WO2015081719A1 - 触摸检测系统及其检测方法、触摸屏终端 - Google Patents

触摸检测系统及其检测方法、触摸屏终端 Download PDF

Info

Publication number
WO2015081719A1
WO2015081719A1 PCT/CN2014/084143 CN2014084143W WO2015081719A1 WO 2015081719 A1 WO2015081719 A1 WO 2015081719A1 CN 2014084143 W CN2014084143 W CN 2014084143W WO 2015081719 A1 WO2015081719 A1 WO 2015081719A1
Authority
WO
WIPO (PCT)
Prior art keywords
parasitic capacitance
touch
sensing electrode
electrode
driving
Prior art date
Application number
PCT/CN2014/084143
Other languages
English (en)
French (fr)
Inventor
冉锐
王智攀
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2015081719A1 publication Critical patent/WO2015081719A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes

Definitions

  • the present invention belongs to the field of touch technologies, and in particular, to a touch detection system, a detection method thereof, and a touch screen terminal. Background technique
  • the existing capacitive touch screen sensors are mainly based on two technologies, one is self-capacitance technology and the other is mutual capacitance technology.
  • the self-capacitance technique utilizes the sensing electrodes of the touch screen sensors X and Y to sense the capacitance between the human finger and the sensing electrode, respectively.
  • the electric field distribution and the equivalent circuit are respectively shown in FIG. 1 and FIG. 2, wherein the sensing electrode 11 emits an electric field line (indicated by a broken line in FIG. 1), and the capacitance between the human finger and the touch screen sensing electrode 11 is substantially detected. (electric field).
  • the basic principle is as follows: The sensing electrode 11 has a small coupling capacitance with the distal end, and a large coupling capacitance between the human body and the earth. When the human finger approaches or contacts the sensing electrode 11, the finger absorbs the sensing.
  • the mutual coupling capacitance Cx between the touch screen sensor driving electrode 31 and the sensing electrode 32 detected by the mutual capacitance technology is based on the following principle: the driving electrode 31 emits an electric field to the sensing electrode 32, and the driving electrode 31 There is a small mutual coupling capacitance Cx equivalent to the sensing electrode 32. There is a large coupling capacitance between the human body and the earth.
  • the finger When the human finger approaches or contacts the driving/sensing electrode, the finger absorbs the electric field emitted by the driving electrode 31, and the electric field received by the sensing electrode 32 decreases, and a small current will
  • the driving electrode 21 flows through the human body to the ground, thereby equivalently changing the capacitance Cx between the driving electrode 31 and the sensing electrode 32.
  • R31 and R32 respectively represent the equivalent resistance of the driving electrode 31 and the sensing electrode 32. Equivalent resistance.
  • Mutual capacitance technology can support multi-touch detection applications.
  • ITO indium tin oxide
  • a first technical problem to be solved by embodiments of the present invention is to provide a method for detecting a touch detection system, which aims to simplify the design of a capacitive touch screen wiring to accommodate a touch screen having a higher electrode impedance.
  • the embodiment of the invention is implemented by the method for detecting a touch detection system.
  • the touch detection system has a two-dimensional matrix touch sensor, and the two-dimensional matrix touch sensor is provided with a plurality of driving electrodes and a plurality of sensing electrodes, driving electrodes and sensing A coupling capacitor is formed between the electrodes, and a parasitic capacitance is formed between the driving electrode and the sensing electrode and the ground;
  • the detecting method includes the following steps:
  • the change information of each parasitic capacitance parameter is detected by each sensing electrode, and the touch position of the touch operation in the dimension of the sensing electrode is located according to the detection result;
  • the touch position of the touch operation in the dimension of the driving electrode is located according to the change of the parasitic capacitance parameter corresponding to the sensing electrode at the touch position and the scanning timing of the driving electrode.
  • the step of locating the touch position of the touch operation in the dimension of the sensing electrode according to the detection result includes the following steps:
  • the parasitic capacitance corresponds to the induction current The position of the pole, as the touch position of the touch operation in the dimension of the sensing electrode.
  • the step of locating the touch position of the touch operation in the dimension of the driving electrode according to the change of the parasitic capacitance parameter corresponding to the sensing electrode at the touch position and the scanning timing of the driving electrode includes the following steps:
  • the position of the driving electrode scanned when the amplitude of the parasitic capacitance parameter corresponding to the sensing electrode at the touch position is maximized is used as the touch position of the touch operation in the dimension of the driving electrode.
  • the change information of each parasitic capacitance parameter detected by the sensing electrode includes parameter change information of the first type of parasitic capacitance and parameter change information of the second type of parasitic capacitance; the first type of parasitic capacitance is the sensing electrode and the ground.
  • the parasitic capacitance formed between the second type of parasitic capacitance is a parasitic capacitance formed between the driving electrode and the ground which can form a coupling capacitance with the sensing electrode.
  • a second technical problem to be solved by the embodiments of the present invention is to provide a touch detection system having a two-dimensional matrix touch sensor, and a two-dimensional matrix touch sensor is provided with a plurality of driving electrodes and a plurality of sensing electrodes, and driving electrodes A coupling capacitor is formed between the sensing electrode and the sensing electrode, and a parasitic capacitance is formed between the driving electrode and the sensing electrode; and the touch detection system further includes:
  • a sampling unit connected to each of the sensing electrodes, configured to detect change information of each parasitic capacitance parameter through each sensing electrode;
  • a first dimension positioning unit configured to locate a touch position of the touch operation in a dimension of the sensing electrode according to the detection result
  • the sample unit comprises: an amplifier, wherein the non-inverting input terminal is connected to each of the sensing electrodes, and a negative feedback is formed between the inverting input end and the output end thereof.
  • the first dimension positioning unit includes: The determining module is configured to determine whether the parasitic capacitance parameter changes exceed a preset threshold; the first positioning module is configured to: when the determining module determines that the parasitic capacitance parameter changes exceed a preset threshold, the parasitic The position of the sensing electrode corresponding to the capacitor is used as the touch position of the touch operation in the dimension of the sensing electrode.
  • the second dimension positioning unit includes:
  • the comparison module is configured to compare the variation amplitudes of the parasitic capacitance parameters corresponding to the sensing electrodes at the touch position during the scanning of the respective driving electrodes, and find the maximum variation range of the parasitic capacitance parameters; the second positioning module is set to the touch position The position of the scan electrode scanned when the amplitude of the parasitic capacitance parameter corresponding to the upper sensing electrode is the largest, as the touch position of the touch operation in the dimension of the driving electrode.
  • a third technical problem to be solved by the embodiments of the present invention is to provide a touch screen terminal, including a driving signal generating device and a touch detecting system; the touch detecting system has a two-dimensional matrix touch sensor, and the two-dimensional matrix touch sensor is provided with a plurality of a driving electrode and a plurality of sensing electrodes, the driving signal generating device is connected to the plurality of driving electrodes; a coupling capacitance is formed between the driving electrode and the sensing electrode, and a parasitic capacitance is formed between the driving electrode and the sensing electrode and the ground; and the touch detection system further comprises:
  • a sampling unit connected to each of the sensing electrodes, configured to detect change information of each parasitic capacitance parameter through each sensing electrode;
  • a first dimension positioning unit configured to locate a touch position of the touch operation in a dimension of the sensing electrode according to the detection result
  • a second dimension positioning unit configured to locate a touch operation in a dimension of the driving electrode according to a change in a parasitic capacitance parameter corresponding to the sensing electrode at the touch position determined by the first dimension positioning unit and a scan timing of the driving electrode Touch the location.
  • the touch control scheme based on parasitic capacitance detection provided by the embodiment of the invention is based on the detection principle
  • the technology is quite different, and can be improved for the problems existing in the prior art. It can be adapted to a higher touch screen electrode impedance by configuring a high-impedance preamplifier and a higher-impedance driving signal source, which helps to improve the display. Transmittance, supporting multi-touch detection applications.
  • 1 is an electric field distribution diagram of a self-capacitance technology provided by the prior art
  • FIG. 5 is a wiring diagram of a mutual-capacitance touch sensor of a single-layer wiring provided by the present invention.
  • FIG. 6 is a wiring diagram of a double-layer wiring mutual capacitance touch sensor provided by the present invention.
  • FIG. 7 is a diagram showing an electric field distribution of a parasitic capacitance technique provided by the present invention.
  • FIG. 8 is a flowchart of an implementation of a touch detection method provided by the present invention.
  • FIG. 9 is a flow chart of positioning a touched sensing electrode provided by the present invention.
  • FIG. 10 is a flow chart of positioning a touched drive electrode provided by the present invention.
  • FIG. 11 is a structural diagram of a plurality of sensing electrodes and one driving electrode in the touch detecting system provided by the present invention.
  • FIG. 12 is a structural diagram of a sensing electrode pair of a plurality of driving electrodes in the touch detecting system provided by the present invention.
  • FIG. 13 is a schematic structural diagram of a touch control chip in a touch detection system provided by the present invention
  • FIG. 14 is a structural schematic diagram of a first dimension positioning unit in FIG.
  • Figure 15 is a structural schematic diagram of the second dimension positioning unit of Figure 13; detailed description
  • the driving electrode when the touch detection system is in operation, the driving electrode emits an electric field to the sensing electrode, and the driving and sensing electrodes have an equivalent coupling capacitance.
  • the driving electrode, the sensing electrode and the remote earth have electric field distribution, so the driving electrode and the sensing electrode respectively have a small parasitic capacitance with the distal end.
  • the human finger approaches or contacts the driving/sensing electrode, the finger absorbing drive electrode, the sensing electrode lands, and the parasitic capacitance of the sensing electrode and the earth also change.
  • the parasitic capacitance changes are represented by a small difference from the driving electrode and the sensing electrode, respectively.
  • the current flows out through the body to the ground.
  • the parasitic capacitance detecting technology proposed by the invention mainly utilizes the influence of the finger on the driving, the sensing electrode and the earth parasitic capacitance to realize the capacitive touch detection.
  • the parasitic capacitance detecting technique proposed by the invention is mainly applicable to a two-dimensional matrix type touch sensor of mutual capacitance structure.
  • the touch sensor may be a single layer wiring as shown in FIG. 5, wherein Xl-Xm represents a sensing electrode, Yl-Yn represents a driving electrode, and interchangeable, and the two electrodes form a capacitor structure by a jumper (commonly referred to as a bridge).
  • the touch sensor may also be a double-layer wiring as shown in FIG. 6, wherein the two electrodes are respectively located on both sides of the piezoelectric material layer 61, and the directions of the two electrodes are perpendicular or at least in the direction of the other side, thereby Form a matrix capacitor structure.
  • FIG. 7 shows the electric field distribution of the parasitic capacitance technique by taking a single layer wiring as an example. It can be seen that when a finger approaches or contacts, the finger absorbs the electric field emitted from the driving electrode 71 and the sensing electrode 72, thereby equivalently changing the parasitic The parameters of the capacitor.
  • FIG. 8 shows an implementation flow of the touch detection method provided by the present invention, which is described in detail below.
  • step S81 the change information of each parasitic capacitance parameter is detected by each sensing electrode, and the touch position of the touch operation in the dimension of the sensing electrode is located according to the detection result.
  • the change information of the parasitic capacitance parameter includes parameter change information of the parasitic capacitance formed between the sensing electrode and the ground, and further includes a parameter of a parasitic capacitance formed between the driving electrode and the ground which can form a coupling capacitance with the sensing electrode.
  • the change information is defined as parameter change information of the first type of parasitic capacitance and parameter change information of the second type of parasitic capacitance, respectively.
  • the parameter variation of the first type of parasitic capacitance The information can be directly obtained through the sensing electrode, and the parameter change information of the second type of parasitic capacitance is indirectly reflected to the sensing electrode through the combined capacitance, and can also be obtained through the sensing electrode.
  • the touch detection system includes a plurality of sensing electrodes, change information of a plurality of parasitic capacitance parameters can be obtained.
  • step S81 specifically performs positioning of one of the dimensions in the manner as shown in FIG.
  • step S811 determines whether there is a change amplitude exceeding a preset threshold (step S812), and if so, where the sensing electrode corresponding to the parasitic capacitance is located
  • the position is a touch position of the touch operation in the dimension of the sensing electrode (step S813). For example, suppose the variation threshold is preset to A. If the change of data from one or more sensing electrodes exceeds A, it indicates that the one or more sensing electrodes are touched.
  • the information about the capacitance obtained by the sensing electrode includes not only the related information of the parasitic capacitance proposed above, but also the related information of the coupling capacitance formed by the driving electrode and the sensing electrode, and the resistance values of the driving electrode and the sensing electrode are satisfied.
  • the ratio of the related information of the coupling capacitor can be made much smaller than the ratio of the parasitic capacitance, so that the relevant information of the combined capacitor can be ignored, and only the relevant information of the parasitic capacitance is obtained through the sensing electrode.
  • the present invention particularly uses a high-impedance preamplifier and a higher-impedance driving signal source, specifically requiring a sensing electrode.
  • the square resistance is greater than 80 ohms and the square resistance of the drive electrode is greater than 80 ohms.
  • step S82 according to the change of the parasitic capacitance parameter corresponding to the sensing electrode at the touch position and the scanning timing of the driving electrode, the touch position of the touch operation in the dimension of the driving electrode is located.
  • step S82 specifically performs positioning of another dimension in the manner shown in FIG.
  • the parameter change information of the second type of parasitic capacitance obtained by the sensing electrodes is different depending on the scanned driving electrodes, and the present invention will touch Comparing the amplitudes of the parasitic capacitance parameters corresponding to the sensing electrodes at the position, finding the maximum variation amplitude of the parasitic capacitance parameters (step S822), and then touching The position of the scan electrode scanned when the amplitude of the parasitic capacitance parameter corresponding to the sensing electrode is at the maximum position is the touch position of the touch operation in the dimension of the driving electrode (step S823).
  • a total of sl and s2 sn parasitic capacitance parameter change information can be obtained, and if the s2th information has the largest amplitude change, It is indicated that the second drive electrode is touched.
  • the storage medium may be a ROM/RAM, a magnetic disk, an optical disk, or the like.
  • Fig. 11 and Fig. 12 show the structure of a touch detecting system provided by the present invention, and only parts related to the present invention are shown for convenience of description.
  • the resistors Rl ll, R113, R115, and Rn are the equivalent resistances of the dummy driving electrodes
  • the resistors R112, R114, R116, and Rm are the equivalent resistances of the dummy sensing electrodes
  • Cx is the virtual driving electrode and the sensing electrode.
  • the capacitors in between, Cl ll, C113, C115, Cn are virtual second-type parasitic capacitors
  • C112, C114, C116, Cm are virtual first-class parasitic capacitors.
  • the touch control chip includes a hardware unit and a software unit. The portion related to the present invention is as shown in FIG. 13, and only the portion of the sample unit is shown in FIG. 11 and FIG. 12, which should be understood and implemented.
  • the touch control chip may also include a clock signal unit, a power supply, and the like.
  • the touch detection system provided by the present invention has a two-dimensional matrix type touch sensor, and a two-dimensional matrix type touch sensor is provided with a plurality of driving electrodes and a plurality of sensing electrodes, and any driving electrodes are used.
  • a coupling capacitor Cx can be formed between the sensing electrodes, and a parasitic capacitance CI 11-Cm is formed between the driving electrode and the sensing electrode and the ground.
  • the sample unit 131 is connected to each of the sensing electrodes, and is configured to detect change information of each parasitic capacitance parameter through each of the sensing electrodes.
  • the first dimension positioning unit 132 is configured to locate a touch position of the touch operation in the dimension of the sensing electrode according to the detection result.
  • the second dimension positioning unit 133 is configured to locate the touch operation in the dimension of the driving electrode according to the change of the parasitic capacitance parameter corresponding to the sensing electrode on the touch position determined by the first dimension positioning unit 132 and the scanning timing of the driving electrode. Touch location.
  • the change information of each parasitic capacitance parameter detected by the sensing electrode includes parameter change information of the first type of parasitic capacitance and parameter change information of the second type of parasitic capacitance;
  • the first type of parasitic capacitance is The parasitic capacitance formed between the sensing electrode and the ground, and the second type of parasitic capacitance is a parasitic capacitance formed between the driving electrode and the ground which can form a coupling capacitance with the sensing electrode.
  • the parameter change information of the second type of parasitic capacitance is obtained by the sensing electrode and the coupling capacitor.
  • the sampling unit 131 includes an amplifier whose non-inverting input terminals are connected to respective sensing electrodes, and a negative feedback is formed between the inverting input terminal and its output terminal. It can be seen that unlike the amplifier shown in Fig. 4, after the finger is touched, the equivalent circuit is different due to the higher impedance of the ITO electrode.
  • the first dimension positioning unit 132 includes a judging module 1321 and a first positioning module 1322.
  • the determining module 1321 is configured to determine whether the change of the parasitic capacitance parameter exceeds a preset threshold; the first positioning module 1322, when the determining module 1321 determines that the parasitic capacitance parameter changes exceed a preset threshold, the parasitic The position of the sensing electrode corresponding to the capacitor is used as the touch position of the touch operation in the dimension of the sensing electrode.
  • the second dimension positioning unit 133 includes a comparison module 1331 and a second positioning module 1332.
  • the comparison module 1331 is configured to compare the variation amplitudes of the parasitic capacitance parameters corresponding to the sensing electrodes at the touch position during the scanning of the respective driving electrodes, and find the maximum variation amplitude of the parasitic capacitance parameters; the second positioning module 1332 will touch the position The position of the scan electrode scanned when the parasitic capacitance parameter corresponding to the sensing electrode has the largest amplitude is the touch position of the touch operation in the dimension of the driving electrode.
  • the touch detection system described above can be applied to a touch screen terminal such as a touch screen mobile phone, and the touch screen terminal includes a drive signal generating device for providing a drive signal for the drive electrode.
  • the touch detection system based on parasitic capacitance detection and the detection method thereof and the touch screen terminal provided by the invention are different in the detection principle from the conventional technology, and can be adapted to the traditional self-capacitance and mutual capacitance technology existing in the prior art.
  • the problem of application conditions of the high-impedance electrode, and the problem that the touch screen electrode pattern is complicated and the production process is required to be high is improved, and the capacitive touch screen wiring design can be simplified by configuring the high-impedance preamplifier and the higher-impedance driving signal source. To adapt to higher touch screen electrode impedance, it helps to improve display transmittance while supporting multi-touch detection applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Abstract

一种触摸检测系统及其检测方法、触摸屏终端。所述触摸检测系统具有二维矩阵式触摸传感器,所述二维矩阵式触摸传感器上布设有若干驱动电极(71)和若干感应电极(72),驱动电极(71)与感应电极(72)之间形成耦合电容,且驱动电极(71)和感应电极(72)均与地之间形成寄生电容。基于寄生电容检测的触摸控制方案在检测原理上和传统技术有较大不同,能够针对现有技术中存在的问题进行改进,不仅仅可以适应简单的触摸屏电极设计,降低工艺要求,而且可以适应较高的触摸屏电极阻抗,同时支持多点触摸检测应用。

Description

说明书
触摸检测系统及其检测方法、 触摸屏终端 技术领域
本发明属于触控技术领域, 尤其涉及一种触摸检测系统及其检测方法、 触 摸屏终端。 背景技术
现有的电容触摸屏传感器主要基于两种技术, 一种是自电容技术, 另一种 是互电容技术。
自电容技术利用触摸屏传感器 X和 Y方向的感应电极分别感知人体手指与 感应电极之间的电容。 其电场分布和等效电路分别如图 1、 图 2所示, 其中感测 电极 11发出电场线(图 1中以虚线表示) , 实质检测的是人体手指与触摸屏感 测电极 11之间的电容(电场 ) 。 其基本原理是: 感测电极 11与远端大地有一 个较小的耦合电容, 人体与大地之间有较大的耦合电容, 当人体手指靠近或接 触感测电极 11时, 手指会吸收感测电极 11发射的电场, 一个小电流会从感测 电极 11流经人体到大地上, 从而等效地改变了感测电极与大地之间的电容, 图 2中 C1表示感测电极 11与手指之间的耦合电容, R11表示感测电极 11的等效 电阻。 但是由于技术架构限制, 自电容技术仅可支持单点触摸检测应用或单点 加手势检测应用。
如图 3、 图 4所示, 基于互电容技术检测的触摸屏传感器驱动电极 31与感 应电极 32之间的互耦合电容 Cx, 其基本原理是: 驱动电极 31发射电场至感应 电极 32, 驱动电极 31与感应电极 32之间等效有一个小的互耦合电容 Cx。 人体 与大地之间有较大的耦合电容。 当人体手指靠近或接触驱动 /感应电极时, 手指 吸收驱动电极 31发射出的电场, 感应电极 32接收的电场减少, 一个小电流会 从驱动电极 21流经人体到大地上, 从而等效地改变了驱动电极 31与感应电极 32之间的电容 Cx, 图 4中 R31、 R32分别表示驱动电极 31的等效电阻和感应 电极 32的等效电阻。 互电容技术可以支持多点触摸检测应用。
随着技术的发展, 高透光率、提升产品良率、低成本等要求越来越被重视, 由此带来的一个直接影响是用于制作触摸屏电极的主要材料氧化铟锡 ITO(不限 于 ΙΤΟ )的方块电阻提升, 触摸屏电极的阻抗提高。传统的自电容和互电容技术 难以适应高阻抗电极的应用条件。
另外, 传统的自电容和互电容技术应用中, 为了获得较大的触摸灵敏度, 触摸屏电极设计均非常有讲究, 电极图案比较复杂, 生产工艺要求较高, 由此 带来了生产上的困难, 而且复杂的电极图案在某些情况下也会影响显示屏的视 觉效果。 发明内容
本发明实施例所要解决的第一个技术问题在于提供一种触摸检测系统的检 测方法, 旨在简化电容式触摸屏布线设计, 以适应较高电极阻抗的触摸屏。
本发明实施例是这样实现的, 一种触摸检测系统的检测方法, 触摸检测系 统具有二维矩阵式触摸传感器, 二维矩阵式触摸传感器上布设有若干驱动电极 和若干感应电极, 驱动电极与感应电极之间形成耦合电容, 且驱动电极和感应 电极均与地之间形成寄生电容; 检测方法包括下述步骤:
通过各个感应电极检测各寄生电容参数的变化信息, 并根据检测结果定位 出触摸操作在感应电极所在维度上的触摸位置;
根据触摸位置上感应电极所对应的寄生电容参数的变化, 以及对驱动电极 的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位置。
其中, 根据检测结果定位出触摸操作在感应电极所在维度上的触摸位置的 步骤包括下述步骤:
当有寄生电容参数的变化超过预设的阔值时, 将该寄生电容对应的感应电 极的所在位置, 作为触摸操作在感应电极所在维度上的触摸位置。
其中, 根据触摸位置上感应电极所对应的寄生电容参数的变化, 以及对驱 动电极的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位置的步骤 包括下述步骤:
在扫描各个驱动电极的过程中, 将触摸位置上感应电极所对应的寄生电容 参数变化幅度最大时所扫描的驱动电极的所在位置, 作为触摸操作在驱动电极 所在维度上的触摸位置。
其中, 通过感应电极检测到的各个寄生电容参数的变化信息中, 包含有第 一类寄生电容的参数变化信息与第二类寄生电容的参数变化信息; 第一类寄生 电容为该感应电极与地之间形成的寄生电容, 第二类寄生电容为可与该感应电 极形成耦合电容的驱动电极与地之间形成的寄生电容。
其中, 第二类寄生电容的参数变化信息通过辆合电容反映至感应电极上。 本发明实施例所要解决的第二个技术问题在于提供一种触摸检测系统, 触 摸检测系统具有二维矩阵式触摸传感器, 二维矩阵式触摸传感器上布设有若干 驱动电极和若干感应电极, 驱动电极与感应电极之间形成耦合电容, 且驱动电 极和感应电极均与地之间形成寄生电容; 触摸检测系统还包括:
釆样单元, 其连接各个感应电极, 设置为通过各个感应电极检测各寄生电 容参数的变化信息;
第一维度定位单元, 设置为根据检测结果定位出触摸操作在感应电极所在 维度上的触摸位置;
第二维度定位单元, 设置为根据由第一维度定位单元确定的触摸位置上感 应电极所对应的寄生电容参数的变化, 以及对驱动电极的扫描时序, 定位出触 摸操作在驱动电极所在维度上的触摸位置。 其中, 釆样单元包括:一放大器, 其 同相输入端接各个感应电极, 其反相输入端与其输出端之间形成负反馈。
其中, 第一维度定位单元包括: 判断模块, 设置为判断是否有寄生电容参数的变化超过预设的阔值; 第一定位模块, 设置为在判断模块判断出有寄生电容参数的变化超过预设 的阔值时, 则将该寄生电容对应的感应电极的所在位置作为触摸操作在感应电 极所在维度上的触摸位置。
其中, 第二维度定位单元包括:
对比模块, 设置为在扫描各个驱动电极的过程中, 将触摸位置上感应电极 所对应的寄生电容参数变化幅度进行对比, 找到最大的寄生电容参数变化幅度; 第二定位模块, 设置为将触摸位置上感应电极所对应的寄生电容参数变化 幅度最大时所扫描的驱动电极的所在位置, 作为触摸操作在驱动电极所在维度 上的触摸位置。
其中, 釆样单元通过感应电极、 耦合电容获取第二类寄生电容的参数变化 信息。 本发明实施例所要解决的第三个技术问题在于提供一种触摸屏终端, 包括 驱动信号发生装置、触摸检测系统;触摸检测系统具有二维矩阵式触摸传感器, 二维矩阵式触摸传感器上布设有若干驱动电极和若干感应电极, 驱动信号发生 装置与若干驱动电极连接; 驱动电极与感应电极之间形成耦合电容, 且驱动电 极和感应电极均与地之间形成寄生电容; 触摸检测系统还包括:
釆样单元, 其连接各个感应电极, 设置为通过各个感应电极检测各寄生电 容参数的变化信息;
第一维度定位单元, 设置为根据检测结果定位出触摸操作在感应电极所在 维度上的触摸位置;
第二维度定位单元, 设置为根据由第一维度定位单元确定的触摸位置上感 应电极所对应的寄生电容参数的变化, 以及对驱动电极的扫描时序, 定位出触 摸操作在驱动电极所在维度上的触摸位置。
本发明实施例提供的基于寄生电容检测的触摸控制方案在检测原理上和传 统技术有较大不同, 能够针对现有技术中存在的问题进行改进, 可以通过配置 高阻抗的前级放大器和较高阻抗的驱动信号源来适应较高的触摸屏电极阻抗, 有助于改善显示透光率, 同时支持多点触摸检测应用。 附图说明
图 1是现有技术的提供的自电容技术电场分布图;
图 2是现有技术的提供的自电容技术的等效电路图;
图 3是现有技术的提供的互电容技术电场分布图;
图 4是现有技术的提供的互电容技术的等效电路图;
图 5是本发明提供的单层布线的互电容触摸传感器的布线图;
图 6是本发明提供的双层布线的互电容触摸传感器的布线图;
图 7是本发明提供的寄生电容技术电场分布图;
图 8是本发明提供的触摸检测方法的实现流程图;
图 9是本发明提供的定位被触摸的感应电极位置的流程图;
图 10是本发明提供的定位被触摸的驱动电极位置的流程图;
图 11是本发明提供的触摸检测系统中多个感应电极对一个驱动电极的结构 图;
图 12是本发明提供的触摸检测系统中一个感应电极对多个驱动电极的结构 图;
图 13是本发明提供的触摸检测系统中触摸控制芯片的结构原理图; 图 14是图 13中第一维度定位单元的结构原理图;
图 15是图 13中第二维度定位单元的结构原理图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实 施例, 对本发明进行进一步详细说明。 应当理解, 此处所描述的具体实施例仅 仅用以解释本发明, 并不用于限定本发明。
本发明中, 触摸检测系统在工作时, 驱动电极发射电场至感应电极, 驱动 与感应电极之间等效有一个小的耦合电容。 同时驱动电极、 感应电极与远端大 地均有电场分布, 因此驱动电极、 感应电极分别与远端大地有一个小的寄生电 容。 当人体手指靠近或接触驱动 /感应电极时, 手指吸收驱动电极、 感应电极发 大地、 感应电极与大地的寄生电容也会发生变化, 寄生电容的变化表现在分别 从驱动电极和感应电极有一个小电流流出经人体到大地上。 本发明提出的寄生 电容检测技术主要利用手指对驱动、 感应电极与大地寄生电容的影响来实现电 容触控检测。
本发明提出的寄生电容检测技术主要适用于互电容结构的二维矩阵式触摸 传感器。该触摸传感器可以是图 5所示的单层布线,其中 Xl-Xm表示感应电极, Yl-Yn表示驱动电极, 互换亦可, 两种电极通过跳线 (俗称搭桥)形成电容结 构。 该触摸传感器还可以是图 6所示的双层布线, 其中两种电极分别位于压电 材料层 61的两侧,且两种电极的方向相垂直或至少在对方的方向上有垂直分量, 从而形成矩阵式电容结构。 图 7 以单层布线为例示出了寄生电容技术的电场分 布, 可以看出, 当有手指靠近或接触时, 手指吸收从驱动电极 71和感应电极 72 发射的电场, 从而等效地改变了寄生电容的参数。
基于上述原理, 图 8 示出了本发明提供的触摸检测方法的实现流程, 详述 ^口下。
在步骤 S81 中, 通过各个感应电极检测各寄生电容参数的变化信息, 并根 据检测结果定位出触摸操作在感应电极所在维度上的触摸位置。
本发明中, 寄生电容参数的变化信息包含了感应电极与地之间形成的寄生 电容的参数变化信息, 还包含可与该感应电极形成耦合电容的驱动电极与地之 间形成的寄生电容的参数变化信息, 本发明分别定义为第一类寄生电容的参数 变化信息与第二类寄生电容的参数变化信息。 其中第一类寄生电容的参数变化 信息可直接通过感应电极获取, 而第二类寄生电容的参数变化信息通过辆合电 容间接反映至感应电极上, 同样可以通过感应电极获取。 又由于触摸检测系统 中包括多个感应电极, 因此可以得到多个寄生电容参数的变化信息。
作为本发明的一个实施例, 步骤 S81具体釆用如图 9所示的方式进行其中 一个维度的定位。 当检测到各寄生电容参数的变化信息后 (步骤 S811 ) , 再判 断其中是否有变化幅度超过预设的阔值的情况(步骤 S812 ) , 若有, 则将该寄 生电容对应的感应电极的所在位置, 作为触摸操作在感应电极所在维度上的触 摸位置 (步骤 S813 ) 。 举例说明, 假设变化阔值预设为 A, 若发现其中有来自 一个或多个感应电极的数据的变化超过 A, 则说明此一个或多个感应电极被触 摸了。
当然, 通过感应电极得到有关电容的信息不仅包含上文提出的寄生电容的 相关信息, 也会包含有驱动电极与感应电极形成的耦合电容的相关信息, 而当 驱动电极和感应电极的阻值满足一定条件时, 可以使其中的耦合电容的相关信 息的比例远小于寄生电容的比例, 从而可以忽略辆合电容的相关信息, 认为通 过感应电极获取的只是寄生电容的相关信息。 基于此考虑, 不同于互电容技术 多釆用低阻抗的前级放大器和低阻抗的驱动信号源, 本发明特别釆用高阻抗的 前级放大器和较高阻抗的驱动信号源, 具体要求感应电极的方块电阻大于 80欧 姆, 驱动电极的方块电阻大于 80欧姆。
在步骤 S82 中, 根据触摸位置上感应电极所对应的寄生电容参数的变化, 以及对驱动电极的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位 置。
作为本发明的又一个实施例, 步骤 S82具体釆用如图 10所示的方式进行另 一个维度的定位。在扫描各个驱动电极的过程中 (步骤 S821 ),若有触摸操作, 则根据所扫描的驱动电极的不同, 通过感应电极得到第二类寄生电容的参数变 化信息也不同, 本发明将, 将触摸位置上感应电极所对应的寄生电容参数变化 幅度进行对比, 找到最大的寄生电容参数变化幅度(步骤 S822 ) , 然后将触摸 位置上感应电极所对应的寄生电容参数变化幅度最大时所扫描的驱动电极的所 在位置,作为触摸操作在驱动电极所在维度上的触摸位置(步骤 S823 )。例如, 假设有 n个驱动电极, 触摸操作的位置对应感应电极 s, 则在扫描过程中, 一共 可得到 sl、 s2 sn个寄生电容参数变化信息, 若其中的第 s2个信息变化幅 度最大, 则说明第 2个驱动电极被触摸。
本领域普通技术人员可以理解, 实现上述各实施例提供的方法中的全部或 部分步骤可以通过程序来指令相关的硬件来完成, 所述的程序可以存储于一计 算机可读取存储介质中, 该存储介质可以为 ROM/RAM、 磁盘、 光盘等。
图 11、 图 12示出了本发明提供的触摸检测系统的结构, 为了便于描述, 仅 示出了与本发明相关的部分。 其中的电阻 Rl l l、 R113、 R115、 Rn为虚拟出来 的驱动电极的等效电阻, 电阻 R112、 R114、 R116、 Rm为虚拟出来的感应电极 的等效电阻, Cx为虚拟的驱动电极与感应电极之间的辆合电容, Cl l l、 C113、 C115、 Cn为虚拟的第二类寄生电容, C112、 C114、 C116、 Cm为虚拟的第一类 寄生电容。 触摸控制芯片中包含有硬件单元和软件单元, 与本发明相关的部分 如图 13所示, 而在图 11、 图 12中又仅示出了其中的釆样单元的部分, 应当理 解, 具体实施时, 触摸控制芯片还可能包括时钟信号单元、 电源等组成部分。
一并参照图 11、 图 12、 图 13, 本发明提供的触摸检测系统具有二维矩阵式 触摸传感器, 二维矩阵式触摸传感器上布设有若干驱动电极和若干感应电极, 任一驱动电极与任一感应电极之间均可形成耦合电容 Cx, 驱动电极和感应电极 均与地之间形成寄生电容 CI 11-Cm。
釆样单元 131 连接各个感应电极, 设置为通过各个感应电极检测各寄生电 容参数的变化信息。 第一维度定位单元 132设置为根据检测结果定位出触摸操 作在感应电极所在维度上的触摸位置。 第二维度定位单元 133设置为根据由第 一维度定位单元 132确定的触摸位置上感应电极所对应的寄生电容参数的变化, 以及对驱动电极的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位 置。 如上文所描述的, 通过感应电极检测到的各个寄生电容参数的变化信息中, 包含有第一类寄生电容的参数变化信息与第二类寄生电容的参数变化信息; 第 一类寄生电容为该感应电极与地之间形成的寄生电容, 第二类寄生电容为可与 该感应电极形成耦合电容的驱动电极与地之间形成的寄生电容。 并且釆样单元
131通过感应电极、 耦合电容获取第二类寄生电容的参数变化信息。
如图 11、 12所示, 釆样单元 131包括一放大器, 其同相输入端接各个感应 电极, 其反相输入端与其输出端之间形成负反馈。 可以看出与图 4示出的放大 器的连接方式不同, 在手指触摸上去之后, 由于 ITO电极阻抗较高而体现出来 的等效电路不一样。
如图 14所示, 第一维度定位单元 132包括判断模块 1321和第一定位模块 1322。 其中判断模块 1321设置为判断是否有寄生电容参数的变化超过预设的阔 值; 第一定位模块 1322在判断模块 1321判断出有寄生电容参数的变化超过预 设的阔值时, 则将该寄生电容对应的感应电极的所在位置作为触摸操作在感应 电极所在维度上的触摸位置。
如图 15所示, 第二维度定位单元 133包括对比模块 1331和第二定位模块 1332。 其中对比模块 1331设置为在扫描各个驱动电极的过程中, 将触摸位置上 感应电极所对应的寄生电容参数变化幅度进行对比, 找到最大的寄生电容参数 变化幅度; 第二定位模块 1332将触摸位置上感应电极所对应的寄生电容参数变 化幅度最大时所扫描的驱动电极的所在位置, 作为触摸操作在驱动电极所在维 度上的触摸位置。
上述触摸检测系统可以应用于触摸屏手机等触摸屏终端中, 此触摸屏终端 中包括驱动信号发生装置, 为驱动电极提供驱动信号。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明 的保护范围之内。 工业实用性
本发明提供的基于寄生电容检测的触摸检测系统及其检测方法、 触摸屏终 端, 在检测原理上和传统技术有较大不同, 能够针对现有技术中存在的传统的 自电容和互电容技术难以适应高阻抗电极的应用条件的问题, 且触摸屏电极图 案比较复杂、 生产工艺要求较高的问题进行改进, 能够简化电容式触摸屏布线 设计, 通过配置高阻抗的前级放大器和较高阻抗的驱动信号源来适应较高的触 摸屏电极阻抗, 有助于改善显示透光率, 同时支持多点触摸检测应用。

Claims

权利要求书
1、 一种触摸检测系统的检测方法, 所述触摸检测系统具有二维矩阵式触摸 传感器, 所述二维矩阵式触摸传感器上布设有若干驱动电极和若干感应电极, 驱动电极与感应电极之间形成辆合电容, 且驱动电极和感应电极均与地之间形 成寄生电容; 所述检测方法包括下述步骤:
通过各个感应电极检测各寄生电容参数的变化信息, 并根据检测结果定位 出触摸操作在感应电极所在维度上的触摸位置;
根据所述触摸位置上感应电极所对应的寄生电容参数的变化, 以及对所述 驱动电极的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位置。
2、 如权利要求 1所述的检测方法, 其中, 所述的根据检测结果定位出触摸 操作在感应电极所在维度上的触摸位置的步骤包括下述步骤:
当有寄生电容参数的变化超过预设的阔值时, 将该寄生电容对应的感应电 极的所在位置, 作为触摸操作在感应电极所在维度上的触摸位置。
3、 如权利要求 1所述的检测方法, 其中, 所述的根据所述触摸位置上感应 电极所对应的寄生电容参数的变化, 以及对所述驱动电极的扫描时序, 定位出 触摸操作在驱动电极所在维度上的触摸位置的步骤包括下述步骤:
在扫描各个驱动电极的过程中, 将所述触摸位置上感应电极所对应的寄生 电容参数变化幅度最大时所扫描的驱动电极的所在位置, 作为触摸操作在驱动 电极所在维度上的触摸位置。
4、 如权利要求 1至 3任一项所述的检测方法, 其中, 通过感应电极检测到 的各个寄生电容参数的变化信息中, 包含有第一类寄生电容的参数变化信息与 第二类寄生电容的参数变化信息; 所述第一类寄生电容为该感应电极与地之间 形成的寄生电容, 所述第二类寄生电容为可与该感应电极形成耦合电容的驱动 电极与地之间形成的寄生电容。
5、 如权利要求 4所述的检测方法, 其中, 所述第二类寄生电容的参数变化 信息通过耦合电容反映至感应电极上。
6、 一种触摸检测系统, 所述触摸检测系统具有二维矩阵式触摸传感器, 所 述二维矩阵式触摸传感器上布设有若干驱动电极和若干感应电极, 驱动电极与 感应电极之间形成耦合电容, 且驱动电极和感应电极均与地之间形成寄生电容; 所述触摸检测系统还包括:
釆样单元, 其连接各个感应电极, 设置为通过各个感应电极检测各寄生电 容参数的变化信息;
第一维度定位单元, 设置为根据检测结果定位出触摸操作在感应电极所在 维度上的触摸位置;
第二维度定位单元, 设置为根据由所述第一维度定位单元确定的触摸位置 上感应电极所对应的寄生电容参数的变化, 以及对所述驱动电极的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位置。
7、 如权利要求 6所述的触摸检测系统, 其中, 所述釆样单元包括: 一放大器, 其同相输入端接各个感应电极, 其反相输入端与其输出端之间 形成负反馈。
8、如权利要求 6所述的触摸检测系统,其中,所述第一维度定位单元包括: 判断模块, 设置为判断是否有寄生电容参数的变化超过预设的阔值; 第一定位模块, 设置为在所述判断模块判断出有寄生电容参数的变化超过 预设的阔值时, 则将该寄生电容对应的感应电极的所在位置作为触摸操作在感 应电极所在维度上的触摸位置。
9、如权利要求 6所述的触摸检测系统,其中,所述第二维度定位单元包括: 对比模块, 设置为在扫描各个驱动电极的过程中, 将所述触摸位置上感应 电极所对应的寄生电容参数变化幅度进行对比, 找到最大的寄生电容参数变化 幅度;
第二定位模块, 设置为将所述触摸位置上感应电极所对应的寄生电容参数 变化幅度最大时所扫描的驱动电极的所在位置, 作为触摸操作在驱动电极所在 维度上的触摸位置。
10、 如权利要求 6至 9任一项所述的触摸检测系统, 其中, 通过感应电极 检测到的各个寄生电容参数的变化信息中, 包含有第一类寄生电容的参数变化 信息与第二类寄生电容的参数变化信息; 所述第一类寄生电容为该感应电极与 地之间形成的寄生电容, 所述第二类寄生电容为可与该感应电极形成耦合电容 的驱动电极与地之间形成的寄生电容。
11、 如权利要求 10所述的触摸检测系统, 其中, 所述釆样单元通过感应电 极、 耦合电容获取第二类寄生电容的参数变化信息。
12、 一种触摸屏终端, 包括驱动信号发生装置、 触摸检测系统; 所述触摸 检测系统具有二维矩阵式触摸传感器, 所述二维矩阵式触摸传感器上布设有若 干驱动电极和若干感应电极, 所述驱动信号发生装置与所述若干驱动电极连接; 驱动电极与感应电极之间形成辆合电容, 且驱动电极和感应电极均与地之间形 成寄生电容; 所述触摸检测系统还包括:
釆样单元, 其连接各个感应电极, 设置为通过各个感应电极检测各寄生电 容参数的变化信息;
第一维度定位单元, 设置为根据检测结果定位出触摸操作在感应电极所在 维度上的触摸位置;
第二维度定位单元, 设置为根据由所述第一维度定位单元确定的触摸位置 上感应电极所对应的寄生电容参数的变化, 以及对所述驱动电极的扫描时序, 定位出触摸操作在驱动电极所在维度上的触摸位置。
13、 如权利要求 12所述的触摸屏终端, 其中, 所述釆样单元包括: 一放大器, 其同相输入端接各个感应电极, 其反相输入端与其输出端之间 形成负反馈。
14、如权利要求 12所述的触摸屏终端,其中,所述第一维度定位单元包括: 判断模块, 设置为判断是否有寄生电容参数的变化超过预设的阔值; 第一定位模块, 设置为在所述判断模块判断出有寄生电容参数的变化超过 预设的阔值时, 则将该寄生电容对应的感应电极的所在位置作为触摸操作在感 应电极所在维度上的触摸位置。
15、如权利要求 12所述的触摸屏终端,其中,所述第二维度定位单元包括: 对比模块, 设置为在扫描各个驱动电极的过程中, 将所述触摸位置上感应 电极所对应的寄生电容参数变化幅度进行对比, 找到最大的寄生电容参数变化 幅度;
第二定位模块, 设置为将所述触摸位置上感应电极所对应的寄生电容参数 变化幅度最大时所扫描的驱动电极的所在位置, 作为触摸操作在驱动电极所在 维度上的触摸位置。
16、 如权利要求 12至 15任一项所述的触摸屏终端, 其中, 通过感应电极 检测到的各个寄生电容参数的变化信息中, 包含有第一类寄生电容的参数变化 信息与第二类寄生电容的参数变化信息; 所述第一类寄生电容为该感应电极与 地之间形成的寄生电容, 所述第二类寄生电容为可与该感应电极形成耦合电容 的驱动电极与地之间形成的寄生电容。
17、如权利要求 16所述的触摸屏终端,其中,所述釆样单元通过感应电极、 耦合电容获取第二类寄生电容的参数变化信息。
PCT/CN2014/084143 2013-12-04 2014-08-12 触摸检测系统及其检测方法、触摸屏终端 WO2015081719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310646691.8A CN103616977B (zh) 2013-12-04 2013-12-04 触摸检测系统及其检测方法、触摸屏终端
CN201310646691.8 2013-12-04

Publications (1)

Publication Number Publication Date
WO2015081719A1 true WO2015081719A1 (zh) 2015-06-11

Family

ID=50167680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084143 WO2015081719A1 (zh) 2013-12-04 2014-08-12 触摸检测系统及其检测方法、触摸屏终端

Country Status (2)

Country Link
CN (1) CN103616977B (zh)
WO (1) WO2015081719A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103616977B (zh) * 2013-12-04 2017-03-29 深圳市汇顶科技股份有限公司 触摸检测系统及其检测方法、触摸屏终端
TWI604361B (zh) * 2016-02-05 2017-11-01 速博思股份有限公司 具壓力觸覺功能之感測裝置
WO2019023941A1 (zh) * 2017-08-01 2019-02-07 深圳市汇顶科技股份有限公司 触控位置的确定方法、电容触控装置以及电容触控终端
CN108701226B (zh) * 2017-11-07 2021-11-05 深圳市汇顶科技股份有限公司 指纹传感器和终端设备
CN107807778A (zh) * 2017-11-07 2018-03-16 深圳创维-Rgb电子有限公司 一种显示系统及显示系统的控制方法
TWI765968B (zh) * 2018-02-14 2022-06-01 李尚禮 電容式感測裝置、其不同控制條件的觸碰閾值的獲得方法及其校正方法
CN108593672A (zh) * 2018-03-01 2018-09-28 深圳回收宝科技有限公司 一种终端触控屏的检测方法、检测装置以及存储介质
CN115373543B (zh) * 2022-09-16 2024-06-07 广东康海智能科技有限公司 一种电容触摸屏识别触摸信号的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101706698A (zh) * 2009-11-23 2010-05-12 深圳市汇顶科技有限公司 一种触摸感应扫描检测方法、系统及电容型触摸传感器
JP2010282462A (ja) * 2009-06-05 2010-12-16 Smk Corp 静電容量方式タッチパネル
CN102073426A (zh) * 2010-12-29 2011-05-25 广东中显科技有限公司 触摸感应电路
CN102193700A (zh) * 2010-03-15 2011-09-21 上海天马微电子有限公司 一种触摸屏
CN102591536A (zh) * 2011-01-14 2012-07-18 三星移动显示器株式会社 触摸屏系统
WO2013018495A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 タッチパネル基板及び表示パネル
CN103279244A (zh) * 2013-06-06 2013-09-04 敦泰科技有限公司 一种电容式触摸屏
CN103616977A (zh) * 2013-12-04 2014-03-05 深圳市汇顶科技股份有限公司 触摸检测系统及其检测方法、触摸屏终端

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101833121B (zh) * 2010-04-09 2011-08-10 深圳市汇顶科技有限公司 一种双耦合型检测电路、雨量传感器及雨量识别方法
CN102479013B (zh) * 2010-11-26 2015-09-02 群康科技(深圳)有限公司 触摸屏电极驱动信号的设置方法及触摸屏的驱动方法
JP5445438B2 (ja) * 2010-12-15 2014-03-19 Smk株式会社 静電容量式タッチパネル
CN102081477A (zh) * 2010-12-29 2011-06-01 广东中显科技有限公司 多点触摸面板
CN102073425A (zh) * 2010-12-29 2011-05-25 广东中显科技有限公司 触摸屏的触控系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282462A (ja) * 2009-06-05 2010-12-16 Smk Corp 静電容量方式タッチパネル
CN101706698A (zh) * 2009-11-23 2010-05-12 深圳市汇顶科技有限公司 一种触摸感应扫描检测方法、系统及电容型触摸传感器
CN102193700A (zh) * 2010-03-15 2011-09-21 上海天马微电子有限公司 一种触摸屏
CN102073426A (zh) * 2010-12-29 2011-05-25 广东中显科技有限公司 触摸感应电路
CN102591536A (zh) * 2011-01-14 2012-07-18 三星移动显示器株式会社 触摸屏系统
WO2013018495A1 (ja) * 2011-07-29 2013-02-07 シャープ株式会社 タッチパネル基板及び表示パネル
CN103279244A (zh) * 2013-06-06 2013-09-04 敦泰科技有限公司 一种电容式触摸屏
CN103616977A (zh) * 2013-12-04 2014-03-05 深圳市汇顶科技股份有限公司 触摸检测系统及其检测方法、触摸屏终端

Also Published As

Publication number Publication date
CN103616977B (zh) 2017-03-29
CN103616977A (zh) 2014-03-05

Similar Documents

Publication Publication Date Title
WO2015081719A1 (zh) 触摸检测系统及其检测方法、触摸屏终端
JP5324440B2 (ja) デジタイザのためのホバリングおよびタッチ検出
KR102044083B1 (ko) 터치 검출 장치 및 검출 방법, 그리고 터치 기기
JP4514830B2 (ja) デジタイザのためのジェスチャ検出
US8717331B2 (en) Reducing water influence on a touch-sensing device
US9182867B2 (en) Apparatus and method for detecting adjacent object and method of driving electronic device
KR20160025440A (ko) 터치 패널 및 이를 구비한 좌표 측정 시스템
JP5961467B2 (ja) タッチパネル
US10209788B2 (en) Touch processor, touch device, touch system, and touch method
US20130009906A1 (en) Capacitive touch screen sensing and electric field sensing for mobile devices and other devices
US20120249599A1 (en) Method of identifying a multi-touch scaling gesture and device using the same
TW201510804A (zh) 觸控面板控制方法
US9442599B2 (en) System and method for using signals resulting from signal transmission in a touch sensor
US9240782B2 (en) One-dimensional capacitive touch panel with stable coupling capacitance
JP2009540452A (ja) デジタイザのための指先タッチ認識
KR20140136855A (ko) 기능 실행 방법 및 그 전자 장치
WO2016082244A1 (zh) 触控面板以及触控显示装置
TWI805694B (zh) 降低感測電極的電磁放射
US9612704B2 (en) Apparatus and method for sensing touch
CN102799322B (zh) 电容感测装置与控制方法
TWI518571B (zh) 觸控裝置及其驅動方法
WO2015192597A1 (zh) 触摸面板及其驱动方法、显示装置
US9632645B2 (en) Touch sensing apparatus and method
US20150378473A1 (en) Touch SENSTIVE DEVICE AND RELATED TOUCHSCREEN
CN106293175B (zh) 触控处理器、触控装置、触控系统与触控方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14867557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14867557

Country of ref document: EP

Kind code of ref document: A1