WO2015079046A1 - Echangeur air/air à double flux, installation de traitement d'air et méthode de protection contre le givre et de nettoyage d'un tel échangeur - Google Patents

Echangeur air/air à double flux, installation de traitement d'air et méthode de protection contre le givre et de nettoyage d'un tel échangeur Download PDF

Info

Publication number
WO2015079046A1
WO2015079046A1 PCT/EP2014/076017 EP2014076017W WO2015079046A1 WO 2015079046 A1 WO2015079046 A1 WO 2015079046A1 EP 2014076017 W EP2014076017 W EP 2014076017W WO 2015079046 A1 WO2015079046 A1 WO 2015079046A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
exchanger
air
flow
compartment
Prior art date
Application number
PCT/EP2014/076017
Other languages
English (en)
Inventor
Franck Rigaud
Original Assignee
Elyt 3
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elyt 3 filed Critical Elyt 3
Priority to CN201480071509.3A priority Critical patent/CN106104194B/zh
Priority to CA2931562A priority patent/CA2931562A1/fr
Priority to US15/039,528 priority patent/US10408479B2/en
Priority to EP14809316.4A priority patent/EP3074711A1/fr
Priority to JP2016555923A priority patent/JP6685917B2/ja
Publication of WO2015079046A1 publication Critical patent/WO2015079046A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F2012/007Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using a by-pass for bypassing the heat-exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the invention relates to a countercurrent air-to-air heat exchanger, and to an air treatment plant comprising such an exchanger.
  • the invention also relates to a method for protecting against icing and cleaning such an exchanger.
  • Such exchangers have the disadvantage of being sensitive to frost, which causes significant pressure losses, a malfunction, a decrease and / or a stop of the air flows no longer ensuring the primary function of ventilation and air treatment, even deterioration.
  • frost causes significant pressure losses, a malfunction, a decrease and / or a stop of the air flows no longer ensuring the primary function of ventilation and air treatment, even deterioration.
  • To prevent icing of the exchanger it is known to use electric heating elements to defrost, or prevent the appearance of frost, or implement an "all or nothing" control to stop completely, from temporarily, heat exchange in the exchanger.
  • Such techniques have the disadvantage of generating energy losses due to the non-recovery of heat, or additional energy due to the auxiliary heating required by the defrost.
  • the invention intends to remedy by proposing a new countercurrent air / air heat exchanger whose structure allows more efficient deicing management and more control possibilities.
  • the invention relates to a countercurrent dual-flow air / air heat exchanger comprising a first network of channels oriented along a longitudinal axis of the exchanger, adapted for the circulation of a first air flow in a first direction, and a second network of channels oriented along the longitudinal axis of the exchanger, adapted for the circulation of a second air flow in the opposite direction to the first air flow.
  • This exchanger is characterized in that it comprises means for reversing the direction of flow of the second air flow in the second network of channels, so that the first and second second flow of air circulate in co-current, adapted to protect the exchanger against the frost.
  • the operation of the exchanger can be modified so as to operate in co-current (or "antimethodic” operation), that is to say that the heat exchanges take place between two air flows traveling in the same direction.
  • co-current or "antimethodic” operation
  • the hot source enters on the same side as the cold source, the temperature profiles are thus modified, which has the effect of a cold fluid outlet temperature lower than the outlet temperature of the hot fluid.
  • frost in the exchanger is avoided.
  • heat exchange is still active, which avoids the total loss of heat energy contained in the hottest airflow, particularly in the case of a flow of air extracted from a room a heated room.
  • such an exchanger may also incorporate one or more of the following features, taken in any technically permissible combination:
  • the exchanger comprises an inlet opening of the second air flow located on a first side of a face of the exchanger and an outlet opening located on one side of said face of the exchanger opposite the first side.
  • the reversing members of the flow direction of the second air flow in the second network of channels comprise:
  • a first bypass compartment comprising no heat exchange surface with the first channel network, and fluidly connecting an inlet opening of the second air flow and a first outlet opening of the second air flow, which can be used in a bypass configuration of the exchanger,
  • a flow direction member adapted to selectively direct the second air flow towards the second channel network or to the first bypass compartment
  • the closure means of the first outlet opening of the second air flow comprises a flap pivotally mounted relative to a face of the exchanger in which is formed the first outlet opening.
  • the steering member of the second air flow is adapted, when directing the second air flow to the second channel network, to prevent the passage of the second air flow in the first branch compartment.
  • the exchanger comprises a second bypass compartment including an inlet fluidly communicating with the second channel network on the inlet opening side of the second air flow and an outlet forming a second outlet opening of the second flow stream. in the vicinity of the first outlet opening of the second air flow.
  • the exchanger comprises a shutter shutter of the second outlet opening of the second air flow.
  • the steering member of the second air flow is adapted, when it directs the second air flow to the first bypass compartment, to direct the second air flow to the second bypass compartment after the passage of the second flow of air in the second network of channels, and to prevent the second air flow leaving the second network of channels out of the exchanger through the inlet opening of the second air flow.
  • the flow direction member comprises separation means which prevent passage of the second air flow into the first branch compartment when the flow direction member directs the second air flow to the second channel network; .
  • the flow direction member is a valve movable in rotation along an axis perpendicular to the longitudinal axis of the exchanger.
  • the exchanger comprises a central block including an exchange compartment in which the first and second channel networks are mounted, the central block comprising inlet and outlet openings of the second air flow in the central block located upstream.
  • the exchange compartment with respect to the flow direction of the first air flow in the exchange compartment, and the inlet and outlet openings of the second air flow in the central block located downstream of the compartment of exchange with respect to the direction of flow of the first air flow in the exchange compartment, and the reversing members of the flow direction of the second air flow are adapted to make passing the inlet opening upstream and the outlet opening located downstream such that the first and second air flows circulate in co-current.
  • the inversion members are movable flaps in translation and adapted to close and selectively pass through the inlet and outlet openings of the second air flow in the central block.
  • the invention also relates to an air treatment installation comprising an exchanger as mentioned above, the second air flow being a flow of air extracted from a room.
  • the invention also relates to a method for protecting against icing and cleaning an exchanger as mentioned above, characterized in that it comprises a step of cleaning the network of channels in which the flow of the most particulate charged air by reversing this flow of air so that it flows in the same direction as the least particulate charged airflow.
  • FIGS. 1, 2 and 3 are schematic perspective views of an exchanger according to a first embodiment of the invention, in a first, a second and a third operating configuration;
  • FIGS. 4, 5 and 6 are side views to a scale smaller than that of Figures 1 to 3, an exchanger according to a second embodiment of the invention, in the first, second and third configurations of functioning;
  • FIGS. 7, 8 and 9 are side views of an exchanger according to a third embodiment of the invention in the first, second and third operating configurations;
  • FIG. 10 is a perspective view of a central portion of the exchanger of FIGS. 7 to 9;
  • FIG. 1 1 is an enlarged view of detail XI in Figure 10.
  • the exchanger 1 comprises an exchange compartment 3 which includes a first network of channels 31 and a second network of channels 32 oriented along a longitudinal axis XX 'of the exchanger 1.
  • a first air flow F1 flows in the network of channels 31 between an inlet opening 51 formed in a side face 5 of the exchanger 1 and a not shown outlet opening formed in a side face 6 of the exchanger 1 opposite in the axis XX 'to the side face 5.
  • the first channel network 31 is formed of a plurality of channel columns superimposed on each other.
  • the channels of the first channel network 31 may be grouped horizontally in rows.
  • the channels of the first channel network 31 have, from Preferably, a cross section of the shape of a parallelogram, preferably a rhombus.
  • a second air flow F2 flows in the second network of channels 32.
  • the second air flow F2 enters the exchanger 1 through an inlet opening 81 of an upper face 8 of the exchanger 1 located on the side of the side face 6, and out through an outlet opening 82 of the upper face 8 located on the side of the side face 5.
  • the second network of channels 32 is formed by spaces delimited by the channel columns of the first network of channels 31.
  • the compartment comprises openings 33 which open respectively facing the outlet openings 82 and inlet 81 of the second air flow F2, so that the second air flow F2 comes in and out the exchange compartment 3 and the exchanger 1 parallel to an axis ZZ 'perpendicular to the upper face 8.
  • the channels 31 and 32 are placed so as to allow heat exchange between the first air flow F1 and the second air flow F2.
  • the second air flow F2 flows, between the inlet opening 81 and the outlet opening 82, in a direction opposite to the first flow.
  • F1 air in order to obtain counter-current heat exchange.
  • the exchanger 1 comprises reversing members of the direction of flow of the second air flow F2 in the second network of channels 32 adapted to protect the exchanger 1 against the frosted.
  • the exchanger 1 comprises a first bypass compartment 10 which fluidly connects the inlet opening 81 to the outlet opening 82 and does not include any heat exchange surface with the first channel network 31.
  • the first bypass compartment 10 constitutes a "by-pass" means of the exchanger 1, making it possible to eliminate the heat exchanges between the air flow F1 and the second air flow F2.
  • the first bypass compartment 10 fluidly communicates with the second channel network 32 on the outlet opening side 82, so that, in the vicinity of the lateral face 5, the first bypass compartment 10 is able to communicate fluidly with the times with the outside of the exchanger 1 through the outlet opening 82, and with the second network of channels 32 through the openings 33.
  • the inlet opening 81 of the second air flow F2 communicates simultaneously with the second channel network 32 on the side of the side face 6 and with the first bypass compartment 10.
  • the exchanger 1 comprises a flow direction member formed by a shutter 12, adapted to selectively direct the second air flow F2, formed by the air entering the exchanger 1 through the inlet opening 81, or towards the second network of 32, as shown in Figure 1 in the normal configuration of the heat exchanger 1, or to the first branch compartment 10, as shown in Figures 2 and 3.
  • the flap 12 is pivotally mounted along a perpendicular Y12 axis to the X-X 'axis.
  • the exchanger 1 also comprises means for closing off the outlet opening 82 of the second air flow F2.
  • closure means comprise a flap 14 pivotally mounted relative to the upper wall 8 of the exchanger 1 along an axis Y14 perpendicular to the axis X-X '.
  • the flap 12 In the normal operating configuration of the exchanger 1 shown in FIG. 1, the flap 12 is in a first vertical position and closes the bypass compartment 10.
  • the air flow F2 enters the exchanger 1 through the opening 81 passes into the second network of channels 32 and leaves the exchanger 1 through the outlet opening 82.
  • the exchanger 1 can operate in a "bypass" mode shown in Figure 2, in which the flap 12 is in a second inclined position in which it directs the second air flow F2 to the bypass compartment 10.
  • the flap 12 is joined with an intermediate partition 15 perpendicular to the lateral face 6 and closes the door. access to the second network of channels.
  • the second air flow F2 therefore does not pass into the second channel network 32 and leaves directly from the exchanger 1 through the outlet opening 82, the flap 14 being open. In this way, no heat exchange takes place in the exchanger 1.
  • the risks of icing of the exchanger 1 are reduced, while maintaining the heat exchange between the air flows F1 and F2.
  • the flap 12 is in its second position so as to orient the second air flow F2 to the first bypass compartment 10.
  • the flap 14 is closed so that at the outlet of the first compartment of derivation 10 on the side of the side face 5, the second air flow F2 is directed towards the second channel network 32, which fluidly communicates with the first bypass compartment 10.
  • the second air flow F2 thus borrows the second network of channels 32 in the opposite direction to that of the first operating mode shown in FIG.
  • the exchanger 1 To evacuate the second air flow F 2 from the second channel network 32 on the side of the side face 6, the exchanger 1 comprises a second bypass compartment 16, advantageously placed along a longitudinal face 20 of the exchanger 1, which forms a discharge duct of the second air flow F2.
  • the second bypass compartment 16 includes an inlet 160, formed by a space including the opening 33 on the side of the face 6 and the intermediate partition 15, fluidly communicating with the second network of channels 32 on the side of the inlet opening. 81.
  • the second bypass compartment 16 is provided with an outlet forming a second outlet opening 162 of the second air flow F2 formed in the vicinity of the outlet opening 82 on the side of the side face 5.
  • the second outlet opening 162 is masked, in the configuration of Figures 1 and 2, by a flap 18 pivoting along an axis Y18 perpendicular to the axis X-X '.
  • the axes Y14 and Y18 are represented in the figures as being merged, the flaps 14 and 18 being able to be maneuvered simultaneously. Alternatively, the flaps 14 and 18 can be separately operable along separate Y14 and Y18 axes.
  • the flap 12 directs the second air flow F2 to the inlet 160.
  • the second air flow F2 is prevented from exiting through the inlet opening 81 by the flap 12 and the intermediate partition 15.
  • the second air flow F2 travels a path perpendicular to the axis X-X ', such that that is shown in Figure 3, towards the second branch compartment 16.
  • the heat exchanger 1 is integrated in an air treatment installation and the second air flow F2 is a flow of air extracted from a room.
  • the second air flow has a temperature greater than the temperature of the first air flow F1.
  • the extracted air flow naturally being more charged with particles is diverted into the bypass compartment 10, which makes it possible to prevent the fouling of the second network of channels 32.
  • FIGS. 4, 5 and 6 and in FIGS. 7 to 11 A second and a third embodiment of the invention are respectively shown in FIGS. 4, 5 and 6 and in FIGS. 7 to 11.
  • elements similar to the first embodiment bear the same reference and function in the same manner. Only the differences with respect to the first embodiment are detailed below.
  • the flow direction member is formed by a circular valve 12.
  • the valve 12 is pivotally mounted along an axis Y12 perpendicular to the axis XX 'and comprises a central wall 120.
  • the valve 12 comprises a partition wall 122 which defines, with the central wall 120, a first channel 126.
  • the valve 12 also comprises a partition wall 124, opposite the wall 122 with respect to the axis Y12, which defines with the central wall 120, a second channel 128.
  • the channels 126 and 128 are able to direct the second air flow F2 either to the second channel network or to the bypass compartment 10.
  • the air flows F1 and F2 are represented as flowing in the same plane. In reality, the air flows F1 and F2 flow in offset planes.
  • the first air flow exits the lateral face 6 through an opening 61.
  • the exchanger 1 comprises a bypass compartment 16 similar to that of the first embodiment and which is not shown in view of the orientation of FIGS. 4, 5 and 6.
  • valve 12 In the normal configuration shown in Figure 4, the valve 12 is in a first position in which the channels 126 and 128 direct the second airflow F2 to the second channel network 32, and the flap 14 is open for the air flow F2 can be evacuated from the exchanger 1.
  • the partition wall 122 closes the first bypass compartment 10 so that the second air flow can not flow to the compartment 10, and the partition wall 124 closes the opening second branch compartment 16.
  • the first channel 126 orients the second airflow F2 towards the first bypass compartment 10.
  • the opening 160 is located against the upper wall 8 and the intermediate partition 15.
  • the second channel 128 of the valve 12 prevents the second air flow F2 from leaving the exchanger 1 and directs the second air flow F2 to the opening 160 of the second bypass compartment 16, so that it is removed from the exchanger 1 by the second outlet opening 162, which is, in this case, made pass through the opening of the flap 18.
  • FIGS. 7 to 11 An exchanger 200 according to a third embodiment is shown in FIGS. 7 to 11.
  • the exchanger does not comprise an inlet opening of the second air flow F2 located on a first side of a face of the exchanger and an outlet opening located on one side of said opposite side. on the first side.
  • the exchanger 200 comprises two opposite lateral faces 202 and 204, as well as an upper face 206 and a lower face 208.
  • the lateral face 202 comprises an inlet opening 202a of the first air flow F1 in the exchanger 1 and an outlet opening of the second air flow F2 of the exchanger 1.
  • the side face 204 comprises an inlet opening 204a of the second air flow F2 and an outlet opening 204b of the first air flow F1.
  • the exchanger 200 comprises a central block 210 comprising an exchange compartment 212 formed by the first network of channels 31 and the second network of channels 32, which are visible in FIG.
  • the central block 210 is placed in the exchanger 200 obliquely so that the air flows F1 and F2 flow in oblique directions in the central block 210.
  • the channels 31 and 32 are oriented in an oblique direction X200.
  • the central block On either side of the exchange compartment 212 in the X200 direction, the central block comprises two end sections 214 and 216 consisting of plates 218 parallel to each other and parallel to the plane of FIGS. 7 to 9. These plates 218 define spaces 220 open on the side of the inlet 202a and the outlet 204b to form a path adapted for the circulation of the first air flow F1 in the exchanger via the exchange compartment 212.
  • the central block 210 includes inlet openings 210a and 210b of the second air stream F2 in the central block 210, which allow communication between the end sections 214 and 216 with the opening 204b.
  • the plates 218 On the side of the opening 204b, the plates 218 define spaces 222 open on the input side 204a adapted for the circulation of the second air flow F2.
  • the spaces 220 and 222 are alternated so that the air flows F1 and F2 flow in offset planes.
  • the central block 210 includes apertures 210c and 21d1 of the second flow of air F2 into the central block 210, which allow communication between the end sections 214 and 216 and the opening 202b. 222 spaces open on the side of the opening 202b so that the air flow F2 can exit the exchanger 200 after passing through the central block 210.
  • the openings 210a and 210b are aligned with the openings 210c and 21 Od in one direction perpendicular to the direction X200.
  • the openings 210a and 210c are located upstream of the exchange compartment 212 relative to the flow direction of the first air flow F1, while the openings 210b and 21 Od are located downstream of the exchange compartment 212 relative to the flow direction of the first F1 airflow.
  • the spaces 220 are open only on the side of the openings 202a and 204b and are closed on the side of the openings 204a and 202b.
  • the exchanger 200 comprises flaps 224 and 226 for directing the second air flow F2.
  • the flap 224 is movable in translation along the X200 direction between a first position, in which the flap 224 closes the opening 210a but leaves the opening 210b open, and a second position in which it passes through the opening 210a and closes the opening 210a.
  • the flap 226 is movable in translation along the X200 direction between a first position, in which the flap 226 closes the opening 21 Od but leaves the opening 210c open, and a second position in which it leaves the opening 21 Od and closes the opening 210c.
  • the second air flow F2 enters the central block through the opening 210b perpendicular to X200 direction, by the end section 216, as shown in FIG. Figure 7.
  • the second air flow F2 then passes into the exchange compartment 212 and out of the central block 210 through the opening 210c.
  • the opening 210b is downstream of the exchange compartment 212 while the opening 210c is upstream, we obtain a normal operating configuration of the exchanger 200, in which the air flows F1 and F2 circulate against current in the exchange compartment 212 to obtain a high heat exchange efficiency.
  • the second air flow F2 is derived outside the exchange compartment 212 and leaves directly from the central block 210 through the opening 21 Od without passing into the exchange compartment 212.
  • low-efficiency heat exchange takes place between the air flow F1 and the flow F2 air in the end section 216, between the spaces 220 and 222.
  • the flaps 224 and 226 form reversing members of the direction of flow of the second air flow F2 in the exchanger 200, adapted to protect the exchanger 200 against Frost.
  • the second air flow F2 enters the central block 210 through the opening 210a and out through the opening 21 Od.
  • the opening 210a being upstream of the exchange compartment 212 and the opening 21 Od being downstream, the second air flow F2 therefore passes into the exchange compartment 212 in the same direction as the first air flow F1, or "co-current" which limits the heat exchange between the air flow F1 and F2 to prevent one of the flows reaches a temperature too low and causes icing of the exchanger 200 .
  • the flaps 224 and 226 can be replaced by other types of reversing members of the flow direction of the second air flow F2 capable of closing and passing through the openings 210a, 210b , 210c and 21 Od, such as rotating flaps, valves or registers or any other suitable organs.

Abstract

Cet échangeur air/air (1) à double flux à contre-courant comporte un premier réseau de canaux orientés selon un axe longitudinal (Χ-Χ') de l'échangeur (1 ), adapté pour la circulation d'un premier flux d'air (F1) dans un premier sens, et un second réseau de canaux orientés selon l'axe longitudinal (Χ-Χ') de l'échangeur (1), adapté pour la circulation d'un second flux d'air (F2) dans le sens opposé au premier flux d'air (F1). Cet échangeur. L'échangeur (1) comprend des organes (10, 12, 14) d'inversion du sens d'écoulement du second flux d'air (F2) dans le second réseau de canaux, de telle manière que les premier et second flux d'air (F1, F2) circulent en co-courant, adaptés pour protéger l'échangeur (1) contre le givre.

Description

ECHANGEUR AIR/AIR A DOUBLE FLUX, INSTALLATION DE TRAITEMENT D'AIR ET METHODE DE PROTECTION CONTRE LE GIVRE ET DE NETTOYAGE D'UN TEL
ECHANGEUR L'invention concerne un échangeur air/air à double flux à contre-courant, ainsi qu'une installation de traitement d'air comprenant un tel échangeur. L'invention concerne également une méthode de protection contre le givre et de nettoyage d'un tel échangeur.
Dans le domaine des échangeurs de chaleur air/air à double flux, notamment pour les installations de ventilation et de traitement d'air pour des locaux tertiaires ou d'habitation, il est connu notamment de FR-A-2 961 891 , d'utiliser des échangeurs à alvéoles à contre-courant (ou fonctionnement « méthodique ») mettant en œuvre un réseau de canaux répartis dans des plaques dans lesquelles circule un flux d'air selon une direction longitudinale de l'échangeur dans un premier sens. Un second flux d'air, avec lequel des échanges thermiques ont lieu, circule entre les plaques selon la direction longitudinale de l'échangeur et dans le sens inverse au premier flux d'air. Une telle technologie permet des échanges thermiques à haut rendement.
De tels échangeurs présentent l'inconvénient d'être sensibles au givre, ce qui provoque d'importantes pertes de charge, un dysfonctionnement, une diminution et/ou un arrêt des débits d'air n'assurant plus la fonction première de ventilation et de traitement de l'air, voire une détérioration. Pour éviter le givrage de l'échangeur, il est connu d'utiliser des éléments de chauffage électrique pour le dégivrer, ou empêcher l'apparition du givre, ou de mettre en œuvre un pilotage « tout ou rien » permettant de stopper complètement, de façon temporaire, les échanges thermiques dans l'échangeur. De telles techniques ont l'inconvénient de générer des pertes d'énergie du fait de la non-récupération de la chaleur, ou un surcoût d'énergie dû au chauffage auxiliaire nécessité par le dégivrage.
C'est à ces inconvénients qu'entend remédier l'invention en proposant un nouvel échangeur air/air à contre-courant dont la structure permet une gestion du dégivrage plus efficace et offrant plus de possibilités de contrôle.
A cet effet, l'invention concerne un échangeur air/air à double flux à contre-courant comportant un premier réseau de canaux orientés selon un axe longitudinal de l'échangeur, adapté pour la circulation d'un premier flux d'air dans un premier sens, et un second réseau de canaux orientés selon l'axe longitudinal de l'échangeur, adapté pour la circulation d'un second flux d'air dans le sens opposé au premier flux d'air. Cet échangeur est caractérisé en ce qu'il comprend des organes d'inversion du sens d'écoulement du second flux d'air dans le second réseau de canaux, de telle manière que les premier et second flux d'air circulent en co-courant, adaptés pour protéger l'échangeur contre le givre.
Grâce à l'invention, le fonctionnement de l'échangeur peut être modifié de manière à fonctionner en co-courant (ou fonctionnement « antiméthodique »), c'est-à-dire que les échanges thermiques ont lieu entre deux flux d'air circulant dans le même sens. De ce fait la source chaude entre du même côté que la source froide, les profils de température en sont donc modifiés, ce qui a pour effet une température de sortie du fluide froid inférieure à la température de sortie du fluide chaud. La formation de givre dans l'échangeur est donc évitée. Cependant, les échanges thermiques sont toujours actifs, ce qui permet d'éviter la perte totale de l'énergie calorifique contenue dans le flux d'air le plus chaud, notamment dans le cas d'un flux d'air extrait d'une pièce d'un local chauffé.
Selon des aspects avantageux mais non obligatoires de l'invention, un tel échangeur peut également incorporer une ou plusieurs des caractéristiques suivantes, prises dans toute combinaison techniquement admissible :
L'échangeur comprend une ouverture d'entrée du second flux d'air située sur un premier côté d'une face de l'échangeur et une ouverture de sortie située sur un côté de ladite face de l'échangeur opposé au premier côté.
- Les organes d'inversion du sens d'écoulement du second flux d'air dans le second réseau de canaux comprennent :
- un premier compartiment de dérivation, ne comprenant aucune surface d'échange thermique avec le premier réseau de canaux, et reliant fluidiquement une ouverture d'entrée du second flux d'air et une première ouverture de sortie du second flux d'air, pouvant être utilisé dans une configuration de by-pass de l'échangeur,
- un organe de direction de flux adapté pour diriger sélectivement le second flux d'air vers le second réseau de canaux ou vers le premier compartiment de dérivation, et
- des moyens d'obturation de la première ouverture de sortie du second flux d'air de manière que le second flux d'air passe dans le second réseau de canaux après son passage dans le premier compartiment de dérivation.
- Les moyens d'obturation de la première ouverture de sortie du second flux d'air comprennent un volet monté pivotant par rapport à une face de l'échangeur dans laquelle est ménagée la première ouverture de sortie. - L'organe de direction du second flux d'air est adapté, lorsqu'il dirige le second flux d'air vers le second réseau de canaux, pour empêcher le passage du second flux d'air dans le premier compartiment de dérivation.
L'échangeur comprend un second compartiment de dérivation incluant une entrée communiquant fluidiquement avec le second réseau de canaux du côté de l'ouverture d'entrée du second flux d'air et, une sortie, formant une seconde ouverture de sortie du second flux d'air, au voisinage de la première ouverture de sortie du second flux d'air.
- L'échangeur comprend un volet d'obturation de la seconde ouverture de sortie du second flux d'air.
- L'organe de direction du second flux d'air est adapté, lorsqu'il dirige le second flux d'air vers le premier compartiment de dérivation, pour diriger le second flux d'air vers le second compartiment de dérivation après le passage du second flux d'air dans le second réseau de canaux, et pour empêcher le second flux d'air sortant du second réseau de canaux de sortir de l'échangeur par l'ouverture d'entrée du second flux d'air.
- L'organe de direction de flux comprend des moyens de séparation qui empêchent le passage du second flux d'air dans le premier compartiment de dérivation lorsque l'organe de direction de flux dirige le second flux d'air vers le second réseau de canaux.
- L'organe de direction de flux est une vanne mobile en rotation selon un axe perpendiculaire à l'axe longitudinal de l'échangeur.
L'échangeur comprend un bloc central incluant un compartiment d'échange dans lequel les premier et second réseaux de canaux sont montés, le bloc central comprenant des ouvertures d'entrée et de sortie du second flux d'air dans le bloc central situées en amont du compartiment d'échange par rapport au sens de circulation du premier flux d'air dans le compartiment d'échange, et des ouvertures d'entrée et de sortie du second flux d'air dans le bloc central situées en aval du compartiment d'échange par rapport au sens de circulation du premier flux d'air dans le compartiment d'échange, et les organes d'inversion du sens de circulation du second flux d'air sont adaptés pour rendre passantes l'ouverture d'entrée située en amont et l'ouverture de sortie située en aval de telle manière que les premier et second flux d'air circulent en co-courant.
Les organes d'inversion sont des volets mobiles en translation et adaptés pour obturer et rendre passantes sélectivement les ouvertures d'entrée et sortie du second flux d'air dans le bloc central. L'invention concerne également une installation de traitement d'air comprenant un échangeur tel que mentionné ci-dessus, le second flux d'air étant un flux d'air extrait d'un local.
L'invention concerne également un procédé de protection contre le givre et de nettoyage d'un échangeur tel que mentionné ci-dessus caractérisé en ce qu'il comprend une étape consistant à nettoyer le réseau de canaux dans lequel s'écoule le flux d'air le plus chargé en particules en inversant ce flux d'air de manière qu'il s'écoule dans le même sens que le flux d'air le moins chargé en particules.
L'invention sera mieux comprise et d'autres avantages de celle-ci apparaîtront plus clairement à la lumière de la description qui va suivre d'un échangeur et d'une installation de traitement d'air conformes à son principe, faite à titre d'exemple non limitatif en référence aux dessins annexés dans lesquels :
- les figures 1 , 2 et 3 sont des vues en perspective schématique d'un échangeur conforme à un premier mode de réalisation de l'invention, dans une première, une deuxième et une troisième configuration de fonctionnement ;
- les figures 4, 5 et 6 sont des vues de coté à une échelle inférieure à celle des figures 1 à 3, d'un échangeur conforme à un deuxième mode de réalisation de l'invention, dans les première, deuxième et troisième configurations de fonctionnement ;
- les figures 7, 8 et 9 sont des vues de côté d'un échangeur conforme à un troisième mode de de réalisation de l'invention dans les première, deuxième et troisième configurations de fonctionnement ;
- la figure 10 est une vue en perspective d'une partie centrale de l'échangeur des figures 7 à 9 ;
- la figure 1 1 est une vue à plus grande échelle du détail XI à la figure 10.
Sur les figures 1 à 3 est représenté un échangeur 1 à double flux à contre-courant. L'échangeur 1 comporte un compartiment d'échange 3 qui inclut un premier réseau de canaux 31 et un second réseau de canaux 32 orientés selon un axe longitudinal X-X' de l'échangeur 1 . Un premier flux d'air F1 circule dans le réseau de canaux 31 entre une ouverture d'entrée 51 ménagée dans une face latérale 5 de l'échangeur 1 et une ouverture de sortie non représentée ménagée dans une face latérale 6 de l'échangeur 1 opposée selon l'axe X-X' à la face latérale 5. De façon connue en soi, le premier réseau de canaux 31 est formé d'une pluralité de colonnes de canaux superposés les uns aux autres. En variante, les canaux du premier réseau de canaux 31 peuvent être groupés horizontalement par rangées. Les canaux du premier réseau de canaux 31 ont, de préférence, une section transversale de la forme d'un parallélogramme, de préférence d'un losange.
Un second flux d'air F2 circule dans le second réseau de canaux 32. De façon optionnelle, le second flux d'air F2 entre dans l'échangeur 1 par une ouverture d'entrée 81 d'une face supérieure 8 de l'échangeur 1 située du côté de la face latérale 6, et en sort par une ouverture de sortie 82 de la face supérieure 8 située du côté de la face latérale 5. Le second réseau de canaux 32 est formé par des espaces délimités par les colonnes de canaux du premier réseau de canaux 31 . Au voisinage des faces 5 et 6, le compartiment comprend des ouvertures 33 qui débouchent respectivement en regard des ouvertures de sortie 82 et d'entrée 81 du second flux d'air F2, de sorte que le second flux d'air F2 entre et sort du compartiment d'échange 3 et de l'échangeur 1 parallèlement à un axe Z-Z' perpendiculaire à la face supérieure 8.
Les canaux 31 et 32 sont placés de manière à permettre des échanges thermiques entre le premier flux d'air F1 et le second flux d'air F2. Dans une configuration de fonctionnement normal de l'échangeur 1 représentée à la figure 1 , le second flux d'air F2 circule, entre l'ouverture d'entrée 81 et l'ouverture de sortie 82, dans un sens opposé au premier flux d'air F1 , afin d'obtenir des échanges thermiques à contre-courant.
Afin d'éviter le givrage de l'échangeur 1 , l'échangeur 1 comprend des organes d'inversion du sens d'écoulement du second flux d'air F2 dans le second réseau de canaux 32 adaptés pour protéger l'échangeur 1 contre le givre. Pour cela, l'échangeur 1 comprend un premier compartiment de dérivation 10 qui relie fluidiquement l'ouverture d'entrée 81 à l'ouverture de sortie 82 et ne comprend aucune surface d'échange thermique avec le premier réseau de canaux 31 . Autrement dit, le premier compartiment de dérivation 10 constitue un moyen de « by-pass » de l'échangeur 1 , permettant de supprimer les échanges thermiques entre le flux d'air F1 et le second flux d'air F2.
Le premier compartiment de dérivation 10 communique fluidiquement avec le second réseau de canaux 32 du côté de l'ouverture de sortie 82, de sorte que, au voisinage de la face latérale 5, le premier compartiment de dérivation 10 est apte à communiquer fluidiquement à la fois avec l'extérieur de l'échangeur 1 à travers l'ouverture de sortie 82, et avec le second réseau de canaux 32 à travers les ouvertures 33.
L'ouverture d'entrée 81 du second flux d'air F2 communique simultanément avec le second réseau de canaux 32 du côté de la face latérale 6 et avec le premier compartiment de dérivation 10. L'échangeur 1 comprend un organe de direction de flux, formé par un volet 12, adapté pour diriger sélectivement le second flux d'air F2, formé par l'air entrant dans l'échangeur 1 par l'ouverture d'entrée 81 , soit vers le second réseau de canaux 32, comme cela est représenté à la figure 1 en configuration normale de l'échangeur 1 , soit vers le premier compartiment de dérivation 10, comme cela est représente aux figures 2 et 3. Le volet 12 est monté pivotant selon un axe Y12 perpendiculaire à l'axe X-X'.
L'échangeur 1 comprend également des moyens d'obturation de l'ouverture de sortie 82 du second flux d'air F2. Ces moyens d'obturation comprennent un volet 14 monté pivotant par rapport à la paroi supérieure 8 de l'échangeur 1 selon un axe Y14 perpendiculaire à l'axe X-X'.
Dans la configuration normale de fonctionnement de l'échangeur 1 représentée à la figure 1 , le volet 12 est dans une première position verticale et obture le compartiment de dérivation 10. Le flux d'air F2 entre dans l'échangeur 1 par l'ouverture d'entrée 81 , passe dans le second réseau de canaux 32 et sort de l'échangeur 1 par l'ouverture de sortie 82. L'échangeur 1 peut fonctionner selon un mode « by-pass » représenté à la figure 2, dans lequel le volet 12 est dans une seconde position inclinée dans laquelle il oriente le second flux d'air F2 vers le compartiment de dérivation 10. Dans ce cas, le volet 12 est jointif avec une cloison intermédiaire 15 perpendiculaire à la face latérale 6 et ferme l'accès au second réseau de canaux. Le second flux d'air F2 ne passe donc pas dans le second réseau de canaux 32 et sort directement de l'échangeur 1 par l'ouverture de sortie 82, le volet 14 étant ouvert. De cette façon, aucun échange thermique n'a lieu dans l'échangeur 1 .
Dans un troisième mode de fonctionnement représenté à la figure 3, les risques de givrage de l'échangeur 1 sont réduits, tout en maintenant les échanges thermiques entre les flux d'air F1 et F2. Dans cette configuration, le volet 12 est dans sa seconde position de manière à orienter le second flux d'air F2 vers le premier compartiment de dérivation 10. Dans cette configuration, le volet 14 est fermé de sorte qu'au débouché du premier compartiment de dérivation 10 du côté de la face latérale 5, le second flux d'air F2 est orienté vers le second réseau de canaux 32, qui communique fluidiquement avec le premier compartiment de dérivation 10. Le second flux d'air F2 emprunte donc le second réseau de canaux 32 dans le sens inverse à celui du premier mode de fonctionnement représenté à la figure 1 , c'est-à-dire en s'écoulant parallèlement à l'axe X-X', dans un sens allant de la face latérale 5 vers la face latérale 6, comme le premier flux d'air F1 . Des échanges thermiques entre les premiers et seconds flux d'air ont donc lieu dans le même sens selon l'axe X-X'. En prenant le premier flux d'air F1 comme source froide et le second flux d'air F2 comme source chaude, on obtient un fonctionnement dans lequel la source chaude entre du même côté que la source froide. La température de sortie du fluide froid est donc inférieure à la température de sortie du fluide chaud, ce qui permet d'éviter le givrage de l'échangeur 1 . Les organes d'inversion du sens de circulation du second flux d'air F2 dans le second réseau de canaux sont donc adaptés pour protéger l'échangeur 1 contre le givre.
Pour évacuer le second flux d'air F2 au sortir du second réseau de canaux 32 du côté de la face latérale 6, l'échangeur 1 comprend un second compartiment de dérivation 16, avantageusement placé le long d'une face longitudinale 20 de l'échangeur 1 , qui forme un conduit d'évacuation du second flux d'air F2.
Le second compartiment de dérivation 16 inclut une entrée 160, formée par un espace compris l'ouverture 33 du côté de la face 6 et la cloison intermédiaire 15, communiquant fluidiquement avec le second réseau de canaux 32 du côté de l'ouverture d'entrée 81 . Le second compartiment de dérivation 16 est muni d'une sortie formant une seconde ouverture de sortie 162 du second flux d'air F2 ménagée au voisinage de l'ouverture de sortie 82 du côté de la face latérale 5. La seconde ouverture de sortie 162 est masquée, dans la configuration des figures 1 et 2, par un volet 18 pivotant selon un axe Y18 perpendiculaire à l'axe X-X'.
Les axes Y14 et Y18 sont représentées sur les figures comme étant confondus, les volets 14 et 18 pouvant être manœuvrés simultanément. En variante, les volets 14 et 18 peuvent être manœuvrables séparément selon des axes Y14 et Y18 distincts.
Dans le troisième mode de fonctionnement, lorsque le second flux d'air F2 sort du second réseau de canaux 32 du côté de l'ouverture d'entrée 81 , le volet 12 dirige le second flux d'air F2 vers l'entrée 160. Le second flux d'air F2 est empêché de sortir par l'ouverture d'entrée 81 par le volet 12 et la cloison intermédiaire 15. Le second flux d'air F2 emprunte une trajectoire perpendiculaire à l'axe X-X', tel que cela est représenté à la figure 3, en direction du second compartiment de dérivation 16.
L'échangeur 1 est intégré à une installation de traitement d'air et le second flux d'air F2 est un flux d'air extrait d'un local. Le second flux d'air a une température supérieure à la température du premier flux d'air F1 . En configuration by-pass de l'échangeur 1 , le flux d'air extrait étant naturellement plus chargé en particules est dévié dans le compartiment de dérivation 10, ce qui permet d'éviter l'encrassement du second réseau de canaux 32.
Lors du passage du mode de fonctionnement contre-courant en mode co-courant, l'inversion du sens d'écoulement du flux d'air extrait F2 le plus chargé en particules permet nettoyage des couches superficielles de particules qui se seraient éventuellement déposées sur les surfaces du second réseau de canaux 32, le flux d'air extrait étant généralement plus pollué et moins filtré . L'inversion du sens de circulation du second flux d'air permet donc un fonctionnement optimal de l'échangeur 1 dans le temps.
Un deuxième et un troisième modes de réalisation de l'invention sont respectivement représentés sur les figures 4, 5 et 6 et sur les figures 7 à 1 1 . Dans ces modes de réalisation, les éléments similaires au premier mode de réalisation portent la même référence et fonctionnent de la même manière. Seules les différences par rapport au premier mode de réalisation sont détaillées ci-après.
Dans le mode de réalisation des figures 4 à 6, l'organe de direction de flux est formé par une vanne circulaire 12. La vanne 12 est montée pivotante selon un axe Y12 perpendiculaire à l'axe X-X' et comprend une paroi centrale 120. La vanne 12 comprend une paroi de séparation 122 qui définit, avec la paroi centrale 120, un premier canal 126. La vanne 12 comprend également une paroi de séparation 124, opposée à la paroi 122 par rapport à l'axe Y12, qui définit avec la paroi centrale 120, un second canal 128. Les canaux 126 et 128 sont aptes à diriger le second flux d'air F2 soit vers le second réseau de canaux soit vers le compartiment de dérivation 10.
Sur les figures 4, 5 et 6, les flux d'air F1 et F2 sont représentés comme circulant dans le même plan. En réalité, les flux d'air F1 et F2 circulent dans des plans décalés. Le premier flux d'air sort de la face latérale 6 par une ouverture 61 . En outre, dans ce mode de réalisation, l'échangeur 1 comporte un compartiment de dérivation 16 similaire à celui du premier mode de réalisation et qui n'est pas représenté compte tenu de l'orientation des figures 4, 5 et 6.
Dans la configuration normale représentée à la figure 4, la vanne 12 est dans une première position dans laquelle les canaux 126 et 128 orientent le second flux d'air F2 vers le second réseau de canaux 32, et le volet 14 est ouvert pour que le flux d'air F2 puisse être évacué de l'échangeur 1 .
Dans la configuration de la figure 4, la paroi de séparation 122 ferme le premier compartiment de dérivation 10 de manière que le second flux d'air ne puisse pas s'écouler vers le compartiment 10, et la paroi de séparation 124 ferme l'ouverture du second compartiment de dérivation 16.
Dans la configuration des figures 5 et 6, le premier canal 126 oriente le second flux d'air F2 vers le premier compartiment de dérivation 10.
Dans ce mode de réalisation, l'ouverture 160 est située contre la paroi supérieure 8 et la cloison intermédiaire 15.
Dans la configuration de la figure 6, lorsque le second flux d'air F2 sort du second réseau de canaux 32 au voisinage de l'ouverture d'entrée 81 , le second canal 128 de la vanne 12 empêche le second flux d'air F2 de sortir de l'échangeur 1 et dirige le second flux d'air F2 vers l'ouverture 160 du second compartiment de dérivation 16, afin qu'il soit évacué de l'échangeur 1 par la seconde ouverture de sortie 162, qui est, dans ce cas, rendue passante par l'ouverture du volet 18.
Un échangeur 200 conforme à un troisième mode de réalisation est représenté sur les figures 7 à 1 1 . Dans ce mode de réalisation, l'échangeur ne comprend pas une ouverture d'entrée du second flux d'air F2 située sur un premier côté d'une face de l'échangeur et une ouverture de sortie située sur un côté de ladite face opposé au premier côté. L'échangeur 200 comprend deux faces latérales opposées 202 et 204, ainsi qu'une face supérieure 206 et une face inférieure 208. La face latérale 202 comprend une ouverture d'entrée 202a du premier flux d'air F1 dans l'échangeur 1 et une ouverture de sortie du second flux d'air F2 de l'échangeur 1 . La face latérale 204 comprend une ouverture d'entrée 204a du second flux d'air F2 et une ouverture de sortie 204b du premier flux d'air F1 .
L'échangeur 200 comprend un bloc central 210 comprenant un compartiment d'échange 212 formé par le premier réseau de canaux 31 et le second réseau de canaux 32, qui sont visibles à la figure 1 1 . Le bloc central 210 est placé dans l'échangeur 200 de façon oblique de telle manière que les flux d'air F1 et F2 circulent selon des directions obliques dans le bloc central 210. Dans le compartiment d'échange 212, les canaux 31 et 32 sont orientés selon une direction oblique X200.
De part et d'autre du compartiment d'échange 212 selon la direction X200, le bloc central comprend deux sections d'extrémité 214 et 216 constituées de plaques 218 parallèles entre elles et parallèles au plan des figures 7 à 9. Ces plaques 218 définissent des espaces 220 ouverts du côté de l'entrée 202a et de la sortie 204b pour former un chemin adapté pour la circulation du premier flux d'air F1 dans l'échangeur via le compartiment d'échange 212.
Le bloc central 210 comprend des ouvertures 210a et 210b d'entrée du second flux d'air F2 dans le bloc central 210, qui permettent la communication entre les sections d'extrémité 214 et 216 avec l'ouverture 204b. Du côté de l'ouverture 204b, les plaques 218 définissent des espaces 222 ouverts du côté de l'entrée 204a adaptés pour la circulation du second flux d'air F2. Les espaces 220 et 222 sont alternés de manière que les flux d'air F1 et F2 circulent dans des plans décalés.
De façon similaire, le bloc central 210 comprend des ouvertures 210c et 21 Od de sortie du second flux d'air F2 dans le bloc central 210, qui permettent la communication entre les sections d'extrémité 214 et 216 et l'ouverture 202b. Les espaces 222 s'ouvrent du côté de l'ouverture 202b de telle manière que le flux d'air F2 puisse sortir de l'échangeur 200 après son passage dans le bloc central 210. Les ouvertures 210a et 210b sont alignées avec les ouvertures 210c et 21 Od selon une direction perpendiculaire à la direction X200. Les ouvertures 210a et 210c sont situées en amont du compartiment d'échange 212 par rapport au sens de circulation du premier flux d'air F1 , tandis que les ouvertures 210b et 21 Od sont situées en aval du compartiment d'échange 212 par rapport au sens de circulation du premier flux d'air F1 .
Les espaces 220 sont ouverts uniquement du côté des ouvertures 202a et 204b et sont fermés du côté des ouvertures 204a et 202b.
L'échangeur 200 comprend des volets 224 et 226 permettant de diriger le second flux d'air F2. Le volet 224 est mobile en translation selon la direction X200 entre une première position, dans laquelle le volet 224 obture l'ouverture 210a mais laisse passante l'ouverture 210b, et une seconde position dans laquelle il laisse passante l'ouverture 210a et obture l'ouverture 210b. Le volet 226 est mobile en translation selon la direction X200 entre une première position, dans laquelle le volet 226 obture l'ouverture 21 Od mais laisse passante l'ouverture 210c, et une seconde position dans laquelle il laisse passante l'ouverture 21 Od et obture l'ouverture 210c.
Ainsi, lorsque les volets 224 et 226 sont dans leur première position, le second flux d'air F2 entre dans le bloc central par l'ouverture 210b perpendiculairement à direction X200, par la section d'extrémité 216, comme cela est représenté à la figure 7. Le second flux d'air F2 passe ensuite dans le compartiment d'échange 212 puis sort du bloc central 210 par l'ouverture 210c. L'ouverture 210b étant en aval du compartiment d'échange 212 alors que l'ouverture 210c est en amont, on obtient une configuration de fonctionnement normal de l'échangeur 200, dans laquelle les flux d'air F1 et F2 circulent à contre-courant dans le compartiment d'échange 212 pour obtenir un rendement d'échange thermique élevé.
Lorsque le volet 226 est dans la seconde position et que le volet 224 reste dans la première position, comme cela est représenté à la figure 8 dans une deuxième configuration dite de « bypass », le second flux d'air F2 est dérivé en dehors du compartiment d'échange 212 et sort directement du bloc central 210 par l'ouverture 21 Od sans passer dans le compartiment d'échange 212. Dans cette configuration, des échanges thermiques à faible rendement ont lieu entre le flux d'air F1 et le flux d'air F2 dans la section d'extrémité 216, entre les espaces 220 et 222.
Les volets 224 et 226 forment des organes d'inversion du sens de circulation du second flux d'air F2 dans l'échangeur 200, adaptés pour protéger l'échangeur 200 contre le givre. En effet, dans une troisième configuration représentée à la figure 9, le second flux d'air F2 entre dans le bloc central 210 par l'ouverture 210a et en sort par l'ouverture 21 Od. L'ouverture 210a étant en amont du compartiment d'échange 212 et l'ouverture 21 Od étant en aval, le second flux d'air F2 passe donc dans le compartiment d'échange 212 dans le même sens que le premier flux d'air F1 , ou à « co-courant » ce qui permet de limiter les échanges thermiques entre les flux d'air F1 et F2 afin d'éviter que l'un des flux atteigne une température trop basse et provoque le givrage de l'échangeur 200.
Selon un mode de réalisation non représenté, les volets 224 et 226 peuvent être remplacés par d'autres types d'organes d'inversion du sens de circulation du second flux d'air F2 aptes à obturer et à rendre passantes les ouvertures 210a, 210b, 210c et 21 Od, comme des volets rotatifs, des clapets ou des registres ou tous autres organes adaptés.

Claims

REVENDICATIONS
1 . - Echangeur air/air (1 ; 200) à double flux à contre-courant comportant un premier réseau de canaux (31 ) orientés selon un axe longitudinal (Χ-Χ' ; X200) de l'échangeur (1 ; 200), adapté pour la circulation d'un premier flux d'air (F1 ) dans un premier sens, et un second réseau de canaux (32) orientés selon l'axe longitudinal (X-X' ; X200) de l'échangeur (1 ; 200), adapté pour la circulation d'un second flux d'air (F2) dans le sens opposé au premier flux d'air (F1 ), caractérisé en ce qu'il comprend des organes (10, 12, 14 ; 224 ; 226) d'inversion du sens d'écoulement du second flux d'air (F2) dans le second réseau de canaux (32), de telle manière que les premier et second flux d'air (F1 , F2) circulent en co-courant, adaptés pour protéger l'échangeur (1 ) contre le givre.
2. - Echangeur selon la revendication 1 , caractérisé en ce qu'il comprend une ouverture d'entrée (81 ) du second flux d'air (F2) située sur un premier côté d'une face (8) de l'échangeur (1 ) et une ouverture de sortie (82, 162) du second flux d'air (F2) située sur un côté de ladite face (8) de l'échangeur (1 ) opposé au premier côté.
3. - Echangeur selon l'une des revendications 1 et 2, caractérisé en ce que les organes d'inversion du sens d'écoulement du second flux d'air (F2) dans le second réseau de canaux (32) comprennent :
- un premier compartiment de dérivation (10), ne comprenant aucune surface d'échange thermique avec le premier réseau de canaux (31 ), et reliant fluidiquement une ouverture d'entrée (81 ) du second flux d'air (F2) de l'échangeur et une première ouverture de sortie (82) du second flux d'air (F2) de l'échangeur (1 ), pouvant être utilisé dans une configuration de by-pass de l'échangeur (1 ),
- un organe (12) de direction de flux adapté pour diriger sélectivement le second flux d'air (F2) vers le second réseau de canaux (32) ou vers le premier compartiment de dérivation (10), et
- des moyens d'obturation (14) de la première ouverture de sortie (82) du second flux d'air (F2) de manière que le second flux d'air (F2) passe dans le second réseau de canaux (32) après son passage dans le premier compartiment de dérivation (10).
4. - Echangeur selon la revendication 3, caractérisé en ce que les moyens d'obturation de la première ouverture de sortie (82) du second flux d'air (F2) comprennent un volet (14) monté pivotant par rapport à une face (8) de l'échangeur (1 ) dans laquelle est ménagée la première ouverture de sortie (82).
5. - Echangeur selon l'une des revendications 3 et4, caractérisé en ce que l'organe (12) de direction du second flux d'air (F2) est adapté, lorsqu'il dirige le second flux d'air
(F2) vers le second réseau de canaux (32), pour empêcher le passage du second flux d'air (F2) dans le premier compartiment de dérivation (10).
6. - Echangeur selon l'une des revendications 3 à 5, caractérisé en ce qu'il comprend un second compartiment de dérivation (16) incluant une entrée (160) communiquant fluidiquement avec le second réseau de canaux (32) du côté de l'ouverture d'entrée (81 ) du second flux d'air (F2) et, une sortie (162), formant une seconde ouverture de sortie (162) du second flux d'air (F2), au voisinage de la première ouverture de sortie (82) du second flux d'air (F2).
7. - Echangeur selon la revendication 6, caractérisé en ce qu'il comprend un volet (18) d'obturation de la seconde ouverture de sortie (162) du second flux d'air (F2).
8. - Echangeur selon l'une des revendications 6 et 7, caractérisé en ce l'organe (12) de direction du second flux d'air (F2) est adapté, lorsqu'il dirige le second flux d'air
(F2) vers le premier compartiment de dérivation (10), pour diriger le second flux d'air vers le second compartiment de dérivation (16) après le passage du second flux d'air (F2) dans le second réseau de canaux (32), et pour empêcher le second flux d'air (F2) sortant du second réseau de canaux (32) de sortir de l'échangeur (1 ) par l'ouverture d'entrée (81 ) du second flux d'air (F2).
9. - Echangeur selon l'une des revendications 6 à 8, caractérisé en ce que l'organe (12) de direction de flux comprend des moyens de séparation (122) qui empêchent le passage du second flux d'air (F2) dans le premier compartiment de dérivation (16) lorsque l'organe (12) de direction de flux dirige le second flux d'air (F2) vers le second réseau de canaux (32).
10. - Echangeur selon l'une des revendications 3 à 9, caractérisé en ce que l'organe de direction de flux est une vanne (12) mobile en rotation selon un axe (Y12) perpendiculaire à l'axe longitudinal (Χ-Χ') de l'échangeur (1 ).
1 1 .- Echangeur selon la revendication 1 , caractérisé en ce qu'il comprend un bloc central (210) incluant un compartiment d'échange (212) dans lequel les premier et second réseaux de canaux (31 , 32) sont montés, le bloc central (210) comprenant des ouvertures d'entrée (210a) et de sortie (210c) du second flux d'air dans le bloc central (210) situées en amont du compartiment d'échange (212) par rapport au sens de circulation du premier flux d'air (F1 ) dans le compartiment d'échange (212), et des ouvertures d'entrée (210b) et de sortie (21 Od) du second flux d'air dans le bloc central (210) situées en aval du compartiment d'échange (212) par rapport au sens de circulation du premier flux d'air (F1 ) dans le compartiment d'échange (212), et en ce que les organes (224, 226) d'inversion du sens de circulation du second flux d'air (F2) sont adaptés pour rendre passantes l'ouverture d'entrée (210a) située en amont et l'ouverture de sortie (21 Od) située en aval de telle manière que les premier et second flux d'air (F1 , F2) circulent en co-courant.
12. Echangeur selon la revendication 1 1 , caractérisé en ce que les organes d'inversion sont des volets (224, 226) mobiles en translation et adaptés pour obturer et rendre passantes sélectivement les ouvertures d'entrée (210a, 210b) et sortie (210c, 21 Od) du second flux d'air (F2) dans le bloc central (210).
13.- Installation de traitement d'air caractérisée en ce qu'elle comprend un échangeur (1 ) selon l'une des revendications précédentes, et en ce que le second flux d'air (F2) est un flux d'air extrait d'un local.
14.- Procédé de protection contre le givre et de nettoyage d'un échangeur (1 ) selon l'une des revendications 1 à 12, caractérisé en ce qu'il comprend une étape consistant à nettoyer le réseau de canaux (32) dans lequel s'écoule le flux d'air (F2) le plus chargé en particules en inversant ce flux d'air (F2) de manière qu'il s'écoule dans le même sens que le flux d'air (F1 ) le moins chargé en particules.
PCT/EP2014/076017 2013-11-28 2014-11-28 Echangeur air/air à double flux, installation de traitement d'air et méthode de protection contre le givre et de nettoyage d'un tel échangeur WO2015079046A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480071509.3A CN106104194B (zh) 2013-11-28 2014-11-28 双流式空气/空气交换器,用于处理空气的设备以及用于保护该交换器免受结冰危害以及用于清洁该交换器的方法
CA2931562A CA2931562A1 (fr) 2013-11-28 2014-11-28 Echangeur air/air a double flux, installation de traitement d'air et methode de protection contre le givre et de nettoyage d'un tel echangeur
US15/039,528 US10408479B2 (en) 2013-11-28 2014-11-28 Dual-flow air/air exchanger, apparatus for processing air and method for protecting such an exchanger against ice and for cleaning same
EP14809316.4A EP3074711A1 (fr) 2013-11-28 2014-11-28 Echangeur air/air à double flux, installation de traitement d'air et méthode de protection contre le givre et de nettoyage d'un tel échangeur
JP2016555923A JP6685917B2 (ja) 2013-11-28 2014-11-28 デュアルフロー空気/空気交換器、空気を処理するための装置、およびそうした交換器を氷から保護すると共にそれを浄化するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1361798 2013-11-28
FR1361798A FR3013823B1 (fr) 2013-11-28 2013-11-28 Echangeur air/air a double flux, installation de traitement d'air et methode de nettoyage d'un tel echangeur

Publications (1)

Publication Number Publication Date
WO2015079046A1 true WO2015079046A1 (fr) 2015-06-04

Family

ID=49998524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/076017 WO2015079046A1 (fr) 2013-11-28 2014-11-28 Echangeur air/air à double flux, installation de traitement d'air et méthode de protection contre le givre et de nettoyage d'un tel échangeur

Country Status (7)

Country Link
US (1) US10408479B2 (fr)
EP (1) EP3074711A1 (fr)
JP (1) JP6685917B2 (fr)
CN (1) CN106104194B (fr)
CA (1) CA2931562A1 (fr)
FR (1) FR3013823B1 (fr)
WO (1) WO2015079046A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873547B2 (en) 2013-03-15 2018-01-23 Tippmann Companies Llc Heat transfer system for warehoused goods
FR3078150B1 (fr) * 2018-12-04 2021-01-15 Valeo Systemes Thermiques Echangeur de chaleur pour composant électrique et ensemble dudit échangeur et dudit composant
CN110094830A (zh) * 2019-04-02 2019-08-06 三菱重工金羚空调器有限公司 空调换热器自清洁方法
CN110726206B (zh) * 2019-10-10 2020-11-06 珠海格力电器股份有限公司 烘干装置及其除霜控制方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102393A (en) * 1975-09-23 1978-07-25 Uop Inc. Heat exchange apparatus
WO1980002064A1 (fr) * 1979-03-21 1980-10-02 S Thunberg Echangeur de chaleur pour la ventilation de pieces ou de batiments
DE20209031U1 (de) * 2002-06-11 2002-08-29 Trox Gmbh Geb Belüftungssystem zur Raumbe- und -entlüftung
FR2874421A1 (fr) * 2004-08-17 2006-02-24 Lgl France Sa Procede de regulation de l'alimentation en air neuf d'une installation de conditionnement d'air d'une enceinte et installation mettant en oeuvre ce procede
CA2509571A1 (fr) * 2005-06-09 2006-12-09 Imperial Sheet Metal Ltd. Systeme de degivrage a derivation sensible a la pression
DE102008048405B3 (de) * 2008-09-23 2010-04-22 Alstom Technology Ltd. Rohrbündel-Wärmetauscher zur Regelung eines breiten Leistungsbereiches
WO2010074641A1 (fr) * 2008-12-23 2010-07-01 Cellomatic Ab Dispositif de ventilation à flux d'air alternés
FR2961891A1 (fr) 2010-06-23 2011-12-30 Aldes Aeraulique Echangeur aeraulique a plaques alveolees
EP2597388A2 (fr) * 2011-11-25 2013-05-29 Aeropulmo, besloten vennotschap met Beperkte aansprakelijkheid Unité de ventilation, système de ventilation et procédé de ventilation d'un bâtiment
FR2983284A1 (fr) * 2011-11-30 2013-05-31 Valeo Systemes Thermiques Circuit comprenant un echangeur interne dont une branche est parcourue par un fluide refrigerant selon deux sens opposes

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409520A (en) 1920-05-08 1922-03-14 Bird John Cooling, heating, and ventilating apparatus
US4460388A (en) * 1981-07-17 1984-07-17 Nippon Soken, Inc. Total heat exchanger
JPS60106038U (ja) * 1983-12-23 1985-07-19 松下電工株式会社 室内換気装置
JPS60106038A (ja) 1984-07-20 1985-06-11 Hitachi Ltd 光学装置
JPH01106844A (ja) 1987-10-20 1989-04-24 Nippon Oil & Fats Co Ltd ヒドロキシアリール脂肪酸類の製造法
JPH01106844U (fr) * 1988-01-08 1989-07-19
JP3837988B2 (ja) 2000-03-01 2006-10-25 三菱電機株式会社 熱交換換気装置
US6408941B1 (en) * 2001-06-29 2002-06-25 Thermal Corp. Folded fin plate heat-exchanger
NL1020141C2 (nl) 2002-03-11 2003-09-12 Level Energietech Bv Tegen bevriezing bestendige warmtewisselaar.
JP2004124808A (ja) * 2002-10-02 2004-04-22 Hino Motors Ltd Egrクーラ
DE10303910A1 (de) * 2003-01-31 2004-08-12 Arvin Technologies Inc., Columbus Baugruppe bestehend aus Abgas-Wärmetauscher und Bypass
US20070261837A1 (en) * 2005-12-01 2007-11-15 Modine Manufacturing Company Compact high temperature heat exchanger, such as a recuperator
DE202007012261U1 (de) 2007-08-31 2007-11-22 Penzkofer, Ludwig Wärmetauscher
EP2096369A1 (fr) 2008-02-29 2009-09-02 Deerns Raadgevende Ingenieurs B.V. Appareil et procédé pour refroidir un espace avec l'air de recirculation
US8235093B2 (en) * 2008-06-19 2012-08-07 Nutech R. Holdings Inc. Flat plate heat and moisture exchanger
US20100101764A1 (en) * 2008-10-27 2010-04-29 Tai-Her Yang Double flow-circuit heat exchange device for periodic positive and reverse directional pumping
JP5617585B2 (ja) 2010-07-07 2014-11-05 パナソニック株式会社 熱交換形換気装置
US9664087B2 (en) 2010-07-22 2017-05-30 Wescast Industries, Inc. Exhaust heat recovery system with bypass
DE102010048065A1 (de) 2010-10-12 2012-04-12 Martin GmbH für Umwelt- und Energietechnik Vorrichtung mit einem Wärmetauscher und Verfahren zum Betreiben eines Wärmetauschers einer Dampferzeugungsanlage
JP2012127601A (ja) 2010-12-16 2012-07-05 Shimizu Corp 全熱交換素子
JP5845388B2 (ja) 2011-03-10 2016-01-20 パナソニックIpマネジメント株式会社 熱交換形換気装置
JP5845389B2 (ja) 2011-03-14 2016-01-20 パナソニックIpマネジメント株式会社 熱交換形換気装置
WO2013091099A1 (fr) 2011-12-19 2013-06-27 Dpoint Technologies Inc. Noyau de ventilateur à récupération d'énergie (erv) à contre-courant
JP2013217542A (ja) 2012-04-06 2013-10-24 Panasonic Corp 対向流型熱交換素子とそれを用いた熱交換型換気機器
JP1688804S (fr) 2020-07-30 2021-06-28

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4102393A (en) * 1975-09-23 1978-07-25 Uop Inc. Heat exchange apparatus
WO1980002064A1 (fr) * 1979-03-21 1980-10-02 S Thunberg Echangeur de chaleur pour la ventilation de pieces ou de batiments
DE20209031U1 (de) * 2002-06-11 2002-08-29 Trox Gmbh Geb Belüftungssystem zur Raumbe- und -entlüftung
FR2874421A1 (fr) * 2004-08-17 2006-02-24 Lgl France Sa Procede de regulation de l'alimentation en air neuf d'une installation de conditionnement d'air d'une enceinte et installation mettant en oeuvre ce procede
CA2509571A1 (fr) * 2005-06-09 2006-12-09 Imperial Sheet Metal Ltd. Systeme de degivrage a derivation sensible a la pression
DE102008048405B3 (de) * 2008-09-23 2010-04-22 Alstom Technology Ltd. Rohrbündel-Wärmetauscher zur Regelung eines breiten Leistungsbereiches
WO2010074641A1 (fr) * 2008-12-23 2010-07-01 Cellomatic Ab Dispositif de ventilation à flux d'air alternés
FR2961891A1 (fr) 2010-06-23 2011-12-30 Aldes Aeraulique Echangeur aeraulique a plaques alveolees
EP2597388A2 (fr) * 2011-11-25 2013-05-29 Aeropulmo, besloten vennotschap met Beperkte aansprakelijkheid Unité de ventilation, système de ventilation et procédé de ventilation d'un bâtiment
FR2983284A1 (fr) * 2011-11-30 2013-05-31 Valeo Systemes Thermiques Circuit comprenant un echangeur interne dont une branche est parcourue par un fluide refrigerant selon deux sens opposes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3074711A1

Also Published As

Publication number Publication date
JP6685917B2 (ja) 2020-04-22
CN106104194B (zh) 2019-03-19
EP3074711A1 (fr) 2016-10-05
US20160377304A1 (en) 2016-12-29
FR3013823A1 (fr) 2015-05-29
CN106104194A (zh) 2016-11-09
CA2931562A1 (fr) 2015-06-04
FR3013823B1 (fr) 2018-09-21
JP2016540183A (ja) 2016-12-22
US10408479B2 (en) 2019-09-10

Similar Documents

Publication Publication Date Title
EP3074711A1 (fr) Echangeur air/air à double flux, installation de traitement d'air et méthode de protection contre le givre et de nettoyage d'un tel échangeur
EP1965146B1 (fr) Echangeur de chaleur à condensation comprenant deux faisceaux primaires et un faisceau secondaire
FR2982936A1 (fr) Dispositif de refroidissement d'un fluide et son procede associe
FR2482266A1 (fr) Dispositif ventilateur-aerateur de locaux a deux voies d'ecoulement separees pour l'introduction et pour l'evacuation de l'air
EP2333446A1 (fr) Procédé de nettoyage d'une installation de ventilation, installation de ventilation et récupérateur thermique à double flux
EP2286158B1 (fr) Dispositif échangeur de chaleur double flux
EP3511182B1 (fr) Système de conditionnement d'air à vannes cinq voies, module et procédé correspondant
FR2903345A1 (fr) Dispositif de preventilation, de ventilation, de chauffage et/ou de climatisation d'un habitacle de vehicule, mettant en oeuvre un pulseur et des unites thermoelectriques a effet peltier
FR2977005A1 (fr) Installation de ventilation a chauffage modulable
EP3046784B1 (fr) Dispositif de conditionnement d'air pour véhicule automobile à double flux et répartiteur de froid
FR3057651B1 (fr) Installation de production d’eau chaude sanitaire pour une construction collective
FR2954474A1 (fr) Maison d'habitation avec systeme de climatisation passive
EP2672191A1 (fr) Bac à condensats et appareil de traitement d'air muni d'un tel bac
FR3027099B1 (fr) Dispositif de chauffage ou climatisation d'un local pour habitation
FR3036784A1 (fr) Boucle de climatisation reversible et installation de climatisation reversible integrant une telle boucle
EP3198215B1 (fr) Systeme d'echangeur thermique a performances et compacite ameliorees
EP2993436B1 (fr) Dispositif de gestion thermique à matériau à changement de phase pour véhicule automobile
EP2464530B1 (fr) Circuit de climatisation amélioré
FR2495744A1 (fr) Chaudiere de chauffage pouvant adapter la longueur du trajet des gaz chauds a la puissance du bruleur et a la qualite de la cheminee
BE1010020A3 (fr) Collecteur hydraulique pour cascade d'appareils de chauffage de fluide caloporteur.
FR3059051B1 (fr) Dispositif de conditionnement thermique de fluide pour moteur a combustion
EP3093601B1 (fr) Echangeur thermique
FR3017193A1 (fr) Unite de ventilation de locaux
FR3096117A1 (fr) Dispositif de ventilation d’un local
EP2633242A1 (fr) Système d'échange thermique entre de l'air situé à l'intérieur d'un espace et de l'air situé à l'extérieur de l'espace

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14809316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2931562

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15039528

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016555923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014809316

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014809316

Country of ref document: EP