WO2015075827A1 - Hologram reconstruction device and hologram reconstruction method - Google Patents

Hologram reconstruction device and hologram reconstruction method Download PDF

Info

Publication number
WO2015075827A1
WO2015075827A1 PCT/JP2013/081579 JP2013081579W WO2015075827A1 WO 2015075827 A1 WO2015075827 A1 WO 2015075827A1 JP 2013081579 W JP2013081579 W JP 2013081579W WO 2015075827 A1 WO2015075827 A1 WO 2015075827A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
incident angle
incident
hologram
light
Prior art date
Application number
PCT/JP2013/081579
Other languages
French (fr)
Japanese (ja)
Inventor
愼介 尾上
山田 健一郎
岳 緒方
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2013/081579 priority Critical patent/WO2015075827A1/en
Publication of WO2015075827A1 publication Critical patent/WO2015075827A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H1/265Angle multiplexing; Multichannel holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/083Disposition or mounting of heads or light sources relatively to record carriers relative to record carriers storing information in the form of optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms

Definitions

  • the present invention relates to a hologram reproducing apparatus and a hologram reproducing method for reproducing using holography.
  • Hologram recording technology is a method in which signal light having page data information two-dimensionally modulated by a spatial light modulator is superimposed on reference light inside the recording medium, and the interference fringe pattern generated at that time is placed in the recording medium. This is a technique for recording information on a recording medium by causing refractive index modulation.
  • hologram recording technology One major advantage of hologram recording technology is that it can record large amounts of data. However, when an increase in recording capacity is pursued, it is necessary to improve the accuracy of positioning control related to the position and angle at which the signal light and reference light are irradiated more than before.
  • Patent Document 1 can search for a relative angle between signal light and reference light, but has two major problems. The first is high-speed playback, and the second is playback performance.
  • Patent Document 1 is characterized in that control is performed to an angle shifted by a minute amount from the relative angle at which the reproduction signal is best in order to generate a reference light angle control signal. For this reason, in principle, it is impossible to reproduce at the optimum angle, and it is obvious that the best reproduction signal cannot be obtained.
  • an object of the present invention is to provide a hologram reproducing apparatus and a hologram reproducing method capable of detecting an angle error signal of a reference light angle, which can realize high-speed reproduction and obtain the best reproduction signal.
  • information recorded on the hologram recording medium can be suitably reproduced.
  • FIG. 1 is a block diagram showing a hologram recording / reproducing apparatus of Example 1.
  • FIG. It is a figure explaining the recording principle of a hologram recording / reproducing apparatus. It is a figure explaining the reproduction
  • FIG. 3 is a block diagram illustrating a first incident angle control circuit according to the first embodiment.
  • FIG. 6 is a diagram illustrating a scanning direction of reference light in page seek in a book according to the first exemplary embodiment.
  • FIG. 6 is a diagram illustrating a scanning direction of reference light in page seek in a book according to the first exemplary embodiment.
  • AES angle error signal
  • FIG. 4 is a schematic diagram of signal waveforms at various parts in the page seek according to the first embodiment.
  • FIG. 6 is a block diagram showing a hologram recording / reproducing apparatus of Example 2. It is a figure for demonstrating the effect of Example 2.
  • FIG. It is a figure explaining the definition of the incident angle in this specification. It is a figure explaining the definition of the orthogonal incident angle in this specification. It is a figure explaining the definition of the orthogonal incident angle in this specification.
  • FIG. 1 is a block diagram showing a recording / reproducing apparatus for a holographic recording medium that records and / or reproduces digital information using holography.
  • the hologram recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the hologram recording / reproducing apparatus 10 receives an information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the hologram recording / reproducing device 10 transmits the reproduced information signal to the external control device 91 by the input / output control circuit 90.
  • the hologram recording medium 1 in this embodiment has a disk shape and has an angle detection mark for detecting the rotation angle of the hologram recording medium.
  • the hologram recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, an angle error detection optical system 30, a rotation angle detection sensor 14, a radial position detection sensor 15, a spindle motor 50, and a radial direction conveyance unit. 51 is provided.
  • the spindle motor 50 has a medium attaching / detaching portion (not shown) that allows the hologram recording medium 1 to be attached to and detached from the rotation axis.
  • the hologram recording medium 1 is configured to be rotatable by the spindle motor 50.
  • the hologram recording medium 1 is configured to be movable in the radial direction by the radial transport unit 51 with reference to the position of the pickup 11.
  • the position where the signal light and / or reference light is irradiated is determined by the position of the pickup 11 described later, and is a position fixed to the apparatus.
  • the spindle motor 50 and the radial direction conveyance unit 51 function as means for changing the position on the hologram recording medium 1 irradiated with the signal light and / or the reference light.
  • the rotation angle detection sensor 14 detects the rotation angle of the hologram recording medium 1 using an angle detection mark provided on the hologram recording medium 1.
  • the output signal of the rotation angle detection sensor 14 is input to the spindle control circuit 40.
  • the spindle control circuit 40 When changing the rotation angle irradiated with the signal light and the reference light, the spindle control circuit 40 generates a drive signal based on the output signal of the rotation angle detection sensor 14 and the command signal from the controller 80, and the spindle drive circuit
  • the spindle motor 50 is driven via 41. Thereby, the rotation angle of the hologram recording medium 1 can be controlled. This control is called spindle control.
  • a scale 16 having a predetermined pattern is fixed to the movable part of the radial direction transport part 51.
  • the radial position detection sensor 15 detects the position of the movable part of the radial direction transport part 51 using the scale 16.
  • the radial direction transport control circuit 42 When the radial position irradiated with the signal light and the reference light is changed, the radial direction transport control circuit 42 generates a drive signal based on the output signal of the radial position detection sensor 15 and the command signal from the controller 80, and the radial direction
  • the radial conveyance unit 51 is driven via the conveyance drive circuit 43. Thereby, the hologram recording medium 1 is conveyed in the radial direction. Thereby, the radial position irradiated with the signal light and the reference light can be controlled. This control is called radial position control.
  • the spindle control circuit 40 and the radial direction conveyance control circuit 42 return information to the controller 80 as to whether or not each drive is completed.
  • the pickup 11 is used when information is recorded on the hologram recording medium 1 and when information recorded on the hologram recording medium 1 is reproduced.
  • the hologram recording medium 1 is irradiated with reference light and signal light, and digital information is recorded on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 80 to a spatial light modulator (described later) in the pickup 11 via the signal generation circuit 81, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the hologram recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the hologram recording medium 1 in the direction opposite to that during recording. To do. Diffracted light reproduced by the reproduction reference light is detected by a photodetector 226 described later in the pickup 11, and a signal is reproduced by a signal processing circuit 82.
  • the angle at which the reference light enters the hologram recording medium 1 is controlled by the first incident angle control circuit 21, the second incident angle control circuit 24, and the orthogonal incident angle control circuit 27.
  • incident angle and “orthogonal incident angle” are defined in this specification with respect to the angle at which the reference light is incident on the hologram recording medium 1.
  • orthogonal incident angle are defined in this specification with respect to the angle at which the reference light is incident on the hologram recording medium 1.
  • FIG. 17A is a diagram showing the wave number vector Ks of the signal light, the wave number vector Kr of the reference light, and the medium surface of the hologram recording medium 1 during recording.
  • the incident surface of the signal light is defined as a plane including the wave vector Ks of the signal light and the normal vector of the hologram recording medium 1.
  • FIG. 17 (a) shows the state.
  • the angle of the wave number vector Kr of the reference light can be changed in the incident surface of the signal light. This change in the angle of the reference light on the incident surface is referred to as “change in the incident angle” in this specification.
  • FIG. 17B and FIG. 17C are diagrams for explaining it.
  • FIG. 17B shows a state in which the orthogonal incident angle is changed from the state of FIG.
  • FIG. 17C shows a state when FIG. 17B is viewed from the side.
  • the wave number vector Kr of the reference light is not on the incident surface of the signal light but on the plane A of FIG. 17B. That is, “changing the orthogonal angle” means changing the angle at which the reference light is incident on the hologram recording medium 1 in a direction perpendicular to the incident surface of the signal light.
  • the direction in which the incident angle is changed (that is, the direction included in the plane A) and the direction in which the orthogonal incident angle is changed (the direction of the arrow in FIG. 17C) are Must be orthogonal.
  • the angle error signal generation circuit 31 generates and outputs an angle error signal (AES) described later using output signals of the photodetector 234 and the photodetector 236 described later in the angle error detection optical system 30.
  • the angle error signal (AES) is a signal indicating a deviation (error) from the optimum angle with respect to the incident angle.
  • the incident angle target value setting circuit 32 receives the instruction from the controller 80 and the angle error signal (AES) output from the angle error signal generation circuit 31, and sets the incident angle target value Tgt ⁇ for use in control. Output as a signal. Further, the controller 80 outputs the target value Tgt ⁇ of the orthogonal incident angle.
  • AES angle error signal
  • the first incident angle signal generation circuit 20 generates a signal used for controlling the incident angle of the reference light from the output signal of the pickup 11.
  • the first incident angle control circuit 21 generates a drive signal using the output signal of the first incident angle signal generation circuit 20 and the output signal Tgt ⁇ of the incident angle target value setting circuit 32.
  • the first incident angle drive circuit 22 drives an actuator 221 described later in the pickup 11 using a drive signal from the first incident angle control circuit 21.
  • the second incident angle signal generation circuit 23 generates a signal used for controlling the incident angle of the reference light from the output signal of the reproduction reference light optical system 12.
  • the second incident angle control circuit 24 generates a drive signal using the output signal of the second incident angle signal generation circuit 23 and the output signal Tgt ⁇ of the incident angle target value setting circuit 32.
  • the second incident angle drive circuit 25 drives an actuator 224 (described later) in the reproduction reference light optical system 12 using a drive signal from the second incident angle control circuit 24.
  • the orthogonal incident angle signal generation circuit 26 generates a signal to be used for controlling the orthogonal incident angle of the reference light from the output signal of the pickup 11.
  • the orthogonal incident angle control circuit 27 generates a drive signal using the output signal of the orthogonal incident angle signal generation circuit 26 and the command value Tgt ⁇ of the orthogonal incident angle from the controller 80.
  • the orthogonal incident angle drive circuit 28 drives an actuator 219 (described later) in the pickup 11 using a drive signal from the orthogonal incident angle control circuit 27. By driving the actuator 219 in this way, the orthogonal incident angle of the reference light incident on the hologram recording medium 1 is controlled.
  • the reference light passes through the same plane as the signal light incident surface. It will be in the state shown by 17 (a).
  • the angle instructed by the controller 80 to the orthogonal incident angle control circuit 27 is other than the reference position, the reference light is inclined by a predetermined amount in the direction orthogonal to the incident surface of the signal light. The state shown in (b) is obtained.
  • Adjustment of the irradiation time of the reference light and the signal light with which the hologram recording medium 1 is irradiated is performed by the controller 80 transmitting a signal to the shutter control circuit 84, and the shutter control circuit 84 using the signal transmitted from the controller 80. Control is performed to open and close.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the hologram recording medium 1.
  • Pre-curing is a pre-process for irradiating a predetermined light beam in advance before irradiating the reference light and signal light to the desired position when recording information at the desired position in the hologram recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the hologram recording medium 1 so that additional recording cannot be performed at the desired position.
  • the light beam used for pre-cure and post-cure is preferably incoherent light, that is, light with low coherence.
  • the light source drive circuit 83 supplies a predetermined light source drive current to the light sources in the pickup 11 and the cure optical system 13 in accordance with an instruction from the controller 80.
  • the light source of the light source in the pickup 11 and the cure optical system 13 emits a light beam with a predetermined light amount.
  • the pickup 11, the reproduction reference light optical system 12, the cure optical system 13, and the angle error detection optical system 30 may be simplified by combining some optical system configurations or all optical system configurations. .
  • FIG. 2 shows a recording principle in an example of a basic optical system configuration of the pickup 11, the reproducing reference light optical system 12 and the angle error detection optical system 30 in the hologram recording / reproducing apparatus 10.
  • the reproduction reference light optical system 12 includes an actuator 224 and a galvanometer mirror 225.
  • the light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203.
  • the optical element 204 composed of, for example, a half-wave plate or the like, adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio.
  • the light beam enters a PBS (Polarization Beam Splitter) prism 205.
  • the light beam that has passed through the PBS prism 205 functions as signal light 206, and after the light beam diameter is expanded by the beam expander 208, the light beam passes through the phase mask 209, the relay lens 210, and the PBS prism 211 and passes through the spatial light modulator 212. Is incident on.
  • the signal light 206 to which information is added by the spatial light modulator 212 is reflected by the PBS prism 211 and propagates through the relay lens 213 and the spatial filter 214. Thereafter, the signal light is condensed on the hologram recording medium 1 by the objective lens 215.
  • the light beam reflected from the PBS prism 205 is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 216 and then enters the Wollaston prism 230.
  • the Wollaston prism 230 is an optical element that branches into two beams whose propagation directions differ by an angle ⁇ according to the polarization of the incident light beam.
  • the polarization direction conversion element 216 passes only s-polarized light. Thereby, the light beam at the time of recording goes straight without polarization state or branching of the light beam occurring in the polarization direction conversion element 216 and the Wollaston prism 230.
  • the light beam that has passed through the Wollaston prism 230 is incident on the galvanometer mirror 220 via the mirror 217 and the galvanometer mirror 218.
  • the galvanometer mirror 220 can adjust the angle in the paper surface by the actuator 221, and the incident angle of the reference beam 207 incident on the hologram recording medium 1 after passing through the lens 222 and the lens 223 can be set to a desired angle.
  • an element that converts the wavefront of the reference beam 207 may be used instead of the galvanometer mirror.
  • the galvanometer mirror 218 can adjust the angle in the direction perpendicular to the paper surface by the actuator 219, and sets the orthogonal incident angle of the reference light incident on the hologram recording medium 1 after passing through the lens 222 and the lens 223 to a desired angle. Can do.
  • the signal light 206 and the reference light 207 are incident on the hologram recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the hologram recording medium 1 and this pattern is written to the hologram recording medium 1.
  • an interference fringe pattern is formed in the hologram recording medium 1 and this pattern is written to the hologram recording medium 1.
  • the incident angle of the reference light incident on the hologram recording medium 1 can be changed by the galvanometer mirror 220, recording by angle multiplexing is possible.
  • holograms corresponding to each incident angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. To do.
  • FIG. 3 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11, the reproduction reference light optical system 12, and the angle error detection optical system 30 in the hologram recording / reproduction apparatus 10.
  • the polarization direction conversion element 216 converts the incident S-polarized light into a polarized light component composed of P-polarized light and S-polarized light.
  • the Wollaston prism 230 is an optical element that branches into two beams whose propagation directions differ by an angle ⁇ according to the polarization of the incident light beam.
  • the reference light 207 transmitted through the Wollaston prism 230 is a light beam in two propagation directions having different polarizations.
  • the S-polarized light beam is referred to as reference light
  • the P-polarized light beam is referred to as a control light beam.
  • the reference light travels straight through the Wollaston prism 230.
  • the two light beams transmitted through the Wollaston prism 230 are incident on the hologram recording medium 1 via the galvanometer mirror 218 and the galvanometer mirror 220 in the same manner as in recording.
  • the reference light and the control light beam are incident on the recording area in the hologram recording medium 1, two diffracted lights corresponding to the incident angle are generated in the direction of the lens 231. These diffracted lights pass through the lens 231 and enter the PBS prism 232.
  • the diffracted light generated in the hologram recording medium 1 is the same polarization as the incident polarized light
  • the diffracted light generated from the reference light reflects the PBS prism 232
  • the diffracted light generated from the control light beam is the PBS prism. 232 is transmitted.
  • the respective diffracted lights enter the light receiving portions of the photodetector 234 and the photodetector 236 through the detection lens 233 and the detection lens 235.
  • the output signal of the photodetector 234 and the output signal of the photodetector 236 are input to the angle error signal generation circuit 31.
  • the angle error signal (AES) can be expressed as follows.
  • Signals S1 and S2 are sum signals obtained by detecting the total amount of each diffracted light.
  • the angle error signal generation circuit 31 performs the calculation of (Equation 1) and outputs an angle error signal (AES).
  • the reference beam 207 reflected from the galvanometer mirror 220 is incident on the hologram recording medium 1, and the light beam transmitted through the hologram recording medium 1 is reflected by the galvanometer mirror 225 whose angle can be adjusted by the actuator 224. A reference beam is generated.
  • the diffracted light reproduced by the reproduction reference light propagates through the objective lens 215, the relay lens 213, and the spatial filter 214. Thereafter, the reproduced diffracted light passes through the PBS prism 211 and enters the photodetector 226, and the signal recorded in the hologram recording medium 1 can be reproduced.
  • an image sensor such as a CMOS image sensor or a CCD image sensor can be used as the photodetector 226.
  • any element may be used as long as page data can be reproduced.
  • the first incident angle signal generation circuit 20 uses the output signal of the angle detection sensor (not shown) provided in the actuator 221 to finally generate the reference light 207 reflected from the galvanometer mirror 220.
  • a signal AS1 indicating the incident angle when entering the medium is generated.
  • the second incident angle signal generation circuit 23 uses the output signal of the angle detection sensor (not shown) provided in the actuator 224 to reproduce the galvano mirror 225.
  • a signal AS2 indicating an incident angle when the reference light for use finally enters the medium is generated.
  • the orthogonal incident angle signal generation circuit 26 generates a signal indicating the orthogonal incident angle of the reference light reflected from the galvanometer mirror 218 using an output signal of an angle detection sensor (not shown) provided in the actuator 219, and performs orthogonal incidence. Generated as a signal for use in angle control.
  • an optical encoder can be used as the angle detection sensor provided in the actuator 221, the actuator 224, and the actuator 219.
  • FIG. 7 shows a signal S1 obtained by the photodetector 234, a signal S2 obtained by the photodetector 236, and a reproduction signal when the incident angle of the reference beam 207 to the hologram recording medium 1 is changed by rotating the galvanometer mirror 220.
  • the signal intensity is shown. Each signal intensity is normalized with the maximum value.
  • the signal S1 and the signal S2 are shifted by an angle ⁇ with respect to the incident angle of the reference beam 207 with respect to the hologram recording medium 1. This is because two light beams having different angles are generated by the Wollaston prism 230 and separated and detected.
  • FIG. 8 shows the angular differential signal AES of the present invention calculated from the signals S1 and S2 of FIG. It can be seen from FIG. 8 that the angle P1 (or P2, P3) at which the reproduction signal is maximum is shifted from the angle Z1 (or Z2, Z3) (the angle at which zero crossing is performed) at which the angle error signal is zero. Note that the amount of angular deviation between P1 and Z1 (or P2 and Z2, P3 and Z3) is ⁇ / 2 because the angular difference between the signals S1 and S2 shown in FIG. 7 is ⁇ .
  • the configuration of the first incident angle control circuit 21 of the present embodiment will be described with reference to FIG.
  • the first incident angle control circuit 21 includes a subtractor 2101, a servo compensator 2102, an output control switch 2103, and a static determination circuit 2104.
  • the first incident angle control circuit 21 receives the output signal AS1 of the first incident angle signal generation circuit 20 and the target value Tgt ⁇ of the incident angle output from the incident angle target value setting circuit 32, and the reference beam 207 is a hologram.
  • the angle of the galvanometer mirror 220 is controlled so that the incident angle when entering the recording medium 1 becomes Tgt ⁇ .
  • this control is referred to as first incident angle control.
  • the AS1 signal is a signal indicating an incident angle when the reference light 207 reflected by the galvano mirror 220 finally enters the medium.
  • the subtractor 2101 subtracts the AS1 signal and the Tgt ⁇ signal and outputs a value of (AS1 ⁇ Tgt ⁇ ).
  • the servo compensator 2102 performs gain and phase compensation on the output signal of the subtractor 2101, and outputs a drive signal for controlling the angle of the galvanometer mirror 220.
  • the subtractor 2101 and the servo compensator 2102 constitute a feedback control system for controlling the angle of the galvanometer mirror 220.
  • the target value of the feedback control system is Tgt ⁇ , and control is performed so that the angle of the galvano mirror 220 becomes Tgt ⁇ .
  • the position information fed back is the AS1 signal.
  • the output control switch 2103 receives the output signal of the servo compensator 2102 and switches whether to output the output signal of the servo compensator 2102 according to the control signal G1ON from the controller 80.
  • the output control switch 2103 selects the terminal a and outputs the output signal of the servo compensator 2102 as the GD1 signal.
  • the output control switch 2103 selects the terminal b, outputs the reference potential as the GD1 signal, and does not output the servo compensator 2102 output signal.
  • the G1ON signal is a signal for instructing on / off of the first incident angle control.
  • the output control switch 2103 functions as a switch for switching on / off the first incident angle control.
  • the GD1 signal output from the output control switch 2103 is amplified by the first incident angle drive circuit 22 and becomes a drive signal for controlling the actuator 221 that is driven integrally with the galvanometer mirror 220.
  • the static determination circuit 2104 receives the output signal of the subtractor 2101 and determines whether the incident angle when the reference light 207 reflected from the galvano mirror 220 is finally incident on the medium is a value near the target value Tgt ⁇ . The determination result is output as a G1OK signal. It is assumed that the G1OK signal becomes High when the incident angle when the reference light 207 reflected by the galvanometer mirror 220 finally enters the medium is a value in the vicinity of the target value Tgt ⁇ .
  • the static determination circuit 2104 is, for example, a circuit that measures an elapsed time after the absolute value of the output signal of the subtractor 2101 becomes equal to or less than a predetermined threshold, and makes a determination when the measured time continues for a predetermined time or longer.
  • the G1OK signal that is the determination result is output to the controller 80. Therefore, the controller 80 can determine whether or not the incident angle when the reference light 207 reflected from the galvano mirror 220 is finally incident on the medium is a value in the vicinity of the target value Tgt ⁇ by the G1OK signal. That is, the static determination circuit 2104 functions as a circuit that determines the convergence of the first incident angle control.
  • the configuration of the second incident angle control circuit 24 is the same as the configuration of the first incident angle control circuit 21.
  • the AS1 signal, G1ON signal, GD1 signal, and G1OK signal in the first incident angle control circuit 21 are referred to as the AS2 signal, G2ON signal, GD2 signal, and G2OK signal in the second incident angle control circuit 24, respectively.
  • the control by the control system configured by the second incident angle control circuit 24 is referred to as second incident angle control.
  • the configuration of the orthogonal incident angle control circuit 27 is the same as that of the first incident angle control circuit 21.
  • FIG. 4 shows a flowchart of recording and reproduction in the hologram recording / reproducing apparatus 10.
  • processing relating to recording / reproduction using holography in particular will be described.
  • a process from when the hologram recording medium 1 is inserted into the hologram recording / reproducing apparatus 10 until preparation for recording or reproduction is completed is referred to as a setup process.
  • the process of recording information on the hologram recording medium 1 from the ready state is called a recording process
  • the process of reproducing information recorded on the hologram recording medium 1 from the ready state is called a playback process.
  • FIG. 4 (a) shows a flowchart of the setup process
  • FIG. 4 (b) shows a flowchart of the recording process
  • FIG. 4 (c) shows a flowchart of the reproduction process.
  • the hologram recording / reproducing apparatus 10 determines whether the inserted medium is a medium for recording or reproducing digital information using holography, for example.
  • the medium is determined (step S402).
  • the hologram recording / reproducing apparatus 10 reads control data provided on the hologram recording medium 1 (step S403). For example, information on the hologram recording medium 1 and information on various setting conditions at the time of recording and reproduction are obtained.
  • the hologram recording / reproducing apparatus 10 After reading the control data, the hologram recording / reproducing apparatus 10 performs various adjustments according to the control data and learning processing related to the pickup 11 (step S404). Thereby, the hologram recording / reproducing apparatus 10 completes preparation for recording or reproduction, and ends the setup process (step S405).
  • the hologram recording / reproducing device 10 receives the recording data from the external control device 91 (step S412), and the signal generation circuit 81 generates two-dimensional data corresponding to the data.
  • the light is sent to the spatial light modulator 212 in the pickup 11.
  • the holographic recording / reproducing apparatus 10 learns for various recordings such as optimization of the power of the light source 201 and optimization of the exposure time by the shutter 203 so that high quality information can be recorded on the holographic recording medium 1. Processing is performed in advance (step S413).
  • the hologram recording / reproducing apparatus 10 controls the spindle motor 50 and the radial transport unit 51 using the spindle control circuit 40 and the radial transport control circuit 42.
  • the hologram recording medium 1 is positioned so that the light beam irradiated from the pickup 11 and the cure optical system 13 is irradiated to a predetermined position of the hologram recording medium 1.
  • the address information is reproduced, and it is confirmed whether the irradiation position of the light beam is positioned at a position corresponding to the address information.
  • the spindle control circuit 40 and the radial direction conveyance control circuit 42 are used again to calculate the spindle. The operation of controlling and positioning the motor 50 and the radial conveyance unit 51 is repeated.
  • the hologram recording / reproducing apparatus 10 performs a data recording process for recording data to be recorded as a hologram on the hologram recording medium 1 (step S415).
  • a data recording process for recording data to be recorded as a hologram on the hologram recording medium 1
  • the angle multiplexing method a reference is made to the same area as the hologram stored in the hologram recording medium.
  • the light irradiation angle is changed by a predetermined angle, and a hologram different from the already recorded hologram is stored to form a book.
  • the recording process is terminated (step S416). Note that data recorded in the hologram storage medium 1 may be verified as necessary.
  • the hologram recording / reproduction apparatus 10 first uses the spindle control circuit 40 and the radial direction conveyance control circuit 42 in the seek process (step S422), and uses the pickup 11 and the reproduction reference light optical system.
  • the hologram recording medium 1 is positioned so that the light beam irradiated from 12 is irradiated to a predetermined position of the hologram recording medium 1.
  • the address information is reproduced, and it is confirmed whether the irradiation position of the light beam is positioned at a position corresponding to the address information.
  • the spindle control circuit 40 and the radial direction conveyance control circuit 42 are used again to calculate the spindle. The operation of controlling and positioning the motor 50 and the radial conveyance unit 51 is repeated.
  • the hologram recording / reproducing apparatus 10 emits the reference beam 207 from the pickup 11 to the hologram storage medium 1.
  • the diffracted light reproduced by the reference light is detected as two-dimensional data by the photodetector 226, and the signal processing circuit 82 processes the two-dimensional data to read out the data recorded on the hologram recording medium 1 ( Step S423).
  • the hologram recording / reproducing device 10 transmits the read data to the external control device 91 as reproduced data (step S424). When transmission of the reproduction data is completed, the reproduction process is terminated (step S425).
  • the seek process S414 in the present embodiment will be described with reference to the flowchart of FIG. Note that the same flowchart is applied to the seek process S422.
  • the radius r and the rotation angle ⁇ are parameters.
  • the drive shaft having the radius r is referred to as r-axis
  • the drive shaft having the rotation angle ⁇ is referred to as ⁇ -axis.
  • the positioning on each page in the book uses the incident angle ⁇ of the reference light as a parameter.
  • the drive axis at the incident angle ⁇ of the reference light is referred to as the ⁇ axis.
  • the movement of the hologram recording medium 1 in the r-axis direction and the ⁇ -axis direction is performed by the spindle 50 and the radial direction transporter 51.
  • step S501 When the seek process is started (step S501), the difference between the coordinates (r, ⁇ ) of the book where the hologram of the target address is located and the current irradiation position is calculated, and the movement amount is calculated for the r axis and the ⁇ axis ( Step S502). Next, it is determined whether the amount of movement in the r-axis direction is other than zero (step S503). If the movement amount in the r-axis direction is other than zero (Yes in step S503), the movement in the r-axis direction is started (step S504). After step S504, the process proceeds to step S505 described later. If the amount of movement in the r-axis direction is zero (No in step S503), the process proceeds to step S505 without performing step S504.
  • step S505 it is determined whether the amount of movement in the ⁇ -axis direction is other than zero. If the movement amount in the ⁇ -axis direction is other than zero (Yes in step S505), the movement in the ⁇ -axis direction is started (step S506). After step S506, the process proceeds to step S507 described later. If the amount of movement in the ⁇ -axis direction is zero (No in step S505), the process proceeds to step S507 without performing step S506.
  • step S507 it is determined whether the movement in the r-axis direction and the ⁇ -axis direction is completed. The completion of the movement is determined based on output signals from the spindle control circuit 40 and the radial direction conveyance control circuit 42.
  • step S507 If it is determined that the movement has not been completed (No in step S507), the process returns to step S507 again. That is, the operation waits until the movement is completed.
  • step S507 If it is determined that the movement has been completed (Yes in step S507), the movement is terminated (step S508).
  • step S509 it is determined whether or not the seek process during reproduction is performed. If it is not the seek process at the time of reproduction (No in step S509), the process proceeds to step S516 described later, and the seek process is terminated. In the case of seek processing at the time of reproduction (Yes in step S509), the seek processing is not finished with this, and finally, the address information obtained by reproducing the recorded hologram is used to set the target address. Continue seeking until it is correctly positioned. This is because the seek process at the time of recording is a seek process to an unrecorded portion in the hologram recording medium 1, and address information cannot be obtained.
  • step S510 reproduction of the first page in the book recorded at the coordinates represented by the r-axis and ⁇ -axis is performed (step S510). .
  • step S510 it is determined whether the page can be reproduced (step S511). If reproduction is impossible (No in step S511), it means that the movement of the hologram recording medium 1 by the spindle 50 and the radial transporter 51 from step S502 to step S508 could not be performed accurately. To do. Therefore, based on the predetermined retry parameter, the r-axis and ⁇ -axis retry values are calculated (step S512), and the process returns to step S502. As a result, seek processing for moving to the vicinity of the positioning is performed.
  • step S511 If the hologram can be reproduced (Yes in step S511), the address information included in the reproduced hologram is acquired (step S513). Subsequently, it is determined whether or not the acquired address is a target address (step S514). If the acquired address is not the target address (No in step S514), it means that positioning has not been performed correctly. Therefore, the difference between the coordinates (r, ⁇ ) of the acquired address and the coordinates (r, ⁇ ) of the target address is calculated (step S515), and the process returns to step S502. Thereby, a seek process based on the address information of the hologram is performed.
  • step S5136 If the acquired address is the target address (Yes in step S514), the seek process is terminated (step S516).
  • step S601 When the data reproduction process S423 is started (step S601), first, the variable j indicating the book number and the variable i indicating the page number in the book are initialized to zero (step S602).
  • step S603 seek processing is performed on the j-th book (referred to as Book [j]) (step S603).
  • the seek process at this time is the same as the seek process shown in FIG.
  • ⁇ 0 [i] is an incident angle corresponding to the i-th page. That is, step S604 sets an incident angle corresponding to the first page.
  • the controller 80 sets the G1ON signal and the G2ON signal to High, and starts control of the ⁇ axis. That is, the control of the actuator 221 and the actuator 224 is started by the first incident angle control circuit 21 and the second incident angle control circuit 24 (step S605). Thereby, control is started about the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225 so that the incident angle when the reference beam 207 enters the hologram recording medium 1 becomes Tgt ⁇ .
  • step S605 for the first page, the process proceeds to step S612 without controlling the reference beam 207 based on the angle error signal (AES).
  • AES angle error signal
  • step S612 the controller 80 monitors the G1OK signal and the G2OK signal, and determines whether the movement is completed by determining whether both signals are high (step S612).
  • Step S612 If either the G1OK signal or the G2OK signal is not High (No in Step S612), the process returns to Step S612 and waits until both the G1OK signal and the G2OK signal become High.
  • Step S612 If both the G1OK signal and the G2OK signal are High (Yes in Step S612), it means that the actuator 221 and the actuator 224 have both moved. As a result, when both the G1OK signal and the G2OK signal become High, the page data is reproduced (step S613), and it is determined whether the reproduction is possible (step S614).
  • step S615 a retry value is set based on a predetermined retry parameter (step S615), and the process returns to step S612.
  • step S615 the target value Tgt ⁇ of the incident angle of the reference beam 207 and the target value Tgt ⁇ of the orthogonal incident angle are reset based on a predetermined retry parameter.
  • step S614 If the page data can be reproduced (Yes in step S614), 1 is added to the variable i (step S616). Subsequently, it is determined whether the variable i is larger than a predetermined value PageNum (step S617).
  • the predetermined value PageNum is the number of pages in the book.
  • step S617 If the variable i is not larger than the predetermined value PageNum (No in step S617), since there is an unreproduced page in the book, the process proceeds to step S606, and the process proceeds to reproduction for the second and subsequent pages.
  • steps S606 to S611 performed in the reproduction from the second page onward will be described.
  • the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225 are set so that the incident angle when the reference light enters the hologram recording medium 1 becomes ⁇ 0 [i]. , Control is started.
  • the incident angle target value setting circuit 32 monitors the angle error signal (AES) and determines whether the voltage level of the angle error signal (AES) is greater than the threshold value Vth (step S607).
  • step S607 If the voltage level of the angle error signal (AES) is not greater than the threshold value Vth (No in step S607), the process returns to step S607 and waits until the voltage level of the angle error signal (AES) becomes greater than the threshold value Vth.
  • step S607 If the voltage level of the angle error signal (AES) is greater than the threshold value Vth (Yes in step S607), then the incident angle target value setting circuit 32 monitors the angle error signal (AES), and the angle error signal (AES). It is determined whether or not the voltage level crosses the reference potential Vref (step S608). As an example, this operation can be realized by sampling the angle error signal (AES) at a predetermined sampling period and comparing the value of the previous sample and the current value with the reference potential Vref.
  • step S608 When the voltage level of the angle error signal (AES) does not cross the reference potential Vref (No in step S608), the process returns to step S608 and waits until the voltage level of the angle error signal (AES) crosses the reference potential Vref. .
  • step S608 When the voltage level of the angle error signal (AES) crosses the reference potential Vref (Yes in step S608), the current AS1 signal is acquired, and the incident angle when the reference light is incident on the hologram recording medium 1 from the value. Conversion to ⁇ z is performed (step S609). That is, ⁇ z is the incident angle of the reference light at the timing when the angle error signal (AES) becomes the reference potential.
  • the incident angle target value setting circuit 32 calculates the following value as a new incident angle target value ⁇ 1 (step S610), and rewrites the incident angle target value Tgt ⁇ with ⁇ 1 (step S611).
  • control target value is corrected so that the incident angle when the reference light is incident on the hologram recording medium 1 is ⁇ 1 with respect to the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225.
  • the angle of the galvano mirror 220 and the angle of the galvano mirror 225 are set to the incident angle ⁇ [i] corresponding to the i-th page.
  • the target angle is corrected to ⁇ 1 based on the angle error signal (AES).
  • this is an operation of setting the provisional target angle ⁇ [i] at the start of movement and starting the movement, and then correcting the target angle to ⁇ 1 based on the angle error signal (AES).
  • Step S612 to S617 are as described above.
  • Steps S606 to S617 are processes related to page data reproduction of one page. Among these, steps S606 to S612 can be regarded as a seek process between pages in which the galvano mirror 220 and the galvano mirror 225 are controlled to control the incident angle of the reference light in a stepwise manner. Hereinafter, this process is referred to as page seek.
  • step S617 When the page data reproduction is completed for all pages of the book, the variable i becomes larger than the predetermined value PageNum (in the case of Yes in step S617), and the process proceeds to step S618.
  • Step S618 the controller 80 sets the G1ON signal and the G2ON signal to Low to stop the first incident angle control and the second incident angle control (Step S618), and adds 1 to the variable j (Step S619). Subsequently, it is determined whether the variable j is larger than a predetermined value BookNum (step S620).
  • the predetermined value BookNum is the total number of books to be reproduced in the data reproduction process.
  • step S620 If the variable j is not larger than the predetermined value BookNum (No in step S620), since there is an unreproduced book, the process returns to step S603 to shift to the reproduction of the next book.
  • variable j becomes larger than the predetermined value BookNum (in the case of Yes in step S620), and the data reproduction process is completed (step S621).
  • FIG. 10A schematically shows a state in which the reference light 207 and the control light beam branched by the Wollaston prism 230 are incident on the hologram recording medium 1.
  • a mirror that passes after passing through the Wollaston prism 230 is omitted.
  • the two light beams are incident on the hologram recording medium 1 while being shifted by ⁇ .
  • the incident angle when entering the hologram recording medium 1 is considered.
  • the incident angle is defined by the angle between the normal line of the hologram recording medium 1 and the light beam.
  • the incident angle of the reference beam 207 is ⁇ .
  • the scanning direction of the reference beam 207 in the page seek in the book is the direction indicated by the arrow D. This direction is a direction from the incident angle of the control light beam toward the incident angle of the reference light 207.
  • the scanning direction of the reference light 207 is a direction in which the incident angle is increased.
  • the reference light 207 is light for generating diffracted light to the photodetector 226 for reproducing the recorded signal, whereas the control light beam is only for generating an angle error signal (AES).
  • AES angle error signal
  • the light branching ratio in the Wollaston prism 230 is not 1: 1, and the intensity of the reference light 207 is larger than the intensity of the control light beam.
  • the scanning direction of the reference beam 207 in the page seek in the book can be rephrased as the direction from the incident angle of the weak light beam toward the incident angle of the strong light beam.
  • FIG. 11 shows an angle error signal (AES) when the incident angle of the reference beam 207 is changed by rotating the galvanometer mirror 220.
  • FIG. 11A shows an ideal state, for example, a case where there is no shrinkage of the medium before and after recording, and there is no temperature change during recording and during reproduction. In such an ideal state, each page at the time of reproduction is optimally reproduced at an angle at which the galvano mirror 220 is positioned at the time of recording. That is, the i-th page is optimally reproduced at ⁇ 0 [i] that is the incident angle corresponding to the i-th page.
  • FIG. 11B shows a case where the medium is expanded as an example.
  • the angle at which the i-th page can be optimally reproduced deviates from ⁇ 0 [i].
  • the angle indicated by ⁇ 1 is an angle at which the i-th page can be optimally reproduced. Therefore, when the present invention is not used, the incident angle of the reference light is shifted by the amount indicated by A in the drawing, and the page cannot be reproduced properly.
  • FIG. 12 is a schematic diagram of the signal waveform of each part in the page seek based on the flowchart of the data reproduction process shown in FIG. 12A shows the angle error signal (AES), FIG. 12B shows the target value Tgt ⁇ of the incident angle, FIG. 12C shows the incident angle ⁇ of the reference beam 207, and FIG. This is the output signal GD1 of the angle control circuit 21.
  • FIG. 12C can also be regarded as an AS1 signal or an AS2 signal.
  • FIG. 12D can be regarded as the output signal GD2 of the second incident angle control circuit 24.
  • time t0 is the time which started the movement of the angle of the galvano mirror 220 and the angle of the galvano mirror 225 by step S606.
  • the target value Tgt ⁇ of the incident angle set at time t0 is ⁇ 0 [i] as shown in FIG. 12 (b), and is directed to the angle ⁇ 0 [i] until time t3 as shown in FIG. 12 (c). Control.
  • Time t1 is the time when the voltage level of the angle error signal (AES) becomes larger than the threshold value Vth, and corresponds to the condition that becomes Yes in step S607.
  • Time t2 is the time when the angle error signal (AES) first crosses zero after time t1, and corresponds to the condition of Yes in step S608.
  • the zero-cross point of the angle error signal (AES) of the i-th page can be detected by steps S607 and S608.
  • a new incident angle target value ⁇ 1 is set in steps S609 to S611.
  • This angle is a value determined based on (Expression 2), and is an angle advanced by ⁇ / 2 with respect to the incident angle ⁇ z at time t2.
  • the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225 are controlled toward the angle ⁇ 1.
  • the target value of the control system changes discretely, even in the angle of the galvano mirror 220 or the drive signal for driving the galvano mirror 225 as shown in FIG. The change appears at the time t2 after passing through.
  • Time t3 is a time when the movement of the angle of the galvano mirror 220 and the angle of the galvano mirror 225 is completed, and corresponds to the condition of Yes in step S612.
  • the incident angle of the reference beam 207 is controlled to ⁇ 1 as shown in FIG. 12C, and the angle error signal (AES) at this time is the value at the bottom of the signal as shown in FIG. Become.
  • FIG. 13A shows the angle error signal (AES) in this embodiment
  • FIG. 13B shows the incident angle ⁇ of the reference light in this embodiment
  • FIG. 13C and FIG. 13D the movement of the movement distance to the provisional target angle ⁇ 0 [i] is not completed before the movement to the incident angle at which the angle error signal (AES) is obtained. It is a figure explaining a case.
  • FIG. 13C shows the angle error signal (AES)
  • FIG. 13D shows the incident angle ⁇ of the reference beam 207.
  • FIG. 14A shows a case where the velocity of the incident angle ⁇ of the reference beam 207 is low in the vicinity of the incident angle at which the angle error signal (AES) is obtained.
  • whether or not the voltage level of the angle error signal (AES) crosses the reference potential Vref in step S608 is determined by acquiring a value every predetermined sampling time. This can be easily realized with a digital circuit.
  • a vertical broken line indicates the sampling timing, and a black circle indicates a sampled value.
  • FIG. 14B shows a case where the speed of the incident angle ⁇ of the reference beam 207 is high in the vicinity of the incident angle at which the angle error signal (AES) is obtained.
  • AES angle error signal
  • many samplings cannot be performed near the zero cross point.
  • the zero cross timing tz is obtained by crossing the threshold value with the value indicated by B in FIG.
  • the accurate zero-cross timing is point C in FIG. 14B, and the zero-cross timing tz cannot be accurately detected.
  • the new incident angle target value ⁇ 1 set based on (Equation 2) also shifts.
  • the incident angle of the reference beam 207 cannot be accurately controlled, and the reproduction performance is deteriorated.
  • the time for passing the angle error signal (AES) is shortened, the accuracy of positioning of the incident angle of the reference beam 207 is deteriorated. Therefore, it is preferable to control the incident angle ⁇ of the reference beam 207 at a low speed in the vicinity of the incident angle at which the angle error signal (AES) is obtained. This can be realized by completing most of the movement of the movement distance to the provisional target angle ⁇ 0 [i] before moving to the incident angle at which the angle error signal (AES) is obtained.
  • This implementation is characterized in that the galvanometer mirror 220 is driven at a speed slower than the average speed in the page seek in the range of the incident angle where the angle error signal (AES) is obtained during page seek in the book.
  • AES angle error signal
  • the first effect of the present invention is that the page data can be optimally reproduced because the incident angle of the reference light 207 is controlled based on the angle error signal (AES) generated based on the diffracted light.
  • AES angle error signal
  • the second effect is that the dedicated photodetectors 234 and 236 are provided, and the angle error signal (AES) is generated by calculating the amount of received light, thereby having high speed.
  • the angle error signal (AES) in this embodiment can be generated at high speed.
  • the third effect is that high-speed movement is possible by correcting the target value while driving the incident angle of the reference beam 207.
  • control based on the angle error signal (AES) control based on the angle error signal (AES), pulling in the zero cross point ⁇ z, and then moving to the angle ⁇ 1 can be considered.
  • AES angle error signal
  • the angle error signal (AES) as position feedback in the incident angle control circuit and the AS1 signal obtained from the angle detection sensor provided in the actuator 221 are switched halfway.
  • the angle error signal (AES) is not used as position feedback in the incident angle control circuit.
  • the AS1 signal is used as the position feedback in the first incident angle control circuit 21.
  • the angle error signal (AES) is not used as an input signal in the control system, but is used only for the purpose of correcting the target value of the control system during driving.
  • the AS1 signal obtained from the angle detection sensor provided in the actuator 221 is used as position feedback in the incident angle control circuit to control when the reference light angle moves between pages. Further, while driving the incident angle of the reference beam 207, the target value is corrected based on the angle error signal (AES).
  • AES angle error signal
  • the fourth effect is that high-speed movement is possible by setting the scanning direction of the reference beam 207 that matches the characteristics of the angle error signal (AES).
  • the angle error signal (AES) according to the present embodiment has an optimum angle obtained by increasing the angle of the reference beam 207 by ⁇ / 2 with respect to the zero cross point.
  • the reference beam 207 should be scanned in the direction in which the incident angle of the reference beam 207 increases in the page seek at the time of reproduction as in this embodiment. This is because if the reference beam 207 is scanned in a direction in which the incident angle of the reference beam 207 decreases during page seek, it cannot be controlled to the optimum position unless the zero cross is detected. Accompanied by the returning action is not high speed because it must be decelerated until the speed becomes zero after the zero cross is detected.
  • the angle obtained by increasing the angle of the reference beam 207 by ⁇ / 2 with respect to the zero cross point of the angle error signal (AES) is the optimum angle.
  • AES angle error signal
  • the reference light 207 has a larger incident angle than the control light beam. Conversely, when the control light beam has a larger incident angle than the reference light 207, the reference light 207 Should be scanned in a direction that decreases the angle of incidence. As described above, when the angle error signal (AES) of this embodiment is used, the scanning direction of the reference beam 207 in the page seek in the book at the time of reproduction is inevitably determined by the configuration of the optical system.
  • AES angle error signal
  • a preferable scanning direction of the reference light is a direction from the incident angle of the control light beam toward the incident angle of the reference light 207, thereby enabling high-speed movement.
  • the fifth effect is that the intensity of the reference light 207 is larger than the intensity of the control light beam, so that the amount of diffracted light can be secured and suitable reproduction is possible.
  • the sixth effect is that the movement of most of the moving distance is completed by the time it moves to the incident angle at which the angle error signal (AES) is obtained, so the zero cross timing of the angle error signal (AES) is highly accurate. This is a point that can be detected. As a result, the incident angle of the reference beam 207 can be controlled with high accuracy.
  • the zero cross timing may be detected as follows.
  • the incident angle target value setting circuit 32 acquires the value of the angle error signal (AES) at every predetermined sampling time, and stores the previous value for one sampling time.
  • the angle error signal (AES) crosses the reference potential Vref
  • the current value the value of the AES signal at the point B
  • the value stored at the immediately preceding sampling time the value of the AES signal at the point D
  • the new incident angle target value ⁇ 1 can be calculated more accurately by calculating the incident angle ⁇ z of the reference beam 207 at the timing when the angle error signal (AES) becomes the reference potential.
  • the incident angle of the reference beam 207 can be controlled with high accuracy.
  • the previous value for one sampling time is stored, and linear approximation is performed using two values before and after the reference potential Vref.
  • a plurality of past sampling values are stored, and more than two values are stored.
  • a linear approximation may be performed using the sampling value.
  • a hologram recording / reproducing apparatus capable of detecting an angular error signal (AES) capable of realizing high-speed reproduction and obtaining the best reproduction signal.
  • AES angular error signal
  • FIG. 15 is a block diagram showing a recording / reproducing apparatus for a holographic recording medium for recording and / or reproducing digital information using holography.
  • the same number is attached
  • the structural difference from the first embodiment is the temperature measurement sensor 17.
  • the temperature measurement sensor 17 is a sensor for measuring the temperature of the hologram recording medium 1, and the measurement result is sent to the controller 80.
  • the temperature measurement sensor 17 measures the temperature of the hologram recording medium 1 with a non-contact type thermometer, for example.
  • the controller 80 may be installed in the vicinity of the hologram recording medium 1, measure the ambient temperature of the hologram recording medium 1 by measuring the temperature of air around the sensor, and the controller 80 may estimate the temperature of the hologram recording medium 1.
  • the flowchart of the data reproduction process S423 in the present embodiment is the same as FIG. 6 which is the flowchart in the first embodiment.
  • ⁇ 0 [i] is the incident angle corresponding to the i-th page, but in this embodiment, ⁇ 0 [i] is adjusted based on the measurement result of the temperature measurement sensor 17. That is, when the medium expands / contracts from the measurement result of the temperature measurement sensor 17, ⁇ 0 [i] is adjusted accordingly.
  • FIG. 16 shows an angle error signal (AES) when the temperatures are different.
  • FIG. 16B shows a case where the medium expands due to a temperature difference.
  • AES angle error signal
  • FIG. 16A and FIG. 16B (i-1) The angle position of the second page is displayed in the same position. ⁇ 1 [i] is the optimum angle of the i-th page.
  • ⁇ 0 [i] is set based on the measurement result of the temperature measurement sensor 17 in this embodiment. adjust.
  • a hologram recording / reproducing apparatus capable of detecting an angular error signal (AES) capable of realizing high-speed reproduction and obtaining the best reproduction signal.
  • AES angular error signal
  • the first incident angle control circuit 21, the second incident angle control circuit 24, and the orthogonal incident angle control circuit 27 in the embodiment described above are the control circuits that constitute the feedback control system. did. However, for example, it may be a control circuit that constitutes a two-degree-of-freedom control system having feed-forward control in addition to feedback control.
  • an apparatus for recording / reproducing with respect to the hologram recording medium 1 has been described as an example.
  • the present invention can also be applied to a reproduction-only apparatus.
  • the reproduction order of each page in the preferred book that is, the preferred scanning direction of the reference light in the page seek in the book is uniquely determined by the configuration of the optical system.
  • the preferred scanning direction of the reference beam in the page seek in the book is determined only during reproduction. That is, in the case of a device that performs recording and reproduction instead of a reproduction-only device, the page seek in the book at the time of recording is not limited to this.
  • the order of reproducing the pages in the book at the time of reproduction may be different from the order of recording the pages in the book at the time of recording.
  • the recording order may be designed as a suitable order for recording the hologram, and in an order different from that during reproduction.
  • high-speed reproduction according to the present invention can be realized while preferably recording a hologram.
  • the radial transport unit 51 in the first embodiment As a mechanism for controlling the light beam irradiated from the pickup 11 and the cure optical system 13 to be irradiated to a predetermined position of the hologram recording medium, for example, the radial transport unit 51 in the first embodiment is used. As described above, the hologram recording medium 1 is transported. However, the mechanism for sharing the irradiation position of the light beam is not limited to this. For example, the hologram recording medium may be fixed, and the pickup 11 and the cure optical system 13 may be transported.
  • the present invention is not limited to the above-described embodiments, and includes various modifications in addition to the above-described modifications.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

An objective of the present invention is to provide a hologram reconstruction device and hologram reconstruction method capable of appropriately reconstructing information recorded in a hologram recording medium. The hologram reconstruction device reconstructs information which is recorded in a hologram recording medium, and the hologram reconstruction method is used with the hologram reconstruction device. The hologram reconstruction device comprises: a light source which emits a reference light; an entry angle change unit which is capable of changing the entry angle of the reference light which enters the hologram recording medium; an angle error signal generating unit which generates an angle error signal; a target angle setting unit which sets a target angle of the entry angle of the reference light; and an entry angle control unit which controls the entry angle change unit, using as a control target the target angle set by the target angle setting unit. The target angle setting unit changes the target angle on the basis of the angle error signal in a period wherein the entry angle control unit controls the entry angle change unit to change the entry angle of the reference light.

Description

ホログラム再生装置、ホログラム再生方法Hologram reproducing apparatus and hologram reproducing method
 本発明は、ホログラフィを用いた再生を行うホログラム再生装置、ホログラム再生方法に関する。 The present invention relates to a hologram reproducing apparatus and a hologram reproducing method for reproducing using holography.
 次世代のストレージ技術に関する研究が行われる中、ホログラフィを利用してデジタル情報を記録するホログラム記録技術が注目を集めている。 While research on next-generation storage technology is underway, hologram recording technology that records digital information using holography is drawing attention.
 ホログラム記録技術とは、空間光変調器により2次元的に変調されたページデータの情報を有する信号光を、記録媒体の内部で参照光と重ね合わせ、その時に生じる干渉縞パターンによって記録媒体内に屈折率変調を生じさせることで情報を記録媒体に記録する技術である。 Hologram recording technology is a method in which signal light having page data information two-dimensionally modulated by a spatial light modulator is superimposed on reference light inside the recording medium, and the interference fringe pattern generated at that time is placed in the recording medium. This is a technique for recording information on a recording medium by causing refractive index modulation.
 しかしながらホログラム記録技術においては、信号光と参照光の相対角度を高精度に制御することが課題となっている。このような課題に対し、特許文献1では信号光と参照光の相対角度を探索するために撮像素子で信号光を検出し、記録角度ごとに再生性能であるSNRを演算し、その値から次の相対角度を予測することで、信号光に対する参照光の相対角度を制御している。 However, in the hologram recording technique, it is a problem to control the relative angle between the signal light and the reference light with high accuracy. In order to solve such a problem, in Patent Document 1, signal light is detected by an image sensor in order to search for a relative angle between the signal light and the reference light, and an SNR that is a reproduction performance is calculated for each recording angle. The relative angle of the reference light with respect to the signal light is controlled by predicting the relative angle.
US2009/0207710A1US2009 / 0207710A1
 ホログラム記録技術の一つの大きな利点は大容量のデータを記録できる点である。しかしながら記録容量の増大を追求した場合には、信号光や参照光を照射する位置や角度に関する位置決め制御の精度を従来以上に向上させる必要が生じる。 One major advantage of hologram recording technology is that it can record large amounts of data. However, when an increase in recording capacity is pursued, it is necessary to improve the accuracy of positioning control related to the position and angle at which the signal light and reference light are irradiated more than before.
 特許文献1は、信号光と参照光の相対角度を探索可能な一方で、2つの大きな課題がある。1つ目は高速再生、2つ目は再生性能である。 Patent Document 1 can search for a relative angle between signal light and reference light, but has two major problems. The first is high-speed playback, and the second is playback performance.
 特許文献1の構成の場合、検出部を追加しなくて良い効果がある一方で、撮像素子により再生信号を検出しSNRを演算して初めて相対角度の制御信号を生成可能になるため、高速再生が課題となる。 In the case of the configuration of Patent Document 1, there is an effect that it is not necessary to add a detection unit. On the other hand, a control signal for a relative angle can be generated only after the reproduction signal is detected by the image sensor and the SNR is calculated. Is an issue.
 また、特許文献1は参照光の角度制御用の信号を生成するために再生信号が最良となる相対角度から微小量だけずれた角度に制御することを特徴としている。このため、原理的に最適角度で再生を行うことができず、最良の再生信号が得られないことは自明である。 Further, Patent Document 1 is characterized in that control is performed to an angle shifted by a minute amount from the relative angle at which the reproduction signal is best in order to generate a reference light angle control signal. For this reason, in principle, it is impossible to reproduce at the optimum angle, and it is obvious that the best reproduction signal cannot be obtained.
 このように、高速再生を実現可能でかつ、最良な再生信号を得られる参照光の角度誤差信号を検出することが課題となっている。
そこで、本発明は、高速再生を実現可能で、かつ、最良な再生信号が得られる、参照光角度の角度誤差信号を検出可能なホログラム再生装置、ホログラム再生方法を提供することを目的とする。
As described above, it is a problem to detect the angle error signal of the reference light that can realize high-speed reproduction and obtain the best reproduction signal.
Therefore, an object of the present invention is to provide a hologram reproducing apparatus and a hologram reproducing method capable of detecting an angle error signal of a reference light angle, which can realize high-speed reproduction and obtain the best reproduction signal.
 上記課題は、例えば請求項の範囲に記載の発明により解決される。 The above problem is solved by, for example, the invention described in the scope of claims.
 本発明によれば、ホログラム記録媒体に記録されている情報を好適に再生することができる。 According to the present invention, information recorded on the hologram recording medium can be suitably reproduced.
実施例1のホログラム記録再生装置を示すブロック図である。1 is a block diagram showing a hologram recording / reproducing apparatus of Example 1. FIG. ホログラム記録再生装置の記録原理を説明する図である。It is a figure explaining the recording principle of a hologram recording / reproducing apparatus. ホログラム記録再生装置の再生原理を説明する図である。It is a figure explaining the reproduction | regeneration principle of a hologram recording / reproducing apparatus. ホログラム記録再生装置における記録または再生の準備が完了するまでのフローチャートである。It is a flowchart until the preparation of recording or reproduction | regeneration in a hologram recording / reproducing apparatus is completed. ホログラム記録再生装置における記録処理のフローチャートである。It is a flowchart of the recording process in a hologram recording / reproducing apparatus. ホログラム記録再生装置における再生処理のフローチャートである。It is a flowchart of the reproduction | regeneration processing in a hologram recording / reproducing apparatus. 実施例1におけるシーク処理のフローチャートである。6 is a flowchart of seek processing in the first embodiment. 実施例1におけるデータ再生処理のフローチャートである。3 is a flowchart of data reproduction processing according to the first embodiment. 実施例1における信号S1と信号S2を説明する図である。It is a figure explaining the signal S1 and the signal S2 in Example 1. FIG. 実施例1における角度誤差信号AESを説明する図である。It is a figure explaining the angle error signal AES in Example 1. FIG. 実施例1の第一の入射角度制御回路を示すブロック図である。FIG. 3 is a block diagram illustrating a first incident angle control circuit according to the first embodiment. 実施例1のブック内のページシークにおける参照光の走査方向を説明する図である。FIG. 6 is a diagram illustrating a scanning direction of reference light in page seek in a book according to the first exemplary embodiment. 実施例1のブック内のページシークにおける参照光の走査方向を説明する図である。FIG. 6 is a diagram illustrating a scanning direction of reference light in page seek in a book according to the first exemplary embodiment. 実施例1において、媒体の膨張が発生した場合の角度誤差信号(AES)を説明する図である。In Example 1, it is a figure explaining the angle error signal (AES) when expansion | swelling of a medium generate | occur | produces. 実施例1のページシークにおける各部の信号波形の模式図である。FIG. 4 is a schematic diagram of signal waveforms at various parts in the page seek according to the first embodiment. 角度誤差信号(AES)が得られる入射角度の近傍における参照光の入射角度の速度による影響を説明する図である。It is a figure explaining the influence by the speed of the incident angle of the reference light in the vicinity of the incident angle from which an angle error signal (AES) is obtained. 角度誤差信号(AES)を通過する時間が短くなることの問題点を説明する図である。It is a figure explaining the problem that the time which passes an angle error signal (AES) becomes short. 実施例2のホログラム記録再生装置を示すブロック図である。FIG. 6 is a block diagram showing a hologram recording / reproducing apparatus of Example 2. 実施例2の効果を説明するための図である。It is a figure for demonstrating the effect of Example 2. FIG. 本明細書における入射角度の定義を説明する図である。It is a figure explaining the definition of the incident angle in this specification. 本明細書における直交入射角度の定義を説明する図である。It is a figure explaining the definition of the orthogonal incident angle in this specification. 本明細書における直交入射角度の定義を説明する図である。It is a figure explaining the definition of the orthogonal incident angle in this specification.
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施形態を添付図面に従って説明する。図1はホログラフィを利用してデジタル情報を記録及び/または再生する、ホログラム記録媒体の記録再生装置を示すブロック図である。 Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a block diagram showing a recording / reproducing apparatus for a holographic recording medium that records and / or reproduces digital information using holography.
 ホログラム記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。ホログラム記録媒体1に情報を記録する場合には、ホログラム記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。ホログラム記録媒体1から情報を再生する場合には、ホログラム記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。 The hologram recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90. When recording information on the hologram recording medium 1, the hologram recording / reproducing apparatus 10 receives an information signal to be recorded from the external control device 91 by the input / output control circuit 90. When reproducing information from the hologram recording medium 1, the hologram recording / reproducing device 10 transmits the reproduced information signal to the external control device 91 by the input / output control circuit 90.
 本実施例におけるホログラム記録媒体1は、円盤状であり、ホログラム記録媒体の回転角度を検出するための角度検出用マークを有している。 The hologram recording medium 1 in this embodiment has a disk shape and has an angle detection mark for detecting the rotation angle of the hologram recording medium.
 ホログラム記録再生装置10は、ピックアップ11、再生用参照光光学系12、キュア光学系13、角度誤差検出光学系30、回転角度検出センサ14、半径位置検出センサ15及びスピンドルモータ50、半径方向搬送部51を備えている。 The hologram recording / reproducing apparatus 10 includes a pickup 11, a reproduction reference light optical system 12, a cure optical system 13, an angle error detection optical system 30, a rotation angle detection sensor 14, a radial position detection sensor 15, a spindle motor 50, and a radial direction conveyance unit. 51 is provided.
 スピンドルモータ50は、その回転軸に対してホログラム記録媒体1を着脱可能な媒体着脱部(図示しない)を有しており、ホログラム記録媒体1はスピンドルモータ50によって回転可能な構成となっている。同時にホログラム記録媒体1は半径方向搬送部51によって、ピックアップ11の位置を基準として、半径方向に移動可能な構成となっている。 The spindle motor 50 has a medium attaching / detaching portion (not shown) that allows the hologram recording medium 1 to be attached to and detached from the rotation axis. The hologram recording medium 1 is configured to be rotatable by the spindle motor 50. At the same time, the hologram recording medium 1 is configured to be movable in the radial direction by the radial transport unit 51 with reference to the position of the pickup 11.
 信号光及び/または参照光が照射される位置は後述するピックアップ11の位置によって決まり、装置に固定された位置である。本実施例においては、スピンドルモータ50及び半径方向搬送部51が、信号光及び/または参照光が照射されるホログラム記録媒体1上の位置を変更する手段として機能する。 The position where the signal light and / or reference light is irradiated is determined by the position of the pickup 11 described later, and is a position fixed to the apparatus. In the present embodiment, the spindle motor 50 and the radial direction conveyance unit 51 function as means for changing the position on the hologram recording medium 1 irradiated with the signal light and / or the reference light.
 回転角度検出センサ14は、ホログラム記録媒体1に設けられた角度検出用マークを用いて、ホログラム記録媒体1の回転角度を検出する。回転角度検出センサ14の出力信号はスピンドル制御回路40に入力される。信号光及び参照光の照射される回転角度を変更する場合には、スピンドル制御回路40が回転角度検出センサ14の出力信号及びコントローラ80からの指令信号に基づいて駆動信号を生成し、スピンドル駆動回路41を介してスピンドルモータ50を駆動する。これにより、ホログラム記録媒体1の回転角度を制御する事が出来る。この制御のことを、スピンドル制御と称する。 The rotation angle detection sensor 14 detects the rotation angle of the hologram recording medium 1 using an angle detection mark provided on the hologram recording medium 1. The output signal of the rotation angle detection sensor 14 is input to the spindle control circuit 40. When changing the rotation angle irradiated with the signal light and the reference light, the spindle control circuit 40 generates a drive signal based on the output signal of the rotation angle detection sensor 14 and the command signal from the controller 80, and the spindle drive circuit The spindle motor 50 is driven via 41. Thereby, the rotation angle of the hologram recording medium 1 can be controlled. This control is called spindle control.
 また、半径方向搬送部51の可動部には、所定パターンを有するスケール16が固定されている。半径位置検出センサ15は、スケール16を用いて半径方向搬送部51の可動部の位置を検出する。信号光及び参照光の照射される半径位置を変更する場合は、半径方向搬送制御回路42が半径位置検出センサ15の出力信号及びコントローラ80からの指令信号に基づいて駆動信号を生成し、半径方向搬送駆動回路43を介して半径方向搬送部51を駆動する。これにより、ホログラム記録媒体1が半径方向に搬送される。これにより、信号光及び参照光の照射される半径位置を制御する事が出来る。この制御のことを、半径位置制御と称する。 Further, a scale 16 having a predetermined pattern is fixed to the movable part of the radial direction transport part 51. The radial position detection sensor 15 detects the position of the movable part of the radial direction transport part 51 using the scale 16. When the radial position irradiated with the signal light and the reference light is changed, the radial direction transport control circuit 42 generates a drive signal based on the output signal of the radial position detection sensor 15 and the command signal from the controller 80, and the radial direction The radial conveyance unit 51 is driven via the conveyance drive circuit 43. Thereby, the hologram recording medium 1 is conveyed in the radial direction. Thereby, the radial position irradiated with the signal light and the reference light can be controlled. This control is called radial position control.
 また、スピンドル制御回路40及び半径方向搬送制御回路42はそれぞれの駆動が完了したか否かの情報を、コントローラ80に返す。 Further, the spindle control circuit 40 and the radial direction conveyance control circuit 42 return information to the controller 80 as to whether or not each drive is completed.
 ピックアップ11は、ホログラム記録媒体1に情報を記録する場合と、ホログラム記録媒体1に記録されている情報を再生する場合に用いられる。ホログラム記録媒体1に情報を記録する場合は、参照光と信号光をホログラム記録媒体1に照射してホログラフィを利用してデジタル情報を記録媒体に記録する。この際、記録する情報信号はコントローラ80によって信号生成回路81を介してピックアップ11内の後述する空間光変調器に送られ、信号光は空間光変調器によって変調される。 The pickup 11 is used when information is recorded on the hologram recording medium 1 and when information recorded on the hologram recording medium 1 is reproduced. When recording information on the hologram recording medium 1, the hologram recording medium 1 is irradiated with reference light and signal light, and digital information is recorded on the recording medium using holography. At this time, the information signal to be recorded is sent by the controller 80 to a spatial light modulator (described later) in the pickup 11 via the signal generation circuit 81, and the signal light is modulated by the spatial light modulator.
 ホログラム記録媒体1に記録した情報を再生する場合は、ピックアップ11から出射された参照光を記録時とは逆の向きにホログラム記録媒体1に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される回折光をピックアップ11内の後述する光検出器226によって検出し、信号処理回路82によって信号を再生する。 When reproducing the information recorded on the hologram recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the pickup 11 to enter the hologram recording medium 1 in the direction opposite to that during recording. To do. Diffracted light reproduced by the reproduction reference light is detected by a photodetector 226 described later in the pickup 11, and a signal is reproduced by a signal processing circuit 82.
 更に、参照光がホログラム記録媒体1に入射する角度は、第一の入射角度制御回路21及び第二の入射角度制御回路24、及び直交入射角度制御回路27により制御される。ここで、参照光がホログラム記録媒体1に入射する角度に関して、本明細書においては「入射角度」及び「直交入射角度」を定義する。以下、図17を用いて説明する。 Furthermore, the angle at which the reference light enters the hologram recording medium 1 is controlled by the first incident angle control circuit 21, the second incident angle control circuit 24, and the orthogonal incident angle control circuit 27. Here, “incident angle” and “orthogonal incident angle” are defined in this specification with respect to the angle at which the reference light is incident on the hologram recording medium 1. Hereinafter, a description will be given with reference to FIG.
 図17(a)は記録時の信号光の波数ベクトルKs及び参照光の波数ベクトルKr及びホログラム記録媒体1の媒体面を示す図である。信号光の入射面は、信号光の波数ベクトルKsと、ホログラム記録媒体1の法線ベクトルとを含む平面として規定される。装置が理想的な状態の場合、参照光の波数ベクトルKrは信号光の入射面内に存在し、図17(a)はその状態を示している。このとき図17(a)に示すように、信号光の入射面内において、参照光の波数ベクトルKrの角度を変更することができる。この、参照光の入射面内における角度の変更を、本明細書では「入射角度の変更」と称する。 FIG. 17A is a diagram showing the wave number vector Ks of the signal light, the wave number vector Kr of the reference light, and the medium surface of the hologram recording medium 1 during recording. The incident surface of the signal light is defined as a plane including the wave vector Ks of the signal light and the normal vector of the hologram recording medium 1. When the apparatus is in an ideal state, the wave number vector Kr of the reference light exists in the incident surface of the signal light, and FIG. 17 (a) shows the state. At this time, as shown in FIG. 17A, the angle of the wave number vector Kr of the reference light can be changed in the incident surface of the signal light. This change in the angle of the reference light on the incident surface is referred to as “change in the incident angle” in this specification.
 続いて、「直交入射角度の変更」について説明する。図17(b)及び図17(c)は、それを説明するための図である。図17(b)は図17(a)の状態から、直交入射角度を変更した状態を示している。また、図17(b)を横から見た状態を示しているのが図17(c)である。 Subsequently, “Changing the orthogonal incidence angle” will be described. FIG. 17B and FIG. 17C are diagrams for explaining it. FIG. 17B shows a state in which the orthogonal incident angle is changed from the state of FIG. Further, FIG. 17C shows a state when FIG. 17B is viewed from the side.
 図17(b)からわかるように、参照光の直交入射角度を変更すると、参照光の波数ベクトルKrは、信号光の入射面上ではなく、図17(b)の平面A上に存在する。即ち、「直交角度の変更」とは、信号光の入射面と直交する方向に、参照光がホログラム記録媒体1に入射する角度を変更することを意味する。 As can be seen from FIG. 17B, when the orthogonal incident angle of the reference light is changed, the wave number vector Kr of the reference light is not on the incident surface of the signal light but on the plane A of FIG. 17B. That is, “changing the orthogonal angle” means changing the angle at which the reference light is incident on the hologram recording medium 1 in a direction perpendicular to the incident surface of the signal light.
 なお、図17(b)のように直交入射角度を変更した状態において、「入射角度の変更」は、参照光の平面A内における角度の変更のことを指す。 In the state where the orthogonal incident angle is changed as shown in FIG. 17B, “change of the incident angle” refers to change of the angle of the reference light in the plane A.
 なお、図17(c)から明らかなように、入射角度の変更する方向(即ち平面Aに含まれる方向)と、直交入射角度の変更する方向(図17(c)の矢印の方向)は、必ず直交する。 As is clear from FIG. 17C, the direction in which the incident angle is changed (that is, the direction included in the plane A) and the direction in which the orthogonal incident angle is changed (the direction of the arrow in FIG. 17C) are Must be orthogonal.
 角度誤差信号生成回路31は、角度誤差検出光学系30内の後述する光検出器234及び光検出器236の出力信号を用いて、後述する角度誤差信号(AES)を生成して出力する。角度誤差信号(AES)は、入射角度に関して最適角度からのずれ(誤差)を示す信号である。 The angle error signal generation circuit 31 generates and outputs an angle error signal (AES) described later using output signals of the photodetector 234 and the photodetector 236 described later in the angle error detection optical system 30. The angle error signal (AES) is a signal indicating a deviation (error) from the optimum angle with respect to the incident angle.
 入射角度目標値設定回路32は、コントローラ80からの指示と、角度誤差信号生成回路31の出力する角度誤差信号(AES)とを入力として、入射角度の目標値Tgtφを設定し、制御に用いるための信号として出力する。また直交入射角度の目標値Tgtρは、コントローラ80が出力する。 The incident angle target value setting circuit 32 receives the instruction from the controller 80 and the angle error signal (AES) output from the angle error signal generation circuit 31, and sets the incident angle target value Tgtφ for use in control. Output as a signal. Further, the controller 80 outputs the target value Tgtρ of the orthogonal incident angle.
 第一の入射角度信号生成回路20は、ピックアップ11の出力信号から、参照光の入射角度の制御に用いるための信号を生成する。第一の入射角度制御回路21は、第一の入射角度信号生成回路20の出力信号と、入射角度目標値設定回路32の出力信号Tgtφと、を用いて駆動信号を生成する。第一の入射角度駆動回路22は、ピックアップ11内の後述するアクチュエータ221を、第一の入射角度制御回路21からの駆動信号を用いて駆動する。 The first incident angle signal generation circuit 20 generates a signal used for controlling the incident angle of the reference light from the output signal of the pickup 11. The first incident angle control circuit 21 generates a drive signal using the output signal of the first incident angle signal generation circuit 20 and the output signal Tgtφ of the incident angle target value setting circuit 32. The first incident angle drive circuit 22 drives an actuator 221 described later in the pickup 11 using a drive signal from the first incident angle control circuit 21.
 また第二の入射角度信号生成回路23は、再生用参照光光学系12の出力信号から、参照光の入射角度の制御に用いるための信号を生成する。第二の入射角度制御回路24は、第二の入射角度信号生成回路23の出力信号と、入射角度目標値設定回路32の出力信号Tgtφと、を用いて駆動信号を生成する。第二の入射角度駆動回路25は、再生用参照光光学系12内の後述するアクチュエータ224を、第二の入射角度制御回路24からの駆動信号を用いて駆動する。 The second incident angle signal generation circuit 23 generates a signal used for controlling the incident angle of the reference light from the output signal of the reproduction reference light optical system 12. The second incident angle control circuit 24 generates a drive signal using the output signal of the second incident angle signal generation circuit 23 and the output signal Tgtφ of the incident angle target value setting circuit 32. The second incident angle drive circuit 25 drives an actuator 224 (described later) in the reproduction reference light optical system 12 using a drive signal from the second incident angle control circuit 24.
 このようにアクチュエータ221及びアクチュエータ224を駆動することで、ホログラム記録媒体1に入射する参照光の入射角度が制御される。 In this way, by driving the actuator 221 and the actuator 224, the incident angle of the reference light incident on the hologram recording medium 1 is controlled.
 直交入射角度信号生成回路26は、ピックアップ11の出力信号から、参照光の直交入射角度の制御に用いるための信号を生成する。直交入射角度制御回路27は、直交入射角度信号生成回路26の出力信号と、コントローラ80からの直交入射角度の指令値Tgtρと、を用いて駆動信号を生成する。直交入射角度駆動回路28は、ピックアップ11内の後述するアクチュエータ219を、直交入射角度制御回路27からの駆動信号を用いて駆動する。このようにアクチュエータ219を駆動することで、ホログラム記録媒体1に入射する参照光の直交入射角度が制御される。 The orthogonal incident angle signal generation circuit 26 generates a signal to be used for controlling the orthogonal incident angle of the reference light from the output signal of the pickup 11. The orthogonal incident angle control circuit 27 generates a drive signal using the output signal of the orthogonal incident angle signal generation circuit 26 and the command value Tgtρ of the orthogonal incident angle from the controller 80. The orthogonal incident angle drive circuit 28 drives an actuator 219 (described later) in the pickup 11 using a drive signal from the orthogonal incident angle control circuit 27. By driving the actuator 219 in this way, the orthogonal incident angle of the reference light incident on the hologram recording medium 1 is controlled.
 コントローラ80から直交入射角度制御回路27へ指示される角度が基準位置の場合(直交入射角度の指令値Tgtρ=0)は、参照光は信号光の入射面と同一の面内を通過し、図17(a)で示した状態となる。他方、コントローラ80から直交入射角度制御回路27へ指示される角度が基準位置以外の場合は、参照光は信号光の入射面と直交する方向に所定量分傾いて入射し、一例として、図17(b)で示した状態となる。 When the angle specified by the controller 80 to the orthogonal incident angle control circuit 27 is the reference position (orthogonal incident angle command value Tgtρ = 0), the reference light passes through the same plane as the signal light incident surface. It will be in the state shown by 17 (a). On the other hand, when the angle instructed by the controller 80 to the orthogonal incident angle control circuit 27 is other than the reference position, the reference light is inclined by a predetermined amount in the direction orthogonal to the incident surface of the signal light. The state shown in (b) is obtained.
 ホログラム記録媒体1に照射する参照光と信号光の照射時間の調整は、コントローラ80がシャッタ制御回路84に信号を送信し、シャッタ制御回路84が、コントローラ80から送信された信号を用いてシャッタ203を開閉する制御により行う。 Adjustment of the irradiation time of the reference light and the signal light with which the hologram recording medium 1 is irradiated is performed by the controller 80 transmitting a signal to the shutter control circuit 84, and the shutter control circuit 84 using the signal transmitted from the controller 80. Control is performed to open and close.
 キュア光学系13は、ホログラム記録媒体1のプリキュア及びポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、ホログラム記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、ホログラム記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。プリキュア及びポストキュアに用いる光ビームは、インコヒーレントな光、即ち可干渉性(コヒーレンス)の低い光である必要があることが好ましい。 The cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the hologram recording medium 1. Pre-curing is a pre-process for irradiating a predetermined light beam in advance before irradiating the reference light and signal light to the desired position when recording information at the desired position in the hologram recording medium 1. Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the hologram recording medium 1 so that additional recording cannot be performed at the desired position. The light beam used for pre-cure and post-cure is preferably incoherent light, that is, light with low coherence.
 光源駆動回路83は、コントローラ80の指示により所定の光源駆動電流をピックアップ11内、キュア光学系13内の光源に供給する。ピックアップ11内、キュア光学系13内の光源の光源は、所定の光量で光ビームを発光する。 The light source drive circuit 83 supplies a predetermined light source drive current to the light sources in the pickup 11 and the cure optical system 13 in accordance with an instruction from the controller 80. The light source of the light source in the pickup 11 and the cure optical system 13 emits a light beam with a predetermined light amount.
 ここで、ピックアップ11、再生用参照光光学系12、キュア光学系13、角度誤差検出光学系30は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。 Here, the pickup 11, the reproduction reference light optical system 12, the cure optical system 13, and the angle error detection optical system 30 may be simplified by combining some optical system configurations or all optical system configurations. .
 図2は、ホログラム記録再生装置10におけるピックアップ11及び再生用参照光光学系12及び角度誤差検出光学系30の、基本的な光学系構成の一例における記録原理を示したものである。再生用参照光光学系12は、アクチュエータ224とガルバノミラー225から成る。 FIG. 2 shows a recording principle in an example of a basic optical system configuration of the pickup 11, the reproducing reference light optical system 12 and the angle error detection optical system 30 in the hologram recording / reproducing apparatus 10. The reproduction reference light optical system 12 includes an actuator 224 and a galvanometer mirror 225.
 光源201を出射した光ビームはコリメートレンズ202を透過し、シャッタ203に入射する。シャッタ203が開いている時は、光ビームはシャッタ203を通過した後、例えば2分の1波長板などで構成される光学素子204によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム205に入射する。 The light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203. When the shutter 203 is open, after the light beam passes through the shutter 203, the optical element 204 composed of, for example, a half-wave plate or the like, adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio. After the polarization direction is controlled, the light beam enters a PBS (Polarization Beam Splitter) prism 205.
 PBSプリズム205を透過した光ビームは、信号光206として働き、ビームエキスパンダ208によって光ビーム径が拡大された後、位相マスク209、リレーレンズ210、PBSプリズム211を透過して空間光変調器212に入射する。 The light beam that has passed through the PBS prism 205 functions as signal light 206, and after the light beam diameter is expanded by the beam expander 208, the light beam passes through the phase mask 209, the relay lens 210, and the PBS prism 211 and passes through the spatial light modulator 212. Is incident on.
 空間光変調器212によって情報が付加された信号光206は、PBSプリズム211を反射し、リレーレンズ213ならびに空間フィルタ214を伝播する。その後、信号光は対物レンズ215によってホログラム記録媒体1に集光する。 The signal light 206 to which information is added by the spatial light modulator 212 is reflected by the PBS prism 211 and propagates through the relay lens 213 and the spatial filter 214. Thereafter, the signal light is condensed on the hologram recording medium 1 by the objective lens 215.
 一方、PBSプリズム205を反射した光ビームは、偏光方向変換素子216によって記録時または再生時に応じて所定の偏光方向に設定された後、ウォラストンプリズム230に入射する。 On the other hand, the light beam reflected from the PBS prism 205 is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 216 and then enters the Wollaston prism 230.
 ウォラストンプリズム230は、入射した光ビームの偏光に応じて伝搬方向が角度φだけ異なる2つのビームに分岐する光学素子である。しかし本実施例のホログラム記録再生装置の記録時には、偏光方向変換素子216はs偏光のみを通過させる。これにより、記録時の光ビームは、偏光方向変換素子216及びウォラストンプリズム230で偏光状態や光ビームの分岐が起こることなく、直進する。直進した光ビームは参照光207となる。 The Wollaston prism 230 is an optical element that branches into two beams whose propagation directions differ by an angle φ according to the polarization of the incident light beam. However, at the time of recording by the hologram recording / reproducing apparatus of the present embodiment, the polarization direction conversion element 216 passes only s-polarized light. Thereby, the light beam at the time of recording goes straight without polarization state or branching of the light beam occurring in the polarization direction conversion element 216 and the Wollaston prism 230. The light beam that has traveled straight becomes reference light 207.
 ウォラストンプリズム230を透過した光ビームは、ミラー217ならびにガルバノミラー218を経由してガルバノミラー220に入射する。ガルバノミラー220はアクチュエータ221によって紙面内における角度を調整可能であり、レンズ222とレンズ223を通過した後にホログラム記録媒体1に入射する参照光207の入射角度を、所望の角度に設定することができる。なお、参照光207の入射角度を設定するために、ガルバノミラーに代えて、参照光207の波面を変換する素子を用いても構わない。 The light beam that has passed through the Wollaston prism 230 is incident on the galvanometer mirror 220 via the mirror 217 and the galvanometer mirror 218. The galvanometer mirror 220 can adjust the angle in the paper surface by the actuator 221, and the incident angle of the reference beam 207 incident on the hologram recording medium 1 after passing through the lens 222 and the lens 223 can be set to a desired angle. . In order to set the incident angle of the reference beam 207, an element that converts the wavefront of the reference beam 207 may be used instead of the galvanometer mirror.
 更にガルバノミラー218はアクチュエータ219によって紙面垂直方向における角度を調整可能であり、レンズ222とレンズ223を通過した後にホログラム記録媒体1に入射する参照光の直交入射角度を、所望の角度に設定することができる。 Further, the galvanometer mirror 218 can adjust the angle in the direction perpendicular to the paper surface by the actuator 219, and sets the orthogonal incident angle of the reference light incident on the hologram recording medium 1 after passing through the lens 222 and the lens 223 to a desired angle. Can do.
 このように信号光206と参照光207とをホログラム記録媒体1において、互いに重ね合うように入射させることで、ホログラム記録媒体1内には干渉縞パターンが形成され、このパターンをホログラム記録媒体1に書き込むことで情報を記録する。また、ガルバノミラー220によってホログラム記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。 Thus, the signal light 206 and the reference light 207 are incident on the hologram recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the hologram recording medium 1 and this pattern is written to the hologram recording medium 1. To record information. In addition, since the incident angle of the reference light incident on the hologram recording medium 1 can be changed by the galvanometer mirror 220, recording by angle multiplexing is possible.
 以降、同じ領域に参照光の入射角度を変えて記録されたホログラムにおいて、1つ1つの入射角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。 Hereinafter, in holograms recorded in the same area with different incident angles of the reference light, holograms corresponding to each incident angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. To do.
 図3は、ホログラム記録再生装置10におけるピックアップ11及び再生用参照光光学系12及び角度誤差検出光学系30の、基本的な光学系構成の一例における再生原理を示したものである。 FIG. 3 shows a reproduction principle in an example of a basic optical system configuration of the pickup 11, the reproduction reference light optical system 12, and the angle error detection optical system 30 in the hologram recording / reproduction apparatus 10.
 再生時には、偏光方向変換素子216は入射したS偏光をP偏光とS偏光からなる偏光成分に変換する。ウォラストンプリズム230は、入射した光ビームの偏光に応じて伝搬方向が角度φだけ異なる2つのビームに分岐する光学素子である。このため、ウォラストンプリズム230を透過した参照光207は、偏光が異なる2つの伝播方向の光ビームとなっている。ここでは、2つビームのうちS偏光の光ビームを参照光、P偏光の光ビームを制御用光ビームと呼ぶ。また参照光はウォラストンプリズム230を直進する。 During reproduction, the polarization direction conversion element 216 converts the incident S-polarized light into a polarized light component composed of P-polarized light and S-polarized light. The Wollaston prism 230 is an optical element that branches into two beams whose propagation directions differ by an angle φ according to the polarization of the incident light beam. For this reason, the reference light 207 transmitted through the Wollaston prism 230 is a light beam in two propagation directions having different polarizations. Here, of the two beams, the S-polarized light beam is referred to as reference light, and the P-polarized light beam is referred to as a control light beam. The reference light travels straight through the Wollaston prism 230.
 ウォラストンプリズム230を透過した2つの光ビームは、記録時と同様に、ガルバノミラー218及びガルバノミラー220を経由してホログラム記録媒体1に入射する。 The two light beams transmitted through the Wollaston prism 230 are incident on the hologram recording medium 1 via the galvanometer mirror 218 and the galvanometer mirror 220 in the same manner as in recording.
 このとき、参照光と制御用光ビームがホログラム記録媒体1内の記録領域に入射しているため、入射角度に応じた2つの回折光がレンズ231方向に発生する。これらの回折光は、レンズ231を透過し、PBSプリズム232に入射する。ここで、ホログラム記録媒体1で発生する回折光は、入射偏光と同じ偏光となるため、参照光から発生した回折光はPBSプリズム232を反射し、制御用光ビームから発生した回折光はPBSプリズム232を透過する。そして、それぞれの回折光は、検出レンズ233、検出レンズ235を経て光検出器234、光検出器236の受光部に入射する。 At this time, since the reference light and the control light beam are incident on the recording area in the hologram recording medium 1, two diffracted lights corresponding to the incident angle are generated in the direction of the lens 231. These diffracted lights pass through the lens 231 and enter the PBS prism 232. Here, since the diffracted light generated in the hologram recording medium 1 is the same polarization as the incident polarized light, the diffracted light generated from the reference light reflects the PBS prism 232, and the diffracted light generated from the control light beam is the PBS prism. 232 is transmitted. Then, the respective diffracted lights enter the light receiving portions of the photodetector 234 and the photodetector 236 through the detection lens 233 and the detection lens 235.
 光検出器234の出力信号及び光検出器236の出力信号は、角度誤差信号生成回路31に入力される。ここで、光検出器234で得られた信号をS1、光検出器236で得られた信号をS2とした場合、角度誤差信号(AES)は以下のように示せる。
The output signal of the photodetector 234 and the output signal of the photodetector 236 are input to the angle error signal generation circuit 31. Here, when the signal obtained by the photodetector 234 is S1, and the signal obtained by the photodetector 236 is S2, the angle error signal (AES) can be expressed as follows.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

なお、信号S1、信号S2はそれぞれの回折光の全光量を検出した総和信号である。角度誤差信号生成回路31は(数1)の演算を行い、角度誤差信号(AES)を出力する。

Signals S1 and S2 are sum signals obtained by detecting the total amount of each diffracted light. The angle error signal generation circuit 31 performs the calculation of (Equation 1) and outputs an angle error signal (AES).
 またガルバノミラー220を反射した参照光207はホログラム記録媒体1に入射し、ホログラム記録媒体1を透過した光ビームを、アクチュエータ224によって角度調整可能なガルバノミラー225にて反射させることで、その再生用参照光を生成する。 Further, the reference beam 207 reflected from the galvanometer mirror 220 is incident on the hologram recording medium 1, and the light beam transmitted through the hologram recording medium 1 is reflected by the galvanometer mirror 225 whose angle can be adjusted by the actuator 224. A reference beam is generated.
 この再生用参照光によって再生された回折光は、対物レンズ215、リレーレンズ213ならびに空間フィルタ214を伝播する。その後、再生された回折光はPBSプリズム211を透過して光検出器226に入射し、ホログラム記録媒体1内に記録された信号を再生することができる。光検出器226としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。 The diffracted light reproduced by the reproduction reference light propagates through the objective lens 215, the relay lens 213, and the spatial filter 214. Thereafter, the reproduced diffracted light passes through the PBS prism 211 and enters the photodetector 226, and the signal recorded in the hologram recording medium 1 can be reproduced. For example, an image sensor such as a CMOS image sensor or a CCD image sensor can be used as the photodetector 226. However, any element may be used as long as page data can be reproduced.
 なお本実施例において、第一の入射角度信号生成回路20は、アクチュエータ221に備え付けられた角度検出センサ(図示しない)の出力信号を用いて、ガルバノミラー220を反射した参照光207が最終的に媒体に入射する際の入射角度を示す信号AS1を生成する。同様に再生用参照光光学系12に関しては、第二の入射角度信号生成回路23は、アクチュエータ224に備え付けられた角度検出センサ(図示しない)の出力信号を用いて、ガルバノミラー225を反射した再生用参照光が最終的に媒体に入射する際の入射角度を示す信号AS2を生成する。 In this embodiment, the first incident angle signal generation circuit 20 uses the output signal of the angle detection sensor (not shown) provided in the actuator 221 to finally generate the reference light 207 reflected from the galvanometer mirror 220. A signal AS1 indicating the incident angle when entering the medium is generated. Similarly, with respect to the reproduction reference light optical system 12, the second incident angle signal generation circuit 23 uses the output signal of the angle detection sensor (not shown) provided in the actuator 224 to reproduce the galvano mirror 225. A signal AS2 indicating an incident angle when the reference light for use finally enters the medium is generated.
 直交入射角度信号生成回路26は、アクチュエータ219に備え付けられた角度検出センサ(図示しない)の出力信号を用いて、ガルバノミラー218を反射した参照光の直交入射角度を示す信号を生成し、直交入射角度の制御に用いるための信号として生成する。アクチュエータ221及びアクチュエータ224及びアクチュエータ219に備え付けられた角度検出センサは、例えば、光学式エンコーダを用いることができる。 The orthogonal incident angle signal generation circuit 26 generates a signal indicating the orthogonal incident angle of the reference light reflected from the galvanometer mirror 218 using an output signal of an angle detection sensor (not shown) provided in the actuator 219, and performs orthogonal incidence. Generated as a signal for use in angle control. For example, an optical encoder can be used as the angle detection sensor provided in the actuator 221, the actuator 224, and the actuator 219.
 ここで、角度誤差信号(AES)の検出方法について説明する。
まず角度誤差信号(AES)の検出方法について説明する。図7は、ガルバノミラー220を回転させてホログラム記録媒体1に対する参照光207の入射角度を変更したときの、光検出器234で得られる信号S1、光検出器236で得られる信号S2、再生信号の信号強度を示している。なお、それぞれの信号強度は最大値で正規化している。
Here, a method of detecting the angle error signal (AES) will be described.
First, a method for detecting the angle error signal (AES) will be described. FIG. 7 shows a signal S1 obtained by the photodetector 234, a signal S2 obtained by the photodetector 236, and a reproduction signal when the incident angle of the reference beam 207 to the hologram recording medium 1 is changed by rotating the galvanometer mirror 220. The signal intensity is shown. Each signal intensity is normalized with the maximum value.
 ホログラム記録媒体1に対する参照光207の入射角度に対して、信号S1と信号S2が角度Δφだけずれていることがわかる。これは、ウォラストンプリズム230により、角度の異なる2つの光ビームを生成し、分離して検出したためである。 It can be seen that the signal S1 and the signal S2 are shifted by an angle Δφ with respect to the incident angle of the reference beam 207 with respect to the hologram recording medium 1. This is because two light beams having different angles are generated by the Wollaston prism 230 and separated and detected.
 図8は図7の信号S1と信号S2から演算される本発明の角度差動信号AESを示している。図8より再生信号が最大となる角度P1(またはP2、P3)と、角度誤差信号がゼロとなる角度Z1(またはZ2、Z3)(ゼロクロスする角度)と、がずれていることがわかる。なお、P1とZ1(またはP2とZ2、P3とZ3)の角度ずれ量は、図7に示す信号S1と信号S2の角度差がΔφであることから、Δφ/2となっている。 FIG. 8 shows the angular differential signal AES of the present invention calculated from the signals S1 and S2 of FIG. It can be seen from FIG. 8 that the angle P1 (or P2, P3) at which the reproduction signal is maximum is shifted from the angle Z1 (or Z2, Z3) (the angle at which zero crossing is performed) at which the angle error signal is zero. Note that the amount of angular deviation between P1 and Z1 (or P2 and Z2, P3 and Z3) is Δφ / 2 because the angular difference between the signals S1 and S2 shown in FIG. 7 is Δφ.
 ここで角度誤差信号(AES)を用いて通常の制御を行うと再生信号が最大となる角度P1に制御することが困難である。例えば、BD(Blu-ray(登録商標))等に代表される従来の光ディスクでは、制御でオフセットするためには電気的にオフセットを与えていたが図8に示す角度誤差信号(AES)の場合、信号のボトム(またはピーク)となっているので同様の制御ができない課題がある。 Here, when normal control is performed using the angle error signal (AES), it is difficult to control to the angle P1 at which the reproduction signal is maximized. For example, in the case of a conventional optical disk represented by BD (Blu-ray (registered trademark)) or the like, an offset is electrically provided for offset by control, but the angle error signal (AES) shown in FIG. Since the signal is at the bottom (or peak), there is a problem that the same control cannot be performed.
 本実施例の第一の入射角度制御回路21の構成について、図9を用いて説明する。第一の入射角度制御回路21は、減算器2101、サーボ補償器2102、出力制御スイッチ2103、静定判定回路2104から成る。 The configuration of the first incident angle control circuit 21 of the present embodiment will be described with reference to FIG. The first incident angle control circuit 21 includes a subtractor 2101, a servo compensator 2102, an output control switch 2103, and a static determination circuit 2104.
 第一の入射角度制御回路21は、第一の入射角度信号生成回路20の出力信号AS1と、入射角度目標値設定回路32の出力する入射角度の目標値Tgtφを入力とし、参照光207がホログラム記録媒体1に入射する際の入射角度がTgtφとなるようにガルバノミラー220の角度を制御する。以降、この制御のことを第一の入射角度制御と称する。 The first incident angle control circuit 21 receives the output signal AS1 of the first incident angle signal generation circuit 20 and the target value Tgtφ of the incident angle output from the incident angle target value setting circuit 32, and the reference beam 207 is a hologram. The angle of the galvanometer mirror 220 is controlled so that the incident angle when entering the recording medium 1 becomes Tgtφ. Hereinafter, this control is referred to as first incident angle control.
 ここでAS1信号はガルバノミラー220を反射した参照光207が最終的に媒体に入射する際の入射角度を示す信号である。 Here, the AS1 signal is a signal indicating an incident angle when the reference light 207 reflected by the galvano mirror 220 finally enters the medium.
 減算器2101は、AS1信号とTgtφ信号の減算を行い、(AS1-Tgtφ)の値を出力する。サーボ補償器2102は、減算器2101の出力信号に対してゲイン及び位相の補償を行い、ガルバノミラー220の角度を制御するための駆動信号を出力する。減算器2101及びサーボ補償器2102によって、ガルバノミラー220の角度の制御に関してフィードバック制御系が構成される。 The subtractor 2101 subtracts the AS1 signal and the Tgtφ signal and outputs a value of (AS1−Tgtφ). The servo compensator 2102 performs gain and phase compensation on the output signal of the subtractor 2101, and outputs a drive signal for controlling the angle of the galvanometer mirror 220. The subtractor 2101 and the servo compensator 2102 constitute a feedback control system for controlling the angle of the galvanometer mirror 220.
 また、フィードバック制御系の目標値はTgtφであり、ガルバノミラー220の角度がTgtφとなるように制御が行われる。本実施例の構成によれば、フィードバックされる位置情報は、AS1信号である。 Further, the target value of the feedback control system is Tgtφ, and control is performed so that the angle of the galvano mirror 220 becomes Tgtφ. According to the configuration of the present embodiment, the position information fed back is the AS1 signal.
 出力制御スイッチ2103は、サーボ補償器2102の出力信号を入力とし、コントローラ80からの制御信号G1ONに従い、サーボ補償器2102の出力信号を出力するかどうかを切り替える。G1ON信号がHighのときは、出力制御スイッチ2103は端子aを選択し、サーボ補償器2102の出力信号をGD1信号として出力する。一方、G1ON信号がLowのときは、出力制御スイッチ2103は端子bを選択し、基準電位をGD1信号として出力し、サーボ補償器2102の出力信号を出力しない。このようにG1ON信号は、第一の入射角度制御のオン・オフを指示する信号となる。そして、これにより出力制御スイッチ2103は、第一の入射角度制御のオン・オフを切り替えるスイッチとして機能する。出力制御スイッチ2103から出力されたGD1信号は、第一の入射角度駆動回路22によって増幅され、ガルバノミラー220と一体となって駆動するアクチュエータ221を制御するための駆動信号となる。 The output control switch 2103 receives the output signal of the servo compensator 2102 and switches whether to output the output signal of the servo compensator 2102 according to the control signal G1ON from the controller 80. When the G1ON signal is High, the output control switch 2103 selects the terminal a and outputs the output signal of the servo compensator 2102 as the GD1 signal. On the other hand, when the G1ON signal is Low, the output control switch 2103 selects the terminal b, outputs the reference potential as the GD1 signal, and does not output the servo compensator 2102 output signal. Thus, the G1ON signal is a signal for instructing on / off of the first incident angle control. Thus, the output control switch 2103 functions as a switch for switching on / off the first incident angle control. The GD1 signal output from the output control switch 2103 is amplified by the first incident angle drive circuit 22 and becomes a drive signal for controlling the actuator 221 that is driven integrally with the galvanometer mirror 220.
 静定判定回路2104は、減算器2101の出力信号が入力され、ガルバノミラー220を反射した参照光207が最終的に媒体に入射する際の入射角度が目標値Tgtφ近傍の値である否かを判定し、その判定結果をG1OK信号として出力する。なお、ガルバノミラー220を反射した参照光207が最終的に媒体に入射する際の入射角度が目標値Tgtφ近傍の値である場合に、G1OK信号はHighとなるものとする。静定判定回路2104は、例えば、減算器2101の出力信号の絶対値が所定の閾値以下となってからの経過時間を計測し、その計測時間が所定時間以上続くことで判定を行う回路とすることで実現できる。判定結果であるG1OK信号はコントローラ80へと出力される。そのため、コントローラ80は、G1OK信号によって、ガルバノミラー220を反射した参照光207が最終的に媒体に入射する際の入射角度が目標値Tgtφ近傍の値であるか否かを判定可能である。即ち静定判定回路2104は、第一の入射角度制御の収束を判定する回路として機能する。 The static determination circuit 2104 receives the output signal of the subtractor 2101 and determines whether the incident angle when the reference light 207 reflected from the galvano mirror 220 is finally incident on the medium is a value near the target value Tgtφ. The determination result is output as a G1OK signal. It is assumed that the G1OK signal becomes High when the incident angle when the reference light 207 reflected by the galvanometer mirror 220 finally enters the medium is a value in the vicinity of the target value Tgtφ. The static determination circuit 2104 is, for example, a circuit that measures an elapsed time after the absolute value of the output signal of the subtractor 2101 becomes equal to or less than a predetermined threshold, and makes a determination when the measured time continues for a predetermined time or longer. This can be achieved. The G1OK signal that is the determination result is output to the controller 80. Therefore, the controller 80 can determine whether or not the incident angle when the reference light 207 reflected from the galvano mirror 220 is finally incident on the medium is a value in the vicinity of the target value Tgtφ by the G1OK signal. That is, the static determination circuit 2104 functions as a circuit that determines the convergence of the first incident angle control.
 第二の入射角度制御回路24の構成は、第一の入射角度制御回路21の構成と同様である。第一の入射角度制御回路21におけるAS1信号、G1ON信号、GD1信号、G1OK信号は、第二の入射角度制御回路24においてはそれぞれ、AS2信号、G2ON信号、GD2信号、G2OK信号と称する。また、第二の入射角度制御回路24が構成する制御系による制御のことを第二の入射角度制御と称する。 The configuration of the second incident angle control circuit 24 is the same as the configuration of the first incident angle control circuit 21. The AS1 signal, G1ON signal, GD1 signal, and G1OK signal in the first incident angle control circuit 21 are referred to as the AS2 signal, G2ON signal, GD2 signal, and G2OK signal in the second incident angle control circuit 24, respectively. The control by the control system configured by the second incident angle control circuit 24 is referred to as second incident angle control.
 直交入射角度制御回路27の構成についても、第一の入射角度制御回路21の構成と同様である。 The configuration of the orthogonal incident angle control circuit 27 is the same as that of the first incident angle control circuit 21.
 図4は、ホログラム記録再生装置10における記録、再生のフローチャートを示したものである。ここでは、特にホログラフィを利用した記録再生に関する処理について説明する。なお本明細書では、ホログラム記録再生装置10にホログラム記録媒体1を挿入した後、記録または再生の準備が完了するまでの処理をセットアップ処理と称する。準備完了状態からホログラム記録媒体1に情報を記録する処理を記録処理、準備完了状態からホログラム記録媒体1に記録した情報を再生する処理を再生処理と称する。 FIG. 4 shows a flowchart of recording and reproduction in the hologram recording / reproducing apparatus 10. Here, processing relating to recording / reproduction using holography in particular will be described. In the present specification, a process from when the hologram recording medium 1 is inserted into the hologram recording / reproducing apparatus 10 until preparation for recording or reproduction is completed is referred to as a setup process. The process of recording information on the hologram recording medium 1 from the ready state is called a recording process, and the process of reproducing information recorded on the hologram recording medium 1 from the ready state is called a playback process.
 図4(a)は、セットアップ処理のフローチャートを示し、図4(b)は記録処理のフローチャート、図4(c)は再生処理のフローチャートを示したものである。 4 (a) shows a flowchart of the setup process, FIG. 4 (b) shows a flowchart of the recording process, and FIG. 4 (c) shows a flowchart of the reproduction process.
 図4(a)に示すようにセットアップ処理を開始すると(ステップS401)、ホログラム記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうかを判別する、媒体判別を行う(ステップS402)。 When the setup process is started as shown in FIG. 4A (step S401), the hologram recording / reproducing apparatus 10 determines whether the inserted medium is a medium for recording or reproducing digital information using holography, for example. The medium is determined (step S402).
 媒体判別の結果、ホログラフィを利用してデジタル情報を記録または再生するホログラム記録媒体1であると判断すると、ホログラム記録再生装置10は、ホログラム記録媒体1に設けられたコントロールデータを読み出し(ステップS403)、例えばホログラム記録媒体1に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。 If it is determined that the hologram recording medium 1 records or reproduces digital information using holography as a result of medium discrimination, the hologram recording / reproducing apparatus 10 reads control data provided on the hologram recording medium 1 (step S403). For example, information on the hologram recording medium 1 and information on various setting conditions at the time of recording and reproduction are obtained.
 コントロールデータの読み出し後は、ホログラム記録再生装置10は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(ステップS404)を行う。これによりホログラム記録再生装置10は、記録または再生の準備が完了し、セットアップ処理を終了する(ステップS405)。 After reading the control data, the hologram recording / reproducing apparatus 10 performs various adjustments according to the control data and learning processing related to the pickup 11 (step S404). Thereby, the hologram recording / reproducing apparatus 10 completes preparation for recording or reproduction, and ends the setup process (step S405).
 次に、準備完了状態から情報を記録するまでの処理について、図4(b)のフローチャートを用いて説明する。記録処理を開始すると(ステップS411)、ホログラム記録再生装置10は、外部制御装置91から記録データを受信して(ステップS412)、信号生成回路81において該データに応じた2次元データを生成し、ピックアップ11内の空間光変調器212に送る。 Next, processing from the ready state to recording of information will be described with reference to the flowchart of FIG. When the recording process is started (step S411), the hologram recording / reproducing device 10 receives the recording data from the external control device 91 (step S412), and the signal generation circuit 81 generates two-dimensional data corresponding to the data. The light is sent to the spatial light modulator 212 in the pickup 11.
 その後、ホログラム記録再生装置10は、ホログラム記録媒体1に高品質の情報を記録できるように、必要に応じて例えば光源201のパワー最適化やシャッタ203による露光時間の最適化等の各種記録用学習処理を事前に行う(ステップS413)。 Thereafter, the holographic recording / reproducing apparatus 10 learns for various recordings such as optimization of the power of the light source 201 and optimization of the exposure time by the shutter 203 so that high quality information can be recorded on the holographic recording medium 1. Processing is performed in advance (step S413).
 その後、シーク処理(ステップS414)では、ホログラム記録再生装置10は、スピンドル制御回路40及び半径方向搬送制御回路42を用いて、スピンドルモータ50及び半径方向搬送部51を制御する。これによって、ピックアップ11ならびにキュア光学系13から照射される光ビームがホログラム記録媒体1の所定の位置に照射されるように、ホログラム記録媒体1が位置決めされる。ホログラム記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、アドレス情報に対応した位置に、光ビームの照射位置が位置決めされているか確認する。アドレス情報に対応した位置に光ビームの照射位置が位置決めされていなければ、アドレス情報に対応した位置とのずれ量を算出し、再度スピンドル制御回路40及び半径方向搬送制御回路42を用いて、スピンドルモータ50及び半径方向搬送部51を制御し、位置決めする動作を繰り返す。 Thereafter, in the seek process (step S414), the hologram recording / reproducing apparatus 10 controls the spindle motor 50 and the radial transport unit 51 using the spindle control circuit 40 and the radial transport control circuit 42. Thus, the hologram recording medium 1 is positioned so that the light beam irradiated from the pickup 11 and the cure optical system 13 is irradiated to a predetermined position of the hologram recording medium 1. When the hologram recording medium 1 has address information, the address information is reproduced, and it is confirmed whether the irradiation position of the light beam is positioned at a position corresponding to the address information. If the irradiation position of the light beam is not positioned at the position corresponding to the address information, a deviation amount from the position corresponding to the address information is calculated, and the spindle control circuit 40 and the radial direction conveyance control circuit 42 are used again to calculate the spindle. The operation of controlling and positioning the motor 50 and the radial conveyance unit 51 is repeated.
 その後、ホログラム記録再生装置10は、記録するデータをホログラム記録媒体1にホログラムとして記録するデータ記録処理を行う(ステップS415)角度多重方式においては、ホログラム記録媒体に記憶したホログラムと同じ領域に、参照光の照射角度を所定角度変えて、既に記録されているホログラムと異なるホログラムを記憶してブックを形成する。データ記録処理が完了すると、記録処理を終了する(ステップS416)。なお、必要に応じてホログラム記憶媒体1に記録したデータをベリファイしても構わない。 Thereafter, the hologram recording / reproducing apparatus 10 performs a data recording process for recording data to be recorded as a hologram on the hologram recording medium 1 (step S415). In the angle multiplexing method, a reference is made to the same area as the hologram stored in the hologram recording medium. The light irradiation angle is changed by a predetermined angle, and a hologram different from the already recorded hologram is stored to form a book. When the data recording process is completed, the recording process is terminated (step S416). Note that data recorded in the hologram storage medium 1 may be verified as necessary.
 次に、準備完了状態から記録された情報を再生するまでの処理にについて、図4(c)のフローチャートを用いて説明する。再生処理を開始すると(ステップS421)、ホログラム記録再生装置10は、まずシーク処理(ステップS422)で、スピンドル制御回路40及び半径方向搬送制御回路42を用いて、ピックアップ11ならびに再生用参照光光学系12から照射される光ビームがホログラム記録媒体1の所定の位置に照射されるように、ホログラム記録媒体1を位置決めする。ホログラム記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、アドレス情報に対応した位置に光ビームの照射位置が位置決めされているか確認する。アドレス情報に対応した位置に光ビームの照射位置が位置決めされていなければ、アドレス情報に対応した位置とのずれ量を算出し、再度スピンドル制御回路40及び半径方向搬送制御回路42を用いて、スピンドルモータ50及び半径方向搬送部51を制御し、位置決めする動作を繰り返す。 Next, processing from the ready state to playback of recorded information will be described with reference to the flowchart of FIG. When the reproduction process is started (step S421), the hologram recording / reproduction apparatus 10 first uses the spindle control circuit 40 and the radial direction conveyance control circuit 42 in the seek process (step S422), and uses the pickup 11 and the reproduction reference light optical system. The hologram recording medium 1 is positioned so that the light beam irradiated from 12 is irradiated to a predetermined position of the hologram recording medium 1. When the hologram recording medium 1 has address information, the address information is reproduced, and it is confirmed whether the irradiation position of the light beam is positioned at a position corresponding to the address information. If the irradiation position of the light beam is not positioned at the position corresponding to the address information, a deviation amount from the position corresponding to the address information is calculated, and the spindle control circuit 40 and the radial direction conveyance control circuit 42 are used again to calculate the spindle. The operation of controlling and positioning the motor 50 and the radial conveyance unit 51 is repeated.
 その後、ホログラム記録再生装置10は、ピックアップ11から参照光207をホログラム記憶媒体1へ出射する。参照光にによって再生された回折光は、光検出器226で2次元データとして検出され、信号処理回路82が2次元データを処理することにより、ホログラム記録媒体1に記録されたデータとして読み出される(ステップS423)。ホログラム記録再生装置10は、読み出されたデータを再生データとして外部制御装置91へ送信する(ステップS424)。再生データの送信が完了すると、再生処理を終了する(ステップS425)。 Thereafter, the hologram recording / reproducing apparatus 10 emits the reference beam 207 from the pickup 11 to the hologram storage medium 1. The diffracted light reproduced by the reference light is detected as two-dimensional data by the photodetector 226, and the signal processing circuit 82 processes the two-dimensional data to read out the data recorded on the hologram recording medium 1 ( Step S423). The hologram recording / reproducing device 10 transmits the read data to the external control device 91 as reproduced data (step S424). When transmission of the reproduction data is completed, the reproduction process is terminated (step S425).
 続いて本実施例におけるシーク処理S414について、図5のフローチャートを用いて説明する。なお、シーク処理S422に関しても同一のフローチャートである。ここで、本実施例のようにホログラム記録媒体1が円盤状である場合のシーク処理においては、半径r及び回転角θがパラメータとなる。以降、半径rの駆動軸をr軸、回転角θの駆動軸をθ軸と称する。他方、ブック内の各ページへの位置決めは参照光の入射角度φがパラメータになる。以降、参照光の入射角度φの駆動軸をφ軸と称する。また、r軸方向、θ軸方向へのホログラム記録媒体1の移動はスピンドル50、半径方向搬送器51にて行う。 Subsequently, the seek process S414 in the present embodiment will be described with reference to the flowchart of FIG. Note that the same flowchart is applied to the seek process S422. Here, in the seek process when the hologram recording medium 1 has a disk shape as in this embodiment, the radius r and the rotation angle θ are parameters. Hereinafter, the drive shaft having the radius r is referred to as r-axis, and the drive shaft having the rotation angle θ is referred to as θ-axis. On the other hand, the positioning on each page in the book uses the incident angle φ of the reference light as a parameter. Hereinafter, the drive axis at the incident angle φ of the reference light is referred to as the φ axis. Further, the movement of the hologram recording medium 1 in the r-axis direction and the θ-axis direction is performed by the spindle 50 and the radial direction transporter 51.
 シーク処理を開始すると(ステップS501)、目標アドレスのホログラムが位置するブックの座標(r、θ)と現在の照射位置との差分を計算して、r軸及びθ軸について移動量を計算する(ステップS502)。次に、r軸方向の移動量がゼロ以外であるかを判断する(ステップS503)。r軸方向の移動量がゼロ以外であれば(ステップS503にてYesの場合)、r軸方向の移動を開始する(ステップS504)。ステップS504に続いては、後述するステップS505に移行する。またr軸方向の移動量がゼロであれば(ステップS503にてNoの場合)、ステップS504を行わずにステップS505に移行する。 When the seek process is started (step S501), the difference between the coordinates (r, θ) of the book where the hologram of the target address is located and the current irradiation position is calculated, and the movement amount is calculated for the r axis and the θ axis ( Step S502). Next, it is determined whether the amount of movement in the r-axis direction is other than zero (step S503). If the movement amount in the r-axis direction is other than zero (Yes in step S503), the movement in the r-axis direction is started (step S504). After step S504, the process proceeds to step S505 described later. If the amount of movement in the r-axis direction is zero (No in step S503), the process proceeds to step S505 without performing step S504.
 ステップS505においては、θ軸方向の移動量がゼロ以外であるかを判断する。θ軸方向の移動量がゼロ以外であれば(ステップS505にてYesの場合)、θ軸方向の移動を開始する(ステップS506)。ステップS506に続いては、後述するステップS507に移行する。またθ軸方向の移動量がゼロであれば(ステップS505にてNoの場合)、ステップS506を行わずにステップS507に移行する。 In step S505, it is determined whether the amount of movement in the θ-axis direction is other than zero. If the movement amount in the θ-axis direction is other than zero (Yes in step S505), the movement in the θ-axis direction is started (step S506). After step S506, the process proceeds to step S507 described later. If the amount of movement in the θ-axis direction is zero (No in step S505), the process proceeds to step S507 without performing step S506.
 ステップS507においては、r軸方向と、θ軸方向の移動が完了したかどうかの判定を行う。移動が完了したことは、スピンドル制御回路40及び半径方向搬送制御回路42の出力信号に基づき判定を行う。 In step S507, it is determined whether the movement in the r-axis direction and the θ-axis direction is completed. The completion of the movement is determined based on output signals from the spindle control circuit 40 and the radial direction conveyance control circuit 42.
 移動が完了していないと判定された場合(ステップS507でNoの場合)には、再びステップS507に戻る。即ち、移動が完了するまで待機する動作となる。 If it is determined that the movement has not been completed (No in step S507), the process returns to step S507 again. That is, the operation waits until the movement is completed.
 移動が完了したと判定された場合(ステップS507でYesの場合)、移動を終了する(ステップS508)。 If it is determined that the movement has been completed (Yes in step S507), the movement is terminated (step S508).
 次に、再生時のシーク処理であるかを判断する(ステップS509)。再生時のシーク処理でない場合(ステップS509でNoの場合)、後述するステップS516に進み、シーク処理を終了する。再生時のシーク処理である場合は(ステップS509でYesの場合)、これでシーク処理を終了せず、最終的には、記録されたホログラムを再生して得られるアドレス情報を用いて目標アドレスに正しく位置決めされるまでシーク処理を続行する。これは、記録時のシーク処理はホログラム記録媒体1内の未記録部へのシーク処理となり、アドレス情報が得られないためである。 Next, it is determined whether or not the seek process during reproduction is performed (step S509). If it is not the seek process at the time of reproduction (No in step S509), the process proceeds to step S516 described later, and the seek process is terminated. In the case of seek processing at the time of reproduction (Yes in step S509), the seek processing is not finished with this, and finally, the address information obtained by reproducing the recorded hologram is used to set the target address. Continue seeking until it is correctly positioned. This is because the seek process at the time of recording is a seek process to an unrecorded portion in the hologram recording medium 1, and address information cannot be obtained.
 再生時のシーク処理である場合は(ステップS509でYesの場合)、r軸及びθ軸で表わされた座標に記録されているブック内の1ページ目のページの再生を行う(ステップS510)。 In the case of seek processing during reproduction (Yes in step S509), reproduction of the first page in the book recorded at the coordinates represented by the r-axis and θ-axis is performed (step S510). .
 ステップS510の後、当該ページが再生可能であったかを判断する(ステップS511)。再生が不可能である場合(ステップS511でNoの場合)には、ステップS502からステップS508までの、スピンドル50及び半径方向搬送器51によるホログラム記録媒体1の移動が正確に行えなかったことを意味する。そのため、所定のリトライパラメータに基づいて、r軸及びθ軸のリトライ値を計算し(ステップS512)、ステップS502に戻る。これにより、位置決めした近傍に移動するシーク処理が行われる。 After step S510, it is determined whether the page can be reproduced (step S511). If reproduction is impossible (No in step S511), it means that the movement of the hologram recording medium 1 by the spindle 50 and the radial transporter 51 from step S502 to step S508 could not be performed accurately. To do. Therefore, based on the predetermined retry parameter, the r-axis and θ-axis retry values are calculated (step S512), and the process returns to step S502. As a result, seek processing for moving to the vicinity of the positioning is performed.
 ホログラムが再生可能であった場合(ステップS511にてYesの場合)、再生されたホログラムに含まれるアドレス情報を取得する(ステップS513)。続いて、取得したアドレスが目標アドレスであるか否かを判断する(ステップS514)。取得したアドレスが目標アドレスでなかった場合(ステップS514にてNoの場合)には、位置決めが正確に行えなかったことを意味する。そのため、取得したアドレスの座標(r、θ)と目標アドレスの座標(r、θ)の差分を計算し(ステップS515)、ステップS502に戻る。これにより、ホログラムのアドレス情報に基づいたシーク処理が行われる。 If the hologram can be reproduced (Yes in step S511), the address information included in the reproduced hologram is acquired (step S513). Subsequently, it is determined whether or not the acquired address is a target address (step S514). If the acquired address is not the target address (No in step S514), it means that positioning has not been performed correctly. Therefore, the difference between the coordinates (r, θ) of the acquired address and the coordinates (r, θ) of the target address is calculated (step S515), and the process returns to step S502. Thereby, a seek process based on the address information of the hologram is performed.
 取得したアドレスが目標アドレスである場合(ステップS514にてYesの場合)、シーク処理を終了する(ステップS516。 If the acquired address is the target address (Yes in step S514), the seek process is terminated (step S516).
 続いて本実施例におけるデータ再生処理S423について、図6のフローチャートを用いて説明する。 Subsequently, the data reproduction process S423 in the present embodiment will be described with reference to the flowchart of FIG.
 データ再生処理S423を開始すると(ステップS601)、まず、ブックの番号を示す変数j及びブック内のページの番号を示す変数iをゼロに初期化する(ステップS602)。 When the data reproduction process S423 is started (step S601), first, the variable j indicating the book number and the variable i indicating the page number in the book are initialized to zero (step S602).
 続いて、j番目のブック(Book[j]と称する)へシーク処理を行う(ステップS603)。この時のシーク処理は、図5で示したシーク処理と同様である。 Subsequently, seek processing is performed on the j-th book (referred to as Book [j]) (step S603). The seek process at this time is the same as the seek process shown in FIG.
 ステップS603の後、コントローラ80は、入射角度目標値設定回路32に指示を出し、入射角度の目標値としてTgtφ=φ0[1]を設定する(ステップS604)。ここでφ0[i]はi番目のページに対応した入射角度である。即ちステップS604は、1番目のページに対応した入射角度を設定する。 After step S603, the controller 80 instructs the incident angle target value setting circuit 32 to set Tgtφ = φ0 [1] as the target value of the incident angle (step S604). Here, φ0 [i] is an incident angle corresponding to the i-th page. That is, step S604 sets an incident angle corresponding to the first page.
 続いてコントローラ80は、G1ON信号及びG2ON信号をHighにしφ軸の制御を開始する。即ち、第一の入射角度制御回路21及び第二の入射角度制御回路24により、によるアクチュエータ221、アクチュエータ224の制御を開始する(ステップS605)。これにより、参照光207がホログラム記録媒体1に入射する際の入射角度がTgtφとなるように、ガルバノミラー220の角度及びガルバノミラー225の角度について、それぞれ制御が開始される。 Subsequently, the controller 80 sets the G1ON signal and the G2ON signal to High, and starts control of the φ axis. That is, the control of the actuator 221 and the actuator 224 is started by the first incident angle control circuit 21 and the second incident angle control circuit 24 (step S605). Thereby, control is started about the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225 so that the incident angle when the reference beam 207 enters the hologram recording medium 1 becomes Tgtφ.
 ステップS605の後、1ページ目に関しては角度誤差信号(AES)に基づく参照光207の制御を行わずに、ステップS612に進む。 After step S605, for the first page, the process proceeds to step S612 without controlling the reference beam 207 based on the angle error signal (AES).
 ステップS612においては、コントローラ80は、G1OK信号及びG2OK信号を監視し、両方の信号がHighであるかを判断することで、移動が完了したかを判断する(ステップS612)。 In step S612, the controller 80 monitors the G1OK signal and the G2OK signal, and determines whether the movement is completed by determining whether both signals are high (step S612).
 G1OK信号及びG2OK信号のいずれか一方でもHighでない場合(ステップS612でNoの場合)、ステップS612に戻り、G1OK信号及びG2OK信号の両方がHighとなるまで待機する。 If either the G1OK signal or the G2OK signal is not High (No in Step S612), the process returns to Step S612 and waits until both the G1OK signal and the G2OK signal become High.
 G1OK信号及びG2OK信号の両方がHighであれば(ステップS612でYesの場合)、アクチュエータ221及びアクチュエータ224が共に移動を完了したことを意味する。これによりG1OK信号及びG2OK信号の両方がHighとなったとき、ページデータを再生し(ステップS613)、再生可能であったかを判断する(ステップS614)。 If both the G1OK signal and the G2OK signal are High (Yes in Step S612), it means that the actuator 221 and the actuator 224 have both moved. As a result, when both the G1OK signal and the G2OK signal become High, the page data is reproduced (step S613), and it is determined whether the reproduction is possible (step S614).
 ページデータが再生不可であった場合は(ステップS614でNoの場合)、所定のリトライパラメータに基づいてリトライ値を設定し(ステップS615)、ステップS612に戻る。ここでステップS615においては、所定のリトライパラメータに基づいて参照光207の入射角度の目標値Tgtφや直交入射角度の目標値Tgtρを再設定。 If the page data cannot be reproduced (No in step S614), a retry value is set based on a predetermined retry parameter (step S615), and the process returns to step S612. Here, in step S615, the target value Tgtφ of the incident angle of the reference beam 207 and the target value Tgtρ of the orthogonal incident angle are reset based on a predetermined retry parameter.
 ページデータが再生可能であった場合は(ステップS614でYesの場合)、変数iに1を加算する(ステップS616)。続いて変数iが所定値PageNumより大きいかを判断する(ステップS617)。なお所定値PageNumは、ブック内のページ数である。 If the page data can be reproduced (Yes in step S614), 1 is added to the variable i (step S616). Subsequently, it is determined whether the variable i is larger than a predetermined value PageNum (step S617). The predetermined value PageNum is the number of pages in the book.
 変数iが所定値PageNumより大きくない場合(ステップS617でNoの場合)、当該ブックには未再生のページが残っているため、ステップS606に進み、2ページ目以降の再生に移行する。 If the variable i is not larger than the predetermined value PageNum (No in step S617), since there is an unreproduced page in the book, the process proceeds to step S606, and the process proceeds to reproduction for the second and subsequent pages.
 続いて、2ページ目以降の再生において行われるステップS606からステップS611について説明する。 Subsequently, steps S606 to S611 performed in the reproduction from the second page onward will be described.
 ステップS606において、コントローラ80は、入射角度目標値設定回路32に指示を出し、入射角度の目標値としてTgtφ=φ0[i]を設定する(ステップS606)。これにより、入射角度の目標値が変更されるため、参照光がホログラム記録媒体1に入射する際の入射角度がφ0[i]となるように、ガルバノミラー220の角度及びガルバノミラー225の角度について、それぞれ制御が開始される。 In step S606, the controller 80 instructs the incident angle target value setting circuit 32 to set Tgtφ = φ0 [i] as the target value of the incident angle (step S606). Thereby, since the target value of the incident angle is changed, the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225 are set so that the incident angle when the reference light enters the hologram recording medium 1 becomes φ0 [i]. , Control is started.
 続いて入射角度目標値設定回路32は角度誤差信号(AES)を監視し、角度誤差信号(AES)の電圧レベルが閾値Vthより大きいかを判断する(ステップS607)。 Subsequently, the incident angle target value setting circuit 32 monitors the angle error signal (AES) and determines whether the voltage level of the angle error signal (AES) is greater than the threshold value Vth (step S607).
 角度誤差信号(AES)の電圧レベルが閾値Vthより大きくない場合(ステップS607でNoの場合)、ステップS607に戻り、角度誤差信号(AES)の電圧レベルが閾値Vthより大きくなるまで待機する。 If the voltage level of the angle error signal (AES) is not greater than the threshold value Vth (No in step S607), the process returns to step S607 and waits until the voltage level of the angle error signal (AES) becomes greater than the threshold value Vth.
 角度誤差信号(AES)の電圧レベルが閾値Vthより大きい場合(ステップS607でYesの場合)、続いて入射角度目標値設定回路32は角度誤差信号(AES)を監視し、角度誤差信号(AES)の電圧レベルが基準電位Vrefをまたぐか否かを判断する(ステップS608)。なおこの動作は、一例として、所定のサンプリング周期で角度誤差信号(AES)をサンプリングし、1サンプル前の値及び現在の値と基準電位Vrefの大小を比較することで実現できる。 If the voltage level of the angle error signal (AES) is greater than the threshold value Vth (Yes in step S607), then the incident angle target value setting circuit 32 monitors the angle error signal (AES), and the angle error signal (AES). It is determined whether or not the voltage level crosses the reference potential Vref (step S608). As an example, this operation can be realized by sampling the angle error signal (AES) at a predetermined sampling period and comparing the value of the previous sample and the current value with the reference potential Vref.
 角度誤差信号(AES)の電圧レベルが基準電位Vrefをまたがない場合(ステップS608でNoの場合)、ステップS608に戻り、角度誤差信号(AES)の電圧レベルが基準電位Vrefをまたぐまで待機する。 When the voltage level of the angle error signal (AES) does not cross the reference potential Vref (No in step S608), the process returns to step S608 and waits until the voltage level of the angle error signal (AES) crosses the reference potential Vref. .
 角度誤差信号(AES)の電圧レベルが基準電位Vrefをまたぐ場合(ステップS608でYesの場合)、現在のAS1信号を取得し、その値から参照光がホログラム記録媒体1に入射する際の入射角度φzへと換算を行う(ステップS609)。即ちφzは、角度誤差信号(AES)が基準電位となるタイミングにおける参照光の入射角度である。 When the voltage level of the angle error signal (AES) crosses the reference potential Vref (Yes in step S608), the current AS1 signal is acquired, and the incident angle when the reference light is incident on the hologram recording medium 1 from the value. Conversion to φz is performed (step S609). That is, φz is the incident angle of the reference light at the timing when the angle error signal (AES) becomes the reference potential.
 続いて入射角度目標値設定回路32は、新たな入射角度目標値φ1として、以下の値を計算し(ステップS610)、入射角度目標値Tgtφをφ1で書き換える(ステップS611)。
Subsequently, the incident angle target value setting circuit 32 calculates the following value as a new incident angle target value φ1 (step S610), and rewrites the incident angle target value Tgtφ with φ1 (step S611).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

これにより、ガルバノミラー220の角度及びガルバノミラー225の角度に関して、参照光がホログラム記録媒体1に入射する際の入射角度がφ1となるように、制御目標値が修正される。

Thus, the control target value is corrected so that the incident angle when the reference light is incident on the hologram recording medium 1 is φ1 with respect to the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225.
 即ち本実施例のフローチャートによれば、ブック内の2ページ目以降のデータ再生において、ガルバノミラー220の角度及びガルバノミラー225の角度は、i番目のページに対応した入射角度φ[i]を目標角度として移動を開始した後、角度誤差信号(AES)に基づき目標角度をφ1に修正する動作となる。 That is, according to the flowchart of this embodiment, in the data reproduction for the second and subsequent pages in the book, the angle of the galvano mirror 220 and the angle of the galvano mirror 225 are set to the incident angle φ [i] corresponding to the i-th page. After starting to move as an angle, the target angle is corrected to φ1 based on the angle error signal (AES).
 これは、移動開始時に暫定の目標角度φ[i]を設定して移動を開始した後、角度誤差信号(AES)に基づき目標角度をφ1に修正する動作と言うこともできる。 It can be said that this is an operation of setting the provisional target angle φ [i] at the start of movement and starting the movement, and then correcting the target angle to φ1 based on the angle error signal (AES).
 ステップS611の後、ステップS612に進む。ステップS612からステップS617までは、前述の通りである。ステップS606からステップS617までが1つのページのページデータ再生に関わる処理である。このうち、ステップS606からステップS612までは、ガルバノミラー220及びガルバノミラー225を制御して参照光の入射角度をステップ状に位置決め制御する、ページ間のシーク処理と見なすことができる。以降、この処理をページシークと称する。 After step S611, the process proceeds to step S612. Steps S612 to S617 are as described above. Steps S606 to S617 are processes related to page data reproduction of one page. Among these, steps S606 to S612 can be regarded as a seek process between pages in which the galvano mirror 220 and the galvano mirror 225 are controlled to control the incident angle of the reference light in a stepwise manner. Hereinafter, this process is referred to as page seek.
 当該ブックの全てのページに関してページデータ再生が完了すると、変数iが所定値PageNumより大きくなり(ステップS617でYesの場合)、ステップS618に進む。 When the page data reproduction is completed for all pages of the book, the variable i becomes larger than the predetermined value PageNum (in the case of Yes in step S617), and the process proceeds to step S618.
 ステップS618においてコントローラ80は、G1ON信号及びG2ON信号をLowにして第一の入射角度制御及び第二の入射角度制御を停止し(ステップS618)、変数jに1を加算する(ステップS619)。続いて変数jが所定値BookNumより大きいかを判断する(ステップS620)。なお所定値BookNumは、データ再生処理において再生する全ブック数である。 In Step S618, the controller 80 sets the G1ON signal and the G2ON signal to Low to stop the first incident angle control and the second incident angle control (Step S618), and adds 1 to the variable j (Step S619). Subsequently, it is determined whether the variable j is larger than a predetermined value BookNum (step S620). The predetermined value BookNum is the total number of books to be reproduced in the data reproduction process.
 変数jが所定値BookNumより大きくない場合(ステップS620でNoの場合)、未再生のブックが残っているため、ステップS603に戻り、次のブックの再生に移行する。 If the variable j is not larger than the predetermined value BookNum (No in step S620), since there is an unreproduced book, the process returns to step S603 to shift to the reproduction of the next book.
 データ再生処理において再生する全ブック中の全ページに関してページデータ再生が完了すると、変数jが所定値BookNumより大きくなり(ステップS620でYesの場合)、データ再生処理が完了する(ステップS621)。 When page data reproduction is completed for all pages in all books to be reproduced in the data reproduction process, the variable j becomes larger than the predetermined value BookNum (in the case of Yes in step S620), and the data reproduction process is completed (step S621).
 ここで、本実施例におけるブック内の各ページの再生順序、即ち、ブック内のページシークにおける参照光207の走査方向について、図10を用いて説明する。 Here, the reproduction order of each page in the book in the present embodiment, that is, the scanning direction of the reference beam 207 in the page seek in the book will be described with reference to FIG.
 図10(a)は、ウォラストンプリズム230で分岐された参照光207と制御用光ビームが、ホログラム記録媒体1に入射する様子を模式的に示している。なお、ウォラストンプリズム230を通過した後に経由するミラーは省略している。このように、2つの光線はΔφだけずれてホログラム記録媒体1に入射する。 FIG. 10A schematically shows a state in which the reference light 207 and the control light beam branched by the Wollaston prism 230 are incident on the hologram recording medium 1. A mirror that passes after passing through the Wollaston prism 230 is omitted. As described above, the two light beams are incident on the hologram recording medium 1 while being shifted by Δφ.
 ここで図10(b)に示すように、ホログラム記録媒体1に入射する際の入射角度で考える。入射角度は、ホログラム記録媒体1の法線と光線のなる角で定義する。図10(b)において参照光207の入射角度はαである。 Here, as shown in FIG. 10B, the incident angle when entering the hologram recording medium 1 is considered. The incident angle is defined by the angle between the normal line of the hologram recording medium 1 and the light beam. In FIG. 10B, the incident angle of the reference beam 207 is α.
 本実施例においては、図10に示すように、参照光207の方が制御用光ビームより入射角度が大きいとする。本実施例において、ブック内のページシークにおける参照光207の走査方向はDの矢印で示す方向である。この方向は、制御用光ビームの入射角度から参照光207の入射角度に向かう方向である。言い換えれば、図10においては制御用光ビームの入射角度より参照光207の入射角度の方が大きいので、参照光207の走査方向は入射角度を大きくする方向である。 In this embodiment, it is assumed that the incident angle of the reference beam 207 is larger than that of the control beam as shown in FIG. In this embodiment, the scanning direction of the reference beam 207 in the page seek in the book is the direction indicated by the arrow D. This direction is a direction from the incident angle of the control light beam toward the incident angle of the reference light 207. In other words, in FIG. 10, since the incident angle of the reference light 207 is larger than the incident angle of the control light beam, the scanning direction of the reference light 207 is a direction in which the incident angle is increased.
 なお、参照光207は記録した信号を再生するための光検出器226への回折光を生成するための光であるのに対し、制御用光ビームは角度誤差信号(AES)を生成するためだけの光である。そのため、ウォラストンプリズム230における光の分岐の比率は1対1ではなく、参照光207の強度は制御用光ビームの強度より大きいことが好ましい。 The reference light 207 is light for generating diffracted light to the photodetector 226 for reproducing the recorded signal, whereas the control light beam is only for generating an angle error signal (AES). The light. Therefore, it is preferable that the light branching ratio in the Wollaston prism 230 is not 1: 1, and the intensity of the reference light 207 is larger than the intensity of the control light beam.
 従って、ブック内のページシークにおける参照光207の走査方向は、強度の弱い光ビームの入射角度から強度の強い光ビームの入射角度に向かう方向と言い換えることもできる。 Therefore, the scanning direction of the reference beam 207 in the page seek in the book can be rephrased as the direction from the incident angle of the weak light beam toward the incident angle of the strong light beam.
 次に、本実施例による効果について説明する。 Next, the effect of this embodiment will be described.
 (i―1)番目のページからi番目のページに移動するページシークを考える。 Consider a page seek that moves from the (i-1) th page to the i-th page.
 図11は、ガルバノミラー220を回転させて参照光207の入射角度を変更したときの角度誤差信号(AES)を示している。図11(a)は理想状態を示しており、例えば、記録の前後で媒体の収縮がなく、かつ、記録時と再生時で温度変化がない場合を示している。このような理想状態においては、再生時の各ページは、記録時にガルバノミラー220を位置付けた角度において最適に再生される。即ち、i番目のページはi番目のページに対応した入射角度であるφ0[i]で最適に再生される。 FIG. 11 shows an angle error signal (AES) when the incident angle of the reference beam 207 is changed by rotating the galvanometer mirror 220. FIG. 11A shows an ideal state, for example, a case where there is no shrinkage of the medium before and after recording, and there is no temperature change during recording and during reproduction. In such an ideal state, each page at the time of reproduction is optimally reproduced at an angle at which the galvano mirror 220 is positioned at the time of recording. That is, the i-th page is optimally reproduced at φ0 [i] that is the incident angle corresponding to the i-th page.
 しかしながら、ホログラム記録媒体1は記録の前後で媒体の収縮が起こる。更には、温度変化によっても媒体の膨張・収縮が起こる。図11(b)は一例として、媒体が膨張した場合を示している。この結果、i番目のページを最適に再生できる角度は、φ0[i]からずれる。図中では、φ1で示す角度がi番目のページを最適に再生できる角度である。そのため、本発明を用いない場合には、図中でAで示す量だけ参照光の入射角度がずれてしまい、ページを適切に再生できない。 However, the hologram recording medium 1 contracts before and after recording. Furthermore, expansion / contraction of the medium also occurs due to temperature changes. FIG. 11B shows a case where the medium is expanded as an example. As a result, the angle at which the i-th page can be optimally reproduced deviates from φ0 [i]. In the figure, the angle indicated by φ1 is an angle at which the i-th page can be optimally reproduced. Therefore, when the present invention is not used, the incident angle of the reference light is shifted by the amount indicated by A in the drawing, and the page cannot be reproduced properly.
 一方、本発明では、図11(a)で示す理想状態、図11(b)で示す理想状態でない状態、どちらであっても、角度誤差信号(AES)のゼロクロス点から最適角度までの角度差はΔφ/2であることに着目する。これは、角度誤差信号(AES)のゼロクロス点から最適角度までの角度差はウォラストンプリズム230による分岐角にのみ依存し、ホログラム記録媒体1の膨張収縮などには依存しないためである。 On the other hand, in the present invention, in either the ideal state shown in FIG. 11A or the non-ideal state shown in FIG. Note that Δφ / 2. This is because the angle difference from the zero cross point of the angle error signal (AES) to the optimum angle depends only on the branch angle by the Wollaston prism 230 and does not depend on the expansion / contraction of the hologram recording medium 1 or the like.
 図12は、図6で示したデータ再生処理のフローチャートに基づくページシークにおける各部の信号波形の模式図である。図12(a)は角度誤差信号(AES)、図12(b)は入射角度の目標値Tgtφ、図12(c)は参照光207の入射角度φ、図12(d)は第一の入射角度制御回路21の出力信号GD1である。なお、図12(c)はAS1信号またはAS2信号と見なすこともできる。また、図12(d)は第二の入射角度制御回路24の出力信号GD2と見なすこともできる。 FIG. 12 is a schematic diagram of the signal waveform of each part in the page seek based on the flowchart of the data reproduction process shown in FIG. 12A shows the angle error signal (AES), FIG. 12B shows the target value Tgtφ of the incident angle, FIG. 12C shows the incident angle φ of the reference beam 207, and FIG. This is the output signal GD1 of the angle control circuit 21. Note that FIG. 12C can also be regarded as an AS1 signal or an AS2 signal. In addition, FIG. 12D can be regarded as the output signal GD2 of the second incident angle control circuit 24.
 本実施例のフローチャートに対応して説明すれば、時刻t0はステップS606によってガルバノミラー220の角度及びガルバノミラー225の角度の移動を開始した時刻である。時刻t0において設定される入射角度の目標値Tgtφは、図12(b)で示すようにφ0[i]であり、図12(c)で示すように時刻t3までは角度φ0[i]に向かって制御が行われる。 If it demonstrates corresponding to the flowchart of a present Example, time t0 is the time which started the movement of the angle of the galvano mirror 220 and the angle of the galvano mirror 225 by step S606. The target value Tgtφ of the incident angle set at time t0 is φ0 [i] as shown in FIG. 12 (b), and is directed to the angle φ0 [i] until time t3 as shown in FIG. 12 (c). Control.
 時刻t1は角度誤差信号(AES)の電圧レベルが閾値Vthより大きくなった時刻であり、ステップS607でYesとなる条件に対応する。また時刻t2は時刻t1以降で初めて角度誤差信号(AES)がゼロクロスした時刻であり、ステップS608でYesとなる条件に対応する。このように、ステップS607及びステップS608により、i番目のページの角度誤差信号(AES)のゼロクロス点を検出することが可能である。 Time t1 is the time when the voltage level of the angle error signal (AES) becomes larger than the threshold value Vth, and corresponds to the condition that becomes Yes in step S607. Time t2 is the time when the angle error signal (AES) first crosses zero after time t1, and corresponds to the condition of Yes in step S608. As described above, the zero-cross point of the angle error signal (AES) of the i-th page can be detected by steps S607 and S608.
 図12(c)で示すように時刻t2においては、ステップS609乃至ステップS611によって、新たな入射角度の目標値φ1を設定する。この角度は(数2)に基づき決定した値であり、時刻t2における入射角度φzに対してΔφ/2だけ進んだ角度である。 As shown in FIG. 12C, at time t2, a new incident angle target value φ1 is set in steps S609 to S611. This angle is a value determined based on (Expression 2), and is an angle advanced by Δφ / 2 with respect to the incident angle φz at time t2.
 時刻t2において入射角度の目標値が修正されたため、ガルバノミラー220の角度及びガルバノミラー225の角度は角度φ1に向かって制御される。このとき、制御系の目標値が離散的に変化するため、図12(d)で示すようにガルバノミラー220の角度またはガルバノミラー225を駆動する駆動信号においても、角度誤差信号(AES)のゼロクロスを通過した時刻t2を境に変化が現れる。 Since the target value of the incident angle is corrected at time t2, the angle of the galvanometer mirror 220 and the angle of the galvanometer mirror 225 are controlled toward the angle φ1. At this time, since the target value of the control system changes discretely, even in the angle of the galvano mirror 220 or the drive signal for driving the galvano mirror 225 as shown in FIG. The change appears at the time t2 after passing through.
 時刻t3はガルバノミラー220の角度及びガルバノミラー225の角度の移動が完了した時刻であり、ステップS612でYesとなる条件に対応する。この結果、図12(c)で示すように参照光207の入射角度はφ1に制御され、この時の角度誤差信号(AES)としては図12(a)で示すように信号のボトムの値となる。 Time t3 is a time when the movement of the angle of the galvano mirror 220 and the angle of the galvano mirror 225 is completed, and corresponds to the condition of Yes in step S612. As a result, the incident angle of the reference beam 207 is controlled to φ1 as shown in FIG. 12C, and the angle error signal (AES) at this time is the value at the bottom of the signal as shown in FIG. Become.
 また図12(c)で示すように、角度誤差信号(AES)が得られる入射角度に移動するまでに、暫定の目標角度φ0[i]までの移動距離の大部分の移動が完了している。そのため、角度誤差信号(AES)が得られる入射角度の近傍において、参照光207の入射角度φは低速に制御される。これにより、角度誤差信号(AES)のゼロクロスのタイミングを高精度に検出できる。 Also, as shown in FIG. 12 (c), most of the movement distance to the provisional target angle φ0 [i] has been completed before moving to the incident angle at which the angle error signal (AES) is obtained. . Therefore, the incident angle φ of the reference beam 207 is controlled to be low in the vicinity of the incident angle at which the angle error signal (AES) is obtained. Thereby, the zero cross timing of the angle error signal (AES) can be detected with high accuracy.
 角度誤差信号(AES)が得られる入射角度の近傍における参照光の入射角度φの速度による影響について、図13を用いて説明する。図13(a)は本実施例における角度誤差信号(AES)、図13(b)は本実施例における参照光の入射角度φである。一方、図13(c)及び図13(d)は角度誤差信号(AES)が得られる入射角度に移動するまでに、暫定の目標角度φ0[i]までの移動距離の移動が完了していない場合を説明する図である。図13(c)は角度誤差信号(AES)、図13(d)は参照光207の入射角度φである。 The influence of the speed of the incident angle φ of the reference light in the vicinity of the incident angle at which the angle error signal (AES) is obtained will be described with reference to FIG. FIG. 13A shows the angle error signal (AES) in this embodiment, and FIG. 13B shows the incident angle φ of the reference light in this embodiment. On the other hand, in FIG. 13C and FIG. 13D, the movement of the movement distance to the provisional target angle φ0 [i] is not completed before the movement to the incident angle at which the angle error signal (AES) is obtained. It is a figure explaining a case. FIG. 13C shows the angle error signal (AES), and FIG. 13D shows the incident angle φ of the reference beam 207.
 図13(d)においては、角度誤差信号(AES)が得られる入射角度に移動するまでに、暫定の目標角度φ0[i]までの移動距離の移動が完了していないため、角度誤差信号(AES)が得られる入射角度の近傍における参照光の入射角度φの速度が速い。そのため、角度誤差信号(AES)が得られる参照光207の角度の範囲を通過する時間も短くなる。その結果、図13(c)に示すように、角度誤差信号(AES)を通過する時間が短くなる。 In FIG. 13D, since the movement of the movement distance to the provisional target angle φ0 [i] is not completed before the movement to the incident angle at which the angle error signal (AES) is obtained, the angle error signal ( The speed of the incident angle φ of the reference light in the vicinity of the incident angle at which AES) is obtained is fast. Therefore, the time for passing through the range of the angle of the reference beam 207 from which the angle error signal (AES) is obtained is also shortened. As a result, as shown in FIG. 13C, the time for passing the angle error signal (AES) is shortened.
 次に、角度誤差信号(AES)を通過する時間が短くなることの問題点を、図14を用いて説明する。図14(a)は角度誤差信号(AES)が得られる入射角度の近傍における参照光207の入射角度φの速度が遅い場合を示している。本実施例においては、ステップS608において角度誤差信号(AES)の電圧レベルが基準電位Vrefをまたぐか否かの判定は、所定のサンプリング時間ごとに値を取得して判断を行う。これは、デジタル回路にて容易に実現可能である。図14において縦の破線はサンプリングタイミングを示しており、黒丸はサンプリングされた値を示している。 Next, the problem that the time for passing through the angle error signal (AES) is shortened will be described with reference to FIG. FIG. 14A shows a case where the velocity of the incident angle φ of the reference beam 207 is low in the vicinity of the incident angle at which the angle error signal (AES) is obtained. In this embodiment, whether or not the voltage level of the angle error signal (AES) crosses the reference potential Vref in step S608 is determined by acquiring a value every predetermined sampling time. This can be easily realized with a digital circuit. In FIG. 14, a vertical broken line indicates the sampling timing, and a black circle indicates a sampled value.
 図14(a)に示すように、角度誤差信号(AES)が得られる入射角度の近傍における参照光の入射角度φの速度が遅い場合、ゼロクロス点の付近で多くのサンプリングを行うことができる。そのため、図14(a)においてAで示す値で閾値をまたぎ、ゼロクロスのタイミングtzが精度よく検出可能である。 As shown in FIG. 14A, when the speed of the incident angle φ of the reference light in the vicinity of the incident angle at which the angle error signal (AES) is obtained, many samplings can be performed near the zero cross point. Therefore, the threshold value is crossed by the value indicated by A in FIG. 14A, and the zero cross timing tz can be detected with high accuracy.
 これに対し図14(b)は、角度誤差信号(AES)が得られる入射角度の近傍における参照光207の入射角度φの速度が速い場合を示している。この場合、ゼロクロス点の付近で多くのサンプリングを行うことができない。本実施例のフローチャート図6によれば、図14(b)においてBで示す値で閾値をまたぎ、ゼロクロスのタイミングtzが求まる。しかしながら正確なゼロクロスタイミングは図14(b)の点Cであり、ゼロクロスのタイミングtzは精度よく検出できない。この結果、(数2)に基づき設定する新たな入射角度目標値φ1も、ずれが生じる。その結果、参照光207の入射角度が精度良く制御できず、再生性能が劣化してしまう。 On the other hand, FIG. 14B shows a case where the speed of the incident angle φ of the reference beam 207 is high in the vicinity of the incident angle at which the angle error signal (AES) is obtained. In this case, many samplings cannot be performed near the zero cross point. According to the flowchart FIG. 6 of the present embodiment, the zero cross timing tz is obtained by crossing the threshold value with the value indicated by B in FIG. However, the accurate zero-cross timing is point C in FIG. 14B, and the zero-cross timing tz cannot be accurately detected. As a result, the new incident angle target value φ1 set based on (Equation 2) also shifts. As a result, the incident angle of the reference beam 207 cannot be accurately controlled, and the reproduction performance is deteriorated.
 このように、角度誤差信号(AES)を通過する時間が短くなることは、参照光207の入射角度の位置決め精度の劣化につながる。そのため、角度誤差信号(AES)が得られる入射角度の近傍において、参照光207の入射角度φは低速に制御することが好ましい。これは、角度誤差信号(AES)が得られる入射角度に移動するまでに、暫定の目標角度φ0[i]までの移動距離の大部分の移動を完了することで実現できる。 As described above, when the time for passing the angle error signal (AES) is shortened, the accuracy of positioning of the incident angle of the reference beam 207 is deteriorated. Therefore, it is preferable to control the incident angle φ of the reference beam 207 at a low speed in the vicinity of the incident angle at which the angle error signal (AES) is obtained. This can be realized by completing most of the movement of the movement distance to the provisional target angle φ0 [i] before moving to the incident angle at which the angle error signal (AES) is obtained.
 この実現形態は、ブック内のページシークの際、角度誤差信号(AES)が得られる入射角度の範囲においては、ページシークにおける平均速度より遅い速度でガルバノミラー220を駆動するという特徴がある。 This implementation is characterized in that the galvanometer mirror 220 is driven at a speed slower than the average speed in the page seek in the range of the incident angle where the angle error signal (AES) is obtained during page seek in the book.
 本発明の第一の効果は、回折光に基づき生成した角度誤差信号(AES)をもとに参照光207の入射角度の制御を行っているため、ページデータを最適に再生できる点である。回折光に基づき生成した角度誤差信号(AES)をもとに制御することで、図11(b)を用いて説明した媒体の膨張などが起こった場合でも信号光206と参照光207の相対角度を高精度に制御することが可能である。更に、特許文献1と異なり最適角度で再生を行うことが可能である。 The first effect of the present invention is that the page data can be optimally reproduced because the incident angle of the reference light 207 is controlled based on the angle error signal (AES) generated based on the diffracted light. By controlling based on the angle error signal (AES) generated based on the diffracted light, the relative angle between the signal light 206 and the reference light 207 even when the medium described with reference to FIG. Can be controlled with high accuracy. Further, unlike Patent Document 1, it is possible to perform reproduction at an optimum angle.
 第二の効果は、専用の光検出器234及び236を設け、その受光光量の演算により角度誤差信号(AES)を生成していることにより、高速性を有する点である。特許文献1のようにSNRを演算する方式と比較して、入射角度に関するずれの量を示す信号(本実施例における角度誤差信号(AES))を高速に生成することができる。 The second effect is that the dedicated photodetectors 234 and 236 are provided, and the angle error signal (AES) is generated by calculating the amount of received light, thereby having high speed. Compared with the method of calculating the SNR as in Patent Document 1, a signal indicating the amount of deviation with respect to the incident angle (the angle error signal (AES) in this embodiment) can be generated at high speed.
 更に、第三の効果は、参照光207の入射角度を駆動中に目標値を修正することにより高速移動が可能である点である。例えば角度誤差信号(AES)に基づく制御として、角度誤差信号(AES)に基づき制御を行ってゼロクロス点φzに引き込み、その後に角度φ1に移動する制御も考えられる。しかし一度ゼロクロス点φzに引き込んでしまうと制御としては加速した後に減速する必要があるため、加速した後に減速してφzに移動し、その後に再び加速した後に減速してφ1に移動することになる。またこれを実現する場合には、入射角度制御回路における位置のフィードバックとして角度誤差信号(AES)と、アクチュエータ221に備え付けられた角度検出センサから得られたAS1信号とを途中で切り替える制御となる。 Furthermore, the third effect is that high-speed movement is possible by correcting the target value while driving the incident angle of the reference beam 207. For example, as control based on the angle error signal (AES), control based on the angle error signal (AES), pulling in the zero cross point φz, and then moving to the angle φ1 can be considered. However, once it is drawn into the zero cross point φz, it is necessary to decelerate after acceleration as control, so it decelerates and moves to φz, then accelerates again and then decelerates and moves to φ1 . In order to achieve this, the angle error signal (AES) as position feedback in the incident angle control circuit and the AS1 signal obtained from the angle detection sensor provided in the actuator 221 are switched halfway.
 これに対し本実施例では、入射角度制御回路における位置のフィードバックとして、角度誤差信号(AES)を用いていない。図9で説明したように、第一の入射角度制御回路21における位置のフィードバックとしては、AS1信号を用いている。そして角度誤差信号(AES)は、制御系における入力信号としては用いずに、制御系の目標値を駆動中に修正する目的にのみ用いている。 In contrast, in this embodiment, the angle error signal (AES) is not used as position feedback in the incident angle control circuit. As described with reference to FIG. 9, the AS1 signal is used as the position feedback in the first incident angle control circuit 21. The angle error signal (AES) is not used as an input signal in the control system, but is used only for the purpose of correcting the target value of the control system during driving.
 この結果、アクチュエータ221に備え付けられた角度検出センサから得られたAS1信号を、入射角度制御回路における位置のフィードバックとして用いて、ページ間の参照光角度の移動時の制御を行う。また参照光207の入射角度を駆動中に、角度誤差信号(AES)に基づき目標値を修正する。以上の動作により、ゼロクロス点φzで減速することなく、最適角度φ1への高速な位置決め制御が実現可能となる。 As a result, the AS1 signal obtained from the angle detection sensor provided in the actuator 221 is used as position feedback in the incident angle control circuit to control when the reference light angle moves between pages. Further, while driving the incident angle of the reference beam 207, the target value is corrected based on the angle error signal (AES). By the above operation, high-speed positioning control to the optimum angle φ1 can be realized without decelerating at the zero cross point φz.
 更に、第四の効果は、角度誤差信号(AES)の特性に合致した参照光207の走査方向とすることにより高速移動が可能である点である。図11(a)を用いて説明すれば、本実施例の角度誤差信号(AES)の特性は、ゼロクロス点に対して、参照光207の角度をΔφ/2だけ大きくした角度が最適角度である。この特性の場合には、本実施例のように、再生時のページシークにおいて参照光207を、参照光207の入射角度が増加する方向に走査するべきである。何故なら、ページシークにおいて参照光207を、参照光207の入射角度が減少する方向に走査すると、ゼロクロスを検出した位置から戻らないと最適位置に制御できない。戻る動作を伴うということは、ゼロクロス検出後に速度がゼロになるまで減速しないといけないため、高速性に欠ける。 Furthermore, the fourth effect is that high-speed movement is possible by setting the scanning direction of the reference beam 207 that matches the characteristics of the angle error signal (AES). 11A, the angle error signal (AES) according to the present embodiment has an optimum angle obtained by increasing the angle of the reference beam 207 by Δφ / 2 with respect to the zero cross point. . In the case of this characteristic, the reference beam 207 should be scanned in the direction in which the incident angle of the reference beam 207 increases in the page seek at the time of reproduction as in this embodiment. This is because if the reference beam 207 is scanned in a direction in which the incident angle of the reference beam 207 decreases during page seek, it cannot be controlled to the optimum position unless the zero cross is detected. Accompanied by the returning action is not high speed because it must be decelerated until the speed becomes zero after the zero cross is detected.
 図11のように角度誤差信号(AES)のゼロクロス点に対して、参照光207の角度をΔφ/2だけ大きくした角度が最適角度であるということは、ウォラストンプリズム230で分岐した2つのビームのうち参照光207の方が制御用光ビームより入射角度が大きいことを意味している。即ち、図10(b)のような状態である。 As shown in FIG. 11, the angle obtained by increasing the angle of the reference beam 207 by Δφ / 2 with respect to the zero cross point of the angle error signal (AES) is the optimum angle. This means that the two beams branched by the Wollaston prism 230 are used. This means that the reference light 207 has a larger incident angle than the control light beam. That is, the state is as shown in FIG.
 なお、図10においては参照光207の方が制御用光ビームより入射角度が大きいとしたが、逆に、制御用光ビームの方が参照光207より入射角度が大きい場合には、参照光207の入射角度が減少する方向に走査するべきである。このように、本実施例の角度誤差信号(AES)を用いる場合には、光学系の構成によって、再生時のブック内のページシークにおける参照光207の走査方向が必然的に決まる。 In FIG. 10, the reference light 207 has a larger incident angle than the control light beam. Conversely, when the control light beam has a larger incident angle than the reference light 207, the reference light 207 Should be scanned in a direction that decreases the angle of incidence. As described above, when the angle error signal (AES) of this embodiment is used, the scanning direction of the reference beam 207 in the page seek in the book at the time of reproduction is inevitably determined by the configuration of the optical system.
 好ましい参照光の走査方向は、制御用光ビームの入射角度から参照光207の入射角度に向かう方向であり、これにより、高速移動が可能となる。 A preferable scanning direction of the reference light is a direction from the incident angle of the control light beam toward the incident angle of the reference light 207, thereby enabling high-speed movement.
 また第五の効果は、参照光207の強度は制御用光ビームの強度より大きくしているため、回折光量を確保でき、好適な再生が可能である点である。 The fifth effect is that the intensity of the reference light 207 is larger than the intensity of the control light beam, so that the amount of diffracted light can be secured and suitable reproduction is possible.
 更に第六の効果は、角度誤差信号(AES)が得られる入射角度に移動するまでに、移動距離のほとんどの移動が完了しているため、角度誤差信号(AES)のゼロクロスのタイミングを高精度に検出できる点である。この結果、参照光207の入射角度を高精度に制御することが可能になる。 Furthermore, the sixth effect is that the movement of most of the moving distance is completed by the time it moves to the incident angle at which the angle error signal (AES) is obtained, so the zero cross timing of the angle error signal (AES) is highly accurate. This is a point that can be detected. As a result, the incident angle of the reference beam 207 can be controlled with high accuracy.
 なお図14(b)で角度誤差信号(AES)が得られる入射角度の近傍における参照光207の入射角度φの速度が速い場合、ゼロクロスしたと検出されるタイミングである点Bが、正確なゼロクロスタイミングである点Cからずれることを説明した。このずれを対策するために、次のようにしてゼロクロスタイミングを検出しても良い。 In addition, when the velocity of the incident angle φ of the reference beam 207 in the vicinity of the incident angle at which the angle error signal (AES) is obtained in FIG. 14B is high, a point B that is a timing at which the zero crossing is detected is an accurate zero crossing. The deviation from the point C, which is the timing, has been described. In order to prevent this deviation, the zero cross timing may be detected as follows.
 入射角度目標値設定回路32は所定のサンプリング時間ごとに角度誤差信号(AES)の値を取得して、1サンプリング時間だけ前の値を記憶する。そして角度誤差信号(AES)が基準電位Vrefをまたぐと判断した場合、現在の値(点BにおけるAES信号の値)と、その直前のサンプリング時間において記憶された値(点DにおけるAES信号の値)を用いて、直線近似からゼロクロスタイミングを算出する。これにより、正確なゼロクロスタイミングである点Cに近いタイミングを検出可能である。この結果に基づき、角度誤差信号(AES)が基準電位となるタイミングにおける参照光207の入射角度φzを算出することで、新たな入射角度目標値φ1をより正確に算出可能である。この結果、参照光207の入射角度を高精度に制御することが可能になる。 The incident angle target value setting circuit 32 acquires the value of the angle error signal (AES) at every predetermined sampling time, and stores the previous value for one sampling time. When it is determined that the angle error signal (AES) crosses the reference potential Vref, the current value (the value of the AES signal at the point B) and the value stored at the immediately preceding sampling time (the value of the AES signal at the point D) ) To calculate the zero cross timing from the linear approximation. As a result, it is possible to detect a timing close to point C, which is an accurate zero cross timing. Based on this result, the new incident angle target value φ1 can be calculated more accurately by calculating the incident angle φz of the reference beam 207 at the timing when the angle error signal (AES) becomes the reference potential. As a result, the incident angle of the reference beam 207 can be controlled with high accuracy.
 また以上の説明では、1サンプリング時間だけ前の値を記憶し、基準電位Vrefをまたぐ前後の2つの値を用いて直線近似するとしたが、過去の複数のサンプリング値を記憶し、2より多くのサンプリング値を用いて直線近似しても構わない。 In the above description, the previous value for one sampling time is stored, and linear approximation is performed using two values before and after the reference potential Vref. However, a plurality of past sampling values are stored, and more than two values are stored. A linear approximation may be performed using the sampling value.
 このように本実施例によれば、高速再生を実現可能でかつ、最良な再生信号を得られる角度誤差信号(AES)を検出可能なホログラム記録再生装置を実現できる。 As described above, according to the present embodiment, it is possible to realize a hologram recording / reproducing apparatus capable of detecting an angular error signal (AES) capable of realizing high-speed reproduction and obtaining the best reproduction signal.
 図15はホログラフィを利用してデジタル情報を記録及び/または再生するホログラム記録媒体の記録再生装置を示すブロック図である。なお、実施例1のブロック図である図1と共通の構成要素については同一の番号を付し、説明を省略する。実施例1との構成上の差異は、温度計測センサ17である。 FIG. 15 is a block diagram showing a recording / reproducing apparatus for a holographic recording medium for recording and / or reproducing digital information using holography. In addition, the same number is attached | subjected about the same component as FIG. 1 which is a block diagram of Example 1, and description is abbreviate | omitted. The structural difference from the first embodiment is the temperature measurement sensor 17.
 温度計測センサ17はホログラム記録媒体1の温度を計測するためのセンサであり、計測結果はコントローラ80に送られる。温度計測センサ17は例えば、非接触式の温度計でホログラム記録媒体1の温度を計測する。または、ホログラム記録媒体1の近傍に設置され、センサ周辺の空気の温度を計測することでホログラム記録媒体1の周囲温度を計測し、コントローラ80がホログラム記録媒体1の温度を推定してもよい。 The temperature measurement sensor 17 is a sensor for measuring the temperature of the hologram recording medium 1, and the measurement result is sent to the controller 80. The temperature measurement sensor 17 measures the temperature of the hologram recording medium 1 with a non-contact type thermometer, for example. Alternatively, the controller 80 may be installed in the vicinity of the hologram recording medium 1, measure the ambient temperature of the hologram recording medium 1 by measuring the temperature of air around the sensor, and the controller 80 may estimate the temperature of the hologram recording medium 1.
 本実施例におけるデータ再生処理S423のフローチャートは、実施例1におけるフローチャートである図6と同一である。実施例1においてはφ0[i]はi番目のページに対応した入射角度であるとしたが、本実施例においては、φ0[i]を温度計測センサ17の計測結果に基づき調整する。即ち、温度計測センサ17の計測結果から媒体が膨張・収縮する場合にはそれに応じてφ0[i]を調整する。 The flowchart of the data reproduction process S423 in the present embodiment is the same as FIG. 6 which is the flowchart in the first embodiment. In the first embodiment, φ0 [i] is the incident angle corresponding to the i-th page, but in this embodiment, φ0 [i] is adjusted based on the measurement result of the temperature measurement sensor 17. That is, when the medium expands / contracts from the measurement result of the temperature measurement sensor 17, φ0 [i] is adjusted accordingly.
 次に、本実施例による効果について説明する。 Next, the effect of this embodiment will be described.
 図16は、温度が異なる場合の角度誤差信号(AES)を示している。図16(a)に対し、図16(b)は温度差により媒体が膨張している場合を示しており、説明のため、図16(a)及び図16(b)において(i―1)番目のページの角度の位置は同じ位置に合わせて表示している。またφ1[i]はi番目のページの最適角度である。 FIG. 16 shows an angle error signal (AES) when the temperatures are different. In contrast to FIG. 16A, FIG. 16B shows a case where the medium expands due to a temperature difference. For the sake of explanation, in FIG. 16A and FIG. 16B, (i-1) The angle position of the second page is displayed in the same position. Φ1 [i] is the optimum angle of the i-th page.
 図16(a)に対し、図16(b)では媒体が膨張しているため、i番目のページの最適角度φ1[i]は、(i―1)番目のページの最適角度φ1[i-1]から、より離れた位置に存在する。そのため、図16(b)の場合には、ステップS606において暫定の入射角度の目標値として設定するφ0[i]は、図16(a)の場合より大きな値として設定すべきである。 In contrast to FIG. 16A, since the medium is expanded in FIG. 16B, the optimal angle φ1 [i] of the i-th page is equal to the optimal angle φ1 [i− of the (i-1) -th page. 1]. Therefore, in the case of FIG. 16B, φ0 [i] set as the temporary target value of the incident angle in step S606 should be set as a larger value than in the case of FIG.
 仮に、図16(a)と同じφ0[i]を設定してしまうと、図16においてAで示すように、暫定の入射角度の目標値φ0[i]まで移動してもゼロクロス点が現れず、高速な移動が実現できない。 If the same φ0 [i] as in FIG. 16A is set, as shown by A in FIG. 16, the zero cross point does not appear even if the target value φ0 [i] of the temporary incident angle is moved. High speed movement cannot be realized.
 以上で説明した点と、ホログラム記録媒体1の膨張・収縮はホログラム記録媒体1の温度から推測できる点とを鑑みて、本実施例においてはφ0[i]を温度計測センサ17の計測結果に基づき調整する。 In view of the points described above and the fact that the expansion / contraction of the hologram recording medium 1 can be estimated from the temperature of the hologram recording medium 1, φ0 [i] is set based on the measurement result of the temperature measurement sensor 17 in this embodiment. adjust.
 これにより、温度によるホログラム記録媒体1の膨張・収縮があった場合であっても、ページ間の高速移動が可能である。 Thus, even when the hologram recording medium 1 is expanded or contracted due to temperature, it is possible to move between pages at high speed.
 このように本実施例によれば、高速再生を実現可能でかつ、最良な再生信号を得られる角度誤差信号(AES)を検出可能なホログラム記録再生装置を実現できる。 As described above, according to the present embodiment, it is possible to realize a hologram recording / reproducing apparatus capable of detecting an angular error signal (AES) capable of realizing high-speed reproduction and obtaining the best reproduction signal.
 以上の実施例における第一の入射角度制御回路21及び第二の入射角度制御回路24及び直交入射角度制御回路27は、図9を用いて説明したように、フィードバック制御系を構成する制御回路とした。しかし例えば、フィードバック制御に加えてフィードフォワード制御も有する、2自由度制御系を構成する制御回路であってもよい。 As described with reference to FIG. 9, the first incident angle control circuit 21, the second incident angle control circuit 24, and the orthogonal incident angle control circuit 27 in the embodiment described above are the control circuits that constitute the feedback control system. did. However, for example, it may be a control circuit that constitutes a two-degree-of-freedom control system having feed-forward control in addition to feedback control.
 以上の実施例においては、ホログラム記録媒体1に対して記録再生を行う装置を例に説明したが、本発明は再生専用の装置に関しても適用可能である。 In the above embodiment, an apparatus for recording / reproducing with respect to the hologram recording medium 1 has been described as an example. However, the present invention can also be applied to a reproduction-only apparatus.
 以上の実施例においては、好ましいブック内の各ページの再生順序、即ち、ブック内のページシークにおける参照光の好ましい走査方向が光学系の構成によって一意に決まることを説明した。しかしブック内のページシークにおける参照光の好ましい走査方向が決まるのは再生時のみである。即ち、再生専用装置でなく記録及び再生を行う装置の場合に、記録時のブック内のページシークに関しては、この限りではない。 In the above embodiment, it has been described that the reproduction order of each page in the preferred book, that is, the preferred scanning direction of the reference light in the page seek in the book is uniquely determined by the configuration of the optical system. However, the preferred scanning direction of the reference beam in the page seek in the book is determined only during reproduction. That is, in the case of a device that performs recording and reproduction instead of a reproduction-only device, the page seek in the book at the time of recording is not limited to this.
 そのため、再生時にブック内のページを再生する順序と、記録時にブック内のページを記録する順序は異なっていても良い。そのため、記録時の順序はホログラムを記録するのに好適な順序として、再生時とは別の順序で設計してよい。これにより、ホログラムを好適に記録しつつ、本発明による高速再生を実現可能である。 Therefore, the order of reproducing the pages in the book at the time of reproduction may be different from the order of recording the pages in the book at the time of recording. For this reason, the recording order may be designed as a suitable order for recording the hologram, and in an order different from that during reproduction. As a result, high-speed reproduction according to the present invention can be realized while preferably recording a hologram.
 なお以上の実施例では、ピックアップ11ならびにキュア光学系13から照射される光ビームがホログラム記録媒体の所定の位置に照射されるように制御する機構として、例えば実施例1における半径方向搬送部51のように、ホログラム記録媒体1を搬送する構成とした。しかし光ビームの照射位置を兼行するための機構としては、これに限定されるものではない。例えば、ホログラム記録媒体は固定されており、ピックアップ11やキュア光学系13を搬送する構成であってもよい。 In the above embodiment, as a mechanism for controlling the light beam irradiated from the pickup 11 and the cure optical system 13 to be irradiated to a predetermined position of the hologram recording medium, for example, the radial transport unit 51 in the first embodiment is used. As described above, the hologram recording medium 1 is transported. However, the mechanism for sharing the irradiation position of the light beam is not limited to this. For example, the hologram recording medium may be fixed, and the pickup 11 and the cure optical system 13 may be transported.
 なお、本発明は上記した実施例に限定されるものではなく、また上述した変形例の他にも様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Note that the present invention is not limited to the above-described embodiments, and includes various modifications in addition to the above-described modifications. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1…ホログラム記録媒体
10…ホログラム記録再生装置
11…ピックアップ
12…再生用参照光光学系
13…キュア光学系
17…温度計測センサ
20…第一の入射角度信号生成回路
21…第一の入射角度制御回路
22…第一の入射角度駆動回路
30…角度誤差検出光学系
31…角度誤差信号生成回路
32…入射角度目標値設定回路
80…コントローラ
DESCRIPTION OF SYMBOLS 1 ... Hologram recording medium 10 ... Hologram recording / reproducing apparatus 11 ... Pickup 12 ... Reproduction reference light optical system 13 ... Cure optical system 17 ... Temperature measurement sensor 20 ... First incident angle signal generation circuit 21 ... First incident angle control Circuit 22 ... First incident angle drive circuit 30 ... Angle error detection optical system 31 ... Angle error signal generation circuit 32 ... Incident angle target value setting circuit 80 ... Controller

Claims (12)

  1.  ホログラム記録媒体に記録されている情報を再生するホログラム再生装置であって、
     参照光を出射する光源と、
     前記ホログラム記録媒体に入射する参照光の入射角度を変更可能な入射角度変更部と、
     角度誤差信号を生成する角度誤差信号生成部と、
     前記参照光の入射角度の目標角度を設定する目標角度設定部と、
     前記目標角度設定部が設定する前記目標角度を制御目標として、前記入射角度変更部を制御する入射角度制御部とを備え、
     前記入射角度制御部が前記入射角度変更部を制御して前記参照光の入射角度を変更している期間に、前記目標角度設定部が前記角度誤差信号に基づき前記目標角度を変更することを特徴とするホログラム再生装置。
    A hologram reproducing device for reproducing information recorded on a hologram recording medium,
    A light source that emits reference light;
    An incident angle changing unit capable of changing the incident angle of the reference light incident on the hologram recording medium;
    An angle error signal generator for generating an angle error signal;
    A target angle setting unit for setting a target angle of the incident angle of the reference light;
    With the target angle set by the target angle setting unit as a control target, an incident angle control unit that controls the incident angle change unit,
    The target angle setting unit changes the target angle based on the angle error signal during a period in which the incident angle control unit controls the incident angle changing unit to change the incident angle of the reference light. A hologram reproducing apparatus.
  2.  請求項1に記載のホログラム再生装置であって、
     前記参照光を伝搬方向の異なる少なくとも2つの光ビームに分岐する光軸分岐部と、
     前記ホログラム記録媒体に、前記伝播方向の異なる少なくとも2つの光ビームが入射したときに発生する回折光をそれぞれ検出する光検出部と、を備え、
     前記角度誤差信号生成部は、前記光検出部の出力信号から前記角度誤差信号を生成することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    An optical axis branching section for branching the reference light into at least two light beams having different propagation directions;
    A light detection unit that detects diffracted light generated when at least two light beams having different propagation directions are incident on the hologram recording medium, and
    The hologram reproduction apparatus, wherein the angle error signal generation unit generates the angle error signal from an output signal of the light detection unit.
  3.  請求項1または請求項2に記載のホログラム再生装置であって、
     前記入射角度変更部によって変更された参照光の角度を検出する角度検出部と、を備え、
     前記入射角度制御部は、前記角度検出部の出力信号に基づき制御を行うことを特徴とするホログラム再生装置。
    A hologram reproducing apparatus according to claim 1 or 2, wherein
    An angle detection unit that detects an angle of the reference light changed by the incident angle change unit,
    The hologram reproduction apparatus according to claim 1, wherein the incident angle control unit performs control based on an output signal of the angle detection unit.
  4.  請求項1または請求項2に記載のホログラム再生装置であって、
     前記目標角度設定部は、前記角度誤差信号が所定の閾値となるタイミングを監視し、前記タイミングに基づき前記目標角度を変更することを特徴とするホログラム再生装置。
    A hologram reproducing apparatus according to claim 1 or 2, wherein
    The target angle setting unit monitors a timing at which the angle error signal becomes a predetermined threshold, and changes the target angle based on the timing.
  5.  請求項1または請求項2に記載のホログラム再生装置であって、
     前記目標角度設定部は、前記角度誤差信号が所定の閾値となるタイミングを監視し、前記タイミングにおける前記角度検出部の出力値に対して所定値を加算した値を前記目標角度として設定することを特徴とするホログラム再生装置。
    A hologram reproducing apparatus according to claim 1 or 2, wherein
    The target angle setting unit monitors a timing at which the angle error signal becomes a predetermined threshold, and sets a value obtained by adding a predetermined value to the output value of the angle detection unit at the timing as the target angle. A featured hologram reproducing apparatus.
  6.  請求項2に記載のホログラム再生装置であって、
     前記伝播方向の異なる少なくとも2つの光ビームのなす角がΔφであるとき、
     前記目標角度設定部は、前記角度誤差信号が所定の閾値になるときに、前記角度検出部が検出する値に対して、Δφの略半分の値を加算して前記目標角度とすることを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 2,
    When an angle formed by at least two light beams having different propagation directions is Δφ,
    The target angle setting unit adds the value approximately half of Δφ to a value detected by the angle detection unit when the angle error signal becomes a predetermined threshold value to obtain the target angle. A hologram reproducing apparatus.
  7.  請求項2に記載のホログラム再生装置であって、
     前記光軸分岐部伝播方向の異なる少なくとも2つの光ビームは、前記参照光の光軸と前記ホログラム記録媒体の法線とを含む入射面内に存在し、
     前記入射角度変更部は、前記入射面内において前記参照光が前記ホログラム記録媒体に入射する入射角度を変更可能であることを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 2,
    At least two light beams having different propagation directions of the optical axis branching portion are present in an incident plane including the optical axis of the reference light and the normal line of the hologram recording medium,
    The hologram reproducing apparatus, wherein the incident angle changing unit is capable of changing an incident angle at which the reference light is incident on the hologram recording medium within the incident surface.
  8.  請求項2に記載のホログラム再生装置であって、
     前記ホログラム記録媒体に記録されている情報は角度多重で記録されており、
     前記光軸分岐部は前記参照光を強度の異なる2つの光ビームに分岐し、
      前記角度多重されたホログラムを連続して再生する際に、前記入射角度変更部は、前記光軸分岐部で分岐された伝播方向の異なる少なくとも2つの光ビームのうち、強度の弱い方の光ビームの入射角度から強度の強い方の光ビームの入射角度に向かう方向に入射角度の変更を行うことを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 2,
    Information recorded on the hologram recording medium is recorded by angle multiplexing,
    The optical axis branching unit branches the reference light into two light beams having different intensities,
    When continuously reproducing the angle-multiplexed hologram, the incident angle changing unit includes a light beam having a lower intensity among at least two light beams having different propagation directions branched by the optical axis branching unit. The hologram reproducing apparatus is characterized in that the incident angle is changed in a direction from the incident angle toward the incident angle of the light beam having the stronger intensity.
  9.  請求項2に記載のホログラム再生装置であって、
     前記光軸分岐部は前記参照光を強度の異なる2つの光ビームに分岐し、
     前記光軸分岐部で分岐された伝播方向の異なる少なくとも2つの光ビームのうち、強度の強い方の光ビームは前記光軸分岐部を直進することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 2,
    The optical axis branching unit branches the reference light into two light beams having different intensities,
    Of the at least two light beams having different propagation directions branched by the optical axis branching unit, the light beam having the stronger intensity travels straight through the optical axis branching unit.
  10.  請求項1に記載のホログラム再生装置であって、
     前記目標角度設定部は、前記角度誤差信号を所定のサンプリング時間ごとに値を取得し、前記角度誤差信号が所定の閾値をまたぐ前後の少なくとも2つの値に基づき、前記角度誤差信号が前記所定の閾値をまたぐタイミングを算出することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    The target angle setting unit acquires a value of the angle error signal at every predetermined sampling time, and based on at least two values before and after the angle error signal crosses a predetermined threshold, the angle error signal is A hologram reproducing apparatus characterized by calculating a timing that crosses a threshold value.
  11.  請求項1に記載のホログラム再生装置であって、
     温度を計測する温度計測部を備え、
     前記入射角度変更部は、前記目標角度設定部に設定する目標角度を前記温度計測部の出力を用いて設定し、前記目標角度に基づき前記入射角度制御部が前記入射角度変更部を制御して前記参照光の入射角度を変更している期間に、前記目標角度設定部が前記角度誤差信号に基づき前記目標角度を変更することを特徴とするホログラム再生装置。
    The hologram reproducing apparatus according to claim 1,
    It has a temperature measurement unit that measures temperature,
    The incident angle changing unit sets a target angle set in the target angle setting unit using an output of the temperature measuring unit, and the incident angle control unit controls the incident angle changing unit based on the target angle. The hologram reproducing apparatus, wherein the target angle setting unit changes the target angle based on the angle error signal during a period in which the incident angle of the reference light is changed.
  12.  ホログラム記録媒体に記録されている情報を再生するホログラム再生装置に用いられるホログラム再生方法であって、
     参照光を出射する光源と、
     前記ホログラム記録媒体に入射する参照光の入射角度を変更可能な入射角度変更部と、
     ホログラム記録媒体に入射された参照光を用いて角度誤差信号を生成する角度誤差信号生成部と、
     前記角度誤差信号生成部で生成された角度誤差信号を用いて、前記参照光の入射角度の目標角度を設定する目標角度設定部と、
     前記目標角度設定部が設定する前記目標角度を制御目標として、前記入射角度変更部を制御する入射角度制御部とを備え、
     前記入射角度制御部が前記入射角度変更部を制御して前記参照光の入射角度を変更するステップと、
     前記目標角度設定部が前記角度誤差信号に基づき前記目標角度を変更するステップと、を備えることを特徴とするホログラム再生方法。
    A hologram reproducing method used in a hologram reproducing apparatus for reproducing information recorded on a hologram recording medium,
    A light source that emits reference light;
    An incident angle changing unit capable of changing the incident angle of the reference light incident on the hologram recording medium;
    An angle error signal generation unit that generates an angle error signal using reference light incident on the hologram recording medium;
    A target angle setting unit that sets a target angle of the incident angle of the reference light using the angle error signal generated by the angle error signal generation unit;
    With the target angle set by the target angle setting unit as a control target, an incident angle control unit that controls the incident angle change unit,
    The incident angle control unit controlling the incident angle changing unit to change the incident angle of the reference light;
    And a step of changing the target angle based on the angle error signal by the target angle setting unit.
PCT/JP2013/081579 2013-11-25 2013-11-25 Hologram reconstruction device and hologram reconstruction method WO2015075827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081579 WO2015075827A1 (en) 2013-11-25 2013-11-25 Hologram reconstruction device and hologram reconstruction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/081579 WO2015075827A1 (en) 2013-11-25 2013-11-25 Hologram reconstruction device and hologram reconstruction method

Publications (1)

Publication Number Publication Date
WO2015075827A1 true WO2015075827A1 (en) 2015-05-28

Family

ID=53179130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081579 WO2015075827A1 (en) 2013-11-25 2013-11-25 Hologram reconstruction device and hologram reconstruction method

Country Status (1)

Country Link
WO (1) WO2015075827A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178780A (en) * 2005-12-28 2007-07-12 Sony Corp Laser device and hologram recording/reproducing device using the same
JP2012154979A (en) * 2011-01-24 2012-08-16 Hitachi Consumer Electronics Co Ltd Method for reproducing optical information and optical information reproduction device
JP2013251026A (en) * 2012-06-01 2013-12-12 Hitachi Media Electoronics Co Ltd Hologram optical pickup device, optical information recording/reproduction device, and optical information recording/reproduction method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178780A (en) * 2005-12-28 2007-07-12 Sony Corp Laser device and hologram recording/reproducing device using the same
JP2012154979A (en) * 2011-01-24 2012-08-16 Hitachi Consumer Electronics Co Ltd Method for reproducing optical information and optical information reproduction device
JP2013251026A (en) * 2012-06-01 2013-12-12 Hitachi Media Electoronics Co Ltd Hologram optical pickup device, optical information recording/reproduction device, and optical information recording/reproduction method

Similar Documents

Publication Publication Date Title
WO2017094129A1 (en) Holographic optical information reproducing device
JP5707147B2 (en) Optical information reproducing method and optical information reproducing apparatus
US8995245B2 (en) Apparatus for recording optical information in a hologram, apparatus for reproducing optical information stored in a hologram, and a method for recording optical information in, or reproducing optical information from, a hologram
JP5183667B2 (en) Playback apparatus and playback method
JP5726816B2 (en) Optical pickup device for hologram, optical information recording / reproducing device, optical information recording / reproducing method, and optical information device
JP5753767B2 (en) Optical information recording / reproducing apparatus, optical information recording / reproducing method, and optical information recording medium
JP5728432B2 (en) Optical pickup device for hologram and optical information recording / reproducing device
WO2014167659A1 (en) Optical information recording and reconstructing device
JP5816132B2 (en) Optical pickup device for hologram and optical information recording / reproducing device
WO2015075827A1 (en) Hologram reconstruction device and hologram reconstruction method
JP6158339B2 (en) Hologram reproducing apparatus and hologram reproducing method
JP6077110B2 (en) Optical information reproducing apparatus and adjustment method
JP2016091572A (en) Hologram reproduction device and hologram reproduction method
JP6078636B2 (en) Hologram recording / reproducing apparatus and hologram reproducing method
JP6093778B2 (en) Recording / reproducing apparatus and recording medium
WO2015068250A1 (en) Holographic storage device
US9190097B2 (en) Optical information recording/reproducing device and optical information recording/reproducing method
WO2014097412A1 (en) Optical information reproduction apparatus and optical information reproduction method
WO2015181867A1 (en) Optical information reproduction device and optical information reproduction method
WO2017042900A1 (en) Optical information recording device, optical information recording/reproducing device, and optical information recording method
WO2016072004A1 (en) Hologram recording/reproduction apparatus
WO2014083944A1 (en) Hologram recording and/or playing device
WO2016009546A1 (en) Optical information recording/playback device, optical information playback device, and optical information playback method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897740

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13897740

Country of ref document: EP

Kind code of ref document: A1