WO2015076008A1 - インピーダンス変換回路および通信端末装置 - Google Patents

インピーダンス変換回路および通信端末装置 Download PDF

Info

Publication number
WO2015076008A1
WO2015076008A1 PCT/JP2014/074618 JP2014074618W WO2015076008A1 WO 2015076008 A1 WO2015076008 A1 WO 2015076008A1 JP 2014074618 W JP2014074618 W JP 2014074618W WO 2015076008 A1 WO2015076008 A1 WO 2015076008A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
antenna
terminal
frequency
impedance conversion
Prior art date
Application number
PCT/JP2014/074618
Other languages
English (en)
French (fr)
Inventor
西田浩
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015076008A1 publication Critical patent/WO2015076008A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • H04B1/18Input circuits, e.g. for coupling to an antenna or a transmission line

Definitions

  • the present invention relates to an impedance conversion circuit applied to an antenna matching circuit and the like and a communication terminal device including the same.
  • the frequency band used for mobile phones in recent years is very wide.
  • the cellular terminal is compatible with pentaband, it is required to support both low band (eg 824 to 960 MHz) and high band (eg 1710 to 2170 MHz). It is done.
  • low band eg 824 to 960 MHz
  • high band eg 1710 to 2170 MHz.
  • different operation modes are assigned to the antenna according to the frequency band. Usually, it is designed to support the low band in the fundamental mode and the high band in the harmonic mode.
  • the input impedance of the antenna varies depending on the mode.
  • FIG. 13 is a circuit diagram of the matching circuit disclosed in Patent Document 1.
  • the shared matching circuit 2 includes a primary circuit composed of capacitors C1 and C2 and a coil La, and a secondary circuit composed of capacitors C3 and C4 and a coil Lb.
  • the shared matching circuit 2 constitutes a narrow bandpass filter.
  • a transformer with a high coupling coefficient can be converted into an equivalent circuit including an ideal transformer, and a frequency variable matching circuit with a small number of variable reactance elements can be realized.
  • a frequency variable matching circuit with a small number of variable reactance elements can be realized.
  • a high frequency near 1 GHz used in mobile phones it is difficult to realize strong coupling because only a material with a relative permeability near 1 can be used. Therefore, a large number of reactance elements as shown in Patent Document 1 are required.
  • variable frequency matching circuit when a general matching circuit composed of LC elements that does not use a transformer is used as a variable frequency matching circuit, for example, a configuration as shown in FIG. 14 is obtained.
  • the frequency to be matched can be determined by adjusting the reactance of the variable reactance element 20.
  • FIG. 15A is a diagram showing on the Smith chart the locus when frequency sweeping the impedance viewed from the frequency variable matching circuit side from the power feeding circuit
  • FIG. 15B is a diagram showing the frequency characteristics of reflection loss. is there.
  • a curve L is a characteristic when matched to 750 MHz
  • a curve M is a characteristic when matched to 850 MHz
  • a curve H is a characteristic when matched to 950 MHz.
  • the frequency sweep range is 700 MHz to 1.0 GHz.
  • the curve RL (L) is a characteristic in a state matched with a frequency of 750 MHz
  • the curve RL (M) is a condition matched in a frequency of 850 MHz
  • the curve RL (H) is a characteristic in a condition matched in a frequency of 950 MHz.
  • BW (L) is the matching bandwidth in the state matched to 750 MHz
  • BW (M) is matched to 850 MHz
  • BW (H) is the matched bandwidth in the state matched to 950 MHz.
  • An object of the present invention is to provide an impedance conversion circuit capable of adjusting a matching frequency while maintaining matching over a wide band while using a small number of variable reactance elements, and a communication terminal device including the impedance conversion circuit.
  • the impedance conversion circuit of the present invention is connected between the first inductor connected between the first terminal on the power feeding circuit side and the second terminal on the antenna side, and between the third terminal and the second terminal on the ground side.
  • An autotransformer circuit including the first inductor and the second inductor coupled to each other, and a capacitive element connected to the first terminal (to the connection portion between the first terminal and the first inductor) to the shunt. And a variable reactance element connected in series between the antenna port to which the antenna is connected and the second terminal.
  • the above configuration makes it possible to adjust the matching frequency while maintaining matching over a wide band while using a small number of variable reactance elements.
  • the capacitive element constitutes a parallel LC circuit together with a parallel parasitic inductance (component) of the autotransformer circuit as viewed from the first terminal, and the parallel LC circuit is inductive in a low frequency range of a use frequency band and is in a high frequency range. And is preferably capacitive.
  • the parallel parasitic inductance (component) of the autotransformer circuit effectively operates in the high frequency range of the matching frequency band, and the capacitive element effectively operates in the low frequency range of the matching frequency band, thereby expanding the matching bandwidth. Is done.
  • variable reactance element constitutes a series LC circuit together with a series parasitic inductance (component) of the autotransformer circuit and an antenna connected to the antenna port, and the resonance frequency of the series LC circuit is included in the use frequency band (so that resonance occurs). It is preferable to control the frequency. With this configuration, the resonance frequency of the antenna can be determined at the center of the matching frequency band.
  • the capacitance element is preferably a variable capacitance element. With this configuration, by changing the value of the variable capacitance element according to the frequency band to be matched, the matching frequency can be changed while maintaining the broadband matching characteristics in a wider frequency range.
  • the communication terminal device of the present invention includes the impedance conversion circuit, a power supply circuit connected to the first terminal of the impedance conversion circuit, and an antenna connected to the antenna port.
  • the power supply circuit and the antenna can be matched over a wide band with a small impedance conversion circuit having a small number of elements.
  • a communication terminal apparatus that can be applied to broadband communication while using a small antenna can be configured.
  • FIG. 1A is a circuit diagram of an antenna apparatus provided with an impedance conversion circuit 101 according to the first embodiment of the present invention.
  • FIG. 1B is a circuit diagram illustrating a configuration example of a variable reactance element.
  • FIG. 2A is a diagram showing on the Smith chart an impedance locus when the antenna side is viewed from the power feeding port Pf of the impedance conversion circuit 101 shown in FIG.
  • FIG. 2B is a diagram showing the frequency characteristics of reflection loss when the antenna side is viewed from the feeding port Pf.
  • 3A is a circuit diagram of the autotransformer circuit 25, and FIG. 3B is an equivalent circuit diagram thereof.
  • FIG. 4 is a circuit diagram showing the circuit shown in FIG. 1 as an equivalent circuit.
  • FIG. 4 is a circuit diagram showing the circuit shown in FIG. 1 as an equivalent circuit.
  • FIG. 5A is a diagram showing on the Smith chart the locus of the impedance Z1 when the antenna side is viewed from the Pu point in FIG.
  • FIG. 5B is a diagram showing the frequency characteristics of the reflection loss RL and the insertion loss IL between the Pa point and the Pu point when the antenna side is viewed from the Pu point.
  • FIG. 6A is a diagram showing on the Smith chart the locus of the impedance Z2 when the antenna side is viewed from the point Pv in FIG.
  • FIG. 6B is a diagram showing the frequency characteristics of the reflection loss RL and the insertion loss IL between the Pa point and the Pv point when the antenna side is viewed from the Pv point.
  • FIG. 7A is a diagram showing on the Smith chart the locus of the impedance Z3 when the antenna side is viewed from the feeding port Pf in FIG.
  • FIG. 7B is a diagram illustrating the frequency characteristics of the reflection loss RL and the insertion loss IL between the Pa point and the Pf point when the antenna side is viewed from the feeding port Pf.
  • FIG. 8 is a circuit diagram for obtaining the characteristics of the circuit shown in FIG. 1 by simulation.
  • FIG. 9 is a simulation result, and is a diagram illustrating frequency characteristics of reflection loss and insertion loss of the impedance conversion circuit 101 when the antenna side is viewed from the power feeding port Pf for three frequency bands.
  • FIG. 10 is a diagram illustrating a configuration of a wireless communication device such as a mobile phone terminal including the antenna device according to the first embodiment.
  • FIG. 11 is a circuit diagram of an antenna apparatus provided with the impedance conversion circuit 102 according to the second embodiment of the present invention.
  • FIG. 12A is a diagram showing on the Smith chart the impedance locus when the antenna side is viewed from the feeding port Pf in FIG.
  • FIG. 12B is a diagram illustrating the frequency characteristics of reflection loss when the antenna side is viewed from the feeding port Pf.
  • FIG. 13 is a circuit diagram of the matching circuit disclosed in Patent Document 1.
  • FIG. 14 is a diagram illustrating an example of a variable frequency matching circuit, which is a general matching circuit that includes a conventional LC element and does not use a transformer.
  • FIG. 15A shows a locus on the Smith chart when the impedance of the frequency variable matching circuit side viewed from the power supply circuit of FIG. 14 is swept, and
  • FIG. 15B shows the frequency characteristics
  • FIG. 1A is a circuit diagram of an antenna apparatus provided with an impedance conversion circuit 101 according to the first embodiment of the present invention.
  • the antenna device includes an impedance conversion circuit 101 and an antenna element 10, and a power feeding circuit 30 is connected to the antenna device.
  • the antenna element 10 resonates in a fundamental wave (1/4 wavelength) mode in the low band, and resonates in a harmonic wave (for example, 3/4 wavelength) mode in the high band.
  • An impedance conversion circuit 101 is connected to the feeding end of the antenna element 10. That is, the power feeding circuit 30 is connected to the power feeding port Pf of the impedance conversion circuit 101, and the antenna element 10 is connected to the antenna port Pa.
  • the impedance conversion circuit 101 includes an autotransformer circuit 25, a capacitive element 21, and a variable reactance element 22.
  • the capacitive element 21 is connected to the first terminal P1 in a shunt.
  • the variable reactance element 22 is connected in series between the antenna port Pa and the second terminal P2 of the autotransformer circuit 25.
  • FIG. 1B is a circuit diagram showing a configuration example of the variable reactance element 22.
  • the variable reactance element 22 includes three capacitors Ca, Cb, Cc having fixed capacitances and three switches SWa, SWb, SWc.
  • the switches SWa, SWb, and SWc are configured by, for example, MEMS (Micro Electro Mechanical Systems).
  • the reactance between the two ports of the variable reactance element 22 is determined as one of a plurality of values depending on the on / off states of the switches SWa, SWb, and SWc.
  • variable capacitance diode If a variable capacitance diode is used as the variable reactance element, the signal is distorted due to the nonlinearity of the capacitance with respect to the applied voltage. However, if a MEMS switch is used, the problem does not occur.
  • the autotransformer circuit 25 includes a first inductor L1 connected between a first terminal P1 connected to the power feeding unit side and a second terminal P2 connected to the antenna side, and a third terminal P3 connected to the ground. And a second inductor L2 connected between the second terminal P2. The first inductor L1 and the second inductor L2 are coupled.
  • FIG. 2A is a diagram showing on the Smith chart the impedance locus when the antenna side is viewed from the power feeding port Pf of the impedance conversion circuit 101 shown in FIG.
  • FIG. 2B is a diagram illustrating the frequency characteristics of reflection loss (S parameter S11) when the antenna side is viewed from the feeding port Pf.
  • S parameter S11 reflection loss
  • a curve L is a characteristic when matched to 750 MHz
  • a curve M is a characteristic when matched to 850 MHz
  • a curve H is a characteristic when matched to 950 MHz.
  • the frequency sweep range is 700 MHz to 1.0 GHz.
  • the curve RL (L) is a characteristic when matched to a frequency of 750 MHz
  • the curve RL (M) is matched to a frequency of 850 MHz
  • the curve RL (H) is a characteristic when matched to a frequency of 950 MHz.
  • FIG. 3A is a circuit diagram of the autotransformer circuit 25, and FIG. 3B is an equivalent circuit diagram thereof.
  • An equivalent circuit of the autotransformer circuit 25 is represented by an ideal transformer IT having a transformation ratio n: 1, a parasitic component inductance Lp connected in parallel to the primary side, and a parasitic component inductance Ls connected in series to the secondary side.
  • n transformation ratio
  • L1 inductance of the first inductor L1
  • L2 the inductance of the second inductor L2
  • the coupling coefficient is represented by k
  • FIG. 4 is a circuit diagram showing the circuit shown in FIG. 1 as an equivalent circuit.
  • FIG. 5A is a diagram showing on the Smith chart the locus of the impedance Z1 when the antenna side is viewed from the Pu point in FIG.
  • FIG. 5B is a diagram showing frequency characteristics of reflection loss (S parameter S11) RL and insertion loss between Pa point and Pu point (S parameter S21) IL when the antenna side is viewed from the Pu point.
  • FIG. 6A is a diagram showing on the Smith chart the locus of the impedance Z2 when the antenna side is viewed from the point Pv in FIG. FIG.
  • FIG. 6B is a diagram showing the frequency characteristics of the reflection loss RL and the insertion loss IL between the Pa point and the Pv point when the antenna side is viewed from the Pv point.
  • FIG. 7A is a diagram showing on the Smith chart the locus of the impedance Z3 when the antenna side is viewed from the feeding port Pf in FIG.
  • FIG. 7B is a diagram illustrating the frequency characteristics of the reflection loss RL and the insertion loss IL between the Pa point and the Pf point when the antenna side is viewed from the feeding port Pf.
  • the frequency range is a frequency band centered on 850 MHz.
  • an LC series circuit is configured by the reactance of the variable reactance element 22, the series parasitic inductance Ls of the autotransformer circuit 25, and the reactance of the antenna element 10.
  • the resonance frequency can be adjusted by the series parasitic inductance Ls.
  • the reactance of the variable reactance element 22 is determined so as to resonate at a center frequency of 850 MHz in order to match the frequency band.
  • the impedance conversion ratio n of the autotransformer circuit 25 has a relationship of n> 1. Therefore, as shown in FIG. 6A, the impedance when the antenna side is viewed from the Pv point before the ideal transformer IT becomes large for both the real part and the imaginary part due to the impedance conversion action of the ideal transformer IT. In other words, while shifting to the right on the Smith chart, the circle of the impedance locus is reduced.
  • the impedance conversion ratio n is determined so that the frequency band is near the center of the Smith chart (that is, the positions of the markers m7, m8, and m9 are distributed around the center of the Smith chart).
  • a parallel LC circuit is configured by the capacitive element 21 and the inductance Lp.
  • the parallel LC circuit is inductive in a low frequency range of the frequency band to be matched. Capacitance at high frequencies. That is, due to the action of the inductance Lp, it moves clockwise along the constant conductance circle in the frequency range where the imaginary part of the impedance is positive, and is constant in the frequency range where the imaginary part of the impedance is negative due to the action of the capacitive element 21. Move counterclockwise along the conductance circle. By this action, as shown in FIG. 7A, the impedance locus circle is further reduced. As a result, as shown in FIG. 7B, impedance matching is performed over a wide frequency band.
  • the matching depth is mainly determined by the ideal transformer IT having no frequency characteristics.
  • the bandwidth is expanded by the parallel parasitic inductance Lp and the capacitive element 21 connected in parallel thereto.
  • variable reactance element 22 according to the frequency band, for example, when matched to the 750 MHz band (710 MHz to 790 MHz) or matched to the 950 MHz band (910 MHz to 990 MHz) 22 reactances are defined. Further, similarly for the high band, the reactance of the variable reactance element 22 is determined according to the frequency band. These changes in reactance may be continuous or stepwise.
  • the matching depth can be secured mainly with an ideal transformer, the value of the parallel parasitic inductance Lp may be large. Therefore, the capacitance of the capacitive element 21 provided for expanding the bandwidth can be made small. Thereby, the impedance change with respect to the frequency change of the parallel parasitic inductance Lp and the capacitive element 21 is small, and a matching bandwidth can be secured over a wide frequency band. That is, the frequency can be varied while realizing a wide bandwidth.
  • the value Lp of the parallel parasitic inductance Lp by the autotransformer circuit 25 is expressed as L1 + L2 + 2M, which is easy to make a large value compared to a general transformer, and is advantageous in a high frequency region where a material with high permeability cannot be used. It is.
  • FIG. 8 is a circuit diagram for obtaining the characteristics of the circuit shown in FIG. 1 by simulation.
  • the antenna element 10 is represented by a series resonance circuit.
  • FIG. 9 is a simulation result, and is a diagram illustrating frequency characteristics of reflection loss (S parameter S11) and insertion loss (S parameter S21) when the antenna side is viewed from the feeding port Pf for three frequency bands.
  • curves RL (L) and IL (L) represent the reflection loss and the insertion loss of the impedance conversion circuit 101 when matched to the 750 MHz band.
  • Curves RL (M) and IL (M) are reflection loss and insertion loss when matched to the 850 MHz band.
  • Curves RL (H) and IL (H) are reflection loss and insertion loss when matched to the 950 MHz band.
  • FIG. 10 is a diagram showing a configuration of a wireless communication device such as a mobile phone terminal provided with the antenna device.
  • a wireless communication device such as a mobile phone terminal provided with the antenna device.
  • the antenna element 10 and the circuit board are provided in the housing, the ground conductor GND is formed on the circuit board, and the impedance conversion circuit 101 and the power feeding circuit 30 are provided.
  • the antenna element 10 resonates at a quarter wavelength.
  • the antenna element 10 resonates at a quarter wavelength, or the entire antenna element 10 resonates at a quarter wavelength.
  • the antenna element 10 may be a monopole antenna or an inverted F-type antenna in addition to such a T-branch antenna element. In either case, it is generally sufficient to correspond to the low band in the fundamental mode and to correspond to the high band in the harmonic mode.
  • FIG. 11 is a circuit diagram of an antenna apparatus provided with the impedance conversion circuit 102 according to the second embodiment of the present invention.
  • the antenna device includes an impedance conversion circuit 102 and an antenna element 10, and a power feeding circuit 30 is connected to the antenna device.
  • the capacitive element 21 is a variable capacitive element. As shown in FIG. 4, the capacitive element 21 can change the capacitive element 21 connected in parallel to the parallel parasitic inductance Lp on the equivalent circuit of the autotransformer circuit 25. Thus, the capacitance of the capacitive element 21 can be changed optimally.
  • FIG. 12A is a diagram showing on the Smith chart the impedance locus when the antenna side is viewed from the feeding port Pf in FIG.
  • FIG. 12B is a diagram illustrating the frequency characteristics of the reflection loss (S parameter S11) RL when the antenna side is viewed from the feeding port Pf.
  • a curve L is a characteristic when matched to 750 MHz
  • a curve M is a characteristic when matched to 850 MHz
  • a curve H is a characteristic when matched to 950 MHz.
  • the frequency sweep range is 700 MHz to 1.0 GHz.
  • the curve RL (L) is a characteristic when matched to the 750 MHz band
  • the curve RL (M) is a characteristic when matched to the 850 MHz band
  • the curve RL (H) is matched to the 950 MHz band. It is a characteristic at the time.
  • BW (L) is the matching bandwidth in the state matched to 750 MHz
  • BW (M) is matched to 850 MHz
  • BW (H) is the matched bandwidth in the state matched to 950 MHz.
  • the matching frequency can be changed while maintaining the broadband matching characteristics in a wider frequency range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transceivers (AREA)
  • Details Of Aerials (AREA)
  • Transmitters (AREA)

Abstract

 給電回路側の第1端子(P1)とアンテナ側の第2端子(P2)との間に接続された第1インダクタ(L1)と、グランド側の第3端子(P3)と第2端子(P2)との間に接続された第2インダクタ(L2)とを備え、第1インダクタ(L1)と第2インダクタ(L2)とが結合するオートトランス回路(25)と、第1端子(P1)にシャントに接続された容量素子(21)と、アンテナが接続されるアンテナポート(Pa)と第2端子(P2)との間にシリーズに接続された可変リアクタンス素子(22)と、を備える。これにより、広帯域に亘って整合を保ったまま整合周波数を調整できるようにする。

Description

インピーダンス変換回路および通信端末装置
 本発明はアンテナ整合回路等に適用するインピーダンス変換回路およびそれを備えた通信端末装置に関するものである。
 近年の携帯電話に用いられる周波数帯域は非常に広く、例えばペンタバンド対応のセルラー端末であれば、ローバンド(例えば824~960MHz)とハイバンド(例えば1710~2170MHz)との両方に対応することが求められる。そして、一つのアンテナでローバンドとハイバンドとに対応させるために、アンテナは周波数帯域に応じて異なる動作モードが割り当てられる。通常は、基本波モードでローバンドに対応し、高調波モードでハイバンドに対応するように設計されている。そして、アンテナの入力インピーダンスは、そのモードに応じて異なる。
 一方、アンテナ整合回路として、例えば特許文献1に示すような回路が開示されている。図13は特許文献1に示されている整合回路の回路図である。図13において、共用整合回路2は、コンデンサC1,C2、コイルLaで構成される1次回路と、コンデンサC3,C4、コイルLbで構成される2次回路とから成る。この共用整合回路2は狭帯域のバンドパスフィルタを構成している。
特許第2736112号公報
 一般的に、結合係数の高いトランスは、理想トランスを含む等価回路に変換でき、少ない可変リアクタンス素子での周波数可変の整合回路を実現できる。しかし、携帯電話で用いられている1GHz付近の高い周波数では、比透磁率が1付近の材料しか使えないため、強い結合を実現することが困難である。そのため、特許文献1に示されているような多数のリアクタンス素子が必要になる。
 一方、LC素子で構成された、トランスを用いない一般的な整合回路を周波数可変整合回路にすると、例えば図14のような構成となる。図14において可変リアクタンス素子20のリアクタンスを調整することで、整合する周波数を定めることができる。
 図15(A)は給電回路から周波数可変整合回路側を見たインピーダンスについて、周波数スイープした時の軌跡をスミスチャート上に表した図、図15(B)は反射損失の周波数特性を示す図である。図15(A)において、曲線Lは750MHzに整合させた状態での特性、曲線Mは850MHzに整合させた状態での特性、曲線Hは950MHzに整合させた状態での特性である。いずれも周波数スイープ範囲は700MHz~1.0GHzである。図15(B)において、曲線RL(L)は周波数750MHzに整合させた状態、曲線RL(M)は周波数850MHzに整合させた状態、曲線RL(H)は周波数950MHzに整合させた状態における特性をそれぞれ表している。また、BW(L)は750MHzに整合させた状態、BW(M)は850MHzに整合させた状態、BW(H)は950MHzに整合させた状態における整合帯域幅である。
 このように整合周波数を変化させたとき、整合帯域幅が大きく変化する。そのため、広帯域に亘って整合を保ったまま整合周波数を調整することは困難である。
 本発明の目的は、少ない可変リアクタンス素子を用いつつ、広帯域に亘って整合を保ったまま整合周波数を調整できるようにした、インピーダンス変換回路およびそれを備えた通信端末装置を提供することにある。
 本発明のインピーダンス変換回路は、給電回路側の第1端子とアンテナ側の第2端子との間に接続された第1インダクタと、グランド側の第3端子と第2端子との間に接続された第2インダクタとを備え、第1インダクタと第2インダクタとが結合するオートトランス回路と、第1端子に(第1端子と第1インダクタとの接続部に)シャントに接続された容量素子と、アンテナが接続されるアンテナポートと第2端子との間にシリーズに接続された可変リアクタンス素子と、を備えたことを特徴とする。
 上記構成により、少ない可変リアクタンス素子を用いつつ、広帯域に亘って整合を保ったまま整合周波数を調整できるようになる。
 前記容量素子は、第1端子から見たオートトランス回路の並列寄生インダクタンス(成分)とともに並列LC回路を構成し、この並列LC回路は、使用周波数帯の低周波数域で誘導性となり、高周波数域で容量性となることが好ましい。この構成により、オートトランス回路の並列寄生インダクタンス(成分)は整合周波数帯域の高域で効果的に作用し、前記容量素子は整合周波数帯域の低域で効果的に作用し、整合帯域幅が拡大される。
 前記可変リアクタンス素子は、オートトランス回路の直列寄生インダクタンス(成分)およびアンテナポートに接続されるアンテナとともに直列LC回路を構成し、この直列LC回路の共振周波数は使用周波数帯に含まれる(ように共振周波数を制御する)ことが好ましい。この構成により、アンテナの共振周波数が整合周波数帯域の中心に定めることができる。
 前記容量素子は可変容量素子であることが好ましい。この構成により、整合させる周波数帯に応じて可変容量素子の値を変更することで、より広い周波数範囲で広帯域整合特性を保ったまま整合周波数を変化させることができる。
 本発明の通信端末装置は、上記インピーダンス変換回路と、このインピーダンス変換回路の第1端子に接続された給電回路と、アンテナポートに接続されたアンテナとを備える。
 上記構成により、小型のアンテナを用いながらも広帯域の通信に適用可能な通信端末装置が構成できる。
 本発明によれば、素子数の少ない小型のインピーダンス変換回路で、広帯域に亘って給電回路とアンテナとの整合を図ることができる。また、小型のアンテナを用いながらも広帯域の通信に適用可能な通信端末装置が構成できる。
図1(A)は本発明の第1の実施形態に係るインピーダンス変換回路101を備えたアンテナ装置の回路図である。図1(B)は可変リアクタンス素子の構成例を示す回路図である。 図2(A)は、図1に示したインピーダンス変換回路101の給電ポートPfからアンテナ側を見たインピーダンスの軌跡をスミスチャート上に示す図である。図2(B)は給電ポートPfからアンテナ側を見た反射損失の周波数特性を示す図である。 図3(A)はオートトランス回路25の回路図、図3(B)はその等価回路図である。 図4は、図1に示した回路を等価回路で表した回路図である。 図5(A)は図4におけるPu点からアンテナ側を見たインピーダンスZ1の軌跡をスミスチャート上に示す図である。図5(B)はPu点からアンテナ側を見た反射損失RLおよびPa点-Pu点間の挿入損失ILの周波数特性を示す図である。 図6(A)は図4におけるPv点からアンテナ側を見たインピーダンスZ2の軌跡をスミスチャート上に示す図である。図6(B)はPv点からアンテナ側を見た反射損失RLおよびPa点-Pv点間の挿入損失ILの周波数特性を示す図である。 図7(A)は図4における給電ポートPfからアンテナ側を見たインピーダンスZ3の軌跡をスミスチャート上に示す図である。図7(B)は給電ポートPfからアンテナ側を見た反射損失RLおよびPa点-Pf点間の挿入損失ILの周波数特性を示す図である。 図8は、図1に示した回路の特性をシミュレーションにより求めるための回路図である。 図9はシミュレーション結果であり、3つの周波数帯について、給電ポートPfからアンテナ側を見た反射損失およびインピーダンス変換回路101の挿入損失の周波数特性を示す図である。 図10は、第1の実施形態のアンテナ装置を備えた携帯電話端末等の無線通信装置の構成を示す図である。 図11は本発明の第2の実施形態に係るインピーダンス変換回路102を備えたアンテナ装置の回路図である。 図12(A)は図11における給電ポートPfからアンテナ側を見たインピーダンスの軌跡をスミスチャート上に示す図である。図12(B)は給電ポートPfからアンテナ側を見た反射損失の周波数特性を示す図である。 図13は特許文献1に示されている整合回路の回路図である。 図14は、従来のLC素子で構成された、トランスを用いない一般的な整合回路を周波数可変整合回路の例を示す図である。 図15(A)は、図14の給電回路から周波数可変整合回路側を見たインピーダンスを周波数スイープした時の軌跡をスミスチャート上に表した図、図15(B)は反射損失の周波数特性を示す図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。各実施形態は例示であり、異なる実施形態で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。
《第1の実施形態》
 図1(A)は本発明の第1の実施形態に係るインピーダンス変換回路101を備えたアンテナ装置の回路図である。アンテナ装置はインピーダンス変換回路101とアンテナ素子10とで構成され、このアンテナ装置に給電回路30が接続される。
 アンテナ素子10はローバンドでは基本波(1/4波長)モードで共振し、ハイバンドでは高調波(例えば3/4波長)モードで共振する。このアンテナ素子10の給電端にインピーダンス変換回路101が接続される。すなわちインピーダンス変換回路101の給電ポートPfに給電回路30が接続され、アンテナポートPaにアンテナ素子10が接続される。
 インピーダンス変換回路101は、オートトランス回路25、容量素子21および可変リアクタンス素子22を備えている。容量素子21は第1端子P1にシャントに接続されている。可変リアクタンス素子22は、アンテナポートPaとオートトランス回路25の第2端子P2との間にシリーズに接続されている。
 図1(B)は可変リアクタンス素子22の構成例を示す回路図である。この例では、可変リアクタンス素子22は3つの固定キャパシタンスのキャパシタCa,Cb,Ccと3つのスイッチSWa,SWb,SWcを備えている。スイッチSWa,SWb,SWcは例えばMEMS(Micro Electro Mechanical Systems)により構成される。スイッチSWa,SWb,SWcのオン/オフの状態により、可変リアクタンス素子22の2つのポート間のリアクタンスが複数段の値の何れかに定められる。
 仮に、可変リアクタンス素子に可変容量ダイオードを用いると、印加電圧に対するキャパシタンスの非線形性によって、信号に歪みが生じるが、MEMSスイッチを用いれば、その問題は生じない。
 オートトランス回路25は、給電部側に接続される第1端子P1とアンテナ側に接続される第2端子P2との間に接続された第1インダクタL1と、グランドに接続される第3端子P3と第2端子P2との間に接続された第2インダクタL2とを備えている。第1インダクタL1と第2インダクタL2とは結合する。
 図2(A)は、図1に示したインピーダンス変換回路101の給電ポートPfからアンテナ側を見たインピーダンスの軌跡をスミスチャート上に示す図である。図2(B)は給電ポートPfからアンテナ側を見た反射損失(SパラメータのS11)の周波数特性を示す図である。図2(A)において、曲線Lは750MHzに整合させた状態での特性、曲線Mは850MHzに整合させた状態での特性、曲線Hは950MHzに整合させた状態での特性である。いずれも周波数スイープ範囲は700MHz~1.0GHzである。図2(B)において、曲線RL(L)は周波数750MHzに整合させたとき、曲線RL(M)は周波数850MHzに整合させたとき、曲線RL(H)は周波数950MHzに整合させたときにおける特性をそれぞれ表している。この例は、これら3つの周波数に応じて上記可変リアクタンス素子22のリアクタンスを適宜定めた結果である。
 次に、インピーダンス変換回路101の各素子の作用について順に示す。
 図3(A)は上記オートトランス回路25の回路図、図3(B)はその等価回路図である。オートトランス回路25の等価回路は、変圧比n:1の理想トランスIT、1次側に並列接続された寄生成分のインダクタンスLpおよび2次側に直列接続された寄生成分のインダクタンスLsで表される。ここで、第1インダクタL1のインダクタンスをL1、第2インダクタL2のインダクタンスをL2、結合係数をkで表すと、次の関係が成り立つ。
 M=k√(L1*L2)
 Lp=L1+L2+2M
 Ls={(1-k2)*L1*L2}/(L1+L2+2M)
 n=(L1+L2+2M)/(L2+M)
 したがって、結合係数k=1である場合、等価回路ではLsが表れず、Lsによる周波数依存性は現れない。結合係数k<1であると、インダクタンスLsが生じて周波数依存性が現れる。このインダクタンスLsと、図1に示した可変リアクタンス素子22の合成リアクタンスによって、アンテナの共振周波数制御を行う。また、インダクタンスLpは使用周波数帯域の低域で並列接続のインダクタとして作用する。
 図4は、図1に示した回路を等価回路で表した回路図である。図5(A)は図4におけるPu点からアンテナ側を見たインピーダンスZ1の軌跡をスミスチャート上に示す図である。図5(B)はPu点からアンテナ側を見た反射損失(SパラメータのS11)RLおよびPa点-Pu点間の挿入損失(SパラメータのS21)ILの周波数特性を示す図である。図6(A)は図4におけるPv点からアンテナ側を見たインピーダンスZ2の軌跡をスミスチャート上に示す図である。図6(B)はPv点からアンテナ側を見た反射損失RLおよびPa点-Pv点間の挿入損失ILの周波数特性を示す図である。図7(A)は図4における給電ポートPfからアンテナ側を見たインピーダンスZ3の軌跡をスミスチャート上に示す図である。図7(B)は給電ポートPfからアンテナ側を見た反射損失RLおよびPa点-Pf点間の挿入損失ILの周波数特性を示す図である。
 図5、図6、図7において、各マーカーと周波数との関係は次のとおりである。
 m1,m4,m8:850MHz
 m2,m5,m7:810MHz
 m3,m6,m9:890MHz
 上記周波数範囲は850MHzを中心とする周波数帯域である。
 図5(A)(B)に表れているように、可変リアクタンス素子22のリアクタンス、オートトランス回路25の直列寄生インダクタンスLsおよびアンテナ素子10のリアクタンスでLC直列回路が構成され、このLC直列回路の共振周波数は直列寄生インダクタンスLsによって調整できる。図5(A)(B)に示すように、例えば上記周波数帯域に整合させるために、中心周波数850MHzで共振するように、可変リアクタンス素子22のリアクタンスを定める。
 アンテナ素子10のインピーダンスが給電回路30のインピーダンスより低い場合、オートトランス回路25のインピーダンス変換比nは、n>1の関係にある。そのため、図6(A)に表れているように、理想トランスITの手前のPv点からアンテナ側を見たインピーダンスは、理想トランスITのインピーダンス変換作用により、実数部、虚数部共に大きくなる。すなわち、スミスチャート上を右方向へシフトするとともに、インピーダンス軌跡の円が縮小化される。上記インピーダンス変換比nは、上記周波数帯域がスミスチャートの中心付近となるように、(すなわち、マーカーm7,m8,m9の位置がスミスチャートの中心の周囲に分布させるように、)定める。
 容量素子21は並列寄生インダクタンスLpに対して並列接続されるので、容量素子21とインダクタンスLpとで並列LC回路が構成され、この並列LC回路は、整合させる周波数帯の低周波数域で誘導性となり、高周波数域で容量性となる。すなわち、インダクタンスLpの作用で、インピーダンスの虚数部が正である周波数範囲では定コンダクタンス円に沿って右回りに移動し、容量素子21の作用で、インピーダンスの虚数部が負である周波数範囲では定コンダクタンス円に沿って左回りに移動する。この作用により、図7(A)に表れているように、インピーダンス軌跡の円がさらに縮小化される。その結果、図7(B)に表れているように、広い周波数帯域に亘ってインピーダンス整合される。
 以上に示したように、マッチングの深さは、周波数特性を持たない理想トランスITによって主に決定される。そして、並列寄生インダクタンスLpと、これに並列接続された容量素子21とによって帯域幅が拡大される。
 図5~図7では、850MHz帯について示したが、例えば750MHz帯(710MHz~790MHz)に整合させる場合や950MHz帯(910MHz~990MHz)に整合させる場合のように、周波数帯に応じて可変リアクタンス素子22のリアクタンスを定める。更に、ハイバンドについても同様に、周波数帯に応じて可変リアクタンス素子22のリアクタンスを定める。これらのリアクタンスの変更は連続的であってもよいし、段階的であってもよい。
 上述のとおり、主に理想トランスでマッチングの深さを確保できるので、並列寄生インダクタンスLpの値は大きくてもよい。そのため、帯域幅を拡大するために設ける容量素子21のキャパシタンスは小さな値にできる。そのことにより、並列寄生インダクタンスLpおよび容量素子21の周波数変化に対するインピーダンス変化は小さく、整合する帯域幅を広い周波数帯域に亘って確保できる。すなわち、広い帯域幅を実現したまま周波数可変できる。
 上述のとおり、オートトランス回路25による並列寄生インダクタンスLpの値LpはL1+L2+2Mで表され、一般的なトランスに比べ大きな値を作りやすく、高い透磁率の材料を使用できない高周波領域で有利である。
 図8は、図1に示した回路の特性をシミュレーションにより求めるための回路図である。ここでは、アンテナ素子10を直列共振回路で表している。図9はシミュレーション結果であり、3つの周波数帯について、給電ポートPfからアンテナ側を見た反射損失(SパラメータのS11)および挿入損失(SパラメータのS21)の周波数特性を示す図である。図9において、曲線RL(L),IL(L)は750MHz帯に整合させたときの反射損失およびインピーダンス変換回路101の挿入損失である。曲線RL(M),IL(M)は850MHz帯に整合させたときの反射損失および挿入損失である。曲線RL(H),IL(H)は950MHz帯に整合させたときの反射損失および挿入損失である。
 ここで図8中の各素子の値は次のとおりである。
 R30:50Ω
 C21: 5.4pF
 L1: 2.1nH
 L2: 2.4nH
 k: 0.5
 C22: 10pF,3.9pF,2.3pF
 L10: 6.7nH
 C10: 5.4pF
 R10: 6Ω
 このように、整合させる周波数帯に応じて可変リアクタンス素子22の値を切り替えることで、広帯域整合特性を保ったまま整合周波数を変化させることができる。
 図10は、上記アンテナ装置を備えた携帯電話端末等の無線通信装置の構成を示す図である。この図10では、無線通信装置の筐体内の主要部についてのみ表している。筐体内にアンテナ素子10および回路基板が設けられていて、回路基板にはグランド導体GNDが形成されていて、インピーダンス変換回路101および給電回路30が設けられている。ローバンドにおいてアンテナ素子10の長い部分で1/4波長共振する。ハイバンドにおいては、アンテナ素子10の短い部分で1/4波長共振、またはアンテナ素子10の全体で3/4波長共振する。
 なお、アンテナ素子10としてはこのようなT分岐型のアンテナ素子以外に、モノポールアンテナや逆F型アンテナであってもよい。いずれの場合も、一般的に、基本波モードでローバンドに対応させ、高調波モードでハイバンドに対応させればよい。
《第2の実施形態》
 図11は本発明の第2の実施形態に係るインピーダンス変換回路102を備えたアンテナ装置の回路図である。アンテナ装置はインピーダンス変換回路102とアンテナ素子10とで構成され、このアンテナ装置に給電回路30が接続される。
 第1の実施形態で図1に示した回路と異なり、容量素子21は可変容量素子である。容量素子21は図4に示したように、オートトランス回路25の等価回路上の並列寄生インダクタンスLpに対して並列接続される容量素子21を変化させることができるので、整合すべき周波数帯に応じて、容量素子21のキャパシタンスを最適に変更できる。
 図12(A)は図11における給電ポートPfからアンテナ側を見たインピーダンスの軌跡をスミスチャート上に示す図である。図12(B)は給電ポートPfからアンテナ側を見た反射損失(SパラメータのS11)RLの周波数特性を示す図である。図12(A)において、曲線Lは750MHzに整合させた状態での特性、曲線Mは850MHzに整合させた状態での特性、曲線Hは950MHzに整合させた状態での特性である。いずれも周波数スイープ範囲は700MHz~1.0GHzである。図12(B)において、曲線RL(L)は750MHz帯に整合させたときの特性、曲線RL(M)は850MHz帯に整合させたときの特性、曲線RL(H)は950MHz帯に整合させたときの特性である。また、BW(L)は750MHzに整合させた状態、BW(M)は850MHzに整合させた状態、BW(H)は950MHzに整合させた状態における整合帯域幅である。
 このように、整合させる周波数帯に応じて容量素子21の値を変更することで、より広い周波数範囲で広帯域整合特性を保ったまま整合周波数を変化させることができる。
IT…理想トランス
L1…第1インダクタ
L2…第2インダクタ
Lp…並列寄生インダクタンス
Ls…直列寄生インダクタンス
P1…第1端子
P2…第2端子
P3…第3端子
Pa…アンテナポート
Pf…給電ポート
2…共用整合回路
10…アンテナ素子
21…容量素子
22…可変リアクタンス素子
25…オートトランス回路
30…給電回路
101,102…インピーダンス変換回路

Claims (5)

  1.  給電回路側の第1端子とアンテナ側の第2端子との間に接続された第1インダクタと、グランド側の第3端子と前記第2端子との間に接続された第2インダクタとを備え、第1インダクタと第2インダクタとが結合するオートトランス回路と、
     前記第1端子にシャントに接続された容量素子と、
     アンテナが接続されるアンテナポートと前記第2端子との間にシリーズに接続された可変リアクタンス素子と、
    を備えたことを特徴とするインピーダンス変換回路。
  2.  前記容量素子は、前記第1端子から見た前記オートトランス回路の並列寄生インダクタンスとともに並列LC回路を構成し、この並列LC回路は、使用周波数帯の低周波数域で誘導性となり、高周波数域で容量性となる、請求項1に記載のインピーダンス変換回路。
  3.  前記可変リアクタンス素子は、前記オートトランス回路の直列寄生インダクタンスおよび前記アンテナポートに接続されるアンテナとともに直列LC回路を構成し、この直列LC回路の共振周波数は使用周波数帯に含まれる、請求項1または2に記載のインピーダンス変換回路。
  4.  前記容量素子は可変容量素子である、請求項1~3のいずれかに記載のインピーダンス変換回路。
  5.  請求項1~4のいずれかに記載のインピーダンス変換回路と、当該インピーダンス変換回路の第1端子に接続された給電回路と、前記アンテナポートに接続されたアンテナとを備えた、通信端末装置。
PCT/JP2014/074618 2013-11-20 2014-09-18 インピーダンス変換回路および通信端末装置 WO2015076008A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-240210 2013-11-20
JP2013240210 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076008A1 true WO2015076008A1 (ja) 2015-05-28

Family

ID=53179279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074618 WO2015076008A1 (ja) 2013-11-20 2014-09-18 インピーダンス変換回路および通信端末装置

Country Status (1)

Country Link
WO (1) WO2015076008A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410534A4 (en) * 2016-01-28 2019-01-23 Fujitsu Limited ANTENNA DEVICE
US11095265B2 (en) 2017-10-24 2021-08-17 Murata Manufacturing Co., Ltd. Matching circuit and communication device
CN114865256A (zh) * 2022-07-11 2022-08-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种多层介质类带线结构超宽带集总参数环行器/隔离器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315039A (en) * 1976-07-27 1978-02-10 Susumu Oone Device for matching amateur radio antenna
JPH02261209A (ja) * 1989-03-31 1990-10-24 Japan Radio Co Ltd 自動整合方法
JP2003526901A (ja) * 1999-02-25 2003-09-09 フォームファクター,インコーポレイテッド 集積回路の相互接続システム
JP2010510706A (ja) * 2006-11-17 2010-04-02 ノキア コーポレイション 2つの素子が共通フィードを共有することを可能にする装置
WO2012153691A1 (ja) * 2011-05-09 2012-11-15 株式会社村田製作所 インピーダンス変換回路および通信端末装置
WO2012153692A1 (ja) * 2011-05-09 2012-11-15 株式会社村田製作所 インピーダンス整合切替回路、アンテナ装置、高周波電力増幅装置および通信端末装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315039A (en) * 1976-07-27 1978-02-10 Susumu Oone Device for matching amateur radio antenna
JPH02261209A (ja) * 1989-03-31 1990-10-24 Japan Radio Co Ltd 自動整合方法
JP2003526901A (ja) * 1999-02-25 2003-09-09 フォームファクター,インコーポレイテッド 集積回路の相互接続システム
JP2010510706A (ja) * 2006-11-17 2010-04-02 ノキア コーポレイション 2つの素子が共通フィードを共有することを可能にする装置
WO2012153691A1 (ja) * 2011-05-09 2012-11-15 株式会社村田製作所 インピーダンス変換回路および通信端末装置
WO2012153692A1 (ja) * 2011-05-09 2012-11-15 株式会社村田製作所 インピーダンス整合切替回路、アンテナ装置、高周波電力増幅装置および通信端末装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3410534A4 (en) * 2016-01-28 2019-01-23 Fujitsu Limited ANTENNA DEVICE
US10587045B2 (en) 2016-01-28 2020-03-10 Fujitsu Limited Antenna device
US11095265B2 (en) 2017-10-24 2021-08-17 Murata Manufacturing Co., Ltd. Matching circuit and communication device
CN114865256A (zh) * 2022-07-11 2022-08-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种多层介质类带线结构超宽带集总参数环行器/隔离器
CN114865256B (zh) * 2022-07-11 2022-11-01 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种多层介质类带线结构超宽带集总参数环行器/隔离器

Similar Documents

Publication Publication Date Title
US7242364B2 (en) Dual-resonant antenna
US9590290B2 (en) Multiple band chassis antenna
JP4191677B2 (ja) アンテナ装置
US8473017B2 (en) Adjustable antenna and methods
EP2250702B1 (en) Adjustable multiband antenna
TWI505566B (zh) 寬頻天線及其相關射頻裝置
JP6075510B2 (ja) アンテナ整合回路、アンテナ整合モジュール、アンテナ装置および無線通信装置
US8421702B2 (en) Multi-layer reactively loaded isolated magnetic dipole antenna
WO2016154851A1 (zh) 一种终端
KR101482476B1 (ko) 안테나 장치
TWI539676B (zh) 通訊裝置
CN104377444B (zh) 一种采用可调电容进行阻抗匹配的移动终端宽带天线
WO2012099085A1 (ja) 周波数安定化回路、アンテナ装置および通信端末装置
CN205452542U (zh) 可调谐的天线结构
WO2006007161A2 (en) Multi-frequency conductive-strip antenna system
EP3709441B1 (en) Multi-frequency antenna and mobile terminal
WO2009156564A1 (en) An antenna arrangement
WO2015089841A1 (zh) 一种天线及终端
US7123198B2 (en) Electrically small wideband antenna
CN104577340B (zh) 多波段可调天线和无线通信装置
WO2015076008A1 (ja) インピーダンス変換回路および通信端末装置
TW201445899A (zh) 射頻匹配電路及無線通訊裝置
US20130285875A1 (en) Frequency-variable circuit and multi-band antenna device
US6795027B2 (en) Antenna arrangement
TWI518997B (zh) 阻抗匹配電路與可調天線裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP