WO2015078287A1 - 平板音圈电机 - Google Patents

平板音圈电机 Download PDF

Info

Publication number
WO2015078287A1
WO2015078287A1 PCT/CN2014/090589 CN2014090589W WO2015078287A1 WO 2015078287 A1 WO2015078287 A1 WO 2015078287A1 CN 2014090589 W CN2014090589 W CN 2014090589W WO 2015078287 A1 WO2015078287 A1 WO 2015078287A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
main
main magnetic
coil unit
voice coil
Prior art date
Application number
PCT/CN2014/090589
Other languages
English (en)
French (fr)
Inventor
段素丙
张志钢
陈庆生
刘小虎
Original Assignee
上海微电子装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备有限公司 filed Critical 上海微电子装备有限公司
Priority to SG11201604223RA priority Critical patent/SG11201604223RA/en
Priority to US15/038,992 priority patent/US20160380524A1/en
Priority to JP2016554782A priority patent/JP2016537963A/ja
Priority to EP14865143.3A priority patent/EP3076531A4/en
Publication of WO2015078287A1 publication Critical patent/WO2015078287A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/34Reciprocating, oscillating or vibrating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present invention relates to a semiconductor processing apparatus, and more particularly to a flat voice coil motor.
  • the flat-type voice coil motor manufactured based on the principle of Ampere is simple in structure, convenient in maintenance, high in reliability, high in energy conversion efficiency, featuring fixed stroke and direct drive characteristics, smooth force stroke output and linear control, and electrical and mechanical time.
  • the voice coil motor is very suitable for precision positioning units of lithography machines that require fast and high-precision positioning.
  • the operation precision of the multi-degree-of-freedom precision positioning workpiece table in the semiconductor processing equipment lithography machine has reached the sub-micron level, and the vibration of the workpiece table is suppressed to make the positioning more precise. It is usually driven by a voice coil motor.
  • the voice coil motor can also be used in the etch etching focusing system of the lithography machine as an actuator for adjusting the optical head to improve the etching precision.
  • the existing planar voice coil motor has no gravity compensation function of the mover, so that the operation of the motor will be subjected to unnecessary force by gravity. If the gravity compensation function is realized by the added device, it is likely to cause an increase in the motor heat. The adverse effects.
  • the technical problem to be solved by the present invention is to provide a flat voice coil motor capable of realizing gravity compensation of a mover.
  • the present invention provides a flat voice coil motor including a coil unit and two main magnetic pole units, and the two main magnetic pole units apply ampere force to the coil unit.
  • the coil unit includes a weak magnetic small magnet, and the two main magnetic pole units exert a combined force on the weak magnetic small magnet in a vertical direction.
  • Each of the main pole units includes at least one pair of main pole magnets, the pair of main pole magnets being equidistant from the coil unit, the two main pole units being symmetrical about the coil unit.
  • the magnetization directions of the symmetric main pole magnets in the two main pole units are the same, and the magnetization directions of the pair of main pole magnets in the same main pole unit are opposite.
  • the two main magnetic pole units are arranged on the left and right sides of the coil unit to form a transverse main magnetic field
  • the coil unit includes two energizing conductor portions for cutting the main magnetic field, and the two energizing conductor portions are Arrange up and down.
  • Two of the main magnetic pole units apply a vertically upward ampere force to the coil unit, the magnetization direction of the weak magnetic small magnet being the same as the magnetization direction of the two main pole magnets located above it.
  • the two main magnetic pole units are arranged on the upper and lower sides of the coil unit to form a vertical main magnetic field, the coil unit includes two electric conductor portions for cutting the main magnetic field, and the two electric conductor portions Arrange for the left and right.
  • the direction of magnetization of the weak magnetic small magnet is the same as the direction of the ampere force to which the coil unit is applied.
  • the flat voice coil motor further includes a spacer magnet and a back iron, the spacer magnet is located between the pair of the main pole magnets, and the spacer magnet and the pair of main pole magnets are fixedly disposed on the back iron.
  • the flat voice coil motor further includes a spacer magnet, the spacer magnet being located between the pair of the main pole magnets, a magnetization direction of the spacer magnet on the left side and an ampere force applied to the coil unit In the opposite direction, the magnetization direction of the spacer magnet on the right side is the same as the direction in which the coil unit is applied.
  • the flat voice coil motor further includes a spacer magnet, the spacer magnet being located between the pair of the main pole magnets, and the magnetization direction of the lower spacer magnet is the same as the direction of the ampere force applied by the coil unit, above The magnetization direction of the spacer magnet is opposite to the direction of the ampere force to which the coil unit is applied.
  • the weak magnetic small magnet has a length in a direction between two of the coil units that cuts the energized conductor portions of the main magnetic field is smaller than a length in a direction parallel to the weak magnetic small magnets and the main magnetic pole magnets.
  • the coil unit further includes a bobbin and a coil, and the weak magnetic small magnet is disposed in the bobbin, and the coil is disposed outside the coil post, and the direction of the cylinder is the direction of the winding axis.
  • the flat voice coil motor further includes a back iron, the pair of main magnetic pole magnets are fixedly disposed on the back iron, and the winding axis of the coil where the bobbin is located is parallel to the two main magnetic pole units The direction of the main magnetic field formed, the winding axis of the coil where the bobbin is located is perpendicular to the back iron at both ends.
  • the invention provides a weak magnetic small magnet in the coil unit, and the magnetic repulsion or magnetic attraction between the weak magnetic small magnet and the main magnetic pole unit always provides a vertical upward force to the coil unit, thereby realizing the compensation of gravity.
  • the arrangement of the structure is only to replace some of the components in the coil unit with weak magnetic small magnets, which will not affect the ampere force received by the coils in the coil unit, nor increase the heat generated by the motor due to the increase of the structure. The adverse consequences.
  • a flat voice coil motor capable of achieving gravity compensation of a mover is provided.
  • FIG. 1 is a schematic view showing the mechanism of a flat voice coil motor according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing the force of a weak magnetic magnet of a flat voice coil motor according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic perspective structural view of a weak magnetic magnet of a flat voice coil motor according to Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional structural view showing a weak magnetic magnet of a flat voice coil motor according to Embodiment 1 of the present invention.
  • FIG. 5 is a longitudinal sectional structural view showing a weak magnetic magnet of a flat voice coil motor according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic view showing the mechanism of a flat voice coil motor according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic view showing the force of a weak magnetic magnet of a flat voice coil motor according to Embodiment 2 of the present invention.
  • FIG. 8 is a schematic perspective structural view of a weak magnetic magnet of a flat voice coil motor according to Embodiment 2 of the present invention.
  • FIG. 9 is a cross-sectional structural view showing a weak magnetic magnet of a flat voice coil motor according to Embodiment 2 of the present invention.
  • FIG. 10 is a longitudinal sectional structural view showing a weak magnetic magnet of a flat voice coil motor according to Embodiment 2 of the present invention.
  • FIG. 11 is a schematic view showing the mechanism of a flat voice coil motor according to Embodiment 3 of the present invention.
  • FIG. 12 is a schematic perspective structural view of a weak magnetic magnet of a flat voice coil motor according to Embodiment 3 of the present invention.
  • Figure 13 is a cross-sectional view showing the structure of a weak magnetic magnet of a flat voice coil motor according to Embodiment 3 of the present invention.
  • FIG. 14 is a longitudinal sectional structural view showing a weak magnetic magnet of a flat voice coil motor according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic view showing the mechanism of a flat voice coil motor according to Embodiment 4 of the present invention.
  • FIG. 16 is a schematic perspective structural view of a weak magnetic magnet of a flat voice coil motor according to Embodiment 4 of the present invention.
  • Figure 17 is a cross-sectional view showing a weak magnetic magnet of a flat voice coil motor according to a fourth embodiment of the present invention. schematic diagram;
  • FIG. 18 is a longitudinal sectional structural view showing a weak magnetic magnet of a flat voice coil motor according to Embodiment 4 of the present invention.
  • FIG. 1 to FIG. 18 are four optional embodiments of the present invention, and can be considered as techniques in the art. It is possible to modify and polish the person without departing from the spirit and scope of the invention.
  • the embodiment provides a flat voice coil motor having a gravity compensation function, including a coil unit and two main magnetic pole units, and the two main magnetic pole units apply an ampere force T to the coil unit.
  • the coil unit includes a weak magnetic small magnet 107, a coil 104 and a bobbin 105, and the two main magnetic pole units exert a resultant force on the weak magnetic small magnet 107 in a vertical direction to achieve gravity compensation of the coil unit. .
  • a weak magnetic magnet 107 is disposed in the coil unit, and a magnetic repulsion or a magnetic attraction force between the weak magnetic magnet 107 and the main magnetic pole unit always provides a vertical upward force to the coil unit, thereby realizing gravity compensation.
  • the arrangement of the structure is only to replace some of the components in the coil unit with the weak magnetic magnet 107, which does not affect the ampere force received by the coil 104 in the coil unit, and does not increase the motor due to the increase in structure. The adverse consequences of fever.
  • a flat voice coil motor capable of achieving gravity compensation of a mover is provided.
  • each of the main magnetic pole units includes at least one pair of main magnetic pole magnets, labeled as 101a and 102a and 101b and 102b, respectively, and the main magnetic pole magnets 101a and 101b and 102a. And 102b are equidistant from the coil unit, the two main magnetic pole units The coil unit is symmetrical.
  • the magnetization directions of the symmetric main pole magnets in the two main pole units are the same, that is, the magnetization directions of the main pole magnets 101a and 101b in the present embodiment are the same, and the magnetization directions of the main pole magnets 102a and 102b are the same.
  • the magnetization directions of the pair of main magnetic pole magnets in the main magnetic pole unit are opposite, that is, the magnetization directions of the main magnetic pole magnet 101a and the main magnetic pole magnet 102a are opposite in this embodiment, and the main magnetic pole magnet 101b and the main magnetic pole magnet 102b are charged.
  • the magnetic direction is opposite.
  • the coil unit and the two main magnetic pole units all extend in a vertical direction, and the two main magnetic pole magnets in the same main magnetic pole unit are arranged in a vertical direction. That is, the main magnetic pole magnet 101a and the main magnetic pole magnet 102a in Fig. 1 are arranged in the vertical direction, and the main magnetic pole magnet 101b and the main magnetic pole magnet 102b are arranged in the vertical direction.
  • the two main magnetic pole units form a lateral main magnetic field, that is, the magnetization direction of the main magnetic pole magnet in the main magnetic pole unit is disposed in a horizontal direction, and is cut.
  • the two-part energizing conductors of the coil unit of the main magnetic field are arranged up and down.
  • the magnetic attraction force F101a between the two main magnetic pole magnets 101a and 101b and the weak magnetic small magnet 107 located above the weak magnetic small magnet 107 and F101b is combined to apply a vertical upward magnetic force to the coil unit; magnetic between the two main magnetic pole magnets 102a and 102b and the weak magnetic small magnet 107 under the weak magnetic small magnet 107 After the combination of the repulsive forces F102a and F102b, a vertical upward magnetic repulsive force is applied to the coil unit.
  • two of the main magnetic pole units apply a vertically upward ampere force to the coil unit, and a magnetization direction of the weak magnetic small magnet 107 and a charge of the two main magnetic pole magnets located above
  • the magnetic directions are the same.
  • the magnetization directions of the main magnetic pole magnets 101a, 101b, 102a, and 102b are all disposed in the horizontal direction.
  • the magnetization directions of the main magnetic pole magnets 101a and 101b are horizontally leftward, and the main magnetic pole magnet 102a.
  • the magnetization direction of the weak magnetic small magnet 107 is the same as the magnetization direction of the two main magnetic pole magnets 101a and 101b located above.
  • the main magnetic pole magnets 101a, 101b are known.
  • the weak magnetic small magnet 107 has a left end N pole and a right end S pole, so a magnetic attraction force is generated between the N pole and the S pole, and the direction of the magnetic attraction force is obliquely upward as shown in FIG. 2, and two main magnetic poles
  • the components of the magnetic attraction between the magnets 101a and 101b in the horizontal direction cancel each other out, so that a vertically upward force is applied to the weak magnetic small magnet 107, that is, to the coil unit.
  • the magnetization directions of the main magnetic pole magnets 102a and 102b are horizontally to the right, and a magnetic repulsion force is generated to the weak magnetic small magnet 107, that is, a vertical upward force is applied to the coil unit.
  • the flat voice coil motor further includes a spacer magnet 103 and a back iron 106.
  • the spacer magnet 103 and a pair of main magnetic pole magnets 101 and 102 are fixedly disposed on the back iron 106.
  • 103 is located between a pair of the main magnetic pole magnets 101 and 102.
  • the magnetization direction of the spacer magnet 103 is perpendicular to the magnetization directions of the main pole magnets 101 and 102.
  • the magnetization directions of the spacer magnets 103 of the two main magnetic pole units are opposite, and in the present embodiment, the magnetization directions of the magnets 103a and 103b are opposite.
  • the magnetization direction of the spacer magnet 103a on the left side of the weak magnetic small magnet 107 is opposite to the direction of the ampere force to which the coil unit is applied, that is, vertically downward, and the weak magnetic small magnet is located.
  • the magnetization direction of the spacer magnet 103b on the right side of 107 is the same as the direction of the ampere force to which the coil unit is applied, that is, vertically upward.
  • the length of the weak magnetic small magnet 107 in the direction of the ampere direction of the coil unit is greater than the length of the weak small magnet 107 in the direction of the two corresponding spaced magnets 103.
  • the direction of the amperage force T is vertically upward, and the length of the weak magnetic small magnet 107 in the vertical direction is greater than the length of the weak small magnet 107 in the horizontal direction.
  • the coil unit further includes a bobbin 105 and a coil 104.
  • the weak magnetic small magnet 107 is inside the bobbin 105, and the coil 104 is wound around the coil bobbin 105.
  • the bobbin 105 is parallel to the direction of the main magnetic field formed by the two main pole units, and the bobbin is perpendicular to the back iron 106 at both ends. Thereby, the current flow direction of the coil is ensured as shown in FIG. 1, thereby generating a vertical upward ampere force.
  • the difference between the embodiment and the embodiment 1 is mainly that the two main magnetic pole units form a vertical main magnetic field, and the main magnetic field is cut.
  • the two-part energizing conductors of the coil unit are arranged side to side.
  • the direction of magnetization of the weak magnetic small magnet 107 is the same as the direction of the ampere force to which the coil unit is applied.
  • the obliquely upward F102a and F101a as shown in FIG. 7 are generated by the anisotropic attraction between the S pole and the N pole, and the components of the two forces in the horizontal direction cancel each other, thereby applying the weak magnetic small magnet 107.
  • the vertical upward force that is, the vertical upward force is applied to the coil unit, since the magnetization directions of the main magnetic pole magnets 101b and 102b under the coil unit and the upper main magnetic pole magnets 101a and 102a are in the same direction, Therefore, the N pole and the S pole of the main magnetic pole magnets 101b and 102b and the N pole and the S pole of the weak magnetic small magnet 107 are inevitably disposed, and the F102b and F101b shown in FIG. 7 are generated by the same-sex repulsive action. Further, a vertically upward force is applied to the weak magnetic small magnet 107, that is, a vertical upward force is applied to the coil unit.
  • the flat voice coil motor further includes a spacer magnet 103, and the spacer magnet 103 is located between the pair of the main pole magnets 101 and 102, and the magnetization direction of the spacer magnet 103b below
  • the direction in which the coil unit is applied is the same, and the direction of magnetization of the upper spacer magnet 103a is opposite to the direction in which the coil unit is applied.
  • the specific structure is similar to that of the first embodiment. Specifically, it is also provided with a back iron 106 and a magnet 103.
  • the structure of the coil unit is also the same as that of the embodiment 1. For details, refer to FIG. Figure 10 is shown schematically.
  • the main magnetic pole unit in this embodiment includes Two main magnetic pole magnets and a back iron, wherein the main magnetic pole magnet is fixedly disposed on the back iron and a pair of the main magnetic pole magnets are provided with a separation distance, and the weak magnetic small magnet is subjected to ampere along the coil unit The length of the force direction is greater than the length of the weak small magnet along the two corresponding spaced apart directions. Except for this difference, other structures including the main magnetic pole unit, the structure of the coil unit, and the arrangement of the respective components are the same as those in the first embodiment.
  • the present embodiment is similar to the second embodiment.
  • the main magnetic pole unit and the coil unit are all arranged in a vertical direction, and the structure of the coil unit is the same.
  • the structure of the main magnetic pole unit is similar, and the mechanism of action is also Consistently, the only difference from Embodiment 2 is that the main magnetic pole unit in this embodiment is not provided with the magnet 103.
  • the embodiment thereof is similar to the embodiment 3, and the only difference from the embodiment 3 is that the main magnetic pole unit and the coil unit are disposed in the horizontal direction, and other specific structures and the third embodiment are Similarly, the structure thereof can be schematically shown with reference to Figs. 16 to 18.
  • the improvement scheme is to solve the problem that the voice coil motor of the vertical motion of the micro motion vector motor generates too much heat.
  • the micro motion vector motor consists of six motors: three horizontal output and three vertical output voice coil motors.
  • the design quality of the motor load is 20KG, which is distributed to three flat-turn voice coil motors with vertical output. Therefore, each voice coil motor needs 66N in the non-acceleration maglev state, and each motor continues to heat up to 50W (more threatened in the acceleration state). ), this will put a lot of pressure on the motor water-cooled structure.
  • the voice coil motor is a single-phase short-stroke motor, but only has one degree of freedom.
  • the motor coil will generate a considerable amount of energy due to the load gravity, and the gravity will not change, so the energy consumption is not change.
  • gravity compensation is added, the voice coil motor for vertical output only needs to cope with a small amount of gravity, and most of it is compensated by the force between the magnets.
  • the motor has an upward acceleration, it needs to pass a larger current. This improvement can reduce energy consumption by approximately 90% for vertical output voice coil motors.
  • the present invention provides a weak magnetic magnet in the coil unit, and the magnetic repulsion or magnetic attraction between the weak magnetic magnet and the main magnetic pole unit always provides a vertical upward force to the coil unit, thereby realizing gravity. Compensation, and the configuration of the structure is only to replace some of the components in the coil unit with weak magnetic magnets, which will not affect the ampere force of the coils in the coil unit, nor increase the motor due to the increase of the structure. The adverse consequences of fever.
  • a flat voice coil motor capable of achieving gravity compensation of a mover is provided.
  • the weak magnetic small magnet is smaller and shorter because the weak magnetic small magnet itself is relatively weak and the required gravity compensation force is small.
  • a weak magnetic small magnet needs to be embedded in the bobbin to ensure that the weak magnetic small magnet does not break.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

一种平板音圈电机,包括线圈单元和两个主磁极单元。所述两个主磁极单元对所述线圈单元施加安培力,所述线圈单元包括弱磁性小磁铁(107),所述两个主磁极单元对所述弱磁性小磁铁(107)作用合力为竖直向上。在线圈单元中设置弱磁性小磁铁(107),通过所述弱磁性小磁铁(107)与主磁极单元之间的磁斥力或者磁吸力始终为线圈单元提供竖直向上的力,从而实现重力的补偿,且该结构的设置是将线圈单元中的部分构件换成弱磁性小磁铁(107),既不会影响线圈单元中的线圈所受到的安培力,也不会因结构的增加而产生增加电机发热的不利后果。

Description

平板音圈电机 技术领域
本发明涉及半导体加工设备,尤其涉及一种平板音圈电机。
背景技术
基于安培力原理制造的平板型音圈电机结构简单、维护方便、可靠性高、能量转换效率高,具有固定行程和直接驱动特性以及平滑的力行程输出和线性控制的特点,而且电气与机械时间常数低,推力/质量比高,无齿槽效应,不需要换向,理论上有无限的位置灵敏度,无嵌齿、无滞后响应,使音圈电机可以很好地应用在需要高速、高加速度、直线力或转矩响应的伺服控制,基于上述特性,音圈电机十分适用于要求快速、高精度定位的光刻机精密定位单元。
近年来,随着半导体元件集成化程度的提高,半导体加工设备光刻机中的多自由度精密定位工件台的操作精度要求达到了亚微米级,为抑制工件台振动,使其定位更精确,通常使用音圈电机进行驱动。另外,音圈电机也可用于光刻机刻蚀调焦系统中,作为光头调焦的执行机构使用,以提高刻蚀精度。
现有的平面音圈电机均无动子的重力补偿功能,从而使得电机的运作会受到重力作用产生不必要的误差,如果通过外加的设备实现该重力补偿功能,又很有可能造成增加电机发热的不利效果。
发明内容
本发明要解决的技术问题是提供一种能够实现动子的重力补偿的平板音圈电机。
为了解决这一技术问题,本发明提供了一种平板音圈电机,包括线圈单元和两个主磁极单元,两个所述主磁极单元对所述线圈单元施加安培力,所 述线圈单元内包括弱磁性小磁铁,所述两个主磁极单元对所述弱磁性小磁铁作用合力为竖直向上。
每个所述主磁极单元至少包括一对主磁极磁铁,所述一对主磁极磁铁距所述线圈单元的距离相等,所述两个主磁极单元关于所述线圈单元对称。
两个所述主磁极单元中对称的主磁极磁铁的充磁方向相同,同个所述主磁极单元内的一对主磁极磁铁的充磁方向相反。
所述两个主磁极单元排布在所述线圈单元的左右两侧形成横向的主磁场,所述线圈单元包括2个切割所述主磁场的通电导体部分,且所述2个通电导体部分为上下排布。
两个所述主磁极单元对所述线圈单元施加竖直向上的安培力,所述弱磁性小磁铁的充磁方向与位于其上方的两个所述主磁极磁铁的充磁方向相同。
位于所述弱磁性小磁铁上方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁吸合力;位于下方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁斥合力。
所述两个主磁极单元排布在所述线圈单元的上下两侧形成竖向的主磁场,所述线圈单元包括2个切割所述主磁场的通电导体部分,且所述2个通电导体部分为左右排布。
所述弱磁性小磁铁的充磁方向与所述线圈单元被施加的安培力方向相同。
位于所述弱磁性小磁铁上方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁吸合力;位于其下方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁斥合力。
所述平板音圈电机还包括间隔磁铁和背铁,所述间隔磁铁位于一对所述主磁极磁铁之间,所述间隔磁铁和一对主磁极磁铁均固定设在所述背铁上。
所述平板音圈电机还包括间隔磁铁,所述间隔磁铁位于一对所述主磁极磁铁之间,左侧的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力 方向相反,右侧的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相同。
所述平板音圈电机还包括间隔磁铁,所述间隔磁铁位于一对所述主磁极磁铁之间,下方的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相同,上方的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相反。
所述弱磁性小磁铁在所述线圈单元中2个切割所述主磁场的所述通电导体部分之间的方向上的长度小于所述弱磁性小磁铁与主磁极磁铁平行方向上的长度。
所述线圈单元还包括绕线柱和线圈,所述弱磁性小磁铁在所述绕线柱内,所述线圈绕设在所述线圈柱外,柱体所在方向即绕制轴线的方向。
所述平板音圈电机还包括背铁,所述一对主磁极磁铁固定设在所述背铁上,所述绕线柱所在的所述线圈的绕制轴线平行于所述两个主磁极单元形成的主磁场方向,所述绕线柱所在的所述线圈的绕制轴线垂直于两端的所述背铁。
本发明在线圈单元中设置了弱磁性小磁铁,通过所述弱磁性小磁铁与主磁极单元之间的磁斥力或者磁吸力始终为线圈单元提供竖直向上的力,从而实现了重力的补偿,且该结构的设置仅仅是将线圈单元中的部分构件换做了弱磁性小磁铁,既不会影响线圈单元中的线圈所受到的安培力,也不会因结构的增加而产生增加电机发热这样的不利后果。提供一种能够实现动子的重力补偿的平板音圈电机。
附图说明
图1是本发明实施例1所提供的平板音圈电机的机构原理示意图;
图2是本发明实施例1所提供的平板音圈电机的弱磁性磁铁的受力示意图;
图3是本发明实施例1所提供的平板音圈电机的弱磁性磁铁的立体结构示意图;
图4是本发明实施例1所提供的平板音圈电机的弱磁性磁铁的横剖结构示意图;
图5是本发明实施例1所提供的平板音圈电机的弱磁性磁铁的纵剖结构示意图;
图6是本发明实施例2所提供的平板音圈电机的机构原理示意图;
图7是本发明实施例2所提供的平板音圈电机的弱磁性磁铁的受力示意图;
图8是本发明实施例2所提供的平板音圈电机的弱磁性磁铁的立体结构示意图;
图9是本发明实施例2所提供的平板音圈电机的弱磁性磁铁的横剖结构示意图;
图10是本发明实施例2所提供的平板音圈电机的弱磁性磁铁的纵剖结构示意图;
图11是本发明实施例3所提供的平板音圈电机的机构原理示意图;
图12是本发明实施例3所提供的平板音圈电机的弱磁性磁铁的立体结构示意图;
图13是本发明实施例3所提供的平板音圈电机的弱磁性磁铁的横剖结构示意图;
图14是本发明实施例3所提供的平板音圈电机的弱磁性磁铁的纵剖结构示意图;
图15是本发明实施例4所提供的平板音圈电机的机构原理示意图;
图16是本发明实施例4所提供的平板音圈电机的弱磁性磁铁的立体结构示意图;
图17是本发明实施例4所提供的平板音圈电机的弱磁性磁铁的横剖结构 示意图;
图18是本发明实施例4所提供的平板音圈电机的弱磁性磁铁的纵剖结构示意图;
图中,101a、101b、102a、102b-主磁极磁铁;103a、103b-间隔磁铁;104-线圈;105-绕线柱;106-背铁;107-弱磁性磁铁。
具体实施方式
以下将结合图1至图18,通过四个实施例对本发明提供的具有重力补偿功能的平板音圈电机进行详细的描述,其为本发明四个可选的实施例,可以认为本领域的技术人员在不改变本发明精神和内容的范围内能够对其进行修改和润色。
实施例1
请参考图1,本实施例提供了一种具有重力补偿功能的平板音圈电机,包括一线圈单元和两个主磁极单元,两个所述主磁极单元对所述线圈单元施加安培力T,所述线圈单元包括弱磁性小磁铁107、线圈104和绕线柱105,所述两个主磁极单元对所述弱磁性小磁铁107作用合力为竖直向上,以实现所述线圈单元的重力补偿。
本实施例在线圈单元中设置了弱磁性磁铁107,通过所述弱磁性磁铁107与主磁极单元之间的磁斥力或者磁吸力始终为线圈单元提供竖直向上的力,从而实现了重力的补偿,且该结构的设置仅仅是将线圈单元中的部分构件换做了弱磁性磁铁107,既不会影响线圈单元中的线圈104所受到的安培力,也不会因结构的增加而产生增加电机发热这样的不利后果。提供一种能够实现动子的重力补偿的平板音圈电机。
请参考图1,并结合图3至图5,每个所述主磁极单元至少包括一对主磁极磁铁,分别被标注为101a和102a以及101b和102b,所述主磁极磁铁101a和101b以及102a和102b距所述线圈单元的距离相等,所述两个主磁极单元 关于所述线圈单元对称。
两个所述主磁极单元中对称的主磁极磁铁的充磁方向相同,即本实施例中的主磁极磁铁101a与101b的充磁方向相同,主磁极磁铁102a与102b的充磁方向相同,同个所述主磁极单元内的一对主磁极磁铁的充磁方向相反,即本实施例中主磁极磁铁101a与主磁极磁铁102a的充磁方向相反,主磁极磁铁101b与主磁极磁铁102b的充磁方向相反。
在本实施例中,请参考图1和图2,所述线圈单元和两个主磁极单元均沿竖直方向延伸,同一主磁极单元内的两个主磁极磁铁沿竖直方向排布,亦即图1中的主磁极磁铁101a与主磁极磁铁102a是沿竖直方向排布的,主磁极磁铁101b与主磁极磁铁102b是沿竖直方向排布的。
在本实施例中,请参考图1,并结合图4,所述两个主磁极单元形成横向的主磁场,即所述主磁极单元中的主磁极磁铁的充磁方向沿水平方向设置,切割所述主磁场的所述线圈单元的2部分通电导体为上下排布。
在本实施例中,请参考图2,并结合图1,位于所述弱磁性小磁铁107上方的两个所述主磁极磁铁101a与101b与所述弱磁性小磁铁107间的磁吸力F101a与F101b组合叠加以后对所述线圈单元施加了一个竖直向上的磁吸力;位于所述弱磁性小磁铁107下方的两个所述主磁极磁铁102a与102b与所述弱磁性小磁铁107间的磁斥力F102a与F102b组合叠加以后对所述线圈单元施加了一个竖直向上的磁斥力。
在本实施例中,两个所述主磁极单元对所述线圈单元施加竖直向上的安培力,所述弱磁性小磁铁107的充磁方向与位于上方的两个所述主磁极磁铁的充磁方向相同。请参考图1和图2,主磁极磁铁101a、101b、102a和102b的充磁方向均沿水平方向设置,本实施例中主磁极磁铁101a与101b的充磁方向水平向左,主磁极磁铁102a与102b的充磁方向水平向右,所述弱磁性小磁铁107的充磁方向与位于上方的两个所述主磁极磁铁101a和101b的充磁方向相同。具体来说,参考图中的充磁方向可知,主磁极磁铁101a、101b 和弱磁性小磁铁107的均为左端N极,右端S极,所以N极与S极之间会产生磁吸合力,该磁吸力的方向为如图2所示的斜向上,两个主磁极磁铁101a与101b之间的磁吸力在水平方向上的分量互相抵消,故而会对弱磁性小磁铁107,亦即对线圈单元施加一个竖直向上的力。类似的道理,通过磁斥力的作用,主磁极磁铁102a与102b的充磁方向水平向右,会对弱磁性小磁铁107产生磁斥合力,亦即对线圈单元施加一个竖直向上的力。
请参考图1,所述平板音圈电机还包括间隔磁铁103和背铁106,所述间隔磁铁103和一对主磁极磁铁101与102均固定设在所述背铁106上,所述间隔磁铁103位于一对所述主磁极磁铁101与102之间。所述间隔磁铁103的充磁方向垂直于所述主磁极磁铁101和102的充磁方向。两个主磁极单元的所述间隔磁铁103的充磁方向相反,在本实施例中,即磁铁103a与103b的充磁方向相反。
请参考图1,位于所述弱磁性小磁铁107的左侧的间隔磁铁103a的充磁方向与所述线圈单元被施加的安培力方向相反,即竖直向下,位于所述弱磁性小磁铁107的右侧的间隔磁铁103b的充磁方向与所述线圈单元被施加的安培力方向相同,即竖直向上。
所述弱磁性小磁铁107沿所述线圈单元所受安培力方向的长度大于所述弱性小磁铁107的沿两个对应的所述间隔磁铁103方向上的长度。具体到本实施例中,请着重参考图1,安培力T的方向竖直向上,弱磁性小磁铁107在竖直方向上的长度大于所述弱性小磁铁107在水平方向上的长度。
请参考图1,所述线圈单元还包括绕线柱105和线圈104,所述弱磁性小磁铁107在所述绕线柱105内,所述线圈104绕设在所述线圈柱105上。所述绕线柱105平行于所述两个主磁极单元形成的主磁场方向,所述绕线柱垂直于两端的所述背铁106。从而保证了所述线圈的电流流向满足如图1所示,进而产生竖直向上的安培力。
本领域技术人员可以理解的是,将图1中所有磁铁101、102、103、107 的充磁方向都改为相反方向同样能使所述两个主磁极单元对所述弱磁性小磁铁107产生竖直向上的作用合力,实现所述线圈单元的重力补偿,因而也在本发明的保护范围之内。
实施例2
请参考图6和图7,并结合图8至图10,本实施例与实施例1的差别主要在于:所述两个主磁极单元形成竖向的主磁场,切割所述主磁场的所述线圈单元的2部分通电导体为左右排布。所述弱磁性小磁铁107的充磁方向与所述线圈单元被施加的安培力方向相同。位于所述线圈单元上方的两个所述主磁极磁铁101a与102a,对所述弱磁性小磁铁107施加竖直向上的磁吸力;位于所述线圈单元下方的两个所述主磁极磁铁101b和102b对所述弱磁性小磁铁107施加竖直向上的磁斥力。从而通过S极与N极之间的异性相吸的作用产生如图7所示的斜向上的F102a和F101a,两个力在水平方向上的分量互相抵消,从而对弱磁性小磁铁107施加了竖直向上的力,亦即对所述线圈单元施加了竖直向上的力,由于线圈单元下方的主磁极磁铁101b与102b的充磁方向和上方的主磁极磁铁101a与102a是同向的,则必然会导致主磁极磁铁101b和102b的N极与S极与弱磁性小磁铁107的N极与S极靠近设置,通过同性相斥的作用就会产生如图7所示的F102b和F101b,进而对弱磁性小磁铁107施加了竖直向上的力,亦即对所述线圈单元施加了竖直向上的力。
在本实施例中,所述平板音圈电机还包括间隔磁铁103,所述间隔磁铁103位于一对所述主磁极磁铁101与102之间,下方的所述间隔磁铁103b的充磁方向与所述线圈单元被施加的安培力方向相同,上方的所述间隔磁铁103a的充磁方向与所述线圈单元被施加的安培力方向相反。
除此以外,其具体结构与实施例1是相似的,具体来说,其也设有背铁106和磁铁103,其线圈单元的结构设置也是与实施例1一致的,具体可参考图8至图10示意性地表示出来。
本领域技术人员可以理解的是,将图6中所有磁铁101、102、103、107 的充磁方向都改为相反方向同样能使所述两个主磁极单元对所述弱磁性小磁铁107产生竖直向上的作用合力,实现所述线圈单元的重力补偿,因而也在本发明的保护范围之内。。
实施例3
请参考图11至图14,本实施例与实施例1的区别仅仅在于本实施例中不设有磁铁103,作用机理与实施例1是一致的,本实施例中的所述主磁极单元包括两个主磁极磁铁和背铁,所述主磁极磁铁固定设在所述背铁上一对所述主磁极磁铁之间设有间隔距离,所述弱磁性小磁铁沿所述线圈单元所受安培力方向的长度大于所述弱性小磁铁的沿两个对应的该两处间隔方向上的长度。除了该区别以外,其他包括主磁极单元的结构、线圈单元的结构以及各部件的排布方式均与实施例1中一致。
实施例4
请参考图15至图18,本实施例与实施例2相似,主磁极单元、线圈单元均是竖直方向设置,线圈单元的结构是相同的,主磁极单元的结构是类似的,作用机理也是一致的,其与实施例2的唯一的区别在于本实施例中的主磁极单元不设有磁铁103。同时,其实施例与实施例3也是相似的,其与实施例3的唯一区别仅仅在于主磁极单元和线圈单元的是沿水平方向设置的,除此之外的其他具体结构与实施例3是相似的,所以,其结构可参考图16至图18示意性地表示出来。
该改进方案是为了解决微动矢量电机垂向出力的音圈电机发热太大的问题。微动矢量电机由六个电机组成:三个水平向出力和三个垂向出力的音圈电机。电机负载设计质量是20KG,分摊给三个垂向出力的平板音圈电机,因此每个音圈电机在无加速度的磁浮状态下需要出力66N,每个电机持续发热近50W(加速状态下更加恐怖),这会对电机水冷结构造成很大压力。
音圈电机属单相短行程电机,但只具有一个自由度,需要垂向出力时(图1),电机线圈会因为负载重力产生相当一部分能耗,重力不变,所以该能耗不 变。如果加入了重力补偿,对于垂向出力的音圈电机只需要应付少量重力,大部分被磁铁之间的作用力补偿掉,当电机在有向上的加速度时,才需要通入更大的电流。这一改进可以为垂向出力的音圈电机减小约90%的能耗。
综上所述,本发明在线圈单元中设置了弱磁性磁铁,通过所述弱磁性磁铁与主磁极单元之间的磁斥力或者磁吸力始终为线圈单元提供竖直向上的力,从而实现了重力的补偿,且该结构的设置仅仅是将线圈单元中的部分构件换做了弱磁性磁铁,既不会影响线圈单元中的线圈所受到的安培力,也不会因结构的增加而产生增加电机发热这样的不利后果。提供一种能够实现动子的重力补偿的平板音圈电机。在实际应用中,由于弱磁性小磁铁本身较为脆弱,并且所需求的重力补偿力较小,因此弱磁性小磁铁要更小,更短。需要将弱磁性小磁铁嵌入绕线柱,以保证弱磁性小磁铁不破裂。

Claims (15)

  1. 一种平板音圈电机,包括线圈单元和两个主磁极单元,两个所述主磁极单元对所述线圈单元施加安培力,其特征在于:所述线圈单元内包括弱磁性小磁铁,所述两个主磁极单元对所述弱磁性小磁铁作用合力为竖直向上。
  2. 如权利要求1所述的平板音圈电机,其特征在于:每个所述主磁极单元至少包括一对主磁极磁铁,所述一对主磁极磁铁距所述线圈单元的距离相等,所述两个主磁极单元关于所述线圈单元对称。
  3. 如权利要求2所述的平板音圈电机,其特征在于:两个所述主磁极单元中对称的主磁极磁铁的充磁方向相同,同个所述主磁极单元内的一对主磁极磁铁的充磁方向相反。
  4. 如权利要求3所述的平板音圈电机,其特征在于:所述两个主磁极单元排布在所述线圈单元的左右两侧形成横向的主磁场,所述线圈单元包括2个切割所述主磁场的通电导体部分,且所述2个通电导体部分为上下排布。
  5. 如权利要求4所述的平板音圈电机,其特征在于:两个所述主磁极单元对所述线圈单元施加竖直向上的安培力,所述弱磁性小磁铁的充磁方向与位于其上方的两个所述主磁极磁铁的充磁方向相同。
  6. 如权利要求5所述的平板音圈电机,其特征在于:位于所述弱磁性小磁铁上方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁吸合力;位于下方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁斥合力。
  7. 如权利要求3所述的平板音圈电机,其特征在于:所述两个主磁极单元排布在所述线圈单元的上下两侧形成竖向的主磁场,所述线圈单元包括2个切割所述主磁场的通电导体部分,且所述2个通电导体部分为左右排布。
  8. 如权利要求7所述的平板音圈电机,其特征在于:所述弱磁性小磁铁的充磁方向与所述线圈单元被施加的安培力方向相同。
  9. 如权利要求8所述的平板音圈电机,其特征在于:位于所述弱磁性小 磁铁上方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁吸合力;位于其下方的两个所述主磁极磁铁,对所述弱磁性小磁铁施加竖直向上的磁斥合力。
  10. 如权利要求1所述的平板音圈电机,其特征在于:还包括间隔磁铁和背铁,所述间隔磁铁位于一对所述主磁极磁铁之间,所述间隔磁铁和一对主磁极磁铁均固定设在所述背铁上。
  11. 如权利要求4所述的平板音圈电机,其特征在于:还包括间隔磁铁,所述间隔磁铁位于一对所述主磁极磁铁之间,左侧的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相反,右侧的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相同。
  12. 如权利要求7所述的平板音圈电机,其特征在于:还包括间隔磁铁,所述间隔磁铁位于一对所述主磁极磁铁之间,下方的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相同,上方的所述间隔磁铁的充磁方向与所述线圈单元被施加的安培力方向相反。
  13. 如权利要求4或7所述的平板音圈电机,其特征在于:所述弱磁性小磁铁在所述线圈单元中2个切割所述主磁场的所述通电导体部分之间的方向上的长度小于所述弱磁性小磁铁与主磁极磁铁平行方向上的长度。
  14. 如权利要求1所述的平板音圈电机,其特征在于:所述线圈单元还包括绕线柱和线圈,所述弱磁性小磁铁在所述绕线柱内,所述线圈绕设在所述线圈柱外。
  15. 如权利要求14所述的平板音圈电机,其特征在于:还包括背铁,所述一对主磁极磁铁固定设在所述背铁上,所述绕线柱所在的所述线圈的绕制轴线平行于所述两个主磁极单元形成的主磁场方向,所述绕线柱所在的所述线圈的绕制轴线垂直于两端的所述背铁。
PCT/CN2014/090589 2013-11-26 2014-11-07 平板音圈电机 WO2015078287A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG11201604223RA SG11201604223RA (en) 2013-11-26 2014-11-07 Flat voice coil motor
US15/038,992 US20160380524A1 (en) 2013-11-26 2014-11-07 Flat voice coil motor
JP2016554782A JP2016537963A (ja) 2013-11-26 2014-11-07 平型ボイスコイルモータ
EP14865143.3A EP3076531A4 (en) 2013-11-26 2014-11-07 FLAT SWINGARM MOTOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310612815.0 2013-11-26
CN201310612815.0A CN104682656B (zh) 2013-11-26 2013-11-26 平板音圈电机

Publications (1)

Publication Number Publication Date
WO2015078287A1 true WO2015078287A1 (zh) 2015-06-04

Family

ID=53198342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090589 WO2015078287A1 (zh) 2013-11-26 2014-11-07 平板音圈电机

Country Status (7)

Country Link
US (1) US20160380524A1 (zh)
EP (1) EP3076531A4 (zh)
JP (1) JP2016537963A (zh)
CN (1) CN104682656B (zh)
SG (1) SG11201604223RA (zh)
TW (1) TWI531138B (zh)
WO (1) WO2015078287A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341029A (zh) * 2015-07-10 2017-01-18 上海微电子装备有限公司 一种音圈电机
CN105281527B (zh) 2015-11-25 2018-06-26 歌尔股份有限公司 线性振动马达
CN105281528B (zh) * 2015-11-25 2018-07-27 歌尔股份有限公司 线性振动马达
CN107546953A (zh) * 2016-06-29 2018-01-05 上海微电子装备(集团)股份有限公司 摇摆音圈电机
CN106130301B (zh) * 2016-07-20 2018-10-30 瑞声科技(新加坡)有限公司 线性振动电机
CN106208601B (zh) * 2016-07-21 2018-10-16 瑞声科技(新加坡)有限公司 线性电机
CN107482872B (zh) * 2017-06-26 2024-04-12 浙江大学 二维电磁激励器
US11165325B2 (en) 2017-08-28 2021-11-02 Canon Kabushiki Kaisha Drive apparatus having drive unit using magnetic circuit
CN108011489B (zh) * 2017-09-19 2020-07-03 沈阳工业大学 多单元微行程音圈直线电机
CN108124105B (zh) * 2018-02-02 2019-12-10 西南石油大学 电机系统
CN111313763B (zh) * 2020-03-30 2022-08-05 重庆大学 一种低刚度及大悬浮力的重力补偿器
US11423930B2 (en) * 2020-11-01 2022-08-23 Kaizhong Gao Hard disk drive with composite permanent magnet
CN114189123B (zh) * 2022-02-15 2022-07-08 上海隐冠半导体技术有限公司 磁浮机构、补偿装置及微动设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914836A (en) * 1997-03-31 1999-06-22 Seagate Technology, Inc. Cantilevered support for the magnetic circuit of a disc drive voice coil motor
JP2004228597A (ja) * 1999-09-10 2004-08-12 Nec Corp Xyステージ
CN201118422Y (zh) * 2007-10-12 2008-09-17 魏华 反冲式高效振动电机
CN101607372A (zh) * 2009-07-14 2009-12-23 南通科技投资集团股份有限公司 可抵消重力影响的双直线永磁同步电机水平进给平台
CN101917143A (zh) * 2010-07-21 2010-12-15 华中科技大学 一种具有磁浮重力平衡功能的音圈电机
CN101964579A (zh) * 2009-07-22 2011-02-02 三星电机株式会社 水平线性振动器
CN102215019A (zh) * 2011-06-01 2011-10-12 哈尔滨工业大学 有源型重力补偿电磁支撑装置
CN102722089A (zh) * 2011-06-28 2012-10-10 清华大学 一种无接触式粗精动叠层六自由度定位装置
CN103001444A (zh) * 2012-09-29 2013-03-27 苏州贝腾特电子科技有限公司 一种用于微型驱动电机的定位支架

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721572A (ja) * 1992-07-23 1995-01-24 Nippon Columbia Co Ltd 光ヘッドスライド機構
TW526630B (en) * 1998-11-10 2003-04-01 Asml Netherlands Bv Actuator and transducer
EP1001512A3 (en) * 1998-11-10 2001-02-14 Asm Lithography B.V. Actuator and transducer
JP4428799B2 (ja) * 2000-04-03 2010-03-10 キヤノン株式会社 磁気支持機構、位置決め装置および半導体デバイス製造方法
US6717296B2 (en) * 2001-08-22 2004-04-06 Asml Netherlands B.V. Lithographic apparatus and motor for use in the apparatus
GB2446685B (en) * 2007-11-27 2009-04-01 Perpetuum Ltd An electromechanical generator for converting mechanical vibrational energy into electrical energy
US9252650B2 (en) * 2009-08-31 2016-02-02 Yaskawa Europe Technology Ltd. Transverse flux electrical motor
CA2924369C (en) * 2013-09-26 2020-09-22 Dominion Alternative Energy, Llc Superconductive electric motor and generator
US9448382B2 (en) * 2013-11-06 2016-09-20 Corephotonics Ltd. Electromagnetic actuators for digital cameras
US10003246B2 (en) * 2016-03-10 2018-06-19 Laitram, L.L.C. Linear-motor stator with integral line reactor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914836A (en) * 1997-03-31 1999-06-22 Seagate Technology, Inc. Cantilevered support for the magnetic circuit of a disc drive voice coil motor
JP2004228597A (ja) * 1999-09-10 2004-08-12 Nec Corp Xyステージ
CN201118422Y (zh) * 2007-10-12 2008-09-17 魏华 反冲式高效振动电机
CN101607372A (zh) * 2009-07-14 2009-12-23 南通科技投资集团股份有限公司 可抵消重力影响的双直线永磁同步电机水平进给平台
CN101964579A (zh) * 2009-07-22 2011-02-02 三星电机株式会社 水平线性振动器
CN101917143A (zh) * 2010-07-21 2010-12-15 华中科技大学 一种具有磁浮重力平衡功能的音圈电机
CN102215019A (zh) * 2011-06-01 2011-10-12 哈尔滨工业大学 有源型重力补偿电磁支撑装置
CN102722089A (zh) * 2011-06-28 2012-10-10 清华大学 一种无接触式粗精动叠层六自由度定位装置
CN103001444A (zh) * 2012-09-29 2013-03-27 苏州贝腾特电子科技有限公司 一种用于微型驱动电机的定位支架

Also Published As

Publication number Publication date
JP2016537963A (ja) 2016-12-01
EP3076531A4 (en) 2016-12-21
CN104682656B (zh) 2018-04-27
TW201526470A (zh) 2015-07-01
EP3076531A1 (en) 2016-10-05
US20160380524A1 (en) 2016-12-29
TWI531138B (zh) 2016-04-21
SG11201604223RA (en) 2016-08-30
CN104682656A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
WO2015078287A1 (zh) 平板音圈电机
WO2014064785A1 (ja) リニアモータ及びリニアモータ駆動システム
TW201136107A (en) Linear motor
JP2009071946A5 (zh)
CN102545533A (zh) 直线振荡发电机
CN102130567A (zh) 一种音圈电机
CN102011828B (zh) 混合励磁直线电磁阻尼器
TWI505608B (zh) Linear motors and platform devices
CN101860173B (zh) 用于数控进给平台的直接磁悬浮永磁直线同步电动机
TW200406351A (en) Horizontal and vertical transportation system using permanent magnet excited transverse flux linear motors
CN204615598U (zh) 气浮导轨式直线电机模组
CN106341029A (zh) 一种音圈电机
CN104854665B (zh) 具有有限行程及低横向力的可扩展的高动态电磁线性驱动器
CN102163572B (zh) 一种六自由度定位装置
JP2008105261A (ja) 型締装置
JP2010148233A (ja) リニアモータ駆動送り装置
JPWO2004059821A1 (ja) 駆動装置
CN104218771A (zh) 磁悬浮多自由度永磁同步平面电机
JP2008220020A (ja) 可動磁石型リニアモータ
CN103490580A (zh) 一种混合励磁双凸极永磁电动机
US20200083792A1 (en) Linear Motor and Device Provided with Linear Motor
JP2012060756A (ja) リニアモータ
JP2004336842A (ja) リニアモータ
CN106961201A (zh) 直线电机
TWM467246U (zh) 利用往復運動型磁鐵板所形成之發電兼電動裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865143

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016554782

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15038992

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014865143

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014865143

Country of ref document: EP