WO2015077932A1 - 一种含锰钢及其生产方法 - Google Patents

一种含锰钢及其生产方法 Download PDF

Info

Publication number
WO2015077932A1
WO2015077932A1 PCT/CN2013/087912 CN2013087912W WO2015077932A1 WO 2015077932 A1 WO2015077932 A1 WO 2015077932A1 CN 2013087912 W CN2013087912 W CN 2013087912W WO 2015077932 A1 WO2015077932 A1 WO 2015077932A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
temperature
production method
rolling
steel
Prior art date
Application number
PCT/CN2013/087912
Other languages
English (en)
French (fr)
Inventor
何丽丽
Original Assignee
何丽丽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 何丽丽 filed Critical 何丽丽
Priority to CN201380030742.2A priority Critical patent/CN104379791B/zh
Priority to PCT/CN2013/087912 priority patent/WO2015077932A1/zh
Publication of WO2015077932A1 publication Critical patent/WO2015077932A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Definitions

  • the invention relates to steel metallurgy, in particular to a manganese-containing steel and a production method thereof. Background technique
  • the high-manganese steel-induced twinning Induced Plasticity (TWIP) steel has a TWIP effect in the deformation process, so it has good mechanical properties, such as high strength and high plasticity.
  • the disadvantage of manufacturing a weight-reducing and reducing gas-discharging component in the automotive field is that high manganese content causes a large amount of cracks during hot rolling, and since manganese is a precious metal, it simultaneously increases production costs.
  • the martensitic transformation has a TRIP effect, and the retained austenite transforms to the martensite, increasing the strength and plasticity of the steel.
  • the steel has good work hardening ability, good strain distribution and good deep drawing performance.
  • the high work hardening ability and high mechanical strength make the steel have good energy absorption capacity and improve collision.
  • the shortcomings of performance are that the yield strength and tensile strength are not high enough, the elongation is not as good as TWIP steel, and the comprehensive work hardening rate is not as high as TWIP steel.
  • the technical problem to be solved by the present invention is to provide a new manganese-containing steel and a production method thereof, which have the TWIP and TRIP effects at the same time.
  • a manganese-containing steel comprising the following components in mass percentage: Carbon 0.2-1.0%, manganese 5-15%, aluminum 0.02-1.0%, phosphorus ⁇ 0.025%, sulfur ⁇ 0.025%, nitrogen ⁇ 0.03%, silicon 0.03-2%; and, at least one of the following alloying elements: Titanium 0.01-1.2%, ⁇ 0.01-1.2%, vanadium 0.01-1.2%; balance is iron.
  • the total mass percentage of the alloying elements does not exceed 2%.
  • the manganese-containing steel includes, for example, 0.1% titanium, 0.5% bismuth, and 0.63% vanadium; for example, 1.1% titanium and 0.8% bismuth, and, for example, 1.0% milling and 0.2% Vanadium.
  • the total mass percentage of titanium, tantalum and vanadium is 0.01-2%.
  • the manganese-containing steel has a phase such as austenite, bainite, or ferrite matrix at normal temperature.
  • Another technical solution of the present invention is a method for producing manganese-containing steel, comprising the steps of: Sl, heating the slab in a heating furnace to a temperature of 1050 ° C to 1300 ° C, performing hot rolling, the hot rolling
  • the finishing temperature is 800 ° C to 1000 ° C
  • S2 the critical zone annealing treatment is performed in a continuous annealing furnace at 850 ° C to 950 ° C
  • S3, crimping treatment at a temperature not exceeding 700 ° C
  • S4 The hot rolling is performed at a temperature of 200 ° C to 400 ° C at a temperature of 10% to 50%;
  • S6, continuous annealing at a temperature of 600 ° C or more.
  • steps S2 and S3 are mutually arranged.
  • the continuous casting slab is heated in a heating furnace at 1200 ° C for 1 hour.
  • the hot rolling finishing temperature is 900 °C.
  • the curling temperature is 650 °C.
  • warm rolling of 20% to 40% of rolling amount is performed at 300 °C.
  • a pickling treatment is also performed.
  • the invention provides a steel material having both TWIP and TRIP effects, and has low manganese content, high strength, high plasticity and low cost compared with the existing TWIP steel, and has a market application of 4 inches high. value.
  • Figure 1 is a schematic illustration of one embodiment of a method of production of the present invention. detailed description
  • a manganese-containing steel comprising the following components in mass percentage: carbon 0.2-1.0%, manganese 5-15%, aluminum 0.02-1.0%, phosphorus ⁇ 0.025%, sulfur ⁇ 0.025%, nitrogen ⁇ 0.03%, silicon 0.03 And 2%; and further comprising at least one of the following alloying elements: titanium 0.01-1.2%, milled 0.01-1.2%, vanadium 0.01-1.2%; balance is iron.
  • the stacking fault energy increases rapidly, and the deformation mechanism of the material changes from martensite transformation and deformation twinning to dislocation slip; or, when the carbon content is higher than 1.0%, the stacking fault energy increases rapidly.
  • the martensite transformation does not occur during the deformation of the material, ie it does not have the TRIP effect.
  • the carbon content is from 0.5 to 0.8%.
  • the manganese content is from 8 to 12%.
  • Silicon (Si) 0.03-2% silicon is a strong deoxidizing element, and at the same time acts as a solid solution strengthening, which can improve the yield strength and tensile strength of the material.
  • the mass fraction exceeds 2%, the properties of the material will be lowered. And in the hot rolling process, a large amount of oxide layer is produced on the surface of the material, The subsequent pickling process cannot be removed.
  • the silicon content is from 0.1 to 1.7%.
  • the vanadium (V) three elements are precipitate forming elements, form carbon-nitrogen precipitates with carbon and nitrogen elements, refine grains, and increase the yield strength of the material.
  • at least one of the elements is used to form precipitates.
  • the mass fraction of titanium (Ti) is controlled at 0.01 - 1.2%.
  • the size of the precipitate is controlled from 15 nm to 200 nm, and the strengthening effect of the precipitate is most obvious.
  • the size of the precipitate is controlled from 50 nm to 100 nm.
  • the rest is iron.
  • molybdenum (Mo) is further contained in an amount of 0.01 to 1.2%.
  • the total mass percentage of the alloying elements does not exceed 2%.
  • the manganese-containing steel has a phase such as austenite, bainite, or ferrite matrix at a normal temperature, that is, a multiphase steel.
  • another embodiment of the present invention is a method for producing manganese-containing steel, which is capable of producing high-strength, high-plasticity, low-cost medium-manganese steel having both TWIP and TRIP effects; the production method includes the following steps .
  • the continuous casting billet is heated to 1050 ° C to 1300 ° C in a heating furnace, and hot rolling is performed, and the finishing rolling temperature of the hot rolling is 800 ° C to 1000 ° C; for example, the continuous casting blank is placed at 1050
  • the heating is carried out in a heating oven at a temperature of from ° C to 1300 ° C for 0.8 to 1.5 hours.
  • the continuous casting slab is heated in a heating furnace at 1200 ° C for 1 hour.
  • the hot rolling finishing temperature is 900 °C.
  • the continuous casting slab comprises the following components by mass percentage: carbon > 0.2%, manganese > 5%, aluminum > 0.02%, phosphorus ⁇ 0.025%, sulfur ⁇ 0.025%, nitrogen ⁇ 0.03%, silicon > 0.03% And further comprising at least one of the following alloying elements: titanium > 0.01%, ⁇ > 0.01% and / or vanadium >0.01%; the balance being iron.
  • the continuous casting slab includes the following components by mass percentage: carbon 0.2-1.0%, manganese 5-15%, aluminum 0.02-1.0%, phosphorus ⁇ 0.025%, Sulfur ⁇ 0.025%, nitrogen ⁇ 0.03%, silicon 0.03-2%; and, also includes at least one of the following alloying elements: titanium 0.01-1.2%, ⁇ 0.01-1.2%, vanadium 0.01-1.2%; balance is iron .
  • the continuous casting billet is heated in a heating furnace to 1050 ° C to 1250 ° C and the temperature exceeds 1250 ° C, the grain grows, and the formation of oxide on the surface of the slab will reduce the strength of the steel, while the manganese-containing steel is heated more than At 125 °C, the columnar crystal grain boundary produces a liquid phase, and cracks occur during hot rolling.
  • the heating temperature cannot be lower than 1050 ° C, the hot rolling finishing temperature of the post process cannot be performed, and the burden of the warm rolling process is increased, so that the difficulty of rolling to the pre-thickness is increased.
  • steps S2 and S3 are interposed. That is to say, the execution order of steps S2 and S3 is reversed.
  • the crimping temperature should not exceed 700 ° C and exceed 700 ° C.
  • the surface of the hot rolled sheet is formed into a thick oxide which is difficult to remove in the pickling process.
  • a certain density of deformation twins is produced.
  • a warm rolling of 20% to 40% of the rolling amount is carried out at 300 °C.
  • the hot rolling temperature is between 200 °C and 400 °C. If the temperature is too high or too low, the stacking fault energy will not be in the range of 10kJ/m-35kJ/m, so that deformation twinning will not occur during rolling deformation.
  • a pickling treatment is also performed.
  • Pickling removing the oxide layer caused by hot rolling, and then performing cold rolling, according to the final mechanics of the product, performing a cold rolling process with a deformation amount of 10% to 50% to increase the yield strength of the steel.
  • the yield strength can exceed 700 MPa and the tensile strength exceeds 950MPa, manganese-containing steel with an elongation of 20%-50%.
  • the production process of the manganese-containing steel is: homogenization treatment of the furnace, hot rolling, annealing treatment in the boundary zone, crimping, warm rolling, cold rolling, continuous annealing treatment.
  • the continuous casting billet is first subjected to high-temperature homogenization treatment in a heating furnace, followed by hot rolling, followed by critical zone annealing treatment, followed by crimping, followed by warm rolling, followed by cold rolling, and finally critical section continuous annealing. deal with.
  • the continuous casting billet is heated in a heating furnace at 1200 ° C for 1 hour, and then hot rolled, and the hot rolling finishing temperature is 900 ° C, and continuous annealing is performed in a continuous annealing furnace at 850 ° C.
  • the crimping temperature is 650 ° C
  • the rolling temperature is 20%-40% rolling at 300 ° C
  • the pickling process is carried out
  • the cold rolling is performed at a deformation of 10% in a continuous annealing furnace at 850 ° C.
  • the continuous annealing treatment was carried out, and the cold rolling blank was sampled for the conventional one-dimensional tensile test and the characterization of the surrounding structure, and the stretching of the cold rolled tensile sample.
  • the continuous casting billet is heated in a heating furnace at 1250 ° C for 0.9 hours, then hot rolled, and the hot rolling finishing temperature is 950 ° C, and continuous annealing is performed in a continuous annealing furnace at 900 ° C.
  • the crimping temperature is 680 ° C
  • the hot rolling temperature is carried out at 320 ° C for 22% -43% rolling
  • the pickling process is carried out
  • the cold rolling is performed at a deformation of 20% in a continuous annealing furnace at 750 ° C.
  • a continuous annealing treatment is performed.
  • the continuous casting billet is heated in a heating furnace at 1080 ° C for 1.3 hours, then hot rolled, and the hot rolling finishing temperature is 830 ° C, and continuous annealing is performed in a continuous annealing furnace at 920 ° C.
  • the crimping temperature is 660 ° C
  • the hot rolling temperature is carried out at 240 ° C for 21% - 39% rolling
  • the pickling process is carried out
  • the cold rolling is performed at a deformation of 40% in a continuous annealing furnace at 790 ° C.
  • a continuous annealing treatment is performed.
  • the following steps are performed: (A) The continuous casting billet is heated to 1050 ° C to 1300 ° C in a heating furnace, followed by a hot rolling process, and the hot rolling finishing temperature is 800 ° C to 1000 ° C, crimping The temperature should not exceed 700 ° C; (B) 850 ° C -950 ° C continuous annealing furnace for critical zone annealing; (C) 200 ° C -400 ° C temperature deformation of 10% -50% Rolling; (D) deformation 10%-50% cold rolling; (E) continuous annealing treatment above 600 °C temperature.
  • the stacking fault energy of the above-mentioned manganese-containing steel materials at room temperature is 5-2 mJ/m 2 , which ensures the martensitic transformation during the deformation of the material at room temperature, and the residual austenite
  • the transformation of body martensite produces a TRIP effect.
  • the stacking fault energy at a high temperature of 200 °C -400 °C is 25-40 mJ/m 2 , which ensures that the material deformation process is composed of martensite phase under the temperature rolling conditions.
  • the deformation deformation twinning transformation produces a TWIP effect, and the end of the warm rolling produces a certain density of deformation twins.
  • manganese-containing steel having a strength exceeding 950 MPa, a yield strength exceeding 850 MPa, and an elongation exceeding 40% can be obtained, which has high collision energy absorbing ability; at room temperature, the structure is retained austenite, bainite, and ferrite. The body matrix is in an isophase; and, at normal temperature, the martensite transformation occurs during the deformation process, and the retained austenite transforms to martensite. A certain density of deformation twins was found in the microstructure. Martensite was found in the microstructure after tensile deformation, indicating that the martensite transformation occurred during the tensile deformation of the specimen. The steel of this property is in line with the high collision energy absorption of automobiles. Claim.
  • the manganese-containing steel provided in each of the above embodiments greatly reduces manganese content, aluminum content and silicon content, reduces raw material cost and production cost, and improves surface quality, yield strength, tensile strength, The elongation rate is lower than the former.
  • the deformation and twinning during the deformation process increase the work hardening rate and plasticity of the steel, and its strength and plasticity are greatly improved compared with TRIP steel.
  • an embodiment of the present invention may further be a manganese-containing steel prepared by any of the above production methods, which comprises the following components in terms of mass percentage: carbon 0.2-1.0%, manganese 5-15%, aluminum 0.02 -1.0%, phosphorus ⁇ 0.025%, sulfur ⁇ 0.025%, nitrogen ⁇ 0.03%, silicon 0.03-2%; and, also includes at least one of the following alloying elements: titanium 0.01-1.2%, milling 0.01-1.2%, vanadium 0.01 -1.2%; the balance is iron.
  • the embodiment of the present invention may be a manganese-containing steel formed by combining the respective technical features of the above embodiments, and a production method of the manganese-containing steel, and a manganese-containing steel prepared by the production method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种含锰钢及其生产方法,所述含锰钢按质量百分比包括以下组分:碳0.2-1.0%、锰5-15%、铝0.02-1.0%、磷<0.025%、硫<0.025%、氮<0.03%、硅0.03-2%;并且还包括以下至少一种合金元素:钛0.01-1.2%、铌0.01-1.2%、钒0.01-1.2%;余量为铁元素。采用上述方案,提供了同时具有TWIP与TRIP效应的钢材,相对于现有的TWIP钢,其含锰量低,具有高强度、高塑性以及低成本的优势,具有市场应用价值。

Description

说 明 书 一种含锰钢及其生产方法 技术领域
本发明涉及钢铁冶金, 尤其涉及的是, 一种含锰钢及其生产方法。 背景技术
近年来开发的高锰钢形变孪晶诱导高塑性( Twinning Induced Plasticity, TWIP )钢, 在形变过程中产生形变孪晶具有 TWIP效应, 因而具有良好的 机械性能, 如同时具有高强度高塑性, 适合制造汽车领域减重和减少气体 排放部件, 其缺点是高锰含量会导致热轧过程中裂纹大量产生, 并且, 由 于锰是贵金属, 因而同时增加生产成本。
TRIP )钢在变形过程中, 发生马氏体相变具有 TRIP效应, 残余奥氏体向马 氏体转变, 增加该钢种的强度和塑性。 同时该钢种具有较好的加工硬化能 力, 具有较好的应变分布和良好的深沖性能, 较高的加工硬化能力和较高 的机械强度使得该钢种具有好的能量吸收能力, 改善碰撞性能, 其缺点是 屈服强度和抗拉强度不够高, 延伸率也不及 TWIP钢, 综合加工硬化率不 如 TWIP钢高。
因此, 有必要生产同时具有 TWIP与 TRIP效应的钢材。 发明内容
本发明所要解决的技术问题是提供一种新的含锰钢及其生产方法, 同 时具有 TWIP与 TRIP效应。
本发明的技术方案如下: 一种含锰钢, 其按质量百分比包括以下组分: 碳 0.2-1.0%、锰 5-15%、铝 0.02-1.0%、磷 <0.025%、硫 <0.025%、 氮 <0.03%、 硅 0.03-2% ; 并且, 还包括以下至少一种合金元素: 钛 0.01-1.2%、 铌 0.01-1.2%、 钒 0.01-1.2%; 余量为铁元素。
优选的, 所述含锰钢中, 所述合金元素的总质量百分比不超过 2%。 所 述含锰钢中, 例如, 包含 0.1%的钛、 0.5%的铌以及 0.63%的钒; 又如, 包 含 1.1%的钛与 0.8%的铌, 又如, 包含 1.0%的铣与 0.2%的钒。 钛、 铌、 钒 的总体质量百分比为 0.01-2%。
优选的, 所述含锰钢中, 常温下具有奥氏体、 贝氏体、 铁素体基体等 相。
本发明的又一技术方案是, 一种含锰钢的生产方法, 其包括以下步骤: Sl、 连铸坯在加热炉中加热到 1050°C至 1300°C , 进行热轧, 所述热轧的终 轧温度在 800°C至 1000°C ; S2、在 850°C至 950°C的连续退火炉中进行临界 区退火处理; S3、 在温度不超过 700°C下卷曲处理; S4、 在 200°C至 400°C 温度下进行变形量为 10%-50%的温轧; S5、 进行变形量 10%-50%的冷轧; S6、 进行 600°C温度以上的连续退火处理。
优选的, 所述生产方法中, 互置步骤 S2、 S3。
优选的, 所述生产方法中, 步骤 S1中, 所述连铸坯放在 1200 °C的加热 炉中加热 1小时。
优选的, 所述生产方法中, 步骤 S1中, 所述热轧终轧温度为 900°C。 优选的, 所述生产方法中, 步骤 S3中, 所述卷曲的温度为 650°C。 优选的, 所述生产方法中, 步骤 S4中, 在 300°C下进行 20%-40%轧制 量的温轧。
优选的, 所述生产方法中, 步骤 S4之后, 还执行酸洗处理。
采用上述方案, 本发明提供了同时具有 TWIP与 TRIP效应的钢材, 相 对于现有的 TWIP钢, 其含锰量低, 具有高强度、 高塑性以及低成本的优 势, 具有 4艮高的市场应用价值。 附图说明
图 1为本发明生产方法的一个实施例的示意图。 具体实施方式
以下结合附图和具体实施例, 对本发明进行详细说明。
一种含锰钢, 其按质量百分比包括以下组分: 碳 0.2-1.0%、 锰 5-15%、 铝 0.02-1.0%、 磷 <0.025%、 硫 <0.025%、 氮 <0.03%、 硅 0.03-2%; 并且, 还 包括以下至少一种合金元素: 钛 0.01-1.2%、 铣 0.01-1.2%、 钒 0.01-1.2%; 余量为铁元素。 例如, 碳(C ): 0.2-1.0%, 当碳含量少于 0.2%时, 容易产 生马氏体, 连铸及轧制过程中容易产生裂纹且钢种的塑性有所下降, 当碳 含量高于 1.0%时, 层错能迅速增加, 材料的变形机制由马氏体相变和形变 孪晶变成位错滑移; 或者说, 当碳含量高于 1.0%时, 层错能迅速增加, 材 料变形过程中不会产生马氏体相变, 即不具备 TRIP效应。 优选的, 碳含量 为 0.5至 0.8%。 锰(Mn ): 5-15%, 锰含量在 5-15%范围, 锰含量超过 15% 时, 会导致热轧过程中裂纹大量产生, 由于锰是贵金属, 如果锰的含量太 高则增加生产成本。 优选的, 锰含量为 8至 12%。 铝(A1 ): 0.02-1.0%, 铝 元素的含量应该控制在 0.02-1.0%, 由于铝元素是铁素体稳定元素, 增加铝 含量提高材料的塑性, 同时增加材料的层错能; 优选的, 铝含量为 0.1 至 0.85%。 磷(P ) <0.025%, 硫(S ) <0.025%, 磷元素和硫元素都是有害元 素, 应该控制在 0.025%以下。 氮(<0.03% ), 氮元素与铝元素形成金属间 化合物 AlxNy可以细化晶粒, 提高材料的强度和塑性, 当氮元素含量超过 0.04%时会产生大量的金属间化合物 AlxNy 恶化材料的成形性和延伸率等 材料物理性能。 硅(Si ) 0.03-2%, 硅元素为强脱氧元素, 同时起到固溶强 化的作用,可以提高材料的屈服强度和抗拉强度,当其质量分数超过 2%时, 将降低材料的属性, 并在热轧过程中在材料表层产生大量的氧化物层, 在 之后的酸洗过程无法去除。 优选的, 硅含量为 0.1至 1.7%。 并且, 还含有 以下至少一种合金元素: 钛(Ti ): 0.01-1.2%,铣(Nb ): 0.01-1.2%,钒( V ): 0.01-1.2% , 钛(Ti )、 铣(Nb )、 钒(V ) 三种元素是析出物形成元素, 与 碳元素、 氮元素形成碳氮析出物, 细化晶粒, 提高材料的屈服强度, 本发 明中至少使用其中一种元素形成析出物,钛( Ti )质量分数控制在 0.01 - 1.2% , 当其质量分数小于 0.01%时, 钒(V )控制在 1.2%以下, 总质量分数控制 2%以下, 析出物量过少, 析出物强化效果不明显, 当质量分数超过 1.2%形 成大量的析出物恶化材料的塑性。 例如, 析出物的尺寸控制在 15纳米 -200 纳米左右, 析出物的强化效果最为明显。 优选的, 析出物的尺寸控制在 50 纳米至 100纳米。 其余为铁元素。 优选的, 还含有钼 (Mo ) 0.01-1.2%, 需 要说明的是, 本发明各实施例所涉及比例, 如无特殊说明, 均为质量百分 比。
优选的, 所述含锰钢中, 所述合金元素的总质量百分比不超过 2%。 优选的, 所述含锰钢中, 常温下具有奥氏体、 贝氏体、 铁素体基体等 相, 即为多相钢。
如图 1 所示, 本发明的又一个实施例是, 一种含锰钢的生产方法, 其 能够生产得到同时具有 TWIP与 TRIP效应的高强高塑性低成本中锰钢; 该 生产方法包括以下步骤。
Sl、 连铸坯在加热炉中加热到 1050°C至 1300°C , 进行热轧, 所述热轧 的终轧温度在 800°C至 1000°C ; 例如, 所述连铸坯放在 1050°C至 1300°C的 加热炉中加热 0.8至 1.5小时。 又如, 所述连铸坯放在 1200°C的加热炉中加 热 1小时。 优选的, 所述热轧终轧温度为 900 °C。 优选的, 所述连铸坯按质 量百分比包括以下组分: 碳>0.2%、 锰>5%、 铝>0.02%、 磷 <0.025%、 硫 <0.025%、 氮 <0.03%、 硅>0.03%; 并且, 还包括以下至少一种合金元素: 钛>0.01%、 铌>0.01%和 /或钒 >0.01%; 余量为铁元素。 例如, 所述连铸坯按 质量百分比包括以下组分:碳 0.2- 1.0%、锰 5- 15%、铝 0.02- 1.0%、磷 <0.025%、 硫 <0.025%、 氮 <0.03%、硅 0.03-2%; 并且, 还包括以下至少一种合金元素: 钛 0.01-1.2%、 铌 0.01-1.2%、 钒 0.01-1.2%; 余量为铁元素。
例如, 连铸坯在加热炉中加热到 1050°C至 1250°C , 温度超过 1250°C , 晶粒长大, 铸坯表面形成氧化物将降低该钢种的强度, 同时含锰钢加热超 过 125 °C , 铸坯柱状晶晶界产生液相, 热轧过程中会产生裂纹。 同时加热温 度不能低于 1050°C , 不能实施后工序的热轧终轧温度, 并增加温轧工序的 负担, 使得轧制到预先厚度的难度增加。
52、 在 850°C至 950°C的连续退火炉中进行临界区退火处理。
53、在温度不超过 700°C下卷曲处理; 例如,所述卷曲的温度为 650°C。 一个实施例是, 所述生产方法中, 互置步骤 S2、 S3。 也就是说, 步骤 S2、 S3的执行顺序对调。 卷曲温度不能超过 700°C , 超过 700°C , 热轧板表层形 成厚的氧化物, 在酸洗工序很难被去除。
54、 在 200°C至 400°C温度下进行变形量为 10%至 50%的温轧; 含锰钢 在 200°C -400°C温度下进行变形量 10%-50%轧制(温轧)过程中, 会产生一 定密度的形变孪晶。 优选的, 在 300°C下进行 20%至 40%轧制量的温轧。 温轧温度在 200 °C -400 °C , 温度太高或者太低都会使得层错能不在 10kJ/m-35kJ/m的范围, 使得轧制变形过程中不会产生形变孪晶。 优选的, 所述生产方法中, 步骤 S4之后, 还执行酸洗处理。 酸洗, 去除因热轧造成 的表明氧化物层, 然后进行冷轧, 根据产品的最终力学, 进行变形量 10%-50%的冷轧过程, 提高钢的屈服强度。
55、 进行变形量 10%至 50%的冷轧。
56、 进行 600°C温度以上的连续退火处理。 冷轧后连续退火处理在 600 ° 上进行, 当临界区连续退火温度过低, 4艮难获得较好加工能力。 由于在 高温下不会发生马氏体相变, 在连续退火处理可以借鉴传统高于再结晶温 度上退火处理, 获得较高热加工能力。
采用上述步骤, 能够制成屈服强度超过 700MPa , 拉伸强度超过 950MPa, 延伸率为 20%-50%的含锰钢。
一个例子是, 该含锰钢的生产工序为: 加热炉均质化处理、 热轧、 临 界区退火处理、 卷曲、 温轧、 冷轧、 连续退火处理。 例如, 连铸坯首先在 加热炉进行高温均质化处理, 然后进行热轧, 其次进行临界区退火处理, 然后进行卷曲, 再然后进行温轧, 再然后进行冷轧, 最后进行临界区连续 退火处理。
又一个例子是, 连铸坯放在 1200°C的加热炉中加热 1小时, 然后进行 热轧,热轧终轧温度为 900 °C ,在 850°C的连续退火炉中进行连续退火处理, 卷曲温度为 650°C , 温轧温度在 300°C进行 20%-40%轧制量, 然后进行酸洗 过程, 最后进行变形量为 10%的冷轧,在 850°C的连续退火炉中进行连续退 火处理, 在冷轧坯上取样进行传统的一维拉伸实验及围观组织的表征, 冷 轧拉伸样品的拉伸。
又一个例子是, 连铸坯放在 1250°C的加热炉中加热 0.9小时, 然后进 行热轧, 热轧终轧温度为 950°C , 在 900 °C的连续退火炉中进行连续退火处 理, 卷曲温度为 680°C , 温轧温度在 320°C进行 22%-43%轧制量, 然后进行 酸洗过程, 最后进行变形量为 20%的冷轧,在 750°C的连续退火炉中进行连 续退火处理。
又一个例子是, 连铸坯放在 1080°C的加热炉中加热 1.3小时, 然后进 行热轧, 热轧终轧温度为 830°C , 在 920 °C的连续退火炉中进行连续退火处 理, 卷曲温度为 660°C , 温轧温度在 240°C进行 21%-39%轧制量, 然后进行 酸洗过程, 最后进行变形量为 40%的冷轧,在 790°C的连续退火炉中进行连 续退火处理。
又一个例子是, 执行以下步骤: (A )连铸坯在加热炉中加热到 1050°C 至 1300°C , 接着进行热轧工艺, 热轧终轧温度在 800°C至 1000°C , 卷曲温 度不能超过 700°C ; ( B ) 850°C -950°C的连续退火炉中进行临界区退火处 理; (C ) 200°C-400°C温度下进行变形量为 10%-50%的轧制; (D ) 变形量 10%-50%的冷轧; (E ) 600°C温度以上的连续退火处理。
根据金属材料层错能计算公式, 上述各例的含锰钢材料常温下的层错 能在 5-2mJ/m2, 保证材料在常温下变形过程中, 发生马氏体相变, 残余奥 氏体向马氏体转变, 产生 TRIP 效应, 200 °C -400 °C高温下的层错能在 25-40mJ/m2,保证在该温度范围温轧条件下,材料变形过程由马氏体相变向 形变孪晶转变, 产生 TWIP效应, 温轧结束产生一定密度的形变孪晶。
采用上述各实施例, 能够得到强度超过 950Mpa、 屈服强度超过 850Mpa、 延伸率超过 40%的含锰钢, 其具有高碰撞能量吸收能力; 常温下 组织为残余奥氏体、 贝氏体、 铁素体基体等相; 并且, 常温下变形过程会 产生马氏体相变, 残余奥氏体向马氏体转变。 微观组织中发现一定密度的 形变孪晶, 拉伸变形后微观组织中发现马氏体, 表明试样拉伸变形过程发 生了马氏体相变, 该性能的钢符合汽车用高碰撞能量吸收的要求。
与纯粹的 TWIP钢相比, 上述各实施例所提供的含锰钢, 大幅减少锰 含量、 铝含量及硅含量, 减少原料成本和生产成本, 表面质量也获得提高, 屈服强度、 抗拉强度、 延伸率较前者有所降低。 与纯粹的 TRIP钢相比, 因 为形变过程中产生形变孪晶,提高钢的加工硬化率和塑性,相较于 TRIP钢, 其强度和塑性均大幅提高。
进一步地, 本发明的实施例还可以是, 一种含锰钢, 其采用任一上述 生产方法制备, 其按质量百分比包括以下组分: 碳 0.2-1.0%、 锰 5-15%、 铝 0.02-1.0%、 磷 <0.025%、 硫 <0.025%、 氮 <0.03%、 硅 0.03-2%; 并且, 还包 括以下至少一种合金元素: 钛 0.01-1.2%、 铣 0.01-1.2%、 钒 0.01-1.2%; 余 量为铁元素。
进一步地, 本发明的实施例还可以是, 上述各实施例的各技术特征, 相互组合形成的含锰钢, 以及含锰钢的生产方法, 以及采用该生产方法制 备的含锰钢。
需要说明的是, 上述各技术特征继续相互组合, 形成未在上面列举的 各种实施例, 均视为本发明说明书记载的范围; 并且, 对本领域普通技术 人员来说, 可以根据上述说明加以改进或变换, 而所有这些改进和变换都 应属于本发明所附权利要求的保护范围。

Claims

权 利 要 求 书
1、 一种含锰钢, 其特征在于, 按质量百分比包括以下组分: 碳 0.2-1.0%、锰 5-15%、铝 0.02- 1.0%、磷 <0.025%、硫 <0.025%、氮 <0.03%、 硅 0.03-2%;
并且, 还包括以下至少一种合金元素: 钛 0.01-1.2%、 铣 0.01-1.2%、 钒 0.01-1.2%;
余量为铁元素。
2、 根据权利要求 1所述含锰钢, 其特征在于, 所述合金元素的总质 量百分比不超过 2%。
3、 根据权利要求 2所述含锰钢, 其特征在于, 常温下具有奥氏体、 贝氏体、 铁素体基体等相。
4、 一种含锰钢的生产方法, 其特征在于, 包括以下步骤:
51、 连铸坯在加热炉中加热到 1050°C至 1300°C , 进行热轧, 所述热轧 的终轧温度在 800°C至 1000°C ;
52、 在 850°C至 950°C的连续退火炉中进行临界区退火处理;
53、 在温度不超过 700°C下卷曲处理;
54、 在 200°C至 400°C温度下进行变形量为 10%-50%的温轧;
55、 进行变形量 10%-50%的冷轧;
56、 进行 600°C温度以上的连续退火处理。
5、 根据权利要求 4所述生产方法, 其特征在于, 互置步骤 S2、 S3。
6、 根据权利要求 4或 5所述生产方法, 其特征在于, 步骤 S1中, 所述连铸坯放在 1200 °C的加热炉中加热 1小时。 7、 根据权利要求 6所述生产方法, 其特征在于, 步骤 S1 中, 所述 热轧终轧温度为 900°C。
8、 根据权利要求 7所述生产方法, 其特征在于, 步骤 S3中, 所述 卷曲的温度为 650°C。
9、 根据权利要求 8所述生产方法, 其特征在于, 步骤 S4中, 在 300 °C下进行 20%-40%轧制量的温轧。
10、 根据权利要求 9所述生产方法, 其特征在于, 步骤 S4之后, 还 执行酸洗处理。
PCT/CN2013/087912 2013-11-27 2013-11-27 一种含锰钢及其生产方法 WO2015077932A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380030742.2A CN104379791B (zh) 2013-11-27 2013-11-27 一种含锰钢及其生产方法
PCT/CN2013/087912 WO2015077932A1 (zh) 2013-11-27 2013-11-27 一种含锰钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087912 WO2015077932A1 (zh) 2013-11-27 2013-11-27 一种含锰钢及其生产方法

Publications (1)

Publication Number Publication Date
WO2015077932A1 true WO2015077932A1 (zh) 2015-06-04

Family

ID=52557530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087912 WO2015077932A1 (zh) 2013-11-27 2013-11-27 一种含锰钢及其生产方法

Country Status (2)

Country Link
CN (1) CN104379791B (zh)
WO (1) WO2015077932A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381671A (zh) * 2020-10-02 2022-04-22 香港大学 高强度且高塑性中锰钢及生产方法
CN114703417A (zh) * 2022-04-11 2022-07-05 常州大学 一种基于twip效应和微合金析出制备超细晶高强韧中锰钢的方法
WO2022157212A1 (de) * 2021-01-21 2022-07-28 Salzgitter Flachstahl Gmbh Verfahren zur herstellung eines umgeformten bauteils aus einer stahlplatine, verwendung eines solchen bauteils sowie entsprechende platine und bauteil

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160281196A1 (en) * 2015-03-25 2016-09-29 Nano And Advanced Materials Institute Limited High Strength Dual-Phase TRIP Steel and Method for Making Same
CN105256229B (zh) * 2015-10-29 2017-05-10 中北大学 一种高氮纳米贝氏体钢及其制备方法
EP3504351B1 (en) 2016-08-24 2023-10-11 The University of Hong Kong Dual-phase steel and method for the fabrication of the same
CN106498292B (zh) * 2016-10-31 2018-10-23 东北大学 一种含V、Ti和Nb中锰汽车用钢板及其制备方法
CN108929991B (zh) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 一种热浸镀高锰钢及其制造方法
CN108929992B (zh) * 2017-05-26 2020-08-25 宝山钢铁股份有限公司 一种热浸镀中锰钢及其制造方法
CN107574376A (zh) * 2017-09-07 2018-01-12 北京科技大学 一种低成本高强塑型高锰twip/trip效应共生钢及其制备方法
CN111321351B (zh) * 2020-04-23 2021-07-27 东北大学 一种高强度高塑性两阶段温轧中锰钢及其制备方法
CN111893393B (zh) * 2020-08-20 2021-11-23 山东华星新材料科技有限公司 一种Mo-Ti合金耐磨中锰钢及其制备方法
CN114438421B (zh) * 2020-10-19 2022-11-25 中国石油化工股份有限公司 一种相变诱发塑性钢、其制备方法及应用
CN112410681B (zh) * 2020-11-26 2022-07-26 燕山大学 一种高强塑积中锰钢及其制备方法
CN117551937B (zh) * 2023-11-17 2024-07-19 齐鲁工业大学(山东省科学院) 一种高强塑积Fe-Mn-Al-Nb系中锰钢及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478907A (zh) * 2002-08-30 2004-03-03 上海宝钢集团公司 具有纳米析出的亚微米晶粒钢板及其制造方法
CN102199721A (zh) * 2010-03-25 2011-09-28 宝山钢铁股份有限公司 高硅无取向冷轧薄板及其制造方法
CN102304664A (zh) * 2011-09-13 2012-01-04 北京科技大学 一种高强度高塑性含铝中锰trip冷轧钢板及制备方法
CN102828109A (zh) * 2012-09-17 2012-12-19 辽宁科技大学 一种亚稳态相变增塑的超细晶高强塑积钢及其生产方法
WO2013032173A2 (ko) * 2011-08-26 2013-03-07 주식회사 포스코 도금밀착성이 우수한 고망간강 및 이로부터 용융아연도금강판을 제조하는 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884153B2 (ja) * 2010-12-28 2016-03-15 Jfeスチール株式会社 高強度電磁鋼板およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1478907A (zh) * 2002-08-30 2004-03-03 上海宝钢集团公司 具有纳米析出的亚微米晶粒钢板及其制造方法
CN102199721A (zh) * 2010-03-25 2011-09-28 宝山钢铁股份有限公司 高硅无取向冷轧薄板及其制造方法
WO2013032173A2 (ko) * 2011-08-26 2013-03-07 주식회사 포스코 도금밀착성이 우수한 고망간강 및 이로부터 용융아연도금강판을 제조하는 방법
CN102304664A (zh) * 2011-09-13 2012-01-04 北京科技大学 一种高强度高塑性含铝中锰trip冷轧钢板及制备方法
CN102828109A (zh) * 2012-09-17 2012-12-19 辽宁科技大学 一种亚稳态相变增塑的超细晶高强塑积钢及其生产方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381671A (zh) * 2020-10-02 2022-04-22 香港大学 高强度且高塑性中锰钢及生产方法
WO2022157212A1 (de) * 2021-01-21 2022-07-28 Salzgitter Flachstahl Gmbh Verfahren zur herstellung eines umgeformten bauteils aus einer stahlplatine, verwendung eines solchen bauteils sowie entsprechende platine und bauteil
CN114703417A (zh) * 2022-04-11 2022-07-05 常州大学 一种基于twip效应和微合金析出制备超细晶高强韧中锰钢的方法

Also Published As

Publication number Publication date
CN104379791A (zh) 2015-02-25
CN104379791B (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2015077932A1 (zh) 一种含锰钢及其生产方法
RU2680042C2 (ru) Способ производства высокопрочного стального листа, обладающего улучшенной прочностью, пластичностью и формуемостью
JP4018905B2 (ja) 機械構造用熱間圧延線材・棒鋼およびその製造方法
EP3239327A1 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
JP5303856B2 (ja) 低温靭性に優れ、かつ強度異方性が小さい高張力鋼材の製造方法
JP6626571B2 (ja) 冷間鍛造性に優れた線材及びその製造方法
JP7499243B2 (ja) 高降伏比冷間圧延二相鋼及びその製造方法
CN103562425B (zh) 高碳薄钢板及其制造方法
US11401569B2 (en) High-strength cold-rolled steel sheet and method for manufacturing same
JP2014194060A (ja) 疲労強度に優れた自動車用機械部品の製造方法および該方法による自動車用機械部品
EP2623625A2 (en) Steel plate for line pipe, having excellent hydrogen induced crack resistance, and preparation method thereof
KR101113666B1 (ko) 초고강도 트윕 강판 및 그 제조방법
JP5747249B2 (ja) 強度、延性及びエネルギー吸収能に優れた高強度鋼材とその製造方法
WO2013051714A1 (ja) 鋼板及びその製造方法
JP5549450B2 (ja) ファインブランキング性に優れた高炭素熱延鋼板およびその製造方法
JP2011084813A (ja) 切欠き疲労強度に優れた高強度鋼製加工品及びその製造方法
JP5484135B2 (ja) オーステナイト+マルテンサイト複相組織ステンレス鋼板およびその製造方法
KR101985777B1 (ko) 초소성을 갖는 중망간강과 그 제조 방법
KR101568494B1 (ko) 중탄소 연질 선재 및 그 제조방법
JP5908066B2 (ja) 表面特性に優れた高強度高靭性線材及びその製造方法
KR101412242B1 (ko) 강관 소재용 열연 강판 제조방법
JP6632281B2 (ja) 耐結晶粒粗大化特性に優れた冷間鍛造用の肌焼鋼
JP6059569B2 (ja) 冷間加工性及び被削性に優れた鋼材の製造方法
KR101461713B1 (ko) 고인성 선재 및 그의 제조방법
TWI711706B (zh) 具高降伏強度的汽車用鋼材及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13898165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1( EPC ( EPO FORM 1205A DATED 21/09/2016 )

122 Ep: pct application non-entry in european phase

Ref document number: 13898165

Country of ref document: EP

Kind code of ref document: A1