WO2015076501A1 - 랜덤 액세스 절차를 수행하는 방법 - Google Patents

랜덤 액세스 절차를 수행하는 방법 Download PDF

Info

Publication number
WO2015076501A1
WO2015076501A1 PCT/KR2014/009723 KR2014009723W WO2015076501A1 WO 2015076501 A1 WO2015076501 A1 WO 2015076501A1 KR 2014009723 W KR2014009723 W KR 2014009723W WO 2015076501 A1 WO2015076501 A1 WO 2015076501A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
random access
transmission
prach
access preamble
Prior art date
Application number
PCT/KR2014/009723
Other languages
English (en)
French (fr)
Inventor
황대성
이윤정
양석철
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020167011378A priority Critical patent/KR102261184B1/ko
Priority to EP19201733.3A priority patent/EP3627954B1/en
Priority to RU2016124116A priority patent/RU2634712C1/ru
Priority to US15/037,657 priority patent/US9826554B2/en
Priority to JP2016532112A priority patent/JP6509853B2/ja
Priority to EP14864323.2A priority patent/EP3073649B1/en
Priority to CN201480063359.1A priority patent/CN105745849B/zh
Publication of WO2015076501A1 publication Critical patent/WO2015076501A1/ko
Priority to US15/782,323 priority patent/US10009932B2/en
Priority to US15/995,757 priority patent/US10327266B2/en
Priority to US16/411,790 priority patent/US10887924B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0866Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access
    • H04W74/0875Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a dedicated channel for access with assigned priorities based access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • H04W52/244Interferences in heterogeneous networks, e.g. among macro and femto or pico cells or other sector / system interference [OSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B

Definitions

  • the present invention relates to mobile communications.
  • 3GPP LTE long term evolution
  • UMTS Universal Mobile Telecommunications System
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • LTE is divided into a frequency division duplex (FDD) scheme and a time division duplex (TDD) scheme.
  • FDD frequency division duplex
  • TDD time division duplex
  • the physical channel in LTE is a downlink channel PDSCH (Physical Downlink) It may be divided into a shared channel (PDCCH), a physical downlink control channel (PDCCH), a physical uplink shared channel (PUSCH) and a physical uplink control channel (PUCCH) which are uplink channels.
  • PDSCH Physical Downlink
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • small cells with small cell coverage radius are expected to be added within the coverage of existing cells in the next generation mobile communication system, and small cells are expected to handle more traffic. do.
  • the UE may occur in a situation in which a random access procedure should be performed for both the macro cell and the small cell, but is not currently allowed according to the 3GPP standard specification.
  • the present disclosure aims to solve the above-mentioned problem.
  • one disclosure of the present specification provides a method for performing a random access procedure.
  • the method includes generating a random access preamble to a first cell; Generating a random access preamble to a second cell; Determining whether a random access preamble to the first cell and a random access preamble to the second cell are triggered to be transmitted simultaneously on the same subframe; When triggered for simultaneous transmission, selecting a random access preamble to any one cell according to a predetermined priority order; And transmitting the selected random access preamble.
  • the first cell may be a macro cell
  • the second cell may be a small cell.
  • the preset priority may be in order of a primary cell, and secondary cells having a low cell index.
  • the preset priority may be in order of a master cell group including a primary cell, and a secondary cell group including a secondary cell.
  • the preset priority may be a non-contention based random access procedure and a contention based random access procedure.
  • the preset priority may be higher in order of channel quality according to the measurement result.
  • the preset priority may be determined according to a root index and a physical random access channel (PRACH) setting for generating a random access preamble.
  • PRACH physical random access channel
  • the method may further comprise delaying transmission timing of the unselected random access preamble.
  • the method may further include abandoning transmission of the unselected random access preamble at a corresponding transmission timing.
  • the method may further include not incrementing a retransmission counter when retransmitting after abandoning the transmission at the corresponding transmission timing.
  • one disclosure of the present disclosure also provides a user equipment (UE) for performing a random access procedure.
  • the user equipment generates a random access preamble to the first cell and a random access preamble to the second cell, and then subframes having the same random access preamble to the first cell and the random access preamble to the second cell.
  • a processor for determining whether to be triggered to be transmitted simultaneously on the mobile station, and selecting a random access preamble to any one cell according to a predetermined priority order when it is determined that the trigger is to be transmitted simultaneously according to the determination; And a transceiver for transmitting any one random access preamble selected by the processor.
  • 1 is a wireless communication system.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • 5 shows a structure of a downlink subframe.
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • FIG. 7 is a comparative example of a single carrier system and a carrier aggregation system.
  • FIG. 8 illustrates cross-carrier scheduling in a carrier aggregation system.
  • 9 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • FIG. 10 is a diagram illustrating an environment of a mixed heterogeneous network of macro cells and small cells, which may be a next generation wireless communication system.
  • 11A and 11B show possible dual connectivity scenarios for macro cells and small cells.
  • FIG. 12 shows an example in which a UE transmits a PRACH to a plurality of cells.
  • 13A and 13B respectively show examples of abandoning one PRACH transmission.
  • FIG. 14 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • LTE includes LTE and / or LTE-A.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • base station which is used hereinafter, generally refers to a fixed station for communicating with a wireless device, and includes an evolved-nodeb (eNodeB), an evolved-nodeb (eNB), a base transceiver system (BTS), and an access point (e.g., a fixed station). Access Point) may be called.
  • eNodeB evolved-nodeb
  • eNB evolved-nodeb
  • BTS base transceiver system
  • access point e.g., a fixed station.
  • UE User Equipment
  • MS mobile station
  • UT user terminal
  • SS subscriber station
  • MT mobile terminal
  • 1 is a wireless communication system.
  • a wireless communication system includes at least one base station (BS) 20.
  • Each base station 20 provides a communication service for a particular geographic area (generally called a cell) 20a, 20b, 20c.
  • the cell can in turn be divided into a number of regions (called sectors).
  • the UE typically belongs to one cell, and the cell to which the UE belongs is called a serving cell.
  • a base station that provides a communication service for a serving cell is called a serving BS. Since the wireless communication system is a cellular system, there are other cells adjacent to the serving cell. Another cell adjacent to the serving cell is called a neighbor cell.
  • a base station that provides communication service for a neighbor cell is called a neighbor BS. The serving cell and the neighbor cell are determined relatively based on the UE.
  • downlink means communication from the base station 20 to the UE 10
  • uplink means communication from the UE 10 to the base station 20.
  • the transmitter may be part of the base station 20 and the receiver may be part of the UE 10.
  • the transmitter may be part of the UE 10 and the receiver may be part of the base station 20.
  • the wireless communication system includes a multiple-input multiple-output (MIMO) system, a multiple-input single-output (MIS) system, a single-input single-output (SISO) system, and a single-input multiple-output (SIMO) system.
  • MIMO multiple-input multiple-output
  • MIS multiple-input single-output
  • SISO single-input single-output
  • SIMO single-input multiple-output
  • the MIMO system uses a plurality of transmit antennas and a plurality of receive antennas.
  • the MISO system uses multiple transmit antennas and one receive antenna.
  • the SISO system uses one transmit antenna and one receive antenna.
  • the SIMO system uses one transmit antenna and multiple receive antennas.
  • the transmit antenna means a physical or logical antenna used to transmit one signal or stream
  • the receive antenna means a physical or logical antenna used to receive one signal or stream.
  • a wireless communication system can be largely divided into a frequency division duplex (FDD) method and a time division duplex (TDD) method.
  • FDD frequency division duplex
  • TDD time division duplex
  • uplink transmission and downlink transmission are performed while occupying different frequency bands.
  • uplink transmission and downlink transmission are performed at different times while occupying the same frequency band.
  • the channel response of the TDD scheme is substantially reciprocal. This means that the downlink channel response and the uplink channel response are almost the same in a given frequency domain. Therefore, in a TDD based wireless communication system, the downlink channel response can be obtained from the uplink channel response.
  • the downlink transmission by the base station and the uplink transmission by the UE cannot be performed at the same time.
  • uplink transmission and downlink transmission are performed in different subframes.
  • FIG. 2 shows a structure of a radio frame according to FDD in 3GPP LTE.
  • the radio frame illustrated in FIG. 2 may refer to section 5 of 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)".
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • Physical Channels and Modulation Release 10
  • a radio frame includes 10 subframes, and one subframe includes two slots. Slots in a radio frame are numbered from 0 to 19 slots.
  • the time taken for one subframe to be transmitted is called a transmission time interval (TTI).
  • TTI may be referred to as a scheduling unit for data transmission.
  • one radio frame may have a length of 10 ms
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • the structure of the radio frame is merely an example, and the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • one slot may include a plurality of OFDM symbols. How many OFDM symbols are included in one slot may vary depending on a cyclic prefix (CP).
  • CP cyclic prefix
  • 3 shows a structure of a downlink radio frame according to TDD in 3GPP LTE.
  • the radio frame includes 10 subframes indexed from 0 to 9.
  • One subframe includes two consecutive slots.
  • one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • One slot may include a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain.
  • OFDM symbol is only for representing one symbol period in the time domain, since 3GPP LTE uses orthogonal frequency division multiple access (OFDMA) in downlink (DL), multiple access scheme or name There is no limit on.
  • OFDM symbol may be called another name such as a single carrier-frequency division multiple access (SC-FDMA) symbol, a symbol period, and the like.
  • SC-FDMA single carrier-frequency division multiple access
  • One slot includes 7 OFDM symbols as an example, but the number of OFDM symbols included in one slot may vary according to the length of the CP.
  • One slot in a normal CP includes 7 OFDM symbols and one slot in an extended CP includes 6 OFDM symbols.
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block includes 7 ⁇ 12 resource elements (REs). It may include.
  • a subframe having indexes # 1 and # 6 is called a special subframe and includes a downlink pilot time slot (DwPTS), a guard period (GP), and an uplink pilot time slot (UpPTS).
  • DwPTS is used for initial cell search, synchronization or channel estimation at the UE.
  • UpPTS is used to synchronize channel estimation at the base station with uplink transmission synchronization of the UE.
  • GP is a section for removing interference caused in the uplink due to the multipath delay of the downlink signal between the uplink and the downlink.
  • DL subframe In TDD, a downlink (DL) subframe and an uplink (UL) subframe coexist in one radio frame.
  • Table 1 shows an example of configuration of a radio frame.
  • 'D' represents a DL subframe
  • 'U' represents a UL subframe
  • 'S' represents a special subframe.
  • the UE may know which subframe is the DL subframe or the UL subframe according to the configuration of the radio frame.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • PDCCH and other control channels are allocated to the control region, and PDSCH is allocated to the data region.
  • FIG. 4 is an exemplary diagram illustrating a resource grid for one uplink or downlink slot in 3GPP LTE.
  • an uplink slot includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in a time domain and NRB resource blocks (RBs) in a frequency domain.
  • OFDM orthogonal frequency division multiplexing
  • RBs resource blocks
  • the number of resource blocks (Resource Block RB), that is, the NRB may be any one of 6 to 110.
  • the RB is also called a physical resource block (PRB).
  • an example of one resource block includes 7 ⁇ 12 resource elements (REs) including 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain, but the subcarriers in the resource block
  • the number of and the number of OFDM symbols is not limited thereto.
  • the number of OFDM symbols or the number of subcarriers included in the resource block may be variously changed. That is, the number of OFDM symbols may change according to the length of the above-described CP.
  • 3GPP LTE defines that 7 OFDM symbols are included in one slot in the case of a regular CP, and 6 OFDM symbols in one slot in the case of an extended CP.
  • the OFDM symbol is for representing one symbol period, and may be referred to as an SC-FDMA symbol, an OFDMA symbol, or a symbol period according to a system.
  • the RB includes a plurality of subcarriers in the frequency domain in resource allocation units.
  • the number NUL of resource blocks included in an uplink slot depends on an uplink transmission bandwidth set in a cell.
  • Each element on the resource grid is called a resource element (RE).
  • the number of subcarriers in one OFDM symbol can be used to select one of 128, 256, 512, 1024, 1536 and 2048.
  • a resource grid for one uplink slot may be applied to a resource grid for a downlink slot.
  • 5 shows a structure of a downlink subframe.
  • 7 OFDM symbols are included in one slot by assuming a normal CP.
  • the number of OFDM symbols included in one slot may change according to the length of a cyclic prefix (CP). That is, as described above, according to 3GPP TS 36.211 V10.4.0, one slot includes 7 OFDM symbols in a normal CP, and one slot includes 6 OFDM symbols in an extended CP.
  • CP cyclic prefix
  • a resource block is a resource allocation unit and includes a plurality of subcarriers in one slot. For example, if one slot includes 7 OFDM symbols in the time domain and the resource block includes 12 subcarriers in the frequency domain, one resource block may include 7 ⁇ 12 resource elements (RE). have.
  • the DL (downlink) subframe is divided into a control region and a data region in the time domain.
  • the control region includes up to three OFDM symbols preceding the first slot in the subframe, but the number of OFDM symbols included in the control region may be changed.
  • a physical downlink control channel (PDCCH) and another control channel are allocated to the control region, and a PDSCH is allocated to the data region.
  • PDCH physical downlink control channel
  • physical channels include a physical downlink shared channel (PDSCH), a physical uplink shared channel (PUSCH), a physical downlink control channel (PDCCH), a physical control format indicator channel (PCFICH), and a physical hybrid (PHICH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • PDCCH physical downlink control channel
  • PCFICH physical control format indicator channel
  • PHICH physical hybrid
  • ARQ Indicator Channel Physical Uplink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of a subframe carries a control format indicator (CFI) regarding the number of OFDM symbols (that is, the size of a control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the wireless device first receives the CFI on the PCFICH and then monitors the PDCCH.
  • the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (NACK) signal for a UL hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • NACK negative-acknowledgement
  • HARQ UL hybrid automatic repeat request
  • the Physical Broadcast Channel (PBCH) is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the wireless device to communicate with the base station, and the system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • SIB system information block
  • the PDCCH includes resource allocation and transmission format of downlink-shared channel (DL-SCH), resource allocation information of uplink shared channel (UL-SCH), paging information on PCH, system information on DL-SCH, and random access transmitted on PDSCH. Resource allocation of higher layer control messages such as responses, sets of transmit power control commands for individual UEs in any UE group, activation of voice over internet protocol (VoIP), and the like.
  • a plurality of PDCCHs may be transmitted in the control region, and the UE may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregation of one or several consecutive control channel elements (CCEs).
  • CCEs control channel elements
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel.
  • the CCE corresponds to a plurality of resource element groups.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL uplink grant
  • VoIP Voice over Internet Protocol
  • the base station determines the PDCCH format according to the DCI to be sent to the UE, and attaches a cyclic redundancy check (CRC) to the control information.
  • CRC cyclic redundancy check
  • the CRC masks a unique radio network temporary identifier (RNTI) according to the owner or purpose of the PDCCH. If the PDCCH is for a specific UE, a unique identifier of the UE, for example, a cell-RNTI (C-RNTI) may be masked to the CRC. Alternatively, if the PDCCH is for a paging message, a paging indication identifier, for example, p-RNTI (P-RNTI), may be masked to the CRC.
  • RNTI radio network temporary identifier
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is a method of demasking a desired identifier in a cyclic redundancy check (CRC) of a received PDCCH (referred to as a candidate PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel.
  • the base station determines the PDCCH format according to the DCI to be sent to the wireless device, attaches the CRC to the DCI, and masks a unique identifier (RNTI) to the CRC according to the owner or purpose of the PDCCH.
  • RNTI unique identifier
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate according to a state of a radio channel and corresponds to a plurality of resource element groups (REGs).
  • the REG includes a plurality of resource elements.
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG includes four REs and one CCE includes nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the number of CCEs used for transmission of the PDCCH is determined by the base station according to the channel state. For example, one CCE may be used for PDCCH transmission for a UE having a good downlink channel state. Eight CCEs may be used for PDCCH transmission for a UE having a poor downlink channel state.
  • a control channel composed of one or more CCEs performs interleaving in units of REGs and is mapped to physical resources after a cyclic shift based on a cell identifier is performed.
  • the UE cannot know which CCE aggregation level or DCI format is transmitted at which position in the PDCCH of the control region. Since a plurality of PDCCHs may be transmitted in one subframe, the UE monitors the plurality of PDCCHs in every subframe. Here, monitoring means that the UE attempts to decode the PDCCH according to the PDCCH format.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH.
  • the UE monitors the PDCCH in the corresponding search space.
  • a DCI format and a search space to be monitored are determined according to a transmission mode (TM) of the PDSCH.
  • TM transmission mode
  • the uses of the DCI format are classified as shown in the following table.
  • DCI format 0 Used for PUSCH scheduling
  • DCI format 1 Used for scheduling one PDSCH codeword
  • DCI format 1A Used for compact scheduling and random access of one PDSCH codeword
  • DCI format 1B Used for simple scheduling of one PDSCH codeword with precoding information
  • DCI format 1C Used for very compact scheduling of one PDSCH codeword
  • DCI format 1D Used for simple scheduling of one PDSCH codeword with precoding and power offset information
  • DCI format 2 Used for PDSCH scheduling of terminals configured in closed loop spatial multiplexing mode
  • DCI format 2A Used for PDSCH scheduling of terminals configured in an open-loop spatial multiplexing mode
  • DCI format 2B is used for resource allocation for dual-layer beamforming of the PDSCH.
  • DCI format 2C DCI format 2C is used for resource allocation for up to eight layers of closed-loop SU-MIMO or MU-MIMO operation.
  • DCI format 2D DCI format 2C is used for resource allocation of up to eight layers.
  • DCI format 3 Used to transmit TPC commands of PUCCH and PUSCH with 2-bit power adjustments
  • DCI format 3A Used to transmit TPC commands of PUCCH and PUSCH with 1-bit power adjustment
  • DCI format 4 Used for PUSCH scheduling of uplink (UL) cell operating in multi-antenna port transmission mode
  • the uplink channel includes a PUSCH, a PUCCH, a sounding reference signal (SRS), and a physical random access channel (PRACH).
  • PUSCH PUSCH
  • PUCCH Physical Uplink Control Channel
  • SRS sounding reference signal
  • PRACH physical random access channel
  • the PDCCH is monitored in a limited region called a control region in a subframe, and the CRS transmitted in all bands is used for demodulation of the PDCCH.
  • the type of control information is diversified and the amount of control information is increased, the scheduling flexibility is inferior to the existing PDCCH alone.
  • EPDCCH enhanced PDCCH
  • FIG. 6 shows a structure of an uplink subframe in 3GPP LTE.
  • an uplink subframe may be divided into a control region and a data region in the frequency domain.
  • a physical uplink control channel (PUCCH) for transmitting uplink control information is allocated to the control region.
  • the data area is allocated a PUSCH (Physical Uplink Shared Channel) for transmitting data (in some cases, control information may also be transmitted).
  • PUSCH Physical Uplink Shared Channel
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • m is a location index indicating a logical frequency domain location of a resource block pair allocated to a PUCCH in a subframe.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), a channel quality indicator (CQI) indicating a downlink channel state, and an uplink radio resource allocation request. (scheduling request).
  • HARQ hybrid automatic repeat request
  • ACK acknowledgment
  • NACK non-acknowledgement
  • CQI channel quality indicator
  • the PUSCH is mapped to the UL-SCH, which is a transport channel.
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the transmission time interval (TTI).
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • FIG. 7 is a comparative example of a single carrier system and a carrier aggregation system.
  • a single carrier in uplink and downlink.
  • the bandwidth of the carrier may vary, but only one carrier is allocated to the UE.
  • a carrier aggregation (CA) system a plurality of component carriers (DL CC A to C, UL CC A to C) may be allocated to the UE.
  • a component carrier (CC) refers to a carrier used in a carrier aggregation system and may be abbreviated as a carrier. For example, three 20 MHz component carriers may be allocated to allocate a 60 MHz bandwidth to the UE.
  • the carrier aggregation system may be divided into a contiguous carrier aggregation system in which aggregated carriers are continuous and a non-contiguous carrier aggregation system in which aggregated carriers are separated from each other.
  • a carrier aggregation system simply referred to as a carrier aggregation system, it should be understood to include both the case where the component carrier is continuous and the case where it is discontinuous.
  • the number of component carriers aggregated between the downlink and the uplink may be set differently. The case where the number of downlink CCs and the number of uplink CCs are the same is called symmetric aggregation, and when the number is different, it is called asymmetric aggregation.
  • the target carrier may use the bandwidth used by the existing system as it is for backward compatibility with the existing system.
  • the 3GPP LTE system supports bandwidths of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz, 15 MHz, and 20 MHz, and the 3GPP LTE-A system may configure a bandwidth of 20 MHz or more using only the bandwidth of the 3GPP LTE system.
  • broadband can be configured by defining new bandwidth without using the bandwidth of the existing system.
  • the system frequency band of a wireless communication system is divided into a plurality of carrier frequencies.
  • the carrier frequency means a center frequency of a cell.
  • a cell may mean a downlink frequency resource and an uplink frequency resource.
  • the cell may mean a combination of a downlink frequency resource and an optional uplink frequency resource.
  • CA carrier aggregation
  • the UE In order to transmit and receive packet data through a specific cell, the UE must first complete configuration for a specific cell.
  • the configuration refers to a state in which reception of system information necessary for data transmission and reception for a corresponding cell is completed.
  • the configuration may include a general process of receiving common physical layer parameters required for data transmission and reception, media access control (MAC) layer parameters, or parameters required for a specific operation in the RRC layer.
  • MAC media access control
  • the cell in the configuration complete state may exist in an activation or deactivation state.
  • activation means that data is transmitted or received or is in a ready state.
  • the UE may monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the activated cell in order to identify resources allocated to the UE (which may be frequency, time, etc.).
  • PDCCH control channel
  • PDSCH data channel
  • Deactivation means that transmission or reception of traffic data is impossible, and measurement or transmission of minimum information is possible.
  • the UE may receive system information (SI) required for packet reception from the deactivated cell.
  • SI system information
  • the UE does not monitor or receive the control channel (PDCCH) and the data channel (PDSCH) of the deactivated cell in order to check resources allocated to it (may be frequency, time, etc.).
  • the cell may be divided into a primary cell, a secondary cell, and a serving cell.
  • a primary cell means a cell operating at a primary frequency, and is a cell in which a UE performs an initial connection establishment procedure or a connection reestablishment procedure with a base station, or is indicated as a primary cell in a handover process. It means a cell.
  • the secondary cell refers to a cell operating at the secondary frequency, and is established and used to provide additional radio resources once the RRC connection is established.
  • the serving cell is configured as a primary cell when the carrier aggregation is not set or the UE cannot provide carrier aggregation.
  • the term serving cell indicates a cell configured for the UE and may be configured in plural.
  • One serving cell may be configured with one downlink component carrier or a pair of ⁇ downlink component carrier, uplink component carrier ⁇ .
  • the plurality of serving cells may be configured as a set consisting of one or a plurality of primary cells and all secondary cells.
  • a plurality of CCs that is, a plurality of serving cells, may be supported.
  • Such a carrier aggregation system may support cross-carrier scheduling.
  • Cross-carrier scheduling is a resource allocation of a PDSCH transmitted on another component carrier through a PDCCH transmitted on a specific component carrier and / or other components other than the component carrier basically linked with the specific component carrier.
  • a scheduling method for resource allocation of a PUSCH transmitted through a carrier That is, the PDCCH and the PDSCH may be transmitted through different downlink CCs, and the PUSCH may be transmitted through another uplink CC other than the uplink CC linked with the downlink CC through which the PDCCH including the UL grant is transmitted. .
  • a carrier indicator indicating a DL CC / UL CC through which a PDSCH / PUSCH for which PDCCH provides control information is transmitted is required.
  • a field containing such a carrier indicator is hereinafter called a carrier indication field (CIF).
  • a carrier aggregation system supporting cross carrier scheduling may include a carrier indication field (CIF) in a conventional downlink control information (DCI) format.
  • CIF carrier indication field
  • DCI downlink control information
  • 3 bits may be extended, and the PDCCH structure may include an existing coding method, Resource allocation methods (ie, CCE-based resource mapping) can be reused.
  • FIG. 8 illustrates cross-carrier scheduling in a carrier aggregation system.
  • the base station may set a PDCCH monitoring DL CC (monitoring CC) set.
  • the PDCCH monitoring DL CC set is composed of some DL CCs among the aggregated DL CCs, and when cross-carrier scheduling is set, the UE performs PDCCH monitoring / decoding only for the DL CCs included in the PDCCH monitoring DL CC set. In other words, the base station transmits the PDCCH for the PDSCH / PUSCH to be scheduled only through the DL CC included in the PDCCH monitoring DL CC set.
  • PDCCH monitoring DL CC set may be set UE-specific, UE group-specific, or cell-specific.
  • three DL CCs (DL CC A, DL CC B, and DL CC C) are aggregated, and DL CC A is set to PDCCH monitoring DL CC.
  • the UE may receive the DL grant for the PDSCH of the DL CC A, the DL CC B, and the DL CC C through the PDCCH of the DL CC A.
  • the DCI transmitted through the PDCCH of the DL CC A may include the CIF to indicate which DCI the DLI is.
  • 9 is a flowchart illustrating a random access procedure in 3GPP LTE.
  • the random access procedure is used for the UE 100 to obtain UL synchronization or to be allocated UL radio resources with the base station, that is, the eNodeB 200.
  • the UE 100 receives a root index and a physical random access channel (PRACH) configuration index from the eNodeB 200.
  • PRACH physical random access channel
  • Each cell has 64 candidate random access preambles defined by a Zadoff-Chu (ZC) sequence, and the root index is a logical index for the UE to generate 64 candidate random access preambles.
  • ZC Zadoff-Chu
  • the PRACH configuration index indicates a specific subframe and a preamble format capable of transmitting the random access preamble.
  • the UE 100 transmits a randomly selected random access preamble to the eNodeB 200.
  • the UE 100 selects one of the 64 candidate random access preambles. Then, the corresponding subframe is selected by the PRACH configuration index. UE 100 transmits the selected random access preamble in the selected subframe.
  • the eNodeB 2000 Upon receiving the random access preamble, the eNodeB 2000 sends a random access response (RAR) to the UE 100.
  • the random access response is detected in two steps. First, the UE 100 detects a PDCCH masked with a random access-RNTI (RA-RNTI). The UE 100 receives a random access response in a medium access control (MAC) protocol data unit (PDU) on the PDSCH indicated by the detected PDCCH.
  • MAC medium access control
  • a small cell having a small cell coverage radius is expected to be added within the coverage of an existing cell, and the small cell is expected to handle more traffic. Since the existing cell has greater coverage than the small cell, it may be referred to as a macro cell.
  • a description with reference to FIG. 10 is as follows.
  • FIG. 10 is a diagram illustrating an environment of a mixed heterogeneous network of macro cells and small cells, which may be a next generation wireless communication system.
  • a macro cell by an existing base station 200 is a heterogeneous network environment in which a macro cell overlaps with a small cell by one or more small base stations 300a, 300b, 300c, and 300d. Since the existing base station provides greater coverage than the small base station, it is also called a macro base station (Macro eNodeB, MeNB). In this specification, the terms macro cell and macro base station are used interchangeably.
  • the UE connected to the macro cell 200 may be referred to as a macro UE.
  • the macro UE receives a downlink signal from the macro base station and transmits an uplink signal to the macro base station.
  • the macrocell is set as the primary cell and the small cell is set as the secondary cell, thereby filling the coverage gap of the macrocell.
  • the small cell is set as the primary cell (Pcell) and the macro cell as the secondary cell (Scell), it is possible to improve the overall performance (boosting).
  • the small cell may use a frequency band currently allocated to LTE / LTE-A or use a higher frequency band (eg, a band of 3.5 GHz or more).
  • a frequency band currently allocated to LTE / LTE-A or use a higher frequency band (eg, a band of 3.5 GHz or more).
  • the small cell is not used independently, it is also considered to use only as a macro-assisted small cell (macro-assisted small cell) that can be used with the help of the macro cell.
  • Such small cells 300a, 300b, 300c, and 300d may have a similar channel environment, and because they are located at close distances to each other, interference between small cells may be a big problem.
  • small cells 300b and 300c may expand or reduce their coverage. Such expansion and contraction of coverage is called cell breathing. For example, as shown, the small cells 300b and 300c may be turned on or off depending on the situation.
  • the small cell may use a frequency band currently allocated to LTE / LTE-A, or may use a higher frequency band (eg, a band of 3.5 GHz or more).
  • the UE may dually connect the macro cell and the small cell. Possible scenarios for the dual connectivity are shown in FIGS. 11A-11D.
  • 11A and 11B show possible dual connectivity scenarios for macro cells and small cells.
  • a UE sets a macro cell as a control plane (hereinafter, referred to as a 'C-plane'), and a small cell is referred to as a user plane (hereinafter, referred to as a 'U-plane'). Can be set.
  • a control plane hereinafter, referred to as a 'C-plane'
  • a user plane hereinafter, referred to as a 'U-plane'
  • the UE may be configured with a small cell as a C-plane and a macro cell as a U-plane.
  • a cell of C-Plane will be referred to as "C-Cell”
  • a cell of U-Plane will be referred to as "U-Cell.”
  • the aforementioned C-Plane refers to RRC connection setup and reset, RRC idle mode, mobility including handover, cell selection, reselection, HARQ process, carrier aggregation (CA) setup and reset, RRC setup It means to support necessary procedures, random access procedures and the like.
  • the aforementioned U-Plane means that the application supports data processing, CSI reporting, HARQ process for application data, and multicasting / broadcasting services.
  • the configuration of the C-plane and the U-plne is as follows.
  • the C-Cell may be set as the primary cell and the U-Cell may be set as the secondary cell.
  • the U-Cell may be configured as a primary cell and the C-Cell may be configured as a secondary cell.
  • the C-Cell may be separately processed and the U-Cell may be configured as a primary cell.
  • both C-Plane and U-Cell may be configured as primary cells.
  • the C-Cell is set to the primary cell and the U-Cell is described below on the assumption that it is set to the secondary cell.
  • the UE receives the macro cell as a C-cell or a primary cell, as shown in FIG. 12A, Small cells may be advantageously configured to be U-cells or secondary cells.
  • the macro cell may be always connected with the UE as the primary cell of the UE.
  • the UE since the macro cell is a primary cell, the UE may transmit a PUCCH to the macro cell.
  • the small cell may be more densely arranged to handle data traffic that is increasing day by day, and a larger number of UEs may be connected in the small cell as the day is increased. According to this, a larger number of UEs can be serviced in contrast to the conventional macro cell alone having accommodated the UEs.
  • the UE 100 may occur in a situation in which a PRACH (eg, a random access preamble) must be transmitted to both the macro cell and the small cell, but according to the current 3GPP standard specification, the UE It is determined that a plurality of PRACHs cannot be transmitted at the same time.
  • a PRACH eg, a random access preamble
  • FIG. 12 shows an example in which a UE transmits a PRACH to a plurality of cells.
  • the UE 100 when the UE 100 simultaneously accesses a macro cell 200 and a small cell 300 that are geographically separated from each other by using carrier aggregation (CA), the UE 100 may be configured as described above.
  • the PRACH may be transmitted to the macro cell 200 and the small cell 300, respectively.
  • the UE may generate a random access preamble to the macro cell 200, and may also generate a random access preamble to the small cell 300.
  • the UE 100 may transmit the two random access preambles, respectively.
  • the UE 100 transmits PRACH to the macro cell 200 and the small cell 300, respectively, so that the macro cell 200 and the small cell 300 are geographically separated from each other.
  • the backhaul link between the 200 and the small cell 300 may be efficient when real time is low.
  • the UE 100 needs a timing adjustment and a scheduling request that are independent of each other for the macro cell 200 and the small cell 300.
  • the UE 100 is independent of each other for timing adjustment and scheduling request for each cell or group of cells (eg, master cell group and secondary cell group). This may be necessary.
  • This PRACH may be used for initial access, or may transmit a scheduling request, or may be triggered by a PDCCH order or MAC layer request. Alternatively, the PRACH may be transmitted periodically to monitor the signal quality of the UE.
  • the two PRACHs may collide on the same subframe.
  • the PRACH for each cell may collide on the same subframe.
  • the first disclosure of the present specification provides a method for preventing a situation in which a plurality of PRACHs collide on the same subframe when the UE is not capable of transmitting a plurality of PRACHs (eg, a random access preamble) at the same time.
  • the first disclosure of the present specification proposes a UE correspondence procedure when a plurality of PRACHs collide on the same subframe when the UE is not capable of simultaneously transmitting a plurality of PRACHs.
  • the second disclosure of the present specification presents a procedure of a UE when the UE has the ability to transmit a plurality of PRACHs simultaneously.
  • the UE can transmit a plurality of PRACH at the same time can also be seen as the capability (capability) of one UE. If the UE can transmit PUCCH and PUCCH at the same time, it can be assumed that the UE also has the ability to transmit a plurality of PRACH at the same time. Or, it may be assumed that a UE supporting dual connectivity has simultaneous transmission capability of PUCCH and PUCCH, simultaneous transmission capability of PUCCH and PUSCH, and simultaneous transmission capability of a plurality of PRACHs.
  • simultaneous transmission of multiple PRACHs may or may not be possible depending on the capability of the UE.
  • the number of PRACH that can be transmitted on one subframe may be limited to one.
  • PRACH transmission may be transmitted independently for each eNodeB, and at the same time point (for example, the same) Subframe) may be triggered to transmit PRACH simultaneously.
  • the UE needs to select one of a plurality of collided PRACHs and may consider the following items when setting the priority rule.
  • the primary cell has a high priority, and among the secondary cells, the secondary cell index may be set in order from the lowest to the highest. Alternatively, it may be considered that the primary cell has a high priority and subsequently sets a high priority of a cell capable of transmitting the PUCCH among the secondary cells.
  • the priority rule may be determined according to whether the master cell group which is a set of cells including the primary cell or corresponding to the master eNodeB and the secondary cell group which is a set of cells corresponding to the secondary eNodeB.
  • cells corresponding to the master cell group may have a higher priority than cells corresponding to the secondary cell group.
  • a cell acting as a primary cell eg, a primary cell or a second primary cell
  • a cell having a low cell index has a higher priority.
  • the primary cell may have a high priority
  • the second primary cell (SeNB or primary cell of the second carrier group or a cell to be PUCCH transmitted) may have a high priority. Thereafter, the priority of the secondary cells corresponding to the secondary cell group may be set high.
  • the primary cell may have a high priority and then the second primary cell may have a high priority. Thereafter, the priority of the secondary cells corresponding to the master cell group is set high.
  • the primary cell may have a high priority and then the second primary cell may have a high priority. Subsequently, a cell having a low cell index may be set to have a high priority.
  • the contention-based PRACH transmission takes precedence over the contention-free PRACH transmission. can do. If the UE attempts to transmit contention-based PRACH for both cells, the primary cell may have a higher priority. With this high priority, the second primary cell can then have a high priority. Subsequently, the priority may be set to a cell having a low cell index.
  • the non-contention based PRACH transmission may be set to have a high priority.
  • the reason is to prioritize the non- contention based PRACH transmission triggered by the cell. This may be applied when PRACH transmissions of cells having the same priority collide with each other.
  • contention based PRACH may be defined to take precedence. This may be applied when PRACH transmissions of cells having the same priority collide with each other.
  • High priority can be set for PRACH transmission for a cell in good condition according to a measurement result such as pathloss or RSRP from the received reference signal RS.
  • It may be set based on a PRACH setting or a root index to be used for PRACH. For example, in the case of the root index, the lower the logical index, the higher the priority of the corresponding PRACH. The basis for this is to transmit a PRACH having good CM characteristics.
  • the target cell radius of the PRACH may be set to have a high priority from a smaller one.
  • priority may be set in the order of PRACH format 4 (corresponding to a TDD or TDD-FDD situation), PRACH format 0, PRACH format 2, PRACH format 1, and PRACH format 3.
  • priority may be set in association with the number of retransmissions of the PRACH. For example, if the number of retransmission attempts of the two PRACHs is different, priority may be given to the PRACHs having a lot of retransmissions. In order to support this, the upper layer can inform the number of retransmissions for each PRACH transmission request.
  • priority may be set based on the transmission power of the PRACH. Higher priority can be set for the PRACH with the higher transmit power.
  • a smaller number of uplink subframes according to a PRACH configuration in which a PRACH is transmitted or a larger size according to a preamble format, or a cyclic prefix (CP) prior to TDD according to a duplex mode.
  • CP cyclic prefix
  • it may be considered to set a high priority in the extended CP.
  • these priorities can be applied in reverse.
  • the above description is merely an example of a criterion when considering the priority, and of course, the application of the priority is not excluded.
  • the criteria described above may be used in combination.
  • the UE selects one of a plurality of PRACHs collided on the same subframe, it is possible to consider the situation in which the PRACH is currently being transmitted. For example, in a situation in which PRACH preamble format 3 is selected and the PRACH is transmitted to the secondary cell group (SCG) over subframes j, j + 1 and j + 2, the PRACH is subframe to the master cell group (MCG). When transmitted on i (overlapping with subframes j + 1 and j + 2), the PRACH to the secondary cell group (SCG) may have to stop transmission in order to prioritize the PRACH transmission to the master cell group (MCG). . This situation can be avoided by the UE implementation since such dropping of the packet may compromise the integrity of the PRACH transmission. Therefore, the criteria for making selections according to the priority rules can be further refined to consider the following situations. The following case is a solution when the maximum transmission power (PCmax) is exceeded at any point in two PRACH transmission.
  • PCmax maximum transmission power
  • the UE may always give up the low priority PRACH or perform power adjustment. If the starting point is fast, the second solution applies. This will be described in more detail with reference to FIG. 13.
  • 13A and 13B respectively show examples of abandoning one PRACH transmission.
  • 13A and 13B assume that the priority of the PRACH transmission for the secondary cell group is lower than that of the PRACH transmission for the master cell group.
  • the PRACH transmission to the secondary cell group may be abandoned.
  • the PRACH transmission to the secondary cell group is continued and primary.
  • the PRACH transmission to the cell group may be delayed or abandoned.
  • the priority of the PRACH may be set higher than that of other channels. In this case, it is assumed that a constant transmission power is constant for PUCCH and DM-RS transmission.
  • the PRACH to the primary cell may be set to have a higher priority than the other PRACH.
  • the priority of an ongoing PRACH may be set higher.
  • PRACH with low priority may be abandoned.
  • the UE transmits any PRACH selected after applying the priority rule as described above, and then transmits the remaining PRACH. For simplicity, it can be assumed that a PRACH that has not been transmitted is abandoned. However, in the case of contention-based PRACH transmission, since the UE can select transmission timing, one PRACH is transmitted first to avoid collision, and the transmission of the other PRACH delays the timing so that two All PRACH can be transmitted. On the other hand, in a situation where a plurality of non-conflict-based PRACHs due to a PDCCH command collide with each other, when one PRACH transmission is transmitted according to a priority rule and the other PRACH transmission is delayed, the delayed PRACH is expected by the cell transmitting the PDCCH command.
  • the cell transmitting the PDCCH command may inform the corresponding UE that timing of + j is allowed.
  • the PRACH transmission is the fastest subframe that k can transmit the PRACH after n + k or n + k + j. If the UE can be transmitted on the PRACH timing reference corresponding to the current PDCCH command, the UE may transmit two PRACHs one by one.
  • contention-based PRACH transmission is requested by the PDCCH command
  • the UE when the UE drops the transmission of another PRACH as mentioned above, since the PRACH transmission itself is not a failure but a transmission opportunity is lost, it may be distinguished from the general PRACH retransmission. For example, if transmission of the PRACH is abandoned, the lower layer of the UE may consider sending an indication that the PRACH has been abandoned to an upper layer, whereby the upper layer may power ramping according to the received indication. The lower layer may not perform a task for improving PRACH performance, such as). Alternatively, the upper layer may prevent the maximum number of retransmissions from being reached by not increasing the preamble transmission counter (eg, PREAMBLE_TRANSMISSION_COUNTER).
  • PREAMBLE_TRANSMISSION_COUNTER the preamble transmission counter
  • the higher layer may immediately attempt to retransmit the PRACH again, in which case the previous power may be used or the retransmission may be increased without resetting the retransmission counter or power, but the retransmission counter reaches its maximum. Only one case can be transferred to the previous power. Furthermore, upon receiving this indication, the higher layer may not declare a radio link failure (RLF) even if the PRACH transmission was triggered according to a PDCCH command from the primary cell or the SeNB primary cell. . In other words, the upper layer performs retransmission of the PRACH if the indication is received in a situation where transmission of the PRACH corresponds to contention-based PRACH transmission without receiving a PDCCH command. However, if the transmission of the PRACH is triggered according to a PDCCH command, when the retransmission counter reaches a maximum value, the upper layer considers a random access failure, and radio link failure (RLF). May not trigger.
  • RLF radio link failure
  • power ramping may be performed in the same manner as the conventional scheme, or the preamble transmission counter (eg, PREAMBLE_TRANSMISSION_COUNTER) may be increased. can do.
  • the preamble transmission counter eg, PREAMBLE_TRANSMISSION_COUNTER
  • the higher layer may trigger a radio link failure (RLF) for that cell.
  • RLF radio link failure
  • the UE transmits a radio link failure (RLF) indication to the primary cell (or MeNB) for the secondary cell (or the second primary cell, the SeNB or the cell performing the function of the primary cell or transmitting the PUCCH).
  • RLF radio link failure
  • the radio link failure (RLF) may be set in the form of expressing with reference to whether the PRACH detection failure (especially due to abandonment of the PRACH).
  • the second disclosure of the present specification presents a procedure of a UE when the UE can transmit a plurality of PRACHs simultaneously.
  • the UE can transmit a plurality of PRACH at the same time can also be seen as the capability (capability) of one UE.
  • the capability Capability
  • a plurality of PRACHs can be simultaneously transmitted.
  • the priority rule for which cell to adjust power for the PRACH may use the criteria described in the first embodiment.
  • the UE transmits PRACHs to a plurality of base stations that are geographically separated from each other, the boundaries of the downlink subframes used as the reference for each PRACH transmission may not match.
  • the PRACH preamble may also partially overlap with each other.
  • power adjustment may be performed based on a portion corresponding to the maximum value among the overlapped intervals.
  • the UE may assume that a random access response (RAR) is received from a specific cell capable of transmitting a PUCCH in each cell group.
  • RAR random access response
  • Embodiments of the present invention described so far may be implemented through various means.
  • embodiments of the present invention may be implemented by hardware, firmware, software, or a combination thereof. Specifically, it will be described with reference to the drawings.
  • FIG. 14 is a block diagram illustrating a wireless communication system in which the present disclosure is implemented.
  • the base station 200 includes a processor 201, a memory 202, and an RF unit (RF (radio frequency) unit) 203.
  • the memory 202 is connected to the processor 201 and stores various information for driving the processor 201.
  • the RF unit 203 is connected to the processor 201 to transmit and / or receive a radio signal.
  • the processor 201 implements the proposed functions, processes and / or methods. In the above-described embodiment, the operation of the base station may be implemented by the processor 201.
  • the UE 100 includes a processor 101, a memory 102, and an RF unit 103.
  • the memory 102 is connected to the processor 101 and stores various information for driving the processor 101.
  • the RF unit 103 is connected to the processor 101 and transmits and / or receives a radio signal.
  • the processor 101 implements the proposed functions, processes and / or methods.
  • the processor may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, and / or data processing devices.
  • the memory may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium and / or other storage device.
  • the RF unit may include a baseband circuit for processing a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in memory and executed by a processor.
  • the memory may be internal or external to the processor and may be coupled to the processor by various well known means.

Abstract

본 명세서의 일 개시는 랜덤 액세스 절차를 수행하는 방법을 제공한다. 상기 방법은 제1 셀로의 랜덤 액세스 프리앰블(random access preamble)을 생성하는 단계와; 제2 셀로의 랜덤 액세스 프리앰블을 생성하는 단계와; 상기 제1 셀로의 랜덤 액세스 프리앰블과 상기 제2 셀로의 랜덤 액세스 프리앰블이 동일한 서브프레임 상에서 동시에 전송되도록 트리거링되는지 판단하는 단계와; 동시 전송되도록 트리거링된 경우, 미리 설정된 우순순위에 따라 어느 하나의 셀로의 랜덤 액세스 프리앰블을 선택하는 단계와; 상기 선택된 어느 하나의 랜덤 액세스 프리앰블을 전송하는 단계를 포함할 수 있다.

Description

랜덤 액세스 절차를 수행하는 방법
본 발명은 이동통신에 관한 것이다.
UMTS(Universal Mobile Telecommunications System)의 향상인 3GPP(3rd Generation Partnership Project) LTE(long term evolution)는 3GPP 릴리이즈(release) 8로 소개되고 있다. 3GPP LTE는 하향링크에서 OFDMA(orthogonal frequency division multiple access)를 사용하고, 상향링크에서 SC-FDMA(Single Carrier-frequency division multiple access)를 사용한다.
이러한 LTE는 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나뉜다.
3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"에 개시된 바와 같이, LTE에서 물리채널은 하향링크 채널인 PDSCH(Physical Downlink Shared Channel)와 PDCCH(Physical Downlink Control Channel), 상향링크 채널인 PUSCH(Physical Uplink Shared Channel)와 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
한편, 날로 증가하는 데이터를 처리하기 위해서, 차세대 이동 통신 시스템에서는 셀 커버리지 반경이 작은 소규모 셀(small cell)이 기존 셀의 커버리지 내에 추가될 것으로 예상되고, 소규모 셀은 보다 많은 트래픽을 처리할 것으로 예상된다.
그런데 소규모 셀이 도입됨에 따라, 단말은 매크로 셀 과 소규모 셀 모두에게 랜덤 액세스 절차를 수행해야 하는 상황에 발생할 수 있으나, 현재 3GPP 표준 스펙에 따르면 허용되고 있지 않다.
따라서, 본 명세서의 개시는 전술한 문제점을 해결하는 것을 목적으로 한다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 랜덤 액세스 절차를 수행하는 방법을 제공한다. 상기 방법은 제1 셀로의 랜덤 액세스 프리앰블(random access preamble)을 생성하는 단계와; 제2 셀로의 랜덤 액세스 프리앰블을 생성하는 단계와; 상기 제1 셀로의 랜덤 액세스 프리앰블과 상기 제2 셀로의 랜덤 액세스 프리앰블이 동일한 서브프레임 상에서 동시에 전송되도록 트리거링되는지 판단하는 단계와; 동시 전송되도록 트리거링된 경우, 미리 설정된 우순순위에 따라 어느 하나의 셀로의 랜덤 액세스 프리앰블을 선택하는 단계와; 상기 선택된 어느 하나의 랜덤 액세스 프리앰블을 전송하는 단계를 포함할 수 있다.
상기 제1 셀은 매크로 셀이고, 상기 제2 셀은 소규모 셀일 수 있다.
상기 미리 설정된 우선순위는 프라이머리 셀(primary cell), 낮은 셀 인덱스를 갖는 세컨더리 셀들(secondary cells)의 순일 수 있다.
또는, 상기 미리 설정된 우선 순위는 프라이머리 셀(primary cell)을 포함하는 마스터 셀 그룹, 세컨더리 셀을 포함하는 세컨더리 셀 그룹의 순일 수 있다.
또는, 상기 미리 설정된 우선순위는 비경쟁(non-contention) 기반의 랜덤 액세스 절차, 경쟁 기반의 랜덤 액세스 절차의 순일 수 있다.
또는, 상기 미리 설정된 우선순위는 측정 결과에 따른 채널 품질이 보다 높은 순일 수 있다.
또는, 상기 미리 설정된 우선순위는 랜덤 액세스 프리앰블을 생성하기 위한 루트 인덱스 및 PRACH(physical random access channel) 설정에 따라 정해질 수 있다.
상기 방법은 상기 선택되지 않은 랜덤 액세스 프리앰블의 전송 타이밍을 지연시키는 단계를 더 포함할 수 있다.
상기 방법은 상기 선택되지 않은 랜덤 액세스 프리앰블의 전송을 해당 전송 타이밍에서 포기하는 단계를 더 포함할 수 있다.
상기 방법은 상기 해당 전송 타이밍에서 상기 전송을 포기한 후 재전송하는 경우, 재전송 카운터를 증가시키지 않는 단계를 더 포함할 수 있다.
전술한 목적을 달성하기 위하여, 본 명세서의 일 개시는 랜덤 액세스 절차를 수행하는 사용자 장치(UE)를 또한 제공한다. 상기 사용자 장치는 제1 셀로의 랜덤 액세스 프리앰블(random access preamble) 및 제2 셀로의 랜덤 액세스 프리앰블을 생성한 후, 상기 제1 셀로의 랜덤 액세스 프리앰블과 상기 제2 셀로의 랜덤 액세스 프리앰블이 동일한 서브프레임 상에서 동시에 전송되도록 트리거링되는지 판단하고, 상기 판단에 따라 동시 전송되도록 트리거링것으로 확인되는 경우, 미리 설정된 우순순위에 따라 어느 하나의 셀로의 랜덤 액세스 프리앰블을 선택하는 프로세서와; 그리고 상기 프로세서에 의해서 선택된 어느 하나의 랜덤 액세스 프리앰블을 전송하는 송수신부를 포함할 수 있다.
본 명세서의 개시에 의하면, 전술한 종래 기술의 문제점이 해결되게 된다.
도 1은 무선 통신 시스템이다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 7은 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 8은 반송파 집성 시스템에서 교차 반송파 스케줄링을 예시한다.
도 9는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
도 10은 차세대 무선 통신 시스템으로 될 가능성이 있는 매크로 셀과 소규모 셀의 혼합된 이종 네트워크의 환경을 도시한 도면이다.
도 11a 및 도 11b는 매크로 셀과 소규모 셀에 대해 가능한 이중 연결의 시나리오들을 나타낸다.
도 12은 UE가 복수의 셀에 PRACH를 전송하는 예를 나타낸다.
도 13a 및 도 13b은 어느 하나의 PRACH 전송을 포기하는 예를 각기 나타낸다.
도 14는 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
이하에서는 3GPP(3rd Generation Partnership Project) 3GPP LTE(long term evolution) 또는 3GPP LTE-A(LTE-Advanced)를 기반으로 본 발명이 적용되는 것을 기술한다. 이는 예시에 불과하고, 본 발명은 다양한 무선 통신 시스템에 적용될 수 있다. 이하에서, LTE라 함은 LTE 및/또는 LTE-A를 포함한다.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다. 또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.
또한, 본 명세서에서 사용되는 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
어떤 구성 요소가 다른 구성 요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성 요소가 존재할 수도 있다. 반면에, 어떤 구성 요소가 다른 구성 요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성 요소가 존재하지 않는 것으로 이해되어야 할 것이다.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니됨을 유의해야 한다. 본 발명의 사상은 첨부된 도면외에 모든 변경, 균등물 내지 대체물에 까지도 확장되는 것으로 해석되어야 한다.
이하에서 사용되는 용어인 기지국은, 일반적으로 무선기기와 통신하는 고정된 지점(fixed station)을 말하며, eNodeB(evolved-NodeB), eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
그리고 이하, 사용되는 용어인 UE(User Equipment)는, 고정되거나 이동성을 가질 수 있으며, 기기(Device), 무선기기(Wireless Device), 단말(Terminal), MS(mobile station), UT(user terminal), SS(subscriber station), MT(mobile terminal) 등 다른 용어로 불릴 수 있다.
도 1은 무선 통신 시스템이다.
도 1을 참조하여 알 수 있는 바와 같이, 무선 통신 시스템은 적어도 하나의 기지국(base station: BS)(20)을 포함한다. 각 기지국(20)은 특정한 지리적 영역(일반적으로 셀이라고 함)(20a, 20b, 20c)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(섹터라고 함)으로 나누어질 수 있다..
UE은 통상적으로 하나의 셀에 속하는데, UE이 속한 셀을 서빙 셀(serving cell)이라 한다. 서빙 셀에 대해 통신 서비스를 제공하는 기지국을 서빙 기지국(serving BS)이라 한다. 무선 통신 시스템은 셀룰러 시스템(cellular system)이므로, 서빙 셀에 인접하는 다른 셀이 존재한다. 서빙 셀에 인접하는 다른 셀을 인접 셀(neighbor cell)이라 한다. 인접 셀에 대해 통신 서비스를 제공하는 기지국을 인접 기지국(neighbor BS)이라 한다. 서빙 셀 및 인접 셀은 UE을 기준으로 상대적으로 결정된다.
이하에서, 하향링크는 기지국(20)에서 UE(10)로의 통신을 의미하며, 상향링크는 UE(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서 송신기는 기지국(20)의 일부분이고, 수신기는 UE(10)의 일부분일 수 있다. 상향링크에서 송신기는 UE(10)의 일부분이고, 수신기는 기지국(20)의 일부분일 수 있다.
한편, 무선 통신 시스템은 MIMO(multiple-input multiple-output) 시스템, MISO(multiple-input single-output) 시스템, SISO(single-input single-output) 시스템 및 SIMO(single-input multiple-output) 시스템 중 어느 하나일 수 있다. MIMO 시스템은 다수의 전송 안테나(transmit antenna)와 다수의 수신 안테나(receive antenna)를 사용한다. MISO 시스템은 다수의 전송 안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 전송 안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 전송 안테나와 다수의 수신 안테나를 사용한다. 이하에서, 전송 안테나는 하나의 신호 또는 스트림을 전송하는 데 사용되는 물리적 또는 논리적 안테나를 의미하고, 수신 안테나는 하나의 신호 또는 스트림을 수신하는 데 사용되는 물리적 또는 논리적 안테나를 의미한다.
한편, 무선 통신 시스템은 크게 FDD(frequency division duplex) 방식과 TDD(time division duplex) 방식으로 나눌 수 있다. FDD 방식에 의하면 상향링크 전송과 하향링크 전송이 서로 다른 주파수 대역을 차지하면서 이루어진다. TDD 방식에 의하면 상향링크 전송과 하향링크 전송이 같은 주파수 대역을 차지하면서 서로 다른 시간에 이루어진다. TDD 방식의 채널 응답은 실질적으로 상호적(reciprocal)이다. 이는 주어진 주파수 영역에서 하향링크 채널 응답과 상향링크 채널 응답이 거의 동일하다는 것이다. 따라서, TDD에 기반한 무선통신 시스템에서 하향링크 채널 응답은 상향링크 채널 응답으로부터 얻어질 수 있는 장점이 있다. TDD 방식은 전체 주파수 대역을 상향링크 전송과 하향링크 전송이 시분할되므로 기지국에 의한 하향링크 전송과 UE에 의한 상향링크 전송이 동시에 수행될 수 없다. 상향링크 전송과 하향링크 전송이 서브프레임 단위로 구분되는 TDD 시스템에서, 상향링크 전송과 하향링크 전송은 서로 다른 서브프레임에서 수행된다.
이하에서는, LTE 시스템에 대해서 보다 상세하게 알아보기로 한다.
도 2는 3GPP LTE에서 FDD에 따른 무선 프레임(radio frame)의 구조를 나타낸다.
도 2에 도시된 무선 프레임은 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 5절을 참조할 수 있다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)을 포함하고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 무선 프레임 내 슬롯은 0부터 19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 전송시간구간(Transmission Time interval: TTI)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수 또는 서브프레임에 포함되는 슬롯의 수 등은 다양하게 변경될 수 있다.
한편, 하나의 슬롯은 복수의 OFDM 심볼을 포함할 수 있다. 하나의 슬롯에 몇개의 OFDM 심볼이 포함되는지는 순환전치(cyclic prefix: CP)에 따라 달라질 수 있다.
도 3은 3GPP LTE에서 TDD에 따른 하향링크 무선 프레임의 구조를 나타낸다.
이는 3GPP TS 36.211 V10.4.0 (2011-12) "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10)"의 4절을 참조할 수 있으며, TDD(Time Division Duplex)를 위한 것이다..
무선 프레임(radio frame)은 0~9의 인덱스가 매겨진 10개의 서브프레임을 포함한다. 하나의 서브프레임(subframe)은 2개의 연속적인 슬롯을 포함한다. 예를 들어 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
하나의 슬롯은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함할 수 있다. OFDM 심벌은 3GPP LTE가 하향링크(downlink, DL)에서 OFDMA(orthogonal frequency division multiple access)를 사용하므로, 시간 영역에서 하나의 심벌 구간(symbol period)을 표현하기 위한 것에 불과할 뿐, 다중 접속 방식이나 명칭에 제한을 두는 것은 아니다. 예를 들어, OFDM 심벌은 SC-FDMA(single carrier-frequency division multiple access) 심벌, 심벌 구간 등 다른 명칭으로 불릴 수 있다.
하나의 슬롯은 7 OFDM 심벌을 포함하는 것을 예시적으로 기술하나, CP의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 정규(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block: RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(resource element: RE)를 포함할 수 있다.
인덱스 #1과 인덱스 #6을 갖는 서브프레임은 스페셜 서브프레임이라고 하며, DwPTS(Downlink Pilot Time Slot), GP(Guard Period) 및 UpPTS(Uplink Pilot Time Slot)을 포함한다. DwPTS는 UE에서의 초기 셀 탐색, 동기화 또는 채널 추정에 사용된다. UpPTS는 기지국에서의 채널 추정과 UE의 상향 전송 동기를 맞추는 데 사용된다. GP은 상향링크와 하향링크 사이에 하향링크 신호의 다중경로 지연으로 인해 상향링크에서 생기는 간섭을 제거하기 위한 구간이다.
TDD에서는 하나의 무선 프레임에 DL(downlink) 서브프레임과 UL(Uplink) 서브프레임이 공존한다. 표 1은 무선 프레임의 설정(configuration)의 일 예를 나타낸다.
표 1
UL-DL 설정 스위치 포인트 주기(Switch-point periodicity) 서브프레임 인덱스
0 1 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
1 5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
'D'는 DL 서브프레임, 'U'는 UL 서브프레임, 'S'는 스페셜 서브프레임을 나타낸다. 기지국으로부터 UL-DL 설정을 수신하면, UE은 무선 프레임의 설정에 따라 어느 서브프레임이 DL 서브프레임 또는 UL 서브프레임인지를 알 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫 번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
도 4는 3GPP LTE에서 하나의 상향링크 또는 하향링크슬롯에 대한 자원 그리드(resource grid)를 나타낸 예시도이다.
도 4를 참조하면, 상향링크 슬롯은 시간 영역(time domain)에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역(frequency domain)에서 NRB 개의 자원블록(RB)을 포함한다. 예를 들어, LTE 시스템에서 자원블록(Resource Block RB)의 개수, 즉 NRB은 6 내지 110 중 어느 하나일 수 있다. 상기 RB는 PRB(Physical Resource Block)로 불리기도 한다.
여기서, 하나의 자원블록(RB)은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파를 포함하는 7×12 자원요소(Resource Element: RE)를 포함하는 것을 예시적으로 기술하나, 자원블록 내 부반송파의 수와 OFDM 심벌의 수는 이에 제한되는 것은 아니다. 자원블록이 포함하는 OFDM 심벌의 수 또는 부반송파의 수는 다양하게 변경될 수 있다. 즉, OFDM 심벌의 수는 전술한 CP의 길이에 따라 변경될 수 있다. 특히, 3GPP LTE에서는 정규 CP의 경우 하나의 슬롯 내에 7개의 OFDM 심볼이 포함되는 것으로, 그리고 확장 CP의 경우 하나의 슬롯 내에 6개의 OFDM 심볼이 포함되는 것으로 정의하고 있다.
OFDM 심벌은 하나의 심벌 구간(symbol period)을 표현하기 위한 것으로, 시스템에 따라 SC-FDMA 심벌, OFDMA 심벌 또는 심벌 구간이라고 할 수 있다. 자원블록은 자원 할당 단위로 주파수 영역에서 복수의 부반송파를 포함한다. 상향링크 슬롯에 포함되는 자원블록의 수 NUL 은 셀에서 설정되는 상향링크 전송 대역폭(bandwidth)에 종속한다. 자원 그리드 상의 각 요소(element)를 자원요소(resource element: RE)라 한다.
한편, 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4의 3GPP LTE에서 하나의 상향링크 슬롯에 대한 자원 그리드는 하향링크 슬롯에 대한 자원 그리드에도 적용될 수 있다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 5에서는 정규 CP를 가정하여 예시적으로 하나의 슬롯 내에 7 OFDM 심벌이 포함하는 것으로 도시하였다. 그러나, 순환 전치(Cyclic Prefix: CP)의 길이에 따라 하나의 슬롯에 포함되는 OFDM 심벌의 수는 바뀔 수 있다. 즉 전술한 바와 같이, 3GPP TS 36.211 V10.4.0에 의하면, 정규(normal) CP에서 1 슬롯은 7 OFDM 심벌을 포함하고, 확장(extended) CP에서 1 슬롯은 6 OFDM 심벌을 포함한다.
자원블록(resource block: RB)은 자원 할당 단위로, 하나의 슬롯에서 복수의 부반송파를 포함한다. 예를 들어, 하나의 슬롯이 시간 영역에서 7개의 OFDM 심벌을 포함하고, 자원블록은 주파수 영역에서 12개의 부반송파를 포함한다면, 하나의 자원블록은 7×12개의 자원요소(RE)를 포함할 수 있다.
DL(downlink) 서브프레임은 시간 영역에서 제어영역(control region)과 데이터영역(data region)으로 나누어진다. 제어영역은 서브프레임내의 첫 번째 슬롯의 앞선 최대 3개의 OFDM 심벌을 포함하나, 제어영역에 포함되는 OFDM 심벌의 개수는 바뀔 수 있다. 제어영역에는 PDCCH(Physical Downlink Control Channel) 및 다른 제어채널이 할당되고, 데이터영역에는 PDSCH가 할당된다.
3GPP LTE에서 물리채널은 데이터 채널인 PDSCH(Physical Downlink Shared Channel)와 PUSCH(Physical Uplink Shared Channel) 및 제어채널인 PDCCH(Physical Downlink Control Channel), PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel) 및 PUCCH(Physical Uplink Control Channel)로 나눌 수 있다.
서브프레임의 첫 번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 CFI(control format indicator)를 나른다. 무선기기는 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다.
PDCCH와 달리, PCFICH는 블라인드 복호를 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 UL HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/NACK(negative-acknowledgement) 신호를 나른다. 무선기기에 의해 전송되는 PUSCH 상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PBCH(Physical Broadcast Channel)은 무선 프레임의 첫 번째 서브프레임의 두 번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 무선기기가 기지국과 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 이와 비교하여, PDCCH에 의해 지시되는 PDSCH 상으로 전송되는 시스템 정보를 SIB(system information block)라 한다.
PDCCH는 DL-SCH(downlink-shared channel)의 자원 할당 및 전송 포맷, UL-SCH(uplink shared channel)의 자원 할당 정보, PCH 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 UE 그룹 내 개별 UE들에 대한 전송 전력 제어 명령의 집합 및 VoIP(voice over internet protocol)의 활성화 등을 나를 수 있다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있으며, UE은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 몇몇 연속적인 CCE(control channel elements)의 집합(aggregation) 상으로 전송된다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위이다. CCE는 복수의 자원 요소 그룹(resource element group)에 대응된다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information: DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 전력 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
기지국은 UE에게 보내려는 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 붙인다. CRC에는 PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(radio network temporary identifier: RNTI)가 마스킹된다. 특정 UE을 위한 PDCCH라면 UE의 고유 식별자, 예를 들어 C-RNTI(cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보 블록(system information block: SIB)을 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. UE의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 복호를 사용한다. 블라인드 복호는 수신되는 PDCCH(이를 후보(candidate) PDCCH라 함)의 CRC(Cyclic Redundancy Check)에 원하는 식별자를 디마스킹하고, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 기지국은 무선기기에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(RNTI)를 CRC에 마스킹한다.
서브프레임 내의 제어 영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선 채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. REG는 복수의 자원요소(resource element)를 포함한다. CCE의 수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
PDCCH의 전송에 사용되는 CCE의 개수는 기지국이 채널 상태에 따라 결정한다. 예를 들어, 좋은 하향링크 채널 상태를 갖는 단말에게는 하나의 CCE를 PDCCH 전송에 사용할 수 있다. 나쁜(poor) 하향링크 채널 상태를 갖는 단말에게는 8개의 CCE를 PDCCH 전송에 사용할 수 있다.
하나 또는 그 이상의 CCE로 구성된 제어 채널은 REG 단위의 인터리빙을 수행하고, 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
한편, 단말은 자신의 PDCCH가 제어영역 내의 어떤 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알 수 없다. 하나의 서브프레임 내에서 복수의 PDCCH가 전송될 수 있으므로, 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 PDCCH 포맷에 따라 PDCCH의 디코딩을 시도하는 것을 말한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간 내에서 PDCCH를 모니터링한다.
단말이 C-RNTI를 기반으로 PDCCH를 모니터링할 때, PDSCH의 전송 모드(transmission mode: TM)에 따라 모니터링할 DCI 포맷과 검색 공간이 결정된다. 다음 표는 C-RNTI가 설정된 PDCCH 모니터링의 예를 나타낸다.
표 2
전송모드 DCI 포맷 검색 공간 PDCCH에 따른 PDSCH의 전송모드
전송 모드 1 DCI 포맷 1A 공용 및 단말 특정 단일 안테나 포트, 포트 0
DCI 포맷 1 단말 특정 단일 안테나 포트, 포트 0
전송 모드 2 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티(transmit diversity)
DCI 포맷 1 단말 특정 전송 다이버시티
전송 모드 3 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 2A 단말 특정 CDD(Cyclic Delay Diversity) 또는 전송 다이버시티
전송 모드 4 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 2 단말 특정 폐루프 공간 다중화(closed-loop spatial multiplexing)
전송 모드 5 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 1D 단말 특정 MU-MIMO(Multi-user Multiple Input Multiple Output)
모드 6 DCI 포맷 1A 공용 및 단말 특정 전송 다이버시티
DCI 포맷 1B 단말 특정 폐루프 공간 다중화
전송 모드 7 DCI 포맷 1A 공용 및 단말 특정 PBCH 전송 포트의 수가 1이면, 싱 글 안테나 포트, 포트 0, 아니면, 전송 다이버시티
DCI 포맷 1 단말 특정 단일 안테나 포트, 포트 5
전송 모드 8 DCI 포맷 1A 공용 및 단말 특정 PBCH 전송 포트의 수가 1이면, 싱 글 안테나 포트, 포트 0, 아니면, 전송 다이버시티
DCI 포맷 2B 단말 특정 이중 계층(dual layer) 전송(포트 7 또는 8), 또는 싱 글 안테나 포트, 포트 7 또는 8
전송 모드 9 DCI 포맷 1A 공용 및 단말 특정 비-MBSFN 서브프레임: PBCH 안테나 포트의 개수가 1이면, 단독의 안테나 포트로서 포트 0이 사용되고, 그렇지 않으면, 전송 다이버시티(Transmit Diversity)MBSFN 서브프레임: 단독의 안테나 포트로서, 포트 7
DCI 포맷 2C 단말 특정 8개까지의 전송 레이어, 포트7-14가 사용됨 또는 단독의 안테나 포트로서 포트 7 또는 포트 8이 사용됨
전송 모드 10 DCI 포맷 1A 공용 및 단말 특정 비-MBSFN 서브프레임: PBCH 안테나 포트의 개수가 1이면, 단독의 안테나 포트로서 포트 0이 사용되고, 그렇지 않으면, 전송 다이버시티(Transmit Diversity)MBSFN 서브프레임: 단독의 안테나 포트로서, 포트 7
DCI 포맷 2D 단말 특정 8개까지의 전송 레이어, 포트7-14가 사용됨 또는 단독의 안테나 포트로서 포트 7 또는 포트 8이 사용됨
DCI 포맷의 용도는 다음 표와 같이 구분된다.
표 3
DCI 포맷 내 용
DCI 포맷 0 PUSCH 스케줄링에 사용
DCI 포맷 1 하나의 PDSCH 코드워드(codeword)의 스케줄링에 사용
DCI 포맷 1A 하나의 PDSCH 코드워드의 간단(compact) 스케줄링 및 랜덤 액세스 과정에 사용
DCI 포맷 1B 프리코딩 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용
DCI 포맷 1C 하나의 PDSCH 코드워드(codeword)의 매우 간단(very compact) 스케줄링에 사용
DCI 포맷 1D 프리코딩 및 전력 오프셋(power offset) 정보를 가진 하나의 PDSCH 코드워드의 간단 스케줄링에 사용
DCI 포맷 2 폐루프 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용
DCI 포맷 2A 개루프(open-loop) 공간 다중화 모드로 설정된 단말들의 PDSCH 스케줄링에 사용
DCI 포맷 2B DCI 포맷 2B는 PDSCH의 듀얼 레이어(dual-layer) 빔포밍을 위한 자원 할당을 위해 사용된다.
DCI 포맷 2C DCI 포맷 2C는 8개 레이어(layer)까지의 페-루프 SU-MIMO 또는 MU-MIMO 동작을 위한 자원 할당을 위해서 사용된다.
DCI 포맷 2D DCI 포맷 2C는 8개 레이어 까지의 자원 할당을 위해서 사용된다.
DCI 포맷 3 2비트 전력 조정(power adjustments)을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용
DCI 포맷 3A 1비트 전력 조정을 가진 PUCCH 및 PUSCH의 TPC 명령의 전송에 사용
DCI 포맷 4 다중 안테나 포트 전송 모드로 동작하는 상향링크(UL) 셀의 PUSCH 스케줄링에 사용
상향링크 채널은 PUSCH, PUCCH, SRS(Sounding Reference Signal), PRACH(Physical Random Access Channel)을 포함한다.
한편, PDCCH는 서브프레임내의 제어 영역이라는 한정된 영역에서 모니터링되고, 또한 PDCCH의 복조를 위해서는 전 대역에서 전송되는 CRS가 사용된다. 제어 정보의 종류가 다양해지고, 제어 정보의 양이 증가함에 따라 기존 PDCCH 만으로는 스케줄링의 유연성이 떨어진다. 또한, CRS 전송으로 인한 부담을 줄이기 위해, EPDCCH(enhanced PDCCH)의 도입되고 있다.
도 6은 3GPP LTE에서 상향링크 서브프레임의 구조를 나타낸다.
도 6을 참조하면, 상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역에는 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)가 할당된다. 데이터 영역은 데이터(경우에 따라 제어 정보도 함께 전송될 수 있다)가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)가 할당된다.
하나의 UE에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다.
UE이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(frequency diversity) 이득을 얻을 수 있다. m은 서브프레임 내에서 PUCCH에 할당된 자원블록 쌍의 논리적인 주파수 영역 위치를 나타내는 위치 인덱스이다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(hybrid automatic repeat request) ACK(acknowledgement)/NACK(non-acknowledgement), 하향링크 채널 상태를 나타내는 CQI(channel quality indicator), 상향링크 무선 자원 할당 요청인 SR(scheduling request) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 전송시간구간(TTI) 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다.
이제 반송파 집성 시스템에 대해 설명한다.
도 7은 단일 반송파 시스템과 반송파 집성 시스템의 비교 예이다.
도 7의 (a)을 참조하면, 단일 반송파 시스템에서는 상향링크와 하향링크에 하나의 반송파만을 UE에게 지원한다. 반송파의 대역폭은 다양할 수 있으나, UE에게 할당되는 반송파는 하나이다. 반면, 도 7의 (b)을 참조하면, 반송파 집성(carrier aggregation: CA) 시스템에서는 UE에게 복수의 요소 반송파(DL CC A 내지 C, UL CC A 내지 C)가 할당될 수 있다. 요소 반송파(component carrier: CC)는 반송파 집성 시스템에서 사용되는 반송파를 의미하며 반송파로 약칭할 수 있다. 예를 들어, UE에게 60MHz의 대역폭을 할당하기 위해 3개의 20MHz의 요소 반송파가 할당될 수 있다.
반송파 집성 시스템은 집성되는 반송파들이 연속되어 있는 연속(contiguous) 반송파 집성 시스템과 집성되는 반송파들이 서로 떨어져 있는 불연속(non-contiguous) 반송파 집성 시스템으로 구분될 수 있다. 이하에서 단순히 반송파 집성 시스템이라 할 때, 이는 요소 반송파가 연속인 경우와 불연속인 경우를 모두 포함하는 것으로 이해되어야 한다. 하향링크와 상향링크 간에 집성되는 요소 반송파들의 수는 다르게 설정될 수 있다. 하향링크 CC 수와 상향링크 CC 수가 동일한 경우를 대칭적(symmetric) 집성이라고 하고, 그 수가 다른 경우를 비대칭적(asymmetric) 집성이라고 한다.
1개 이상의 요소 반송파를 집성할 때 대상이 되는 요소 반송파는 기존 시스템과의 하위 호환성(backward compatibility)을 위하여 기존 시스템에서 사용하는 대역폭을 그대로 사용할 수 있다. 예를 들어 3GPP LTE 시스템에서는 1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz 및 20MHz의 대역폭을 지원하며, 3GPP LTE-A 시스템에서는 상기 3GPP LTE 시스템의 대역폭만을 이용하여 20MHz 이상의 광대역을 구성할 수 있다. 또는 기존 시스템의 대역폭을 그대로 사용하지 않고 새로운 대역폭을 정의하여 광대역을 구성할 수도 있다.
무선 통신 시스템의 시스템 주파수 대역은 복수의 반송파 주파수(Carrier-frequency)로 구분된다. 여기서, 반송파 주파수는 셀의 중심 주파수(Center frequency of a cell)를 의미한다. 이하에서 셀(cell)은 하향링크 주파수 자원과 상향링크 주파수 자원을 의미할 수 있다. 또는 셀은 하향링크 주파수 자원과 선택적인(optional) 상향링크 주파수 자원의 조합(combination)을 의미할 수 있다. 또한, 일반적으로 반송파 집성(CA)을 고려하지 않은 경우, 하나의 셀(cell)은 상향 및 하향링크 주파수 자원이 항상 쌍으로 존재할 수 있다.
특정 셀을 통하여 패킷(packet) 데이터의 송수신이 이루어지기 위해서는, UE은 먼저 특정 셀에 대해 설정(configuration)을 완료해야 한다. 여기서, 설정(configuration)이란 해당 셀에 대한 데이터 송수신에 필요한 시스템 정보 수신을 완료한 상태를 의미한다. 예를 들어, 설정(configuration)은 데이터 송수신에 필요한 공통 물리계층 파라미터들, 또는 MAC(media access control) 계층 파라미터들, 또는 RRC 계층에서 특정 동작에 필요한 파라미터들을 수신하는 전반의 과정을 포함할 수 있다. 설정 완료된 셀은, 패킷 데이터가 전송될 수 있다는 정보만 수신하면, 즉시 패킷의 송수신이 가능해지는 상태이다.
설정완료 상태의 셀은 활성화(Activation) 혹은 비활성화(Deactivation) 상태로 존재할 수 있다. 여기서, 활성화는 데이터의 송신 또는 수신이 행해지거나 준비 상태(ready state)에 있는 것을 말한다. UE은 자신에게 할당된 자원(주파수, 시간 등일 수 있음)을 확인하기 위하여 활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신할 수 있다.
비활성화는 트래픽 데이터의 송신 또는 수신이 불가능하고, 측정이나 최소 정보의 송신/수신이 가능한 것을 말한다. UE은 비활성화 셀로부터 패킷 수신을 위해 필요한 시스템 정보(System Information: SI)를 수신할 수 있다. 반면, UE은 자신에게 할당된 자원(주파수, 시간 등일 수도 있음)을 확인하기 위하여 비활성화된 셀의 제어채널(PDCCH) 및 데이터 채널(PDSCH)을 모니터링 혹은 수신하지 않는다.
셀은 프라이머리 셀(primary cell)과 세컨더리 셀(secondary cell), 서빙 셀(serving cell)로 구분될 수 있다.
프라이머리 셀은 프라이머리 주파수에서 동작하는 셀을 의미하며, UE이 기지국과의 최초 연결 확립 과정(initial connection establishment procedure) 또는 연결 재확립 과정을 수행하는 셀, 또는 핸드오버 과정에서 프라이머리 셀로 지시된 셀을 의미한다.
세컨더리 셀은 세컨더리 주파수에서 동작하는 셀을 의미하며, 일단 RRC 연결이 확립되면 설정되고 추가적인 무선 자원을 제공하는데 사용된다.
서빙 셀은 반송파 집성이 설정되지 않거나 반송파 집성을 제공할 수 없는 UE인 경우에는 프라이머리 셀로 구성된다. 반송파 집성이 설정된 경우 서빙 셀이라는 용어는 UE에게 설정된 셀을 나타내며 복수로 구성될 수 있다. 하나의 서빙 셀은 하나의 하향링크 요소 반송파 또는 {하향링크 요소 반송파, 상향링크 요소 반송파}의 쌍으로 구성될 수 있다. 복수의 서빙 셀은 프라이머리 셀 및 모든 세컨더리 셀들 중 하나 또는 복수로 구성된 집합으로 구성될 수 있다.
상술한 바와 같이 반송파 집성 시스템에서는 단일 반송파 시스템과 달리 복수의 요소 반송파(CC), 즉, 복수의 서빙 셀을 지원할 수 있다.
이러한 반송파 집성 시스템은 교차 반송파 스케줄링을 지원할 수 있다. 교차 반송파 스케줄링(cross-carrier scheduling)은 특정 요소 반송파를 통해 전송되는 PDCCH를 통해 다른 요소 반송파를 통해 전송되는 PDSCH의 자원 할당 및/또는 상기 특정 요소 반송파와 기본적으로 링크되어 있는 요소 반송파 이외의 다른 요소 반송파를 통해 전송되는 PUSCH의 자원 할당을 할 수 있는 스케줄링 방법이다. 즉, PDCCH와 PDSCH가 서로 다른 하향링크 CC를 통해 전송될 수 있고, UL 그랜트를 포함하는 PDCCH가 전송된 하향링크 CC와 링크된 상향링크 CC가 아닌 다른 상향링크 CC를 통해 PUSCH가 전송될 수 있다. 이처럼 교차 반송파 스케줄링을 지원하는 시스템에서는 PDCCH가 제어정보를 제공하는 PDSCH/PUSCH가 어떤 DL CC/UL CC를 통하여 전송되는지를 알려주는 반송파 지시자가 필요하다. 이러한 반송파 지시자를 포함하는 필드를 이하에서 반송파 지시 필드(carrier indication field: CIF)라 칭한다.
교차 반송파 스케줄링을 지원하는 반송파 집성 시스템은 종래의 DCI(downlink control information) 포맷에 반송파 지시 필드(CIF)를 포함할 수 있다. 교차 반송파 스케줄링을 지원하는 시스템 예를 들어 LTE-A 시스템에서는 기존의 DCI 포맷(즉, LTE에서 사용하는 DCI 포맷)에 CIF가 추가되므로 3 비트가 확장될 수 있고, PDCCH 구조는 기존의 코딩 방법, 자원 할당 방법(즉, CCE 기반의 자원 맵핑)등을 재사용할 수 있다.
도 8은 반송파 집성 시스템에서 교차 반송파 스케줄링을 예시한다.
도 8을 참조하면, 기지국은 PDCCH 모니터링 DL CC(모니터링 CC) 집합을 설정할 수 있다. PDCCH 모니터링 DL CC 집합은 집성된 전체 DL CC들 중 일부 DL CC로 구성되며, 교차 반송파 스케줄링이 설정되면 UE은 PDCCH 모니터링 DL CC 집합에 포함된 DL CC에 대해서만 PDCCH 모니터링/복호를 수행한다. 다시 말해, 기지국은 PDCCH 모니터링 DL CC 집합에 포함된 DL CC를 통해서만 스케줄링하려는 PDSCH/PUSCH에 대한 PDCCH를 전송한다. PDCCH 모니터링 DL CC 집합은 UE 특정적(UE-specific), UE 그룹 특정적(UE group-specific), 또는 셀 특정적(cell-specific)으로 설정될 수 있다.
도 8에서는 3개의 DL CC(DL CC A, DL CC B, DL CC C)가 집성되고, DL CC A가 PDCCH 모니터링 DL CC로 설정된 예를 나타내고 있다. UE은 DL CC A의 PDCCH를 통해 DL CC A, DL CC B, DL CC C의 PDSCH에 대한 DL 그랜트를 수신할 수 있다. DL CC A의 PDCCH를 통해 전송되는 DCI에는 CIF가 포함되어 어느 DL CC에 대한 DCI인지를 나타낼 수 있다.
도 9는 3GPP LTE에서 랜덤 액세스 과정을 나타낸 흐름도이다.
랜덤 액세스 과정은 UE(100)가 기지국, 즉 eNodeB(200)과 UL 동기를 얻거나 UL 무선자원을 할당받기 위해 사용된다.
UE(100)는 루트 인덱스(root index)와 PRACH(physical random access channel) 설정 인덱스(configuration index)를 eNodeB(200)로부터 수신한다. 각 셀마다 ZC(Zadoff-Chu) 시퀀스에 의해 정의되는 64개의 후보(candidate) 랜덤 액세스 프리앰블이 있으며, 루트 인덱스는 단말이 64개의 후보 랜덤 액세스 프리앰블을 생성하기 위한 논리적 인덱스이다.
랜덤 액세스 프리앰블의 전송은 각 셀마다 특정 시간 및 주파수 자원에 한정된다. PRACH 설정 인덱스는 랜덤 액세스 프리앰블의 전송이 가능한 특정 서브프레임과 프리앰블 포맷을 지시한다.
UE(100)은 임의로 선택된 랜덤 액세스 프리앰블을 eNodeB(200)로 전송한다. UE(100)은 64개의 후보 랜덤 액세스 프리앰블 중 하나를 선택한다. 그리고, PRACH 설정 인덱스에 의해 해당되는 서브프레임을 선택한다. UE(100)은 은 선택된 랜덤 액세스 프리앰블을 선택된 서브프레임에서 전송한다.
상기 랜덤 액세스 프리앰블을 수신한 eNodeB(2000)은 랜덤 액세스 응답(random access response, RAR)을 UE(100)로 보낸다. 랜덤 액세스 응답은 2단계로 검출된다. 먼저 UE(100)은 RA-RNTI(random access-RNTI)로 마스킹된 PDCCH를 검출한다. UE(100)은 검출된 PDCCH에 의해 지시되는 PDSCH 상으로 MAC(Medium Access Control) PDU(Protocol Data Unit) 내의 랜덤 액세스 응답을 수신한다.
<소규모 셀(small cell)의 도입>
한편, 차세대 이동 통신 시스템에서는 셀 커버리지 반경이 작은 소규모 셀(small cell)이 기존 셀의 커버리지 내에 추가될 것으로 예상되고, 소규모 셀은 보다 많은 트래픽을 처리할 것으로 예상된다. 상기 기존 셀은 상기 소규모 셀에 비해 커버리지가 크므로, 매크로 셀(Macro cell)이라고 칭하기도 한다. 이하 도 10을 참조하여 설명하기로 한다.
도 10은 차세대 무선 통신 시스템으로 될 가능성이 있는 매크로 셀과 소규모 셀의 혼합된 이종 네트워크의 환경을 도시한 도면이다.
도 10을 참조하면, 기존 기지국(200)에 의한 매크로 셀은 하나 이상의 소규모 기지국(300a, 300b, 300c, 300d)에 의한 소규모 셀과 중첩된 이종 네트워크 환경이 나타나 있다. 상기 기존 기지국은 상기 소규모 기지국에 비해 큰 커버리지를 제공하므로, 매크로 기지국(Macro eNodeB, MeNB)라고도 불린다. 본 명세서에서 매크로 셀과 매크로 기지국이라는 용어를 혼용하여 사용하기로 한다. 매크로 셀(200)에 접속된 UE은 매크로 UE(Macro UE)로 지칭될 수 있다. 매크로 UE은 매크로 기지국으로부터 하향링크 신호를 수신하고, 매크로 기지국에게 상향링크 신호를 전송한다.
이와 같은 이종 네트워크에서는 상기 매크로셀을 프라이머리 셀(Pcell)로 설정하고, 상기 소규모 셀을 세컨더리 셀(Scell)로 설정함으로써, 매크로셀의 커버리지 빈틈을 메꿀 수 있다. 또한, 상기 소규모 셀을 프라이머리 셀(Pcell)로 설정하고, 상기 매크로 셀을 세컨더리 셀(Scell)로 설정함으로써, 전체적인 성능을 향상(boosting)시킬수 있다.
한편, 상기 소규모 셀은 현재 LTE/LTE-A로 배정된 주파수 대역을 사용하거나, 혹은 더 높은 주파수 대역(예컨대 3.5GHz 이상의 대역)을 사용할 수도 있다.
다른 한편, 향후 LTE-A 시스템에서는 상기 소규모 셀은 독립적으로는 사용되지 못하고, 매크로 셀의 도움 하에 사용될 수 있는 매크로 셀-보조 소규모 셀(macro-assisted small cell)로만 사용하는 것도 고려하고 있다.
이러한 소규모 셀들(300a, 300b, 300c, 300d)은 서로 비슷한 채널 환경을 가질 수 있고, 서로 근접한 거리에 위치하기 때문에 소규모 셀들 간의 간섭이 큰 문제가 될 수 있다.
이러한 간섭 영향을 줄이기 위해, 소규모 셀(300b, 300c)은 자신의 커버리지를 확장하거나 축소할 수 있다. 이와 같이 커버리지의 확장 및 축소를 셀 숨쉬기(cell breathing)이라고 한다. 예컨대 도시된 바와 같이, 상기 소규모셀(300b, 300c)은 상황에 따라 온(on)되거나, 혹은 오프(off)될 수 있다.
다른 한편, 상기 소규모 셀은 현재 LTE/LTE-A로 배정된 주파수 대역을 사용하거나, 혹은 더 높은 주파수 대역(예컨대 3.5GHz 이상의 대역)을 사용할 수도 있다.
한편, UE는 상기 매크로 셀과 소규모셀에 이중 연결(dual connectivity)할 수도 있다. 상기 이중 연결(dual connectivity)을 가능한 시나리오들이 도 11a 내지 도 11d에 나타내었다.
도 11a 및 도 11b는 매크로 셀과 소규모 셀에 대해 가능한 이중 연결의 시나리오들을 나타낸다.
도 11a에 도시된 것과 같이 UE는 매크로 셀을 제어 평면(Control-plane: 이하 ‘C-plane’이라 함)으로 설정받고, 소규모 셀을 사용자 평면(User-plane 이하 ‘U-plane’이라 함)으로 설정받을 수 있다.
또는 도 11b에 도시된 바와 같이, UE는 소규모 셀을 C-plane으로 설정받고, 매크로 셀을 U-plane으로 설정받을 수 있다. 본 명세서에서는 편의를 위해, C-Plane의 셀을 ‘C-Cell’이라 명칭하고, U-Plane의 셀을 ‘U-Cell’이라 하겠다.
여기서, 언급한 C-Plane이라 함은, RRC 연결 설정 및 재설정, RRC 유휴 모드, 핸드오버를 포함한 이동성, 셀 선택, 재선택, HARQ 프로세스, 반송파 집성(CA)의 설정 및 재설정, RRC 설정을 위한 필요한 절차, 랜덤 액세스 절차 등을 지원하는 것을 의미한다. 그리고 언급한 U-Plane이라 함은 애플리케이션의 데이터 처리, CSI 보고, 애플리케이션 데이터에 대한 HARQ 프로세스, 멀티캐스팅/브로드캐스팅 서비스 등을 지원하는 것을 의미한다.
UE의 관점에서, C-plane 및 U-plne의 설정은 다음과 같다. C-Cell은 프라이머리 셀로 설정되고, U-Cell은 세컨더리 셀로 설정될 수 있다. 혹은 반대로, U-Cell은 프라이머리 셀로 설정되고, C-Cell은 세컨더리 셀로 설정될 수 있다. 혹은 C-Cell은 별도로 특별하게 처리하고, U-Cell은 프라이머리 셀로 설정될 수도 있다. 혹은, C-Plane 및 U-Cell은 모두 프라이머리 셀로 설정될 수 있다. 다만, 본 명세서에서 설명의 편의상 C-Cell은 프라이머리 셀로 설정되고, U-Cell은 세컨더리 셀로 설정되는 것으로 가정하여 이하 설명된다.
한편, UE(100)가 짧은 거리를 자주 이동하는 상황에서는 핸드오버가 지나치게 자주 발생할 수 있으므로, 이를 방지하기 위해서는 도 12a에서와 같이 상기 UE는 상기 매크로 셀을 C-cell 또는 프라이머리 셀로 설정받고, 소규모 셀은 U-cell 또는 세컨더리 셀로 설정받는 것이 유리할 수 있다.
이러한 이유로 매크로 셀은 UE의 프라이머리 셀로서 상기 UE와 항상 연결되어 있을 수 있다. 이 경우, 상기 매크로 셀은 프라이머리 셀이므로, 상기 UE는 PUCCH를 상기 매크로 셀로 전송할 수 있다.
한편, 날이 갈수록 증가되는 데이터 트래픽을 처리하기 위해서는 상기 소규모 셀은 더욱 조밀하게 배치될 수 있고, 상기 소규모 셀 내에는 날이 갈수록 더 많은 개수의 UE가 접속될 수 있다. 이에 의하면, 기존에 매크로 셀이 단독으로 UE를 수용했던 것에 대비하여, 더 많은 개수의 UE가 서비스될 수 있다.
다른 한편 이와 같이, 소규모 셀이 도입됨에 따라, UE(100)는 매크로 셀 과 소규모 셀 모두에게 PRACH(예컨대, 랜덤 액세스 프리앰블)를 전송하여야 하는 상황에 발생할 수 있으나, 현재 3GPP 표준 스펙에 따르면 UE는 복수의 PRACH를 동시에 전송할 수 없는 것으로 정하고 있다. 이하에서는 도 12를 참조하여 복수의 PRACH가 전송되어야 하는 상황을 설명하기로 한다.
도 12은 UE가 복수의 셀에 PRACH를 전송하는 예를 나타낸다.
도 12에 도시된 바와 같이, UE(100)가 반송파 집성(CA)을 이용하여 지리적으로 서로 떨어져 있는 매크로 셀(200)과 소규모 셀(300)에 동시 접속하는 경우, 상기 UE(100)는 상기 매크로 셀(200)과 소규모 셀(300)에 각각 PRACH를 전송할 수 있다. 구체적으로, 상기 UE는 상기 매크로 셀(200)로의 랜덤 액세스 프리엠블을 생성하고, 아울러 소규모 셀(300)로의 랜덤 액세스 프리앰블을 생성할 수 있다. 이어서, 상기 UE(100)는 상기 두 랜덤 액세스 프리앰블을 각기 전송할 수 있다. 이와 같이, 상기 UE(100)는 상기 매크로 셀(200)과 소규모 셀(300)에 각각 PRACH를 전송하는 것은 상기 매크로 셀(200)과 소규모 셀(300)이 서로 지리적으로 떨어져 있어, 매크로 셀(200)과 소규모 셀(300) 간의 백홀 링크가 실시간성이 낮은 경우에 효율적일 수 있다. 또한 이러한 경우에는 상기 UE(100)는 매크로 셀(200)과 소규모 셀(300)에 대해서 서로 독립적인 타이밍 조정(timing adjustment)과 스케줄링 요청(scheduling request)이 필요하다. 한편, 소규모 셀의 개수가 많은 경우에는 상기 UE(100)는 각 셀 혹은 셀 그룹(예컨대, 마스터 셀 그룹, 세컨더리 셀 그룹)에 대해서 서로 독립적인 타이밍 조정(timing adjustment)과 스케줄링 요청(scheduling request)이 필요할 수 있다.
이러한 PRACH는 초기 액세스를 위해 사용될 수도 있고, 혹은 스케줄링 요청(scheduling request)을 전송하거나, PDCCH 명령(order) 혹은 MAC 계층 요청에 의해 트리거될 수도 있다. 또는 UE의 신호 품질을 모니터링하기 위해서 PRACH가 주기적으로 전송될 수도 있다.
그런데, 상기 UE(100)가 매크로 셀(200)과 소규모 셀(300)에 대해서 각기 PRACH를 전송하려 할 경우, 상기 2개의 PRACH가 동일 서브프레임 상에서 충돌될 수 있는 문제가 발생할 수 있다.
또한, PRACH가 PDCCH 명령(order)에 따라 트리거링 되는 경우에, 상기 PDCCH 명령 역시 각 셀 혹은 셀 그룹 별로 독립적으로 스케줄링될 수 있기 때문에 각 셀에 대한 PRACH가 동일 서브프레임 상에서 충돌할 수 있다.
<본 명세서의 개시들>
따라서, 본 명세서의 제1 개시는 UE가 복수의 PRACH(예컨대, 랜덤 액세스 프리앰블)를 동시에 전송할 수 있는 능력이 없는 경우, 복수의 PRACH들이 동일 서브프레임 상에서 충돌하는 상황을 방지하는 방법을 제시한다. 또한, 본 명세서의 제1 개시는 UE가 복수의 PRACH를 동시에 전송할 수 있는 능력이 없는 경우, 복수의 PRACH들이 동일 서브프레임 상에서 충돌 시 UE 대응 절차를 제시한다. 또한, 본 명세서의 제2 개시는 UE가 복수의 PRACH를 동시에 전송할 수 있는 능력이 있는 경우에 UE의 절차를 제시한다. 여기서, UE가 복수의 PRACH를 동시에 전송할 수 있는 것도 하나의 UE의 능력(capability)로 볼 수 있다. UE가 PUCCH와 PUCCH를 동시 전송할 수 있다면, 상기 UE는 복수의 PRACH를 동시에 전송할 수 있는 능력도 갖추었다고 가정할 수 있다. 혹은 이중 연결(dual connectivity)를 지원하는 UE는 PUCCH와 PUCCH의 동시 전송 능력과, PUCCH와 PUSCH의 동시 전송 능력, 그리고 복수의 PRACH의 동시 전송 능력도 갖추었다고 가정할 수 있다.
이하에서는, 본 명세서의 개시들에 대해서 구체적으로 설명하기로 한다.
I. 본 명세서의 제1 개시
차기 시스템에서 복수의 PRACH 동시 전송은 UE의 능력(capability)에 따라 가능할 수도 있고 불가능할 수도 있다. 이 경우에 어떤 UE가 해당 능력(capability)이 없는 경우 혹은 해당 능력은 있지만 설정(configure)안된 경우에는 하나의 서브프레임 상에서 전송할 수 있는 PRACH의 개수는 1개로 제한될 수 있다. 지리적으로 서로 떨어져서, 이상적이지 않은 백홀(Non-ideal backhaul) 링크로 연결된 셀들에 UE가 동시 접속된 상황(예컨대 이중 연결)에서는 PRACH 전송이 각 eNodeB별로 독립적으로 전송될 수 있으며, 동일 시점(예컨대 동일 서브프레임)에 PRACH가 동시에 전송되도록 트리거링 될 수도 있다. 이때, UE는 충돌한 복수의 PRACH에 대해서 하나를 선택할 필요가 있으며, 이에 대한 우선순위 규칙을 설정할 때 다음과 같은 항목을 고려할 수 있다.
(a) 제1 기준: 셀 인덱스 혹은 프라이머리 셀(PCell)이나 세컨더리 셀(SCell) 여부
프라이머리 셀(PCell)이 높은 우선순위를 가지고 세컨더리 셀 중에서는 세컨더리 셀 인덱스가 낮은 것부터 높은 순으로 우선순위로 설정할 수 있다. 또는 프라이머리 셀이 높은 우선순위를 가지고 이후에 세컨더리 셀 중에서 PUCCH를 전송할 수 있는 셀의 우선순위를 높게 설정하는 것을 고려할 수 있다.
또는, 프라이머리 셀을 포함하는 혹은 마스터 eNodeB에 대응되는 셀의 집합인 마스터 셀 그룹과 세컨더리 eNodeB에 대응되는 셀의 집합인 세컨더리 셀 그룹여부에 따라서 우선순위 규칙을 정할 수 있다.
이때, 마스터 셀 그룹에 대응되는 셀들이 세컨더리 셀 그룹에 대응되는 셀들보다 높은 우선순위를 가질 수 있다. 각 셀 그룹 내에서는 프라이머리 셀로 동작하는 셀(예컨대, 프라이머리 셀, 혹은 제2 프라이머리 셀)이 높은 우선순위를 가지고 이후에 셀 인덱스가 낮은 셀부터 우선순위가 높게 설정됨.
대안적으로, 프라이머리 셀이 높은 우선순위를 가지고 다음으로 제2 프라이머리 셀(SeNB 또는 제2 반송파 그룹의 프라이머리 셀 혹은 PUCCH전송이 되는 셀)이 높은 우선순위를 가질 수 있다. 이후에 세컨더리 셀 그룹에 대응되는 세컨더리 셀의 우선순위를 높게 설정할 수 있다.
대안적으로, 프라이머리 셀이 높은 우선순위를 가지고 다음으로 제2 프라이머리 셀이 높은 우선순위를 가질 수 있다. 이후에 마스터 셀 그룹에 대응되는 세컨더리 셀의 우선순위를 높게 설정함.
대안적으로, 프라이머리 셀이 높은 우선순위를 가지고 다음으로 제2 프라이머리 셀이 높은 우선순위를 가질 수 있다. 이후에 셀 인덱스가 낮은 셀부터 우선순위가 높게 설정할 수 있다.
대안적으로, 프라이머리 셀과 제2 프라이머리 셀이 동일한 우선순위를 가지고, 두 셀 모두에게 PRACH가 전송되는 경우, 경쟁 기반(contention-based) PRACH 전송이 비경쟁(contention-free) PRACH 전송 보다 우선 할 수 있다. 만약 두 셀 모두에 대해 UE가 경쟁 기반 PRACH 전송 시도한다면, 프라이머리 셀이 우선 순위가 높을 수 있다. 이 높은 우선순위를 가지고 다음으로 제2 프라이머리 셀이 높은 우선순위를 가질 수 있다. 이후에 셀 인덱스가 낮은 셀부터 우선순위가 높게 설정될 수 있다.
(b) 제2 기준: 경쟁 기반/비경쟁 기반 여부
비 경쟁 기반 PRACH 전송의 우선순위가 높도록 설정할 수 있다. 그 이유는, 셀이 트리거링한 비 경쟁 기반 PRACH 전송을 우선하기 위함이다. 이는 동일한 우선순위를 가지는 셀들의 PRACH 전송이 충돌했을 때 적용할 수 있다.
대안적으로, 경쟁 기반 PRACH가 우선 하도록 한정할 수 있다. 이는 동일한 우선순위를 가지는 셀들의 PRACH 전송이 충돌했을 때 적용할 수 있다.
(c) 제3 기준: UE 측정 결과
수신된 참조 신호(RS)로부터 경로 손실(pathloss)이나 RSRP 등의 측정 결과에 따라서 상태가 좋은 셀에 대한 PRACH 전송에 높은 우선순위 설정할 수 있다.
(d) 제4 기준: 셀에서 설정된 PRACH 정보
PRACH 설정이나 PRACH에 사용될 루트 인덱스(root index)를 기반으로 하여 설정할 수 있다. 예컨대 루트 인덱스의 경우에는 논리 인덱스(logical index)가 낮을수록 해당 PRACH의 우선순위를 높게 설정할 수 있다. 이에 대한 근거로는 CM 특성이 좋은 PRACH를 전송하기 위함.
또는 PRACH의 대상 셀 반경이 작은 것부터 높은 우선순위를 가지도록 설정할 수 있다. 예컨대 PRACH 포맷 4(TDD 혹은 TDD-FDD 상황에서 해당됨), PRACH 포맷 0, PRACH 포맷2, PRACH 포맷 1, PRACH 포맷 3 순서로 우선순위를 설정할 수 있다.
또는 PRACH의 재전송의 횟수와 연관되어 우선순위설정을 할 수 있다. 예를 들어, 두 PRACH의 재전송 시도의 수가 다르다면, 재전송을 많이 한 PRACH에게 우선 순위를 줄 수 있다. 이를 지원하기 위해서, 상위 계층은 각 PRACH 전송요구시 재전송 횟수를 알려 줄 수 있다.
또는 PRACH의 전송 전력을 기준으로 우선순위를 설정할 수 있다. 전송 전력이 큰 쪽 PRACH에 높은 우선 순위를 설정할 수 있다.
또는 PRACH가 전송되는 PRACH 설정에 따라 상향링크 서브프레임 개수가 적은 쪽, 혹은 프리앰블 포맷에 따라 크기(size)가 큰 쪽, 혹은 듀플렉스 모드(duplex mode)에 따라, TDD에 우선, CP(cyclic prefix)에 따라 확장(extended) CP에 높은 우선순위를 설정하는 것을 고려할 수 있다. 이러한 우선순위는 정반대로 적용될 수 있음은 물론이다. 이상에서 설명한 내용은 우선순위를 고려할 때의 기준을 예를 들어 설명한 것에 불과하고, 우선순위가 다르게 적용되는 것이 배제되지 않음은 물론이다. 이상에서 설명한 기준은 조합되어 사용될 수 있다.
UE가 동일 서브프레임 상에서 충돌한 복수의 PRACH 중에서 어느 하나를 선택할 때에, 현재 PRACH가 전송중인 상황에 대한 고려를 할 수 있다. 일례로, PRACH 프래앰블 포맷 3가 선택되어 세컨더리 셀 그룹(SCG)으로 PRACH가 서브프레임 j, j+1, j+2에 걸쳐서 전송되는 상황에서, 마스터 셀 그룹(MCG)으로는 PRACH가 서브프레임 i (서브프레임 j+1 및 j+2와 중첩) 상에서 전송된다고 할 때, 마스터 셀 그룹(MCG)으로의 PRACH 전송을 우선시 하기 위해서 세컨더리 셀 그룹(SCG)으로의 PRACH는 전송을 멈추어야 할 수 있다. 이러한 중도 패킷 포기(drop)는 PRACH 전송의 완결성(integrity)를 해칠 수 있으므로, 이러한 상황은 UE 구현으로 피할 수 있다. 따라서 우선순위 규칙에 따라 선택을 하는 기준을 좀 더 세분화 하여, 다음과 같은 상황을 고려할 수 있다. 다음과 같은 경우는 두 PRACH 전송시 어느 시점에서든 최대 전송 파워(PCmax)를 넘게 되는 경우 해결방안이다.
첫 번째 방안으로서, PRACH 전송의 시작 시점에 상관없이 어느 시점에서는 최대 전송 파워(PCmax)를 넘게 되면 우선순위가 낮은 PRACH를 포기(drop)하거나, 지연(delay)시키거나 또는 파워 조정(power scale)을 할 수 있다.
두 번째 방안으로서, PRACH 전송의 시작점이 두 PRACH간 적어도 T usec (예컨대, T = 1000 usec, 1msec or T = 33us)만큼 이내로 차이가 나는 경우에는 우선순위가 낮은 PRACH를 포기(drop)하거나, 지연(delay)시키거나 또는 파워 조정(power scale)을 할 수 있다. 그 이외의 상황에 대해서는 진행중인(on-going) PRACH의 전송을 우선시 한다. 따라서 진행중인(on-going) PRACH 전송이 아닌 PRACH의 경우 포기할 수 있다.
세 번째 방안으로서, 우선순위가 낮은 PRACH 전송의 시작점이 우선순위 가 높은 PRACH 전송의 시작점에 비해서 늦다면, 항상 UE는 우선순위 가 낮은 PRACH를 포기하거나 파워 조정을 수행할 수 있다. 만약 시작점이 빠르다면, 두 번째 방안을 적용한다. 이에 대해서 도 13을 참조하여 보다 상세하게 설명하기로 한다.
도 13a 및 도 13b은 어느 하나의 PRACH 전송을 포기하는 예를 각기 나타낸다.
도 13a 및 도 13b에서는 세컨더리 셀 그룹에 대한 PRACH 전송이 우선순위가 마스터 셀 그룹에 대한 PRACH 전송의 우선순위 보다 낮다고 가정한다.
도 13a의 경우, 우선순위가 높은 프라이머리 셀로의 PRACH 전송 시작점이 우선순위가 낮은 세컨더리 셀 그룹으로의 PRACH 전송 시작점 보다 빠르므로, 세컨더리 셀 그룹으로의 PRACH가 전송되기 전에 포기할 수 있다.
반면, 도 13b의 경우 아래의 경우, 우선순위가 높은 프라이머리 셀로의 PRACH 전송 시작점이 우선순위가 낮은 세컨더리 셀 그룹으로의 PRACH 전송 시작점 보다 빠르지 않으므로, 세컨더리 셀 그룹으로의 PRACH 전송을 지속하고 프라이머리 셀 그룹으로의 PRACH 전송을 지연시키거나 혹은 포기할 수 있다.
다른 한편, 다음과 같은 우선순위를 추가로 고려할 수 있다.
PRACH의 우선순위는 다른 채널의 우선순위 보다 높게 설정될 수 있다. 이때, PUCCH와 DM-RS 전송을 위해서 일정한 전송 전력이 일정하다고 가정한다.
한편, 2개의 PRACH들의 시작 시점 간에 시간 차가 T usec와 같거나 작다면, 프라이머리 셀로의 PRACH는 다른 PRACH 보다 우선 순위가 높게 설정될 수 있다.
다른 경우에는, 진행중인 PRACH의 우선순위가 더 높게 설정될 수 있다. 낮은 우선순위를 갖는 PRACH는 포기될 수 있다. 한편, PRACH의 전송 동안에 일정한 전송 전력이 사용된다고 가정할 수 있다.
이상에서 설명한 바와 같은 우선순위 규칙을 적용해서 선택된 어느 하나의 PRACH를 UE가 먼저 전송한 후, 전송되지 않고 남은 PRACH를 어떡해 전송할지에 대해서도 여러 가지 방안이 있을 수 있다. 간단하게, 전송되지 않은 PRACH는 포기한다고 가정할 수 있다. 그러나, 경쟁 기반 PRACH 전송의 경우, UE가 전송 타이밍(timing)을 선택할 수 있으므로, 충돌(collision)을 피하기 위해 하나의 PRACH를 먼저 전송하고, 다른 하나의 PRACH의 전송은 타이밍을 지연시킴으로써, 두 개의 PRACH를 모두 전송할 수 있다. 반면, PDCCH 명령에 의한 비경쟁 기반 PRACH가 복수개 충돌한 상황에서, 어느 하나의 PRACH 전송이 우선순위 규칙에 따라 전송되고 다른 하나의 PRACH 전송은 지연된 경우, 상기 지연된 PRACH는 PDCCH 명령을 전송한 셀이 기대하는 타이밍에 전송되지 않은 것이므로, 포기할 수 있다. 혹은 이러한 상황을 고려해서, PDCCH 명령을 전송한 셀은 +j의 타이밍을 허용한다고 해당 UE에게 알려줄 수도 있다. PDCCH 명령에 의해 PRACH가 전송되는 경우, 두 셀이 동시에 PDCCH 명령을 전송하는 상황을 고려하여, PRACH전송은 n+k 혹은 n+k+j 이후에 PRACH를 전송할 수 있는 가장 빠른 서브프레임(k는 현재 PDCCH 명령에 대응되는 PRACH 타이밍 기준)상에서 전송될 수 있다고 가정할 수 있다면, UE는 두 개의 PRACH를 하나씩 전송할 수 있다. PDCCH 명령에 의해 경쟁 기반 PRACH 전송이 요구되었을 때는, 셀이 PRACH를 받는 것이 중요하므로, 같은 PDCCH 명령에 의해서 PRACH가 동시에 요구되었더라도, 경쟁 기반 PRACH의 전송이 비경쟁 기반 PRACH의 전송에 비해 높은 우선순위를 갖는다고 가정할 수 있다. 또는 같은 경쟁 기반 PRACH의 전송이 동시에 요구되었더라도, PDCCH 명령에 의한 PRACH가 더 높은 우선순위를 갖는 다고 할 수도 있다. 이러한 경우에도 두 개의 PRACH를 각각 n+k 혹은 n+k+j 이후에 PRACH를 전송할 수 있는 가장 빠른 서브프레임 상에서 두 개의 PRACH를 전송할 수 있다.
한편, 위에서 언급한 바와 같이 UE가 다른 하나의 PRACH의 전송을 포기(drop)하는 경우에는, PRACH 전송 자체가 실패가 아니라 전송 기회를 잃었을 뿐이므로 일반적인 PRACH 재전송과 다르게 구분할 수도 있다. 일례로 PRACH의 전송이 포기된 경우, UE의 하위 계층은 상위 계층으로 PRACH가 포기되었다는 인디케이션을 전송하는 것을 고려할 수 있으며, 이에 따라 상기 상위 계층은 상기 수신한 인디케이션에 따라서 파워 증가(power ramping) 등과 같은 PRACH 성능을 향상시키기 위한 작업을 하위 계층이 수행하지 않도록 할 수 있다. 또는, 상위 계층은 프리앰블 전송 카운터(예컨대, PREAMBLE_TRANSMISSION_COUNTER)를 증가시키지 않도록 함으로써, 재전송 최대 횟수에 도달하는 경우를 미연에 방지할 수도 있다. 이러한 인디케이션을 수신한 경우, 상위 계층은 곧바로 다시 PRACH의 재전송을 시도할 수 있으며, 이 경우 재전송 카운터나 파워를 다시 정하지 않고, 이전 파워를 그대로 이용하거나 재전송을 증가시키되, 재전송 카운터가 최대에 도달한 경우에만 이전 파워로 전송할 수 있다. 더 나아가 이러한 인디케이션을 수신하게 되면, 상위 계층은 상기 PRACH 전송이 프라이머리 셀 혹은 SeNB 프라이머리 셀로부터의 PDCCH 명령에 따라 트리거링되었더라도, 무선 링크 실패(radio link failure: RLF)를 선언하지 않을 수도 있다. 다시 말하면, 상위 계층은 상기 PRACH의 전송이 PDCCH 명령의 수신 없이 경쟁 기반 PRACH 전송에 해당하는 상황에서, 상기 인디케이션을 수신하였다면, 상기 PRACH의 재전송을 수행한다. 그러나, 상기 PRACH의 전송이 PDCCH 명령에 따라 트리거링된 것이라면, 재전송 카운터가 최대(max) 값에 도달하게 되면, 상기 상위 계층은 랜덤 액세스 실패(random access failure)로 간주하고, 무선 링크 실패(RLF)를 트리거하지 않을 수 있다.
또는, 위에서 언급한 바와 같이 UE가 다른 하나의 PRACH의 전송을 포기(drop)하는 경우에는, 기존 방식과 동일하게 파워 증가(power ramping)를 수행하거나, 프리앰블 전송 카운터(예컨대, PREAMBLE_TRANSMISSION_COUNTER)가 증가되도록 할 수 있다. 그 이유는, PRACH 전송의 잦은 포기로 인하여, PRACH 자원이 낭비적으로 점유되는 문제를 경감시키기 위해, 혹은 PRACH 재전송에 의한 비효율을 줄이기 위함이다. 이 경우에 PRACH 재전송의 카운터가 최대값에 도달한 경우에, 상위 계층은 해당 셀에 대한 무선 링크 실패(RLF)를 트리거링할 수 있다. 차기 시스템에서는, UE는 세컨더리 셀(혹은 제2 프라이머리 셀, SeNB 혹은 프라이머리 셀의 기능을 수행하거나 PUCCH를 전송하는 셀)에 대한 무선 링크 실패(RLF) 인디케이션을 프라이머리 셀 (혹은 MeNB)로 전송하는 것을 고려할 수 있으며, 이 경우에 해당 무선 링크 실패(RLF)가 PRACH 검출 실패(특히, PRACH의 전송 포기에 의한) 여부를 참조하여 표현하는 형태로 설정될 수 있다.
II. 본 명세서의 제2 개시
본 명세서의 제2 개시는 UE가 복수의 PRACH를 동시에 전송할 수 있는 경우에 UE의 절차를 제시한다. 여기서, UE가 복수의 PRACH를 동시에 전송할 수 있는 것도 하나의 UE의 능력(capability)로 볼 수 있다. 그러나, 상기 UE가 해당 능력이 있더라도 실제로 해당 능력이 활성화 설정이 되어야만, 복수의 PRACH를 동시에 전송할 수 있다. 한편, 복수의 PRACH를 동시에 전송하는 경우에, UE의 최대 전송 파워를 넘어설 수 있으며, 이 경우에 복수의 PRACH에 대한 파워를 조정할 필요가 있다. 파워 조정을 하고자 한다면, 어느 셀로의 PRACH에 대한 파워를 조정할 것인지에 대한 우선순위 규칙은 앞선 제1 실시예에서 설명한 기준들을 사용할 수 있다. 한편, UE가 지리적으로 서로 떨어진 복수의 기지국으로 각기 PRACH를 전송하는 경우, 각 PRACH 전송 시 기준으로 하고 있는 하향링크 서브프레임의 경계가 일치하지 않을 수 있다. 이때, PRACH 프리앰블 또한 일부만 겹치는 상황이 일반적일 수 있으며, UE 전송 파워에 복수의 PRACH 전송 파워를 맞추는 경우에는 상기 겹치는 구간 중에서 최대 값에 대응되는 부분을 기준으로 파워 조정을 수행할 수 있다.
한편, UE가 복수의 셀 그룹으로 PRACH를 각기 전송한 경우, UE는 랜덤 액세스 응답(RAR)이 각 셀 그룹에서 PUCCH를 전송할 수 있는 특정 셀로부터 수신된다고 가정할 수 있다.
지금까지 설명한, 본 발명의 실시예들은 다양한 수단을 통해 구현될 수 있다. 예를 들어, 본 발명의 실시예들은 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 구체적으로는 도면을 참조하여 설명하기로 한다.
도 14는 본 명세서의 개시가 구현되는 무선통신 시스템을 나타낸 블록도이다.
기지국(200)은 프로세서(processor, 201), 메모리(memory, 202) 및 RF부(RF(radio 주파수) unit, 203)을 포함한다. 메모리(202)는 프로세서(201)와 연결되어, 프로세서(201)를 구동하기 위한 다양한 정보를 저장한다. RF부(203)는 프로세서(201)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(201)는 제안된 기능, 과정 및/또는 방법을 구현한다. 전술한 실시 예에서 기지국의 동작은 프로세서(201)에 의해 구현될 수 있다.
UE(100)는 프로세서(101), 메모리(102) 및 RF부(103)을 포함한다. 메모리(102)는 프로세서(101)와 연결되어, 프로세서(101)를 구동하기 위한 다양한 정보를 저장한다. RF부(103)는 프로세서(101)와 연결되어, 무선 신호를 송신 및/또는 수신한다. 프로세서(101)는 제안된 기능, 과정 및/또는 방법을 구현한다.
프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부는 무선 신호를 처리하기 위한 베이스밴드 회로를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.

Claims (16)

  1. 랜덤 액세스 절차를 수행하는 방법으로서,
    제1 셀로의 랜덤 액세스 프리앰블(random access preamble)을 생성하는 단계와;
    제2 셀로의 랜덤 액세스 프리앰블을 생성하는 단계와;
    상기 제1 셀로의 랜덤 액세스 프리앰블과 상기 제2 셀로의 랜덤 액세스 프리앰블이 동일한 서브프레임 상에서 동시에 전송되도록 트리거링되는지 판단하는 단계와;
    동시 전송되도록 트리거링된 경우, 미리 설정된 우순순위에 따라 어느 하나의 셀로의 랜덤 액세스 프리앰블을 선택하는 단계와;
    상기 선택된 어느 하나의 랜덤 액세스 프리앰블을 전송하는 단계를 포함하는 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  2. 제1항에 있어서,
    상기 제1 셀은 매크로 셀이고, 상기 제2 셀은 소규모 셀인 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  3. 제1항에 있어서, 상기 미리 설정된 우선순위는
    프라이머리 셀(primary cell), 낮은 셀 인덱스를 갖는 세컨더리 셀들(secondary cells)의 순인 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  4. 제1항에 있어서, 상기 미리 설정된 우선 순위는
    프라이머리 셀(primary cell)을 포함하는 마스터 셀 그룹, 세컨더리 셀을 포함하는 세컨더리 셀 그룹의 순인 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  5. 제1항에 있어서, 상기 미리 설정된 우선순위는
    비경쟁(non-contention) 기반의 랜덤 액세스 절차, 경쟁 기반의 랜덤 액세스 절차의 순인 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  6. 제1항에 있어서, 상기 미리 설정된 우선순위는
    측정 결과에 따른 채널 품질이 보다 높은 순인 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  7. 제1항에 있어서, 상기 미리 설정된 우선순위는
    랜덤 액세스 프리앰블을 생성하기 위한 루트 인덱스 및 PRACH(physical random access channel) 설정에 따라 정해지는 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  8. 제1항에 있어서,
    상기 선택되지 않은 랜덤 액세스 프리앰블의 전송 타이밍을 지연시키는 단계를 더 포함하는 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  9. 제1항에 있어서,
    상기 선택되지 않은 랜덤 액세스 프리앰블의 전송을 해당 전송 타이밍에서 포기하는 단계를 더 포함하는 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  10. 제9항에 있어서,
    상기 해당 전송 타이밍에서 상기 전송을 포기한 후 재전송하는 경우, 하위 계층은 상기 전송의 포기에 대한 인디케이션을 상위 계층으로 전달하는 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  11. 제9항에 있어서,
    상기 해당 전송 타이밍에서 상기 전송을 포기한 후 재전송하는 경우, 재전송 카운터를 증가시키지 않는 단계를 더 포함하는 것을 특징으로 하는 랜덤 액세스 절차 수행 방법.
  12. 랜덤 액세스 절차를 수행하는 사용자 장치(UE)로서,
    제1 셀로의 랜덤 액세스 프리앰블(random access preamble) 및 제2 셀로의 랜덤 액세스 프리앰블을 생성한 후, 상기 제1 셀로의 랜덤 액세스 프리앰블과 상기 제2 셀로의 랜덤 액세스 프리앰블이 동일한 서브프레임 상에서 동시에 전송되도록 트리거링되는지 판단하고, 상기 판단에 따라 동시 전송되도록 트리거링것으로 확인되는 경우, 미리 설정된 우순순위에 따라 어느 하나의 셀로의 랜덤 액세스 프리앰블을 선택하는 프로세서와;
    상기 프로세서에 의해서 선택된 어느 하나의 랜덤 액세스 프리앰블을 전송하는 송수신부를 포함하는 것을 특징으로 하는 사용자 장치.
  13. 제12항에 있어서,
    상기 제1 셀은 매크로 셀이고, 상기 제2 셀은 소규모 셀인 것을 특징으로 하는 사용자 장치.
  14. 제12항에 있어서, 상기 프로세서는
    상기 선택되지 않은 랜덤 액세스 프리앰블의 전송 타이밍을 지연시키는 것을 특징으로 하는 사용자 장치.
  15. 제12항에 있어서, 상기 프로세서는
    상기 선택되지 않은 랜덤 액세스 프리앰블의 전송을 해당 전송 타이밍에서 포기하는 것을 특징으로 하는 사용자 장치.
  16. 제15항에 있어서, 상기 프로세서는
    상기 해당 전송 타이밍에서 상기 전송을 포기한 후 재전송하는 경우, 재전송 카운터를 증가시키지 않는 것을 특징으로 하는 사용자 장치.
PCT/KR2014/009723 2013-11-19 2014-10-16 랜덤 액세스 절차를 수행하는 방법 WO2015076501A1 (ko)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020167011378A KR102261184B1 (ko) 2013-11-19 2014-10-16 랜덤 액세스 절차를 수행하는 방법
EP19201733.3A EP3627954B1 (en) 2013-11-19 2014-10-16 Method for performing random access procedure
RU2016124116A RU2634712C1 (ru) 2013-11-19 2014-10-16 Способ для выполнения процедуры произвольного доступа
US15/037,657 US9826554B2 (en) 2013-11-19 2014-10-16 Method for performing random access procedure
JP2016532112A JP6509853B2 (ja) 2013-11-19 2014-10-16 ランダムアクセス手順を実行する方法
EP14864323.2A EP3073649B1 (en) 2013-11-19 2014-10-16 Method for performing random access procedure
CN201480063359.1A CN105745849B (zh) 2013-11-19 2014-10-16 用于执行随机接入过程的方法和执行该方法的用户设备
US15/782,323 US10009932B2 (en) 2013-11-19 2017-10-12 Method for performing random access procedure
US15/995,757 US10327266B2 (en) 2013-11-19 2018-06-01 Method for performing random access procedure
US16/411,790 US10887924B2 (en) 2013-11-19 2019-05-14 Method for performing random access procedure

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201361906398P 2013-11-19 2013-11-19
US61/906,398 2013-11-19
US201461932208P 2014-01-27 2014-01-27
US61/932,208 2014-01-27
US201462060540P 2014-10-06 2014-10-06
US62/060,540 2014-10-06

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/037,657 A-371-Of-International US9826554B2 (en) 2013-11-19 2014-10-16 Method for performing random access procedure
US15/782,323 Continuation US10009932B2 (en) 2013-11-19 2017-10-12 Method for performing random access procedure

Publications (1)

Publication Number Publication Date
WO2015076501A1 true WO2015076501A1 (ko) 2015-05-28

Family

ID=53179733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009723 WO2015076501A1 (ko) 2013-11-19 2014-10-16 랜덤 액세스 절차를 수행하는 방법

Country Status (7)

Country Link
US (4) US9826554B2 (ko)
EP (2) EP3073649B1 (ko)
JP (1) JP6509853B2 (ko)
KR (1) KR102261184B1 (ko)
CN (1) CN105745849B (ko)
RU (1) RU2634712C1 (ko)
WO (1) WO2015076501A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105340A (zh) * 2014-03-21 2016-11-09 三星电子株式会社 在支持双连接的无线通信系统中使用的随机接入方法和设备
KR101685301B1 (ko) * 2015-08-28 2016-12-09 한국과학기술원 임의접속 과정을 통한 통신 장치 및 방법
KR101745839B1 (ko) * 2016-10-11 2017-06-09 한국과학기술원 임의접속 과정을 통한 통신 장치 및 방법
CN109600841A (zh) * 2017-09-30 2019-04-09 北京三星通信技术研究有限公司 随机接入方法、网络节点和用户设备
JP2020502933A (ja) * 2016-12-22 2020-01-23 クアルコム,インコーポレイテッド 複数の種類の物理ランダムアクセスチャネル(prach)送信を利用するための技法および装置
WO2021029732A1 (ko) * 2019-08-14 2021-02-18 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
US11736989B2 (en) 2017-04-01 2023-08-22 Samsung Electronics Co., Ltd. Random access method, network node and user equipment

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3039799B1 (en) * 2013-08-27 2021-06-16 Samsung Electronics Co., Ltd. Method and apparatus for random access procedure and radio link failure in inter-enb carrier aggregation
RU2619068C1 (ru) * 2013-09-24 2017-05-11 ЭлДжи ЭЛЕКТРОНИКС ИНК. Связь между mac и phy для параллельных процедур произвольного доступа двойного подключения
JP6509853B2 (ja) 2013-11-19 2019-05-08 エルジー エレクトロニクス インコーポレイティド ランダムアクセス手順を実行する方法
US9999002B2 (en) * 2014-03-21 2018-06-12 Avago Technologies General Ip (Singapore) Pte. Ltd. Uplink power scaling for dual connectivity
EP3133860B1 (en) * 2014-04-18 2018-08-22 NTT DoCoMo, Inc. User device and uplink-transmission-power-information transmission method
JP5878595B2 (ja) * 2014-07-11 2016-03-08 株式会社Nttドコモ ユーザ端末、無線通信システムおよび無線通信方法
JP6272483B2 (ja) * 2014-07-11 2018-01-31 株式会社Nttドコモ ユーザ端末および無線通信方法
US10129910B2 (en) * 2014-10-06 2018-11-13 Qualcomm Incorporated PRACH transmission power adjustment
BR112018071366A8 (pt) * 2016-04-20 2022-06-28 Sharp Kk Aparelho terminal, aparelho de estação-base e método de comunicação
US11483805B2 (en) * 2016-08-18 2022-10-25 Samsung Electronics Co., Ltd. Method and device for transmitting and receiving uplink control information in wireless communication system
EP3516891A1 (en) * 2016-09-26 2019-07-31 Nokia Solutions and Networks Oy Communication system
TWI618437B (zh) * 2016-11-01 2018-03-11 財團法人資訊工業策進會 無線裝置、基地台、用於無線裝置之隨機存取方法及用於基地台之前置碼配置方法
TWI674965B (zh) 2017-01-05 2019-10-21 三緯國際立體列印科技股份有限公司 多色3d物件的切層列印方法
EP3471364B1 (en) * 2017-05-03 2023-08-09 LG Electronics Inc. Method for transmitting random access channel signal, user equipment, method for receiving random access channel signal, and base station
EP3619818A4 (en) * 2017-05-04 2020-10-21 Motorola Mobility LLC DETERMINATION OF A BEAM FOR A PREAMBLE TRANSMISSION
US10477593B2 (en) * 2017-06-08 2019-11-12 Qualcomm Incorporated Techniques and apparatuses for access in a backhaul network
EP3639609A4 (en) * 2017-06-16 2021-03-17 Telefonaktiebolaget LM Ericsson (publ) RANDOM ACCESS CONFIGURATION PROCESS AND DEVICE
US11490424B2 (en) 2017-06-16 2022-11-01 Motorola Mobility Llc Performing multiple random access procedures
KR102588435B1 (ko) 2017-09-08 2023-10-12 삼성전자주식회사 리소스 결정, 리소스 구성, 랜덤 액세스 프리엠블 송신 및 랜덤 엑세스를 위한 방법 및 장치
EP4048011A1 (en) * 2017-09-08 2022-08-24 Samsung Electronics Co., Ltd. Method and apparatus for resource determination, resource configuration, transmitting random access preamble and random access
JP7111812B2 (ja) * 2017-11-09 2022-08-02 華為技術有限公司 通信装置のランダム・アクセス方法、装置、及び記憶媒体
CN111373829B (zh) * 2017-11-22 2022-06-07 中兴通讯股份有限公司 不同随机接入资源的共存和关联的方法和装置
JP7136912B2 (ja) 2018-03-29 2022-09-13 北京小米移動軟件有限公司 情報を報告する方法および装置、ならびに帯域幅部分に基づく動作方法および装置
WO2019191922A1 (zh) * 2018-04-04 2019-10-10 北京小米移动软件有限公司 上行传输方法、装置及存储介质
US11089651B2 (en) * 2018-04-06 2021-08-10 Apple Inc. Systems and methods for physical random access channel transmissions
CN112335330B (zh) 2018-04-16 2024-03-19 瑞典爱立信有限公司 在释放和重新暂停时非活动参数的处置
US11665746B2 (en) 2018-08-08 2023-05-30 Samsung Electronics Co., Ltd. Handling collisions in wireless networks
WO2020222690A1 (en) * 2019-05-02 2020-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Transmit power allocation technique
US11432250B2 (en) * 2019-06-27 2022-08-30 Qualcomm Incorporated Transmission power control
CN114930951A (zh) * 2020-02-14 2022-08-19 中兴通讯股份有限公司 用于信号传输的系统和方法
WO2023201685A1 (en) * 2022-04-22 2023-10-26 Apple Inc. Primary secondary cell handover in unlicensed spectrum

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120081558A (ko) * 2011-01-11 2012-07-19 삼성전자주식회사 이동통신 시스템에서 랜덤 액세스 절차를 수행하는 방법 및 장치
WO2012148239A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
KR20130010870A (ko) * 2011-07-19 2013-01-29 인더스트리얼 테크놀로지 리서치 인스티튜트 랜덤 액세스 응답을 처리하는 방법
WO2013025009A2 (ko) * 2011-08-12 2013-02-21 엘지전자 주식회사 랜덤 액세스 과정을 수행하는 방법 및 이를 이용한 무선기기
KR20130090804A (ko) * 2012-02-06 2013-08-14 삼성전자주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100317267B1 (ko) * 1999-10-02 2001-12-22 서평원 공통 패킷 채널의 보호 방법
KR100452639B1 (ko) * 2001-10-20 2004-10-14 한국전자통신연구원 위성 이동 통신 시스템에서 공통 패킷 채널 접속 방법
CN1623344A (zh) * 2002-03-08 2005-06-01 诺基亚公司 在非对称软切换条件中控制功率的方法和设备
KR100662408B1 (ko) * 2005-05-24 2007-01-02 엘지전자 주식회사 랜덤 액세스를 위한 채널 할당 방법
GB2445336B (en) * 2005-11-04 2010-12-08 Nec Corp Wireless communication system and method of controlling a transmission power
KR101196897B1 (ko) * 2006-01-20 2012-11-01 에릭슨 엘지 주식회사 무선통신 시스템 내에서 랜덤 액세스 채널에 주파수 대역을 할당하는 방법 및 장치와, 그의 랜덤 액세스 채널 상에서의 신호 송수신 장치 및 방법
US9131486B2 (en) * 2006-12-01 2015-09-08 Qualcomm Incorporated Control signal transmission for wireless communication systems
CN101843152B (zh) * 2007-11-01 2013-09-11 皇家飞利浦电子股份有限公司 用于rach的改进的功率斜坡
KR101531513B1 (ko) * 2008-02-04 2015-07-06 엘지전자 주식회사 랜덤 접속의 접속 지연 재개 방법
CN102027797A (zh) * 2008-03-14 2011-04-20 诺基亚西门子通信公司 用于中继网络中的随机接入的本地冲突避免的方法、设备和系统
CN101686544A (zh) * 2008-09-22 2010-03-31 中兴通讯股份有限公司 专用随机接入资源的分配方法和基站
EP2386175B1 (fr) * 2009-01-09 2016-07-27 Alcatel Lucent Gestion des liens radio dans un systeme de radiocommunication
KR101711865B1 (ko) * 2009-05-29 2017-03-03 엘지전자 주식회사 공간 사일런싱을 이용한 신호 전송 방법 및 이를 위한 장치
US9025572B2 (en) * 2009-09-03 2015-05-05 Via Telecom Co., Ltd. Apparatus, system, and method for access procedure enhancements
CA2793703C (en) * 2010-04-01 2020-06-30 Panasonic Corporation Transmit power control for physical random access channels
LT2760241T (lt) * 2010-04-01 2018-09-10 Sun Patent Trust Perduodamos galios valdymas fiziniams atsitiktinės prieigos kanalams
KR101954185B1 (ko) * 2010-11-05 2019-06-03 삼성전자 주식회사 Carrier Aggregation 이동통신 시스템에서 단말이 Power Headroom을 보고하는 방법 및 장치
ES2740350T3 (es) 2011-04-05 2020-02-05 Samsung Electronics Co Ltd Procedimiento y aparato de control del acceso aleatorio en un sistema de comunicaciones inalámbricas que soporta agregación de portadoras
TWI574532B (zh) * 2011-05-10 2017-03-11 內數位專利控股公司 獲得次胞元上鏈定時校準方法及裝置
WO2013042908A1 (en) * 2011-09-20 2013-03-28 Pantech Co., Ltd. Apparatus and method for performing random access procedure in multiple component carrier system
KR20130032178A (ko) * 2011-09-22 2013-04-01 주식회사 팬택 다중 요소 반송파 시스템에서 랜덤 액세스 절차의 수행장치 및 방법
CN103024923B (zh) * 2011-09-26 2015-09-09 华为技术有限公司 一种保证并行数据随机接入的方法及用户设备
US8964780B2 (en) * 2012-01-25 2015-02-24 Ofinno Technologies, Llc Sounding in multicarrier wireless communications
WO2013138701A2 (en) 2012-03-16 2013-09-19 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
JP5940850B2 (ja) * 2012-03-19 2016-06-29 株式会社Nttドコモ 通信システム、基地局装置、移動端末装置及び通信方法
US8971280B2 (en) * 2012-04-20 2015-03-03 Ofinno Technologies, Llc Uplink transmissions in a wireless device
KR101589911B1 (ko) * 2012-08-03 2016-02-18 주식회사 케이티 랜덤 액세스 전력 제어 방법 및 장치
WO2015064419A1 (ja) * 2013-10-29 2015-05-07 京セラ株式会社 通信制御方法、基地局、及びユーザ端末
JP6509853B2 (ja) 2013-11-19 2019-05-08 エルジー エレクトロニクス インコーポレイティド ランダムアクセス手順を実行する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120081558A (ko) * 2011-01-11 2012-07-19 삼성전자주식회사 이동통신 시스템에서 랜덤 액세스 절차를 수행하는 방법 및 장치
WO2012148239A2 (ko) * 2011-04-28 2012-11-01 엘지전자 주식회사 랜덤 액세스 수행 방법 및 장치
KR20130010870A (ko) * 2011-07-19 2013-01-29 인더스트리얼 테크놀로지 리서치 인스티튜트 랜덤 액세스 응답을 처리하는 방법
WO2013025009A2 (ko) * 2011-08-12 2013-02-21 엘지전자 주식회사 랜덤 액세스 과정을 수행하는 방법 및 이를 이용한 무선기기
KR20130090804A (ko) * 2012-02-06 2013-08-14 삼성전자주식회사 이동통신 시스템에서 복수의 캐리어를 이용해서 데이터를 송수신하는 방법 및 장치

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3GPP TS 36.211 V10.4.0", December 2011, article "Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 8"
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation (Release 10", 3GPP TS 36.211 V10.4.0, 2011
See also references of EP3073649A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106105340A (zh) * 2014-03-21 2016-11-09 三星电子株式会社 在支持双连接的无线通信系统中使用的随机接入方法和设备
KR101685301B1 (ko) * 2015-08-28 2016-12-09 한국과학기술원 임의접속 과정을 통한 통신 장치 및 방법
WO2017039089A1 (ko) * 2015-08-28 2017-03-09 한국과학기술원 임의접속 과정을 통한 통신 장치 및 방법
KR101745839B1 (ko) * 2016-10-11 2017-06-09 한국과학기술원 임의접속 과정을 통한 통신 장치 및 방법
JP2020502933A (ja) * 2016-12-22 2020-01-23 クアルコム,インコーポレイテッド 複数の種類の物理ランダムアクセスチャネル(prach)送信を利用するための技法および装置
US11882590B2 (en) 2016-12-22 2024-01-23 Qualcomm Incorporated Techniques and apparatuses for multiple types of physical random access channel (PRACH) transmission utilization
US11736989B2 (en) 2017-04-01 2023-08-22 Samsung Electronics Co., Ltd. Random access method, network node and user equipment
CN109600841A (zh) * 2017-09-30 2019-04-09 北京三星通信技术研究有限公司 随机接入方法、网络节点和用户设备
CN109600841B (zh) * 2017-09-30 2024-03-15 北京三星通信技术研究有限公司 随机接入方法、网络节点和用户设备
WO2021029732A1 (ko) * 2019-08-14 2021-02-18 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치

Also Published As

Publication number Publication date
EP3073649A4 (en) 2017-07-12
KR102261184B1 (ko) 2021-06-04
CN105745849A (zh) 2016-07-06
CN105745849B (zh) 2019-08-27
KR20160087801A (ko) 2016-07-22
US10327266B2 (en) 2019-06-18
EP3627954A1 (en) 2020-03-25
JP2017504233A (ja) 2017-02-02
US10887924B2 (en) 2021-01-05
EP3073649A1 (en) 2016-09-28
JP6509853B2 (ja) 2019-05-08
RU2634712C1 (ru) 2017-11-03
US20160302235A1 (en) 2016-10-13
US10009932B2 (en) 2018-06-26
US9826554B2 (en) 2017-11-21
US20190268948A1 (en) 2019-08-29
EP3627954B1 (en) 2022-08-31
US20180035472A1 (en) 2018-02-01
EP3073649B1 (en) 2019-12-04
US20180279383A1 (en) 2018-09-27

Similar Documents

Publication Publication Date Title
WO2015076501A1 (ko) 랜덤 액세스 절차를 수행하는 방법
WO2017105158A1 (ko) 상향링크 제어 정보 전송 방법 및 이를 수행하는 사용자 장치
WO2018044114A1 (ko) 다수의 검색 공간에 대해 블라인드 디코딩을 수행하는 순서를 결정하는 방법 및 단말
WO2014185660A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 정보 수신 방법
WO2014003339A1 (ko) 소규모 셀에 대해 랜덤 액세스를 수행하는 방법 및 단말
WO2017217797A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2015060564A1 (ko) Mtc 기기와의 상향링크/하향링크 데이터 송수신 방법
WO2016114593A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2016093618A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 단말의 채널 상태 정보 보고 방법 및 이를 위한 장치
WO2017135682A1 (ko) 상향링크 제어 채널 전송 방법 및 이를 수행하는 사용자 장치
WO2017135713A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2016021958A1 (ko) 상향링크 신호 전송 방법 및 사용자기기와, 상향링크 신호 수신 방법 및 기지국
WO2014098384A1 (ko) 변경된 시스템 정보 적용 방법 및 단말
WO2016021957A1 (ko) Ack/nack 피드백 방법 및 사용자기기
WO2016028103A1 (ko) 무선 통신 시스템에서 신호 전송 방법 및 장치
WO2015064896A1 (ko) 복수의 셀에 동시 접속한 사용자 장치가 harq ack/nack을 전송하는 방법
WO2015076470A1 (ko) 셀 커버리지 확장 영역 위치한 mtc 기기의 송수신 방법
WO2016048100A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 수행하는 장치
WO2015083997A1 (ko) 커버리지 확장을 위한 랜덤 액세스 절차를 수행하는 방법 및 mtc 기기
WO2014163302A1 (ko) 소규모 셀에서의 수신 방법 및 사용자 장치
WO2014137105A1 (ko) Epdcch를 통한 제어 정보 수신 방법
WO2013066084A2 (ko) 하향링크 제어채널 모니터링 방법 및 무선기기
WO2016018068A1 (ko) 무선 통신 시스템에서 d2d 통신을 위한 자원 정보 송신 송신 방법 및 이를 위한 장치
WO2017023066A1 (ko) 랜덤 액세스 수행 방법 및 mtc 기기
WO2015026060A1 (ko) 복수의 셀에 동시 접속하는 방법 및 사용자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864323

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167011378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016532112

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037657

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014864323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864323

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201603987

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016124116

Country of ref document: RU

Kind code of ref document: A