microprocessor or has this.
  • Flyback converters of at least one half-bridge circuit is connected. Due to this redundant power supply, a separate emergency supply of the gate driver, which is only used in the event of a failure of the regular supply, is no longer required.
  • At least one, in particular both flyback converters has an auxiliary winding for supplying power to the logic unit. Due to the corresponding design of the auxiliary winding, an optimum operating voltage for the logic unit can be provided in a simple manner.
  • flyback converters are connected in parallel to one another by the logic unit by means of an intermediate diode in each case.
  • this ensures that further operation or a safe state, in particular an active short circuit of a connected electrical machine, can still be set with the aid of the remaining flyback converter.
  • the circuit arrangement is designed as an inverter which has at least one further half-bridge circuit
  • the half-bridge circuits are formed as described above.
  • the further half-bridge circuits are connected to the two flyback converters of the at least one first half-bridge circuit to their voltage supply.
  • FIG. 1 shows a circuit arrangement 1 for operating an electrical machine, which consists of a traction voltage network or
  • the circuit arrangement 1 is designed as an inverter, which has three semiconductor bridge circuits, of which only one semiconductor bridge circuit 2 is shown here for reasons of clarity.
  • the semiconductor bridge circuit 2 has two series connected
  • Semiconductor switches 3 and 4 of which one semiconductor switch 3 is designed as a high-side semiconductor switch and the other as a low-side semiconductor switch 4. This means that the semiconductor switch 3 is a positive
  • Traction network voltage T + turns, while the semiconductor switch 4 a negative traction voltage T- switches.
  • the two semiconductor switches 3, 4 are each assigned a gate driver 5 or 6, wherein the gate drivers 5, 6 can be referred to as high-side gate drivers 5 and 5 as low-side gate drivers.
  • the two gate drivers 5, 6 can be referred to as high-side gate drivers 5 and 5 as low-side gate drivers.
  • Gate drivers 5, 6 are by a logic unit 7, in particular a
  • Microcontroller has driven. According to the specifications of
  • Semiconductor bridge circuit is assigned to a phase of the electrical machine.
  • flyback converters 8, 9 are provided in the present case, which are each preceded by one of the gate drivers 5, 6.
  • the flyback converters 8, 9 are in this respect also designed as highside or low side flyback converters 8 and 9, respectively.
  • the flyback converters 8, 9 preferably each have a flyback converter transformer for the galvanic decoupling of the semiconductor bridge circuit 2.
  • the circuit arrangement 1 is essentially a part of a high voltage network, which is for
  • the logic unit 7 is preferably controlled by a device on a low-voltage side of the overall system or the circuit arrangement 1 and optionally monitored.
  • Both flyback converters 8, 9 furthermore have an auxiliary coil, which is not shown here, and which serves to supply power to the logic unit 7. Through the auxiliary coil is through another output 10, 11 of the respective
  • Flywheel converter 8, 9 provided an optimal operating voltage for the logic unit 7.
  • these outputs 10, 11 of the flyback converter 8, 9 and the blocking transformers are connected by a respective diode 12, 13 to the logic unit 7.
  • the flyback converters 8, 9 are thus connected in parallel with each other connected to the logic unit 7. If one of the
  • the two separate, ideally identical flyback converters 8, 9 are expediently used.
  • the supply of the logic unit 7 and possibly provided microcontroller is then redundant via the auxiliary windings of the flyback transformers of the flyback converters 8, 9, which are connected in parallel via the diodes 12, 13.

Abstract

Die Erfindung betrifft eine Schaltungsanordnung (1), insbesondere zum Ansteuern einer elektrischen Maschine, mit wenigstens einer Hochvolt-Halbleiterbrückenschaltung (2), die einen Lowside-Halbleiterschalter (4) und einen Highside-Halbleiterschalter (3) aufweist, wobei dem Highside-Halbleiterschalter (3) ein Highside-Gatetreiber (5) und dem Lowside-Halbleiterschalter (4) ein Lowside-Gatetreiber (6) zugeordnet ist. Es ist vorgesehen, dass dem Highside-Gatetreiber ein Highside-Sperrwandler (8) und dem Lowside-Gatetreiber (6) ein Lowside-Sperrwandler (9) vorgeschaltet ist, wobei wenigstens einer der Sperrwandler (7, 8, 9) als Hochvoltsperrwandler ausgebildet ist.

Description

Beschreibung Titel
Schaltungsanordnung
Die Erfindung betrifft eine Schaltungsanordnung, insbesondere zum Ansteuern einer elektrischen Maschine, mit wenigstens einer Hochvolt- Halbleiterbrückenschaltung, die einen Lowside-Halbleiterschalter und einen Higside-Halbleiterschalter aufweist, wobei dem Lowside-Halbleiterschalter ein Lowside-Gatetreiber und dem Highside-Halbleiterschalter ein Highside- Gatetreiber zugeordnet ist.
Stand der Technik
Schaltungsanordnungen der Eingangs genannten Art sind aus dem Stand der Technik bekannt. Halbleiterbrückenschaltungen werden häufig in Invertern verwendet, um die Phasen einer elektrischen Maschine im Betrieb zu schalten. Zum Schalten der einzelnen Halbleiterschalter sind in der Regel Gatetreiber vorgesehen, die für ein schnelles und optimales Schalten der Phasen geeignet sind. Bei modernen Fahrzeugen, die auch ein oder mehrere elektrische
Maschinen als Antriebsmaschinen aufweisen, ist es bekannt, Spannungsnetzte mit unterschiedlichen Spannungsniveaus vorzusehen. Üblicherweise wird ein Bordnetz mit einem niedrigen Spannungsniveau bereitgestellt, das
beispielsweise für den Betrieb eines Radios, Innenleuchten oder dergleichen genutzt wird. Ein Teilnetz mit einem höheren Spannungsniveau, das sogenannte Hochvoltnetz, wird dagegen zum Betrieb einer elektrischen Antriebsmaschine genutzt, die einen sehr viel höheren Energiebedarf als Komponenten des Bordnetzes aufweist. Üblicherweise sind daher auch die
Halbleiterbrückenschaltungen eines Inverters für eine elektrische
Antriebsmaschine dem Hochvoltnetz zugeordnet, da sie die hohen Spannungen schalten müssen. Das Ansteuern der Gatetreiber selbst erfolgt jedoch üblicherweise durch das Niedervolt-Bordnetz des Fahrzeugs unter Verwendung von Durchfluss- oder Sperrwandlern, die eine notwendige Isolationsbarriere zwischen Niedervolt- und Hochvoltnetz überwinden müssen. Die Sperrwandler, auch Hoch- oder Tiefsetzsteller genannt, bilden eine galvanische Trennung zwischen den beiden Netzen, so dass insbesondere eine Spannungsüberlastung des Niedervoltnetzes vermieden wird.
Offenbarung der Erfindung
Die erfindungsgemäße Schaltungsanordnung mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass die Sperrwandler nicht die Isolationsbarriere überwinden müssen und daher bei vergleichbarer Leistung insbesondere weniger Bauraum benötigen. Die Sperrwandler der erfindungsgemäßen Schaltungsanordnung sind bevorzugt dazu ausgebildet, eine Funktionsisolierung anstelle einer
Basisisolierung zu gewährleisten. Erfindungsgemäß ist hierzu vorgesehen, dass dem Highside-Gatetreiber ein Highside-Sperrwandler und dem Lowside- Gatetreiber ein Lowside-Sperrwandler vorgeschaltet ist, wobei wenigstens einer der Sperrwandler, also der Highside-Sperrwandler oder der Lowside- Sperrwandler als Hochvoltsperrwandler ausgebildet ist beziehungsweise von einem Traktionsspannungsnetz oder Hochvoltnetz gespeist wird. Den beiden Gatetreibern ist somit jeweils ein Sperrwandler zugeordnet, von denen zumindest einer auch als Hochvoltsperrwandler ausgebildet ist und insofern ebenfalls hochvoltseitig angeordnet ist. Bereits durch die Ausbildung eines der
Sperrwandlers als Hochvoltsperrwandler wird der Bauraumbedarf verringert und zumindest dieser Sperrwandler muss nicht die Isolationsbarriere von dem
Niedervoltnetz zu dem Hochvoltnetz überwinden.
Besonders bevorzugt ist vorgesehen, dass beide Sperrwandler als
Hochvoltsperrwandler ausgebildet beziehungsweise dem
Hochvoltnetz/Traktionsnetz zugeordnet sind. Hierdurch wird der Bauraumbedarf weiter optimiert und der Vorteil bezüglich der Isolationsbarriere maximiert.
Insgesamt gestaltet sich dadurch die Schaltungsanordnung besonders kostengünstig und bauraumsparend.
Gemäß einer vorteilhaften Weiterbildung der Erfindung ist vorgesehen, dass die Hochvolt-Halbleiterbrückenschaltung eine Logikeinheit aufweist, die zu ihrer Spannungsversorgung mit wenigstens einem der Sperrwandler verbunden ist. Die Spannungsversorgung der Hochvolt-Logikeinheit wird somit durch die Sperrwandler der Hochvolt-Halbbrückenschaltung gewährleistet. Insbesondere ist vorgesehen, dass die Logikeinheit als Mikrocontroller oder Mikroprozessor ausgebildet ist oder diesen aufweist.
Weiterhin ist bevorzugt vorgesehen, dass die Logikeinheit mit beiden
Sperrwandlern der wenigstens einen Halbbrückenschaltung verbunden ist. Durch diese redundante Spannungsversorgung ist eine separate Notversorgung der Gatetreiber, welche nur bei Ausfall der regulären Versorgung genutzt wird, nicht mehr erforderlich.
Vorzugsweise weist dazu wenigstens einer, insbesondere beide Sperrwandler, eine Hilfswicklung zur Spannungsversorgung der Logikeinheit auf. Durch die entsprechende Ausbildung der Hilfswicklung lässt sich eine für die Logikeinheit optimale Betriebsspannung auf einfache Art und Weise bereitstellen.
Weiterhin ist bevorzugt vorgesehen, dass die Sperrwandler durch jeweils eine zwischengeschaltete Diode parallel zueinander mit der Logikeinheit verbunden sind. Im Fehlerfall, wenn also einer der beiden Sperrwandler ausfällt, wird dadurch gewährleistet, dass dennoch ein Weiterbetrieb beziehungsweise ein sicherer Zustand, insbesondere ein aktiver Kurzschluss einer angeschlossenen elektrischen Maschine, mit Hilfe des verbleibenden Sperrwandlers eingestellt werden kann.
Besonders bevorzugt ist vorgesehen, dass die Schaltungsanordnung als Inverter ausgebildet ist, der wenigstens eine weitere Halbbrückenschaltung,
insbesondere zwei weitere Halbbrückenschaltungen aufweist. Vorzugsweise sind die Halbbrückenschaltungen wie zuvor beschrieben ausgebildet. Alternativ kann auch vorgesehen sein, dass die weiteren Halbbrückenschaltungen mit den beiden Sperrwandlern der wenigstens einen ersten Halbbrückenschaltung zu ihrer Spannungsversorgung verbunden sind.
Im Folgenden soll die Erfindung anhand eines Ausführungsbeispiels
erläutert werden. Dazu zeigt die einzige Figur eine Schaltungsanordnung in ihrer vereinfachten Darstellung.
Figur 1 zeigt eine Schaltungsanordnung 1 zum Betreiben einer elektrischen Maschine, welche aus einem Traktionsspannungsnetz beziehungsweise
Hochvoltnetz versorgt wird. Die Schaltungsanordnung 1 ist als Inverter ausgebildet, der drei Halbleiterbrückenschaltungen aufweist, von denen hier aus Übersichtlichkeitsgründen nur eine Halbleiterbrückenschaltung 2 dargestellt ist. Die Halbleiterbrückenschaltung 2 weist zwei in Reihe geschaltete
Halbleiterschalter 3 und 4 auf, von denen der eine Halbleiterschalter 3 als Highside-Halbleiterschalter und der andere als Lowside-Halbleiterschalter 4 ausgebildet ist. Das bedeutet, dass der Halbleiterschalter 3 eine positive
Traktionsnetzspannung T+ schaltet, während der Halbleiterschalter 4 eine negative Traktionsspannung T- schaltet.
Den beiden Halbleiterschaltern 3, 4 ist jeweils ein Gatetreiber 5 beziehungsweise 6 zugeordnet, wobei die Gatetreiber 5, 6 entsprechend als Highside-Gatetreiber 5 und als Lowside-Gatetreiber 6 bezeichnet werden können. Die beiden
Gatetreiber 5, 6 werden durch eine Logikeinheit 7, die insbesondere einen
Mikrocontroller aufweist, angesteuert. Entsprechend der Vorgaben der
Logikeinheit 7 steuern die Gatetreiber 5, 6 die Halbleiterschalter 4 an, um eine Phase P, beispielsweise U, V oder W, der elektrischen Maschine mit Spannung zu versorgen. Entsprechend werden auch die weiteren Halbbrückenschaltungen, die nicht dargestellt sind, durch die Logikeinheit 7 angesteuert. Jede
Halbleiterbrückenschaltung ist dabei einer Phase der elektrischen Maschine zugeordnet.
Zum Betreiben der Gatetreiber 5, 6 werden diese auch mit einer
Versorgungsspannung versorgt. Dazu sind vorliegend zwei Sperrwandler 8, 9 vorgesehen, die jeweils einem der Gatetreiber 5, 6 vorgeschaltet sind. Die Sperrwandler 8, 9 sind insofern ebenfalls als Highside- beziehungsweise Lowside-Sperrwandler 8 beziehungsweise 9 ausgebildet. Die Sperrwandler 8, 9 weisen bevorzugt jeweils einen Sperrwandlertransformator zur galvanischen Entkopplung der Halbleiterbrückenschaltung 2 auf. Die Schaltungsanordnung 1 stellt im Wesentlichen einen Teil eines Hochvoltnetzes dar, welches zum
Betreiben der elektrischen Maschine dient.
Die Logikeinheit 7 wird bevorzugt durch eine Einrichtung auf einer Niedervoltseite des Gesamtsystems beziehungsweise der Schaltungsanordnung 1 angesteuert und optional überwacht.
Beide Sperrwandler 8, 9 weisen weiterhin eine hier nicht näher dargestellte Hilfsspule auf, die zur Spannungsversorgung der Logikeinheit 7 dient. Durch die Hilfsspule wird durch einen weiteren Ausgang 10, 11 des jeweiligen
Sperrwandlers 8, 9 eine optimale Betriebsspannung für die Logikeinheit 7 zur Verfügung gestellt. Dabei sind diese Ausgänge 10, 11 der Sperrwandler 8, 9 beziehungsweise der Sperrtransformatoren durch jeweils eine Diode 12, 13 mit der Logikeinheit 7 verbunden. Die Sperrwandler 8, 9 sind somit parallel zueinander geschaltet mit der Logikeinheit 7 verbunden. Fällt einer der
Sperrwandler 8, 9 aus, so kann der Betrieb der Gatetreiber 5, 6 im Wesentlichen durch den verbleibenden Sperrwandler 9 oder 8 aufrechterhalten werden.
Hierdurch ist eine redundante Energieversorgung der Logikeinheit 7
gewährleistet.
Zur Versorgung der Highside- Gatetreiber 5 und der Lowside- Gatetreiber 6, insbesondere aller Halbleiterbrückenschaltungen der Schaltungsanordnung 1, werden zweckmäßigerweise die beiden getrennten, im Idealfall identisch aufgebauten Sperrwandler 8, 9 eingesetzt. Die Versorgung der Logikeinheit 7 sowie des eventuell vorgesehenen Mikrocontrollers erfolgt dann redundant über die Hilfswicklungen der Sperrwandlertransformatoren der Sperrwandler 8, 9, welche über die Dioden 12, 13 parallel geschaltet sind.

Claims

Ansprüche
1. Schaltungsanordnung (1), insbesondere zum Ansteuern einer elektrischen Maschine, mit wenigstens einer Hochvolt-Halbleiterbrückenschaltung (2), die einen Lowside-Halbleiterschalter (4) und einen Highside-Halbleiterschalter (3) aufweist, wobei dem Highside-Halbleiterschalter (3) ein Highside- Gatetreiber (5) und dem Lowside-Halbleiterschalter (4) ein Lowside- Gatetreiber (6) zugeordnet ist, dadurch gekennzeichnet, dass dem Highside- Gatetreiber ein Highside-Sperrwandler (8) und dem Lowside-Gatetreiber (6) ein Lowside- Sperrwandler (9) vorgeschaltet ist, wobei wenigstens einer der Sperrwandler (7,8,9) als Hochvoltsperrwandler ausgebildet ist.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, dass beide Sperrwandler (8,9) als Hochvoltsperrwandler ausgebildet sind.
Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hochvolt-Halbleiterbrückenschaltung (2) eine Logikeinheit (7) aufweist, die zu ihrer Spannungsversorgung mit wenigstens einem der Sperrwandler (8,9) verbunden ist.
Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Logikeinheit (7) zu ihrer Spannungsversorgung mit den beiden Sperrwandlern (8,9) verbunden ist.
Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens einer, insbesondere beide Sperrwandler (8,9) eine Hilfswicklung zur Spannungsversorgung der Logikeinheit (7) aufweisen.
Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Sperrwandler (8,9) durch jeweils eine
zwischengeschaltete Diode (12,13) parallel zueinander mit der Logikeinheit (7) verbunden sind. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, gekennzeichnet durch die Ausbildung als Inverter, mit wenigstens weiteren Halbleiterbrückenschaltung.
PCT/EP2014/074563 2013-12-04 2014-11-14 Schaltungsanordnung WO2015082190A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/101,486 US9843320B2 (en) 2013-12-04 2014-11-14 Circuit arrangement
CN201480066512.6A CN106416073B (zh) 2013-12-04 2014-11-14 电路装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013224891.1A DE102013224891B4 (de) 2013-12-04 2013-12-04 Schaltungsanordnung
DE102013224891.1 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015082190A1 true WO2015082190A1 (de) 2015-06-11

Family

ID=51947322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/074563 WO2015082190A1 (de) 2013-12-04 2014-11-14 Schaltungsanordnung

Country Status (4)

Country Link
US (1) US9843320B2 (de)
CN (1) CN106416073B (de)
DE (1) DE102013224891B4 (de)
WO (1) WO2015082190A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202611A1 (de) * 2014-02-13 2015-08-13 Robert Bosch Gmbh Schaltungsanordnung und Verfahren zur Strommessung
KR102461256B1 (ko) * 2020-12-09 2022-10-31 경상국립대학교산학협력단 3상 인버터의 게이트 구동기용 전원장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070063661A1 (en) * 2005-09-21 2007-03-22 International Rectifier Corporation Protection circuit for permanent magnet synchronous motor in filed weakening operation
US20110298436A1 (en) * 2010-06-07 2011-12-08 Richtek Technology Corporation Control circuit of switching regulator and control method thereof and transistor device therefor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005206A (zh) * 2005-09-21 2007-07-25 国际整流器公司 用于永磁同步电机弱磁运行的保护电路
CN101599700B (zh) * 2008-06-06 2011-09-28 群康科技(深圳)有限公司 反激变换器
US20110255314A1 (en) * 2008-12-31 2011-10-20 Nxp B.V. Switched power converter with extended hold-up time
JP5397534B2 (ja) * 2010-02-23 2014-01-22 株式会社村田製作所 スイッチング電源装置
DE102010039667A1 (de) * 2010-08-24 2012-03-01 BSH Bosch und Siemens Hausgeräte GmbH Schaltungsanordnung zum Betreiben eines Hausgeräts und entsprechendes Verfahren
CN102684510B (zh) * 2011-03-18 2016-01-06 上海雷诺尔科技股份有限公司 一种适用于级联式高压变频器的智能集成单元模块
EP2747263B1 (de) * 2012-12-18 2015-02-25 Dialog Semiconductor GmbH Back-up-Kondensator
EP2908604B1 (de) * 2014-02-12 2016-10-05 Dialog Semiconductor (UK) Limited Doppelschalter mit Rücklaufstruktur für LED-Treiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070063661A1 (en) * 2005-09-21 2007-03-22 International Rectifier Corporation Protection circuit for permanent magnet synchronous motor in filed weakening operation
US20110298436A1 (en) * 2010-06-07 2011-12-08 Richtek Technology Corporation Control circuit of switching regulator and control method thereof and transistor device therefor

Also Published As

Publication number Publication date
DE102013224891A1 (de) 2015-06-11
CN106416073A (zh) 2017-02-15
DE102013224891B4 (de) 2021-01-14
US20160308526A1 (en) 2016-10-20
US9843320B2 (en) 2017-12-12
CN106416073B (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
DE112017000286T5 (de) Leistungsumrichtvorrichtung
EP2673860B1 (de) Laden eines energiespeichers
EP2639916A2 (de) Schaltungsanordnung für Stromrichter mit Zwischenkreis, sowie Verfahren zum Betreiben eines Stromrichters
EP2909910A1 (de) Schutzschaltungsanordnung für ein mehrspannungsnetz
DE102015206627A1 (de) Selbstsichernder Umrichter
DE102012205395A1 (de) Batteriesystem, Verfahren zum Laden von Batteriemodulen, sowie Verfahren zum Balancieren von Batteriemodulen
DE102016103041A1 (de) Leistungsumwandlungsvorrichtung
DE102019005621A1 (de) Bordnetz für ein elektrisch antreibbares Kraftfahrzeug
WO2017041956A1 (de) Niederspannungsentlade und -ansteuerschaltung für den traktionsumrichter eines fahrzeugs
DE102014014838B4 (de) Redundantes Energieversorgungssystem für ein Bordnetz eines Kraftfahrzeugs sowie Verfahren zum Betreiben eines redundanten Energieversorgungssystems
DE102011080058B4 (de) Leistungselektronikgerät, insbesondere zur Verwendung in einem Kraftfahrzeug
EP3163733A1 (de) Wechseleinrichter für eine elektrische maschine, elektrische antriebseinrichtung für ein kraftfahrzeug sowie verfahren zum betreiben eines wechselrichters
DE102013224891B4 (de) Schaltungsanordnung
EP2648328B1 (de) Schutz eines Stromrichters mit Zwischenkreis vor Beschädigungen durch die Gegenspannung der angeschlossenen Synchronmaschine
EP2552727B1 (de) Wechselrichter für eine elektrische maschine und verfahren zum betreiben eines wechselrichters für eine elektrische maschine
DE102013218679A1 (de) Antriebssteuerung
DE102017204091A1 (de) Schaltvorrichtung zum Schalten eines elektrischen Erregerstroms für eine elektrische Maschine mit einem Läufer
WO2014180636A2 (de) Schaltungsanordnung mit redundanten halbbrücken zum betreiben einer elektrischen maschine
DE102019207048B4 (de) Stromrichteranordnung, Fahrzeug mit einer Stromrichteranordnung und Verfahren zum Betreiben einer Stromrichteranordnung
DE102012203614A1 (de) Gleichspannungswandler, Vorrichtung, Kraftfahrzeug
DE102016224569A1 (de) Leistungsansteuervorrichtung für eine elektrische Maschine und Verfahren zum Abtrennen einer elektrischen Maschine von einem elektrischen Energiespeicher
DE102017200904A1 (de) Leistungsansteuervorrichtung für eine elektrische Maschine und Verfahren zum Abtrennen einer elektrischen Maschine von einem elektrischen Energiespeicher
DE102012203073A1 (de) Entladungsvorrichtung zur Entladung eines Zwischenkreiskondensators und Verfahren zum Betrieb einer Entladungsvorrichtung
DE102008040724A1 (de) Schaltvorrichtung zum Begrenzen des Einschaltstroms eines elektrischen Verbrauchers
DE102019218881A1 (de) Verfahren zum Abschalten einer durch einen Wechselrichter angesteuerten elektrischen Maschine im Falle einer Störung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14802363

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15101486

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14802363

Country of ref document: EP

Kind code of ref document: A1