WO2014097412A1 - Optical information reproduction apparatus and optical information reproduction method - Google Patents

Optical information reproduction apparatus and optical information reproduction method Download PDF

Info

Publication number
WO2014097412A1
WO2014097412A1 PCT/JP2012/082859 JP2012082859W WO2014097412A1 WO 2014097412 A1 WO2014097412 A1 WO 2014097412A1 JP 2012082859 W JP2012082859 W JP 2012082859W WO 2014097412 A1 WO2014097412 A1 WO 2014097412A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical information
filter
signal
information reproducing
Prior art date
Application number
PCT/JP2012/082859
Other languages
French (fr)
Japanese (ja)
Inventor
真弓 長吉
嶋田 堅一
和良 山崎
誠 保坂
利樹 石井
Original Assignee
日立コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立コンシューマエレクトロニクス株式会社 filed Critical 日立コンシューマエレクトロニクス株式会社
Priority to PCT/JP2012/082859 priority Critical patent/WO2014097412A1/en
Publication of WO2014097412A1 publication Critical patent/WO2014097412A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1381Non-lens elements for altering the properties of the beam, e.g. knife edges, slits, filters or stops
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/50Particular location or purpose of optical element
    • G03H2223/52Filtering the object information
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • G11B7/08547Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements
    • G11B7/08564Arrangements for positioning the light beam only without moving the head, e.g. using static electro-optical elements using galvanomirrors

Definitions

  • the present invention relates to an apparatus for recording information on an optical information recording medium using the interference pattern of signal light and reference light as page data and / or reproducing information from the optical information recording medium.
  • the Blu-ray Disc (TM) standard using a blue-violet semiconductor laser has made it possible to commercialize an optical disc having a recording density of about 50 GB even for consumer use.
  • HDD Hard Disk Drive
  • Hologram recording technology is a method in which signal light having page data information two-dimensionally modulated by a spatial light modulator is superimposed on reference light inside the recording medium, and the interference fringe pattern generated at that time is placed in the recording medium. This is a technique for recording information on a recording medium by causing refractive index modulation.
  • the hologram recorded in the recording medium acts like a diffraction grating to generate diffracted light. This diffracted light is reproduced as the same light including the recorded signal light and phase information.
  • Regenerated signal light is detected two-dimensionally at high speed using a photodetector such as a CMOS or CCD.
  • a photodetector such as a CMOS or CCD.
  • the hologram recording technique enables two-dimensional information to be recorded on the optical recording medium at once by one hologram and further reproduces this information. Since the page data can be overwritten, large-capacity and high-speed information recording / reproduction can be achieved.
  • Patent Document 1 JP-A-2004-272268
  • Patent Document 2 JP-A-2004-272268
  • This publication discloses a multiplexing method and apparatus in which holograms are spatially multiplexed by partial spatial overlap between adjacent stacks of holograms. Each stack is for example an angle, a wavelength, a phase.
  • Another multiplexing technique such as sign, peritropy, or fractal multiplexing can be further taken in.
  • An amount equal to the beam waist of the signal light writing the hologram separates the individual stacks of holograms.
  • a hologram and a hologram adjacent to the hologram are all read out simultaneously, and the adjacent hologram read out is not transmitted to the camera surface by arranging a filter at the beam waist of the reproduced data, or These undesired reproductions can be found in optical systems with limited angular passbands. Information, it is described that may be filtered. "By the intermediate plane of the angular filter.
  • Patent Document 2 JP-A-2007-304263
  • Patent Documents 1 and 2 holograms are recorded adjacently at a minimum pitch for the purpose of increasing the density. Therefore, when the reproduction light is irradiated, not only the target hologram but also the adjacent hologram is reproduced simultaneously. Therefore, a spatial filter called a polytopic filter is mounted in order to remove crosstalk from adjacent holograms and reproduce only the target hologram.
  • a reproduced image having a high SNR can be acquired when the relative position of the optical information recording medium with respect to the optical pickup coincides during recording and reproduction.
  • the optical information recording medium is exchanged between recording and reproduction, when using a different optical information recording / reproducing apparatus, or due to various factors such as temperature change, vibration influence, change with time, etc.
  • a relative displacement of the recording medium occurs. If the relative position of the optical information recording medium and the polytopic filter is shifted, vignetting of diffracted light occurs in the polytopic filter, resulting in a lack of a part of the reproduced image or a decrease in the amount of light. As a result, there arises a problem that the SNR deteriorates.
  • Defocusing and detracking can be considered as specific examples of positional deviation.
  • the position of the optical information recording medium is adjusted during reproduction to correct the relative position to the optical pickup.
  • the optical information recording medium is relatively heavy, there is a problem that it takes time for reproduction.
  • an object of the present invention is to provide an optical information recording / reproducing apparatus and an optical information recording / reproducing method capable of reproducing a high-quality signal at high speed.
  • an optical information recording / reproducing apparatus and an optical information recording / reproducing method capable of reproducing a high-quality signal at high speed.
  • FIG. 1 shows an example of an optical system configuration of an optical pickup 11 in an optical information recording / reproducing apparatus 10 of the present invention.
  • the light beam emitted from the light source 101 passes through the collimator lens 102 and enters the shutter 103.
  • the optical element 104 composed of, for example, a half-wave plate or the like makes the light quantity ratio of p-polarized light and s-polarized light a desired ratio.
  • the light enters a PBS (Polarization Beam Splitter) prism 105.
  • the light beam that has passed through the PBS prism 105 functions as the signal light 106, and after the light beam diameter is enlarged by the beam expander 108, the light beam passes through the phase mask 109, the relay lens 110, and the PBS prism 111 and passes through the spatial light modulator 112. Is incident on.
  • the signal light to which information is added by the spatial light modulator 112 reflects the PBS prism 111 and propagates through the relay lens 113 and the polytopic filter 114. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 115.
  • the light beam reflected from the PBS prism 105 works as reference light 107 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 116, and then galvanically via the mirror 117 and the mirror 118. Incident on the mirror 119. Since the angle of the galvanometer mirror 119 can be adjusted by the actuator 120, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 121 and the lens 122 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
  • the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is written by writing this pattern on the optical information recording medium. Record. Further, since the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 119, recording by angle multiplexing is possible.
  • the reference light 107 is incident on the optical information recording medium 1, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvano mirror 124 whose angle can be adjusted by the actuator 123, thereby generating the reproduction reference light. .
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 115, the relay lens 113, and the polytopic filter 114. Thereafter, the reproduction light passes through the PBS prism 111 and enters the photodetector 125, and the recorded signal can be reproduced.
  • the photodetector 125 an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as page data can be reproduced.
  • FIG. 2 is a diagram showing another configuration of the optical pickup 11.
  • the light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203.
  • the optical element 204 composed of, for example, a half-wave plate or the like adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio.
  • the polarization direction is controlled, the light enters the polarization beam splitter 205.
  • the light beam that has passed through the polarization beam splitter 205 enters the spatial light modulator 208 via the polarization beam splitter 207.
  • the signal light 206 to which information is added by the spatial light modulator 208 is reflected by the polarization beam splitter 207 and propagates through an angle filter 209 having a characteristic of allowing only a light beam having a predetermined incident angle to pass therethrough. Thereafter, the signal light beam is condensed on the optical information recording medium 1 by the objective lens 210.
  • the light beam reflected by the polarization beam splitter 205 works as reference light 212 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 219, and then passes through the mirror 213 and the mirror 214.
  • the light enters the lens 215.
  • the lens 215 plays a role of condensing the reference light 212 on the back focus surface of the objective lens 210, and the reference light once condensed on the back focus surface of the objective lens 210 becomes parallel light again by the objective lens 210.
  • the objective lens 210 or the optical block 221 can be driven, for example, in the direction indicated by reference numeral 220.
  • the objective lens 210 and the objective lens are moved. Since the relative positional relationship of the condensing points on the back focus surface 210 changes, the incident angle of the reference light incident on the optical information recording medium 1 can be set to a desired angle.
  • the incident angle of the reference light may be set to a desired angle by driving the mirror 214 with an actuator.
  • the reference light When reproducing recorded information, the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 216, thereby reproducing the reproduction reference. Produce light.
  • the reproduction light reproduced by the reproduction reference light propagates through the objective lens 210 and the angle filter 209. Thereafter, the reproduction light passes through the polarization beam splitter 207 and enters the photodetector 218, and the recorded signal can be reproduced.
  • the optical system shown in FIG. 2 has an advantage that the signal light and the reference light are made incident on the same objective lens, so that the optical system can be greatly reduced in size as compared with the optical system configuration shown in FIG.
  • FIG. 3 illustrates an example of the role of the polytopic filter 114 installed in the optical system of FIG.
  • holograms are recorded at the minimum pitch for the purpose of increasing the density. Therefore, when the reproduction light is irradiated, not only the target hologram but also the adjacent hologram is reproduced simultaneously. Therefore, by placing a relatively light spatial filter called a polytopic filter at the condensing position of the relay lens 304, the reproduction light from the adjacent hologram is shielded and only the reproduction light from the target hologram is allowed to pass. be able to.
  • a relatively light spatial filter called a polytopic filter
  • an angle filter is used instead of the polytopic filter.
  • the optical pickup 11 can be reduced in size.
  • An angle filter is a filter having an angle characteristic that transmits only light incident at a predetermined angle.
  • the angle filter is designed so that the diffracted light of the hologram to be reproduced passes through the angle filter. At this time, the diffracted light of the adjacent hologram that enters the angle filter at an angle different from the design angle does not pass through the filter. Therefore, this filter can remove the crosstalk from the adjacent hologram as in the polytopic filter.
  • Hologram recording / reproduction is performed according to the procedure described with reference to FIGS. 1 and 2, but in order to obtain a high SNR reproduction image by recording high-contrast interference fringes, the wavefronts at the time of recording and reproduction are the same. It is ideal to do it. However, when the optical information recording medium is exchanged during recording and reproduction, or when a different optical information recording / reproducing apparatus is used, a relative displacement between the optical pickup 11 and the optical information recording medium 1 may occur. is there.
  • the adhesive or screws that fix the components expand / contract, or It is conceivable that the optical information recording medium 1 is expanded or contracted due to vibration or change with time. Due to these various factors, a relative positional shift of the optical information recording medium 1 with respect to the optical pickup 11 occurs. Detracking and defocusing can be cited as main positional deviations.
  • FIG. 4 shows a part of the optical system configuration when the optical information recording medium 1 is detracked during hologram reproduction, taking the optical pickup 11 of FIG. 1 as an example.
  • the diffracted light from the hologram to be reproduced is displaced relative to the optical pickup.
  • vignetting of diffracted light occurs in the polytopic filter 405, resulting in a problem that the SNR deteriorates due to a lack of a part of the reproduced image or a decrease in the amount of light.
  • FIG. 5 and FIG. As shown in FIG. 5, for example, by adjusting the position of the optical information recording medium 1 according to the detrack amount, the diffracted light from the hologram to be reproduced passes through the polytopic filter 505, and a high SNR reproduced image is obtained. it can. However, since the optical information recording medium 1 is relatively heavy, there is a problem that high-speed position adjustment is difficult.
  • the feature of this embodiment is that the position of the polytopic filter is adjusted according to the detrack amount and / or the defocus amount corresponding to the positional deviation of the filter.
  • FIG. 6 shows a part of an optical pickup in which the position of the polytopic filter 605 is adjusted according to the detrack amount. Since the polytopic filter is relatively light, the position can be adjusted at a higher speed than the optical information recording medium 1.
  • the polytopic filter is considered to be composed of an actuator unit 630 and a positional deviation correction unit 611 having an arithmetic circuit.
  • the reproduction optical path of the optical pickup is partly divided by the light dividing element, and the divided light is received by the light receiving element.
  • the position of the polytopic filter with respect to the hologram to be reproduced is detected by the light receiving element, and the signal is calculated to correspond to the position deviation. Is generated by an arithmetic circuit.
  • the actuator section 630 adjusts the position of the polytopic filter in the three-dimensional direction of detrack (radial and tangential directions) and defocus.
  • signals from the rotary encoder detection system 607 and the linear encoder detection system 608 are calculated to generate a signal corresponding to detrack, and the position of the polytopic filter 605 is corrected accordingly.
  • the light emitted from the optical information recording medium is detected by an arbitrary sensor 610, and a signal corresponding to defocusing is generated to correct the position of the polytopic filter 605.
  • the position of the optical information recording medium 1 may be roughly adjusted, and then the position of the polytopic filter 605 may be finely adjusted to perform position correction.
  • the position correction in the three-dimensional direction of the polytopic filter has been described with reference to the optical pickup 11 of FIG. 1 as an example in FIG. 6, but it can also be applied to the optical pickup 11 of FIG.
  • the optical information recording medium 1 is displaced in the optical pickup 11 shown in FIG. 2
  • the angle of the reproduction light incident on the angle filter 209 changes, so that the angle of the light transmitted through the angle filter is changed.
  • An angle shift correction unit and an arithmetic circuit that applies an angle shift signal to the angle shift correction unit are mounted, and the angle characteristics of the filter are adjusted so that the diffracted light from the target hologram is not vignetted.
  • an angle filter like a liquid crystal filter, when no voltage is applied, light incident at all incident angles is transmitted.
  • the arrangement of liquid crystal molecules changes, and a certain predetermined incident angle is obtained. It is possible to have a property such as transmitting only the light.
  • the angle deviation correction method of the angle filter for example, a method of changing the angle of light that can be transmitted by changing the applied direction of the liquid crystal molecules to change the alignment direction of the liquid crystal molecules is conceivable.
  • the polytopic filter and the angle filter are mainly described.
  • the reproduction light from the adjacent hologram is shielded and only the reproduction light from the target hologram is passed.
  • Other filters may be used as long as they are filters.
  • the spatial filter may be composed of a liquid crystal element or the like, and other methods such as mechanically changing the shape of the opening are not limited to the liquid crystal element.
  • FIG. 7 shows the result of verifying the effect of the polytopic filter correction of this embodiment with an optical simulator.
  • an ideal state with a detrack amount of 0 if the relative value of the SNR of the acquired reproduced image is 1.0, the SNR of the reproduced image decreases to ⁇ 0.1 when a predetermined amount of detrack occurs. To do. At this time, if the position of the polytopic filter is corrected according to the detrack amount, the SNR becomes 1.0, which is improved to be equal to the ideal state.
  • FIG. 8 shows a part of the optical pickup during (a) recording and (b) reproduction.
  • the light beam in the optical element constituting the reproduction unit is used during recording and reproduction.
  • the optical path is different. For this reason, for example, in a lens, a relatively large aberration may occur in a light beam that passes through the end of the lens, even if the light beam passes through a region that has a symmetrical optical path in the lens.
  • FIG. 8C shows an experimental result of verifying the polytopic filter correction of this embodiment.
  • the SNR of the acquired reproduced image is 1.0 when the detrack amount is 0 (nominal)
  • the SNR of the reproduced image is reduced to about 0.85 when a predetermined amount of detrack occurs.
  • the SNR becomes 0.98, which is improved as compared with the detrack time, but does not completely return to the SNR in the ideal state.
  • the aberration of the lens occurs due to the change of the optical path of the light beam in the lens.
  • the lens image height characteristics optimally according to the optical system even when the optical information recording medium is detracked and the optical path during reproduction is changed, a large aberration is generated compared with the recording. Therefore, it is considered that the SNR improves to the same level as the ideal state.
  • the SNR improves to the same level as the ideal state.
  • there may be factors other than lens aberration such as a focus position shift during detracking. In this case, besides the polytopic filter correction, it is possible to improve the SNR to an ideal state by detecting a deviation signal.
  • FIG. 9 shows the result of verifying the effect of the polytopic filter correction of this embodiment with an optical simulator.
  • the relative value of the SNR of the acquired reproduced image is set to 1.0. If the defocus amount is increased while the position of the polytopic filter is fixed, the SNR of the reproduced image gradually deteriorates, and when the defocus amount is 100 ⁇ m, the SNR decreases to ⁇ 0.2.
  • the SNR is improved to 1.0, which is equivalent to the ideal state.
  • FIG. 10 is a schematic diagram showing a signal generation method corresponding to defocus according to the embodiment of the present invention.
  • (A) to (c) respectively show cases where the hologram is displaced in the focus direction,
  • (a) is a state in which the hologram is close to the objective lens by a certain distance from the just focus position, and
  • (b) is A state where the hologram is at the just focus position,
  • (c) is a light ray diagram in a state where the hologram is at a certain distance from the just focus position with respect to the objective lens.
  • the light beam passes through the direction in which the cylindrical lens has a convergence effect.
  • FIG. 11 is a schematic diagram showing a method for generating a signal corresponding to defocusing and a signal corresponding to detracking according to the embodiment of the present invention.
  • the signal (A + B) ⁇ (C + D) is calculated by calculating the signal (A + B) ⁇ (C + D) among the signals output from the four-segment PD 1101.
  • a signal corresponding to the radial detrack of the information recording medium 1 can be acquired.
  • a signal corresponding to the detrack in the tangential direction of the optical information recording medium 1 can be acquired.
  • the signal corresponding to the defocus of the optical information recording medium 1 is (A + C) ⁇ (B + D) as described with reference to FIG.
  • Reference numerals 1102 to 1110 denote an addition circuit and a subtraction circuit, respectively. These three signals are applied to the actuator unit, and the polytopic filter is driven three-dimensionally.
  • the optical pickup 11 shown in FIG. 1 detects a predetermined amount of signal according to the detrack amount and the defocus amount described above. The position adjustment in the detrack direction and the defocus direction is performed by feeding back the difference between this signal and the signal corresponding to the initial position of the optical information recording medium to the actuator of the polytopic filter.
  • the signals corresponding to the initial position of the optical information recording medium are a detrack signal and a focus signal which are detected in advance during recording, and the optical information recording / reproducing apparatus 10 holds this signal and the like. By doing in this way, it becomes possible to control the position of a filter appropriately.
  • the present invention is not limited to this detection method, and a configuration in which the polytopic filter is adjusted so that the signal obtained by the detection method becomes 0 may be adopted.
  • the diffracted light from the adjacent hologram is also guided to the quadrant PD 1101 together with the diffracted light from the hologram to be reproduced.
  • the quadrant PD is sized to receive only the diffracted light from the hologram to be reproduced. . That is, the quadrant PD has a size that does not allow diffracted light from adjacent holograms to enter simultaneously.
  • FIG. 12 is a block diagram showing a recording / reproducing apparatus of an optical information recording medium for recording and / or reproducing digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 includes an optical pickup 11, a reproducing reference light optical system 12, a cure optical system 13, a disk rotation angle detecting optical system 14, and a rotation motor 50.
  • the optical information recording medium 1 is rotated.
  • the motor 50 can be rotated.
  • the optical pickup 11 plays a role of emitting reference light and signal light to the optical information recording medium 1 and recording digital information on the recording medium using holography.
  • the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the optical pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
  • the reproduction reference light optical system 12 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the optical pickup 11 to enter the optical information recording medium 1 in the opposite direction to that during recording. Generate with. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the optical pickup 11, and a signal is reproduced by the signal processing circuit 85.
  • the polytopic filter of the present invention is located in the optical pickup 11.
  • the correction signal generated by the misalignment correction circuit 21 is transmitted to the actuator 20 to drive the spatial filter.
  • an angle deviation correction circuit is provided.
  • the irradiation time of the reference light and the signal light irradiated on the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the optical pickup 11 via the shutter control circuit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the optical pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light quantity. be able to.
  • optical pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and position control is performed via the access control circuit 81.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
  • a mechanism for detecting the deviation amount of the reference light angle is provided in the optical pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. Therefore, it is necessary to provide a servo mechanism for the optical information recording / reproducing apparatus 10.
  • optical pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations.
  • FIG. 13 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10.
  • a flow relating to recording / reproduction using holography in particular will be described.
  • FIG. 4A shows an operation flow from when the optical information recording medium 1 is inserted into the optical information recording / reproducing apparatus 10 until preparation for recording or reproduction is completed
  • FIG. 10C shows the operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
  • the optical information recording / reproducing apparatus 10 determines whether the inserted medium is a medium for recording or reproducing digital information using holography, for example.
  • the recording medium is determined (1302).
  • the optical information recording medium is determined to be an optical information recording medium that records or reproduces digital information using holography as a result of discrimination of the optical information recording medium
  • the optical information recording / reproducing apparatus 10 controls the control data provided in the optical information recording medium.
  • (1303) for example, information on the optical information recording medium and information on various setting conditions during recording and reproduction are obtained.
  • the operation flow from the ready state to the recording of information is as follows. First, data to be recorded is received (1311), and the information corresponding to the data is spatially modulated in the optical pickup 11. Send it to the vessel.
  • various recording learning processes such as power optimization of the light source 301 and exposure time optimization by the shutter 303 are performed in advance so that high-quality information can be recorded on the optical information recording medium (1312). ).
  • the access control circuit 81 is controlled to position the optical pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium 1.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • a predetermined region is precured using the light beam emitted from the cure optical system 13 (1314), and data is recorded using the reference light and signal light emitted from the pickup 11 (1315).
  • post cure is performed using the light beam emitted from the cure optical system 13 (1316). Data may be verified as necessary.
  • the operation flow from the ready state to the reproduction of recorded information is as follows.
  • the access control circuit 81 is controlled to control the optical pickup 11 and the reproduction reference.
  • the position of the optical optical system 12 is positioned at a predetermined position on the optical information recording medium 1.
  • the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
  • FIG. 14 is an example of an operation flow of the polytopic filter three-dimensional control of the present embodiment.
  • the flow for controlling the polytopic filter for each book is illustrated.
  • three signals are detected in advance (1400): a detrack signal (radial direction): R 0 , a detrack signal (tangential direction): T 0 , and a defocus signal: D 0 .
  • chucking is performed for reproducing an optical information recording medium in which data is recorded in advance (1401).
  • signals from the rotary encoder and linear encoder are detected, and the initial position of the optical information recording medium is roughly adjusted (1402).
  • the polytopic filter is controlled in a three-dimensional direction to finely adjust the relative position with the optical information recording medium.
  • the coarse adjustment of the optical information recording medium and the fine adjustment of the polytopic filter can be performed accurately and at high speed.
  • the detrack signal R 1 in the radial direction is first detected (1403). If the difference from the signal R 0 detected in advance during recording is not 0, an amount corresponding to (R 1 ⁇ R 0 ) Only the polytopic filter is finely adjusted in the radial direction (1404, 1405). Then it detects the de-track signal T 1 of the tangential direction (1406), in the case the difference between T 0 as with the radial direction is not zero polytopic filter by an amount corresponding to (T 1 -T 0) Fine adjustment in the tangential direction (1407, 1408).
  • short stack recording may be performed in order to obtain a high SNR reproduction image (refer to Special Table 2010-503025 for the term “short stack”).
  • the steps 1403 to 1414 shown in FIG. 14 are repeated for each stack, not for each book, until the reproduction of the desired hologram is completed.
  • the polytopic filter may be three-dimensionally controlled in real time.
  • the position of the polytopic filter is controlled to eliminate vignetting of the diffracted light.
  • the weight of the optical information recording medium is weak against vibration.
  • the optical information recording medium is first moved and coarsely adjusted to adjust the initial position of the optical information recording medium.
  • relatively heavy optical information recording is performed.
  • the medium may not be moved, and the procedure 1402 may be skipped and the process may be started from 1403.
  • the angle multiplexing method is used.
  • the present invention is not limited to this, and can be applied to, for example, a collinear method.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
  • SYMBOLS 1 Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Optical pick-up, 12 ... Reference optical system for reproduction
  • External control device 101 ... Light source, 102 ... Collimating lens, 103 ... Shutter, 104 ... 1/2 wavelength plate , 105 ... Polarization beam splitter 106 ... Signal light 107 ... Reference light 108 ... Beam expander 109 ... Phase mask 110 ... Relay lens 111 ... Polarization beam splitter 112 ..Spatial light modulator, 113 ... relay lens, 114 ... polytopic filter, 115 ... objective lens, 116 ... polarization direction conversion element, 117 ... mirror, 118 ... mirror, 119 ... Mirror, 120 ... Actuator, 121 ... Lens, 122 ... Lens, 123 ... Actuator, 124 ... Mirror, 125 ...
  • Spatial light modulator, 304 ... Relay lens 305 Polytopic filter 306 Objective lens 401 Photo detector 402 Polarizing beam splitter 403 ..Spatial light modulator, 404 ... relay lens, 405 ... polytopic filter, 406 ... objective lens, 501 ... photodetector, 502 ... polarizing beam splitter, 503 ... space Optical modulator, 504 ... Relay lens, 505 ... Polytopic filter, 506 ... Objective lens, 601 ... Optical detector, 602 ... Polarizing beam splitter, 603 ... Spatial light modulator 604 ... relay lens, 605 ... polytopic filter, 606 ... objective lens, 630 ... actuator, 901 ... photodetector, 902 ...
  • polarization beam splitter 903 ... space Optical modulator, 904 ... relay lens, 905 ... polytopic filter, 906 ... objective lens, 930 ... actuator, 1001 Light rays that have undergone the convergence effect, 1002... Rays that have not received the convergence effect, 1003... Four-segment PD, 1004... Beam spot, 1005. ..Subtracting circuit, 1101... 4 division PD, 1102... Adding circuit, 1103... Adding circuit, 1104... Adding circuit, 1105. ..Addition circuit, 1108 ... subtraction circuit, 1109 ... subtraction circuit, 1110 ... subtraction circuit

Abstract

Provided is an optical information recording and reproduction apparatus and an optical information recording and reproduction method that enable high quality signals to be reproduced at high speed. This optical information reproduction apparatus reproduces information from an optical information recording medium whereon an interference pattern of signal light and reference light is recorded as page data. The optical information reproduction apparatus is characterized by being provided with: a laser light source; a splitting element that splits light emitted from the laser light source into signal light and reference light; a filter that minimizes the effects of crosstalk between adjacent holograms; a light detection unit that detects a position error signal of the filter from diffracted light that is diffracted when the optical information recording medium is irradiated with the reference light; and a control unit that controls the filter. The optical information reproduction apparatus is further characterized in that the control unit controls the filter in response to the position error signal detected by the light detection unit.

Description

光情報再生装置、及び光情報再生方法Optical information reproducing apparatus and optical information reproducing method
 本発明は信号光と参照光との干渉パターンをページデータとして光情報記録媒体に情報を記録する、および/または光情報記録媒体から情報を再生する装置に関する。 The present invention relates to an apparatus for recording information on an optical information recording medium using the interference pattern of signal light and reference light as page data and / or reproducing information from the optical information recording medium.
 現在、青紫色半導体レーザを用いた、Blu-ray Disc(TM)規格により、民生用においても50GB程度の記録密度を持つ光ディスクの商品化が可能となってきた。今後は、光ディスクでも100GB~1TBというHDD(Hard Disk Drive)容量と同程度まで大容量化が望まれる。 Currently, the Blu-ray Disc (TM) standard using a blue-violet semiconductor laser has made it possible to commercialize an optical disc having a recording density of about 50 GB even for consumer use. In the future, it is desired to increase the capacity of optical disks to the same level as the HDD (Hard Disk Drive) capacity of 100 GB to 1 TB.
 しかしながら、このような超高密度を光ディスクで実現するためには、短波長化と対物レンズの高NA化による高密度化技術とは異なる新しい方式による高密度化技術が必要である。 However, in order to realize such an ultra-high density with an optical disk, a high-density technology by a new method different from a high-density technology by shortening the wavelength and increasing the NA of the objective lens is necessary.
 次世代のストレージ技術に関する研究が行われる中、ホログラフィを利用してデジタル情報を記録するホログラム記録技術が注目を集めている。 While research on next-generation storage technology is underway, hologram recording technology that records digital information using holography is drawing attention.
 ホログラム記録技術とは、空間光変調器により2次元的に変調されたページデータの情報を有する信号光を、記録媒体の内部で参照光と重ね合わせ、その時に生じる干渉縞パターンによって記録媒体内に屈折率変調を生じさせることで情報を記録媒体に記録する技術である。 Hologram recording technology is a method in which signal light having page data information two-dimensionally modulated by a spatial light modulator is superimposed on reference light inside the recording medium, and the interference fringe pattern generated at that time is placed in the recording medium. This is a technique for recording information on a recording medium by causing refractive index modulation.
 情報の再生時には、記録時に用いた参照光を記録媒体に照射すると、記録媒体中に記録されているホログラムが回折格子のように作用して回折光を生じる。この回折光が記録した信号光と位相情報を含めて同一の光として再生される。 When reproducing the information, when the recording medium is irradiated with the reference light used for recording, the hologram recorded in the recording medium acts like a diffraction grating to generate diffracted light. This diffracted light is reproduced as the same light including the recorded signal light and phase information.
 再生された信号光は、CMOSやCCDなどの光検出器を用いて2次元的に高速に検出される。このようにホログラム記録技術は、1つのホログラムによって2次元的な情報を一気に光記録媒体に記録し、さらにこの情報を再生することを可能とするものであり、そして、記録媒体のある場所に複数のページデータを重ね書きすることができるため、大容量かつ高速な情報の記録再生を果たすことができる。 Regenerated signal light is detected two-dimensionally at high speed using a photodetector such as a CMOS or CCD. As described above, the hologram recording technique enables two-dimensional information to be recorded on the optical recording medium at once by one hologram and further reproduces this information. Since the page data can be overwritten, large-capacity and high-speed information recording / reproduction can be achieved.
 ホログラム記録技術として、例えば特開2004-272268号公報(特許文献1)がある。本公報には、「ホログラムの隣接するスタック間で部分的空間的重なり合いによってホログラムが空間的に多重化される、多重化方法および装置が開示される。各々のスタックは、例えば角度、波長、位相符号、ペリストロピック、またはフラクタル多重化等の別の多重化技術の完全な利点をさらに取り得る。ホログラムを書き込む信号光のビームウエストに等しい量が、ホログラムの個々のスタックを分離する。再現時に、あるホログラムとそのホログラムに隣接するホログラムとは、全て同時に読み出される。再現されたデータのビームウエストにフィルタが配置されることにより、読み出された隣接するホログラムは、カメラ面まで伝達されない。もしくは、これらの所望ではない再現は、制限された角度パスバンドを有する光学系においては、中間面の角度フィルタによってフィルタリングされ得る。」と記載されている。 As a hologram recording technique, for example, there is JP-A-2004-272268 (Patent Document 1). This publication discloses a multiplexing method and apparatus in which holograms are spatially multiplexed by partial spatial overlap between adjacent stacks of holograms. Each stack is for example an angle, a wavelength, a phase. The full advantage of another multiplexing technique such as sign, peritropy, or fractal multiplexing can be further taken in. An amount equal to the beam waist of the signal light writing the hologram separates the individual stacks of holograms. A hologram and a hologram adjacent to the hologram are all read out simultaneously, and the adjacent hologram read out is not transmitted to the camera surface by arranging a filter at the beam waist of the reproduced data, or These undesired reproductions can be found in optical systems with limited angular passbands. Information, it is described that may be filtered. "By the intermediate plane of the angular filter.
 また、ポリトピックフィルタを搭載したその他の特許文献として、特開2007-304263号公報(特許文献2)がある。本公報には、「再生対象ホログラムから出射された再生光がポリトピックフィルタを適正に通過するよう制御できるホログラフィックメモリ装置を提供する」と記載されている。 Also, as another patent document on which a polytopic filter is mounted, there is JP-A-2007-304263 (Patent Document 2). This publication describes that “it provides a holographic memory device capable of controlling the reproduction light emitted from the reproduction target hologram to appropriately pass through the polytopic filter”.
特開2004-272268号公報JP 2004-272268 A 特開2007-304263号公報JP 2007-304263 A
 特許文献1、2では、高密度化を目的として、ホログラムを最小ピッチで隣接して記録する。従って、再生光を照射すると、目的のホログラムだけでなく隣接ホログラムも同時に再生されてしまう。そこで、隣接ホログラムからのクロストークを除去し、目的のホログラムだけを再生するために、ポリトピックフィルタと呼ばれる空間フィルタを搭載する。 In Patent Documents 1 and 2, holograms are recorded adjacently at a minimum pitch for the purpose of increasing the density. Therefore, when the reproduction light is irradiated, not only the target hologram but also the adjacent hologram is reproduced simultaneously. Therefore, a spatial filter called a polytopic filter is mounted in order to remove crosstalk from adjacent holograms and reproduce only the target hologram.
 ところで、ホログラフィック記録においては、記録時と再生時に光ピックアップに対する光情報記録媒体の相対位置が一致している場合に高いSNRを持つ再生像が取得できる。しかしながら、記録時と再生時で光情報記録媒体を交換する場合や、異なる光情報記録再生装置を使用する場合、または温度変化、振動影響、経時変化などの様々な要因によって、光ピックアップに対する光情報記録媒体の相対位置ずれが発生する。光情報記録媒体とポリトピックフィルタとの相対位置がずれると、ポリトピックフィルタにおいて回折光のケラレ(ビネッティング)が発生するため、結果的に再生像の一部が欠如したり光量が低下するなどして、SNRが劣化するという課題が発生する。具体的な位置ずれの例として、デフォーカスやデトラックが考えられる。こうした場合、特許文献2では再生時に光情報記録媒体の位置を調整して、光ピックアップとの相対位置を修正してきた。しかし、光情報記録媒体は比較的重量があるため、再生に時間を要するという課題が生じた。 By the way, in holographic recording, a reproduced image having a high SNR can be acquired when the relative position of the optical information recording medium with respect to the optical pickup coincides during recording and reproduction. However, when the optical information recording medium is exchanged between recording and reproduction, when using a different optical information recording / reproducing apparatus, or due to various factors such as temperature change, vibration influence, change with time, etc. A relative displacement of the recording medium occurs. If the relative position of the optical information recording medium and the polytopic filter is shifted, vignetting of diffracted light occurs in the polytopic filter, resulting in a lack of a part of the reproduced image or a decrease in the amount of light. As a result, there arises a problem that the SNR deteriorates. Defocusing and detracking can be considered as specific examples of positional deviation. In such a case, in Patent Document 2, the position of the optical information recording medium is adjusted during reproduction to correct the relative position to the optical pickup. However, since the optical information recording medium is relatively heavy, there is a problem that it takes time for reproduction.
 そこで、本発明の目的は、高速に高品質の信号を再生可能な光情報記録再生装置及び光情報記録再生方法を提供することである。 Therefore, an object of the present invention is to provide an optical information recording / reproducing apparatus and an optical information recording / reproducing method capable of reproducing a high-quality signal at high speed.
 上記課題は、例えば請求項の範囲に記載の発明により解決される。 The above problem is solved by, for example, the invention described in the scope of claims.
 本発明によれば、高速に高品質の信号を再生可能な光情報記録再生装置及び光情報記録再生方法を提供することが出来る。 According to the present invention, it is possible to provide an optical information recording / reproducing apparatus and an optical information recording / reproducing method capable of reproducing a high-quality signal at high speed.
本発明の光ピックアップの第一の実施の形態を示す図The figure which shows 1st embodiment of the optical pick-up of this invention 本発明の光ピックアップの第二の実施の形態を示す図The figure which shows 2nd embodiment of the optical pick-up of this invention 本発明の光ピックアップに搭載するポリトピックフィルタの役割を説明する図The figure explaining the role of the polytopic filter mounted in the optical pick-up of this invention デトラック時の光ピックアップの一部の実施の形態を示す図The figure which shows some embodiment of the optical pick-up at the time of a detrack デトラック補正方法の実施の形態を示す図The figure which shows embodiment of the detrack correction method 本発明のデトラック補正方法の実施の形態を示す図The figure which shows embodiment of the detrack correction method of this invention 本発明のデトラック補正方法のシミュレーションによる検証結果を示す図The figure which shows the verification result by the simulation of the detrack correction method of this invention 本発明を適用した光ピックアップの一部の実施の形態を示す図The figure which shows some embodiment of the optical pick-up to which this invention is applied 本発明を適用した光ピックアップの一部の実施の形態を示す図The figure which shows some embodiment of the optical pick-up to which this invention is applied 実験結果の一例Example of experimental results 本発明のデフォーカス時のシミュレーションによる検証結果を示す図The figure which shows the verification result by the simulation at the time of the defocusing of this invention 本発明の実施の形態に係るデフォーカスに対応する信号の生成方法を表す概略図Schematic showing a method of generating a signal corresponding to defocus according to an embodiment of the present invention 本発明の実施の形態に係るデトラック、デフォーカスに対応する信号の生成方法を表す概略図Schematic showing a method for generating a signal corresponding to detrack and defocus according to an embodiment of the present invention. 本発明の光情報記録再生装置の実施例を表す概略図Schematic showing the Example of the optical information recording / reproducing apparatus of this invention 光情報記録再生装置の動作フローの実施例を表す概略図Schematic showing an embodiment of the operation flow of the optical information recording / reproducing apparatus 本発明のポリトピックフィルタ3次元制御の動作フローの実施例を表す概略図Schematic showing the Example of the operation | movement flow of the polytopic filter three-dimensional control of this invention
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 本発明の実施形態を添付図面にしたがって説明する。 Embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は本発明の光情報記録再生装置10における光ピックアップ11の光学系構成の一例を示したものである。 FIG. 1 shows an example of an optical system configuration of an optical pickup 11 in an optical information recording / reproducing apparatus 10 of the present invention.
 まずホログラムの記録手順について説明する。光源101を出射した光ビームはコリメートレンズ102を透過し、シャッタ103に入射する。シャッタ103が開いている時は、光ビームはシャッタ103を通過した後、例えば2分の1波長板などで構成される光学素子104によってp偏光とs偏光の光量比が所望の比になるように偏光方向が制御された後、PBS(Polarization Beam Splitter)プリズム105に入射する。 First, the hologram recording procedure will be described. The light beam emitted from the light source 101 passes through the collimator lens 102 and enters the shutter 103. When the shutter 103 is open, after the light beam passes through the shutter 103, the optical element 104 composed of, for example, a half-wave plate or the like makes the light quantity ratio of p-polarized light and s-polarized light a desired ratio. After the polarization direction is controlled, the light enters a PBS (Polarization Beam Splitter) prism 105.
 PBSプリズム105を透過した光ビームは、信号光106として働き、ビームエキスパンダ108によって光ビーム径が拡大された後、位相マスク109、リレーレンズ110、PBSプリズム111を透過して空間光変調器112に入射する。 The light beam that has passed through the PBS prism 105 functions as the signal light 106, and after the light beam diameter is enlarged by the beam expander 108, the light beam passes through the phase mask 109, the relay lens 110, and the PBS prism 111 and passes through the spatial light modulator 112. Is incident on.
 空間光変調器112によって情報が付加された信号光は、PBSプリズム111を反射し、リレーレンズ113ならびにポリトピックフィルタ114を伝播する。その後、信号光は対物レンズ115によって光情報記録媒体1に集光する。 The signal light to which information is added by the spatial light modulator 112 reflects the PBS prism 111 and propagates through the relay lens 113 and the polytopic filter 114. Thereafter, the signal light is condensed on the optical information recording medium 1 by the objective lens 115.
 一方、PBSプリズム105を反射した光ビームは参照光107として働き、偏光方向変換素子116によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー117ならびにミラー118を経由してガルバノミラー119に入射する。ガルバノミラー119はアクチュエータ120によって角度を調整可能のため、レンズ121とレンズ122を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。 On the other hand, the light beam reflected from the PBS prism 105 works as reference light 107 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 116, and then galvanically via the mirror 117 and the mirror 118. Incident on the mirror 119. Since the angle of the galvanometer mirror 119 can be adjusted by the actuator 120, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 121 and the lens 122 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
 このように信号光と参照光とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを光情報記録媒体に書き込むことで情報を記録する。また、ガルバノミラー119によって光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。 In this way, the signal light and the reference light are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is written by writing this pattern on the optical information recording medium. Record. Further, since the incident angle of the reference light incident on the optical information recording medium 1 can be changed by the galvanometer mirror 119, recording by angle multiplexing is possible.
 次に、ホログラムの再生手順について説明する。参照光107を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームを、アクチュエータ123によって角度調整可能なガルバノミラー124にて反射させることで、その再生用参照光を生成する。 Next, the hologram playback procedure will be described. The reference light 107 is incident on the optical information recording medium 1, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvano mirror 124 whose angle can be adjusted by the actuator 123, thereby generating the reproduction reference light. .
 この再生用参照光によって再生された再生光は、対物レンズ115、リレーレンズ113ならびにポリトピックフィルタ114を伝播する。その後、再生光はPBSプリズム111を透過して光検出器125に入射し、記録した信号を再生することができる。光検出器125としては例えばCMOSイメージセンサーやCCDイメージセンサーなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。 The reproduction light reproduced by the reproduction reference light propagates through the objective lens 115, the relay lens 113, and the polytopic filter 114. Thereafter, the reproduction light passes through the PBS prism 111 and enters the photodetector 125, and the recorded signal can be reproduced. As the photodetector 125, an image sensor such as a CMOS image sensor or a CCD image sensor can be used, but any element may be used as long as page data can be reproduced.
 図2は光ピックアップ11の別の構成を示した図である。図2において、光源201を出射した光ビームはコリメートレンズ202を透過し、シャッタ203に入射する。シャッタ203が開いている時は、光ビームはシャッタ203を通過した後、例えば1/2波長板などで構成される光学素子204によってp偏光とs偏光の光量比が所望の比になるように偏光方向を制御された後、偏光ビームスプリッタ205に入射する。 FIG. 2 is a diagram showing another configuration of the optical pickup 11. In FIG. 2, the light beam emitted from the light source 201 passes through the collimator lens 202 and enters the shutter 203. When the shutter 203 is open, after the light beam passes through the shutter 203, the optical element 204 composed of, for example, a half-wave plate or the like adjusts the light quantity ratio of p-polarized light and s-polarized light to a desired ratio. After the polarization direction is controlled, the light enters the polarization beam splitter 205.
 偏光ビームスプリッタ205を透過した光ビームは、偏光ビームスプリッタ207を経由して空間光変調器208に入射する。空間光変調器208によって情報を付加された信号光206は偏光ビームスプリッタ207を反射し、所定の入射角度の光線のみを通過させる特性を持つアングルフィルタ209を伝播する。その後、信号光ビームは対物レンズ210によって光情報記録媒体1に集光する。 The light beam that has passed through the polarization beam splitter 205 enters the spatial light modulator 208 via the polarization beam splitter 207. The signal light 206 to which information is added by the spatial light modulator 208 is reflected by the polarization beam splitter 207 and propagates through an angle filter 209 having a characteristic of allowing only a light beam having a predetermined incident angle to pass therethrough. Thereafter, the signal light beam is condensed on the optical information recording medium 1 by the objective lens 210.
 一方、偏光ビームスプリッタ205を反射した光ビームは参照光212として働き、偏光方向変換素子219によって記録時又は再生時に応じて所定の偏光方向に設定された後、ミラー213ならびにミラー214を経由してレンズ215に入射する。レンズ215は参照光212を対物レンズ210のバックフォーカス面に集光させる役割を果たしており、対物レンズ210のバックフォーカス面にて一度集光した参照光は、対物レンズ210によって再度、平行光となって光情報記録媒体1に入射する。 On the other hand, the light beam reflected by the polarization beam splitter 205 works as reference light 212 and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 219, and then passes through the mirror 213 and the mirror 214. The light enters the lens 215. The lens 215 plays a role of condensing the reference light 212 on the back focus surface of the objective lens 210, and the reference light once condensed on the back focus surface of the objective lens 210 becomes parallel light again by the objective lens 210. To the optical information recording medium 1.
 ここで、対物レンズ210又は光学ブロック221は、例えば符号220に示す方向に駆動可能であり、対物レンズ210又は光学ブロック221の位置を駆動方向220に沿ってずらすことにより、対物レンズ210と対物レンズ210のバックフォーカス面における集光点の相対位置関係が変化するため、光情報記録媒体1に入射する参照光の入射角度を所望の角度に設定することができる。なお、対物レンズ210又は光学ブロック221を駆動する代わりに、ミラー214をアクチュエータにより駆動することで参照光の入射角度を所望の角度に設定しても構わない。 Here, the objective lens 210 or the optical block 221 can be driven, for example, in the direction indicated by reference numeral 220. By shifting the position of the objective lens 210 or the optical block 221 along the driving direction 220, the objective lens 210 and the objective lens are moved. Since the relative positional relationship of the condensing points on the back focus surface 210 changes, the incident angle of the reference light incident on the optical information recording medium 1 can be set to a desired angle. Instead of driving the objective lens 210 or the optical block 221, the incident angle of the reference light may be set to a desired angle by driving the mirror 214 with an actuator.
 このように、信号光と参照光を光情報記録媒体1において、互いに重ね合うように入射させることで、光情報記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。また対物レンズ210又は光学ブロック221の位置を駆動方向220に沿ってずらすことによって、光情報記録媒体1に入射する参照光の入射角度を変化させることができるため、角度多重による記録が可能である。 In this way, by causing the signal light and the reference light to enter the optical information recording medium 1 so as to overlap each other, an interference fringe pattern is formed in the optical information recording medium, and information is written by writing this pattern on the recording medium. Record. Further, by shifting the position of the objective lens 210 or the optical block 221 along the driving direction 220, the incident angle of the reference light incident on the optical information recording medium 1 can be changed, so that recording by angle multiplexing is possible. .
 記録した情報を再生する場合は、前述したように参照光を光情報記録媒体1に入射し、光情報記録媒体1を透過した光ビームをガルバノミラー216にて反射させることで、その再生用参照光を生成する。この再生用参照光によって再生された再生光は、対物レンズ210、アングルフィルタ209を伝播する。その後、再生光は偏光ビームスプリッタ207を透過して光検出器218に入射し、記録した信号を再生することができる。 When reproducing recorded information, the reference light is incident on the optical information recording medium 1 as described above, and the light beam transmitted through the optical information recording medium 1 is reflected by the galvanometer mirror 216, thereby reproducing the reproduction reference. Produce light. The reproduction light reproduced by the reproduction reference light propagates through the objective lens 210 and the angle filter 209. Thereafter, the reproduction light passes through the polarization beam splitter 207 and enters the photodetector 218, and the recorded signal can be reproduced.
 図2に示した光学系は、信号光と参照光を同一の対物レンズに入射させる構成とすることで、図1に示した光学系構成に比して、大幅に小型化できる利点を有する。 The optical system shown in FIG. 2 has an advantage that the signal light and the reference light are made incident on the same objective lens, so that the optical system can be greatly reduced in size as compared with the optical system configuration shown in FIG.
 図3は、図1の光学系に搭載されているポリトピックフィルタ114の役割の一例を説明したものである。本実施例のホログラフィックメモリ装置では、高密度化を目的としてホログラムを最小ピッチで記録する。従って、再生光を照射すると、目的のホログラムだけでなく隣接ホログラムも同時に再生されてしまう。そこで、ポリトピックフィルタと呼ばれる比較的重量の軽い空間フィルタを、リレーレンズ304の集光位置に配置することによって、隣接ホログラムからの再生光を遮光し、目的のホログラムからの再生光のみを通過させることができる。 FIG. 3 illustrates an example of the role of the polytopic filter 114 installed in the optical system of FIG. In the holographic memory device of this embodiment, holograms are recorded at the minimum pitch for the purpose of increasing the density. Therefore, when the reproduction light is irradiated, not only the target hologram but also the adjacent hologram is reproduced simultaneously. Therefore, by placing a relatively light spatial filter called a polytopic filter at the condensing position of the relay lens 304, the reproduction light from the adjacent hologram is shielded and only the reproduction light from the target hologram is allowed to pass. be able to.
 なお図2の光学系では、ポリトピックフィルタの代わりに、アングルフィルタを用いている。これにより光ピックアップ11を小型化することができる。アングルフィルタとは、所定の角度で入射する光のみを透過させる角度特性を持つフィルタである。アングルフィルタは、再生したいホログラムの回折光がアングルフィルタを透過するよう、角度特性を設計する。この時、設計角度と異なる角度でアングルフィルタに入射する隣接ホログラムの回折光は、フィルタを透過しない。従って本フィルタにより、ポリトピックフィルタ同様に、隣接ホログラムからのクロストークを除去することができる。 In the optical system of FIG. 2, an angle filter is used instead of the polytopic filter. Thereby, the optical pickup 11 can be reduced in size. An angle filter is a filter having an angle characteristic that transmits only light incident at a predetermined angle. The angle filter is designed so that the diffracted light of the hologram to be reproduced passes through the angle filter. At this time, the diffracted light of the adjacent hologram that enters the angle filter at an angle different from the design angle does not pass through the filter. Therefore, this filter can remove the crosstalk from the adjacent hologram as in the polytopic filter.
 図1と図2を用いて説明した手順でホログラムの記録再生を行うが、高コントラストの干渉縞を記録して高いSNRの再生像を取得するためには、記録時と再生時の波面が一致していることが理想的である。しかしながら、記録時と再生時に光情報記録媒体を交換する場合や、異なる光情報記録再生装置を使用する場合には、光ピックアップ11と光情報記録媒体1の相対的な位置ずれが発生することがある。その他にも、光ピックアップ11を構成する光学部品・構造部品の位置ずれ要因として、光情報記録再生装置内の温度変化により、部品を固定する接着剤やねじ等が膨張・収縮を起こす場合、または振動や経時変化、さらに光情報記録媒体1の膨張・収縮が考えられる。このような様々な要因によって、光ピックアップ11に対する光情報記録媒体1の相対位置ずれが発生する。主な位置ずれとして、デトラックやデフォーカスが挙げられる。 Hologram recording / reproduction is performed according to the procedure described with reference to FIGS. 1 and 2, but in order to obtain a high SNR reproduction image by recording high-contrast interference fringes, the wavefronts at the time of recording and reproduction are the same. It is ideal to do it. However, when the optical information recording medium is exchanged during recording and reproduction, or when a different optical information recording / reproducing apparatus is used, a relative displacement between the optical pickup 11 and the optical information recording medium 1 may occur. is there. In addition, as a cause of displacement of the optical components / structural components constituting the optical pickup 11, due to temperature changes in the optical information recording / reproducing apparatus, the adhesive or screws that fix the components expand / contract, or It is conceivable that the optical information recording medium 1 is expanded or contracted due to vibration or change with time. Due to these various factors, a relative positional shift of the optical information recording medium 1 with respect to the optical pickup 11 occurs. Detracking and defocusing can be cited as main positional deviations.
 図4は図1の光ピックアップ11を例として、ホログラム再生時に、光情報記録媒体1がデトラックした場合の光学系構成の一部を示したものである。デトラックが生じた場合、再生したいホログラムからの回折光は光ピックアップに対して相対的に位置ずれを起こす。その結果、ポリトピックフィルタ405にて回折光のケラレが生じ、結果的に再生像の一部が欠如したり光量が低下するなどして、SNRが劣化するという課題が発生する。 FIG. 4 shows a part of the optical system configuration when the optical information recording medium 1 is detracked during hologram reproduction, taking the optical pickup 11 of FIG. 1 as an example. When detracking occurs, the diffracted light from the hologram to be reproduced is displaced relative to the optical pickup. As a result, vignetting of diffracted light occurs in the polytopic filter 405, resulting in a problem that the SNR deteriorates due to a lack of a part of the reproduced image or a decrease in the amount of light.
 この課題に対する解決手段を図5及び図6に示す。図5に示すように、例えば光情報記録媒体1の位置をデトラック量に応じて調整することで、再生したいホログラムからの回折光はポリトピックフィルタ505を通過し、高いSNRの再生像が取得できる。しかし光情報記録媒体1は比較的重いため、高速な位置調整が困難という課題がある。 The solution to this problem is shown in FIG. 5 and FIG. As shown in FIG. 5, for example, by adjusting the position of the optical information recording medium 1 according to the detrack amount, the diffracted light from the hologram to be reproduced passes through the polytopic filter 505, and a high SNR reproduced image is obtained. it can. However, since the optical information recording medium 1 is relatively heavy, there is a problem that high-speed position adjustment is difficult.
 そこで、本実施例の特徴は、フィルタの位置ずれに対応したデトラック量および/またはデフォーカス量に応じてポリトピックフィルタの位置を調整することである。図6は、デトラック量に応じてポリトピックフィルタ605の位置を調整した光ピックアップの一部を示したものである。ポリトピックフィルタは比較的軽いため、光情報記録媒体1に比較して高速に位置を調整することが可能である。例えばポリトピックフィルタは、アクチュエータ部630と、演算回路を有する位置ずれ補正部611から構成されると考える。また、図示はしないが、光ピックアップの再生光路は、光分割素子によって一部分割され、分割された光は受光素子によって受光されるものとする。デトラック時は再生したいホログラムとポリトピックフィルタの位置が相対的にずれているため、再生したいホログラムに対するポリトピックフィルタの位置を受光素子で検出し、その信号を演算して位置ずれに対応する信号を演算回路で生成する。そしてその信号をもとに、アクチュエータ部630によって、ポリトピックフィルタをデトラック(ラジアル及びタンジェンシャル方向)、デフォーカスの計3次元方向に位置調整する。一例として、ロータリーエンコーダ検出系607及びリニアエンコーダ検出系608からの信号を演算して、デトラックに対応する信号を生成し、それに応じてポリトピックフィルタ605の位置を補正する。また、デフォーカス時には、光情報記録媒体から出射する光を任意のセンサ610で検出し、デフォーカスに対応する信号を生成することでポリトピックフィルタ605の位置を補正する。または、上述した方法を組み合わせて、まず光情報記録媒体1の位置を粗調整し、その後ポリトピックフィルタ605の位置を微調整して位置補正を行っても良い。 Therefore, the feature of this embodiment is that the position of the polytopic filter is adjusted according to the detrack amount and / or the defocus amount corresponding to the positional deviation of the filter. FIG. 6 shows a part of an optical pickup in which the position of the polytopic filter 605 is adjusted according to the detrack amount. Since the polytopic filter is relatively light, the position can be adjusted at a higher speed than the optical information recording medium 1. For example, the polytopic filter is considered to be composed of an actuator unit 630 and a positional deviation correction unit 611 having an arithmetic circuit. Although not shown, it is assumed that the reproduction optical path of the optical pickup is partly divided by the light dividing element, and the divided light is received by the light receiving element. Since the position of the hologram to be reproduced and the polytopic filter are relatively shifted during detracking, the position of the polytopic filter with respect to the hologram to be reproduced is detected by the light receiving element, and the signal is calculated to correspond to the position deviation. Is generated by an arithmetic circuit. Based on the signal, the actuator section 630 adjusts the position of the polytopic filter in the three-dimensional direction of detrack (radial and tangential directions) and defocus. As an example, signals from the rotary encoder detection system 607 and the linear encoder detection system 608 are calculated to generate a signal corresponding to detrack, and the position of the polytopic filter 605 is corrected accordingly. At the time of defocusing, the light emitted from the optical information recording medium is detected by an arbitrary sensor 610, and a signal corresponding to defocusing is generated to correct the position of the polytopic filter 605. Alternatively, by combining the methods described above, first, the position of the optical information recording medium 1 may be roughly adjusted, and then the position of the polytopic filter 605 may be finely adjusted to perform position correction.
 なおポリトピックフィルタの3次元方向への位置補正について、図6では図1の光ピックアップ11を例に挙げたが、図2の光ピックアップ11にも適用できる。図2の光ピックアップ11において光情報記録媒体1の位置ずれが生じた場合には、アングルフィルタ209に入射する再生光の角度が変化するため、アングルフィルタを透過させる光の角度を変更するための角度ずれ補正部と、前記角度ずれ補正部に角度ずれ信号を印加する演算回路を搭載し、目的のホログラムからの回折光がケラレないよう、フィルタの角度特性を調整する。アングルフィルタの一例としては、液晶フィルタのように、電圧を加えない場合には全ての入射角で入射する光を透過するが、電圧を印加すると液晶分子の配列が変化し、ある所定の入射角の光のみを透過する等の性質を持つものが考えられる。アングルフィルタの角度ずれ補正方法の一例として、例えば印加する電圧を変化させて液晶分子の配列方向を変化させることにより、透過できる光の角度を変える方法が考えられる。 Note that the position correction in the three-dimensional direction of the polytopic filter has been described with reference to the optical pickup 11 of FIG. 1 as an example in FIG. 6, but it can also be applied to the optical pickup 11 of FIG. When the optical information recording medium 1 is displaced in the optical pickup 11 shown in FIG. 2, the angle of the reproduction light incident on the angle filter 209 changes, so that the angle of the light transmitted through the angle filter is changed. An angle shift correction unit and an arithmetic circuit that applies an angle shift signal to the angle shift correction unit are mounted, and the angle characteristics of the filter are adjusted so that the diffracted light from the target hologram is not vignetted. As an example of an angle filter, like a liquid crystal filter, when no voltage is applied, light incident at all incident angles is transmitted. However, when a voltage is applied, the arrangement of liquid crystal molecules changes, and a certain predetermined incident angle is obtained. It is possible to have a property such as transmitting only the light. As an example of the angle deviation correction method of the angle filter, for example, a method of changing the angle of light that can be transmitted by changing the applied direction of the liquid crystal molecules to change the alignment direction of the liquid crystal molecules is conceivable.
 なお、本実施例ではポリトピックフィルタとアングルフィルタについて主に述べたが、これらのフィルタと同様に、隣接ホログラムからの再生光を遮光し、目的のホログラムからの再生光のみを通過させる機能を持つフィルタであれば、その他のフィルタでも構わない。例えば空間フィルタは液晶素子などで構成されていても良いし、液晶素子に限らずに機械的に開口の形状を変えるなど他の方法を使用しても良い。 In this embodiment, the polytopic filter and the angle filter are mainly described. However, similar to these filters, the reproduction light from the adjacent hologram is shielded and only the reproduction light from the target hologram is passed. Other filters may be used as long as they are filters. For example, the spatial filter may be composed of a liquid crystal element or the like, and other methods such as mechanically changing the shape of the opening are not limited to the liquid crystal element.
 図7は、本実施例のポリトピックフィルタ補正による効果を光学シミュレータで検証した結果を示すものである。デトラック量0の理想(nominal)状態の場合、取得した再生像のSNRの相対値を1.0とすると、所定量のデトラックが生じた場合、再生像のSNRは-0.1まで低下する。この時、ポリトピックフィルタをデトラック量に応じて位置補正すると、SNRは1.0となり、理想状態と同等に改善する。 FIG. 7 shows the result of verifying the effect of the polytopic filter correction of this embodiment with an optical simulator. In the case of an ideal state with a detrack amount of 0, if the relative value of the SNR of the acquired reproduced image is 1.0, the SNR of the reproduced image decreases to −0.1 when a predetermined amount of detrack occurs. To do. At this time, if the position of the polytopic filter is corrected according to the detrack amount, the SNR becomes 1.0, which is improved to be equal to the ideal state.
 図8に、(a)記録時と(b)再生時の光ピックアップの一部を示す。記録時にはポリトピックフィルタと光情報記録媒体の相対位置が理想的であるとし、再生時に光情報記録媒体がデトラックしたとすると、記録時と再生時では、再生部を構成する光学素子内における光線の光路が異なる。このため、例えばレンズ内において、光線が左右対称に光路を取る領域を通過する場合には低収差であっても、レンズの端を通過する光線には比較的大きな収差が発生する場合がある。図8(c)に本実施例のポリトピックフィルタ補正を検証した実験結果を示す。デトラック量0の理想(nominal)状態の場合、取得した再生像のSNRの相対値を1.0とすると、所定量のデトラックが生じた場合、再生像のSNRは約0.85に低下する。これに対して、ポリトピックフィルタをデトラック量に応じて位置補正すると、SNRは0.98となり、デトラック時に比較して改善するが、理想状態のSNRまで完全に戻らない。この原因の1つとして、レンズ内の光線の光路が変化することによりレンズの収差が発生することが推測される。従って、レンズの像高特性を光学系に合わせて最適設計することで、光情報記録媒体がデトラックして再生時の光路が変化した場合にも、記録時と比較して大きな収差が発生せずに、SNRが理想状態と同程度に改善すると考えられる。その他、例えば光情報記録媒体を傾けて配置する光学系によってはデトラック時にフォーカス位置ずれが発生するなど、レンズの収差以外の要因も考えられる。この場合には、ポリトピックフィルタ補正以外にも、ずれの信号を検出することによりSNRを理想状態まで改善することが可能である。 FIG. 8 shows a part of the optical pickup during (a) recording and (b) reproduction. Assuming that the relative position between the polytopic filter and the optical information recording medium is ideal during recording, and the optical information recording medium is detracked during reproduction, the light beam in the optical element constituting the reproduction unit is used during recording and reproduction. The optical path is different. For this reason, for example, in a lens, a relatively large aberration may occur in a light beam that passes through the end of the lens, even if the light beam passes through a region that has a symmetrical optical path in the lens. FIG. 8C shows an experimental result of verifying the polytopic filter correction of this embodiment. If the relative value of the SNR of the acquired reproduced image is 1.0 when the detrack amount is 0 (nominal), the SNR of the reproduced image is reduced to about 0.85 when a predetermined amount of detrack occurs. To do. On the other hand, when the position of the polytopic filter is corrected according to the detrack amount, the SNR becomes 0.98, which is improved as compared with the detrack time, but does not completely return to the SNR in the ideal state. As one of the causes, it is presumed that the aberration of the lens occurs due to the change of the optical path of the light beam in the lens. Therefore, by designing the lens image height characteristics optimally according to the optical system, even when the optical information recording medium is detracked and the optical path during reproduction is changed, a large aberration is generated compared with the recording. Therefore, it is considered that the SNR improves to the same level as the ideal state. In addition, for example, depending on the optical system in which the optical information recording medium is tilted, there may be factors other than lens aberration, such as a focus position shift during detracking. In this case, besides the polytopic filter correction, it is possible to improve the SNR to an ideal state by detecting a deviation signal.
 図9は、本実施例のポリトピックフィルタ補正による効果を光学シミュレータで検証した結果を示すものである。デフォーカス量0の理想(nominal)状態の場合、取得された再生像のSNRの相対値を1.0とする。ポリトピックフィルタの位置を固定したままデフォーカス量を増やしていくと、再生像のSNRは徐々に劣化し、デフォーカス量100μmの時、SNRは-0.2に低下する。これに対してデフォーカス量に応じてポリトピックフィルタを位置補正すると、SNRは理想状態同等の1.0に改善する。 FIG. 9 shows the result of verifying the effect of the polytopic filter correction of this embodiment with an optical simulator. In the case of an ideal state with a defocus amount of 0, the relative value of the SNR of the acquired reproduced image is set to 1.0. If the defocus amount is increased while the position of the polytopic filter is fixed, the SNR of the reproduced image gradually deteriorates, and when the defocus amount is 100 μm, the SNR decreases to −0.2. On the other hand, when the position of the polytopic filter is corrected according to the defocus amount, the SNR is improved to 1.0, which is equivalent to the ideal state.
 以上より、図7~図9において、本実施例のポリトピックフィルタ補正による高SNR化を確認した。 From the above, in FIG. 7 to FIG. 9, it was confirmed that the SNR was increased by the polytopic filter correction of this example.
 図10は、本発明の実施の形態に係るデフォーカスに対応する信号の生成方法を表す概略図である。同図(a)~(c)はホログラムがフォーカス方向に位置ずれした場合をそれぞれ示しており、(a)は、ジャストフォーカス位置から対物レンズの方向に一定距離接近した状態、(b)は、ホログラムがジャストフォーカス位置にある状態、(c)は、ジャストフォーカス位置から対物レンズに対して一定距離離れた状態の光線図である。図示はしないが各図の手前にて、光ピックアップ11の再生光の一部を分割し、分割した光に対してシリンドリカルレンズを通過させているため、シリンドリカルレンズの収束効果がある方向を通る光線1001は早く集光し、レンズ効果が無い方向を通る光線1002は遅く集光するため非点収差が発生する。これを利用して、4分割PD1003で光を受光した図が(a)~(c)の右側に示す図であり、フォーカス方向の位置に応じてビームスポット1004が変化する。PD1003を4分割した受光面を左上から時計回りにA、B、C、Dとすると、信号(A+C)-(B+D)を演算することで、デフォーカスに対応する信号が生成される。(A+C)-(B+D)>0の場合、手前にフォーカスがずれている。また(A+C)-(B+D)=0であればジャストフォーカス位置である。逆に(A+C)-(B+D)<0の場合は奥側にフォーカスがずれていることを示す。 FIG. 10 is a schematic diagram showing a signal generation method corresponding to defocus according to the embodiment of the present invention. (A) to (c) respectively show cases where the hologram is displaced in the focus direction, (a) is a state in which the hologram is close to the objective lens by a certain distance from the just focus position, and (b) is A state where the hologram is at the just focus position, (c) is a light ray diagram in a state where the hologram is at a certain distance from the just focus position with respect to the objective lens. Although not shown, since a part of the reproduction light of the optical pickup 11 is divided before each figure and the divided light is passed through the cylindrical lens, the light beam passes through the direction in which the cylindrical lens has a convergence effect. Astigmatism occurs because 1001 condenses quickly, and light ray 1002 passing through a direction having no lens effect condenses slowly. Utilizing this, a diagram in which light is received by the four-divided PD 1003 is shown on the right side of (a) to (c), and the beam spot 1004 changes according to the position in the focus direction. Assuming that the light receiving surface obtained by dividing the PD 1003 into four is A, B, C, and D clockwise from the upper left, a signal corresponding to defocusing is generated by calculating the signal (A + C) − (B + D). When (A + C) − (B + D)> 0, the focus is shifted forward. If (A + C)-(B + D) = 0, it is the just focus position. Conversely, when (A + C) − (B + D) <0, it indicates that the focus is shifted to the back side.
 図11は、本発明の実施の形態に係るデフォーカスに対応する信号、デトラックに対応する信号の生成方法を表す概略図である。同図の左上に示すように、垂直方向をラジアル方向、水平方向をタンジェンシャル方向とすると、4分割PD1101から出力される信号のうち、信号(A+B)-(C+D)を演算することで、光情報記録媒体1のラジアル方向のデトラックに対応した信号が取得できる。また、信号(A+D)-(B+C)を演算することで、光情報記録媒体1のタンジェンシャル方向のデトラックに対応した信号が取得できる。光情報記録媒体1のデフォーカスに対応した信号は、図11で説明した通り(A+C)-(B+D)である。1102~1110はそれぞれ加算回路、減算回路を表す。これら3つの信号がアクチュエータ部に印加され、ポリトピックフィルタが3次元駆動される。図1に示した光ピックアップ11では、上述したデトラック量およびデフォーカス量に応じて、所定量の信号を検出する。この信号と、光情報記録媒体の初期位置に対応した信号との差分をポリトピックフィルタのアクチュエータにフィードバックすることで、デトラック方向、デフォーカス方向の位置調整を行う。ここで、光情報記録媒体の初期位置に対応した信号は、記録の際に予め検出しておくデトラック信号とフォーカス信号であり、光情報記録再生装置10はこの信号などを保持しておく。このようにすることで、適切にフィルタの位置を制御することが可能となる。 FIG. 11 is a schematic diagram showing a method for generating a signal corresponding to defocusing and a signal corresponding to detracking according to the embodiment of the present invention. As shown in the upper left of the figure, when the vertical direction is the radial direction and the horizontal direction is the tangential direction, the signal (A + B) − (C + D) is calculated by calculating the signal (A + B) − (C + D) among the signals output from the four-segment PD 1101. A signal corresponding to the radial detrack of the information recording medium 1 can be acquired. Further, by calculating the signal (A + D) − (B + C), a signal corresponding to the detrack in the tangential direction of the optical information recording medium 1 can be acquired. The signal corresponding to the defocus of the optical information recording medium 1 is (A + C) − (B + D) as described with reference to FIG. Reference numerals 1102 to 1110 denote an addition circuit and a subtraction circuit, respectively. These three signals are applied to the actuator unit, and the polytopic filter is driven three-dimensionally. The optical pickup 11 shown in FIG. 1 detects a predetermined amount of signal according to the detrack amount and the defocus amount described above. The position adjustment in the detrack direction and the defocus direction is performed by feeding back the difference between this signal and the signal corresponding to the initial position of the optical information recording medium to the actuator of the polytopic filter. Here, the signals corresponding to the initial position of the optical information recording medium are a detrack signal and a focus signal which are detected in advance during recording, and the optical information recording / reproducing apparatus 10 holds this signal and the like. By doing in this way, it becomes possible to control the position of a filter appropriately.
 なお、本発明はこの検出方法に限定されず、検出方法によっては得られる信号が0となるようにポリトピックフィルタを調整する構成を採用しても構わない。なお、再生したいホログラムからの回折光とともに隣接ホログラムからの回折光も4分割PD1101に導かれるが、本実施の形態において、4分割PDは、再生したいホログラムからの回折光のみを受光する大きさとする。すなわち4分割PDは、隣接ホログラムからの回折光が同時に入射しない程度の大きさを持つものとする。 Note that the present invention is not limited to this detection method, and a configuration in which the polytopic filter is adjusted so that the signal obtained by the detection method becomes 0 may be adopted. Note that the diffracted light from the adjacent hologram is also guided to the quadrant PD 1101 together with the diffracted light from the hologram to be reproduced. In this embodiment, the quadrant PD is sized to receive only the diffracted light from the hologram to be reproduced. . That is, the quadrant PD has a size that does not allow diffracted light from adjacent holograms to enter simultaneously.
 図12はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。光情報記録再生装置10は、光ピックアップ11、再生用参照光光学系12、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。 FIG. 12 is a block diagram showing a recording / reproducing apparatus of an optical information recording medium for recording and / or reproducing digital information using holography. The optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90. In the case of recording, the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90. When reproducing, the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90. The optical information recording / reproducing apparatus 10 includes an optical pickup 11, a reproducing reference light optical system 12, a cure optical system 13, a disk rotation angle detecting optical system 14, and a rotation motor 50. The optical information recording medium 1 is rotated. The motor 50 can be rotated.
 光ピックアップ11は、参照光と信号光を光情報記録媒体1に出射してホログラフィを利用してデジタル情報を記録媒体に記録する役割を果たす。この際、記録する情報信号はコントローラ89によって信号生成回路86を介して光ピックアップ11内の空間光変調器に送り込まれ、信号光は空間光変調器によって変調される。 The optical pickup 11 plays a role of emitting reference light and signal light to the optical information recording medium 1 and recording digital information on the recording medium using holography. At this time, the information signal to be recorded is sent by the controller 89 to the spatial light modulator in the optical pickup 11 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
 光情報記録媒体1に記録した情報を再生する場合は、光ピックアップ11から出射された参照光を記録時とは逆の向きに光情報記録媒体1に入射させる光波を再生用参照光光学系12にて生成する。再生用参照光によって再生される再生光を光ピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。 When reproducing the information recorded on the optical information recording medium 1, the reproduction reference light optical system 12 generates a light wave that causes the reference light emitted from the optical pickup 11 to enter the optical information recording medium 1 in the opposite direction to that during recording. Generate with. Reproduction light reproduced by the reproduction reference light is detected by a photodetector (to be described later) in the optical pickup 11, and a signal is reproduced by the signal processing circuit 85.
 本発明のポリトピックフィルタは光ピックアップ11内に位置する。位置ずれ補正回路21が生成した補正信号をアクチュエータ20へ送信して空間フィルタを駆動する。なおポリトピックフィルタの代わりにアングルフィルタを使用する場合には、角度ずれ補正回路となる。 The polytopic filter of the present invention is located in the optical pickup 11. The correction signal generated by the misalignment correction circuit 21 is transmitted to the actuator 20 to drive the spatial filter. When an angle filter is used instead of the polytopic filter, an angle deviation correction circuit is provided.
 光情報記録媒体1に照射する参照光と信号光の照射時間は、光ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。 The irradiation time of the reference light and the signal light irradiated on the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the optical pickup 11 via the shutter control circuit 87 by the controller 89.
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。 The cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1. Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1. Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。 The disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1. When adjusting the optical information recording medium 1 to a predetermined rotation angle, a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal. The rotation angle of the optical information recording medium 1 can be controlled via 88.
 光源駆動回路82からは所定の光源駆動電流が光ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。 A predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the optical pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light quantity. be able to.
 また、光ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御が行われる。 Further, the optical pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and position control is performed via the access control circuit 81.
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。 By the way, the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
 従って、光ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。 Therefore, a mechanism for detecting the deviation amount of the reference light angle is provided in the optical pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. Therefore, it is necessary to provide a servo mechanism for the optical information recording / reproducing apparatus 10.
 また、光ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。 Also, the optical pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations.
 図13は、光情報記録再生装置10における記録、再生の動作フローを示したものである。ここでは、特にホログラフィを利用した記録再生に関するフローを説明する。 FIG. 13 shows an operation flow of recording and reproduction in the optical information recording / reproducing apparatus 10. Here, a flow relating to recording / reproduction using holography in particular will be described.
 同図(a)は、光情報記録再生装置10に光情報記録媒体1を挿入した後、記録または再生の準備が完了するまでの動作フローを示し、同図(b)は準備完了状態から光情報記録媒体1に情報を記録するまでの動作フロー、同図(c)は準備完了状態から光情報記録媒体1に記録した情報を再生するまでの動作フローを示したものである。 FIG. 4A shows an operation flow from when the optical information recording medium 1 is inserted into the optical information recording / reproducing apparatus 10 until preparation for recording or reproduction is completed, and FIG. The operation flow until information is recorded on the information recording medium 1, and FIG. 10C shows the operation flow until the information recorded on the optical information recording medium 1 is reproduced from the ready state.
 同図(a)に示すように媒体を挿入すると(1301)、光情報記録再生装置10は、例えば挿入された媒体がホログラフィを利用してデジタル情報を記録または再生する媒体であるかどうか光情報記録媒体の判別を行う(1302)。 When a medium is inserted (1301) as shown in FIG. 11A, the optical information recording / reproducing apparatus 10 determines whether the inserted medium is a medium for recording or reproducing digital information using holography, for example. The recording medium is determined (1302).
 光情報記録媒体の判別の結果、ホログラフィを利用してデジタル情報を記録または再生する光情報記録媒体であると判断されると、光情報記録再生装置10は光情報記録媒体に設けられたコントロールデータを読み出し(1303)、例えば光情報記録媒体に関する情報や、例えば記録や再生時における各種設定条件に関する情報を取得する。 If the optical information recording medium is determined to be an optical information recording medium that records or reproduces digital information using holography as a result of discrimination of the optical information recording medium, the optical information recording / reproducing apparatus 10 controls the control data provided in the optical information recording medium. (1303), for example, information on the optical information recording medium and information on various setting conditions during recording and reproduction are obtained.
 コントロールデータの読み出し後は、コントロールデータに応じた各種調整やピックアップ11に関わる学習処理(1304)を行い、光情報記録再生装置10は、記録または再生の準備が完了する(1305)。 After reading out the control data, various adjustments according to the control data and learning processing (1304) related to the pickup 11 are performed, and the optical information recording / reproducing apparatus 10 is ready for recording or reproduction (1305).
 準備完了状態から情報を記録するまでの動作フローは同図(b)に示すように、まず記録するデータを受信して(1311)、該データに応じた情報を光ピックアップ11内の空間光変調器に送り込む。 As shown in FIG. 2B, the operation flow from the ready state to the recording of information is as follows. First, data to be recorded is received (1311), and the information corresponding to the data is spatially modulated in the optical pickup 11. Send it to the vessel.
 その後、光情報記録媒体に高品質の情報を記録できるように、必要に応じて例えば光源301のパワー最適化やシャッタ303による露光時間の最適化等の各種記録用学習処理を事前に行う(1312)。 Thereafter, various recording learning processes such as power optimization of the light source 301 and exposure time optimization by the shutter 303 are performed in advance so that high-quality information can be recorded on the optical information recording medium (1312). ).
 その後、シーク動作(1313)ではアクセス制御回路81を制御して、光ピックアップ11ならびにキュア光学系13の位置を光情報記録媒体1の所定の位置に位置づけする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置づけする動作を繰り返す。 Thereafter, in the seek operation (1313), the access control circuit 81 is controlled to position the optical pickup 11 and the cure optical system 13 at predetermined positions on the optical information recording medium 1. When the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
 その後、キュア光学系13から出射する光ビームを用いて所定の領域をプリキュアし(1314)、ピックアップ11から出射する参照光と信号光を用いてデータを記録する(1315)。 Thereafter, a predetermined region is precured using the light beam emitted from the cure optical system 13 (1314), and data is recorded using the reference light and signal light emitted from the pickup 11 (1315).
 データを記録した後は、キュア光学系13から出射する光ビームを用いてポストキュアを行う(1316)。必要に応じてデータをベリファイしても構わない。 After recording the data, post cure is performed using the light beam emitted from the cure optical system 13 (1316). Data may be verified as necessary.
 準備完了状態から記録された情報を再生するまでの動作フローは同図(c)に示すように、まずシーク動作(1321)で、アクセス制御回路81を制御して、光ピックアップ11ならびに再生用参照光光学系12の位置を光情報記録媒体1の所定の位置に位置付けする。光情報記録媒体1がアドレス情報を持つ場合には、アドレス情報を再生し、目的の位置に位置づけされているか確認し、目的の位置に配置されていなければ、所定の位置とのずれ量を算出し、再度位置付けする動作を繰り返す。 As shown in FIG. 6C, the operation flow from the ready state to the reproduction of recorded information is as follows. First, in the seek operation (1321), the access control circuit 81 is controlled to control the optical pickup 11 and the reproduction reference. The position of the optical optical system 12 is positioned at a predetermined position on the optical information recording medium 1. When the optical information recording medium 1 has address information, it reproduces the address information, checks whether it is positioned at the target position, and calculates the amount of deviation from the predetermined position if it is not positioned at the target position. And repeat the positioning operation.
 その後、光ピックアップ11から参照光を出射し、光情報記録媒体1に記録された情報を読み出し(1322)、再生データを送信する(1323)。 Thereafter, reference light is emitted from the optical pickup 11, information recorded on the optical information recording medium 1 is read (1322), and reproduction data is transmitted (1323).
 図14は、本実施例のポリトピックフィルタ3次元制御の動作フローの実施例である。ここではBook毎にポリトピックフィルタを制御するフローについて図示する。記録時にデトラック信号(ラジアル方向):R、デトラック信号(タンジェンシャル方向):T、デフォーカス信号:Dの3つの信号をあらかじめ検出しておく(1400)。その後、データをあらかじめ記録してある光情報記録媒体を再生するためチャッキングする(1401)。まずロータリーエンコーダ及びリニアエンコーダからの信号を検出して、光情報記録媒体の初期位置を粗調整する(1402)。その後、ポリトピックフィルタを3次元方向に制御して、光情報記録媒体との相対位置を微調整する。このように、光情報記録媒体を粗調整した後、ポリトピックフィルタの微調整を行うことで、正確かつ高速に再生することが可能となる。 FIG. 14 is an example of an operation flow of the polytopic filter three-dimensional control of the present embodiment. Here, the flow for controlling the polytopic filter for each book is illustrated. During recording, three signals are detected in advance (1400): a detrack signal (radial direction): R 0 , a detrack signal (tangential direction): T 0 , and a defocus signal: D 0 . Thereafter, chucking is performed for reproducing an optical information recording medium in which data is recorded in advance (1401). First, signals from the rotary encoder and linear encoder are detected, and the initial position of the optical information recording medium is roughly adjusted (1402). Thereafter, the polytopic filter is controlled in a three-dimensional direction to finely adjust the relative position with the optical information recording medium. As described above, the coarse adjustment of the optical information recording medium and the fine adjustment of the polytopic filter can be performed accurately and at high speed.
 その後、まずラジアル方向のデトラック信号Rを検出し(1403)、あらかじめ記録時に検出しておいた信号Rとの差分が0でない場合には、(R-R)に対応した量だけポリトピックフィルタをラジアル方向に微調整する(1404、1405)。次にタンジェンシャル方向のデトラック信号Tを検出し(1406)、ラジアル方向と同様にTとの差分が0でない場合には(T-T)に対応した量だけポリトピックフィルタをタンジェンシャル方向に微調整する(1407、1408)。次にデフォーカス信号Dを検出し(1409)、Dとの差分が0でない場合には(D-D)に対応した量だけポリトピックフィルタをフォーカス方向に微調整する(1410、1411)。以上の手順により、光情報記録媒体に対するポリトピックフィルタの位置調整が完了し、ポリトピックフィルタで光がケラレない位置に調整できたため、ここで再生処理を実施する(1412)。1403~1412の動作を、記録したBookの数だけ繰り返し、最後のBookの再生まで繰り返す。再生終了後、ポリトピックフィルタのラジアル方向、タンジェンシャル方向、デフォーカス方向の位置を記録時と同じ位置に戻しても良い。そして制御を終了する(1414)。手順1403~1411は並列処理しても良い。 Thereafter, the detrack signal R 1 in the radial direction is first detected (1403). If the difference from the signal R 0 detected in advance during recording is not 0, an amount corresponding to (R 1 −R 0 ) Only the polytopic filter is finely adjusted in the radial direction (1404, 1405). Then it detects the de-track signal T 1 of the tangential direction (1406), in the case the difference between T 0 as with the radial direction is not zero polytopic filter by an amount corresponding to (T 1 -T 0) Fine adjustment in the tangential direction (1407, 1408). Then detects the defocus signal D 1 (1409), in the case the difference between the D 0 is not zero finely adjusted by polytopic filter in the focus direction by an amount corresponding to (D 1 -D 0) (1410 , 1411). With the above procedure, the position adjustment of the polytopic filter with respect to the optical information recording medium has been completed, and the polytopic filter has been adjusted to a position where light does not vignett. Therefore, reproduction processing is performed here (1412). The operations 1403 to 1412 are repeated for the number of recorded books, and are repeated until the last book is reproduced. After the reproduction is finished, the positions of the radial direction, tangential direction, and defocus direction of the polytopic filter may be returned to the same positions as at the time of recording. Then, the control is terminated (1414). Procedures 1403 to 1411 may be processed in parallel.
 なお、高SNRの再生像を取得するためにショートスタック記録を行う場合がある(「ショートスタック」という言葉は特表2010-503025を参照)。ショートスタックを実施した場合には、Book毎ではなくスタック毎に図14に示す手順1403~1414を所望のホログラムの再生が終わるまで繰り返す。 Note that short stack recording may be performed in order to obtain a high SNR reproduction image (refer to Special Table 2010-503025 for the term “short stack”). When the short stack is performed, the steps 1403 to 1414 shown in FIG. 14 are repeated for each stack, not for each book, until the reproduction of the desired hologram is completed.
 さらに、図示はしないが、リアルタイムにポリトピックフィルタを3次元制御しても良い。この場合、例えば光情報記録媒体が回転している間もポリトピックフィルタを制御して回折光のケラレをなくすよう位置調整する。これによって、高速再生ができる上に、振動等の外乱に強いというメリットがある。例えば従来行っていた、光情報記録媒体を制御して光情報記録媒体と光ピックアップとの相対位置を調整する方法では、光情報記録媒体の重量があるほど振動に弱いという問題点があったが、本実施例のようにポリトピックフィルタをリアルタイムで制御することで、外乱に強い再生が可能となる。 Furthermore, although not shown, the polytopic filter may be three-dimensionally controlled in real time. In this case, for example, while the optical information recording medium is rotating, the position of the polytopic filter is controlled to eliminate vignetting of the diffracted light. As a result, there is an advantage that high-speed reproduction is possible and resistance to disturbances such as vibration. For example, in the conventional method for controlling the optical information recording medium and adjusting the relative position between the optical information recording medium and the optical pickup, there is a problem that the weight of the optical information recording medium is weak against vibration. By controlling the polytopic filter in real time as in the present embodiment, reproduction that is resistant to disturbance can be achieved.
 本実施例では、光情報記録媒体の初期位置調整のために最初に光情報記録媒体を動かして粗調整を行ったが、再生処理をより高速化するためには比較的重量のある光情報記録媒体は動かさず、手順1402を飛ばして、1403から開始しても良い。 In this embodiment, the optical information recording medium is first moved and coarsely adjusted to adjust the initial position of the optical information recording medium. However, in order to increase the speed of the reproduction process, relatively heavy optical information recording is performed. The medium may not be moved, and the procedure 1402 may be skipped and the process may be started from 1403.
 なお、上記実施例では、角度多重方式を用いて説明したが、本発明はこれに限られず、例えばコリニア方式等にも適用することが可能である。 In the above-described embodiment, the angle multiplexing method is used. However, the present invention is not limited to this, and can be applied to, for example, a collinear method.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a recording device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。 Also, the control lines and information lines indicate what is considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. Actually, it may be considered that almost all the components are connected to each other.
1・・・光情報記録媒体、10・・・光情報記録再生装置、11・・・光ピックアップ、12・・・再生用参照光光学系、13・・・キュア光学系、14・・・ディスク回転角度検出用光学系、20・・・フィルタ駆動用アクチュエータ、21・・・位置ずれ補正回路、50・・・回転モータ、81・・・アクセス制御回路、82・・・光源駆動回路、83・・・サーボ信号生成回路、84・・・サーボ制御回路、85・・・信号処理回路、86・・・信号生成回路、87・・・シャッタ制御回路、88・・・ディスク回転モータ制御回路、89・・・コントローラ、90・・・入出力制御回路、91・・・外部制御装置、101・・・光源、102・・・コリメートレンズ、103・・・シャッタ、104・・・1/2波長板、105・・・偏光ビームスプリッタ、106・・・信号光、107・・・参照光、108・・・ビームエキスパンダ、109・・・位相マスク、110・・・リレーレンズ、111・・・偏光ビームスプリッタ、112・・・空間光変調器、113・・・リレーレンズ、114・・・ポリトピックフィルタ、115・・・対物レンズ、116・・・偏光方向変換素子、117・・・ミラー、118・・・ミラー、119・・・ミラー、120・・・アクチュエータ、121・・・レンズ、122・・・レンズ、123・・・アクチュエータ、124・・・ミラー、125・・・光検出器、130・・・アクチュエータ、201・・・光源、202・・・コリメートレンズ、203・・・シャッタ、204・・・1/2波長板、205・・・偏光ビームスプリッタ、206・・・信号光、207・・・偏光ビームスプリッタ、208・・・空間光変調器、209・・・アングルフィルタ、210・・・対物レンズ、211・・・対物レンズアクチュエータ、212・・・参照光、213・・・ミラー、214・・・ミラー、215・・・レンズ、216・・・ミラー、217・・・アクチュエータ、218・・・光検出器、219・・・偏光方向変換素子、220・・・駆動方向、221・・・光学ブロック、230・・・アクチュエータ、301・・・光検出器、302・・・偏光ビームスプリッタ、303・・・空間光変調器、304・・・リレーレンズ、305・・・ポリトピックフィルタ、306・・・対物レンズ、401・・・光検出器、402・・・偏光ビームスプリッタ、403・・・空間光変調器、404・・・リレーレンズ、405・・・ポリトピックフィルタ、406・・・対物レンズ、501・・・光検出器、502・・・偏光ビームスプリッタ、503・・・空間光変調器、504・・・リレーレンズ、505・・・ポリトピックフィルタ、506・・・対物レンズ、601・・・光検出器、602・・・偏光ビームスプリッタ、603・・・空間光変調器、604・・・リレーレンズ、605・・・ポリトピックフィルタ、606・・・対物レンズ、630・・・アクチュエータ、901・・・光検出器、902・・・偏光ビームスプリッタ、903・・・空間光変調器、904・・・リレーレンズ、905・・・ポリトピックフィルタ、906・・・対物レンズ、930・・・アクチュエータ、1001・・・収束効果を受けた光線、1002・・・収束効果を受けない光線、1003・・・4分割PD、1004・・・ビームスポット、1005・・・加算回路、1006・・・加算回路、1007・・・減算回路、1101・・・4分割PD、1102・・・加算回路、1103・・・加算回路、1104・・・加算回路、1105・・・加算回路、1106・・・加算回路、1107・・・加算回路、1108・・・減算回路、1109・・・減算回路、1110・・・減算回路 DESCRIPTION OF SYMBOLS 1 ... Optical information recording medium, 10 ... Optical information recording / reproducing apparatus, 11 ... Optical pick-up, 12 ... Reference optical system for reproduction | regeneration, 13 ... Cure optical system, 14 ... Disc Rotation angle detection optical system, 20 ... filter drive actuator, 21 ... position displacement correction circuit, 50 ... rotation motor, 81 ... access control circuit, 82 ... light source drive circuit, 83. ..Servo signal generation circuit, 84 ... servo control circuit, 85 ... signal processing circuit, 86 ... signal generation circuit, 87 ... shutter control circuit, 88 ... disc rotation motor control circuit, 89 ... Controller, 90 ... Input / output control circuit, 91 ... External control device, 101 ... Light source, 102 ... Collimating lens, 103 ... Shutter, 104 ... 1/2 wavelength plate , 105 ... Polarization beam splitter 106 ... Signal light 107 ... Reference light 108 ... Beam expander 109 ... Phase mask 110 ... Relay lens 111 ... Polarization beam splitter 112 ..Spatial light modulator, 113 ... relay lens, 114 ... polytopic filter, 115 ... objective lens, 116 ... polarization direction conversion element, 117 ... mirror, 118 ... mirror, 119 ... Mirror, 120 ... Actuator, 121 ... Lens, 122 ... Lens, 123 ... Actuator, 124 ... Mirror, 125 ... Photodetector, 130 ... Actuator, 201 ... light source, 202 ... collimating lens, 203 ... shutter, 204 ... half-wave plate, 205 ... polarized beam Ritter, 206 ... signal light, 207 ... polarization beam splitter, 208 ... spatial light modulator, 209 ... angle filter, 210 ... objective lens, 211 ... objective lens actuator, 212 ..Reference light, 213... Mirror, 214... Mirror, 215... Lens, 216... Mirror, 217... Actuator, 218. Element, 220 ... Driving direction, 221 ... Optical block, 230 ... Actuator, 301 ... Photo detector, 302 ... Polarizing beam splitter, 303 ... Spatial light modulator, 304 ... Relay lens 305 Polytopic filter 306 Objective lens 401 Photo detector 402 Polarizing beam splitter 403 ..Spatial light modulator, 404 ... relay lens, 405 ... polytopic filter, 406 ... objective lens, 501 ... photodetector, 502 ... polarizing beam splitter, 503 ... space Optical modulator, 504 ... Relay lens, 505 ... Polytopic filter, 506 ... Objective lens, 601 ... Optical detector, 602 ... Polarizing beam splitter, 603 ... Spatial light modulator 604 ... relay lens, 605 ... polytopic filter, 606 ... objective lens, 630 ... actuator, 901 ... photodetector, 902 ... polarization beam splitter, 903 ... space Optical modulator, 904 ... relay lens, 905 ... polytopic filter, 906 ... objective lens, 930 ... actuator, 1001 Light rays that have undergone the convergence effect, 1002... Rays that have not received the convergence effect, 1003... Four-segment PD, 1004... Beam spot, 1005. ..Subtracting circuit, 1101... 4 division PD, 1102... Adding circuit, 1103... Adding circuit, 1104... Adding circuit, 1105. ..Addition circuit, 1108 ... subtraction circuit, 1109 ... subtraction circuit, 1110 ... subtraction circuit

Claims (18)

  1.  信号光と参照光との干渉パターンがページデータとして記録されている光情報記録媒体から情報を再生する光情報再生装置であって、
     レーザ光源と、
     前記レーザ光源からの出射光を信号光と参照光に分岐する分岐素子と、
     隣接ホログラムのクロストークの影響を抑制するフィルタ部と、
     前記参照光を光情報記録媒体に照射したときに回折される回折光から、前記フィルタ部の位置ずれ信号を検出する光検出部と、
     前記フィルタを制御する制御部と、を備え、
     前記制御部は、前記光検出部が検出する前記位置ずれ信号に応じて、前記フィルタを制御することを特徴とする光情報再生装置。
    An optical information reproducing device for reproducing information from an optical information recording medium in which an interference pattern between signal light and reference light is recorded as page data,
    A laser light source;
    A branching element for branching light emitted from the laser light source into signal light and reference light;
    A filter unit for suppressing the influence of crosstalk of adjacent holograms;
    A light detection unit for detecting a position shift signal of the filter unit from diffracted light diffracted when the optical information recording medium is irradiated with the reference light;
    A control unit for controlling the filter,
    The said control part controls the said filter according to the said position shift signal which the said photon detection part detects, The optical information reproducing | regenerating apparatus characterized by the above-mentioned.
  2.  請求項1記載の光情報再生装置であって、
     前記フィルタ部はポリトピックフィルタであり、
     前記制御部は、前記フィルタを駆動するアクチュエータであり、
     前記アクチュエータは、前記光検出部が検出する前記位置ずれ信号に応じて、前記ポリトピックフィルタを駆動することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 1,
    The filter unit is a polytopic filter;
    The control unit is an actuator that drives the filter,
    The optical information reproducing apparatus, wherein the actuator drives the polytopic filter in accordance with the position shift signal detected by the light detection unit.
  3.  請求項1記載の光情報再生装置であって、
     前記フィルタ部は角度フィルタであり、
     前記光検出部は、前記角度フィルタを通過する光の入射角度に対する再生光の角度ずれを検出し、
     前記制御部は、前記検出された角度ずれに基づいて前記角度フィルタ部の通過光の角度を補正することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 1,
    The filter unit is an angle filter;
    The light detection unit detects an angular shift of the reproduction light with respect to an incident angle of the light passing through the angle filter;
    The optical information reproducing apparatus, wherein the control unit corrects an angle of light passing through the angle filter unit based on the detected angular deviation.
  4.  請求項2に記載の光情報再生装置であって、
     前記光検出部は、再生光路の一部の光を分割するための光分割素子と、前記光分割素子によって分割された再生光の一部を受光するための受光素子と、を備え、
     前記受光素子は、ホログラムに対する前記ポリトピックフィルタの位置ずれを検出するためのセンサパターンを備え、
     前記受光素子から出力される信号を演算して、ホログラムに対する前記ポリトピックフィルタの位置ずれに対応する信号を生成する演算回路を備えることを特徴とした光情報再生装置。
    The optical information reproducing apparatus according to claim 2,
    The light detection unit includes a light splitting element for splitting a part of the light in the reproduction optical path, and a light receiving element for receiving a part of the reproduction light split by the light splitting element,
    The light receiving element includes a sensor pattern for detecting a displacement of the polytopic filter with respect to a hologram,
    An optical information reproducing apparatus comprising: an arithmetic circuit that calculates a signal output from the light receiving element and generates a signal corresponding to a positional shift of the polytopic filter with respect to a hologram.
  5.  請求項4に記載の光情報再生装置であって、
     前記光検出部は、前記光分割素子にて分割された再生光に非点収差を導入する光学素子を備え、
     前記受光素子は、前記非点収差によって生じるビームスポットの変形方向がたすき掛け方向となるように配置された4分割センサによって構成され、
     前記演算回路は、前記4分割センサから出力される信号を演算して、ホログラムに対する前記空間フィルタの、再生光の光軸方向の位置ずれに対応する信号を生成することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 4,
    The light detection unit includes an optical element that introduces astigmatism into the reproduction light divided by the light dividing element,
    The light receiving element is constituted by a four-divided sensor arranged so that a deformation direction of a beam spot caused by the astigmatism is a splashing direction,
    The arithmetic circuit calculates a signal output from the quadrant sensor, and generates a signal corresponding to a positional deviation of the spatial filter with respect to the hologram in the optical axis direction of the reproduction light. apparatus.
  6.  請求項4に記載の光情報再生装置であって、
     前記受光素子は、直線によって2つの領域に分割されたセンサパターンを備え、
     前記演算回路は、前記受光素子の前記2つの領域から出力される信号を演算して、ホログラムに対する前記ポリトピックフィルタの、再生光の光軸に垂直な方向の位置ずれに対応する信号を生成することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 4,
    The light receiving element includes a sensor pattern divided into two regions by a straight line,
    The arithmetic circuit calculates signals output from the two regions of the light receiving element, and generates a signal corresponding to a positional deviation of the polytopic filter relative to the hologram in a direction perpendicular to the optical axis of the reproduction light. An optical information reproducing apparatus characterized by the above.
  7.  請求項3に記載の光情報再生装置であって、
     前記光検出部は、その一部を分割する光分割素子と、前記光分割素子にて分割された再生光を受光する受光素子を備え、
     前記受光素子は、前記角度フィルタ部が通過させる光の入射角度に対する再生光の角度ずれを検出するためのセンサパターンを備え、
     前記受光素子から出力される信号を演算して前記角度フィルタが通過させる光の入射角度に対する再生光の角度ずれに対応する信号を生成する演算回路を備えることを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 3,
    The light detection unit includes a light dividing element that divides a part thereof, and a light receiving element that receives reproduction light divided by the light dividing element,
    The light receiving element includes a sensor pattern for detecting an angular deviation of the reproduction light with respect to an incident angle of the light passing through the angle filter unit,
    An optical information reproducing apparatus comprising: an arithmetic circuit that calculates a signal output from the light receiving element and generates a signal corresponding to an angular deviation of the reproduction light with respect to an incident angle of the light that the angle filter passes.
  8.  請求項1に記載の光情報再生装置であって、
     前記位置ずれ信号は、記録の際に前記光検出部が予め検出したデトラック信号と、再生の際に前記光検出部が検出したデトラック信号との差の信号であり、
     前記制御部は、前記差の信号に応じて、前記フィルタを制御することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 1,
    The positional deviation signal is a difference signal between a detrack signal detected in advance by the light detection unit during recording and a detrack signal detected by the light detection unit during reproduction,
    The optical information reproducing apparatus, wherein the control unit controls the filter according to the difference signal.
  9.  請求項1に記載の光情報再生装置であって、
     前記位置ずれ信号は、記録の際に前記光検出部が予め検出したデフォーカス信号と、再生の際に前記光検出部が検出したデフォーカス信号との差の信号であり、
     前記制御部は、前記差の信号に応じて、前記フィルタを制御することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 1,
    The positional deviation signal is a difference signal between a defocus signal detected in advance by the light detection unit during recording and a defocus signal detected by the light detection unit during reproduction,
    The optical information reproducing apparatus, wherein the control unit controls the filter according to the difference signal.
  10.  請求項1に記載の光情報再生装置であって、
     前記光情報記録媒体の位置が粗調整された後に、前記制御部は、前記光検出部が検出する前記位置ずれ信号に応じて、前記フィルタを制御することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 1,
    After the position of the optical information recording medium is roughly adjusted, the control unit controls the filter according to the position shift signal detected by the light detection unit.
  11.  請求項1に記載の光情報再生装置であって、
     前記光情報記録媒体が回転している間、前記制御部は、前記フィルタを制御することを特徴とする光情報再生装置。
    The optical information reproducing apparatus according to claim 1,
    While the optical information recording medium is rotating, the control unit controls the filter.
  12.  信号光と参照光との干渉パターンがページデータとして記録されている光情報記録媒体から情報を再生する光情報再生方法であって、
     レーザ光を照射するステップと、
     前記レーザ光を信号光と参照光に分岐するステップと、
     隣接ホログラムのクロストークの影響をフィルタにより抑制するステップと、
     前記参照光を光情報記録媒体に照射したときに回折される回折光から、前記フィルタの位置ずれ信号を検出する検出ステップと、
     前記フィルタを制御する制御ステップと、を備え、
     前記制御ステップでは、前記検出ステップで検出する前記位置ずれ信号に応じて、前記フィルタを制御することを特徴とする光情報再生方法。
    An optical information reproducing method for reproducing information from an optical information recording medium in which an interference pattern between signal light and reference light is recorded as page data,
    Irradiating with laser light;
    Branching the laser light into signal light and reference light;
    Suppressing the influence of crosstalk of adjacent holograms by a filter;
    A detection step of detecting a displacement signal of the filter from diffracted light diffracted when the optical information recording medium is irradiated with the reference light;
    A control step for controlling the filter,
    In the control step, the filter is controlled in accordance with the positional deviation signal detected in the detection step.
  13.  請求項12記載の光情報再生方法であって、
     前記フィルタはポリトピックフィルタであり、
     前記フィルタはアクチュエータにより駆動され、
     前記制御ステップでは、前記アクチュエータが、前記位置ずれ信号に応じて、前記ポリトピックフィルタを駆動することを特徴とする光情報再生方法。
    An optical information reproducing method according to claim 12, comprising:
    The filter is a polytopic filter;
    The filter is driven by an actuator;
    In the control step, the actuator drives the polytopic filter in accordance with the positional deviation signal.
  14.  請求項12記載の光情報再生方法であって、
     前記フィルタは角度フィルタであり、
     前記検出ステップでは、前記角度フィルタを通過する光の入射角度に対する再生光の角度ずれを検出し、
     前記制御ステップは、前記検出された角度ずれに基づいて前記角度フィルタの通過光の角度を補正することを特徴とする光情報再生方法。
    An optical information reproducing method according to claim 12, comprising:
    The filter is an angle filter;
    In the detection step, an angular deviation of the reproduction light with respect to an incident angle of the light passing through the angle filter is detected,
    The optical information reproducing method, wherein the control step corrects an angle of light passing through the angle filter based on the detected angular deviation.
  15.  請求項12に記載の光情報再生方法であって、
     前記位置ずれ信号は、記録の際に前記光検出部が予め検出したデトラック信号と、再生の際に前記光検出部が検出したデトラック信号との差の信号であり、
     前記制御ステップは、前記差の信号に応じて、前記フィルタを制御することを特徴とする光情報再生方法。
    The optical information reproducing method according to claim 12, comprising:
    The positional deviation signal is a difference signal between a detrack signal detected in advance by the light detection unit during recording and a detrack signal detected by the light detection unit during reproduction,
    The optical information reproduction method characterized in that the control step controls the filter according to the difference signal.
  16.  請求項12に記載の光情報再生方法であって、
     前記位置ずれ信号は、記録の際に前記光検出部が予め検出したデフォーカス信号と、再生の際に前記光検出部が検出したデフォーカス信号との差の信号であり、
     前記制御ステップでは、前記差の信号に応じて、前記フィルタを制御することを特徴とする光情報再生方法。
    The optical information reproducing method according to claim 12, comprising:
    The positional shift signal is a difference signal between a defocus signal detected in advance by the light detection unit during recording and a defocus signal detected by the light detection unit during reproduction,
    In the control step, the filter is controlled in accordance with the difference signal.
  17.  請求項12に記載の光情報再生方法であって、
     前記光情報記録媒体の位置を粗調整するステップを備え、
     前記光情報記録媒体の位置が粗調整された後に、前記制御ステップで、前記検出ステップで検出する前記位置ずれ信号に応じて、前記フィルタを制御することを特徴とする光情報再生方法。
    The optical information reproducing method according to claim 12, comprising:
    Roughly adjusting the position of the optical information recording medium,
    An optical information reproducing method, wherein after the position of the optical information recording medium is roughly adjusted, the filter is controlled in the control step in accordance with the position shift signal detected in the detection step.
  18.  請求項12に記載の光情報再生方法であって、
     前記光情報記録媒体を回転させるステップを備え、
     前記光情報記録媒体が回転している間、前記制御ステップは、前記フィルタを制御することを特徴とする光情報再生方法。
    The optical information reproducing method according to claim 12, comprising:
    Rotating the optical information recording medium,
    The optical information reproducing method, wherein the control step controls the filter while the optical information recording medium is rotating.
PCT/JP2012/082859 2012-12-19 2012-12-19 Optical information reproduction apparatus and optical information reproduction method WO2014097412A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082859 WO2014097412A1 (en) 2012-12-19 2012-12-19 Optical information reproduction apparatus and optical information reproduction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/082859 WO2014097412A1 (en) 2012-12-19 2012-12-19 Optical information reproduction apparatus and optical information reproduction method

Publications (1)

Publication Number Publication Date
WO2014097412A1 true WO2014097412A1 (en) 2014-06-26

Family

ID=50977796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082859 WO2014097412A1 (en) 2012-12-19 2012-12-19 Optical information reproduction apparatus and optical information reproduction method

Country Status (1)

Country Link
WO (1) WO2014097412A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072004A1 (en) * 2014-11-07 2016-05-12 株式会社日立製作所 Hologram recording/reproduction apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209136A (en) * 1989-11-17 1991-09-12 Applied Magnetics Corp Light beam in collimating condition, device for detecting angle and method for detecting focal position
JP2005078691A (en) * 2003-08-29 2005-03-24 Victor Co Of Japan Ltd Holographic recording medium
JP2005129196A (en) * 2003-10-22 2005-05-19 Daewoo Electronics Corp Device and method for controlling tracking and focusing servo in holographic digital data storage system
JP2006171589A (en) * 2004-12-20 2006-06-29 Sony Corp Hologram reproducing apparatus and method
JP2008226434A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Optical pickup, optical information recording and reproducing apparatus and method for optically recoridng and reproducing information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03209136A (en) * 1989-11-17 1991-09-12 Applied Magnetics Corp Light beam in collimating condition, device for detecting angle and method for detecting focal position
JP2005078691A (en) * 2003-08-29 2005-03-24 Victor Co Of Japan Ltd Holographic recording medium
JP2005129196A (en) * 2003-10-22 2005-05-19 Daewoo Electronics Corp Device and method for controlling tracking and focusing servo in holographic digital data storage system
JP2006171589A (en) * 2004-12-20 2006-06-29 Sony Corp Hologram reproducing apparatus and method
JP2008226434A (en) * 2007-03-09 2008-09-25 Hitachi Ltd Optical pickup, optical information recording and reproducing apparatus and method for optically recoridng and reproducing information

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016072004A1 (en) * 2014-11-07 2016-05-12 株式会社日立製作所 Hologram recording/reproduction apparatus

Similar Documents

Publication Publication Date Title
JP5037391B2 (en) Optical pickup, optical information recording / reproducing apparatus, and optical information recording / reproducing method
JP5707147B2 (en) Optical information reproducing method and optical information reproducing apparatus
JP5753768B2 (en) Optical information recording apparatus, optical information reproducing apparatus, optical information recording / reproducing apparatus, optical information recording method, optical information reproducing method, and optical information recording / reproducing method
JP5183667B2 (en) Playback apparatus and playback method
JP5096191B2 (en) Optical pickup, optical information reproducing apparatus and optical information recording / reproducing apparatus using the same
JP4881914B2 (en) Optical information recording / reproducing apparatus and optical information recording method
JP5125351B2 (en) Optical information recording / reproducing apparatus
WO2014199504A1 (en) Optical information recording/reproduction device and adjustment method
JP5104695B2 (en) Information recording device
JP2013109794A (en) Optical information recording/reproducing apparatus, optical information recording/reproducing method, and optical information recording medium
WO2014167659A1 (en) Optical information recording and reconstructing device
JP5557787B2 (en) Optical information reproducing apparatus, optical information recording / reproducing apparatus
WO2014097412A1 (en) Optical information reproduction apparatus and optical information reproduction method
US9601147B2 (en) Optical information recording and reproducing apparatus and optical information recording and reproducing method
JP6158339B2 (en) Hologram reproducing apparatus and hologram reproducing method
US9373352B2 (en) Optical information reproduction apparatus and optical information reproduction method
JP6077110B2 (en) Optical information reproducing apparatus and adjustment method
JP2012069207A (en) Holographic memory using holography
JP5802494B2 (en) Holographic memory reproducing device, holographic memory reproducing method and hologram recording medium
JP2012133879A (en) Information recording device, information reproduction device, and recording medium
WO2012160733A1 (en) Optical information recording/reproduction device and optical information recording/reproduction method
JP2015130215A (en) Optical information recording device and optical information recording method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12890623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP