WO2017042900A1 - Optical information recording device, optical information recording/reproducing device, and optical information recording method - Google Patents

Optical information recording device, optical information recording/reproducing device, and optical information recording method Download PDF

Info

Publication number
WO2017042900A1
WO2017042900A1 PCT/JP2015/075527 JP2015075527W WO2017042900A1 WO 2017042900 A1 WO2017042900 A1 WO 2017042900A1 JP 2015075527 W JP2015075527 W JP 2015075527W WO 2017042900 A1 WO2017042900 A1 WO 2017042900A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical information
information recording
phase
signal
Prior art date
Application number
PCT/JP2015/075527
Other languages
French (fr)
Japanese (ja)
Inventor
啓太 山口
充 永沢
誠 保坂
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/075527 priority Critical patent/WO2017042900A1/en
Publication of WO2017042900A1 publication Critical patent/WO2017042900A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector

Definitions

  • the present invention relates to an optical information recording apparatus, an optical information recording / reproducing apparatus, and an optical information recording method using holography.
  • Patent Document 1 JP 2008-203503
  • the first reference light is applied to the hologram recording medium 30”.
  • the first reference beam path that guides the laser beam from the laser 11 to irradiate the laser beam, and the diffracted beam that guides the diffracted beam generated from the hologram recording medium 30 by the irradiation of the first reference beam to the CMOS sensor 27 having a plurality of pixels.
  • the delay element 16 and the biaxial rotating mirror 18 are arranged so that the phase of the diffracted light and the second reference light are matched to obtain a favorable DC reproduction characteristic.
  • hologram recording / reproducing technology that records and reproduces information two-dimensionally modulated using holography is attracting attention.
  • two-dimensional information is added to the signal light, and interference fringes formed by superimposing with the reference light are recorded in the recording medium.
  • the diffracted light reproduced by irradiating the interference fringes of the recording medium with reference light is detected by the image sensor, and two-dimensional information is reproduced.
  • phase multilevel technology for adding multilevel phase information to light has been proposed as a technology for adding two-dimensional information to light.
  • light having high coherence oscillator light
  • the phase of the oscillator light is controlled by a phase modulation element, and the phase difference between the diffracted light and the oscillator light can be matched.
  • Patent Document 1 since the technique of Patent Document 1 does not consider the phase difference change between the signal light and the reference light at the time of recording, there is a problem that the deterioration of the reproduction performance due to the phase difference change at the time of recording cannot be sufficiently suppressed. .
  • the present invention provides an optical information recording technique capable of stably reproducing phase multilevel information by correcting a phase difference change between signal light and reference light during recording and recording a high-quality hologram.
  • the purpose is to do.
  • an optical information recording apparatus that causes reference light and signal light to interfere with each other and records the obtained interference fringes as a hologram on a hologram recording medium
  • a light source that emits light, light emitted from the light source, first light and second light
  • a light beam splitting element that splits the first light and the second light to detect interference intensity, and the first light based on the interference intensity detected by the light receiving section.
  • a phase controller that calculates a phase difference of the second light and controls at least a phase of the second light; and a spatial light modulator that adds phase multilevel information to the second light.
  • an optical information recording / reproducing apparatus and recording that can reproduce stable phase multilevel information by correcting a phase difference change between signal light and reference light during recording and recording a high-quality hologram.
  • a playback method can be provided.
  • the figure showing the optical pick-up apparatus in the optical information recording and reproducing apparatus in Example 1 The figure showing the optical information recording and reproducing apparatus in Example 1 Signal point arrangement diagram showing phase four-value recording method in embodiment 1
  • the figure showing the optical pick-up apparatus in the optical information recording and reproducing apparatus in Example 1 Signal point arrangement diagram showing phase four-value reproduction method in embodiment 1 Histogram of interference intensity at the time of quaternary phase reproduction in embodiment 1
  • the figure showing the relationship between the light which injects into the photodetector in Example 1, and a light-receiving part Relationship between interference intensity and phase difference between first detection light and second detection light in Embodiment 1 1 is a configuration diagram of a circuit that performs phase difference control between signal light and reference light during recording in Embodiment 1.
  • FIG. Example 4 recording flow of phase 4 values by two recordings Page / book recording flow in the first embodiment
  • Configuration diagram of polarization direction conversion element in Example 4 The figure showing the production
  • FIG. 2 is a block diagram showing a recording / reproducing apparatus for an optical information recording medium for recording and / or reproducing digital information using holography.
  • the optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
  • the optical information recording / reproducing apparatus 10 includes a pickup 11, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50, and the optical information recording medium 1 can be rotated by the rotation motor 50. ing.
  • the pickup 11 plays a role of irradiating the optical information recording medium 1 with reference light and signal light to record digital information on the recording medium using holography and reproducing information recorded on the optical information recording medium 1.
  • the information signal to be recorded is sent to the spatial light modulator in the pickup 11 by the controller 89 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
  • controller 89 drives the phase modulation element in the pickup 11 via the phase control circuit 92 to control the phase of the signal light and the reference light.
  • the pickup 11 When reproducing the information recorded on the optical information recording medium 1, the pickup 11 causes the reference light to enter the optical information recording medium in the opposite direction to that during recording. Reproduced light reproduced by the reference light is detected by a later-described photodetector in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
  • the irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
  • the cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1.
  • Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1.
  • Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
  • the disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1.
  • a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal.
  • the rotation angle of the optical information recording medium 1 can be controlled via 88.
  • a predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
  • the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
  • the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
  • a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
  • the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
  • FIG. 1 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment.
  • the light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303.
  • the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate.
  • the polarization direction is controlled, the light enters the polarization beam splitter 305.
  • the light beam that has passed through the polarization beam splitter 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, the non-polarization beam splitter 326, the phase modulation element 309, the non-polarization beam splitter 332, the polarization direction It passes through the conversion element 310 and the polarization beam splitter 311 and enters the spatial light modulator 312, and becomes two-dimensional data (hereinafter, page data) to which phase information is added for each pixel by the spatial light modulator 312.
  • the phase distribution in the page data is, for example, a phase distribution that removes DC intensity (so-called hot spot) in the light intensity distribution on the Fourier plane of the optical information recording medium 1.
  • the signal light 306 to which page data is added by the spatial light modulator 312 is reflected by the polarization beam splitter 311 and propagates through the relay lens 313 and the spatial filter 314. Thereafter, the light is condensed on the optical information recording medium 1 by the objective lens 315.
  • the light beam reflected from the polarization beam splitter 305 functions as reference light 307, and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316, and then passes through the mirror 317 to the galvanometer mirror 319.
  • the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle.
  • an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
  • the signal 306 and the reference light 307 are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is written by writing this pattern on the recording medium. Record.
  • holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
  • FIG. 3 shows a complex plane.
  • the absolute value of a point on the complex plane represents the amplitude of the signal light 306, and the declination represents the phase difference between the signal light 306 and the reference light 307.
  • the phase of the signal light is a value based on the phase of the reference light.
  • FIG. 3A is a signal point arrangement diagram showing an example of binary information added by the spatial light modulator 312 by points on a complex plane.
  • the spatial light modulator 312 adds binary information of a phase 0 signal point 401 and a phase ⁇ signal point 402.
  • the phase modulation element 309 changes the phase of the signal light 306 by ⁇ / 2.
  • the binary information of the signal point 403 of phase ⁇ / 2 and the signal point 404 of phase 3 ⁇ / 2 shown in 3 (b) is recorded in the same location of the optical information recording medium 1.
  • the signal point 405 of phase ⁇ / 4 the signal point 406 of phase 3 ⁇ / 4, and the phase of 5 ⁇ / 4 shown in the signal point arrangement diagram of FIG.
  • a signal point 407 and a signal point 408 having a phase of 7 ⁇ / 4 are recorded.
  • FIG. 4 shows a reproduction principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment.
  • the reference light 307 enters the optical information recording medium 1.
  • a reproduction method using phase conjugate light is used, and the reference light 307 transmitted through the optical information recording medium 1 is reflected from the galvano mirror 324 whose angle can be adjusted by the actuator 323, and again, the optical information recording medium 1
  • the information is reproduced using the reference light 307 incident on the.
  • the diffracted light 337 reproduced by the reference light 307 enters the photodetector 325 through the objective lens 315, the relay lens 313, the spatial filter 314, the polarization beam splitter 311, and the polarizer 339.
  • interference between the diffracted light 337 and light having high coherence is used.
  • the polarization direction is controlled by the polarization direction conversion element 304, and a desired amount of light is transmitted through the polarization beam splitter 305.
  • the oscillator light 338 transmitted through the polarization beam splitter 305 passes through the beam expander 308, the non-polarization beam splitter 326, the phase modulation element 309, and the non-polarization beam splitter 332, and then the polarization direction is controlled by the polarization direction conversion element 310. Reflects the polarization beam splitter 311. Thereafter, the oscillator light 338 enters the photodetector 325 through the polarizer 339.
  • FIG. 5 is a diagram for explaining a method for reproducing phase information from interference between the diffracted light 337 and the oscillator light, which is a method for reproducing the signal point of the phase multilevel information of the diffracted light 337 in this embodiment.
  • the interference phase [Phi LO oscillator light 338 and the phase of the reference light as a reference, the signal point 405, the signal points 406, signal point 407, the signal points 408, declination It can be regarded as a projection onto an axis 409 having ⁇ LO .
  • the intensity difference between the signal point 405 and the signal point 408 is proportional to the distance 410
  • the intensity difference between the signal point 408 and the signal point 406 is proportional to the distance 411
  • the intensity difference between 406 and signal point 407 is proportional to distance 412.
  • FIG. 6 is a histogram obtained when the signal of FIG. 5 is reproduced.
  • the horizontal axis indicates the light intensity detected by the photodetector 325
  • the vertical axis indicates the number of pixels having each interference intensity in the page data.
  • a histogram is shown in a state where four signal points (405, 406, 407, 408) are arranged in the same number of page data.
  • four signal points (405, 406, 407, 408) are arranged at equal intervals, and the interference intensity corresponding to each signal point can be separated. Reproduction performance is obtained.
  • the present embodiment is not limited to the method of separating the signal point 405, the signal point 406, the signal point 407, and the signal point 408 all at once, but four phases (arbitrary reference phase, reference phase + ⁇ / 2, reference phase). + ⁇ , reference phase + 3 ⁇ / 2) is added to the oscillator light 338 to detect the phase from the principle of fringe scanning generally used in interferometers, etc. The same effect can be obtained by using.
  • the photodetector 325 can be an image sensor such as a CMOS image sensor or a CCD image sensor, for example, but may be any element as long as page data can be reproduced.
  • FIG. 7 (b) shows a state in which these signal points, to play on interference with the oscillator beam having a phase [Phi LO. Projection of the signal point 501, the signal point 502, the signal point 503, and the signal point 504 onto the axis 409 having the declination ⁇ LO is as shown in FIG. 7B, and the distance 507 between the signal point 502 and the signal point 504 is shown in FIG. 6 is smaller than the distance 411 of 6.
  • FIG. 8 shows an interference intensity histogram of the oscillator light added with the diffracted light 337 and the phase ⁇ LO at this time. The difference in interference intensity between the signal point 502 and the signal point 504 decreases, and the reproduction performance of the phase information deteriorates.
  • the amplitudes of the signal point 501 and the signal point 503 are increased, but the amplitudes of the signal point 502 and the signal point 504 are decreased.
  • the amount of light in the portion where the point 504 is added decreases. For this reason, the reproduction performance equivalent to the case of FIGS. 5 and 6 cannot be obtained only by optimizing the phase ⁇ LO of the oscillator light.
  • a part of the signal light 306 is reflected by the non-polarizing beam splitter 326.
  • the reflected light beam is referred to as first detection light 328.
  • the first detection light 328 is reflected by the non-polarizing beam splitter 330 via the mirror 329 and then enters the photodetector 331.
  • a part of the signal light 306 transmitted through the non-polarizing beam splitter 326 reflects the non-polarizing beam splitter 332.
  • the reflected light beam is referred to as second detection light 334.
  • the second detection light 334 passes through the non-polarizing beam splitter 330 and then enters the photodetector 331.
  • FIG. 9 shows the relationship between the light receiving unit 801 of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331.
  • the light receiving unit 301 detects the interference intensity between the first detection light 328 and the second detection light 334.
  • the photodetector 331 may be an image sensor such as a CMOS image sensor or a CCD image sensor, or may be an element that detects light intensity, such as a photodetector.
  • Equation 1 is an expression representing the interference intensity I between the first detection light 328 and the second detection light 334.
  • E 1 represents the complex amplitude of the first detection light 328
  • E 2 represents the complex amplitude of the second detection light 334
  • represents the difference between the initial phase of the first detection light 328 and the initial phase of the second detection light 334.
  • Interference the intensity I is next to the square of the absolute value of the sum of the complex amplitude E 2 of the complex amplitude E 1 and the second detection light 334 of the first detection light 328, the intensity of the first detection light 328
  • FIG. 10 shows the relationship between the interference intensity I and the phase difference ⁇ when
  • the phase modulation element 309 When the phase modulation element 309 is driven before the first recording and the interference intensity detected by the photodetector 331 is maximized, the first detection light 328 and the second detection light 334 are changed as indicated by a point 901 in FIG. The phase difference becomes zero. After the first recording is completed, the phase modulation element 309 is driven so that the interference intensity detected by the photodetector 331 becomes half of the maximum value, and moves to a point 902 in FIG. By performing the second recording in this state, the second recording can be performed in a state where the phase difference between the first detection light 328 and the second detection light 334 is ⁇ / 2.
  • an interference fringe pattern is formed on the optical information recording medium 1 by driving the phase modulation element 309 to move the point 901 in the first recording and the point 902 in the second recording.
  • the phase of the signal light 306 can be changed by ⁇ / 2 between the first recording and the second recording.
  • FIG. 11 shows a configuration of a phase control circuit 92 that controls the phase modulation element.
  • the phase difference calculation circuit 101 calculates a phase difference from the interference intensity detected by the photodetector 331.
  • the memory 102 temporarily records the phase difference calculated by the phase difference calculation circuit 101.
  • the phase modulation element drive amount calculation circuit 103 calculates the drive amount of the phase modulation element 309 based on the phase difference calculated by the phase difference calculation circuit 101 and drives the phase modulation element 309.
  • FIG. 12 shows a four-phase recording flow by two-time recording in this embodiment.
  • of Equation 1 are calculated in advance by the photodetector 331 (interference condition learning 1001).
  • the interference intensity is detected by the photodetector 331 (1002), the phase difference is calculated by the phase difference calculation circuit 101 based on the interference condition learned in 1001, and stored in the memory 102 as the phase difference 1 (1003). ). Thereafter, the interference fringe pattern of the signal light 306 and the reference light 307 is recorded on the optical information recording medium 1 (1004).
  • the phase of the signal light 306 is ⁇ / 2 modulated by the phase modulation element 309 (1005).
  • the photodetector 331 detects the interference intensity between the first detection light 328 and the second detection light 334 (1006), and the phase difference calculation circuit 101 calculates the phase difference (1007).
  • the phase difference calculated in 1007 is defined as phase difference 2.
  • the phase difference 1 stored in the memory 102 in 1003 is compared with the phase difference 2 calculated in 1007, and it is determined whether the difference is within a predetermined range (1008).
  • phase modulation element drive amount calculation circuit 103 calculates the drive amount of the phase modulation element 309 (1009), and the processing from 1005 to 1008 is performed. Try again.
  • phase difference detection and phase control in this embodiment are not performed every time one page data is recorded, and processing 1002 to processing 1003 and processing 1006 to processing 1009 are performed every several pages or every several books. Also good.
  • the learning of the interference condition 1001 is not performed at the time of recording, but may be performed at the time of shipment adjustment or initial adjustment, for example.
  • the control of the phase modulation element 309 is recorded in advance. Set the initial value of the condition.
  • the phase difference between the first detection light 328 and the second detection light 334 at the time of the first recording in which the signal point 401 and the signal point 402 are recorded is calculated.
  • the first recording and the second recording can be performed.
  • the method for obtaining the phase difference between the first detection light 328 and the second detection light 334 from the interference intensity detected by the light detector 331 is not limited to the above means, and for example, the first detection light 328 and the second detection light 334. It may be calculated by adding four phases of 0, ⁇ / 2, ⁇ , 3 ⁇ / 2, etc. to either of them and performing a fringe scan.
  • the phase of the signal light is modulated using the phase modulation element 309 disposed in the optical path of the signal light 306, but the phase of the reference light 307 is disposed by arranging the phase modulation element in the optical path of the reference light 307. It is also possible to use a configuration that modulates.
  • phase four-value recording and phase four-value reproduction by two-time recording have been described, but it goes without saying that this control method can be applied to any recording / reproduction method using phase multivalue. Yes.
  • the phase difference between the signal light and the reference light during recording may be controlled to a predetermined value between pages or books.
  • FIG. 13 shows an example of the recording flow at this time.
  • a page or book is recorded (1304), interference intensity detection (1305), and phase difference 2 calculation (1306) are performed.
  • phase difference of signal points between adjacent pages and adjacent books can be controlled to a predetermined value, and inter-page interference and inter-book interference can be suppressed.
  • the phase difference between the oscillator light and the reference light during reproduction may be controlled.
  • the present embodiment is different from the first embodiment in that the non-polarizing beam splitters 326 and 332 that generate the first detection light 328 and the second detection light 334 are arranged near the optical information recording medium, and the reference light 307 A part of the light is used as the second detection light 334.
  • FIG. 14 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment.
  • Part of the signal light 306 propagated through the relay lens 313 and the spatial filter 314 is reflected by the non-polarizing beam splitter 326.
  • the reflected light beam is used as the first detection light 328.
  • some of the reference light 307 reflected from the mirror 317 is transmitted through the non-polarizing beam splitter.
  • the equalized light beam is used as the second detection light 334.
  • the signal light path from the light source 301 to the non-polarization beam splitter 326 and the reference light path from the light source 301 to the non-polarization beam splitter 332 are generated. It becomes possible to observe and correct a phase difference change between the signal light 306 and the reference light 307 caused by a change in the optical path length due to disturbance such as air fluctuation, external vibration, thermal expansion / contraction.
  • the optical path length from the polarizing beam splitter 326 to the optical detector 331 is equal to the optical path length from the polarizing beam splitter 326 to the optical information recording medium 1, and the optical path length from the polarizing beam splitter 332 to the optical detector 331 is By making the optical path lengths from the polarizing beam splitter 332 to the optical information recording medium 1 equal, the influence of changes in the optical path length due to disturbance generated in the optical path from the polarizing beam splitter 326 and the polarizing beam splitter 332 to the optical information recording medium 1 is suppressed. can do.
  • This embodiment differs from Embodiments 1 and 2 in that a polarizing beam splitter is used instead of the non-polarizing beam splitter.
  • a polarizing beam splitter is used instead of the non-polarizing beam splitter.
  • FIG. 15 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment.
  • the polarization beam splitter 340 and the polarization direction conversion element 342 are used.
  • the light quantity ratio between the light transmitted through the polarization beam splitter 340 and the reflected light is adjusted.
  • the polarization direction conversion element 316 and the polarization beam splitter 341 are used.
  • the polarization direction conversion element 316 By adjusting the polarization direction of the reference light 307 by the polarization direction conversion element 316, the light quantity ratio between the light transmitted through the polarization beam splitter 341 and the light reflected is adjusted.
  • the reproduction method using phase conjugate light is used as in the first embodiment, and the information on the optical information recording medium 1 is reproduced using the reference light 307 reflected from the mirror 324.
  • the polarization direction conversion element 316 adjusts the polarization of the reference light 307 so that the reference light 307 passes through the polarization beam splitter 341. Further, the polarization direction conversion element 342 adjusts the polarization of the diffracted light 337 so that the diffracted light 337 reproduced from the optical information recording medium 1 passes through the polarization bee splitter 311.
  • the light amounts of the first detection light 328 and the second detection light 334 can be arbitrarily changed.
  • the first detection light 328 and the second detection light 334 having a minimum amount of light necessary for detecting the interference light by the light detector 331 are generated, and all the remaining light is used for recording optical information on the optical information recording medium 1.
  • the light amount loss of the light used for recording can be suppressed and the recording time of the optical information on the optical information recording medium 1 can be shortened as compared with the first embodiment using the non-polarizing beam splitter.
  • the amount of diffracted light 337 reproduced from the optical information recording medium 1 increases. Can be shortened.
  • the first detection light 328 is obtained by the polarization direction conversion element 316 and the polarization direction conversion element 342 only in the first data recording process 1004 and the second data recording process 1010.
  • the light quantity of the second detection light 334 is adjusted to substantially zero, the light quantity loss of the signal light 306 and the reference light 307 used for optical information recording can be eliminated.
  • the present embodiment is different from the second and third embodiments in that the configuration of the polarization direction conversion element 316 and the polarization direction conversion element 342 is changed so that only part of the signal light 306 and the reference light 307 is ejected and the first detection is performed. This is a point for generating light and second detection light.
  • the light amount loss of the signal light 306 and the reference light 307 used for recording can be eliminated from the first embodiment, and the recording time of optical information on the optical information recording medium 1 can be shortened.
  • the phase difference between the first detection light 328 and the second detection light 334 can be controlled in real time.
  • FIG. 16 shows an example of the configuration of the polarization direction conversion elements 316 and 342 in the present embodiment.
  • the inner 1502 is made of, for example, a half-wave plate, and thus the polarization direction of the transmitted light changes.
  • FIG. 17A shows a configuration of a cross-sectional portion of the signal light 306 after being modulated by the spatial light modulator 312 in the present embodiment.
  • the signal light 306 is made larger than the signal light 306A to which phase information is added by the spatial light modulator 312, and the signal light 306B to which a fixed phase is added is provided on the outer periphery of the signal light 306A.
  • FIG. 17B shows how the first detection light 328 is generated in the present embodiment.
  • the signal light 306 ⁇ / b> B is reflected by the polarization beam splitter 340 because it passes through the outer peripheral portion 1501 of the polarization direction conversion element 342.
  • the signal light 306B reflected by the polarization beam splitter 340 is used as the first detection light 328.
  • the signal light 306 ⁇ / b> A passes through the inside 1502 of the polarization direction conversion element 342, and thus passes through the polarization beam splitter 340 and enters the optical information recording medium 1.
  • FIG. 17C shows how the second detection light is generated in the present embodiment.
  • the reference light 307 is separated into a reference light 307A and a reference light 307B.
  • the reference light 307 B that is not used for optical information recording passes through the outer peripheral portion 1501 of the polarization direction conversion element 316 and is therefore reflected by the polarization beam splitter 341.
  • the reference light 307B reflected by the polarizing beam splitter 341 is used as the second detection light 334.
  • the reference light 307 A used for optical information recording passes through the inside 1502 of the polarization direction conversion element 316, passes through the polarization beam splitter 341, and enters the optical information recording medium 1.
  • FIG. 18 shows an example of the relationship between the light receiving unit 801 of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331 in this embodiment.
  • phase difference between the first detection light and the second detection light is controlled based on the interference intensity of the portion that does not contribute to the optical information recording, even when the phase information is added to the signal light 306 by the spatial light modulator 312.
  • the phase difference between the first detection light 328 and the second detection light 334 can be calculated and controlled. Therefore, the phase difference between the first detection light 328 and the second detection light 334 can be controlled in real time during optical information recording.
  • the component configuration for ejecting the first detection light 328 and the second detection light 334 and the detection method by the detector 331 are not limited to those shown in FIGS.
  • the present embodiment is different from the first embodiment in that instead of generating the first detection light 328 and the second detection light 334 in front of the optical information recording medium 1 and detecting the interference caused by them by the photodetector 331, This is a point of detecting the interference between the signal light 306 transmitted through the optical information recording medium 1 and the reference light 307.
  • the light amount loss of the signal light 306 and the reference light 307 used for recording can be eliminated compared to the first embodiment, so that the recording time of optical information on the optical information recording medium 1 can be shortened.
  • the phase difference change can be corrected with respect to the second and third embodiments, the accuracy of the phase difference control can be improved.
  • FIG. 19 shows a recording principle in an example of a basic optical configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment.
  • the photodetector 331 detects the interference intensity between the signal light 306 and the reference light 307 transmitted through the optical information recording medium 1 during recording.
  • the signal light 306 transmitted through the optical information recording medium 1 enters the photodetector 331 through the lens 340, the mirror 341, and the non-polarizing beam splitter 342.
  • the reference light 307 that has passed through the optical information recording medium 1 is reflected by the mirror 324, reflected by the non-polarized beam splitter 342, enters the photodetector 331, and overlaps with the signal light 306. Note that the angle of the mirror 324 can be adjusted by an actuator 323.
  • the mirror 324 is adjusted by the actuator 323 so that the reference light 307 enters the optical information recording medium 1. Similar to the first embodiment, a reproduction method using phase conjugate light is used, and information on the optical information recording medium 1 is reproduced using the reference light 307 reflected from the mirror 324.
  • the recording time of optical information on the optical information recording medium 1 can be shortened.
  • the phase difference change in the signal light optical path after the lens 315 and the reference light optical path after the mirror 319 that cannot be corrected in the first embodiment can be corrected, and the accuracy of the phase difference control between the signal light 306 and the reference light 307 can be corrected. It leads to improvement.
  • the present embodiment is different from the first embodiment in that the optical path of the first detection light 328 or the second detection light 334 is divided into at least two spatially divided phase plates 1701 that add at least two kinds of phases to transmitted light. It is a point to be placed inside.
  • can be calculated without obtaining the values of
  • the phase difference control can be speeded up.
  • FIG. 20 shows an example of the divided phase plate 1701 in the present embodiment.
  • a divided phase plate 1701 that is spatially divided into four and adds four types of phases (0, ⁇ / 2, ⁇ , 3 ⁇ / 2) is disposed in the optical path of the first detection light 328.
  • the first detection light 328 transmitted through the divided phase plate 1701 is divided into four regions to which different phases are added.
  • FIG. 21 shows an example of the relationship between the light receiving unit of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331 in this embodiment.
  • the photodetector 331 includes four light receiving units 801, 802, 803, and 804, and the light receiving unit 801 receives interference between the region 1801 to which the phase 0 is added and the second detection light 334 in the first detection light 328.
  • the unit 802 includes interference between the second detection light 334 and the region 1802 to which the phase ⁇ / 2 is added in the first detection light 328, and the light receiving unit 803 includes the region 1803 to which the phase ⁇ is added from the first detection light 328.
  • the light receiving unit 804 detects interference between the second detection light 334 and the interference between the second detection light 334 and the region 1804 added with the phase 3 ⁇ / 2 in the first detection light 328.
  • the value obtained by subtracting the interference intensity detected by the light receiving unit 802 from the interference intensity detected by the light receiving unit 801 is I 1
  • the value obtained by subtracting the interference intensity detected by the light receiving unit 804 from the interference intensity detected by the light receiving unit 803 is I 2 .
  • Number 2 is a formula representing the first detection light 328 a phase difference ⁇ of the second detection light 334 at I 1 and I 2, can be calculated ⁇ in accordance with the formula from I 1 and I 2.
  • the phase modulation element 309 is controlled so that the difference in ⁇ between the first recording and the second recording becomes ⁇ / 2, thereby correcting the phase difference change between the signal light and the reference light. be able to.
  • can be calculated without obtaining the values of
  • the phase difference control can be speeded up.
  • the configuration using the spatially divided phase plate 1701 is described.
  • the number of spatial divisions of the divided phase plate 1701 may be two or more.
  • the number of light receiving units may be two or more.
  • the divided phase plate 1701 may be arranged in the optical path of the second detection light 334 so that a phase is added to the second detection light 334.
  • the present embodiment is different from the first embodiment in that the photodetector 331 is an imaging device such as a CMOS image sensor or a CCD image sensor, and the entire interference light of the first detection light 328 and the second detection light 334 is imaged.
  • phase control is performed using a three-dimensional array type phase modulation element 309.
  • FIG. 22 shows an example of the relationship between the light receiving unit 801 of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331 in this embodiment.
  • the photodetector 331 is an imaging device such as a CMOS image sensor or a CCD image sensor, and images the entire interference light of the first detection light 328 and the second detection light 334.
  • the interference light is divided into a plurality of regions, and phase differences ⁇ 1 to ⁇ N between the first detection light 328 and the second detection light 334 are calculated in each region (N is the interference light) Division number).
  • phase modulation element 309 controls each of the phase differences ⁇ 1 to ⁇ N to a predetermined value.
  • the phase modulation element 309 is, for example, a two-dimensional array type element such as a phase modulation type spatial light modulator or a deformable mirror, so that an arbitrary position in the plane of the signal light 306 or the reference light 307 can be obtained. Enable to add phase.
  • the in-plane distribution of the phase difference between the first detection light 328 and the second detection light 334 can be calculated, and the phase difference can be controlled for each arbitrary location in the plane.
  • the in-plane wavefront deviation of the signal light 306 and the reference light 307 can be corrected.
  • the photodetector 331 may be configured to detect a phase difference distribution in the plane of the first detection light 328 and the second detection light 334 by arranging a plurality of elements such as a photodetector for detecting the light intensity in the plane.
  • This embodiment is different from the first embodiment in that light obtained by adding phase information to the signal light 306 by the spatial light modulator 306 is incident on the photodetector 331.
  • the phase information added by the spatial light modulator 312 to the signal light 306 can be measured during recording, and the recording quality can be further improved with respect to the first embodiment.
  • FIG. 23 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment.
  • a part of the signal light 306 transmitted through the polarization direction changing element 310 is reflected by the non-polarizing beam splitter 326 and used as the first detection light 328.
  • the first detection light 328 is reflected by the non-polarizing beam splitter 330 and enters the photodetector 331.
  • the signal light 306 that has passed through the non-polarizing beam splitter 326 passes through the polarizing beam splitter 311, enters the spatial light modulator 312, and page data is added by the spatial light modulator 312.
  • the signal light 306 to which page data is added by the spatial light modulator 312 is reflected by the polarization beam splitter 311, and part of the light is reflected by the non-polarization beam splitter 332.
  • the light reflected by the non-polarization beam splitter 332 is used as the second detection light 334, and the second detection light 334 passes through the non-polarization beam splitter 330 and enters the photodetector 331.
  • the photodetector 331 is an imaging device such as a CMOS image sensor or a CCD image sensor.
  • each pixel of the spatial light modulator 312 adds the phase added to the signal light 306 from the interference intensity of the first detection light 328 and the second detection light 334 detected by the photodetector 331. It becomes possible to measure at the time of recording.
  • the measurement result is compared with the information signal sent from the controller 89 to the spatial light modulator 312 via the signal generation circuit 86, and the spatial light is adjusted so that the difference between the measurement result for each pixel and the information signal is equal to or less than a predetermined value.
  • the modulator 312 may be controlled, or variation information between the measurement result and the information signal is recorded on the optical information recording medium 1, and signal processing is performed based on the variation information between the measurement result and the information signal during reproduction. You can go.
  • the spatial light modulator 312 of the present embodiment is not limited to the one that adds a phase binary value, and may be one that adds, for example, phase quaternary or more phase multilevel information.
  • the present embodiment is different from the second embodiment in that the photodetector 331 includes a plurality of light receiving surfaces 801, and the optical axes of the first detection light 328 and the second detection light 334 incident on the light receiving unit 801 are different. Are inclined at a predetermined angle.
  • FIG. 24A is a diagram showing an example of the relationship between the photodetector 331, the first detection light 328, and the second detection light in the optical information recording / reproducing apparatus of the present embodiment.
  • the first detection light 328 reflected by the non-polarizing beam splitter 330 enters the photodetector 331 perpendicularly.
  • the second detection light 334 transmitted through the non-polarizing beam splitter 330 is incident obliquely on the photodetector 331.
  • FIG. 24B is a diagram showing an example of the relationship between the light receiving unit 801 of the photodetector 331, the first detection light 328, and the second detection light in the optical information recording / reproducing apparatus of the present embodiment.
  • the wavefront of the first detection light and the wavefront of the second detection light are received by the light receiving unit 801 of the photodetector 331 in a state where the wavefronts of the first detection light and the second detection light are inclined at a predetermined angle, and interference fringes between the first detection light 328 and the second detection light 334 are received.
  • the light receiving unit 801 includes a plurality of light receiving units.
  • the light receiving unit receives the bright portions of the interference fringes of the first detection light 328 and the second detection light 334, and includes the first detection light 328 and the second detection light 334. There is a light receiving portion that receives a dark portion of an interference fringe.
  • the contrast of the interference fringes between the first detection light and the second detection light can be measured by the photodetector 331, and the first phase modulation element 309 can adjust the contrast to maximize the contrast.
  • the optical path length difference between the first detection light 328 and the second detection light 334 it is possible to record a hologram on the optical information recording medium 1 with high coherence between the signal light 306 and the reference light 307. Become. Therefore, a strong interference fringe pattern is recorded on the optical information recording medium 1, and the amount of diffracted light 337 during reproduction can be increased, so that high reproduction performance can be obtained.
  • the configuration of the light receiving surface 801 of the photodetector 331 of the present embodiment is not limited to the above. Further, the light incident on the photodetector 331 obliquely is not limited to the second detection light 334, and the first detection light 328 may be incident obliquely on the photodetector 331.
  • the present embodiment is not limited to phase multilevel hologram recording.
  • phase multilevel hologram recording even in amplitude multilevel hologram recording, it is possible to obtain high reproduction performance by increasing the coherence between the signal light 306 and the reference light 307. is there.
  • phase multilevel hologram recording / reproducing apparatus and the phase multilevel hologram recording / reproducing method, it is possible to correct the phase difference change between the signal light and the reference light during recording, and stable phase multilevel Information can be reproduced.
  • a phase control unit that controls the phase of reference light or signal light, light that has passed through the phase control unit, and a light detection unit that detects interference intensity of light that has not passed through the phase control unit
  • a phase difference calculation unit that calculates a phase difference based on the interference intensity detected by the light detection unit
  • a phase difference control amount calculation unit that calculates a phase difference control amount based on the phase difference
  • phase multi-value recording is performed by performing hologram recording twice on the same portion of the hologram recording medium, and the above-mentioned level is recorded during the first hologram recording. Control the phase difference during the second hologram recording so that the difference between the first phase difference control step for controlling the phase difference and the phase difference controlled in the first phase control step is within a predetermined range.
  • An optical information recording / reproducing method comprising: a second phase difference control step.
  • the optical information recording / reproducing method includes the phase difference control step of controlling the phase difference every time a predetermined number of pages or a predetermined number of books are recorded.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
  • SYMBOLS 1 Optical information recording medium, 11 ...
  • Optical pick-up apparatus 101 ... Phase difference calculation circuit, 102 ... Memory, 103 ... Phase modulation element drive amount calculation circuit, 301 ... Light source, 302 ... Collimating lens, 303 ... Shutter, 304 ... Half-wave plate, 305 ... Polarizing beam splitter, 306 ... Signal light, 307 ... Reference light, 308 ... Beam Expander, 309 ... phase modulation element, 310 ... polarization direction conversion element, 311 ... polarization beam splitter, 312 ... spatial light modulator, 313 ... relay lens, 314 ... spatial filter 315 ... objective lens, 316 ...
  • Polarization direction conversion element 317 ... mirror, 319 ... mirror, 320 ... actuator, 321 ... lens, 322 ... , 323 ... Actuator, 324 ... Mirror, 325 ... Photodetector, 326 ... Unpolarized beam splitter, 328 ... First detection light, 329 ... Mirror, 330 ... Non-polarizing beam splitter, 331 ... photodetector, 332 ... non-polarizing beam splitter, 334 ... second detection light, 337 ... diffracted light, 338 ... oscillator light, 339 ... polarized light 340: Polarization beam splitter, 341: Polarization beam splitter, 342: Polarization direction conversion element, 801: Light receiving unit, 802 ... Light receiving unit, 803 ... Light receiving unit, 804 ..Light receiving part, 1701 ... Divided phase plate

Abstract

Provided is an optical information recording technique in which change in phase difference between signal light and reference light during recording is corrected during recording to record a high quality hologram, and thereby phase multivalued information can be stably reproduced. This optical information recording device records, as a hologram in a hologram recording medium, an interference fringe obtained by causing interference of reference light and signal light, and is provided with: a light source that emits light; a light flux splitting element that splits the light emitted from the light source into first light and second light; a light detecting unit that receives the first light and the second light and detects an interference intensity; a phase control unit that calculates the phase difference between the first light and the second light from the interference intensity detected by the light receiving unit, and controls at least the phase of the second light; and a spatial light modulator that adds phase multivalued information to the second light.

Description

光情報記録装置、光情報記録再生装置および光情報記録方法Optical information recording apparatus, optical information recording / reproducing apparatus, and optical information recording method
 本発明は、ホログラフィを用いる光情報記録装置、光情報記録再生装置および光情報記録方法に関する。 The present invention relates to an optical information recording apparatus, an optical information recording / reproducing apparatus, and an optical information recording method using holography.
 本技術分野の背景技術として、例えば特開2008-203503(特許文献1)がある。本公報には課題として「ホログラム記録媒体から得られる回折光と第2参照光との相互の位相を合わせる技術を提供する」と記載があり、解決手段として「ホログラム記録媒体30に第1参照光を照射するためにレーザー11からのレーザー光を導く第1参照光光路と、第1参照光の照射によってホログラム記録媒体30から発生する回折光を複数のピクセルを有するCMOSセンサー27に導く回折光の光路と、回折光の偏光方向と同一の偏光方向を有する第2参照光をレーザー11からCMOSセンサー27に導く第2参照光の光路と、を備えるようにして、第2参照光の光路に位相遅延素子16と2軸回動ミラー18とを配して、回折光と第2参照光との位相を合わせて良好なるDC再生特性を得るようにした。」と記載されている。 As a background art in this technical field, for example, there is JP 2008-203503 (Patent Document 1). In this publication, there is a description as “provides a technique for matching the phase of the diffracted light obtained from the hologram recording medium and the second reference light”. As a solution, “the first reference light is applied to the hologram recording medium 30”. The first reference beam path that guides the laser beam from the laser 11 to irradiate the laser beam, and the diffracted beam that guides the diffracted beam generated from the hologram recording medium 30 by the irradiation of the first reference beam to the CMOS sensor 27 having a plurality of pixels. An optical path, and a second reference light optical path that guides the second reference light having the same polarization direction as the polarization direction of the diffracted light from the laser 11 to the CMOS sensor 27, so that a phase is provided in the optical path of the second reference light. The delay element 16 and the biaxial rotating mirror 18 are arranged so that the phase of the diffracted light and the second reference light are matched to obtain a favorable DC reproduction characteristic. "
特開2008-203503JP2008-203503
 次世代のストレージ技術として、ホログラフィを利用して2次元的に変調された情報を記録再生するホログラム記録再生技術が注目を集めている。ホログラム記録時には、2次元的な情報を信号光に付加し、参照光と重ね合わせて出来た干渉縞を記録媒体内に記録する。ホログラム再生時には、記録媒体の干渉縞に参照光を照射して再生した回折光を撮像素子で検出し、2次元的な情報を再生する。 As next-generation storage technology, hologram recording / reproducing technology that records and reproduces information two-dimensionally modulated using holography is attracting attention. At the time of hologram recording, two-dimensional information is added to the signal light, and interference fringes formed by superimposing with the reference light are recorded in the recording medium. At the time of hologram reproduction, the diffracted light reproduced by irradiating the interference fringes of the recording medium with reference light is detected by the image sensor, and two-dimensional information is reproduced.
 ホログラム記録再生技術における記録容量の大容量化のため、2次元的な情報を光に付加する技術として、光に多値の位相情報を付加する位相多値技術が提案されている。本技術では、ホログラム再生した回折光に干渉性の高い光(オシレータ光)を重ね合わせ、干渉させることで位相情報を強度情報に変換して、2次元的な情報を再生する。特許文献1では、オシレータ光の位相を位相変調素子で制御し、回折光とオシレータ光の位相差を合わせることを可能としている。 In order to increase the recording capacity in the hologram recording / reproducing technology, a phase multilevel technology for adding multilevel phase information to light has been proposed as a technology for adding two-dimensional information to light. In the present technology, light having high coherence (oscillator light) is superimposed on the diffracted light reproduced from the hologram and caused to interfere, thereby converting phase information into intensity information and reproducing two-dimensional information. In Patent Document 1, the phase of the oscillator light is controlled by a phase modulation element, and the phase difference between the diffracted light and the oscillator light can be matched.
 しかしながら、特許文献1の技術では、記録時の信号光と参照光の位相差変化について考慮していないため、記録時の位相差変化に起因する再生性能の劣化を十分に抑制できないという課題がある。 However, since the technique of Patent Document 1 does not consider the phase difference change between the signal light and the reference light at the time of recording, there is a problem that the deterioration of the reproduction performance due to the phase difference change at the time of recording cannot be sufficiently suppressed. .
 そこで本発明は、記録時の信号光と参照光の位相差変化を記録時に補正して高品質なホログラムを記録することで、安定した位相多値情報の再生が可能な光情報記録技術を提供することを目的とする。 Therefore, the present invention provides an optical information recording technique capable of stably reproducing phase multilevel information by correcting a phase difference change between signal light and reference light during recording and recording a high-quality hologram. The purpose is to do.
 上記課題は、例えば下記の構成により解決される。 The above problem is solved by the following configuration, for example.
 参照光と信号光を干渉させ、得られた干渉縞をホログラムとしてホログラム記録媒体に記録する光情報記録装置において、光を出射する光源と、前記光源から出射した光を第1の光と第2の光に分割する光束分割素子と、前記第1の光と前記第2の光を受光して干渉強度を検出する光検出部と、前記受光部で検出した干渉強度から前記第1の光と前記第2の光の位相差を算出し、少なくとも前記第2の光の位相を制御する位相制御部と、前記第2の光に位相多値情報を付加する空間光変調器と、を備える。 In an optical information recording apparatus that causes reference light and signal light to interfere with each other and records the obtained interference fringes as a hologram on a hologram recording medium, a light source that emits light, light emitted from the light source, first light and second light A light beam splitting element that splits the first light and the second light to detect interference intensity, and the first light based on the interference intensity detected by the light receiving section. A phase controller that calculates a phase difference of the second light and controls at least a phase of the second light; and a spatial light modulator that adds phase multilevel information to the second light.
 本発明によれば、記録時の信号光と参照光の位相差変化を補正して高品質なホログラムを記録することで、安定した位相多値情報の再生が可能な光情報記録再生装置および記録再生方法を提供できる。 Advantageous Effects of Invention According to the present invention, an optical information recording / reproducing apparatus and recording that can reproduce stable phase multilevel information by correcting a phase difference change between signal light and reference light during recording and recording a high-quality hologram. A playback method can be provided.
実施例1における光情報記録再生装置内の光ピックアップ装置を表す図The figure showing the optical pick-up apparatus in the optical information recording and reproducing apparatus in Example 1 実施例1における光情報記録再生装置を表す図The figure showing the optical information recording and reproducing apparatus in Example 1 実施例1における位相4値記録方法を表す信号点配置図Signal point arrangement diagram showing phase four-value recording method in embodiment 1 実施例1における光情報記録再生装置内の光ピックアップ装置を表す図The figure showing the optical pick-up apparatus in the optical information recording and reproducing apparatus in Example 1 実施例1における位相4値再生方法を表す信号点配置図Signal point arrangement diagram showing phase four-value reproduction method in embodiment 1 実施例1における位相4値再生時の干渉強度のヒストグラムHistogram of interference intensity at the time of quaternary phase reproduction in embodiment 1 実施例1における外乱により位相差がずれたときの位相4値記録再生方法を表す信号点配置図Signal point arrangement diagram showing a phase four-value recording / reproducing method when the phase difference is shifted due to disturbance in the first embodiment 実施例1における外乱により位相差がずれたときの位相4値再生時の干渉強度のヒストグラムHistogram of interference intensity at the time of phase quaternary reproduction when the phase difference is shifted due to disturbance in the first embodiment 実施例1における光検出器に入射する光と受光部の関係を表す図The figure showing the relationship between the light which injects into the photodetector in Example 1, and a light-receiving part 実施例1における第1検出光と第2検出光の干渉強度と位相差の関係Relationship between interference intensity and phase difference between first detection light and second detection light in Embodiment 1 実施例1における記録時の信号光と参照光の位相差制御を行う回路の構成図1 is a configuration diagram of a circuit that performs phase difference control between signal light and reference light during recording in Embodiment 1. FIG. 実施例1における2回記録による位相4値の記録フローExample 4 recording flow of phase 4 values by two recordings 実施例1におけるページ/ブックの記録フローPage / book recording flow in the first embodiment 実施例2における光情報記録再生装置内の光ピックアップ装置の図Diagram of optical pickup device in optical information recording / reproducing device in embodiment 2 実施例3における光情報記録再生装置内の光ピックアップ装置の図Diagram of optical pickup device in optical information recording / reproducing device in embodiment 3 実施例4における偏光方向変換素子の構成図Configuration diagram of polarization direction conversion element in Example 4 実施例4における信号光および参照光からの第1検出光、第2検出光の生成方法を表す図The figure showing the production | generation method of the 1st detection light from the signal light and reference light in Example 4, and a 2nd detection light 実施例4における光検出器に入射する光と受光部の関係を表す図The figure showing the relationship between the light which injects into the photodetector in Example 4, and a light-receiving part 実施例5における光情報記録再生装置内の光ピックアップ装置を表す図The figure showing the optical pick-up apparatus in the optical information recording and reproducing apparatus in Example 5 実施例6における分割位相板の構成図Configuration diagram of split phase plate in embodiment 6 実施例6における光検出器に入射する光と受光部の関係を表す図The figure showing the relationship between the light which injects into the photodetector in Example 6, and a light-receiving part 実施例7における光検出器に入射する光と受光部の関係を表す図The figure showing the relationship between the light which injects into the photodetector in Example 7, and a light-receiving part 実施例8における光情報記録再生装置内の光ピックアップ装置の図Diagram of optical pickup device in optical information recording / reproducing apparatus in embodiment 8 実施例9における光検出器に入射する光と受光部の関係を表す図The figure showing the relationship between the light which injects into the photodetector in Example 9, and a light-receiving part
 以下、本発明の実施例について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図2はホログラフィを利用してデジタル情報を記録および/または再生する光情報記録媒体の記録再生装置を示すブロック図である。 FIG. 2 is a block diagram showing a recording / reproducing apparatus for an optical information recording medium for recording and / or reproducing digital information using holography.
 光情報記録再生装置10は、入出力制御回路90を介して外部制御装置91と接続されている。記録する場合には、光情報記録再生装置10は外部制御装置91から記録する情報信号を入出力制御回路90により受信する。再生する場合には、光情報記録再生装置10は再生した情報信号を入出力制御回路90により外部制御装置91に送信する。 The optical information recording / reproducing device 10 is connected to an external control device 91 via an input / output control circuit 90. In the case of recording, the optical information recording / reproducing apparatus 10 receives the information signal to be recorded from the external control device 91 by the input / output control circuit 90. When reproducing, the optical information recording / reproducing apparatus 10 transmits the reproduced information signal to the external control apparatus 91 by the input / output control circuit 90.
 光情報記録再生装置10は、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14、及び回転モータ50を備えており、光情報記録媒体1は回転モータ50によって回転可能な構成となっている。 The optical information recording / reproducing apparatus 10 includes a pickup 11, a cure optical system 13, a disk rotation angle detection optical system 14, and a rotation motor 50, and the optical information recording medium 1 can be rotated by the rotation motor 50. ing.
 ピックアップ11は、参照光と信号光を光情報記録媒体1に照射してホログラフィを利用してデジタル情報を記録媒体に記録する役割と光情報記録媒体1に記録した情報を再生する役割を果たす。光情報記録媒体1に記録する場合、記録する情報信号はコントローラ89によって信号生成回路86を介してピックアップ11内の空間光変調器に送られ、信号光は空間光変調器によって変調される。 The pickup 11 plays a role of irradiating the optical information recording medium 1 with reference light and signal light to record digital information on the recording medium using holography and reproducing information recorded on the optical information recording medium 1. When recording on the optical information recording medium 1, the information signal to be recorded is sent to the spatial light modulator in the pickup 11 by the controller 89 via the signal generation circuit 86, and the signal light is modulated by the spatial light modulator.
 また、コントローラ89によって位相制御回路92を介してピックアップ11内の位相変調素子を駆動し、信号光と参照光の位相を制御する。 Also, the controller 89 drives the phase modulation element in the pickup 11 via the phase control circuit 92 to control the phase of the signal light and the reference light.
 光情報記録媒体1に記録した情報を再生する場合は、ピックアップ11は参照光を記録時とは逆の向きに光情報記録媒体に入射させる。参照光によって再生される再生光をピックアップ11内の後述する光検出器によって検出し、信号処理回路85によって信号を再生する。 When reproducing the information recorded on the optical information recording medium 1, the pickup 11 causes the reference light to enter the optical information recording medium in the opposite direction to that during recording. Reproduced light reproduced by the reference light is detected by a later-described photodetector in the pickup 11, and a signal is reproduced by the signal processing circuit 85.
 光情報記録媒体1に照射する参照光と信号光の照射時間は、ピックアップ11内のシャッタの開閉時間をコントローラ89によってシャッタ制御回路87を介して制御することで調整できる。 The irradiation time of the reference light and the signal light applied to the optical information recording medium 1 can be adjusted by controlling the opening / closing time of the shutter in the pickup 11 via the shutter control circuit 87 by the controller 89.
 キュア光学系13は、光情報記録媒体1のプリキュアおよびポストキュアに用いる光ビームを生成する役割を果たす。プリキュアとは、光情報記録媒体1内の所望の位置に情報を記録する際、所望位置に参照光と信号光を照射する前に予め所定の光ビームを照射する前工程である。ポストキュアとは、光情報記録媒体1内の所望の位置に情報を記録した後、該所望の位置に追記不可能とするために所定の光ビームを照射する後工程である。 The cure optical system 13 plays a role of generating a light beam used for pre-cure and post-cure of the optical information recording medium 1. Precure is a pre-process for irradiating a predetermined light beam in advance before irradiating the desired position with reference light and signal light when recording information at a desired position in the optical information recording medium 1. Post-cure is a post-process for irradiating a predetermined light beam after recording information at a desired position in the optical information recording medium 1 so that additional recording cannot be performed at the desired position.
 ディスク回転角度検出用光学系14は、光情報記録媒体1の回転角度を検出するために用いられる。光情報記録媒体1を所定の回転角度に調整する場合は、ディスク回転角度検出用光学系14によって回転角度に応じた信号を検出し、検出された信号を用いてコントローラ89によってディスク回転モータ制御回路88を介して光情報記録媒体1の回転角度を制御する事が出来る。 The disk rotation angle detection optical system 14 is used to detect the rotation angle of the optical information recording medium 1. When adjusting the optical information recording medium 1 to a predetermined rotation angle, a signal corresponding to the rotation angle is detected by the disk rotation angle detection optical system 14, and a disk rotation motor control circuit is detected by the controller 89 using the detected signal. The rotation angle of the optical information recording medium 1 can be controlled via 88.
 光源駆動回路82からは所定の光源駆動電流がピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14内の光源に供給され、各々の光源からは所定の光量で光ビームを発光することができる。 A predetermined light source driving current is supplied from the light source driving circuit 82 to the light sources in the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14, and each light source emits a light beam with a predetermined light amount. Can do.
 また、ピックアップ11、そして、ディスクキュア光学系13は、光情報記録媒体1の半径方向に位置をスライドできる機構が設けられており、アクセス制御回路81を介して位置制御がおこなわれる。 Further, the pickup 11 and the disc cure optical system 13 are provided with a mechanism capable of sliding the position in the radial direction of the optical information recording medium 1, and the position is controlled via the access control circuit 81.
 ところで、ホログラフィの角度多重の原理を利用した記録技術は、参照光角度のずれに対する許容誤差が極めて小さくなる傾向がある。 By the way, the recording technology using the principle of angle multiplexing of holography tends to have a very small tolerance for the deviation of the reference beam angle.
 従って、ピックアップ11内に、参照光角度のずれ量を検出する機構を設けて、サーボ信号生成回路83にてサーボ制御用の信号を生成し、サーボ制御回路84を介して該ずれ量を補正するためのサーボ機構を光情報記録再生装置10内に備えることが必要となる。 Therefore, a mechanism for detecting the deviation amount of the reference beam angle is provided in the pickup 11, a servo control signal is generated by the servo signal generation circuit 83, and the deviation amount is corrected via the servo control circuit 84. It is necessary to provide a servo mechanism for this purpose in the optical information recording / reproducing apparatus 10.
 また、ピックアップ11、キュア光学系13、ディスク回転角度検出用光学系14は、いくつかの光学系構成または全ての光学系構成をひとつに纏めて簡素化しても構わない。 Further, the pickup 11, the cure optical system 13, and the disk rotation angle detection optical system 14 may be simplified by combining several optical system configurations or all optical system configurations into one.
 図1は、本実施例の光情報記録再生装置における光ピックアップ装置11の基本的な光学系構成の一例における記録原理を示したものである。光源301を出射した光ビームはコリメートレンズ302を透過し、シャッタ303に入射する。シャッタ303が開いている時は、光ビームはシャッタ303を通過した後、例えば2分の1波長板などで構成される光学素子304によってp偏光とs偏光の光量比が所望の比になるようになど偏光方向を制御された後、偏光ビームスプリッタ305に入射する。 FIG. 1 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment. The light beam emitted from the light source 301 passes through the collimator lens 302 and enters the shutter 303. When the shutter 303 is open, after the light beam passes through the shutter 303, the optical ratio of the p-polarized light and the s-polarized light becomes a desired ratio by the optical element 304 composed of, for example, a half-wave plate. After the polarization direction is controlled, the light enters the polarization beam splitter 305.
 偏光ビームスプリッタ305を透過した光ビームは、信号光306として働き、ビームエキスパンダ308によって光ビーム径が拡大された後、無偏光ビームスプリッタ326、位相変調素子309、無偏光ビームスプリッタ332、偏光方向変換素子310、偏光ビームスプリッタ311を透過して空間光変調器312に入射し、空間光変調器312によって画素毎に位相情報が付加された2次元的なデータ(以降、ページデータ)となる。ここでページデータ内の位相分布は、例えば光情報記録媒体1のフーリエ面上の光強度分布においてDC強度(いわゆるホットスポット)を除去するような位相分布となっている。 The light beam that has passed through the polarization beam splitter 305 functions as signal light 306, and after the light beam diameter is expanded by the beam expander 308, the non-polarization beam splitter 326, the phase modulation element 309, the non-polarization beam splitter 332, the polarization direction It passes through the conversion element 310 and the polarization beam splitter 311 and enters the spatial light modulator 312, and becomes two-dimensional data (hereinafter, page data) to which phase information is added for each pixel by the spatial light modulator 312. Here, the phase distribution in the page data is, for example, a phase distribution that removes DC intensity (so-called hot spot) in the light intensity distribution on the Fourier plane of the optical information recording medium 1.
 空間光変調器312によってページデータを付加された信号光306は偏光ビームスプリッタ311によって反射し、リレーレンズ313ならびに空間フィルタ314を伝播する。その後、対物レンズ315によって光情報記録媒体1に集光する。 The signal light 306 to which page data is added by the spatial light modulator 312 is reflected by the polarization beam splitter 311 and propagates through the relay lens 313 and the spatial filter 314. Thereafter, the light is condensed on the optical information recording medium 1 by the objective lens 315.
 偏光ビームスプリッタ305を反射した光ビームは参照光307として働き、偏光方向変換素子316によって記録時または再生時に応じて所定の偏光方向に設定された後、ミラー317を経由して、ガルバノミラー319に入射する。ガルバノミラー319はアクチュエータ320によって角度を調整可能のため、レンズ321とレンズ322を通過した後に光情報記録媒体1に入射する参照光の入射角度を、所望の角度に設定することができる。なお、参照光の入射角度を設定するために、ガルバノミラーに代えて、参照光の波面を変換する素子を用いても構わない。 The light beam reflected from the polarization beam splitter 305 functions as reference light 307, and is set to a predetermined polarization direction according to recording or reproduction by the polarization direction conversion element 316, and then passes through the mirror 317 to the galvanometer mirror 319. Incident. Since the angle of the galvanometer mirror 319 can be adjusted by the actuator 320, the incident angle of the reference light incident on the optical information recording medium 1 after passing through the lens 321 and the lens 322 can be set to a desired angle. In order to set the incident angle of the reference light, an element that converts the wavefront of the reference light may be used instead of the galvanometer mirror.
 このように信号306と参照光307とを光情報記録媒体1において、互いに重ね合うように入射させることで、記録媒体内には干渉縞パターンが形成され、このパターンを記録媒体に書き込むことで情報を記録する。 Thus, the signal 306 and the reference light 307 are incident on the optical information recording medium 1 so as to overlap each other, whereby an interference fringe pattern is formed in the recording medium, and information is written by writing this pattern on the recording medium. Record.
 また、ガルバノミラー319によって光情報記録媒体1に入射する参照光の入射角度を変化させることで、同領域に複数のページデータが記録でき、角度多重による記録容量の大容量化が可能である。 Further, by changing the incident angle of the reference light incident on the optical information recording medium 1 by the galvanometer mirror 319, a plurality of page data can be recorded in the same area, and the recording capacity can be increased by angle multiplexing.
 以降、同じ領域に参照光角度を変えて記録されたホログラムにおいて、1つ1つの参照光角度に対応したホログラムをページと呼び、同領域に角度多重されたページの集合をブックと呼ぶことにする。 Hereinafter, in holograms recorded in the same area with different reference beam angles, holograms corresponding to each reference beam angle are called pages, and a set of pages angle-multiplexed in the same area is called a book. .
 ここで、本実施例における位相多値記録方法である、光情報記録媒体1の同一位置、同一参照光角度で2回記録を行うことで位相4値を記録する方法について、図3の信号点配置図を用いて説明する。図3は複素平面であり、複素平面上の点の絶対値は信号光306の振幅、偏角は信号光306と参照光307の位相差を表す。なお、以降の説明では、信号光の位相は参照光の位相を基準とした値とする。 Here, the signal multipoint recording method in the present embodiment, which is a method of recording four phases by recording twice at the same position and the same reference light angle of the optical information recording medium 1, is shown in FIG. This will be described with reference to a layout diagram. FIG. 3 shows a complex plane. The absolute value of a point on the complex plane represents the amplitude of the signal light 306, and the declination represents the phase difference between the signal light 306 and the reference light 307. In the following description, the phase of the signal light is a value based on the phase of the reference light.
 図3(a)は、空間光変調器312が付加する2値情報の一例を複素平面状の点で表した信号点配置図である。信号点配置図が示すように、空間光変調器312は位相0の信号点401と位相πの信号点402の2値情報を付加する。図3(a)に示した位相0の信号点401と位相πの信号点402の2値情報を記録した後、位相変調素子309で信号光306の位相をπ/2変化させることで、図3(b)に示した位相π/2の信号点403と位相3π/2の信号点404の2値情報を光情報記録媒体1の同一箇所に記録する。この2度の記録で付加した位相の組み合わせによって、図3(c)の信号点配置図に示した、位相π/4の信号点405、位相3π/4の信号点406、位相5π/4の信号点407、位相7π/4の信号点408が記録される。このように同一角度に2回記録を行うことで、4値情報のページデータを記録することができる。 FIG. 3A is a signal point arrangement diagram showing an example of binary information added by the spatial light modulator 312 by points on a complex plane. As shown in the signal point arrangement diagram, the spatial light modulator 312 adds binary information of a phase 0 signal point 401 and a phase π signal point 402. After the binary information of the phase 0 signal point 401 and the phase π signal point 402 shown in FIG. 3A is recorded, the phase modulation element 309 changes the phase of the signal light 306 by π / 2. The binary information of the signal point 403 of phase π / 2 and the signal point 404 of phase 3π / 2 shown in 3 (b) is recorded in the same location of the optical information recording medium 1. Depending on the combination of phases added in the two recordings, the signal point 405 of phase π / 4, the signal point 406 of phase 3π / 4, and the phase of 5π / 4 shown in the signal point arrangement diagram of FIG. A signal point 407 and a signal point 408 having a phase of 7π / 4 are recorded. By thus recording twice at the same angle, page data of quaternary information can be recorded.
 図4は、本実施例の光情報記録再生装置における光ピックアップ装置11の基本的な光学系構成の一例における再生原理を示したものである。記録した情報を再生する場合は、参照光307を光情報記録媒体1に入射する。本実施例では位相共役光による再生の方法をとっており、光情報記録媒体1を透過した参照光307を、アクチュエータ323によって角度調整可能なガルバノミラー324から反射して再度、光情報記録媒体1に入射する参照光307を用いて情報を再生する。参照光307によって再生された回折光337は、対物レンズ315、リレーレンズ313、空間フィルタ314、偏光ビームスプリッタ311、偏光子339を介して光検出器325に入射する。 FIG. 4 shows a reproduction principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment. When reproducing the recorded information, the reference light 307 enters the optical information recording medium 1. In this embodiment, a reproduction method using phase conjugate light is used, and the reference light 307 transmitted through the optical information recording medium 1 is reflected from the galvano mirror 324 whose angle can be adjusted by the actuator 323, and again, the optical information recording medium 1 The information is reproduced using the reference light 307 incident on the. The diffracted light 337 reproduced by the reference light 307 enters the photodetector 325 through the objective lens 315, the relay lens 313, the spatial filter 314, the polarization beam splitter 311, and the polarizer 339.
 また、回折光337の位相多値情報を強度多値情報に変換して、光検出器325で検出するために、回折光337と干渉性の高い光(オシレータ光338)の干渉を用いる。オシレータ光338を生成するため、偏光方向変換素子304によって偏光方向を制御し、所望の光量の光を、偏光ビームスプリッタ305を透過させる。偏光ビームスプリッタ305を透過したオシレータ光338は、ビームエキスパンダ308、無偏光ビームスプリッタ326、位相変調素子309、無偏光ビームスプリッタ332を透過した後、偏光方向変換素子310によって偏光方向が制御され、偏光ビームスプリッタ311を反射する。その後、オシレータ光338は偏光子339を介し、光検出器325に入射する。 Further, in order to convert the phase multilevel information of the diffracted light 337 into intensity multilevel information and detect it by the photodetector 325, interference between the diffracted light 337 and light having high coherence (oscillator light 338) is used. In order to generate the oscillator light 338, the polarization direction is controlled by the polarization direction conversion element 304, and a desired amount of light is transmitted through the polarization beam splitter 305. The oscillator light 338 transmitted through the polarization beam splitter 305 passes through the beam expander 308, the non-polarization beam splitter 326, the phase modulation element 309, and the non-polarization beam splitter 332, and then the polarization direction is controlled by the polarization direction conversion element 310. Reflects the polarization beam splitter 311. Thereafter, the oscillator light 338 enters the photodetector 325 through the polarizer 339.
 図5は、本実施例における回折光337の位相多値情報の信号点の再生方法である、回折光337とオシレータ光の干渉から位相情報を再生する方法を説明する図である。図5に示すように、回折光337と、参照光の位相を基準とした位相ΦLOのオシレータ光338の干渉は、信号点405、信号点406、信号点407、信号点408の、偏角ΦLOを有する軸409への射影とみなすことができる。したがって、回折光337とオシレータ光338の干渉光において、信号点405と信号点408の強度差は距離410に比例し、信号点408と信号点406の強度差は距離411に比例し、信号点406と信号点407の強度差は距離412に比例する。 FIG. 5 is a diagram for explaining a method for reproducing phase information from interference between the diffracted light 337 and the oscillator light, which is a method for reproducing the signal point of the phase multilevel information of the diffracted light 337 in this embodiment. As shown in FIG. 5, and the diffracted light 337, the interference phase [Phi LO oscillator light 338 and the phase of the reference light as a reference, the signal point 405, the signal points 406, signal point 407, the signal points 408, declination It can be regarded as a projection onto an axis 409 having Φ LO . Therefore, in the interference light between the diffracted light 337 and the oscillator light 338, the intensity difference between the signal point 405 and the signal point 408 is proportional to the distance 410, and the intensity difference between the signal point 408 and the signal point 406 is proportional to the distance 411. The intensity difference between 406 and signal point 407 is proportional to distance 412.
 図6は、図5の信号を再生したときに得られるヒストグラムである。なお、図6の横軸は光検出器325で検出した光強度、縦軸はページデータ内の各干渉強度を有するピクセルの個数を示す。ここでは4つの信号点(405、406、407、408)がそれぞれ同じ個数ページデータ内に配置されている状態のヒストグラムを示した。このヒストグラムが示すとおり、位相ΦLOの最適化を行うと、4つの信号点(405、406、407、408)が等間隔に配置され、各信号点に対応する干渉強度が分離できるため、高い再生性能が得られる。 FIG. 6 is a histogram obtained when the signal of FIG. 5 is reproduced. In FIG. 6, the horizontal axis indicates the light intensity detected by the photodetector 325, and the vertical axis indicates the number of pixels having each interference intensity in the page data. Here, a histogram is shown in a state where four signal points (405, 406, 407, 408) are arranged in the same number of page data. As shown in this histogram, when the phase Φ LO is optimized, four signal points (405, 406, 407, 408) are arranged at equal intervals, and the interference intensity corresponding to each signal point can be separated. Reproduction performance is obtained.
 なお、本実施例は、信号点405、信号点406、信号点407、信号点408すべてを一度に分離する方法に限らず、4つの位相(任意の基準位相、基準位相+π/2、基準位相+π、基準位相+3π/2)を付加されたオシレータ光338を用いて、干渉計などで一般的に用いられているフリンジスキャンの原理から位相を検出するなど、位相差を検出する機構、原理等を用いても同様の効果が得られる。 The present embodiment is not limited to the method of separating the signal point 405, the signal point 406, the signal point 407, and the signal point 408 all at once, but four phases (arbitrary reference phase, reference phase + π / 2, reference phase). + Π, reference phase + 3π / 2) is added to the oscillator light 338 to detect the phase from the principle of fringe scanning generally used in interferometers, etc. The same effect can be obtained by using.
 また、光検出器325は、例えばCMOSイメージセンサやCCDイメージセンサなどの撮像素子を用いることができるが、ページデータを再生可能であれば、どのような素子であっても構わない。 The photodetector 325 can be an image sensor such as a CMOS image sensor or a CCD image sensor, for example, but may be any element as long as page data can be reproduced.
 ところで、図3(c)の信号点を信号光306に付加する際、位相変調素子309の位相変調精度が低いと、1度目の記録における信号光306の位相と、2度目の記録における信号光306の位相との差がπ/2からずれる。図7(a)に、1度目の記録における信号光306の位相と、2度目の記録における信号光306の位相との差がπ/2からΦずれたとき、記録される信号点の信号点配置を示す。位相がπ/2からΦずれた結果、2度目の記録で記録される信号点は信号点505と信号点506のようになる。その結果、光情報記録媒体1に2度の記録で記録した位相4値の信号点は信号点501、信号点502、信号点503、信号点504の様な配置になる。 By the way, when the signal point of FIG. 3C is added to the signal light 306, if the phase modulation accuracy of the phase modulation element 309 is low, the phase of the signal light 306 in the first recording and the signal light in the second recording. The difference from the phase of 306 is deviated from π / 2. In FIG. 7A, when the difference between the phase of the signal light 306 in the first recording and the phase of the signal light 306 in the second recording deviates from π / 2 by Φ, the signal point of the signal point to be recorded Indicates placement. As a result of the phase shift from Φ / 2 by Φ, the signal points recorded in the second recording are signal points 505 and 506. As a result, the quaternary phase signal points recorded on the optical information recording medium 1 twice are arranged as signal points 501, 502, 503, and 504.
 図7(b)は、これらの信号点を、位相ΦLOを有するオシレータ光との干渉で再生する様子を示す。偏角ΦLOを有する軸409への信号点501、信号点502、信号点503、信号点504の射影は図7(b)の様になり、信号点502と信号点504の距離507は図6の距離411と比べて小さくなる。このときの回折光337と位相ΦLOを付加したオシレータ光の干渉強度ヒストグラムを図8に示す。信号点502と信号点504の干渉強度差は低下し、位相情報の再生性能が劣化する。 7 (b) shows a state in which these signal points, to play on interference with the oscillator beam having a phase [Phi LO. Projection of the signal point 501, the signal point 502, the signal point 503, and the signal point 504 onto the axis 409 having the declination Φ LO is as shown in FIG. 7B, and the distance 507 between the signal point 502 and the signal point 504 is shown in FIG. 6 is smaller than the distance 411 of 6. FIG. 8 shows an interference intensity histogram of the oscillator light added with the diffracted light 337 and the phase Φ LO at this time. The difference in interference intensity between the signal point 502 and the signal point 504 decreases, and the reproduction performance of the phase information deteriorates.
 また、図7(b)に示したように、信号点501と信号点503の振幅が増加する反面、信号点502と信号点504の振幅は低下するため、回折光337の信号点502と信号点504が付加された部分の光量が低下する。このため、オシレータ光の位相ΦLOの最適化だけでは、図5、図6の場合と同等の再生性能を得ることができない。 Further, as shown in FIG. 7B, the amplitudes of the signal point 501 and the signal point 503 are increased, but the amplitudes of the signal point 502 and the signal point 504 are decreased. The amount of light in the portion where the point 504 is added decreases. For this reason, the reproduction performance equivalent to the case of FIGS. 5 and 6 cannot be obtained only by optimizing the phase Φ LO of the oscillator light.
 ここで、以上で説明した本実施例の光情報記録再生装置11において、本実施例の特徴である、記録時における位相変調素子の制御方法の詳細を図1、図9、図10を用いて説明する。 Here, in the optical information recording / reproducing apparatus 11 of the present embodiment described above, details of the method of controlling the phase modulation element during recording, which is a feature of the present embodiment, will be described with reference to FIGS. explain.
 図1に示すように、信号光306のうち、一部の光を無偏光ビームスプリッタ326で反射させる。反射した光ビームを第1検出光328と呼ぶ。第1検出光328はミラー329を経由して、無偏光ビームスプリッタ330を反射した後、光検出器331に入射する。 As shown in FIG. 1, a part of the signal light 306 is reflected by the non-polarizing beam splitter 326. The reflected light beam is referred to as first detection light 328. The first detection light 328 is reflected by the non-polarizing beam splitter 330 via the mirror 329 and then enters the photodetector 331.
 一方、無偏光ビームスプリッタ326を透過した信号光306のうち、一部の光は無偏光ビームスプリッタ332を反射する。反射した光ビームを第2検出光334と呼ぶ。第2検出光334は無偏光ビームスプリッタ330を透過した後、光検出器331に入射する。 On the other hand, a part of the signal light 306 transmitted through the non-polarizing beam splitter 326 reflects the non-polarizing beam splitter 332. The reflected light beam is referred to as second detection light 334. The second detection light 334 passes through the non-polarizing beam splitter 330 and then enters the photodetector 331.
 図9に光検出器331の受光部801と、光検出器331に入射する第1検出光328、第2検出光334の関係を示す。第1検出光328と第2検出光334の一部が受光部801上で重なり合い、干渉する。受光部301は第1検出光328と第2検出光334の干渉強度を検出する。光検出器331はCMOSイメージセンサやCCDイメージセンサなどの撮像素子でも良いし、フォトディテクタの様に光強度を検出する素子でも良い。 FIG. 9 shows the relationship between the light receiving unit 801 of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331. A part of the first detection light 328 and the second detection light 334 overlap on the light receiving unit 801 and interfere with each other. The light receiving unit 301 detects the interference intensity between the first detection light 328 and the second detection light 334. The photodetector 331 may be an image sensor such as a CMOS image sensor or a CCD image sensor, or may be an element that detects light intensity, such as a photodetector.
 数1は第1検出光328と第2検出光334の干渉強度Iを表す式である。 Equation 1 is an expression representing the interference intensity I between the first detection light 328 and the second detection light 334.
Figure JPOXMLDOC01-appb-M000001
 ここでEは第1検出光328の複素振幅、Eは第2検出光334の複素振幅、ΔΦは第1検出光328の初期位相と第2検出光334の初期位相の差を表す。干渉強度Iは第1検出光328の複素振幅Eと第2検出光334の複素振幅Eの和の絶対値の2乗となり、第1検出光328の強度|E、第2検出光334の強度|E、および第1検出光328と第2検出光334の干渉光の2|E||E|cosΔΦの和で表すことができる。
Figure JPOXMLDOC01-appb-M000001
Here, E 1 represents the complex amplitude of the first detection light 328, E 2 represents the complex amplitude of the second detection light 334, and ΔΦ represents the difference between the initial phase of the first detection light 328 and the initial phase of the second detection light 334. Interference the intensity I is next to the square of the absolute value of the sum of the complex amplitude E 2 of the complex amplitude E 1 and the second detection light 334 of the first detection light 328, the intensity of the first detection light 328 | E 1 | 2, the second It can be expressed by the sum of the intensity | E 2 | 2 of the detection light 334 and 2 | E 1 || E 2 | cosΔΦ of the interference light of the first detection light 328 and the second detection light 334.
 図10は数1において|E|および|E|を1としたときの干渉強度Iと位相差ΔΦの関係を示す。第1検出光328と第2検出光334の位相差ΔΦの変化に応じて光検出器331で検出される干渉強度Iが変化する様子がわかる。 FIG. 10 shows the relationship between the interference intensity I and the phase difference ΔΦ when | E 1 | and | E 2 | It can be seen that the interference intensity I detected by the photodetector 331 changes according to the change in the phase difference ΔΦ between the first detection light 328 and the second detection light 334.
 1回目の記録前に位相変調素子309を駆動し、光検出器331で検出した干渉強度を最大にすると、図10の点901に示すように、第1検出光328と第2検出光334の位相差は0になる。1回目の記録が終了した後、光検出器331で検出した干渉強度が最大値の半分になるように位相変調素子309を駆動して図10の点902に移動する。この状態で2回目の記録を行うことで第1検出光328と第2検出光334の位相差がπ/2の状態で2回目の記録を行うことができる。各ページを記録するたびに、1回目の記録では点901、2回目の記録では点902と移動させるように位相変調素子309を駆動することで、光情報記録媒体1に干渉縞パターンを形成する信号光306の位相を、1回目の記録と2回目の記録でπ/2だけ変化させることができる。 When the phase modulation element 309 is driven before the first recording and the interference intensity detected by the photodetector 331 is maximized, the first detection light 328 and the second detection light 334 are changed as indicated by a point 901 in FIG. The phase difference becomes zero. After the first recording is completed, the phase modulation element 309 is driven so that the interference intensity detected by the photodetector 331 becomes half of the maximum value, and moves to a point 902 in FIG. By performing the second recording in this state, the second recording can be performed in a state where the phase difference between the first detection light 328 and the second detection light 334 is π / 2. Each time each page is recorded, an interference fringe pattern is formed on the optical information recording medium 1 by driving the phase modulation element 309 to move the point 901 in the first recording and the point 902 in the second recording. The phase of the signal light 306 can be changed by π / 2 between the first recording and the second recording.
 次に、図11、図12を用いて記録時の位相変調素子309の制御手順を説明する。 Next, the control procedure of the phase modulation element 309 during recording will be described with reference to FIGS.
 図11は、位相変調素子の制御を行う位相制御回路92の構成を示す。位相差算出回路101は、光検出器331で検出した干渉強度から位相差を算出する。メモリ102は、位相差算出回路101で算出した位相差を一時的に記録する。位相変調素子駆動量算出回路103は、位相差算出回路101で算出した位相差をもとに位相変調素子309の駆動量を算出し、位相変調素子309を駆動させる。 FIG. 11 shows a configuration of a phase control circuit 92 that controls the phase modulation element. The phase difference calculation circuit 101 calculates a phase difference from the interference intensity detected by the photodetector 331. The memory 102 temporarily records the phase difference calculated by the phase difference calculation circuit 101. The phase modulation element drive amount calculation circuit 103 calculates the drive amount of the phase modulation element 309 based on the phase difference calculated by the phase difference calculation circuit 101 and drives the phase modulation element 309.
 図12は本実施例における、2回記録による位相4値の記録フローを示す。まず、光検出器331で数1の|E|および|E|をあらかじめ算出する(干渉条件の学習1001)。次に光検出器331で干渉強度を検出し(1002)、1001で学習した干渉条件をもとに位相差算出回路101で位相差を算出し、位相差1として、メモリ102に格納する(1003)。その後、信号光306と参照光307の干渉縞パターンを光情報記録媒体1に記録する(1004)。 FIG. 12 shows a four-phase recording flow by two-time recording in this embodiment. First, | E 1 | and | E 2 | of Equation 1 are calculated in advance by the photodetector 331 (interference condition learning 1001). Next, the interference intensity is detected by the photodetector 331 (1002), the phase difference is calculated by the phase difference calculation circuit 101 based on the interference condition learned in 1001, and stored in the memory 102 as the phase difference 1 (1003). ). Thereafter, the interference fringe pattern of the signal light 306 and the reference light 307 is recorded on the optical information recording medium 1 (1004).
 1回目の記録が終了した後、位相変調素子309で信号光306の位相をπ/2変調する(1005)。その後、光検出器331で第1検出光328と第2検出光334の干渉強度を検出(1006)し、位相差算出回路101で位相差を算出する(1007)。1007で算出した位相差を位相差2とする。1003でメモリ102に格納した位相差1を1007で算出した位相差2と比較し、その差が所定の範囲内か判定する(1008)。 After the first recording is completed, the phase of the signal light 306 is π / 2 modulated by the phase modulation element 309 (1005). After that, the photodetector 331 detects the interference intensity between the first detection light 328 and the second detection light 334 (1006), and the phase difference calculation circuit 101 calculates the phase difference (1007). The phase difference calculated in 1007 is defined as phase difference 2. The phase difference 1 stored in the memory 102 in 1003 is compared with the phase difference 2 calculated in 1007, and it is determined whether the difference is within a predetermined range (1008).
 1008の結果、位相差1と位相差2の差が所定の範囲外の場合、位相変調素子駆動量算出回路103で位相変調素子309の駆動量を算出し(1009)、1005から1008の処理を再度実行する。 If the difference between the phase difference 1 and the phase difference 2 is outside the predetermined range as a result of 1008, the phase modulation element drive amount calculation circuit 103 calculates the drive amount of the phase modulation element 309 (1009), and the processing from 1005 to 1008 is performed. Try again.
 1008の結果、位相差1と位相差2の差が所定の範囲内の場合、信号光306と参照光307の干渉縞パターンを光情報記録媒体1に記録し(1010)、位相変調素子309で信号光306の位相を1回目の記録時の位相に戻す(1011)。 As a result of 1008, when the difference between the phase difference 1 and the phase difference 2 is within a predetermined range, the interference fringe pattern of the signal light 306 and the reference light 307 is recorded on the optical information recording medium 1 (1010), and the phase modulation element 309 The phase of the signal light 306 is returned to the phase at the time of the first recording (1011).
 1012にて次のブックもしくはページを記録するか判定する。記録を継続する場合は1001の処理に戻り、記録を終了する場合は処理を終了する。 1012: Whether to record the next book or page is determined. When the recording is continued, the processing returns to the processing of 1001, and when the recording is ended, the processing is ended.
 なお、本実施例における位相差検出および位相制御は1つのページデータを記録するたびに行わず、処理1002から処理1003、および処理1006から処理1009を、数ページおき、もしくは数ブックおきに行っても良い。 Note that phase difference detection and phase control in this embodiment are not performed every time one page data is recorded, and processing 1002 to processing 1003 and processing 1006 to processing 1009 are performed every several pages or every several books. Also good.
 また、干渉条件の学習について1001については、記録時に学習するのではなく、例えば、出荷調整時や、初期調整時に行っても良い。このとき、位相差が0のときの位相変調素子309の制御量と、位相差がπ/2のときの位相変調素子309の制御量を記録しておくことで、あらかじめ位相変調素子309の制御条件の初期値を設定する。これにより、記録時の干渉条件の学習1001を省略することができ、記録時の転送速度の高速化が可能である。 Further, the learning of the interference condition 1001 is not performed at the time of recording, but may be performed at the time of shipment adjustment or initial adjustment, for example. At this time, by controlling the control amount of the phase modulation element 309 when the phase difference is 0 and the control amount of the phase modulation element 309 when the phase difference is π / 2, the control of the phase modulation element 309 is recorded in advance. Set the initial value of the condition. Thereby, learning 1001 of the interference condition at the time of recording can be omitted, and the transfer speed at the time of recording can be increased.
 以上のように、光検出器331で検出した干渉強度をもとに、信号点401と信号点402を記録する1回目の記録時の第1検出光328と第2検出光334の位相差と、信号点403と信号点404を記録する2回目の記録時の第1検出光328と第2検出光334の位相差を算出できるようにすることで、1回目の記録と2回目の記録で信号光と参照光の位相差がπ/2だけ変化する様に位相変調素子309を高精度に制御して高品質なホログラムを記録することで、安定した位相多値情報の再生が可能となる。 As described above, based on the interference intensity detected by the photodetector 331, the phase difference between the first detection light 328 and the second detection light 334 at the time of the first recording in which the signal point 401 and the signal point 402 are recorded. By making it possible to calculate the phase difference between the first detection light 328 and the second detection light 334 during the second recording in which the signal points 403 and 404 are recorded, the first recording and the second recording can be performed. By recording the high-quality hologram by controlling the phase modulation element 309 with high precision so that the phase difference between the signal light and the reference light changes by π / 2, stable phase multilevel information can be reproduced. .
 なお、光検出器331で検出した干渉強度から、第1検出光328と第2検出光334の位相差を求める方法は上記手段に限らず、例えば、第1検出光328と第2検出光334のどちらかに0、π/2、π、3π/2などの4つの位相を付加し、フリンジスキャンを行うことで算出しても構わない。 Note that the method for obtaining the phase difference between the first detection light 328 and the second detection light 334 from the interference intensity detected by the light detector 331 is not limited to the above means, and for example, the first detection light 328 and the second detection light 334. It may be calculated by adding four phases of 0, π / 2, π, 3π / 2, etc. to either of them and performing a fringe scan.
 また、本実施例では信号光306の光路中に配置した位相変調素子309を用いて信号光の位相を変調したが、位相変調素子を参照光307の光路中に配置して参照光307の位相を変調する構成としても構わない。 In this embodiment, the phase of the signal light is modulated using the phase modulation element 309 disposed in the optical path of the signal light 306, but the phase of the reference light 307 is disposed by arranging the phase modulation element in the optical path of the reference light 307. It is also possible to use a configuration that modulates.
 また、本実施例では2回記録による位相4値記録と位相4値再生について説明したが、位相多値を用いた記録再生方法であれば本制御方法を適用することが可能であることは言うまでもない。 In this embodiment, phase four-value recording and phase four-value reproduction by two-time recording have been described, but it goes without saying that this control method can be applied to any recording / reproduction method using phase multivalue. Yes.
 例えば、記録時の信号光と参照光の位相差をページ間もしくはブック間で所定の値に制御しても良い。図13にこのときの記録フローの一例を示す。干渉条件の学習(1301)、干渉強度検出(1302)、位相差1算出(1303)の後にページまたはブックを記録し(1304)、干渉強度検出(1305)、位相差2算出(1306)を行う。位相差1と位相差2の差が所定の範囲内か判定し(1307)、所定の範囲外の場合、位相変調素子駆動量の算出(1308)と、位相変調素子の駆動(1309)を行い、1305に戻る。1307で位相差1と位相差2の差が所定の範囲内の場合、ページまたはブックの記録を行う(1310)。1311で次のページまたはブックを記録するか判定し、記録する場合は1305へ戻り、記録しない場合は処理を終了する。 For example, the phase difference between the signal light and the reference light during recording may be controlled to a predetermined value between pages or books. FIG. 13 shows an example of the recording flow at this time. After learning of interference conditions (1301), interference intensity detection (1302), and phase difference 1 calculation (1303), a page or book is recorded (1304), interference intensity detection (1305), and phase difference 2 calculation (1306) are performed. . It is determined whether the difference between the phase difference 1 and the phase difference 2 is within a predetermined range (1307). If the difference is outside the predetermined range, the phase modulation element driving amount is calculated (1308) and the phase modulation element is driven (1309). Return to 1305. If the difference between the phase difference 1 and the phase difference 2 is within a predetermined range in 1307, the page or book is recorded (1310). In step 1311, it is determined whether or not the next page or book is to be recorded. If so, the process returns to 1305.
 このようにすることで、隣接ページや隣接ブック間の信号点の位相差を所定の値に制御でき、ページ間干渉やブック間干渉を抑制することができる。このほかにも、例えば再生時のオシレータ光と参照光の位相差を制御しても良い。 By doing so, the phase difference of signal points between adjacent pages and adjacent books can be controlled to a predetermined value, and inter-page interference and inter-book interference can be suppressed. In addition, for example, the phase difference between the oscillator light and the reference light during reproduction may be controlled.
 本実施例が実施例1と異なるのは、第1検出光328と第2検出光334を生成する無偏光ビームスプリッタ326、332を光情報記録媒体の近くに配置する点と、参照光307のうち一部の光を第2検出光334として用いる点である。このような構成とすることで、位相変調素子の空気の揺らぎ、外部振動、熱膨張・収縮などの外乱による信号光306と参照光307の光路長変化を補正することで記録品質の向上が可能になる。 The present embodiment is different from the first embodiment in that the non-polarizing beam splitters 326 and 332 that generate the first detection light 328 and the second detection light 334 are arranged near the optical information recording medium, and the reference light 307 A part of the light is used as the second detection light 334. With this configuration, it is possible to improve the recording quality by correcting changes in the optical path length of the signal light 306 and the reference light 307 due to disturbances such as air fluctuations, external vibrations, thermal expansion / contraction of the phase modulation element. become.
 図14は本実施例の光情報記録再生装置における光ピックアップ装置11の基本的な光学系構成の一例における記録原理を示す。リレーレンズ313ならびに空間フィルタ314を伝搬した信号光306のうち、一部の光を無偏光ビームスプリッタ326で反射させる。反射した光ビームを第1検出光328として用いる。一方、ミラー317を反射した参照光307のうち、一部の光は無偏光ビームスプリッタを透過させる。等化した光ビームを第2検出光334として用いる。 FIG. 14 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment. Part of the signal light 306 propagated through the relay lens 313 and the spatial filter 314 is reflected by the non-polarizing beam splitter 326. The reflected light beam is used as the first detection light 328. On the other hand, some of the reference light 307 reflected from the mirror 317 is transmitted through the non-polarizing beam splitter. The equalized light beam is used as the second detection light 334.
 以上の構成とすることで、位相変調素子309の位相変調誤差に加え、光源301から無偏光ビームスプリッタ326までの信号光光路および、光源301から無偏光ビームスプリッタ332までの参照光光路で生じた空気の揺らぎ、外部振動、熱膨張・収縮などの外乱による光路長変化に起因する信号光306と参照光307の位相差変化を観測し、補正することが可能になる。 With the above configuration, in addition to the phase modulation error of the phase modulation element 309, the signal light path from the light source 301 to the non-polarization beam splitter 326 and the reference light path from the light source 301 to the non-polarization beam splitter 332 are generated. It becomes possible to observe and correct a phase difference change between the signal light 306 and the reference light 307 caused by a change in the optical path length due to disturbance such as air fluctuation, external vibration, thermal expansion / contraction.
 また、偏光ビームスプリッタ326から光検出器331までの光路長と、偏光ビームスプリッタ326から光情報記録媒体1までの光路長とを等しくし、偏光ビームスプリッタ332から光検出器331までの光路長と、偏光ビームスプリッタ332から光情報記録媒体1までの光路長を等しくすることで、偏光ビームスプリッタ326と偏光ビームスプリッタ332から光情報記録媒体1までの光路で生じる外乱による光路長変化の影響を抑制することができる。 In addition, the optical path length from the polarizing beam splitter 326 to the optical detector 331 is equal to the optical path length from the polarizing beam splitter 326 to the optical information recording medium 1, and the optical path length from the polarizing beam splitter 332 to the optical detector 331 is By making the optical path lengths from the polarizing beam splitter 332 to the optical information recording medium 1 equal, the influence of changes in the optical path length due to disturbance generated in the optical path from the polarizing beam splitter 326 and the polarizing beam splitter 332 to the optical information recording medium 1 is suppressed. can do.
 本実施例が実施例1、2と異なるのは、無偏光ビームスプリッタに代えて偏光ビームスプリッタを用いる点である。以上の構成とすることで、記録に用いる信号光306と参照光307の光量損失を抑制でき、光情報記録媒体1への光情報の記録時間を短縮できる。 This embodiment differs from Embodiments 1 and 2 in that a polarizing beam splitter is used instead of the non-polarizing beam splitter. With the above configuration, it is possible to suppress the loss of light amount of the signal light 306 and the reference light 307 used for recording, and the time for recording optical information on the optical information recording medium 1 can be shortened.
 図15は本実施例の光情報記録再生装置における光ピックアップ装置11の基本的な光学系構成の一例における記録原理を示す。信号光306から第1検出光328を生成するために偏光ビームスプリッタ340と偏光方向変換素子342を用いる。偏光方向変換素子342によって信号光306の偏光方向を調整することで、偏光ビームスプリッタ340を透過する光と反射する光の光量比を調整する。 FIG. 15 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment. In order to generate the first detection light 328 from the signal light 306, the polarization beam splitter 340 and the polarization direction conversion element 342 are used. By adjusting the polarization direction of the signal light 306 by the polarization direction conversion element 342, the light quantity ratio between the light transmitted through the polarization beam splitter 340 and the reflected light is adjusted.
 一方、参照光307から第2検出光334を生成するために、偏光方向変換素子316と偏光ビームスプリッタ341を用いる。偏光方向変換素子316によって参照光307の偏光方向を調整することで、偏光ビームスプリッタ341を透過する光と反射する光の光量比を調整する。 On the other hand, in order to generate the second detection light 334 from the reference light 307, the polarization direction conversion element 316 and the polarization beam splitter 341 are used. By adjusting the polarization direction of the reference light 307 by the polarization direction conversion element 316, the light quantity ratio between the light transmitted through the polarization beam splitter 341 and the light reflected is adjusted.
 再生については、実施例1と同様に位相共役光による再生の方法をとっており、ミラー324を反射した参照光307を用いて光情報記録媒体1の情報を再生する。 As for reproduction, the reproduction method using phase conjugate light is used as in the first embodiment, and the information on the optical information recording medium 1 is reproduced using the reference light 307 reflected from the mirror 324.
 参照光307が偏光ビームスプリッタ341を透過するように、参照光307の偏光を偏光方向変換素子316で調整する。また、光情報記録媒体1から再生された回折光337が偏光ビースプリッタ311を透過するように、回折光337の偏光を偏光方向変換素子342で調整する。 The polarization direction conversion element 316 adjusts the polarization of the reference light 307 so that the reference light 307 passes through the polarization beam splitter 341. Further, the polarization direction conversion element 342 adjusts the polarization of the diffracted light 337 so that the diffracted light 337 reproduced from the optical information recording medium 1 passes through the polarization bee splitter 311.
 以上の構成により、第1検出光328と第2検出光334の光量を任意に変えることが可能になる。光検出器331で干渉光を検出ために最低限必要な光量の第1検出光328と第2検出光334を生成し、残りの光をすべて光情報記録媒体1への光情報の記録に利用することで、無偏光ビームスプリッタを用いた実施例1に対し、記録に用いる光の光量損失を抑制でき、光情報記録媒体1への光情報の記録時間を短縮できる。 With the above configuration, the light amounts of the first detection light 328 and the second detection light 334 can be arbitrarily changed. The first detection light 328 and the second detection light 334 having a minimum amount of light necessary for detecting the interference light by the light detector 331 are generated, and all the remaining light is used for recording optical information on the optical information recording medium 1. As a result, the light amount loss of the light used for recording can be suppressed and the recording time of the optical information on the optical information recording medium 1 can be shortened as compared with the first embodiment using the non-polarizing beam splitter.
 また、再生時に参照光307が偏光ビームスプリッタ341を完全に透過するように偏光方向変換素子316を調整することで、光情報記録媒体1から再生される回折光337の光量が増えるため、再生時間を短縮できる。 Further, by adjusting the polarization direction conversion element 316 so that the reference beam 307 is completely transmitted through the polarization beam splitter 341 at the time of reproduction, the amount of diffracted light 337 reproduced from the optical information recording medium 1 increases. Can be shortened.
 なお、図12に示した記録時のフローにおいて、1回目のデータ記録処理1004と2回目のデータ記録処理1010のときのみ、偏光方向変換素子316と偏光方向変換素子342によって、第1検出光328と第2検出光334の光量を略ゼロに調整することで、光情報記録に用いる信号光306と参照光307の光量損失を無くすことができる。 In the recording flow shown in FIG. 12, the first detection light 328 is obtained by the polarization direction conversion element 316 and the polarization direction conversion element 342 only in the first data recording process 1004 and the second data recording process 1010. By adjusting the light quantity of the second detection light 334 to substantially zero, the light quantity loss of the signal light 306 and the reference light 307 used for optical information recording can be eliminated.
 本実施例が実施例2および3と異なるのは、偏光方向変換素子316と偏光方向変換素子342の構成を変えて、信号光306および参照光307の一部のみをはね出し、第1検出光と第2検出光を生成する点である。以上の構成とすることで、実施例1に対して、記録に用いる信号光306と参照光307の光量損失を無くすことでき、光情報記録媒体1への光情報の記録時間を短縮できる。また、実施例2、3に対して、第1検出光328と第2検出光334の位相差をリアルタイムに制御することが可能となる。 The present embodiment is different from the second and third embodiments in that the configuration of the polarization direction conversion element 316 and the polarization direction conversion element 342 is changed so that only part of the signal light 306 and the reference light 307 is ejected and the first detection is performed. This is a point for generating light and second detection light. With the above configuration, the light amount loss of the signal light 306 and the reference light 307 used for recording can be eliminated from the first embodiment, and the recording time of optical information on the optical information recording medium 1 can be shortened. Further, with respect to the second and third embodiments, the phase difference between the first detection light 328 and the second detection light 334 can be controlled in real time.
 本実施例における第1検出光と第2検出光の生成方法を図16~18を用いて説明する。 A method for generating the first detection light and the second detection light in the present embodiment will be described with reference to FIGS.
 図16は、本実施例における、偏光方向変換素子316、342の構成の一例を示す。この偏光方向変換素子の外周部1501を透過した光の偏光方向は変化しないが、内部1502は例えば2分の1波長板でできているため、透過した光の偏光方向が変化する。 FIG. 16 shows an example of the configuration of the polarization direction conversion elements 316 and 342 in the present embodiment. Although the polarization direction of the light transmitted through the outer peripheral portion 1501 of the polarization direction conversion element does not change, the inner 1502 is made of, for example, a half-wave plate, and thus the polarization direction of the transmitted light changes.
 図17(a)に本実施例における、空間光変調器312で変調された後の信号光306の断面部分の構成を示す。信号光306を、空間光変調器312で位相情報を付加する信号光306Aよりも大きくし、固定位相を付加した信号光306Bを信号光306Aの外周部に設ける。 FIG. 17A shows a configuration of a cross-sectional portion of the signal light 306 after being modulated by the spatial light modulator 312 in the present embodiment. The signal light 306 is made larger than the signal light 306A to which phase information is added by the spatial light modulator 312, and the signal light 306B to which a fixed phase is added is provided on the outer periphery of the signal light 306A.
 図17(b)は本実施例における、第1検出光328の生成の様子を示したものである。信号光306のうち信号光306Bは、偏光方向変換素子342の外周部1501を透過するため、偏光ビームスプリッタ340で反射される。偏光ビームスプリッタ340で反射された信号光306Bを第1検出光328として用いる。信号光306のうち信号光306Aは、偏光方向変換素子342の内部1502を透過するため、偏光ビームスプリッタ340を透過し、光情報記録媒体1に入射する。 FIG. 17B shows how the first detection light 328 is generated in the present embodiment. Of the signal light 306, the signal light 306 </ b> B is reflected by the polarization beam splitter 340 because it passes through the outer peripheral portion 1501 of the polarization direction conversion element 342. The signal light 306B reflected by the polarization beam splitter 340 is used as the first detection light 328. Of the signal light 306, the signal light 306 </ b> A passes through the inside 1502 of the polarization direction conversion element 342, and thus passes through the polarization beam splitter 340 and enters the optical information recording medium 1.
 図17(c)は本実施例における、第2検出光の生成の様子を示したものである。参照光307は信号光306と同様に、参照光307Aと参照光307Bに分離する。参照光307のうち光情報記録に用いない参照光307Bは、偏光方向変換素子316の外周部1501を透過するため、偏光ビームスプリッタ341で反射される。偏光ビームスプリッタ341で反射された参照光307Bを、第2検出光334として用いる。参照光307のうち光情報記録に用いる参照光307Aは、偏光方向変換素子316の内部1502を透過するため、偏光ビームスプリッタ341を透過し、光情報記録媒体1に入射する。 FIG. 17C shows how the second detection light is generated in the present embodiment. Similarly to the signal light 306, the reference light 307 is separated into a reference light 307A and a reference light 307B. Of the reference light 307, the reference light 307 B that is not used for optical information recording passes through the outer peripheral portion 1501 of the polarization direction conversion element 316 and is therefore reflected by the polarization beam splitter 341. The reference light 307B reflected by the polarizing beam splitter 341 is used as the second detection light 334. Of the reference light 307, the reference light 307 A used for optical information recording passes through the inside 1502 of the polarization direction conversion element 316, passes through the polarization beam splitter 341, and enters the optical information recording medium 1.
 図18に本実施例における光検出器331の受光部801と、光検出器331に入射する第1検出光328、第2検出光334の関係の一例を示す。第1検出光328と第2検出光334の光軸を所定量ずらすことで、第1検出光328と第2検出光334の一部が受光部801上で重なりあうように調整する。第1検出光328と第2検出光334の重なり合った部分が干渉し、受光部801で干渉強度を検出する。 FIG. 18 shows an example of the relationship between the light receiving unit 801 of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331 in this embodiment. By adjusting the optical axes of the first detection light 328 and the second detection light 334 by a predetermined amount, the first detection light 328 and a part of the second detection light 334 are adjusted to overlap each other on the light receiving unit 801. The overlapping portion of the first detection light 328 and the second detection light 334 interferes, and the light receiving unit 801 detects the interference intensity.
 このように信号光306と参照光307のビームのうち光情報記録媒体1への光情報の記録に寄与しない部分のみをはね出して、第1検出光328と第2検出光334を生成することで、信号光306と参照光307のビームのうち光情報記録媒体1への光情報の記録に使用する信号光306と参照光307の光強度の損失を無くすことができ、光情報記録媒体1への光情報の記録時間を短縮できる。 In this way, only the part of the beam of the signal light 306 and the reference light 307 that does not contribute to the recording of the optical information on the optical information recording medium 1 is ejected to generate the first detection light 328 and the second detection light 334. Thus, loss of the light intensity of the signal light 306 and the reference light 307 used for recording optical information on the optical information recording medium 1 out of the beam of the signal light 306 and the reference light 307 can be eliminated, and the optical information recording medium The recording time of optical information to 1 can be shortened.
 また、光情報記録に寄与しない部分の干渉強度に基づいて第1検出光と第2検出光の位相差を制御するため、空間光変調器312で位相情報を信号光306に付加した状態でも第1検出光328と第2検出光334の位相差の算出と制御が可能である。そのため、光情報記録中に、第1検出光328と第2検出光334の位相差をリアルタイムに制御することが可能となる。 In addition, since the phase difference between the first detection light and the second detection light is controlled based on the interference intensity of the portion that does not contribute to the optical information recording, even when the phase information is added to the signal light 306 by the spatial light modulator 312. The phase difference between the first detection light 328 and the second detection light 334 can be calculated and controlled. Therefore, the phase difference between the first detection light 328 and the second detection light 334 can be controlled in real time during optical information recording.
 なお、第1検出光328と第2検出光334をはね出す部品構成と検出器331での検出方法は、図16~18で示したものに限定されないことは言うまでもない。 Note that it goes without saying that the component configuration for ejecting the first detection light 328 and the second detection light 334 and the detection method by the detector 331 are not limited to those shown in FIGS.
 本実施例が実施例1と異なるのは、光情報記録媒体1の前で第1検出光328と第2検出光334を生成して、それらによる干渉を光検出器331で検出する代わりに、光情報記録媒体1を透過した信号光306と参照光307の干渉を検出する点である。以上の構成とすることで、実施例1に対して、記録に用いる信号光306と参照光307の光量損失を無くすことできるため、光情報記録媒体1への光情報の記録時間を短縮できる。また、実施例2、3に対して位相差変化が補正できるため、位相差制御の精度を向上できる。 The present embodiment is different from the first embodiment in that instead of generating the first detection light 328 and the second detection light 334 in front of the optical information recording medium 1 and detecting the interference caused by them by the photodetector 331, This is a point of detecting the interference between the signal light 306 transmitted through the optical information recording medium 1 and the reference light 307. With the above configuration, the light amount loss of the signal light 306 and the reference light 307 used for recording can be eliminated compared to the first embodiment, so that the recording time of optical information on the optical information recording medium 1 can be shortened. Moreover, since the phase difference change can be corrected with respect to the second and third embodiments, the accuracy of the phase difference control can be improved.
 図19は本実施例の光情報記録再生装置における光ピックアップ装置11の基本的な光学構成の一例における記録原理を示す。本実施例では記録時に光情報記録媒体1を透過した信号光306と参照光307の干渉強度を光検出器331で検出する。 FIG. 19 shows a recording principle in an example of a basic optical configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment. In this embodiment, the photodetector 331 detects the interference intensity between the signal light 306 and the reference light 307 transmitted through the optical information recording medium 1 during recording.
 光情報記録媒体1を透過した信号光306はレンズ340、ミラー341、無偏光ビームスプリッタ342を経て光検出器331に入射する。 The signal light 306 transmitted through the optical information recording medium 1 enters the photodetector 331 through the lens 340, the mirror 341, and the non-polarizing beam splitter 342.
 光情報記録媒体1を透過した参照光307はミラー324を反射し、無偏光ビームスプリッタ342を反射し、光検出器331に入射し、信号光306と重なり合う。なおミラー324はアクチュエータ323によって角度を調整可能である。 The reference light 307 that has passed through the optical information recording medium 1 is reflected by the mirror 324, reflected by the non-polarized beam splitter 342, enters the photodetector 331, and overlaps with the signal light 306. Note that the angle of the mirror 324 can be adjusted by an actuator 323.
 本実施例の光情報記録再生装置における光ピックアップ装置11の再生光学構成の一例として、ミラー324はアクチュエータ323による調整で、参照光307が光情報記録媒体1に入射する様にする。実施例1と同様に位相共役光による再生の方法をとっており、ミラー324を反射した参照光307を用いて光情報記録媒体1の情報を再生する。 As an example of the reproducing optical configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment, the mirror 324 is adjusted by the actuator 323 so that the reference light 307 enters the optical information recording medium 1. Similar to the first embodiment, a reproduction method using phase conjugate light is used, and information on the optical information recording medium 1 is reproduced using the reference light 307 reflected from the mirror 324.
 以上の構成により、本実施例では、実施例1において第1検出光328と第2検出光324を生成することで生じていた信号光306と参照光307の光量の損失を無くすことができ、光情報記録媒体1への光情報の記録時間を短縮できる。また、本実施例では実施例1では補正できないレンズ315以降の信号光光路およびミラー319以降の参照光光路における位相差変化が補正可能になり、信号光306と参照光307の位相差制御の精度向上につながる。 With the above configuration, in this embodiment, it is possible to eliminate the loss of the light amounts of the signal light 306 and the reference light 307 that are generated by generating the first detection light 328 and the second detection light 324 in Embodiment 1. The recording time of optical information on the optical information recording medium 1 can be shortened. Further, in this embodiment, the phase difference change in the signal light optical path after the lens 315 and the reference light optical path after the mirror 319 that cannot be corrected in the first embodiment can be corrected, and the accuracy of the phase difference control between the signal light 306 and the reference light 307 can be corrected. It leads to improvement.
 本実施例が実施例1と異なるのは、空間的に少なくとも2分割され、透過する光に少なくとも2種類の位相を付加する分割位相板1701を第1検出光328もしくは第2検出光334の光路中に配置する点である。以上の構成とすることで、数1の|E|および|E|の値を求めずにΔΦを算出できるため、実施例1で必要であった干渉条件の学習を省略することでき、位相差制御を高速化することができる。 The present embodiment is different from the first embodiment in that the optical path of the first detection light 328 or the second detection light 334 is divided into at least two spatially divided phase plates 1701 that add at least two kinds of phases to transmitted light. It is a point to be placed inside. With the above configuration, ΔΦ can be calculated without obtaining the values of | E 1 | and | E 2 | of Equation 1, so that learning of the interference condition required in the first embodiment can be omitted. The phase difference control can be speeded up.
 本実施例における第1検出光328と第2検出光334の干渉の検出方法の一例を図20と図21を用いて説明する。 An example of a method for detecting interference between the first detection light 328 and the second detection light 334 in the present embodiment will be described with reference to FIGS.
 図20は本実施例における分割位相板1701の一例を示す。空間的に4分割され、4種類の位相(0、π/2、π、3π/2)を付加する分割位相板1701を第1検出光328の光路中に配置する。分割位相板1701を透過した第1検出光328は、異なる位相を付加された、4つの領域に区分される。 FIG. 20 shows an example of the divided phase plate 1701 in the present embodiment. A divided phase plate 1701 that is spatially divided into four and adds four types of phases (0, π / 2, π, 3π / 2) is disposed in the optical path of the first detection light 328. The first detection light 328 transmitted through the divided phase plate 1701 is divided into four regions to which different phases are added.
 図21は、本実施例における光検出器331の受光部と、光検出器331に入射する第1検出光328、第2検出光334の関係の一例を示す。光検出器331は4つの受光部801、802、803、804で構成され、受光部801は第1検出光328のうち位相0を付加された領域1801と第2検出光334の干渉を、受光部802は第1検出光328のうち位相π/2を付加された領域1802と第2検出光334の干渉を、受光部803は第1検出光328のうち位相πを付加された領域1803と第2検出光334の干渉を、受光部804は第1検出光328のうち位相3π/2を付加された領域1804と第2検出光334の干渉を、それぞれ検出する。 FIG. 21 shows an example of the relationship between the light receiving unit of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331 in this embodiment. The photodetector 331 includes four light receiving units 801, 802, 803, and 804, and the light receiving unit 801 receives interference between the region 1801 to which the phase 0 is added and the second detection light 334 in the first detection light 328. The unit 802 includes interference between the second detection light 334 and the region 1802 to which the phase π / 2 is added in the first detection light 328, and the light receiving unit 803 includes the region 1803 to which the phase π is added from the first detection light 328. The light receiving unit 804 detects interference between the second detection light 334 and the interference between the second detection light 334 and the region 1804 added with the phase 3π / 2 in the first detection light 328.
 受光部801で検出した干渉強度から受光部802で検出した干渉強度を差し引いた値をI、受光部803で検出した干渉強度から受光部804で検出した干渉強度を差し引いた値をIとする。数2は第1検出光328と第2検出光334の位相差ΔΦをIとIで表した式であり、この数式にしたがってΔΦをIとIから算出することができる。 The value obtained by subtracting the interference intensity detected by the light receiving unit 802 from the interference intensity detected by the light receiving unit 801 is I 1 , and the value obtained by subtracting the interference intensity detected by the light receiving unit 804 from the interference intensity detected by the light receiving unit 803 is I 2 . To do. Number 2 is a formula representing the first detection light 328 a phase difference ΔΦ of the second detection light 334 at I 1 and I 2, can be calculated ΔΦ in accordance with the formula from I 1 and I 2.
Figure JPOXMLDOC01-appb-M000002
 この算出結果に基づいて、1回目の記録と2回目の記録におけるΔΦの差がπ/2になるように位相変調素子309を制御することで、信号光と参照光の位相差変化を補正することができる。
Figure JPOXMLDOC01-appb-M000002
Based on this calculation result, the phase modulation element 309 is controlled so that the difference in ΔΦ between the first recording and the second recording becomes π / 2, thereby correcting the phase difference change between the signal light and the reference light. be able to.
 以上の構成とすることで、数1の|E|および|E|の値を求めずにΔΦを算出できるため、実施例1で必要であった干渉条件の学習を省略することでき、位相差制御を高速化することができる。 With the above configuration, ΔΦ can be calculated without obtaining the values of | E 1 | and | E 2 | of Equation 1, so that learning of the interference condition required in the first embodiment can be omitted. The phase difference control can be speeded up.
 なお、本実施例では空間的に4分割された分割位相板1701を用いる構成を説明したが、分割位相板1701の空間的な分割数は2つ以上であれば構わないし、光検出器331の受光部の数も2つ以上であれば構わない。また、分割位相板1701を第2検出光334の光路中に配置し、第2検出光334に位相を付加する構成としてもよい。 In the present embodiment, the configuration using the spatially divided phase plate 1701 is described. However, the number of spatial divisions of the divided phase plate 1701 may be two or more. The number of light receiving units may be two or more. Further, the divided phase plate 1701 may be arranged in the optical path of the second detection light 334 so that a phase is added to the second detection light 334.
 本実施例が実施例1と異なるのは、光検出器331をCMOSイメージセンサやCCDイメージセンサなどの撮像素子とし、第1検出光328と第2検出光334の干渉光全体を撮像し、2次元アレイ型の位相変調素子309を用いて位相制御を行う点である。以上の構成とすることで、第1検出光328と第2検出光334の位相差の面内分布を算出し、位相差を面内の任意の場所ごとに制御できるようになる。 The present embodiment is different from the first embodiment in that the photodetector 331 is an imaging device such as a CMOS image sensor or a CCD image sensor, and the entire interference light of the first detection light 328 and the second detection light 334 is imaged. The point is that phase control is performed using a three-dimensional array type phase modulation element 309. With the above configuration, the in-plane distribution of the phase difference between the first detection light 328 and the second detection light 334 can be calculated, and the phase difference can be controlled for each arbitrary location in the plane.
 図22に本実施例における光検出器331の受光部801と、光検出器331に入射する第1検出光328、第2検出光334の関係の一例を示す。本実施例では光検出器331をCMOSイメージセンサやCCDイメージセンサなどの撮像素子とし、第1検出光328と第2検出光334の干渉光全体を撮像する。 FIG. 22 shows an example of the relationship between the light receiving unit 801 of the photodetector 331 and the first detection light 328 and the second detection light 334 incident on the photodetector 331 in this embodiment. In this embodiment, the photodetector 331 is an imaging device such as a CMOS image sensor or a CCD image sensor, and images the entire interference light of the first detection light 328 and the second detection light 334.
 図22に示したように、干渉光を複数の領域に分割し、それぞれの領域で第1検出光328と第2検出光334の位相差ΔΦ~ΔΦを算出する(Nは干渉光の分割数)。 As shown in FIG. 22, the interference light is divided into a plurality of regions, and phase differences ΔΦ 1 to ΔΦ N between the first detection light 328 and the second detection light 334 are calculated in each region (N is the interference light) Division number).
 算出した位相差ΔΦ~ΔΦに基づいて、干渉光の各分割領域内の位相差制御量を算出し、位相変調素子309で位相差ΔΦ~ΔΦそれぞれを所定の値に制御する。ここで、位相変調素子309は例えば位相変調型空間光変調器やデフォーマブルミラーなどの2次元アレイ型の素子とすることで、信号光306もしくは参照光307の面内の任意の場所に任意の位相を付加できるようにする。 Based on the calculated phase differences ΔΦ 1 to ΔΦ N , a phase difference control amount in each divided region of the interference light is calculated, and the phase modulation element 309 controls each of the phase differences ΔΦ 1 to ΔΦ N to a predetermined value. Here, the phase modulation element 309 is, for example, a two-dimensional array type element such as a phase modulation type spatial light modulator or a deformable mirror, so that an arbitrary position in the plane of the signal light 306 or the reference light 307 can be obtained. Enable to add phase.
 以上の構成とすることで、第1検出光328と第2検出光334の位相差の面内分布を算出し、位相差を面内の任意の場所ごとに制御できるようになり、記録時の信号光306と参照光307の面内の波面ずれを補正することができる。 With the above configuration, the in-plane distribution of the phase difference between the first detection light 328 and the second detection light 334 can be calculated, and the phase difference can be controlled for each arbitrary location in the plane. The in-plane wavefront deviation of the signal light 306 and the reference light 307 can be corrected.
 なお、光検出器331を、フォトディテクタなど光強度を検出する素子を面内に複数個並べ、第1検出光328と第2検出光334の面内の位相差分布を検出する構成としても良い。 The photodetector 331 may be configured to detect a phase difference distribution in the plane of the first detection light 328 and the second detection light 334 by arranging a plurality of elements such as a photodetector for detecting the light intensity in the plane.
 本実施例が実施例1と異なるのは、信号光306に空間光変調器306により位相情報を付加した光が光検出器331に入射する構成とした点である。以上の構成とすることで、信号光306に空間光変調器312が付加した位相情報を記録時に測定でき、実施例1に対して更なる記録品質の向上ができる。 This embodiment is different from the first embodiment in that light obtained by adding phase information to the signal light 306 by the spatial light modulator 306 is incident on the photodetector 331. With the above configuration, the phase information added by the spatial light modulator 312 to the signal light 306 can be measured during recording, and the recording quality can be further improved with respect to the first embodiment.
 図23に本実施例の光情報記録再生装置における光ピックアップ装置11の基本的な光学系構成の一例における記録原理を示す。偏光方向変換素子310を透過した信号光306の一部を無偏光ビームスプリッタ326で反射し第1検出光328として用いる。第1検出光328は無偏光ビームスプリッタ330によって反射し、光検出器331に入射する。一方、無偏光ビームスプリッタ326を透過した信号光306は、偏光ビームスプリッタ311を透過し、空間光変調器312に入射し、空間光変調器312によってページデータを付加される。空間光変調器312によってページデータを付加された信号光306は偏光ビームスプリッタ311によって反射し、一部の光が無偏光ビームスプリッタ332によって反射する。無偏光ビームスプリッタ332を反射した光を第2検出光334として用い、第2検出光334は無偏光ビームスプリッタ330を透過し、光検出器331に入射する。 FIG. 23 shows a recording principle in an example of a basic optical system configuration of the optical pickup device 11 in the optical information recording / reproducing apparatus of the present embodiment. A part of the signal light 306 transmitted through the polarization direction changing element 310 is reflected by the non-polarizing beam splitter 326 and used as the first detection light 328. The first detection light 328 is reflected by the non-polarizing beam splitter 330 and enters the photodetector 331. On the other hand, the signal light 306 that has passed through the non-polarizing beam splitter 326 passes through the polarizing beam splitter 311, enters the spatial light modulator 312, and page data is added by the spatial light modulator 312. The signal light 306 to which page data is added by the spatial light modulator 312 is reflected by the polarization beam splitter 311, and part of the light is reflected by the non-polarization beam splitter 332. The light reflected by the non-polarization beam splitter 332 is used as the second detection light 334, and the second detection light 334 passes through the non-polarization beam splitter 330 and enters the photodetector 331.
 また、光検出器331はCMOSイメージセンサやCCDイメージセンサなどの撮像素子とする。 Further, the photodetector 331 is an imaging device such as a CMOS image sensor or a CCD image sensor.
 以上の構成とすることで、光検出器331で検出した第1検出光328と第2検出光334の干渉強度から、空間光変調器312の各画素それぞれが、信号光306に付加した位相を記録時に測定することが可能になる。この測定結果をコントローラ89から信号生成回路86を介して空間光変調器312に送られた情報信号と比較し、画素毎の測定結果と情報信号の差が所定の値以下になるように空間光変調器312を制御してもよいし、測定結果と情報信号の間のばらつき情報を光情報記録媒体1に記録し、再生時に測定結果と情報信号の間のばらつき情報をもとに信号処理を行っても良い。 With the above configuration, each pixel of the spatial light modulator 312 adds the phase added to the signal light 306 from the interference intensity of the first detection light 328 and the second detection light 334 detected by the photodetector 331. It becomes possible to measure at the time of recording. The measurement result is compared with the information signal sent from the controller 89 to the spatial light modulator 312 via the signal generation circuit 86, and the spatial light is adjusted so that the difference between the measurement result for each pixel and the information signal is equal to or less than a predetermined value. The modulator 312 may be controlled, or variation information between the measurement result and the information signal is recorded on the optical information recording medium 1, and signal processing is performed based on the variation information between the measurement result and the information signal during reproduction. You can go.
 なお、本実施例の空間光変調器312は、位相2値を付加するものに限らず、例えば位相4値かそれ以上の位相多値情報を付加するものでも良いことは言うまでもない。 Of course, the spatial light modulator 312 of the present embodiment is not limited to the one that adds a phase binary value, and may be one that adds, for example, phase quaternary or more phase multilevel information.
 本実施例が実施例2と異なるのは、光検出器331が複数の受光面801で構成され、受光部801に入射する第1検出光328の光軸と第2検出光334の光軸が、互いに所定の角度傾斜している点である。 The present embodiment is different from the second embodiment in that the photodetector 331 includes a plurality of light receiving surfaces 801, and the optical axes of the first detection light 328 and the second detection light 334 incident on the light receiving unit 801 are different. Are inclined at a predetermined angle.
 図24(a)は本実施例の光情報記録再生装置における、光検出器331、第1検出光328と第2検出光の関係の一例を示す図である。図24(a)に示すように、無偏光ビームスプリッタ330を反射した第1検出光328は光検出器331に垂直に入射する。一方、無偏光ビームスプリッタ330を透過した第2検出光334は光検出器331に斜入射する。 FIG. 24A is a diagram showing an example of the relationship between the photodetector 331, the first detection light 328, and the second detection light in the optical information recording / reproducing apparatus of the present embodiment. As shown in FIG. 24A, the first detection light 328 reflected by the non-polarizing beam splitter 330 enters the photodetector 331 perpendicularly. On the other hand, the second detection light 334 transmitted through the non-polarizing beam splitter 330 is incident obliquely on the photodetector 331.
 図24(b)本実施例の光情報記録再生装置における、光検出器331の受光部801、第1検出光328と第2検出光の関係の一例を示す図である。第1検出光の波面と第2検出光の波面が互いに所定の角度傾いた状態で光検出器331の受光部801で受光され、第1検出光328と第2検出光334の干渉縞が受光部801上で形成される。受光部801は複数の受光部で構成されており、第1検出光328と第2検出光334の干渉縞の明部を受光する受光部と、第1検出光328と第2検出光334の干渉縞の暗部を受光する受光部がある。 FIG. 24B is a diagram showing an example of the relationship between the light receiving unit 801 of the photodetector 331, the first detection light 328, and the second detection light in the optical information recording / reproducing apparatus of the present embodiment. The wavefront of the first detection light and the wavefront of the second detection light are received by the light receiving unit 801 of the photodetector 331 in a state where the wavefronts of the first detection light and the second detection light are inclined at a predetermined angle, and interference fringes between the first detection light 328 and the second detection light 334 are received. Formed on the portion 801. The light receiving unit 801 includes a plurality of light receiving units. The light receiving unit receives the bright portions of the interference fringes of the first detection light 328 and the second detection light 334, and includes the first detection light 328 and the second detection light 334. There is a light receiving portion that receives a dark portion of an interference fringe.
 以上の構成とすることで、光検出器331で第1検出光と第2検出光の干渉縞のコントラストを測定することが可能になり、このコントラストが最大になるように位相変調素子309で第1検出光328と第2検出光334の光路長差を制御することで、信号光306と参照光307の可干渉性が高い状態で光情報記録媒体1に、ホログラムを記録することが可能になる。このため、光情報記録媒体1に強い干渉縞パターンが記録され、再生時の回折光337の光量を強くすることができるため、高い再生性能が得られる。 With the above configuration, the contrast of the interference fringes between the first detection light and the second detection light can be measured by the photodetector 331, and the first phase modulation element 309 can adjust the contrast to maximize the contrast. By controlling the optical path length difference between the first detection light 328 and the second detection light 334, it is possible to record a hologram on the optical information recording medium 1 with high coherence between the signal light 306 and the reference light 307. Become. Therefore, a strong interference fringe pattern is recorded on the optical information recording medium 1, and the amount of diffracted light 337 during reproduction can be increased, so that high reproduction performance can be obtained.
 なお、本実施例の光検出器331の受光面801の構成は上記に限らないことは言うまでもない。また、光検出器331に斜入射する光は第2検出光334に限定されず、第1検出光328が光検出器331に斜入射しても構わない。 Needless to say, the configuration of the light receiving surface 801 of the photodetector 331 of the present embodiment is not limited to the above. Further, the light incident on the photodetector 331 obliquely is not limited to the second detection light 334, and the first detection light 328 may be incident obliquely on the photodetector 331.
 また、本実施例は位相多値ホログラム記録に限定されず、例えば振幅多値ホログラム記録においても、信号光306と参照光307の可干渉性を高めることで、高い再生性能を得ることが可能である。 Further, the present embodiment is not limited to phase multilevel hologram recording. For example, even in amplitude multilevel hologram recording, it is possible to obtain high reproduction performance by increasing the coherence between the signal light 306 and the reference light 307. is there.
 以上の構成によれば、位相多値ホログラム記録再生装置および位相多値ホログラム記録再生方法において、記録時の信号光と参照光の位相差変化を補正することが可能になり、安定した位相多値情報の再生が可能となる。 According to the above configuration, in the phase multilevel hologram recording / reproducing apparatus and the phase multilevel hologram recording / reproducing method, it is possible to correct the phase difference change between the signal light and the reference light during recording, and stable phase multilevel Information can be reproduced.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
 変形例の一例として以下の構成が挙げられる。変形例1として、参照光もしくは信号光の位相を制御する位相制御部と、前記位相制御部を通過した光と、前記位相制御部を通過していない光の干渉強度を検出する光検出部と前記光検出部で検出した前記干渉強度に基づいて、位相差を算出する位相差算出部と、前記位相差に基づいて位相差制御量を算出する位相差制御量算出部を少なくとも具備し、前記参照光と前記信号光を干渉させ、得られた干渉縞をホログラムとしてホログラム記録媒体に記録し、記録されたホログラム記録媒体を再生する光情報記録再生装置を用いた光情報記録再生方法において、前記位相制御部において、前記位相差制御量に基づいて、光情報記録時に前記位相差を制御する、ことを特徴とする光情報記録再生方法。 The following configuration is an example of a modification. As Modification 1, a phase control unit that controls the phase of reference light or signal light, light that has passed through the phase control unit, and a light detection unit that detects interference intensity of light that has not passed through the phase control unit, A phase difference calculation unit that calculates a phase difference based on the interference intensity detected by the light detection unit; and a phase difference control amount calculation unit that calculates a phase difference control amount based on the phase difference, In an optical information recording / reproducing method using an optical information recording / reproducing apparatus for interfering reference light and the signal light, recording the obtained interference fringes as a hologram on a hologram recording medium, and reproducing the recorded hologram recording medium, An optical information recording / reproducing method, wherein the phase control unit controls the phase difference during optical information recording based on the phase difference control amount.
 変形例2として、変形例1に記載の光情報記録再生方法において、前記ホログラム記録媒体の同一部分に2回ホログラム記録を行うことで、位相多値記録を行い、1回目のホログラム記録時に前記位相差を制御する第1の位相差制御工程と、前記第1の位相制御工程で制御した前記位相差との差が所定の範囲内に収まるように、2回目のホログラム記録時に前記位相差を制御する第2の位相差制御工程を有する、ことを特徴とする光情報記録再生方法。 As a second modification, in the optical information recording / reproducing method described in the first modification, phase multi-value recording is performed by performing hologram recording twice on the same portion of the hologram recording medium, and the above-mentioned level is recorded during the first hologram recording. Control the phase difference during the second hologram recording so that the difference between the first phase difference control step for controlling the phase difference and the phase difference controlled in the first phase control step is within a predetermined range. An optical information recording / reproducing method comprising: a second phase difference control step.
 変形例3として、変形例1に記載の光情報記録再生方法において、所定のページ数、もしくは所定のブック数を記録するごとに、前記位相差を制御する前記位相差制御工程を有することを特徴とする光情報記録再生方法。 As a third modification, the optical information recording / reproducing method according to the first modification includes the phase difference control step of controlling the phase difference every time a predetermined number of pages or a predetermined number of books are recorded. An optical information recording / reproducing method.
 また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1・・・光情報記録媒体、11・・・光ピックアップ装置、101・・・位相差算出回路、102・・・メモリ、103・・・位相変調素子駆動量算出回路、301・・・光源、302・・・コリメートレンズ、303・・・シャッタ、304・・・1/2波長板、305・・・偏光ビームスプリッタ、306・・・信号光、307・・・参照光、308・・・ビームエキスパンダ、309・・・位相変調素子、310・・・偏光方向変換素子、311・・・偏光ビームスプリッタ、312・・・空間光変調器、313・・・リレーレンズ、314・・・空間フィルタ、315・・・対物レンズ、316・・・偏光方向変換素子、317・・・ミラー、319・・・ミラー、320・・・アクチュエータ、321・・・レンズ、322・・・レンズ、323・・・アクチュエータ、324・・・ミラー、325・・・光検出器、326・・・無偏光ビームスプリッタ、328・・・第1検出光、329・・・ミラー、330・・・無偏光ビームスプリッタ、331・・・光検出器、332・・・無偏光ビームスプリッタ、334・・・第2検出光、337・・・回折光、338・・・オシレータ光、339・・・偏光子、340・・・偏光ビームスプリッタ、341・・・偏光ビームスプリッタ、342・・・偏光方向変換素子、801・・・受光部、802・・・受光部、803・・・受光部、804・・・受光部、1701・・・分割位相板 DESCRIPTION OF SYMBOLS 1 ... Optical information recording medium, 11 ... Optical pick-up apparatus, 101 ... Phase difference calculation circuit, 102 ... Memory, 103 ... Phase modulation element drive amount calculation circuit, 301 ... Light source, 302 ... Collimating lens, 303 ... Shutter, 304 ... Half-wave plate, 305 ... Polarizing beam splitter, 306 ... Signal light, 307 ... Reference light, 308 ... Beam Expander, 309 ... phase modulation element, 310 ... polarization direction conversion element, 311 ... polarization beam splitter, 312 ... spatial light modulator, 313 ... relay lens, 314 ... spatial filter 315 ... objective lens, 316 ... polarization direction conversion element, 317 ... mirror, 319 ... mirror, 320 ... actuator, 321 ... lens, 322 ... , 323 ... Actuator, 324 ... Mirror, 325 ... Photodetector, 326 ... Unpolarized beam splitter, 328 ... First detection light, 329 ... Mirror, 330 ... Non-polarizing beam splitter, 331 ... photodetector, 332 ... non-polarizing beam splitter, 334 ... second detection light, 337 ... diffracted light, 338 ... oscillator light, 339 ... polarized light 340: Polarization beam splitter, 341: Polarization beam splitter, 342: Polarization direction conversion element, 801: Light receiving unit, 802 ... Light receiving unit, 803 ... Light receiving unit, 804 ..Light receiving part, 1701 ... Divided phase plate

Claims (17)

  1.  参照光と信号光を干渉させ、得られた干渉縞をホログラムとしてホログラム記録媒体に記録する光情報記録装置において、
     光を出射する光源と、
     前記光源から出射した光を第1の光と第2の光に分割する光束分割素子と、
     前記第1の光と前記第2の光を受光して干渉強度を検出する光検出部と、
     前記光検出部で検出した干渉強度から前記第1の光と前記第2の光の位相差を算出し、少なくとも前記第2の光の位相を制御する位相制御部と、
     前記第2の光に位相多値情報を付加する空間光変調器と、
    を備えることを特徴とする光情報記録装置。
    In an optical information recording apparatus for interfering reference light and signal light, and recording the obtained interference fringes on a hologram recording medium as a hologram,
    A light source that emits light;
    A light beam splitting element that splits light emitted from the light source into first light and second light;
    A light detection unit that receives the first light and the second light and detects interference intensity;
    A phase control unit that calculates a phase difference between the first light and the second light from the interference intensity detected by the light detection unit, and controls at least the phase of the second light;
    A spatial light modulator for adding phase multilevel information to the second light;
    An optical information recording apparatus comprising:
  2.  請求項1に記載の光情報記録装置において、
     前記第1の光は参照光であり、前記第2の光は信号光であることを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 1,
    The optical information recording apparatus, wherein the first light is reference light and the second light is signal light.
  3.  請求項2に記載の光情報記録装置において、
     前記光検出部は、前記参照光と、前記空間光変調器で位相多値情報が付加された信号光と、を受光する、
    ことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 2,
    The light detection unit receives the reference light and signal light to which phase multilevel information is added by the spatial light modulator.
    An optical information recording apparatus.
  4.  請求項2に記載の光情報記録装置において、
     前記信号光を第1の信号光と第2の信号光に分離する第2の光束分割素子と、
     前記参照光を第1の参照光と第2の参照光に分離する第3の光束分割素子と、を備え、
     前記第1の信号光と前記第1の参照光を干渉させ、得られた干渉縞をホログラムとしてホログラム記録媒体に記録し、
     前記第2の信号光と前記第2の参照光が前記光検出部に入射する、
     ことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 2,
    A second light beam splitting element that separates the signal light into a first signal light and a second signal light;
    A third light beam splitting element that separates the reference light into a first reference light and a second reference light,
    Causing the first signal light and the first reference light to interfere, and recording the obtained interference fringes as a hologram on a hologram recording medium;
    The second signal light and the second reference light are incident on the light detection unit;
    An optical information recording apparatus.
  5.  請求項4に記載の光情報記録装置において、
     前記第1の信号光の光路長と前記第2の信号光の光路長が略一致し、前記第1の参照光の光路長と前記第2の参照光の光路長が略一致する、ことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 4,
    The optical path length of the first signal light and the optical path length of the second signal light substantially match, and the optical path length of the first reference light and the optical path length of the second reference light substantially match. An optical information recording apparatus.
  6.  請求項4に記載の光情報記録装置において、
     前記信号光の偏光を変換する第1の偏光変換素子と、
     前記参照光の偏光を変換する第2の偏光変換素子と、を備え、
     前記第2の光束分割素子および前記第3の光束分割素子は偏光ビームスプリッタであり、前記第2の光束分割素子には前記第1の偏光変換素子で偏光が変換された信号光が入射し、前記第3の光束分割素子には、前記第2の偏光変換素子で偏光が変換された参照光が入射することを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 4,
    A first polarization conversion element for converting the polarization of the signal light;
    A second polarization conversion element that converts the polarization of the reference light,
    The second light beam splitting element and the third light beam splitting element are polarization beam splitters, and signal light whose polarization has been converted by the first polarization conversion element is incident on the second light beam splitting element, An optical information recording apparatus, wherein the third light beam splitting element receives reference light whose polarization has been converted by the second polarization conversion element.
  7.  請求項2に記載の光情報記録装置において、
     前記空間光変調器は、該空間光変調器に入射する前記信号光の光束面内の一部の領域に位相多値情報を付加することを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 2,
    The optical information recording apparatus, wherein the spatial light modulator adds phase multilevel information to a partial region in a light beam plane of the signal light incident on the spatial light modulator.
  8.  請求項6に記載の光情報記録装置において、
     前記空間光変調器は、該空間光変調器に入射する前記信号光の光束面内の一部の領域に位相情報を付加し、
     前記第1の信号光は前記位相多値情報が付加された信号光であることを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 6,
    The spatial light modulator adds phase information to a partial area in the light beam plane of the signal light incident on the spatial light modulator,
    The optical information recording apparatus, wherein the first signal light is signal light to which the phase multilevel information is added.
  9.  請求項1に記載の光情報記録装置において、
     前記光検出部に、前記ホログラム記録媒体を透過した前記信号光と前記参照光が入射することを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 1,
    The optical information recording apparatus, wherein the signal light and the reference light transmitted through the hologram recording medium are incident on the light detection unit.
  10.  請求項1に記載の光情報記録装置において、
     前記第1の光または前記第2の光に2種類以上の位相を付加する位相付加部を備え、
     前記光検出部は、2以上の受光部を有する
    ことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 1,
    A phase addition unit for adding two or more types of phases to the first light or the second light;
    The optical information recording apparatus, wherein the light detection unit includes two or more light receiving units.
  11.  請求項1に記載の光情報記録装置において、
     前記光検出部は複数の受光部を有し、
     前記位相制御部は、前複数の受光部ごとに検出した前記干渉強度に基づいて、前記第1の光と前記第2の光の前記位相差の面内分布を算出し、前記第1の光または前記第2の光の光束面内の任意の領域ごとに位相を制御することを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 1,
    The light detection unit has a plurality of light receiving units,
    The phase control unit calculates an in-plane distribution of the phase difference between the first light and the second light based on the interference intensity detected for each of a plurality of previous light receiving units, and the first light Alternatively, the phase is controlled for each arbitrary region in the light beam plane of the second light.
  12.  請求項1に記載の光情報記録装置において、
     前記光検出部に、前記第1の光または前記第2の光のうち少なくともいずれかが所定の角度傾いて入射する、
     ことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 1,
    At least one of the first light and the second light is incident on the light detection unit at a predetermined angle,
    An optical information recording apparatus.
  13.  請求項12に記載の光情報記録装置において、
     前記複数の受光部のうち少なくとも1つが前記第1の光と前記第2の光の干渉縞の明部を受光し、
     前記複数の受光部のうち少なくとも1つが前記第1の光と前記第2の光の干渉縞の暗部を受光し、
     前記位相制御部は、前記明部と前記暗部の強度差を最大にするように前記第1の光または前記第2の光の位相を制御する、
     ことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 12,
    At least one of the plurality of light receiving portions receives a bright portion of an interference fringe between the first light and the second light,
    At least one of the plurality of light receiving parts receives a dark part of an interference fringe of the first light and the second light,
    The phase control unit controls the phase of the first light or the second light so as to maximize an intensity difference between the bright part and the dark part;
    An optical information recording apparatus.
  14. 複数回記録により位相多値記録する
     請求項1に記載の光情報記録装置において、
     前記ホログラム記録媒体の同一部分に、前記位相制御部でそれぞれ異なる位相を付加した号光を複数回照射することで位相多値記録を行うことを特徴とする光情報記録装置。
    The optical information recording apparatus according to claim 1, wherein phase multilevel recording is performed by a plurality of recordings.
    An optical information recording apparatus for performing phase multilevel recording by irradiating the same portion of the hologram recording medium with a plurality of light beams each having a different phase added by the phase controller.
  15.  参照光と信号光を干渉させ、得られた干渉縞をホログラムとしてホログラム記録媒体に記録し、記録されたホログラム記録媒体を再生する光情報記録再生装置において、
     光を出射する光源と、
     前記光源から出射した光を第1の光と第2の光に分割する光束分割素子と、
     前記第1の光と前記第2の光を受光して干渉強度を検出する光検出部と、
     前記受光部で検出した干渉強度から前記第1の光と前記第2の光の位相差を算出し、少なくとも前記第2の光の位相を制御する位相制御部と、
     前記第2の光に位相多値情報を付加する空間光変調器と、
    を備えることを特徴とする光情報記録再生装置。
    In an optical information recording / reproducing apparatus for interfering reference light and signal light, recording the obtained interference fringes as a hologram on a hologram recording medium, and reproducing the recorded hologram recording medium,
    A light source that emits light;
    A light beam splitting element that splits light emitted from the light source into first light and second light;
    A light detection unit that receives the first light and the second light and detects interference intensity;
    A phase control unit that calculates a phase difference between the first light and the second light from the interference intensity detected by the light receiving unit, and controls at least the phase of the second light;
    A spatial light modulator for adding phase multilevel information to the second light;
    An optical information recording / reproducing apparatus comprising:
  16.  請求項15に記載の光情報記録再生装置において、
     前記第1の光は前記参照光であり、前記第2の光は前記信号光であることを特徴とする光情報記録再生装置。
    The optical information recording / reproducing apparatus according to claim 15,
    The optical information recording / reproducing apparatus, wherein the first light is the reference light and the second light is the signal light.
  17.  参照光と信号光を干渉させ、得られた干渉縞をホログラムとしてホログラム記録媒体に記録する光情報記録方法において、
     光を出射する光出射ステップと、
     前記光出射ステップで出射した光を第1の光と第2の光に分割する光束分割ステップと、
     前記第1の光と前記第2の光を受光して干渉強度を検出する光検出ステップと、
     前記受光部で検出した干渉強度から前記第1の光と前記第2の光の位相差を算出し、少なくとも前記第2の光の位相を制御する位相制御ステップと、
     前記第2の光に位相多値情報を付加する空間光変調ステップと、
    を備えることを特徴とする光情報記録方法。
    In the optical information recording method of interfering the reference light and the signal light, and recording the obtained interference fringes on the hologram recording medium as a hologram,
    A light emitting step for emitting light;
    A light beam dividing step of dividing the light emitted in the light emitting step into a first light and a second light;
    A light detection step of receiving the first light and the second light and detecting an interference intensity;
    A phase control step of calculating a phase difference between the first light and the second light from the interference intensity detected by the light receiving unit, and controlling at least the phase of the second light;
    A spatial light modulation step of adding phase multilevel information to the second light;
    An optical information recording method comprising:
PCT/JP2015/075527 2015-09-09 2015-09-09 Optical information recording device, optical information recording/reproducing device, and optical information recording method WO2017042900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075527 WO2017042900A1 (en) 2015-09-09 2015-09-09 Optical information recording device, optical information recording/reproducing device, and optical information recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/075527 WO2017042900A1 (en) 2015-09-09 2015-09-09 Optical information recording device, optical information recording/reproducing device, and optical information recording method

Publications (1)

Publication Number Publication Date
WO2017042900A1 true WO2017042900A1 (en) 2017-03-16

Family

ID=58240731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075527 WO2017042900A1 (en) 2015-09-09 2015-09-09 Optical information recording device, optical information recording/reproducing device, and optical information recording method

Country Status (1)

Country Link
WO (1) WO2017042900A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099982A (en) * 1998-09-24 2000-04-07 Sanyo Electric Co Ltd Optical pickup device, and optical recording medium driving device using the device
JP2003178460A (en) * 1998-02-27 2003-06-27 Optware:Kk Optical information recording device and optical information reproducing device
JP2012027996A (en) * 2010-07-28 2012-02-09 Hitachi Consumer Electronics Co Ltd Optical information recording/reproducing device and reproducing device
JP2013182653A (en) * 2012-03-05 2013-09-12 Hitachi Consumer Electronics Co Ltd Optical information reproducing device, optical information recording device, and optical information reproducing method
JP2014002823A (en) * 2012-06-20 2014-01-09 Hitachi Consumer Electronics Co Ltd Optical information recording/reproducing apparatus and optical information recording/reproducing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178460A (en) * 1998-02-27 2003-06-27 Optware:Kk Optical information recording device and optical information reproducing device
JP2000099982A (en) * 1998-09-24 2000-04-07 Sanyo Electric Co Ltd Optical pickup device, and optical recording medium driving device using the device
JP2012027996A (en) * 2010-07-28 2012-02-09 Hitachi Consumer Electronics Co Ltd Optical information recording/reproducing device and reproducing device
JP2013182653A (en) * 2012-03-05 2013-09-12 Hitachi Consumer Electronics Co Ltd Optical information reproducing device, optical information recording device, and optical information reproducing method
JP2014002823A (en) * 2012-06-20 2014-01-09 Hitachi Consumer Electronics Co Ltd Optical information recording/reproducing apparatus and optical information recording/reproducing method

Similar Documents

Publication Publication Date Title
WO2017094129A1 (en) Holographic optical information reproducing device
JP5358530B2 (en) Optical information recording / reproducing apparatus and reproducing apparatus
US9170562B2 (en) Holographic memory device and reproduction/recording method
US7616362B2 (en) Hologram recording and reproducing apparatus
JP5707147B2 (en) Optical information reproducing method and optical information reproducing apparatus
JP5183667B2 (en) Playback apparatus and playback method
JP5753768B2 (en) Optical information recording apparatus, optical information reproducing apparatus, optical information recording / reproducing apparatus, optical information recording method, optical information reproducing method, and optical information recording / reproducing method
JP5487057B2 (en) Playback apparatus and playback method
JP5726816B2 (en) Optical pickup device for hologram, optical information recording / reproducing device, optical information recording / reproducing method, and optical information device
US8787136B2 (en) Holographic memory apparatus and method for adjusting incident angle of reference beam
JP5753767B2 (en) Optical information recording / reproducing apparatus, optical information recording / reproducing method, and optical information recording medium
JP5728432B2 (en) Optical pickup device for hologram and optical information recording / reproducing device
JP5238209B2 (en) Optical information recording / reproducing apparatus and method, and optical information recording medium
JP2010152120A (en) Hologram recording and reproducing method and recording and reproducing device
WO2017042900A1 (en) Optical information recording device, optical information recording/reproducing device, and optical information recording method
JP6158339B2 (en) Hologram reproducing apparatus and hologram reproducing method
JP5517912B2 (en) Optical information recording / reproducing method and optical information recording / reproducing apparatus
US8830810B2 (en) Holographic optical pickup device, optical information recording and reproducing device, and method of recording and reproducing optical information
JP2016091572A (en) Hologram reproduction device and hologram reproduction method
JP6525808B2 (en) Hologram recording medium multiplex recording and reproducing method and hologram recording medium multiplex recording and reproducing apparatus
WO2016194155A1 (en) Holographic memory device and optical information detecting method
US20170236543A1 (en) Optical information recording/reproducing device and holographic recording/reproducing method
JP2018041524A (en) Hologram reproduction device and hologram reproduction method
WO2014073041A1 (en) Holographic optical pickup device, holographic device, and high-speed image pickup device
WO2016009546A1 (en) Optical information recording/playback device, optical information playback device, and optical information playback method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15903565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15903565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP