WO2015078142A1 - 高压直流软启动电路 - Google Patents

高压直流软启动电路 Download PDF

Info

Publication number
WO2015078142A1
WO2015078142A1 PCT/CN2014/076861 CN2014076861W WO2015078142A1 WO 2015078142 A1 WO2015078142 A1 WO 2015078142A1 CN 2014076861 W CN2014076861 W CN 2014076861W WO 2015078142 A1 WO2015078142 A1 WO 2015078142A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
connector
direct current
drive unit
voltage direct
Prior art date
Application number
PCT/CN2014/076861
Other languages
English (en)
French (fr)
Inventor
张振兴
徐建生
陈能虎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP14865359.5A priority Critical patent/EP2985895B1/en
Publication of WO2015078142A1 publication Critical patent/WO2015078142A1/zh
Priority to US14/980,916 priority patent/US9705303B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/125Avoiding or suppressing excessive transient voltages or currents
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • H02H9/025Current limitation using field effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to communication technologies, and in particular, to a high voltage DC soft start circuit. Background technique
  • High Voltage Direct Current (HVDC) technology has developed rapidly in the field of communication in recent years. With the increasing power of communication equipment, its application advantages are gradually realized.
  • the board or power module used in the communication device needs to meet the hot plugging requirements.
  • equipment such as single-board or power module with HVDC, because the high-voltage DC is not zero, it will not only cause damage to the connector due to arcing, but also cause personal safety accidents or fire due to huge arc.
  • the device using HVDC is connected to other devices through a connector, for example, a board using HVDC is connected to the backplane through a connector.
  • the main method used for arc extinguishing is to improve the connector, and to increase the arc extinguishing function inside the connector, for example, to increase the permanent magnet iron which can absorb the arc.
  • Embodiments of the present invention provide a high voltage DC soft start circuit for solving the problem that the connector size is increased in order to eliminate arcing in the prior art.
  • a first aspect of the embodiments of the present invention provides a high voltage DC soft start circuit, including: a control driving unit, a first switch, a second switch, a load, and a first part of the connector, the first end of the first switch and the high voltage direct current a negative pole is connected, a first end of the second switch is connected to a negative pole of the high voltage direct current, and the control driving unit is respectively connected to the first switch, the second switch and the load, wherein:
  • the first portion of the connector is connected to the control driving unit, and the first portion of the connector is in communication with the second portion of the connector when the power is turned on, triggering the control driving unit to drive the first opening Off
  • the control driving unit delays a preset time after driving the first switch to turn on, drives the second switch to be turned on, and drives the load to start after the second switch is turned on.
  • the circuit further includes: a power resistor and a load capacitor, where:
  • the second end of the first switch is connected to the first end of the power resistor, and the second end of the second switch is connected to the second end of the power resistor;
  • the second end of the power resistor is connected to the first end of the load capacitor, and the second end of the load capacitor is connected to the positive pole of the high voltage direct current;
  • a first end of the load capacitor is coupled to a first end of the load, and a second end of the load capacitor is coupled to a second end of the load.
  • the first switch is a first MOS transistor
  • a source of the first MOS transistor is a cathode of the high voltage direct current is connected
  • a gate of the first MOS transistor is connected to the control driving unit
  • a drain of the first MOS transistor is connected to a first end of the power resistor
  • the second switch is a second MOS transistor, a source of the second MOS transistor is connected to a negative pole of the high voltage direct current, and a gate of the second MOS transistor is connected to the control driving unit, the second A drain of the MOS transistor is coupled to the second end of the power resistor.
  • the first switch is a MOS transistor, a source of the MOS transistor and a negative pole of the high voltage direct current Connected, a gate of the MOS transistor is connected to the control driving unit, and a drain of the MOS transistor is connected to a first end of the power resistor;
  • the second switch is a relay, the first end of the relay is connected to the negative pole of the high voltage direct current, the second end of the relay is connected to the second end of the power resistor, and the control pin of the relay is The control drive unit is connected.
  • the first switch is a first relay, the first end of the first relay and the high voltage a second terminal of the first relay is connected to the first end of the power resistor, and a control pin of the first relay is connected to the control driving unit;
  • the second switch is a second relay, and the first end of the second relay is directly connected to the high voltage
  • the negative terminal of the galvanic connection is connected, the second end of the second relay is connected to the second end of the power resistor, and the control pin of the second relay is connected to the control driving unit.
  • the first portion of the connector includes a short pin and two long pins, wherein: the short pin Connected to the control driving unit, wherein one of the long pins is connected to the positive pin of the second part of the connector, and the other long pin is connected to the first negative pin of the second part of the connector;
  • the short pin is configured to send the connector to generate a connection signal to the control driving unit after the power is connected to the second negative pin of the second portion of the connector.
  • control drive unit is coupled to the positive and negative terminals of the high voltage direct current, respectively.
  • the high voltage DC soft start circuit realizes that after the first part of the live plug connector is inserted, the trigger control drive unit drives the first switch to be opened, that is, no arc is generated when the plug is inserted; when the first part of the connector is pulled out The first part of the connector first disconnects the second part of the connector, and then controls the driving unit to control the first switch and the second switch to be turned off instantaneously, at this time, the contact part of the first part of the connector and the second part of the connector has no current Through, the arc-free pull-out connector is realized, the arc-breaking is avoided, the arc-free hot plugging of the high-voltage DC power supply device is realized, and the connector itself is not required to be improved, and the connector can be made smaller in size and satisfied. The need for space conditions.
  • FIG. 1 is a schematic structural view of Embodiment 1 of a high voltage DC soft start circuit according to the present invention
  • FIG. 2 is a schematic structural view of a high voltage DC soft start circuit according to Embodiment 2 of the present invention
  • FIG. 3 is a high voltage DC soft start circuit provided by the present invention.
  • FIG. 4 is a schematic structural view of Embodiment 4 of a high voltage DC soft start circuit according to the present invention
  • FIG. 5 is a schematic structural view of Embodiment 5 of a high voltage DC soft start circuit according to the present invention
  • FIG. 6 is a schematic structural diagram of Embodiment 6 of a high voltage DC soft start circuit according to the present invention
  • FIG. 7 is a schematic structural diagram of Embodiment 7 of a high voltage DC soft start circuit according to the present invention.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a high voltage DC soft start circuit according to the present invention.
  • the circuit can be deployed on a device such as a single board or a power module, and is connected to a backplane or other device through a connector.
  • the device is divided into two parts, the first part belonging to the circuit provided by the embodiment of the invention, and the second part belonging to the back board or other device corresponding to the circuit of the invention, which is turned on by inserting the first part of the connector into the second part.
  • the circuit includes: a control driving unit 01, a first switch 02, and a second switch
  • the control drive unit 01 is connected to the first switch 02, the second switch 03, and the load 04, respectively.
  • the first part of the connector 05 is connected to the control drive unit 01.
  • the first part 05 of the connector is in communication with the second part of the connector, and the trigger control drive unit 01 drives the first switch 02 to open. That is, when the device in which the above-mentioned circuit is located is powered by the device in which the first portion 05 of the connector is inserted into the second portion of the connector, the first portion 05 of the connector is in communication with the second portion of the connector, and the first portion 05 of the connector and the second connector
  • a connection signal is generated and sent to the control driving unit 01 to trigger the control driving unit 01 to drive the first switch 02 to be turned on.
  • the control driving unit 01 delays the preset time after driving the first switch 02 to turn on, drives the second switch 03 to be turned on, and drives the load 04 to start after the second switch 03 is turned on, thereby realizing the start of the load, and thus completing
  • the high-voltage DC soft start realizes that no arc is generated when the first part of the connector of the high-voltage DC soft-start circuit is electrically inserted.
  • the above circuit is deployed on a high-voltage DC-powered board.
  • the first part of the connector 05 is first disconnected from the second part of the connector.
  • the connector will generate a disconnection.
  • the signal is sent to the control driving unit 01, so that the control driving unit 01 controls the first switch 02 and the second switch 03 to be instantaneously turned off.
  • no current is passed through the contact portion of the first portion of the connector and the second portion of the connector, thereby achieving no The arc breaks the connector and avoids arcing.
  • the arcless hot-swap of the high-voltage DC power supply device is realized by the above circuit, and the connector itself is not required to be improved, so that the connector has a small volume and meets the requirement under the limitation of space conditions.
  • the first portion 05 of the connector includes a short pin 21 and two Long needles 22 and 23, the short needle 21 is connected to the control drive unit 01, wherein one long needle 22 is connected to the positive pin 24 of the second portion 06 of the connector, and the other long needle 23 is connected to the second portion 06 of the connector.
  • the first negative electrode pin 25 is connected.
  • the short pin 21 is configured to transmit a connection signal to the control driving unit after the power is connected to the second negative pin 26 of the second portion of the connector.
  • the connector adopts a long and short needle control mode
  • the power pin uses a long pin
  • the signal pin uses a short pin.
  • the two long pins 22 and 23 are first connected to the positive pin 24 and the first negative pin 25, respectively, and then after the short pin 21 is in contact with the second negative pin 26,
  • the first part of the connector is in full communication with the second part of the connector, and the connector generates a connection signal to the control drive unit 01 to trigger the control drive unit 01 to drive the first switch 02 to open.
  • the short needle 21 When the first part of the connector is pulled out, the short needle 21 first disconnects from the second negative pin 26, and the connector generates an open signal to the control drive unit 01, so that the control drive unit 01 controls the first switch. 02 and the second switch 03 are momentarily turned off, at which time no current flows through the contact portions of the two long pins 22 and 23 of the connector with the positive pin 24 and the first negative pin 25.
  • the interlocking micro-motion control switch may be connected to the control driving unit 01, and after inserting the first part of the connector into the second part of the connector, the interlocking micro is opened.
  • the control switch activates the control drive unit 01 to drive the first switch 02 to be turned on, and as long as the interlock micro-control switch is turned on, the first portion of the connector cannot be pulled out from the second portion of the connector.
  • the interlocking micro-control switch is turned off, and the trigger control driving unit 01 controls the first switch 02 and the second switch 03 to be turned off instantaneously, and then the first part of the connector is pulled out. In this way, the arcless hot plug of the high voltage DC power supply device can also be realized. Pull out, and there is no need to improve the connector itself.
  • Embodiment 3 is a schematic structural diagram of Embodiment 3 of a high voltage DC soft start circuit according to the present invention. As shown in FIG. 3, based on the above embodiment, the circuit further includes a power resistor (R) 07 and a load capacitor (C). .
  • R power resistor
  • C load capacitor
  • the second end of the first switch 02 is connected to the first end of the power resistor 07, the second end of the second switch 03 is connected to the second end of the power resistor 07; the second end of the power resistor 07 and the load capacitor
  • the first end of the 08 is connected, the second end of the load capacitor 08 is connected to the positive pole (Vin + ) of the high voltage direct current; the first end of the load capacitor 08 is connected to the first end of the load 04, and the second end of the load capacitor 08 is The second end of the load 04 is connected.
  • the control driving unit 01 drives the first switch 02 to be turned on
  • the preset time is delayed, and the preset time is determined according to the values of R and C. It should be noted that after the first switch 02 is turned on, the circuit charges the load capacitor 08 through the power resistor 07. After a certain time, the load capacitor 08 is charged, and the voltage difference between the second switch 03 is zero. The control drive unit 01 drives the second switch 03 to be turned on when the load capacitor 08 is completed after the preset time.
  • control drive unit 01 is coupled to the positive and negative terminals of the high voltage direct current to achieve auxiliary power supply to the control drive unit 01.
  • FIG. 4 is a schematic structural view of a fourth embodiment of a high voltage direct current soft start circuit according to the present invention.
  • the control drive unit 01 can be auxiliaryly powered by other auxiliary power sources without using high voltage direct current for auxiliary power supply.
  • the control driving unit 01 is connected to the auxiliary power source 09, and the auxiliary power source 09 supplies auxiliary power to the control driving unit 01.
  • the auxiliary power source 09 can be a power source on the device in which the second portion of the connector is located.
  • the second part of the connector is on the backplane, and the second part of the connector may be installed on one backplane. That is, one backplane may have multiple auxiliary power supplies for powering the single board. In this case, it can be used as other
  • the auxiliary power supply supplied by the board supplies power to the control drive unit 01 in the above circuit.
  • the first switch 02 and the second switch 03 described above have various implementation manners, as described in detail below.
  • FIG. 5 is a schematic structural diagram of Embodiment 5 of a high voltage DC soft start circuit according to the present invention, as shown in FIG.
  • the first switch 02 and the second switch 03 may both be MOS tubes.
  • the first switch is the first MOS transistor 51, and the source of the first MOS transistor 51 is connected to the negative pole of the high voltage direct current, first The gate of the MOS transistor 51 is connected to the control driving unit 01, and the drain of the first MOS transistor 51 is connected to the first end of the power resistor 07.
  • the second switch is a second MOS transistor 52, the source of the second MOS transistor 52 is connected to the negative pole of the high voltage direct current, and the gate of the second MOS transistor 52 is connected to the control driving unit 01.
  • the drain of the MOS transistor 52 is connected to the second terminal of the power resistor 07.
  • FIG. 6 is a schematic structural diagram of Embodiment 6 of a high voltage DC soft start circuit according to the present invention.
  • the second MOS transistor can be replaced by a relay.
  • the first switch is a MOS transistor 61.
  • the source of the MOS transistor 61 is connected to the negative electrode of the high voltage direct current
  • the gate of the MOS transistor 51 is connected to the control driving unit 01
  • the drain of the MOS transistor 61 is connected to the first end of the power resistor 07.
  • the second switch is a relay 62, the first end of the relay 62 is connected to the negative pole of the high voltage direct current, the second end of the relay 62 is connected to the second end of the power resistor 07, the control pin of the relay 62 and the control driving unit 01 connection.
  • the second MOS transistor in the embodiment of Fig. 5 can also be replaced with a relay, which is implemented in the same manner.
  • FIG. 7 is a schematic structural diagram of Embodiment 7 of a high voltage DC soft start circuit according to the present invention, which is different from the foregoing embodiment in that both the first switch and the second switch are relays.
  • the first switch is a first relay 71
  • the first end of the first relay 71 is connected to the negative pole of the high voltage direct current
  • the second end of the first relay 71 is connected to the first end of the power resistor 07
  • the first relay 71 The control pin is connected to the control drive unit 01.
  • the second switch is a second relay 72, the first end of the second relay 72 is connected to the negative pole of the high voltage direct current, the second end of the second relay 72 is connected to the second end of the power resistor 07, and the control pin of the second relay 72 It is connected to the control drive unit 01.
  • the high-voltage DC soft-starting circuit provided by the embodiment of the invention can be applied to a device such as a single board or a power module, but is not limited thereto.
  • the arcless hot-swap of the high-voltage DC power supply device is realized by the above circuit, and the connector itself is not required to be improved, and the connector can be made small in size to meet the requirement under the limitation of space conditions.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

提供一种高压直流软启动电路,包括:第一开关的第一端与高压直流电的负极连接,第二开关的第一端与高压直流电的负极连接,控制驱动单元分别与第一开关、第二开关以及负载连接,其中:连接器第一部分与所述控制驱动单元连接,在上电时所述连接器第一部分与连接器第二部分连通,触发所述控制驱动单元驱动所述第一开关开启;控制驱动单元在驱动所述第一开关开启后延时预设时间,驱动所述第二开关开启,并在所述第二开关开启后驱动所述负载启动。实现了无电弧插入和断开连接器,避免了拉弧产生,实现了高压直流供电装置的无电弧热插拔,且无需对连接器本身进行改进,可以使连接器的体积较小。

Description

高压直流软启动电路 技术领域
本发明涉及通信技术, 尤其涉及一种高压直流软启动电路。 背景技术
高压直流 (High Voltage Direct Current, 简称 HVDC ) 技术近年来在 通信领域发展非常迅速, 随着通信设备功率越来越大, 其应用优势逐歩体 现。 通信设备中应用的单板或电源模块等, 需要满足带电热插拔要求。 对 于采用 HVDC 的单板或电源模块等设备, 由于高压直流电不过零点, 不 仅会导致连接器由于拉弧而损坏,而且会由于巨大的电弧导致人身安全事 故或引起火灾。
采用 HVDC的设备通过连接器与其它装置连接, 例如采用 HVDC的 单板通过连接器与背板连接。 现有技术中, 灭弧主要采用的办法是对连接 器进行改进, 在连接器内部增加灭弧的功能, 例如增加可以吸电弧的永磁 铁。
但是, 采用现有技术会使连接器的尺寸变大, 且对制造材料有一定要 求, 不容易实现。 发明内容 本发明实施例提供一种高压直流软启动电路, 用于解决现有技术为了 灭弧使连接器尺寸变大的问题。
本发明实施例第一方面提供一种高压直流软启动电路, 包括: 控制驱动单元、 第一开关、 第二开关、 负载和连接器第一部分, 所述 第一开关的第一端与高压直流电的负极连接, 所述第二开关的第一端与高 压直流电的负极连接, 所述控制驱动单元分别与所述第一开关、 所述第二 开关以及所述负载连接, 其中:
所述连接器第一部分与所述控制驱动单元连接, 在上电时所述连接器 第一部分与连接器第二部分连通, 触发所述控制驱动单元驱动所述第一开 关开启;
所述控制驱动单元在驱动所述第一开关开启后延时预设时间, 驱动所 述第二开关开启, 并在所述第二开关开启后驱动所述负载启动。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述电路还 包括: 功率电阻和负载电容, 其中:
所述第一开关的第二端与所述功率电阻的第一端连接, 所述第二开关 的第二端与所述功率电阻的第二端连接;
所述功率电阻的第二端与所述负载电容的第一端连接, 所述负载电容 的第二端与所述高压直流电的正极连接;
所述负载电容的第一端与所述负载的第一端连接, 所述负载电容的第 二端与所述负载的第二端连接。
结合第一方面的第一种可能的实施方式, 在第一方面的第二种可能的 实施方式中,所述第一开关为第一 MOS管, 所述第一 MOS管的源极与所 述高压直流电的负极连接, 所述第一 MOS管的门极与所述控制驱动单元 连接, 所述第一 MOS管的漏极与所述功率电阻的第一端连接;
所述第二开关为第二 MOS管,所述第二 MOS管的源极与所述高压直 流电的负极连接, 所述第二 MOS管的门极与所述控制驱动单元连接, 所 述第二 MOS管的漏极与所述功率电阻的第二端连接。
结合第一方面的第一种可能的实施方式, 在第一方面的第三种可能的 实施方式中,所述第一开关为 MOS管,所述 MOS管的源极与所述高压直 流电的负极连接,所述 MOS管的门极与所述控制驱动单元连接,所述 MOS 管的漏极与所述功率电阻的第一端连接;
所述第二开关为继电器, 所述继电器的第一端与所述高压直流电的负 极连接, 所述继电器的第二端与所述功率电阻的第二端连接, 所述继电器 的控制管脚与所述控制驱动单元连接。
结合第一方面的第一种可能的实施方式, 在第一方面的第四种可能的 实施方式中, 所述第一开关为第一继电器, 所述第一继电器的第一端与所 述高压直流电的负极连接, 所述第一继电器的第二端与所述功率电阻的第 一端连接, 所述第一继电器的控制管脚与所述控制驱动单元连接;
所述第二开关为第二继电器, 所述第二继电器的第一端与所述高压直 流电的负极连接, 所述第二继电器的第二端与所述功率电阻的第二端连 接, 所述第二继电器的控制管脚与所述控制驱动单元连接。
结合第一方面的第一种可能的实施方式, 在第一方面的第五种可能的 实施方式中, 所述连接器第一部分包括一根短针和两根长针, 其中: 所述短针与所述控制驱动单元连接, 其中一根所述长针与所述连接器 第二部分的正极管脚连接, 另一根长针与所述连接器第二部分的第一负极 管脚连接;
所述短针, 用于在上电时与所述连接器第二部分的第二负极管脚接触 连接后, 使所述连接器产生连接信号发送给所述控制驱动单元。
结合第一方面, 在第一方面的第六种可能的实施方式中, 所述控制驱 动单元分别与所述高压直流电的正极和负极连接。
本发明实施例提供的高压直流软启动电路, 实现了在带电插入连接器 第一部分后, 触发控制驱动单元驱动第一开关开启, 即插入时不会产生电 弧; 在带电拔出连接器第一部分时, 连接器第一部分首先断开与连接器第 二部分的连接, 然后控制驱动单元控制第一开关和第二开关瞬间关断, 此 时连接器第一部分和连接器第二部分的接触部分无电流通过, 从而实现了 无电弧拔出连接器, 避免了拉弧产生, 实现了高压直流供电装置的无电弧 热插拔, 且无需对连接器本身进行改进, 可以使连接器的体积较小, 满足 在空间条件限制情况下的需求。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的高压直流软启动电路实施例一的结构示意图; 图 2为本发明提供的高压直流软启动电路实施例二的结构示意图; 图 3为本发明提供的高压直流软启动电路实施例三的结构示意图; 图 4为本发明提供的高压直流软启动电路实施例四的结构示意图; 图 5为本发明提供的高压直流软启动电路实施例五的结构示意图; 图 6为本发明提供的高压直流软启动电路实施例六的结构示意图; 图 7为本发明提供的高压直流软启动电路实施例七的结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明提供的高压直流软启动电路实施例一的结构示意图, 该电 路可以部署在单板或电源模块等装置上,通过连接器与背板或其它装置连接, 需要说明的是, 连接器分为两部分, 第一部分属于本发明实施例提供的电路, 第二部分属于与本发明电路相应的背板或的其它装置, 通过将连接器的第一 部分插入第二部分实现接通。
如图 1所示, 该电路包括: 控制驱动单元 01、 第一开关 02、 第二开关
03、 负载 04和连接器第一部分 05, 其中: 第一开关 02的第一端与高压直流 电的负极(Vin - )连接,第二开关 03的第一端也与高压直流电的负极(Vin -) 连接, 控制驱动单元 01分别与第一开关 02、 第二开关 03以及负载 04连接。
连接器第一部分 05与控制驱动单元 01连接, 在上电时连接器第一部分 05与连接器第二部分连通, 触发控制驱动单元 01驱动第一开关 02开启。 即 在将上述电路所在的装置通过连接器第一部分 05 插入连接器第二部分所在 的装置上电时, 连接器第一部分 05与连接器第二部分连通, 连接器第一部分 05与连接器第二部分连通时会产生连接信号发送给控制驱动单元 01, 以触发 该控制驱动单元 01驱动第一开关 02开启。
控制驱动单元 01在驱动所述第一开关 02开启后延时预设时间, 驱动第 二开关 03开启, 并在所述第二开关 03开启后驱动负载 04启动, 实现了负载 的启动, 至此完成了高压直流软启动, 实现了高压直流软启动电路的连接器 第一部分带电插入时无电弧产生。
假设上述电路部署在高压直流供电的单板上, 带电拔出单板时, 连接器 第一部分 05首先断开与连接器第二部分的连接,此时连接器会产生一个断开 信号发送给控制驱动单元 01, 以使控制驱动单元 01控制第一开关 02和第二 开关 03瞬间关断,此时连接器第一部分和连接器第二部分的接触部分无电流 通过, 实现了无电弧断开连接器, 避免了拉弧产生。
本发明实施例中, 通过上述电路实现了高压直流供电装置的无电弧热插 拔, 且无需对连接器本身进行改进, 可以使连接器的体积较小, 满足在空间 条件限制情况下的需求。
图 2为本发明提供的高压直流软启动电路实施例二的结构示意图, 如图 2所示, 在图 1的基础上, 具体地, 上述连接器第一部分 05包括一根短针 21 和两根长针 22和 23, 短针 21与控制驱动单元 01连接, 其中一根长针 22与 连接器第二部分 06的正极管脚 24连接, 另一根长针 23与连接器第二部分 06的第一负极管脚 25连接。
短针 21, 用于在上电时与连接器第二部分的第二负极管脚 26接触连接 后, 使连接器产生连接信号发送给所述控制驱动单元。
具体地, 本实施例中连接器采用长短针控制方式, 电源管脚采用长针, 信号管脚采用短针。连接器第一部分插入连接器第二部分时, 两根长针 22和 23首先分别与正极管脚 24、第一负极管脚 25连接, 然后在短针 21与第二负 极管脚 26接触后, 连接器第一部分与连接器第二部分完全连通, 该连接器产 生连接信号发送给控制驱动单元 01, 以触发控制驱动单元 01驱动第一开关 02开启。
带电拔出连接器第一部分时, 短针 21首先断开与第二负极管脚 26的连 接, 连接器会产生一个断开信号发送给控制驱动单元 01, 以使控制驱动单元 01控制第一开关 02和第二开关 03瞬间关断, 此时连接器的两根长针 22和 23与正极管脚 24、 第一负极管脚 25的接触部分无电流通过。
具体实施过程中, 如果连接器不采用长短针的方式, 也可以安装互锁微 动控制开关与控制驱动单元 01连接,在将连接器第一部分插入连接器第二部 分之后, 打开该互锁微动控制开关, 触发该控制驱动单元 01 驱动第一开关 02开启, 且只要打开该互锁微动控制开关, 连接器第一部分就无法从连接器 第二部分上拔出。 拔出连接器第一部分之前, 关闭该互锁微动控制开关, 触 发控制驱动单元 01控制第一开关 02和第二开关 03瞬间关断,然后再拔出连 接器第一部分。 采用这样的方式也可以实现高压直流供电装置的无电弧热插 拔, 且无需对连接器本身进行改进。
图 3为本发明提供的高压直流软启动电路实施例三的结构示意图, 如图 3所示, 在上述实施例的基础上, 上述电路还包括功率电阻(R) 07和负载电 容(C ) 08。 具体地, 第一开关 02的第二端与功率电阻 07的第一端连接, 第 二开关 03的第二端与上述功率电阻 07的第二端连接;功率电阻 07的第二端 与负载电容 08的第一端连接,负载电容 08的第二端与高压直流电的正极 (Vin + ) 连接; 负载电容 08的第一端与上述负载 04的第一端连接, 负载电容 08 的第二端与负载 04的第二端连接。
具体实现过程中, 控制驱动单元 01驱动第一开关 02开启后, 延时预设 时间, 该预设时间根据 R和 C的值来确定。 需要说明的是, 第一开关 02开 启后, 电路通过功率电阻 07对负载电容 08进行充电, 一定时间后, 负载电 容 08充电完成, 此时第二开关 03两端的电压差为 0。 控制驱动单元 01要在 预设时间后, 负载电容 08充电完成时驱动第二开关 03开启。
继续参照图 3, 控制驱动单元 01分别与高压直流电的正极和负极连接, 以实现对控制驱动单元 01的辅助供电。
图 4为本发明提供的高压直流软启动电路实施例四的结构示意图, 与图 3的区别在于控制驱动单元 01可以由其他辅助电源进行辅助供电, 而无需利 用高压直流电进行辅助供电。 参照图 4, 控制驱动单元 01与辅助电源 09连 接, 由辅助电源 09对控制驱动单元 01进行辅助供电。 优选地, 该辅助电源 09可以是上述连接器第二部分所在装置上的电源。 例如, 连接器第二部分在 背板上, 一个背板上可能会安装多个连接器第二部分, 即一个背板可以有多 个为单板供电的辅助电源, 这时, 可以使用为其它单板供电的辅助电源来为 上述电路中的控制驱动单元 01辅助供电。
上述第一开关 02和第二开关 03有多种实现方式, 具体参见下文。
图 5为本发明提供的高压直流软启动电路实施例五的结构示意图, 如图
5所示, 第一开关 02和第二开关 03可以都为 MOS管, 具体地, 第一开关为 第一 MOS管 51, 该第一 MOS管 51的源极与高压直流电的负极连接, 第一 MOS管 51的门极与控制驱动单元 01连接,第一 MOS管 51的漏极与功率电 阻 07的第一端连接。第二开关为第二 MOS管 52,第二 MOS管 52的源极与 高压直流电的负极连接,第二 MOS管 52的门极与控制驱动单元 01连接,第 二 MOS管 52的漏极与功率电阻 07的第二端连接。
具体实现过程可以参见前述实施例, 在此不再赘述。
图 6为本发明提供的高压直流软启动电路实施例六的结构示意图, 与图 5所示实施例区别在于可以将上述第二 MOS管替换为继电器, 具体地: 第一 开关为 MOS管 61,该 MOS管 61的源极与所述高压直流电的负极连接, MOS 管 51的门极与控制驱动单元 01连接, MOS管 61的漏极与功率电阻 07的第 一端连接。 第二开关为继电器 62, 继电器 62的第一端与高压直流电的负极 连接, 继电器 62的第二端与所述功率电阻 07的第二端连接, 继电器 62的控 制管脚与所述控制驱动单元 01连接。
具体实现过程可以参见前述实施例, 在此不再赘述。 可扩展的, 也可以 将图 5实施例中的第二 MOS管替换为继电器, 其实现方式相同。
图 7为本发明提供的高压直流软启动电路实施例七的结构示意图, 与前 述实施例的区别在于, 第一开关和第二开关都为继电器。 具体地, 第一开关 为第一继电器 71, 第一继电器 71 的第一端与高压直流电的负极连接, 第一 继电器 71的第二端与功率电阻 07的第一端连接,第一继电器 71的控制管脚 与控制驱动单元 01连接。 第二开关为第二继电器 72, 第二继电器 72的第一 端与高压直流电的负极连接, 第二继电器 72的第二端与功率电阻 07的第二 端连接, 第二继电器 72的控制管脚与控制驱动单元 01连接。
本发明实施例提供的高压直流软启动电路应用范围广泛, 例如可以应用 在单板或电源模块等装置上, 但并不以此为限。 本发明实施例中, 通过上述 电路实现了高压直流供电装置的无电弧热插拔, 且无需对连接器本身进行改 进, 可以使连接器的体积较小, 满足在空间条件限制情况下的需求。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分歩 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的歩骤; 而 前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码 的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种高压直流软启动电路, 其特征在于, 包括: 控制驱动单元、 第一开关、 第二开关、 负载和连接器第一部分, 所述第 一开关的第一端与高压直流电的负极连接, 所述第二开关的第一端与高压直 流电的负极连接, 所述控制驱动单元分别与所述第一开关、 所述第二开关以 及所述负载连接, 其中:
所述连接器第一部分与所述控制驱动单元连接, 在上电时所述连接器第 一部分与连接器第二部分连通, 触发所述控制驱动单元驱动所述第一开关开 启;
所述控制驱动单元在驱动所述第一开关开启后延时预设时间, 驱动所述 第二开关开启, 并在所述第二开关开启后驱动所述负载启动。
2、 根据权利要求 1所述的电路, 其特征在于, 还包括: 功率电阻和负载 电容, 其中:
所述第一开关的第二端与所述功率电阻的第一端连接, 所述第二开关的 第二端与所述功率电阻的第二端连接; 所述功率电阻的第二端与所述负载电容的第一端连接, 所述负载电容的 第二端与所述高压直流电的正极连接;
所述负载电容的第一端与所述负载的第一端连接, 所述负载电容的第二 端与所述负载的第二端连接。
3、根据权利要求 2所述的电路,其特征在于,所述第一开关为第一 MOS 管, 所述第一 MOS管的源极与所述高压直流电的负极连接, 所述第一 MOS 管的门极与所述控制驱动单元连接,所述第一 MOS管的漏极与所述功率电阻 的第一端连接;
所述第二开关为第二 MOS管, 所述第二 MOS管的源极与所述高压直流 电的负极连接,所述第二 MOS管的门极与所述控制驱动单元连接,所述第二 MOS管的漏极与所述功率电阻的第二端连接。
4、根据权利要求 2所述的电路, 其特征在于, 所述第一开关为 MOS管, 所述 MOS管的源极与所述高压直流电的负极连接, 所述 MOS管的门极与所 述控制驱动单元连接, 所述 MOS管的漏极与所述功率电阻的第一端连接; 所述第二开关为继电器, 所述继电器的第一端与所述高压直流电的负极 连接, 所述继电器的第二端与所述功率电阻的第二端连接, 所述继电器的控 制管脚与所述控制驱动单元连接。
5、 根据权利要求 2所述的电路, 其特征在于, 所述第一开关为第一继电 器, 所述第一继电器的第一端与所述高压直流电的负极连接, 所述第一继电 器的第二端与所述功率电阻的第一端连接, 所述第一继电器的控制管脚与所 述控制驱动单元连接;
所述第二开关为第二继电器, 所述第二继电器的第一端与所述高压直流 电的负极连接, 所述第二继电器的第二端与所述功率电阻的第二端连接, 所 述第二继电器的控制管脚与所述控制驱动单元连接。
6、 根据权利要求 2所述的电路, 其特征在于, 所述连接器第一部分包括 一根短针和两根长针, 其中: 所述短针与所述控制驱动单元连接, 其中一根所述长针与所述连接器第 二部分的正极管脚连接, 另一根长针与所述连接器第二部分的第一负极管脚 连接;
所述短针, 用于在上电时与所述连接器第二部分的第二负极管脚接触连 接后, 使所述连接器产生连接信号发送给所述控制驱动单元。
7、 根据权利要求 1所述的电路, 其特征在于, 所述控制驱动单元分别与 所述高压直流电的正极和负极连接。
PCT/CN2014/076861 2013-11-29 2014-05-06 高压直流软启动电路 WO2015078142A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14865359.5A EP2985895B1 (en) 2013-11-29 2014-05-06 High-voltage direct current soft start circuit
US14/980,916 US9705303B2 (en) 2013-11-29 2015-12-28 High voltage direct current soft-start circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310632606.2A CN103647441B (zh) 2013-11-29 2013-11-29 高压直流软启动电路
CN201310632606.2 2013-11-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/980,916 Continuation US9705303B2 (en) 2013-11-29 2015-12-28 High voltage direct current soft-start circuit

Publications (1)

Publication Number Publication Date
WO2015078142A1 true WO2015078142A1 (zh) 2015-06-04

Family

ID=50252618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076861 WO2015078142A1 (zh) 2013-11-29 2014-05-06 高压直流软启动电路

Country Status (4)

Country Link
US (1) US9705303B2 (zh)
EP (1) EP2985895B1 (zh)
CN (1) CN103647441B (zh)
WO (1) WO2015078142A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2545488A (en) * 2015-12-18 2017-06-21 Fairford Electronics Ltd Parallel use of soft starters
CN107104662A (zh) * 2015-11-04 2017-08-29 罗伯特·博世有限公司 用于运行金属氧化物半导体场效应晶体管的方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103647441B (zh) 2013-11-29 2016-08-24 华为技术有限公司 高压直流软启动电路
CN105827103B (zh) * 2015-01-05 2018-11-30 华为技术有限公司 一种预防冲击电流的电路和供电电源
CN105553246B (zh) * 2015-12-17 2018-06-05 华为技术有限公司 上下电驱动电路及其控制方法
CN113206414B (zh) 2016-12-27 2024-04-09 华为技术有限公司 一种直流连接器、交直流输入设备和交直流输入系统
CN107562175A (zh) * 2017-09-06 2018-01-09 郑州云海信息技术有限公司 一种降低热插拔功能模块中mosfet损耗的方法及装置
CN108322034B (zh) * 2018-01-26 2020-10-20 苏州浪潮智能科技有限公司 一种开关电源的软启动装置及方法
CN109579388B (zh) * 2018-11-23 2021-02-05 Tcl空调器(中山)有限公司 压缩机软启动控制电路、方法及空调器
CN109378811A (zh) * 2018-12-05 2019-02-22 杭州士腾科技有限公司 基于大电容的防打火控制器
CN112398326B (zh) * 2019-08-13 2022-04-05 国民技术股份有限公司 基于多输出器件的软启动装置、方法、电源及芯片
CN114567171B (zh) * 2021-09-30 2022-11-29 惠州市乐亿通科技有限公司 充电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021227A1 (en) * 2007-07-17 2009-01-22 Takashi Sase Power-supply device, ic circuit, and information processing apparatus, and soft-start control method
CN101882864A (zh) * 2010-06-25 2010-11-10 杭州矽力杰半导体技术有限公司 一种上电启动电路及其上电启动方法
CN202550940U (zh) * 2012-03-07 2012-11-21 上海御能动力科技有限公司 电机软启动装置
CN103647441A (zh) * 2013-11-29 2014-03-19 华为技术有限公司 高压直流软启动电路

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4513341A (en) * 1983-07-25 1985-04-23 Gte Lenkurt Incorporated Overvoltage protection circuit for power supply
US5077675A (en) * 1989-10-04 1991-12-31 Amdahl Corporation Power-on-concurrent maintenance
JP3302193B2 (ja) * 1994-10-06 2002-07-15 株式会社東芝 電流検出回路
US6781502B1 (en) * 2003-05-06 2004-08-24 Semiconductor Components Industries, L.L.C. Method of forming a protection circuit and structure therefor
US7414335B2 (en) * 2004-04-15 2008-08-19 Seagate Technology Inrush current controller
CN101854051B (zh) 2010-05-27 2013-01-02 艾默生网络能源有限公司 一种高压直流ups的热插拔装置
CN102455728B (zh) * 2010-10-25 2014-06-04 三星半导体(中国)研究开发有限公司 电流控制电路
CN102421231B (zh) * 2011-09-19 2014-07-16 金陵科技学院 一种节能软启动路灯控制系统
US9036314B2 (en) * 2012-04-27 2015-05-19 Netapp, Inc. Systems and methods providing current protection to an electronic system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090021227A1 (en) * 2007-07-17 2009-01-22 Takashi Sase Power-supply device, ic circuit, and information processing apparatus, and soft-start control method
CN101882864A (zh) * 2010-06-25 2010-11-10 杭州矽力杰半导体技术有限公司 一种上电启动电路及其上电启动方法
CN202550940U (zh) * 2012-03-07 2012-11-21 上海御能动力科技有限公司 电机软启动装置
CN103647441A (zh) * 2013-11-29 2014-03-19 华为技术有限公司 高压直流软启动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2985895A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107104662A (zh) * 2015-11-04 2017-08-29 罗伯特·博世有限公司 用于运行金属氧化物半导体场效应晶体管的方法
GB2545488A (en) * 2015-12-18 2017-06-21 Fairford Electronics Ltd Parallel use of soft starters
GB2545488B (en) * 2015-12-18 2019-08-28 Fairford Electronics Ltd Parallel use of soft starters

Also Published As

Publication number Publication date
EP2985895A4 (en) 2016-05-11
US20160118782A1 (en) 2016-04-28
EP2985895A1 (en) 2016-02-17
EP2985895B1 (en) 2020-02-05
CN103647441A (zh) 2014-03-19
CN103647441B (zh) 2016-08-24
US9705303B2 (en) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2015078142A1 (zh) 高压直流软启动电路
JP5855750B2 (ja) メカトロニックな差込み接続システム
WO2017101647A1 (zh) 上下电驱动电路及其控制方法
JP6781972B2 (ja) 無アーク電流接続装置
CN101854051B (zh) 一种高压直流ups的热插拔装置
TW201145338A (en) Relay driver circuit
JP2013168347A (ja) 直流配電用の電源コンセント
CN101888045A (zh) 防止直流拉弧的电路及其方法
WO2018121002A1 (zh) 一种直流连接器、交直流输入设备和交直流输入系统
CN103515150A (zh) 一种混合继电器
CN105958437A (zh) 外部回路实现断路器失压跳闸的控制电路
CN102723238B (zh) 一种继电器驱动电路及其控制方法和控制系统
CN104917423B (zh) 一种降压启动控制系统
CN207651424U (zh) 接触器控制装置和车辆
WO2023077319A1 (zh) 开关器件、断路器和供电系统
CN200941363Y (zh) 电磁接触器灭弧装置
CN203746700U (zh) 一种接触器灭磁装置
CN106601549A (zh) 一种直流继电保护控制方法及电路
CN201498441U (zh) 接触器触点自动灭弧装置
CN206516575U (zh) 高压直流继电器灭弧结构
CN103811204A (zh) 停电自动断开电路的电源开关
CN107978487A (zh) 接触器控制方法、装置和车辆
CN217904088U (zh) 一体化工作站的电源系统及一体化工作站
CN104362936B (zh) 可逆型控制与保护开关电器及其可逆控制方法
CN204680633U (zh) 一种断路器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14865359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2014865359

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE