WO2015076546A1 - 미세 유로 반응기 - Google Patents

미세 유로 반응기 Download PDF

Info

Publication number
WO2015076546A1
WO2015076546A1 PCT/KR2014/011100 KR2014011100W WO2015076546A1 WO 2015076546 A1 WO2015076546 A1 WO 2015076546A1 KR 2014011100 W KR2014011100 W KR 2014011100W WO 2015076546 A1 WO2015076546 A1 WO 2015076546A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
fluids
branch
micro
channel
Prior art date
Application number
PCT/KR2014/011100
Other languages
English (en)
French (fr)
Inventor
윤석현
변영창
최재훈
윤태훈
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2016526084A priority Critical patent/JP6200083B2/ja
Priority to US15/031,950 priority patent/US10232338B2/en
Priority to CN201480064474.0A priority patent/CN105764603B/zh
Publication of WO2015076546A1 publication Critical patent/WO2015076546A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/065Feeding reactive fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0422Numerical values of angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • B01J2219/00894More than two inlets

Definitions

  • the present invention relates to a micro-channel reactor, when applied to the synthesis of particles, to a micro-channel reactor of a novel structure that minimizes the clogging of the flow path due to the precipitation and stagnation of the reaction product while maintaining the mixing ability of the reactants.
  • the stationary mixing reactor is used for producing fine particles by chemical reaction, crystallization or the like.
  • the fine flow path reactor has a fine flow path having a flow path width of about 10 ⁇ m to 1000 ⁇ m.
  • a fine flow path reactor at least two or more types of fluids are mixed after being divided into minute flows by the fine flow path.
  • the fluid is divided into minute flows, and the diffusion distance of the fluid is shortened. This speeds up the mixing speed of the fluid. Therefore, the fluid can be mixed more efficiently in a short time than the conventional static mixing reactor.
  • the reactor which has a Y-shaped flow path is known, for example.
  • a flow path for injecting the first fluid and a flow path for injecting the second fluid intersect so as to form a Y shape, and one confluence path is formed.
  • the fluids supplied to the respective flow passages join in a laminar flow state at the intersections of the flow passages. Then, each fluid diffuses and mixes with each other.
  • FIG. 1 shows a photograph of a conventional stacked microchannel reactor.
  • the conventional microchannel reactor 10 includes an upper plate 11 on which a microchannel in which reactant A flows is formed, and a lower plate 12 in which a microchannel in which reactant B flows. That is, an inflow passage for injecting each of the fluids, a mixing passage for crossing and dividing the flow of these fluids one or more times, on the connection surface where the upper plate 11 and the lower plate 12 face each other, and mixing An outlet flow path through which the fluid flows out is provided, and when the upper plate 11 and the lower plate 12 overlap, the fluid flows alternately from the upper plate 11 to the lower plate 12. It consists of a main flow path and a branch flow path.
  • each fluid is mixed in a laminar flow state.
  • This mixing behavior 50 is illustrated in FIG.
  • the fluids 51 and 52 injected from the inflow channel of FIG. 1 are stacked in the form as shown in FIG. Thereafter, the mixed fluid diverges at the first branch, partly toward the main flow path, and the rest toward the branch flow path, and then merges again. Since the branch flow path is interrupted, the next confluence portion of FIGS. 2B and 2C
  • the upper fluid and the lower fluid which form a lamination form as shown in FIG. 2, are combined to form a lamination form as shown in FIG. 2 (d), and the mixed fluid at the third confluence point forms a layer as shown in FIG. . Repeating this process, 2 n layers are formed in the mixed fluid at the nth confluence point.
  • the laminar flow forming the interface with the above-described flow channel is alternately stacked up and down, thereby providing an effect of promoting mixing.
  • the micro-channel reactor of such a structure is designed to maximize the mixing between the reactants in most cases when the reaction product is in a solution state, and stagnation of the reaction product is not a big problem. Therefore, the low viscosity reactant has the advantage of being able to react continuously while maximizing the mixing between the reactants, but the flow path is discontinuous appearing and disappearing structure, so the flow path changes rapidly, so when the reaction product precipitates, If there is a point, it is easy to cause a flow clogging phenomenon, the micro-channel reactor has a problem that is very vulnerable to such a flow clogging phenomenon because the flow path is a very small microstructure. Therefore, when the reaction product is a solid, such as nanoparticles, there is a high necessity for the development of a micro-channel reactor having a new structure to prevent stagnant reaction products while maintaining the existing mixing performance.
  • an object of the present invention is to solve the problems of the prior art as described above and the technical problems that have been requested from the past.
  • the inventors of the present application have applied the microfluidic reactor of the novel structure according to the present invention to a reaction in which precipitation occurs, such as the synthesis of particles. While minimizing the sedimentation, and consequent blockage phenomenon, it was confirmed that the mixing performance of the reactants can be maintained, and thus, the present invention was completed.
  • the micro-channel reactor according to the present invention is a micro-channel reactor formed by facing the upper plate and the lower plate of the plate-shaped with each channel,
  • the flow path includes one or more injection flow paths into which different fluids are respectively injected, a mixing flow path through which the respective fluids injected into the injection flow paths join, and a discharge flow path through which the fluid joined by the mixing flow path is discharged.
  • the mixing passage includes a stem passage extending from the injection passages to the discharge passage and one or more branch passages branching off from the stem passage;
  • the fluid In the mixing of the fluid repeating the branching and confluence, characterized in that the fluid is configured to undergo a mixing process in which the fluid is branched in the vertical direction and then joined in the left and right directions.
  • the conventional micro-channel reactor is configured to go through a mixing process in which the state of the laminar flow, ie, branched in the left and right direction and then joined in the vertical direction as a stacked type.
  • a laminar flow there was no problem of mixing efficiency and precipitation when the reaction product was in a solution state, but in the reaction in which particles were formed, precipitation occurred in a flow path portion that was rapidly separated up and down, thereby clogging the lower plate portion.
  • the phenomenon worsens, not only the mixing efficiency is lowered, but also there is a serious problem in terms of stability of the reaction.
  • the inventors of the present application have developed a micro-channel reactor having an optimized structure in a reaction in which precipitation occurs, such as synthesis of particles, after extensive research.
  • the micro-channel reactor according to the present invention unlike the existing micro-channel reactor, the fluid is branched in the vertical direction after the mixing process is joined to the left and right, there is no flow path discontinuously exist It is possible to minimize the stagnation of the fluid, it has a form that is naturally branched and joined, so that the above problems can be solved while increasing the mixing efficiency in the reaction in which the particles are formed.
  • the injection flow paths into which the different fluids are injected are largely based on the first injection flow path located on the central axis and the central axis when the line connecting the portion where the fluids branch and join is the central axis. It may be composed of one or more second injection passages which are branched at a predetermined angle.
  • different fluids may be injected into the second injection channels, respectively. That is, different fluids may be injected into both the first injection channel and the second injection channel.
  • the present invention is not limited thereto, and in some cases, depending on the desired reaction, the fluids injected into the injection flow paths may be determined identically or differently.
  • the branch angles of the second injection channels may range from 30 degrees to 60 degrees with respect to the central axis.
  • the diameter of the injection passages may be 1.5 millimeters to 5.0 millimeters. This is a range larger than the diameter of the mixing flow passage described below, and it is not necessary to create a pressure generated by the flow of the fluid in the mixing flow passage from the injection flow passage, and to lower the pressure caused by the flow of the fluid to make the injection easier. For sake.
  • the mixed flow path is divided into a stem flow path and a branch flow path as described above.
  • the branch flow path is added to the stem flow path of the facing plate to increase the diameter.
  • the flow path is formed only in a part and does not need to be divided into sections, but the stem flow path is formed as a whole of the mixing flow path. It is divided into two sections according to the branching and joining aspects.
  • one is a section in which the fluids are joined, and the other is a section in which the fluids branch from side to side.
  • the diameter of the stem flow path in the section in which the fluids are joined may be 0.5 mm to 1.5 mm, and the diameter of the stem flow path in the section in which the fluids are branched left and right is compared with the diameter of the stem flow path in the section in which the fluids are joined. 0.5 times to 1.0 times.
  • the diameter of the stem flow path in the branched section is smaller than the stem flow path in the joined section, so that the branched fluid may have a constant diameter when the divided fluid flows again.
  • the diameter of the stem flow path in the section in which the fluids are branched from side to side decreases sequentially toward the point where the fluids are joined, and branching from side to side.
  • the diameter of the end of the stem flow path is preferably 0.5 times the diameter of the stem flow path in the section in which the fluids are joined.
  • the stem flow path may be symmetrical with respect to the path from the point where the fluids are branched to the point of confluence
  • the branch flow path is symmetrical with respect to the stem flow path with the center axis of the line connecting the portion where the fluids are branched and joined Can be branched to. Therefore, when the upper plate and the lower plate face each other, the stem flow path and the branch flow path overlap, and at this time, the planar structure formed by the stem flow path and the branch flow path is not limited as long as it is a symmetrical structure. Can be.
  • branching direction of the branch flow path is formed to be joined to the stem flow path of the plate facing at any point of the branched section so that the fluid branched in the vertical direction can be joined from left and right, in one specific example .
  • Branching upward from the stem in the direction in which the injection flow paths are formed, and the branching angle may range from 10 degrees to 45 degrees when the center axis is a line connecting the part where the fluid branches and joins.
  • branching angle is out of the above range and the flow path is less than 10 degrees, it is difficult to produce the flow path. If the branching angle exceeds 45 degrees, the natural flow of the fluid cannot be formed due to the bent portion, which is not preferable.
  • the branch flow paths may include one or more sections of which the depth changes continuously with respect to the surface of the plate, and the section of which the depth varies continuously may be a stop point of the branch flow path, that is, the fluid flowing through the flow path is the first branch flow path. It may be a structure tapered downward from the point of meeting to the branch point, that is, the point where the fluid flowing in the flow path joins from left and right.
  • the tapered structure may have an inclination of 30 degrees to 45 degrees, and if it is less than 30 degrees out of the above range, the length of the branch flow path is relatively equal to the depth of the section in which the fluids of the stem flow paths are joined. Since it is inefficient, and if it exceeds 45 degrees, there may be a stagnation of the fluid immediately below the inclined portion with a steep incline, which is undesirable because the precipitation of particles may occur.
  • fluids injected into the injection flow paths and uniformly mixed through the mixing flow path are discharged through the discharge flow path, and the diameter of the discharge flow path is smoothly discharged without clogging the mixed fluids. It can be 1.5 millimeters to 5.0 millimeters in the range larger than the diameter of.
  • the present invention provides a method for synthesizing nanoparticles using the micro-channel reactor, and provides a nanoparticle produced by the above method.
  • the method of synthesizing the nanoparticles may be achieved by injecting a reactant, distilled water, and a reducing agent into one or more injection flow paths of the micro flow path reactor, respectively, to allow the fluids to merge in the left and right directions through the mixing flow path of the micro flow path reactor.
  • the nanoparticles In the case of producing the nanoparticles as described above, not only can the nanoparticles be stably obtained without clogging of the reactor due to the precipitation of the particles, and the loss due to precipitation in the reactor can be prevented. It is higher than the case by the micro-channel reactor.
  • FIG. 2 is a schematic diagram showing mixing behavior in cross sections occurring in each part of the conventional stacked microchannel reactor of FIG. 1;
  • FIG. 3 is a schematic view of the upper plate and the lower plate of the micro-channel reactor according to the present invention.
  • FIG. 4 is an enlarged schematic view of a portion A of the lower plate of FIG. 3;
  • FIG. 5 is a schematic side view for illustrating the flow path depth shape of the portion B of FIG. 4;
  • FIG. 6 is a schematic view of a state in which the upper plate and the lower plate of FIG. 3 face each other;
  • FIG. 7 is a schematic diagram showing the mixing behavior in the cross section occurring in each part of the microchannel reactor of FIG. 6.
  • FIG. 3 is a schematic diagram showing an upper plate and a lower plate of a micro-channel reactor according to one embodiment of the present invention
  • FIG. 4 is an enlarged schematic view of a portion A of the lower plate of FIG. 3.
  • a fluid injected from the first injection flow path is defined as a first fluid and a fluid injected from the second injection flow paths as a second fluid and a third fluid.
  • the microchannel reactor according to the present invention is divided into an upper plate 110 and a lower plate 120, and different fluids are injected into the upper plate 110 and the lower plate 120, respectively.
  • Each of the fluids injected into the first injection passages 111 and 121 and the second injection passages 112, 113, 122, and 123 and the injection passages 111, 112, 113, 121, 122, and 123 are joined.
  • the mixing flow paths are formed and discharge flow paths 116 and 126 through which the fluid joined by the mixing flow paths are formed.
  • the mixing flow passage may include the stem flow passages 114 and 124 and the stem flow passages 114 and 124 extending from the injection flow passages 111, 11, 113, 121, 122 and 123 to the discharge flow passages 116 and 126. It consists of one or more branch flow paths 115 and 125 which are branched off.
  • the first injection passage 121 is positioned on the central axis 129 that connects the portions where the fluids branch and join, and the second injection passages 122 and 123. ) Is branched at an angle a1 of 30 to 60 degrees with respect to the central axis 129.
  • the diameter d1 of the injection flow paths 121, 122, and 123 is in a range larger than the average diameter of the mixing flow path from 1.5 millimeters to 5.0 millimeters in order to lower the engagement pressure in the flow of the fluid to facilitate the injection of the fluids. Is formed.
  • the mixing flow path is divided into a stem flow path 124 and a branch flow path 125.
  • the stem flow path 124 has a mutually symmetrical path from the branching point of the fluid to the joining point, and the branch flow path 125 has a central axis 129. Branched symmetrically upward with respect to the stem flow path 124.
  • the branch angle a2 of the branch flow path 125 is 10 degrees to 45 degrees with respect to the central axis 129, and thus, the stem flow path symmetrical to this branch is also bent at an angle a3 of 10 degrees to 45 degrees to the upper plate.
  • the stem flow path and the branch flow path overlap, and the planar structure formed by the stem flow path and the branch flow path is not limited as long as it is a symmetrical structure. As shown, it forms a rhombus shape.
  • the stem flow path 124 is largely divided into two sections due to the branching and merging aspects of the fluids.
  • the stem flow path 124 has a change in diameter depending on the section. Specifically, the diameter w1 of the stem flow path in the section in which the fluids are joined and the diameters w2 and w3 in the section in which the fluids are branched left and right. This is different.
  • the diameter w1 of the stem flow path in the section where the fluids are joined is 0.5 mm to 1.5 mm
  • the diameters w2 and w3 of the stem flow path in the section in which the fluids are branched left and right are the stem flow paths in the section where the fluids are joined. 0.5 to 1.0 times the diameter w1.
  • the diameters w2 and w3 of the stem flow paths of the sections in which the fluids branch to the left and right are described in more detail.
  • 0.5 times the diameter of the stem flow path of w1 the portion in contact with the section in which the first fluids are joined decreases sequentially from the section in contact with the section in which the second fluids are joined.
  • the branch flow paths 215 symmetrical with the stem flow path 214 also change in diameter to correspond to the stem flow path.
  • the stem flow path diameter w1 of the section in which the fluids are joined is kept constant throughout the mixing flow path, so that a certain amount of fluids flows through the micro flow path reactor.
  • FIG. 5 is a side view schematically showing the flow path depth shape of the portion B of FIG. 4.
  • the depth shape of the branch flow path 215 may be defined as a branch point S, that is, a flow path at the stop point E of the branch flow path 215, that is, the point where the fluid flowing through the flow path meets the first branch flow path. It consists of a structure tapered downward to the point where the flowing fluid is joined from left and right, wherein the slope a4 of the tapered structure is 30 degrees to 45 degrees.
  • the branch flow path of the lower plate may also have the same shape as the branch flow path of the lower plate.
  • FIG. 6 shows a micro flow path reactor 100 with the upper plate and the lower plate of FIG. 3 facing each other
  • FIG. 7 shows the mixing behavior 300 in the cross section occurring in each part of the micro flow path reactor of FIG. 6. It is schematically illustrated.
  • the micro-channel reactor 100 has a configuration in which a planar structure formed by a stem channel and a branch channel includes a mixing channel having a rhombus shape.
  • the fluids are mixed in each of the rhombus-shaped mixing passages, and FIG. 7 illustrates only the mixing behavior 300 of the fluids before and after the first rhombus-shaped mixing passage.
  • a first fluid 301 is injected into the first injection flow path of FIG. 6, and a second fluid 302 and a third fluid 303 are injected into the second injection flow paths, respectively. As shown in 7 (a) it is to flow along the flow path of the micro-channel reactor. When the first fluid 301, the second fluid 302, and the third fluid 303 are injected into the first injection path and the second injection path, (b) of FIG. Join in the same shape from left to right.
  • the mixed fluid as shown in FIG. 7 (b) branches in the Y section, which is the first branch, and partially moves to the stem flow path of the upper plate and the other toward the stem flow path of the lower plate, as shown in FIG. 7 (c). Branching in the direction.
  • the mixed fluid branched as described above moves along the stem flow path bent at a predetermined angle, and the diameter of the stem flow path in the section in which the fluid is branched decreases sequentially from the branch point. It will be shaped like).
  • the mixed fluid discharged to the last discharge flow path is mixed by the number n of rhombus shapes and 2 n mixed fluids as shown in FIG. It is shaped.
  • the fine flow path reactor according to the present invention is designed with a novel structure that minimizes stagnation and maximizes mixing, thereby providing excellent mixing performance of reactants when applied to a reaction in which precipitation occurs, such as synthesis of particles. It is possible to maximize the stability of the reaction by minimizing the precipitation of the reaction product at the point of passage congestion, and consequently the blockage phenomenon.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은, 각각의 유로를 구비한 평판 형상의 상부 플레이트 및 하부 플레이트를 대면시켜 형성되는 미세 유로 반응기로서, 상기 유로는 서로 다른 유체가 각각 주입되는 하나 이상의 주입 유로들, 상기 주입 유로들로 주입된 각각의 유체가 합류되어 지나는 혼합 유로, 및 상기 혼합 유로에 의해 합류된 유체가 배출되는 배출 유로를 포함하고, 상기 혼합 유로는, 상기 주입 유로들로부터 배출 유로까지 연장되는 줄기 유로, 및 상기 줄기 유로로부터 분기되어 중단되는 하나 이상의 가지 유로들을 포함하며; 분기와 합류를 반복하는 유체들의 혼합에서, 유체들이 상하 방향으로 분기된 후 좌우 방향으로 합류되는 혼합 과정을 거치도록 구성되어 있는 것을 특징으로 하는 미세 유로 반응기에 관한 것이다.

Description

미세 유로 반응기
본 발명은 미세 유로 반응기에 관한 것으로, 입자의 합성에 적용할 경우, 반응물의 혼합 능력은 유지하면서 반응 생성물의 침전 및 정체에 의한 유로 막힘을 최소화한 신규한 구조의 미세 유로 반응기에 관한 것이다.
적어도 2종류 이상의 유체를 혼합하기 위해, 각종 정지 혼합 반응기가 제안되어 있다. 정지 혼합 반응기는, 화학 반응이나 정석(晶析) 등에 의한 미립자 제조에 사용된다. 그 중에서도, 혼합할 유체를 미세 유로 내에 공급하는 미세 유로 반응기가 주목받고 있다.
미세 유로 반응기는, 유로 폭이 10㎛ 내지 1000㎛ 정도인 미세 유로를 갖고 있다. 미세 유로 반응기에서는, 적어도 2종류 이상의 유체가, 미세 유로에 의해 미소한 흐름으로 분할된 후에 혼합된다. 미세 유로 반응기 내에서는, 유체가 미소한 흐름으로 분할되어, 유체의 확산 거리가 짧아진다. 이에 의해, 유체의 혼합 속도가 빨라진다. 따라서, 종래의 정지 혼합 반응기보다도 단시간에 효율적으로 유체를 혼합할 수 있다.
상기 미세 유로 반응기의 구조로서, 예를 들어 Y자형의 유로를 갖는 반응기가 알려져 있다. 이러한 종류의 혼합 반응기에서는, 제 1 유체를 주입하는 유로와 제 2 유체를 주입하는 유로가 Y자를 이루도록 교차하여, 1개의 합류로가 형성되어 있다. 각 유로에 각각 공급된 유체는, 유로의 교차부에서 층류의 상태로 합류한다. 그 후, 각 유체는, 서로 확산되어 혼합된다.
도 1에는 종래 적층형 미세 유로 반응기의 사진이 개시되어 있다.
도 1을 참조하면, 종래 미세 유로 반응기(10)는 반응물 A가 흐르는 미세 유로가 형성된 상부 플레이트(11)와, 반응물 B가 흐르는 미세 유로가 형성된 하부 플레이트(12)를 구비하고 있다. 즉, 상부 플레이트(11)와 하부 플레이트(12)가 서로 대면하는 접속면 상에는 각각의 상기 유체를 주입하기 위한 유입 유로, 이들 유체의 흐름을 일 회 또는 그 이상 교차 및 분할하는 혼합 유로, 및 혼합된 유체가 빠져나가는 유출 유로가 구비되어 있으며, 상기 혼합 유로는 상부 플레이트(11)와 하부 플레이트(12)가 겹쳐지면 유체가 교대로 상부 플레이트(11)에서 하부 플레이트(12)로 넘어가는 구조가 되도록 메인 유로와 분기 유로로 이루어져 있다.
따라서, 상기 미세 유로 반응기는 각 유체가 층류의 상태로 혼합된다. 이러한 혼합 거동(50)이 도 2에 모식되어 있다.
도 2를 도 1과 함께 참조하면, 도 1의 유입 유로로부터 주입된 유체들(51, 52)이 각각 도 2의 (a)와 같은 형태로 적층이 이루어진다. 이 후, 혼합 유체는 첫번째 분기부에서 분기되어 일부는 메인 유로로, 나머지는 분기 유로 쪽으로 향했다가 다시 합류하는데, 분기 유로는 중단된 형태이므로, 다음 합류부에서는 도 2의 (b)와 (c)와 같은 적층 형태를 이루는 상부 유체와 하부 유체가 합류되어 도 2의 (d)와 같은 적층 형태를 보이게 되고, 세 번째 합류 지점에서의 혼합 유체는 도 2의 (e)와 같은 층이 형성된다. 이러한 과정이 반복되면서, n 번째 합류 지점에서 혼합 유체에는 2n개의 층이 형성된다.
이와 같이 미세 유로 반응기에서는 위와 같은 유로의 구조로 계면을 형성하는 층류 흐름을 위 아래로 교대로 포개어 줌으로써 혼합을 촉진하는 효과를 주게 된다.
즉, 이러한 구조의 미세 유로 반응기는 반응 생성물이 용액 상태인 경우가 대부분으로 반응물 사이의 혼합을 극대화하는 구조로 설계되어 있으며, 반응 생성물의 정체는 큰 문제가 되지 않았다. 따라서, 저점도 반응물에 대해서는 반응물 사이의 혼합을 극대화하면서 연속적으로 반응시킬 수 있는 장점이 있으나, 유로가 불연속적으로 나타나고 사라지는 구조로 되어 있어 유로가 급격히 변하므로 반응 생성물이 침전되는 경우에는 유로의 정체 지점이 존재하면 유로 막힘 현상이 일어나기 쉬우며, 상기 미세 유로 반응기는 유로가 매우 작은 미세 구조로 되어 있기 때문에 이러한 유로 막힘 현상에 매우 취약하다는 문제점이 있다. 따라서, 나노 입자와 같이 반응 생성물이 고체인 경우에는 기존의 혼합 성능을 유지하면서 반응 생성물의 정체를 막기 위한 새로운 구조의 미세 유로 반응기의 개발에 대한 필요성이 높은 실정이다.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.
본 출원의 발명자들은 심도 있는 연구와 다양한 실험을 거듭한 끝에, 본 발명에 따른 신규한 구조의 미세 유로 반응기를 입자의 합성과 같이 침전이 발생하는 반응에 적용하는 경우, 유로 정체 지점에서의 반응 생성물의 침전, 및 그에 따른 막힘 현상을 최소화하면서도 반응물의 혼합 성능은 유지할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
따라서, 본 발명에 따른 미세 유로 반응기는, 각각의 유로를 구비한 평판 형상의 상부 플레이트 및 하부 플레이트를 대면시켜 형성되는 미세 유로 반응기로서,
상기 유로는 서로 다른 유체가 각각 주입되는 하나 이상의 주입 유로들, 상기 주입 유로들로 주입된 각각의 유체가 합류되어 지나는 혼합 유로, 및 상기 혼합 유로에 의해 합류된 유체가 배출되는 배출 유로;를 포함하고,
상기 혼합 유로는, 상기 주입 유로들로부터 배출 유로까지 연장되는 줄기 유로, 및 상기 줄기 유로로부터 분기되어 중단되는 하나 이상의 가지 유로들을 포함하며;
분기와 합류를 반복하는 유체들의 혼합에서, 유체들이 상하 방향으로 분기된 후 좌우 방향으로 합류되는 혼합 과정을 거치도록 구성되어 있는 것을 특징으로 한다.
일반적으로 종래 미세 유로 반응기는, 상기에서 설명한 바와 같이, 적층형으로서 층류의 상태, 즉 좌우 방향으로 분기된 후 상하 방향으로 합류되는 혼합 과정을 거치도록 구성되어 있다. 이와 같은 층류의 흐름에서는 반응 생성물이 용액 상태인 경우에는 혼합 효율 및 침전에 대한 문제가 없었으나, 입자가 형성되는 반응에서는 상하로 급격히 분리되는 유로 부분에서 침전이 발생하고, 이에 하부 플레이트 부분에 막힘 현상이 심화되므로 혼합 효율이 저하될 뿐만 아니라, 반응의 안정성 측면에서도 심각한 문제가 있다.
이에 본 출원의 발명자들은, 심도있는 연구를 거듭한 끝에 입자의 합성과 같이 침전이 발생하는 반응에서 최적화된 구조의 미세 유로 반응기를 개발하였다. 구체적으로, 본 발명에 따른 미세 유로 반응기는, 기존의 미세 유로 반응기와 상이하게, 유체들이 상하 방향으로 분기된 후 좌우 방향으로 합류되는 혼합 과정을 거치는 바, 불연속적으로 사라지는 유로가 존재하지 아니하여 유체의 정체를 최소화할 수 있고, 자연스럽게 분기된 후 합류되는 형태를 가지므로 입자가 형성되는 반응에서 혼합 효율은 높이면서 상기와 같은 문제점은 해결할 수 있다.
더 나아가, 침전 현상에 의한 유로의 막힘을 더욱 방지하기 위해서는, 유로가 나타나는 경우에도 그 깊이가 연속적으로 변하도록 설계할 수 있다.
한편, 본 발명에 따른 미세 유로 반응기의 각각의 유로의 구조에 대해서는 이하에서 더욱 자세히 설명한다.
하나의 구체적인 예에서, 상기 서로 다른 유체들이 주입되는 주입 유로들은 크게, 유체들이 분기되고 합류되는 부분을 이은 선을 중심축으로 할 때, 중심축 상에 위치하는 제 1 주입 유로 및 중심축을 기준으로 소정의 각도로 분기되어 위치하는 하나 이상의 제 2 주입 유로들로 이루어질 수 있다.
이 때, 상기 제 2 주입 유로들에는 서로 다른 유체가 각각 주입될 수 있다. 즉, 상기 제 1 주입 유로 및 제 2 주입 유로들은 모두 다른 유체가 주입될 수 있다. 다만, 이에 한정되는 것은 아니고, 경우에 따라, 소망하는 반응에 따라, 주입 유로들에 주입되는 유체는 동일하게, 또는 상이하게 정해질 수 있다.
이러한 상기 제 2 주입 유로들의 분기 각도는 중심축을 기준으로 30도 내지 60도의 범위일 수 있다.
상기 범위를 벗어나, 30도 미만으로는 유로의 제작이 어렵고, 60도를 초과하는 경우에는 다른 유체들과의 자연스러운 혼합이 형성되지 못하고, 꺾임 부분에 의해 유체의 흐름이 정체될 가능성이 있는 바, 바람직하지 않다.
하나의 구체적인 예에서, 상기 주입 유로들의 직경은 1.5 밀리미터 내지 5.0 밀리미터일 수 있다. 이는, 이하 설명하는 혼합 유로의 직경보다 큰 범위로, 혼합 유로에서 유체의 흐름에 의해 형성되는 압력을 주입 유로에서부터 형성시킬 필요가 없으며, 유체의 흐름에 의한 압력을 낮추어 주입을 좀 더 용이하게 하기 위함이다.
한편, 혼합 유로는 상기에서 설명한 바와 같이, 줄기 유로와 가지 유로로 나뉜다.
이 중 가지 유로는 대면하는 플레이트의 줄기 유로에 더해져 그 직경을 크게 하는 역할을 하는 것으로, 일부분에만 형성되어 있어 구간을 따로 나눠 설명할 필요 없으나, 줄기 유로는 혼합 유로 전체적으로 형성되어 있는 바, 유체들의 분기, 합류의 양상에 의해 두 개의 구간으로 나뉜다.
구체적으로, 하나는 유체들이 합류되어 있는 구간이고, 다른 하나는 유체들이 좌우로 분기되어 있는 구간이다.
이 때, 유체들이 합류되어 있는 구간의 줄기 유로의 직경은 0.5 밀리미터 내지 1.5 밀리미터일 수 있고, 유체들이 좌우로 분기되어 있는 구간의 줄기 유로의 직경은 유체들이 합류되어 있는 구간의 줄기 유로의 직경 대비 0.5배 내지 1.0배일 수 있다.
이는 합류되어 있는 구간의 줄기 유로에 비해 분기되어 있는 구간의 줄기 유로의 직경이 작아야 분기되었던 유체가 다시 합류될 때 일정한 직경을 갖도록 할 수 있기 때문이다.
따라서, 유체들이 합류되어 있는 구간의 줄기 유로의 직경을 일정하게 유지하기 위해서는, 상기 유체들이 좌우로 분기되어 있는 구간의 줄기 유로의 직경은 유체가 합류되는 지점으로 갈수록 순차적으로 감소하여, 좌우로 분기되어 있는 줄기 유로의 말단의 직경은 유체들이 합류되어 있는 구간의 줄기 유로의 직경 대비 0.5배임이 바람직하다.
한편, 상기 줄기 유로는 유체들이 분기되는 지점에서 합류되는 지점에 이르는 경로가 상호 대칭일 수 있고, 상기 가지 유로는 유체들이 분기되고 합류되는 부분을 이은 선을 중심축으로 하여, 줄기 유로에 대해 대칭으로 분기될 수 있다. 따라서, 상부 플레이트와 하부 플레이트가 대면되면, 줄기 유로와 가지 유로는 겹쳐지고, 이 때, 줄기 유로와 가지 유로가 이루는 평면 구조는, 대칭 구조라면 한정되지 아니하나, 상세하게는 마름모 형상을 이루도록 구성될 수 있다.
이 때, 상기 가지 유로들의 분기 방향은, 상하 방향으로 분기된 유체들이 좌우에서 합류될 수 있도록 분기된 구간의 어느 한 지점에서 대면하는 플레이트의 줄기 유로와 합쳐지게 형성되는 바, 하나의 구체적인 예에서, 줄기 로부터 주입 유로들이 형성되어 있는 방향으로 상향 분기될 수 있고, 분기 각도는, 유체가 분기되고 합류되는 부분을 이은 선을 중심축으로 할 때, 10도 내지 45도의 범위일 수 있다.
분기 각도가 상기 범위를 벗어나, 10도 미만으로는 유로의 제작이 어렵고, 45도를 초과하는 경우에는 꺾임 부분에 의해 유체의 자연스러운 흐름이 형성되지 못하고 정체될 가능성이 큰 바, 바람직하지 않다.
한편, 상기에서 설명한 바와 같이, 침전 현상에 의한 유로의 막힘을 더욱 방지하기 위해서는, 상부 플레이트와 하부 플레이트를 대면시켰을 때, 가지 유로에 의해 유로가 급격히 나타나지 않도록, 유로 깊이가 연속적으로 변하게 설계할 수 있는 바, 상기 가지 유로들은 플레이트 표면에 대해 그 깊이가 연속적으로 변하는 구간을 하나 이상 포함할 수 있고, 상기 깊이가 연속적으로 변하는 구간은 가지 유로의 중단 지점, 즉, 유로를 흐르는 유체가 처음 가지 유로를 만나는 지점에서 분기 지점, 즉 유로를 흐르는 유체가 좌우에서 합류되는 지점으로 하향 테이퍼된 구조일 수 있다.
이 때, 햐향 테이퍼된 구조는 30도 내지 45도의 기울기를 가질 수 있고, 상기 범위를 벗어나 30도 미만인 경우에는 줄기 유로의 유체들이 합류되어 있는 구간의 깊이와 동일하게 되기까지 상대적으로 가지 유로의 길이가 길어져야 하는 바, 비효율적이고, 45도를 초과하는 경우에는 급격한 경사로 경사진 부분의 바로 밑부분에서 유체의 정체가 있을 수 있어, 입자들의 침전 현상이 발생할 수 있는 바 바람직하지 않다.
마지막으로, 상기 주입 유로들로 주입되고 상기 혼합 유로를 거쳐 균일하게 혼합된 유체들은, 상기 배출 유로를 통해 배출되는데, 상기 배출 유로의 직경은, 혼합된 유체들의 막힘 현상 없이 원활히 배출되도록, 혼합 유로의 직경보다 큰 범위에서 1.5 밀리미터 내지 5.0 밀리미터일 수 있다.
한편, 본 발명은, 상기 미세 유로 반응기를 사용하여 나노 입자를 합성하는 방법을 제공하고, 상기 방법으로 제조된 나노 입자를 제공한다.
상기 나노 입자의 합성 방법은 상기 미세 유로 반응기의 하나 이상의 주입 유로들에 반응물, 증류수 및 환원제를 각각 투입하여 상기 미세 유로 반응기의 혼합 유로를 거쳐 상기 유체들이 좌우 방향으로 합류되게 함으로써 달성할 수 있다.
이와 같이 나노 입자를 제조하는 경우에는, 입자의 침전에 따른 반응기의 막힘 현상 없어 안정적으로 나노 입자를 수득할 수 있을 뿐만 아니라, 반응기에서의 침전으로 인한 손실을 방지할 수 있는 바, 그 수득률 또한 기존의 미세 유로 반응기에 의한 경우보다 높다.
도 1은 종래 적층형 미세 유로 반응기의 사진이다;
도 2는 도 1의 종래 적층형 미세 유로 반응기의 각 부분에서 일어나는 단면에서의 혼합 거동을 나타내는 모식도이다;
도 3은 본 발명에 따른 미세 유로 반응기의 상부 플레이트 및 하부 플레이트의 모식도이다;
도 4는 도 3의 하부 플레이트 A부분의 확대 모식도이다;
도 5는 도 4의 B부분의 유로 깊이 형상을 나타내기 위한 측면 모식도이다;
도 6는 도 3의 상부 플레이트 및 하부 플레이트를 대면시킨 상태의 모식도이다;
도 7은 도 6의 미세 유로 반응기의 각 부분에서 일어나는 단면에서의 혼합 거동을 나타내는 모식도이다.
이하에서는, 본 발명의 실시예에 따른 도면을 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.
도 3은 본 발명의 하나의 실시예에 따른 미세 유로 반응기의 상부 플레이트와 하부 플레이트를 도시하는 모식도이며, 도 4는 도 3의 하부 플레이트의 A부분을 확대하여 도시한 모식도이다. 이하에서는 편의상 제 1 주입 유로로부터 주입되는 유체를 제 1 유체, 제 2 주입 유로들로부터 주입되는 유체를 제 2 유체 및 제 3 유체라고 정의한다.
먼저, 도 3을 참조하면, 본 발명에 따른 미세 유로 반응기는 상부 플레이트(110)과 하부 플레이트(120)으로 구분되며, 상부 플레이트(110) 및 하부 플레이트(120)에는 서로 다른 유체가 각각 주입되는 제 1 주입 유로(111, 121) 및 제 2 주입 유로들(112, 113, 122, 123), 상기 주입 유로들(111, 112, 113, 121, 122, 123)로 주입된 각각의 유체가 합류되어 지나는 혼합 유로, 및 상기 혼합 유로에 의해 합류된 유체가 배출되는 배출 유로(116, 126)가 형성되어 있다. 여기서, 혼합 유로는, 주입 유로들(111, 11, 113, 121, 122, 123)로부터 배출 유로(116, 126)까지 연장되는 줄기 유로(114, 124), 및 줄기 유로(114, 124)부터 분기되어 중단되는 하나 이상의 가지 유로들(115, 125)로 구성되어 있다.
이하에서는 도 4를 참조하여, 주입 유로들 및 혼합 유로에 대해 자세히 설명하도록 한다.
먼저 주입 유로들(121, 122, 123)을 살펴보면, 제 1 주입 유로(121)는 유체들이 분기되고 합류되는 부분을 이은 중심축(129) 상에 위치하고 있고, 제 2 주입 유로들(122, 123)은 중심축(129)을 기준으로 30도 내지 60도의 각도(a1)로 분기되어 위치하고 있다.
주입 유로들(121, 122, 123)의 직경(d1)은 유체의 흐름에 의합 압력을 낮추어 유체들의 주입을 좀 더 용이하게 하기 위해, 혼합 유로의 평균 직경보다 큰 범위로 1.5 밀리미터 내지 5.0 밀리미터로 형성된다.
혼합 유로는 줄기 유로(124)와 가지 유로(125)로 나뉘고, 줄기 유로(124)는 유체들이 분기되는 지점에서 합류되는 지점에 이르는 경로가 상호 대칭이며, 가지 유로(125)는 중심축(129)을 기준으로 줄기 유로(124)에 대해 대칭으로 상향 분기되어 있다. 이 때, 가지 유로(125)의 분기 각도(a2)는 중심축(129)을 기준으로 10도 내지 45이고, 따라서, 이와 대칭인 줄기 유로 또한 10도 내지 45도의 각도(a3)로 꺾여 상부 플레이트(110)와 하부 플레이트(120)가 대면되면, 줄기 유로와 가지 유로는 겹쳐지고, 이 때, 줄기 유로와 가지 유로가 이루는 평면 구조는, 대칭 구조라면 한정되지 아니하나, 이하, 도 6에서 보는 바와 같이 마름모 형상을 이룬다.
다시 도 4를 참조하면, 줄기 유로(124)는 크게 유체들의 분기, 합류의 양상에 의해 두 개의 구간으로 나뉜다.
줄기 유로(124)는 그 구간에 따라 직경의 변화가 존재하는데, 구체적으로, 유체들이 합류되어 있는 구간의 줄기 유로의 직경(w1)과 유체들이 좌우로 분기되어 있는 구간의 직경(w2, w3)이 상이하다.
유체들이 합류되어 있는 구간의 줄기 유로의 직경(w1)은 0.5 밀리미터 내지 1.5 밀리미터이고, 유체들이 좌우로 분기되어 있는 구간의 줄기 유로의 직경(w2, w3)은 유체들이 합류되어 있는 구간의 줄기 유로 직경(w1) 대비 0.5배 내지 1.0배이다.
유체들이 좌우로 분기되어 있는 구간의 줄기 유로의 직경(w2, w3)을 더욱 상세하게 설명하면, 첫 번째 유체들이 합류되어 있는 구간과 접하는 좌우로 분기되어 있는 구간의 줄기 유로의 직경(w2)은, 유체들이 합류되어 있는 구간의 줄기 유로 직경(w1) 대비 1.0배이고, 두 번째 유체들이 합류되어 있는 구간과 접하는 좌우로 분기되어 있는 구간의 줄기 유로의 직경(w3)은, 유체들이 합류되어 있는 구간의 줄기 유로 직경(w1) 대비 0.5배로 첫 번째 유체들이 합류되어 있는 구간과 접하는 부분에서, 두 번째 유체들이 합류되어 있는 구간과 접하는 부분까지 순차적으로 감소한다.
줄기 유로(214)와 대칭인 가지 유로들(215) 역시 줄기 유로와 대응되게 직경이 변함은 물론이다.
이와 같이, 혼합 유로를 구성하면, 유체들이 합류되어 있는 구간의 줄기 유로 직경(w1)은 혼합 유로 전체적으로 일정하게 유지되므로 일정한 양의 유체들이 미세 유로 반응기를 흐르게 된다.
한편, 도 5에는 도 4의 B부분의 유로 깊이 형상을 나타내기 위한 측면도가 모식적으로 도시되어 있다.
도 5를 참조하면, 가지 유로(215)의 깊이 형상은 가지 유로(215)의 중단 지점(E), 즉, 유로를 흐르는 유체가 처음 가지 유로를 만나는 지점에서 분기 지점(S), 즉 유로를 흐르는 유체가 좌우에서 합류되는 지점으로 하향 테이퍼된 구조로 이루어져 있고, 이 때, 햐향 테이퍼된 구조의 기울기(a4)는 30도 내지 45도이다. 본 명세서에는 하부 플레이트의 가지 유로만을 도시했으나, 상부 플레이트의 가지 유로 역시 하부 플레이트의 가지 유로와 동일한 형상을 가질 수 있다.
상기와 같은 구조의 미세 유로 반응기는, 상부 플레이트와 하부 플레이트를 대면시켰을 때, 가지 유로에 의해 유로가 급격히 나타나지 않으므로, 급격한 유로 형성 부분에 입자의 침전 현상에 의한 유로 막힘 현상을 더욱 효과적으로 방지할 수 있다.
도 6에는 도 3의 상부 플레이트 및 하부 플레이트를 대면시킨 상태의 미세 유로 반응기(100)가 도시되어 있고, 도 7에는 도 6의 미세 유로 반응기의 각 부분에서 일어나는 단면에서의 혼합 거동(300)이 모식적으로 도시되어 있다.
이하에서는 도 6 및 도 7을 참조하여, 미세 유로 반응기(100) 내의 유체가 서로 분기 및 합류되는 과정을 설명한다.
먼저 도 6을 참조하면, 상기에서 설명한 바와 같이, 본 발명에 따른 미세 유로 반응기(100)는 줄기 유로와 가지 유로가 이루는 평면 구조가 마름모 형상인 혼합 유로를 포함하는 구성으로 이루어져 있다. 이러한 마름모 형상의 혼합 유로마다 유체들이 혼합되는 바, 도 7에는 첫 번째 마름모 형상의 혼합 유로의 전후에서의 유체들의 혼합 거동(300)만을 도시하였다.
도 7를 도 6과 함께 참조하면, 도 6의 제 1 주입 유로에는 제 1 유체(301)가, 제 2 주입 유로들에는 제 2 유체(302) 및 제 3 유체(303)가 각각 주입되어 도 7의 (a)와 같이 미세 유로 반응기의 유로를 따라 유동하게 된다. 제 1 주입 유로와 제 2 주입 유로에 제 1 유체(301), 제 2 유체(302), 및 제 3 유체(303)가 주입되면 혼합 유로에 유입되기 전에 X 구간에서 도 7의 (b)와 같은 형태로 좌우 방향에서 합류한다.
이 후, 도 7의 (b)와 같이 혼합된 유체는 첫번째 분기부인 Y 구간에서 분기되어 일부는 상부 플레이트의 줄기 유로로, 나머지는 하부 플레이트의 줄기 유로 쪽으로 향하여 도 7의 (c)와 같이 상하 방향으로 분기된다. 이와 같이 분기된 혼합 유체는 소정의 각도로 꺾인 줄기 유로를 따라 이동하는데, 유체가 분기되어 있는 구간의 줄기 유로의 직경은 분기 지점에서부터 순차적으로 줄어드는 바, Z 구간에서 혼합 유체는 도 7의 (d)와 같은 형상을 하게 된다.
상부 플레이트 및 하부 플레이트로 분기되어 흐르던 유체는 이후에 각각 대면되는 플레이트의 가지 유로와 만나게 되고, 따라서, 상하 방향으로 분기되었던 혼합 유체는 T 구간에서 도 7의 (e)와 같이 좌우 방향으로 흘러 두 번째 합류 구간인 U 구간에서 도 7의 (f)와 같이 합류된다.
이와 같은 혼합 거동을 마름모 형상의 혼합 유로마다 거치게 되면, 마지막 배출 유로로 배출되는 혼합 유체는, 마름모 형상의 개수(n)만큼 혼합되어 도 7의 (b)와 같은 혼합 유체가 2n개 합류된 형상을 하게 된다.
즉, 본 발명에 따른 미세 유로 반응기 내에서는 유체들이 상하 방향으로 자연스럽게 분기된 후 좌우 방향으로 합류되는 과정을 거치는 바, 불연속적으로 사라지는 유로가 존재하지 아니하여 유체의 정체를 최소화하면서 혼합 성능은 유지하였음을 볼 수 있다.
이상 본 발명의 실시예에 따른 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
이상에서 설명한 바와 같이, 본 발명에 따른 미세 유로 반응기는, 정체를 최소화하고 혼합을 최대화하는 신규한 구조로 설계됨으로써, 입자의 합성과 같이 침전이 발생하는 반응에 적용하는 경우에 우수한 반응물의 혼합 성능을 유지하면서도 유로 정체 지점에서의 반응 생성물의 침전, 및 그에 따른 막힘 현상을 최소화하여 반응 안정성을 최대화할 수 있는 효과가 있다.

Claims (19)

  1. 각각의 유로를 구비한 평판 형상의 상부 플레이트 및 하부 플레이트를 대면시켜 형성되는 미세 유로 반응기로서,
    상기 유로는 서로 다른 유체가 각각 주입되는 하나 이상의 주입 유로들, 상기 주입 유로들로 주입된 각각의 유체가 합류되어 지나는 혼합 유로, 및 상기 혼합 유로에 의해 합류된 유체가 배출되는 배출 유로;를 포함하고,
    상기 혼합 유로는, 상기 주입 유로들로부터 배출 유로까지 연장되는 줄기 유로, 및 상기 줄기 유로로부터 분기되어 중단되는 하나 이상의 가지 유로들을 포함하며;
    분기와 합류를 반복하는 유체들의 혼합에서, 유체들이 상하 방향으로 분기된 후 좌우 방향으로 합류되는 혼합 과정을 거치도록 구성되어 있는 것을 특징으로 하는 미세 유로 반응기.
  2. 제 1 항에 있어서, 상기 주입 유로들은, 유체들이 분기되고 합류되는 부분을 이은 선을 중심축으로 할 때, 중심축 상에 위치하는 제 1 주입 유로 및 중심축을 기준으로 소정의 각도로 분기되어 위치하는 하나 이상의 제 2 주입 유로들로 이루어진 것을 특징으로 하는 미세 유로 반응기.
  3. 제 2 항에 있어서, 상기 제 2 주입 유로들에는 서로 다른 유체가 각각 주입되는 것을 특징으로 하는 미세 유로 반응기.
  4. 제 2 항에 있어서, 상기 제 2 주입 유로들의 분기 각도는 중심축을 기준으로 30도 내지 60도의 범위인 것을 특징으로 하는 미세 유로 반응기.
  5. 제 1 항에 있어서, 상기 주입 유로들의 직경은 1.5 밀리미터 내지 5.0 밀리미터인 것을 특징으로 하는 미세 유로 반응기.
  6. 제 1 항에 있어서, 유체들이 합류되어 있는 구간의 줄기 유로의 직경은 0.5 밀리미터 내지 1.5 밀리미터인 것을 특징으로 하는 미세 유로 반응기.
  7. 제 1 항에 있어서, 유체들이 좌우로 분기되어 있는 구간의 줄기 유로의 직경은 유체들이 합류되어 있는 구간의 줄기 유로의 직경 대비 0.5배 내지 1.0배인 것을 특징으로 하는 미세 유로 반응기.
  8. 제 7 항에 있어서, 상기 유체들이 좌우로 분기되어 있는 구간의 줄기 유로의 직경은 유체가 합류되는 지점으로 갈수록 순차적으로 감소하는 것을 특징으로 하는 미세 유로 반응기.
  9. 제 1 항에 있어서, 상기 줄기 유로는 유체들이 분기되는 지점에서 합류되는 지점에 이르는 경로가 상호 대칭인 것을 특징으로 하는 미세 유로 반응기.
  10. 제 1 항에 있어서, 상기 가지 유로는, 유체들이 분기되고 합류되는 부분을 이은 선을 중심축으로 하여, 줄기 유로에 대해 대칭으로 분기되는 것을 특징으로 하는 미세 유로 반응기.
  11. 제 1 항에 있어서, 상기 가지 유로들은, 줄기 유로로부터 주입 유로들이 형성되어 있는 방향으로 상향 분기되어 있는 것을 특징으로 하는 미세 유로 반응기.
  12. 제 1 항에 있어서, 상기 가지 유로들의 분기 각도는, 유체가 분기되고 합류되는 부분을 이은 선을 중심축으로 할 때, 10도 내지 45도의 범위인 것을 특징으로 하는 미세 유로 반응기.
  13. 제 1 항에 있어서, 상기 가지 유로들은 플레이트 표면에 대해 그 깊이가 연속적으로 변하는 구간을 하나 이상 포함하는 것을 특징으로 하는 미세 유로 반응기.
  14. 제 13 항에 있어서, 그 깊이가 연속적으로 변하는 구간은 가지 유로의 중단 부분에 형성되어 있는 것을 특징으로 하는 미세 유로 반응기.
  15. 제 13 항에 있어서, 그 깊이가 연속적으로 변하는 구간은 가지 유로의 중단 지점에서 분기 지점 방향으로 하향 테이퍼된 구조인 것을 특징으로 하는 미세 유로 반응기.
  16. 제 15 항에 있어서, 상기 하향 테이퍼된 구조는 30 내지 45도의 기울기를 갖는 것을 특징으로 하는 미세 유로 반응기.
  17. 제 1 항에 있어서, 상기 배출 유로의 직경은 1.5 밀리미터 내지 5.0 밀리미터인 것을 특징으로 하는 미세 유로 반응기.
  18. 미세 유로 반응기를 사용하여 나노 입자를 합성하는 방법으로서,
    상기 미세 유로 반응기는 각각의 유로를 구비한 평판 형상의 상부 플레이트 및 하부 플레이트를 대면시켜 형성되고,
    상기 유로는 서로 다른 유체가 각각 주입되는 하나 이상의 주입 유로들, 상기 주입 유로들로 주입된 각각의 유체가 합류되어 지나는 혼합 유로, 및 상기 혼합 유로에 의해 합류된 유체가 배출되는 배출 유로를 포함하며,
    상기 혼합 유로는, 상기 주입 유로들로부터 배출 유로까지 연장되는 줄기 유로, 및 상기 줄기 유로로부터 분기되어 중단되는 하나 이상의 가지 유로들을 포함하고,
    상기 하나 이상의 주입 유로들에는 반응물, 증류수 및 환원제가 각각 투입되어 상기 유체들이 좌우 방향으로 합류되는 것을 특징으로 하는 나노 입자의 합성 방법.
  19. 제 18 항에 따른 방법으로 제조된 것을 특징으로 하는 나노 입자.
PCT/KR2014/011100 2013-11-25 2014-11-19 미세 유로 반응기 WO2015076546A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016526084A JP6200083B2 (ja) 2013-11-25 2014-11-19 微細流路反応器
US15/031,950 US10232338B2 (en) 2013-11-25 2014-11-19 Micro-channel reactor
CN201480064474.0A CN105764603B (zh) 2013-11-25 2014-11-19 微通道反应器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130144069A KR101666425B1 (ko) 2013-11-25 2013-11-25 미세 유로 반응기
KR10-2013-0144069 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015076546A1 true WO2015076546A1 (ko) 2015-05-28

Family

ID=53179757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011100 WO2015076546A1 (ko) 2013-11-25 2014-11-19 미세 유로 반응기

Country Status (5)

Country Link
US (1) US10232338B2 (ko)
JP (1) JP6200083B2 (ko)
KR (1) KR101666425B1 (ko)
CN (1) CN105764603B (ko)
WO (1) WO2015076546A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189729A (ja) * 2016-04-12 2017-10-19 株式会社日立製作所 マイクロリアクタ、化成品製造システム及びマイクロリアクタの製造方法
CN107537415A (zh) * 2017-09-18 2018-01-05 中山盈安商贸有限公司 一种新型微通道反应器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108686594B (zh) * 2018-08-01 2023-12-01 上海璨谊生物科技有限公司 连续流微通道反应模块
KR102346758B1 (ko) * 2019-12-03 2021-12-31 서강대학교산학협력단 금 나노입자 합성을 위한 미세 액적 기반 미세유체칩 및 이의 용도
WO2022159700A1 (en) * 2021-01-22 2022-07-28 Emory University Methods, devices and systems for generating a chemical gradient

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
US6457854B1 (en) * 1997-10-22 2002-10-01 Merck Patent Gesellschaft Mit Micromixer
KR100658361B1 (ko) * 2005-09-12 2006-12-15 주식회사 스펙 마이크로 채널 리액터
KR20070119571A (ko) * 2006-06-15 2007-12-20 주식회사 엘지화학 마이크로 믹서를 이용한 금속 나노입자의 제조방법
JP2012170854A (ja) * 2011-02-18 2012-09-10 Toyohashi Univ Of Technology マイクロミキサーおよびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001120972A (ja) * 1999-10-21 2001-05-08 Shimadzu Corp 液体混合器
JP4193561B2 (ja) * 2002-04-25 2008-12-10 東ソー株式会社 微小流路構造体、これを用いた微小粒子製造方法及び微小流路構造体による溶媒抽出方法
WO2006031058A1 (en) 2004-09-13 2006-03-23 Spec Co., Ltd Micro channel reactor
JP2006122735A (ja) * 2004-10-26 2006-05-18 Dainippon Screen Mfg Co Ltd 流路構造体および流体混合装置
BRPI0606335A2 (pt) * 2005-03-23 2009-09-29 Velocys Inc caracterìsticas em superfìcie na tecnologia de microprocesso
FR2890578B3 (fr) * 2005-09-09 2007-11-30 Rhodia Chimie Sa Dispositif d'ecoulement microfluidique permettant de determiner des parametres d'une transformation physique et/ ou chimique, et son utilisation
JP4855471B2 (ja) * 2005-09-26 2012-01-18 エルジー・ケム・リミテッド 積層反応装置
JP4598646B2 (ja) * 2005-10-18 2010-12-15 学校法人早稲田大学 マイクロ反応装置
CN101224402B (zh) 2006-09-01 2012-06-27 东曹株式会社 微小流路结构及采用它的微小颗粒制造方法
JP2008264640A (ja) * 2007-04-18 2008-11-06 Shimadzu Corp 混合器
JP2010142798A (ja) 2008-12-19 2010-07-01 Takashi Nitta 螺旋状導管と衝撃板(ショクプレート)混合装置と検出・流体供給制御装置
EP2206551B1 (en) 2008-12-23 2019-08-07 Corning Incorporated Microchannel reactors
JP5691195B2 (ja) * 2010-03-01 2015-04-01 ソニー株式会社 マイクロチップ及び微小粒子分析装置
CN102553480B (zh) 2011-12-26 2014-01-22 溧阳市澳谷信息科技有限公司 微混合器
CN202893334U (zh) 2012-11-07 2013-04-24 林领妹 一种新型微通道反应器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595712A (en) * 1994-07-25 1997-01-21 E. I. Du Pont De Nemours And Company Chemical mixing and reaction apparatus
US6457854B1 (en) * 1997-10-22 2002-10-01 Merck Patent Gesellschaft Mit Micromixer
KR100658361B1 (ko) * 2005-09-12 2006-12-15 주식회사 스펙 마이크로 채널 리액터
KR20070119571A (ko) * 2006-06-15 2007-12-20 주식회사 엘지화학 마이크로 믹서를 이용한 금속 나노입자의 제조방법
JP2012170854A (ja) * 2011-02-18 2012-09-10 Toyohashi Univ Of Technology マイクロミキサーおよびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189729A (ja) * 2016-04-12 2017-10-19 株式会社日立製作所 マイクロリアクタ、化成品製造システム及びマイクロリアクタの製造方法
WO2017179353A1 (ja) * 2016-04-12 2017-10-19 株式会社日立製作所 マイクロリアクタ、化成品製造システム及びマイクロリアクタの製造方法
US10464039B2 (en) 2016-04-12 2019-11-05 Hitachi, Ltd. Microreactor, chemical product manufacturing system and microreactor manufacturing method
CN107537415A (zh) * 2017-09-18 2018-01-05 中山盈安商贸有限公司 一种新型微通道反应器
CN107537415B (zh) * 2017-09-18 2023-03-28 中山致安化工科技有限公司 一种微通道反应器

Also Published As

Publication number Publication date
KR101666425B1 (ko) 2016-10-14
JP6200083B2 (ja) 2017-09-20
US20160263546A1 (en) 2016-09-15
KR20150060082A (ko) 2015-06-03
CN105764603B (zh) 2017-11-28
CN105764603A (zh) 2016-07-13
US10232338B2 (en) 2019-03-19
JP2016538115A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2015076546A1 (ko) 미세 유로 반응기
US11873173B2 (en) Multilayer hydrodynamic sheath flow structure
JP3794687B2 (ja) マイクロ乳化器
JP3694877B2 (ja) マイクロ混合器
CN102202774A (zh) 多流路微型反应器设计
US20070263477A1 (en) Method for mixing fluids in microfluidic channels
JP2009000592A (ja) 反応器および反応システム
JP4367283B2 (ja) マイクロ流体チップ
CN105126687A (zh) 一种分合式被动微混合器
CN206381935U (zh) 一种3d不对称分合结构被动式微混合器
JP3810778B2 (ja) 平板静止型混合器
CN102233241A (zh) 一种基于成涡结构强化混合的平面被动式微混合器
CN106140050B (zh) 反应器单元及双面型微反应器系统
CN115318215A (zh) 一种e形微反应器通道结构
Liu et al. Dynamic mechanism of double emulsion droplets flowing through a microfluidic T-junction
CN108201848A (zh) 一种3d不对称分合结构被动式微混合器
JP2009018311A (ja) マイクロ流体チップ
CN218741627U (zh) 混合装置及反应器
CN216654603U (zh) 微流控芯片、混合系统及生物检测设备
CN109464973A (zh) 微通道模块
CN202129066U (zh) 一种微流控微球制备装置
CN209287264U (zh) 微通道模块
CN212142403U (zh) 用于引入多个鞘液流的微流道结构及其微流控芯片
CN113842824B (zh) 一种基于复合侧壁微结构增强混合效率的被动式微混合器
CN105148781B (zh) 一种轴对称对数螺旋线的十字微混合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864548

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016526084

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15031950

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864548

Country of ref document: EP

Kind code of ref document: A1