WO2015075094A1 - Vorrichtung zum verarbeiten von photopolymerisierbarem material zum schichtweisen aufbau eines formkörpers - Google Patents

Vorrichtung zum verarbeiten von photopolymerisierbarem material zum schichtweisen aufbau eines formkörpers Download PDF

Info

Publication number
WO2015075094A1
WO2015075094A1 PCT/EP2014/075061 EP2014075061W WO2015075094A1 WO 2015075094 A1 WO2015075094 A1 WO 2015075094A1 EP 2014075061 W EP2014075061 W EP 2014075061W WO 2015075094 A1 WO2015075094 A1 WO 2015075094A1
Authority
WO
WIPO (PCT)
Prior art keywords
doctor
trough
doctor blade
tub
layer
Prior art date
Application number
PCT/EP2014/075061
Other languages
English (en)
French (fr)
Inventor
Simon Gruber
Jürgen STAMPFL
Jörg EBERT
Original Assignee
Technische Universität Wien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Wien filed Critical Technische Universität Wien
Priority to JP2016519349A priority Critical patent/JP6169268B2/ja
Priority to CN201480054962.3A priority patent/CN105593004B/zh
Priority to US15/037,170 priority patent/US9738034B2/en
Publication of WO2015075094A1 publication Critical patent/WO2015075094A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/214Doctor blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2059/00Use of polyacetals, e.g. POM, i.e. polyoxymethylene or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the invention relates to an apparatus for processing photopolymerizable material for the layered construction of a shaped body, comprising
  • a tub having an at least partially translucent bottom into which photopolymerizable material can be introduced
  • an exposure unit which can be actuated from below through the tub bottom for the location-selective exposure of a material layer formed between the underside of the construction platform and the tub base,
  • control unit which is prepared to polymerize in successive exposure steps superimposed layers on the build platform each with a predetermined geometry by controlling the exposure unit and after each exposure step for a layer to adjust the relative position of the build platform to the tub bottom, so successively the shaped body in the desired shape, and a movable guided doctor blade with a drive unit for reciprocating the doctor blade under the build platform through.
  • the invention relates to a doctor blade for such a device.
  • a device of the type mentioned is known from EP 2505341 AI.
  • Such a device allows the lithography-based generative production of fittings, in particular in the context of so-called. Rapid prototyping.
  • the stereo- thographischen process is in each case a newly applied material layer polymerized by location-selective exposure in the ge ⁇ desired shape, whereby successively, the desired body is formed in its three-dimensional shape that results from the sequence of layers deposited by layer-wise shape.
  • tools are used to umzu the material in the tub umzu ⁇ roll or redistribute to ensure a homogeneous material ⁇ layer.
  • the tool is as a movable blade guided to a drive unit for the doctor blade back under the building platform and forth therethrough. After raising the building platform by an exposure step, there is a material ⁇ deficit in the exposed area. This is due to the fact that after hardening of the set layer, the material is cured from this layer and raised with the building platform and the part of the molded body already formed thereon.
  • the present invention therefore aims to develop Lithography ⁇ phiebasteil generative manufacturing method in that a constant and faster subsequent transport is ensured by unreacted photopolymer.
  • the invention essentially provides in a device of the type mentioned above, that the doctor has two Ra ⁇ kelklingen spaced in the direction of movement, which are moved at a constant distance to the tub bottom over this.
  • the vertical distance of the doctor blade to the tub bottom by means of a simple adjustment adjustable and in this way the layer thickness of the applied material is adjustable.
  • the two squeegee blades ⁇ are arranged at the same distance from the tub bottom.
  • the doctor blade is preferably connected to a drive unit which drives it to reciprocate.
  • the training with two doctor blades enables a material coating in both directions of movement, whereby the process time can be considerably shortened.
  • the squeegee or the wiping element must be moved back and forth before a new layer can be applied.
  • the training with two doctor blades also offers the advantage that between the two preferably parallel Ra ⁇ kelklingen a chamber can be formed, which serves as a reservoir for unconsumed material.
  • Hin ⁇ or motion of the squeegee during the distribution step the unconsumed material can flow out of the chamber downwards in order to fill any existing holes, free spaces or depressions in the material layer, wherein the doctor blade trailing in the direction of movement defines the layer thickness. Holes, free spaces or depressions in the bath level arise in particular in the area in which the construction platform or already hardened layers of the shaped body are lifted out of the bath after the exposure process. Since the unused slurry is mainly in the chamber, relatively little material is required for the start of the construction and maintenance Sustainer ⁇ th of reliable Materialnachtransports.
  • the doctor blade can be heated.
  • the doctor blade can be equipped with at least one heating element, for example an electrical resistance heating element.
  • the material can be pressed into the formed between the two doctor blade chamber during or at the end of the distribution step by the Sprintströmka ⁇ ducts. This ensures that the Ma ⁇ TERIAL is again available in the chamber for the next step distribution.
  • the material is constantly mixed by the pinch and the flow through the overflow, so that the risk of segregation, especially in filled photopolymers can be significantly reduced.
  • at least one opening in two gege ⁇ nüber survive walls of the chamber is formed so that the overflow of the material is ensured in both directions of movement of the squeegee.
  • the chamber has at its top a refill opening, which opens into the chamber.
  • a dosing unit is used.
  • the bottom open chamber at the end faces between the two doctor blades each have an inflow opening, so that even at ground level on the leading blade in the direction of movement accumulating material can flow into the chamber.
  • At least one third doctor blade can be provided, which is preferably arranged between the two doctor blades and projects with respect to the two doctor blades in the direction of the trough bottom.
  • the third doctor blade is moved so positioned that unconsumed material is lifted from Wan ⁇ nenboden. In this way, the unverb- smoked material raised at each reciprocation of the doctor blade from the bottom of the tub and promoted in the trained between the two doctor blades chamber where mixing can take place ⁇ and homogenization.
  • the third doctor blade is preferably arranged resiliently pressed against the bottom of the tub. This can be realized by ⁇ because that the blade itself is formed of elasti ⁇ -magnetic material or by the fact that the blade is held against a restoring force inwardly displaced. This ensures that the third blade blade regardless of the respective height position of the doctor contacted the bottom of the tub.
  • the third doctor blade is preferably arranged resiliently pressed against the bottom of the tub.
  • the doctor blade together with the two outer Ra ⁇ kelklingen is integrally formed.
  • the doctor blade preferably consists of a polymer material, eg polytetrafluoroethylene or polyoxymethylene.
  • the doctor can be made particularly wear-resistant and stiff. Due to the high wear resistance occurs during loading ⁇ drive to any appreciable wear, so that the photopolymer ⁇ lymer is not contaminated.
  • the mentioned materials for the doctor blade are also easy to clean.
  • the present invention is also suitable for high-viscosity starting materials.
  • a particularly high viscosity is present, for example, in photopolymers which are suitable for plasticization and corresponding toughness.
  • the following photopolymer / monomer systems are preferably usable:
  • a sinterable material eg ceramic or metal
  • the cured polymer acts as a binder.
  • the degree of filling ie the proportion of powder in the slip, is one of the most important factors with regard to processability and material quality. Since ⁇ it has been found that especially at a filling level between 42 and 65 vol% high quality components can be produced. High filler levels, however, are usually associated with a high viscosity of the feedstock, which brings some problems, such as high Reakti ⁇ ons disclosed, segregation of the slip and difficult rialnachtransport Mate ⁇ . In order to reduce the viscosity of the photopolymer is seen ⁇ before Trains t ⁇ a stationary heating device for heating a layer of the present in the trough photopolymerisierba- ren material to a temperature of at least 30 ° C.
  • the heating device different from the exposure unit provides means represents ⁇ .
  • the material is warmed to at least 40 ° C.
  • the feature of the heater which He ⁇ knowledge that underlies various radiation curable polymers exhibit interpreting ⁇ Liche reduce the viscosity even at low temperature increase. In general, a warming to 50 ° C is sufficient, so that the ⁇ additional energy needs kept within reasonable limits. In special cases, heating up to 80 ° C may be required. At higher temperatures, unwanted thermal polymerization of the photopolymers occurs. Due to the warming and photopolymerizable Mate ⁇ rial can be employed, which has an increased intermolecular interaction.
  • the intermolecular interaction is considered to be sufficient in particular if the starting material has a viscosity of at least 20 Pa.s at room temperature.
  • the elevated temperature in the process zone also increases the reactivity of the photopolymer. In comparison to processing at room temperature, a reduction of reactive groups is thus possible without impairing the reactivity of the overall system.
  • the heating of the material is preferably carried out only in the process zone of the plant.
  • the process zone comprises the Be ⁇ rich between transparent tub and the previously built moldings.
  • a photopolymer layer is heated with a thickness between lOpm and ⁇ .
  • the remaining process space of the plant in which the molding is located may have a temperature which is below the temperature of the process zone.
  • the heating device preferably comprises at least one heating element arranged on or in the tank bottom, for example a heating foil.
  • the heat input is thus above the troughs ⁇ ground, so that an energy-efficient heat transfer is si ⁇ cheruci.
  • a heating film comprises a thin carrier ⁇ element, for example made of plastic, are arranged in the abutment designed as a ⁇ heater, usually meandering heating wires.
  • the heating device such as the heating foil be arranged outside the light-transmitting Bodenbe ⁇ realm of the tub.
  • two heating elements for example heating foils, may be provided, wherein an element is arranged on each side of the light-permeable bottom area or the exposure area.
  • the heating device extends at least partially over the light-permeable bottom region of the trough and is designed to be transparent.
  • the heating film should pay attention to the opti ⁇ properties of the heating film, and in particular the transparency and ensure that no ⁇ ren Gröbe particles are included.
  • a temperature control succeeds in a particularly simple manner in that a temperature sensor is provided which cooperates with the control unit for controlling the heating power of the heating device such that a predetermined temperature of the photopolymerizable material can be achieved and / or maintained.
  • the temperature sensor is preferably designed as a PT temperature sensor and can be incorporated in the heating foil.
  • the exposure unit may be arbitrary be formed ⁇ principle, the invention is not limited to the use of visible light. Rather, any electromagnetic radiation is capable of being able to cure the photopolymerizable material used in each case. For example, UV light can be used. Alternatively, light having a wavelength in the visible range may be used.
  • the exposure unit is preferably arranged under the tub bottom. It is controlled by the control unit, to a predetermined exposure area on the underside of Wan ⁇ nen foundeds selectively with a pattern in a desired geometrical to illuminate.
  • the exposure unit has a light source with one or more light emitting diodes, wherein in the exposure field preferably a light output of about 15 to 200 mW / cm 2 is achieved.
  • the wavelength of the light emitted by the exposure unit is preferably in the range of 350 to 500 nm.
  • the light of the light source can be modulated in a location-selective manner via a light modulator and imaged in the resulting intensity pattern with desired geometry onto the exposure field on the underside of the tank bottom.
  • DLP chips digital light processing chips
  • LCD panels various kinds of so-called DLP chips (digital light processing chips) the ⁇ nen such as MikroLitefeider, LCD panels and the like.
  • a laser may be used as the light source, whose light beam successively scans the exposure field via a movable mirror that can be controlled by the control unit.
  • the construction platform is held in a lifting mechanism by the control unit height adjustable above the Wan ⁇ nenteils.
  • the control unit is prepared to adjust the thickness of the layer, namely the distance between the building platform or the last generated layer and the tub bottom, via the lifting mechanism.
  • the trough is preferably designed in two parts and comprises a preferably multilayer, transparent trough bottom and a material trough frame.
  • the lowermost layer of the tank bottom consists of a solid glass plate, for example, which serves as a load-bearing element. Over it lie a silicone layer and a non-stick foil, which for a reduction of the reaction forces during the printing process to care.
  • the frame is preferably made of a chemically resistant plastic.
  • the tub frame serves in addition to the function as a material container at the same time as a clamping device for the tub system.
  • the two-part design of the bathtub system allows uncomplicated and quick cleaning after printing.
  • a single tub body may be divided by partition walls into a plurality of separate tub segments and thus form a plurality of tubs in the context of the invention.
  • FIG. 1 shows to 3 are schematic toli ⁇ che sectional views of a device according to the invention in successive stages of the process sequence
  • Fig. 4 is a perspective view of the device without Bauplatt ⁇ form
  • Fig. 5 is a perspective view of the tub according to Fig. 4
  • Fig. 6 is a perspective view of the entering Invention ⁇ used according to the doctor blade
  • FIG. 7 is a schematic sectional view of the blade shown in FIG. 6.
  • the mode of operation of a device according to the invention will first be described with reference to FIGS. 1 to 3, in which respect reference is made to the device described in EP 2505341 A1.
  • the device has a trough 1, the trough bottom 2 is transparent or translucent at least in a portion 3. This portion 3 of the tub bottom 2 covers at least the Extension of an exposure unit 4, which is arranged under the tub bottom 2.
  • the exposure unit 4 has a light source and a light modulator with which the intensity is controlled in a location-selective manner by a control unit in order to generate an exposure field with the geometry desired for the layer currently to be formed on the tub bottom 2.
  • a laser may also be used in the exposure unit 4, whose light beam successively scans the exposure field with the desired intensity pattern via a movable mirror which is controlled by a control unit.
  • the exposure unit 4 with respect to 1 is provided egg ⁇ ne build platform 5 via the tub, which is supported by an unillustrated lifting mechanism so that it is held in heights ⁇ adjustable manner on the tank bottom 2 in the area on the exposure unit.
  • the building platform 5 can likewise be transparent or translucent, so that light can be radiated in through a further exposure unit above the building platform 5 in order to expose it, at least during the formation of the first layer on the underside of the building platform 5, from above, thus the first one the build platform 5 cured layer adheres to this with high reliability.
  • the tub 1 In the tub 1 is a filling of highly viscous photopolymerizable material 6.
  • the material level of the filling is significantly higher than the thickness of the layers to be defined for the location-selective exposure.
  • the procedure is as follows. The building platform 5 is lowered by the lifting mechanism in a controlled manner, so that (before the first exposure step) their bottom in the filling of the photopolymeri ⁇ sierbaren material 6 immersed and the tub bottom 2 so far approaches that between the underside of Bauplatt ⁇ form 5 and the tank bottom 2 exactly the desired layer ⁇ thickness a (see Fig. 2) remaining.
  • ⁇ photopolymerizable material is displaced from the interim ⁇ rule space between the underside of the build platform 5 and the trough bottom. 2
  • a of the desired for this layer ortsselek ⁇ tive exposure of the layer is carried out in order to cure in the desired shape.
  • the first layer can also be an exposure from above through the transparent or translucent building platform 5, since ⁇ especially with in the contact area between the bottom of the building platform 5 and the photopolymerizable material 6 is a secure and complete curing and da ⁇ with a good adhesion of the first layer to the building panel ⁇ form 5 is ensured.
  • After formation of the layer of the build platform 5 is again lifted by means of the lifting mechanism is ⁇ .
  • the tub is characterized again with 1 be ⁇ whose bottom has a transparent portion.
  • the trough 1 is associated with a guide rail 8, on which a carriage 9 is guided displaceably in the direction of the double arrow 10.
  • a drive provides for the reciprocation of the carriage 9, which has a holder for a squeegee 11.
  • the holder has a guide and an adjusting device in order to adjust the doctor blade 11 in the direction of the double arrow 12 in the height direction.
  • the doctor blade 11 is used after the construction platform has been raised as shown in FIG.
  • the resulting in the material distribution process layer thickness of the material 6 is by the distance the lower edge of the doctor blade 11 from the bottom 2 of the tub 1 defi ⁇ ned.
  • trough bottom 2 arranged Heaters 13 and 14 are in Fig. 4 on both sides of the transparent Be ⁇ Reich 6 visible, which serve to heat the material 6 in order to reduce its viscosity.
  • a temperature sensor 15 is shown, which serves to measure the temperature of the heating foil 14 or the mate rials ⁇ . 6
  • doctor blade 11 in detail darges ⁇ tellt.
  • the doctor has two parallel doctor blades 16 and
  • the mode of operation of the doctor blade 11 will now be explained with reference to the sectional view according to FIG. 7.
  • the sub ⁇ edge of the doctor blade 16 and 17 defines a layer of material 26 having a predetermined layer thickness.
  • the doctor blades 16 and 17 are at the same distance from the bottom 3 angeord ⁇ net. 6, excess material is pushed in front of the leading in motion ⁇ direction doctor blade 17 with a flow movement according to the arrow 24 results.
  • a schematically indicated in Fig. 7 third doctor blade 27 is arranged, which is arranged lower than the doctor blades 16 and 17.
  • the third doctor blade 27 touches the tub bottom 3 and lifts unused material from the bottom of the tub. In this way, the unconsumed material is conveyed with each reciprocating movement of the doctor blade 11 into the chamber 18, where egg ⁇ ne mixing and homogenization can take place.
  • doctor blade 11 is formed symmetrically with two doctor blades 16 and 17 and having a chamber 18 and substantially satisfies a reciprocating movement or in order to distribute the material gleichze ⁇ SSIG for the next exposure step. This is a significant advantage over conventional designs in which both back and forth motion are required for this purpose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Die Vorrichtung zum Verarbeiten von hochviskosem photopolymerisierbaren Material (6) zum schichtweisen Aufbau eines Formkörpers, umfasst eine Wanne (1) mit einem zumindest bereichsweise (3) lichtdurchlässigen Boden (2), eine Bauplattform (5), eine Belichtungseinheit (4) zur ortsselektiven Belichtung einer zwischen der Unterseite der Bauplattform und dem Wannenboden ausgebildeten Materialschicht eine Steuereinheit, um nach jedem Belichtungsschritt für eine Schicht (7) die Relativposition der Bauplattform zum Wannenboden anzupassen, um so sukzessive den Formkörper in der gewünschten Form aufzubauen, und eine bewegbar geführte Rakel (11) mit einer Antriebseinheit (8,9) zum Hin- und Herbewegen der Rakel unter der Bauplattform hindurch. Dabei weist die Rakel zwei in Bewegungsrichtung beabstandete Rakelklingen (16,17) auf, die in konstantem Abstand zum Wannenboden über diesen bewegbar sind. Die Wanne weist Wannenstirnwände auf, so dass die in Bewegungsrichtung vorauseilende Rakelklinge sich jeweils auf eine der Wannenstirnwände zu bewegt. Zwischen den zwei Rakelklingen ist eine unten offene Kammer (18) ausgebildet, deren Wände jeweils wenigstens eine die Wand in Bewegungsrichtung der Rakel durchsetzende Öffnung zur Ausbildung eines Überströmkanals (19) aufweisen, so dass sich zwischen der vorauseilenden Rakelklinge und der dieser zugewandten Wannenstirnwand aufstauendes überschüssiges Material durch den wenigstens einen Überströmkanal in die Kammer gedrückt wird.

Description

Vorrichtung zum Verarbeiten von photopolymerisierbarem Material zum schichtweisen Aufbau eines Formkörpers
Die Erfindung betrifft eine Vorrichtung zum Verarbeiten von photopolymerisierbarem Material zum schichtweisen Aufbau eines Formkörpers, umfassend
eine Wanne mit einem zumindest bereichsweise lichtdurchlässigen Boden, in die photopolymerisierbares Material einfüllbar ist,
eine Bauplattform, die in einstellbarer Höhe über dem Wannenboden gehalten ist,
eine Belichtungseinhei , die zur ortsselektiven Belichtung einer zwischen der Unterseite der Bauplattform und dem Wannenboden ausgebildeten Materialschicht von unten durch den Wannenboden ansteuerbar ist,
eine Steuereinheit, die dazu vorbereitet ist, in aufeinanderfolgenden Belichtungsschritten übereinanderliegende Schichten auf der Bauplattform jeweils mit vorgegebener Geometrie durch Steuerung der Belichtungs- einheit zu polymerisieren und nach jedem Belichtungs- schritt für eine Schicht die Relativposition der Bauplattform zum Wannenboden anzupassen, um so sukzessive den Formkörper in der gewünschten Form aufzubauen, und eine bewegbar geführte Rakel mit einer Antriebseinheit zum Hin- und Herbewegen der Rakel unter der Bauplattform hindurch.
Weiters betrifft die Erfindung eine Rakel für eine solche Vorrichtung.
Eine Vorrichtung der eingangs genannten Art ist aus der EP 2505341 AI bekannt geworden.
Eine solche Vorrichtung erlaubt die lithographiebasierte generative Fertigung von Formstücken, insbesondere im Rahmen des sog. Rapid Prototyping. Bei den genannten stereoli- thographischen Verfahren wird jeweils eine neu aufgetragene Materialschicht durch ortsselektive Belichtung in der ge¬ wünschten Form polymerisiert , wodurch sukzessive durch schichtweise Formgebung der gewünschte Körper in seiner dreidimensionalen Form, die sich aus der Aufeinanderfolge der aufgebrachten Schichten ergibt, hergestellt wird.
Bei Vorrichtungen der gegenständlichen Art kommen meist Werkzeuge zum Einsatz, um das Material in der Wanne umzu¬ wälzen oder neu zu verteilen, um eine homogene Material¬ schicht zu gewährleisten. Das Werkzeug ist zum Beispiel als bewegbar geführte Rakel mit einer Antriebseinheit ausgebil¬ det, um die Rakel unter der Bauplattform hindurch hin- und herzubewegen . Nach Anheben der Bauplattform nach einem Belichtungsschritt liegt im belichteten Bereich ein Material¬ defizit vor. Dies ist dadurch bedingt, dass nach Aushärtung der eingestellten Schicht das Material aus dieser Schicht ausgehärtet und mit der Bauplattform und dem daran bereits gebildeten Teil des Formkörpers angehoben wird. Das damit fehlende photopolymerisierbare Material zwischen der Unter¬ seite des bereits gebildeten Formkörperteils und dem Wan¬ nenboden muss aus der Füllung des photopolymerisierbaren Materials aus dem Umgebungsbereich des belichteten Bereichs aufgefüllt werden. Aufgrund der hohen Viskosität des Mate¬ rials fließt dieses jedoch nicht von selbst wieder in den belichteten Bereich zwischen der Unterseite des Formkörperteils und dem Wannenboden zurück, so dass hier Materialsenken oder "Löcher" zurückbleiben können. Die Rakel dient somit dazu, die genannten Materialsenken zwischen den einzelnen Belichtungsvorgängen auszugleichen. Bei herkömmlichen Rakelausbildungen funktioniert die Materialverteilung jedoch vor allem bei hochviskosem Ausgangsmaterial nicht zu¬ verlässig. Insbesondere funktioniert der Materialnach- transport nicht schnell genug und unterliegt Mengen¬ schwankungen .
Die vorliegende Erfindung zielt daher darauf ab, lithogra¬ phiebasierte generative Fertigungsverfahren dahingehend weiterzuentwickeln, dass ein gleichbleibender und schneller Nachtransport von unverbrauchtem Photopolymer gewährleistet wird .
Zur Lösung dieser Aufgabe sieht die Erfindung bei einer Vorrichtung der eingangs genannten Art im Wesentlichen vor, dass die Rakel zwei in Bewegungsrichtung beabstandete Ra¬ kelklingen aufweist, die in konstantem Abstand zum Wannenboden über diesen bewegt werden. Bevorzugt ist hierbei vorgesehen, dass der vertikale Abstand der Rakelklingen zum Wannenboden mittels einer einfachen Justiereinheit justierbar und auf diese Weise die Schichtdicke des aufgetragenen Materials einstellbar ist. Bevorzugt sind die zwei Rakel¬ klingen in gleichem Abstand vom Wannenboden angeordnet. Die Rakel ist bevorzugt mit einer Antriebseinheit verbunden, welche diese zu einer Hin- und Herbewegung antreibt. Die Ausbildung mit zwei Rakelklingen ermöglicht eine Material- beschichtung in beide Bewegungsrichtungen, womit die Prozesszeit erheblich verkürzt werden kann. Bei Systemen mit herkömmlicher Rakel muss die Rakel bzw. das Wischelement hingegen hin- und zurückgefahren werden, bevor eine neue Schicht aufgetragen werden kann.
Die Ausbildung mit zwei Rakelklingen bietet weiters den Vorteil, dass zwischen den zwei vorzugsweise parallelen Ra¬ kelklingen eine Kammer ausgebildet werden kann, die als Reservoir für unverbrauchtes Material dient. Bei der Hin¬ bzw. Herbewegung der Rakel während des Verteilungsschritts kann das unverbrauchte Material hierbei nach unten aus der Kammer herausfließen, um ggf. bestehende Löcher, Freiräume oder Vertiefungen in der Materialschicht aufzufüllen, wobei die in Bewegungsrichtung nacheilende Rakelklinge die Schichtdicke definiert. Löcher, Freiräume oder Vertiefungen im Badniveau ergeben sich insbesondere in dem Bereich, in dem die Bauplattform bzw. bereits ausgehärtete Schichten des Formkörpers nach dem Belichtungsvorgang aus dem Bad herausgehoben werden. Da sich der unverbrauchte Schlicker hauptsächlich in der Kammer befindet, wird relativ wenig Material zum Start des Bauprozesses und zum Aufrechterhal¬ ten des zuverlässigen Materialnachtransports benötigt.
Um zu vermeiden, dass photopolymerisierbares Material im Bereich der Rakel, insbesondere das sich in der Reservoirkammer zwischen den beiden Rakelklingen befindliche Material, auskühlt, sieht eine bevorzugte Weiterbildung vor, dass die Rakel beheizbar ist. Insbesondere kann die Rakel mit wenigstens einem Heizelement, beispielsweise einem elektrischen Widerstandsheizelement ausgestattet sein.
Bei der Hin- und Herbewegung der Rakel schiebt die in Bewe¬ gungsrichtung vorauseilende Rakelklinge überschüssiges Ma¬ terial vor sich her, bis die Rakel am anderen Ende der Wanne angekommen ist. Dort staut sich das überschüssige Mate¬ rial, das sich in Form einer kleinen Welle vor der Klinge angesammelt hat, zwischen der Rakelklinge und der Wannen¬ stirnwand auf und tendiert dazu, seitlich neben der Rakel oder über den oberen Rand der Rakel hinweg zurückzufließen. Um das sich aufstauende Material zu nutzen bzw. zu bearbei¬ ten, ist bevorzugt vorgesehen, dass wenigstens eine Wand der Kammer wenigstens eine die Wand in Bewegungsrichtung der Rakel durchsetzende Öffnung zur Ausbildung eines Über- Strömkanals aufweist. Dadurch kann das Material während oder am Ende des Verteilungsschritts durch die Überströmka¬ näle in die zwischen den zwei Rakelklingen ausgebildete Kammer gedrückt werden. Dadurch wird erreicht, dass das Ma¬ terial in der Kammer für den nächstfolgenden Verteilungsschritt wieder zur Verfügung steht. Außerdem wird das Material durch die Quetschung und das Strömen durch die Überströmkanäle ständig durchgemischt, sodass die Gefahr einer Entmischung insbesondere bei gefüllten Photopolymeren erheblich reduziert werden kann. Bevorzugt ist in zwei gege¬ nüberliegenden Wänden der Kammer jeweils wenigstens eine Öffnung ausgebildet, sodass das Überströmen des Materials in beiden Bewegungsrichtungen der Rakel sichergestellt ist.
Um erforderlichenfalls für einen ausreichenden Nachschub an frischem Photopolymer Sorge tragen zu können, ist bevorzugt vorgesehen, dass die Kammer an ihrer Oberseite eine Nachfüllöffnung aufweist, welche in die Kammer mündet. Beim Nachfüllen kommt dabei bevorzugt eine Dosiereinheit zum Einsatz .
Weiters kann die unten offene Kammer an den Stirnseiten zwischen den zwei Rakelklingen jeweils eine Einströmöffnung aufweisen, sodass auch sich bodennah an der in Bewegungsrichtung vorauseilenden Rakelklinge aufstauendes Material in die Kammer einströmen kann.
Weiters kann wenigstens eine dritte Rakelklinge vorgesehen sein, die bevorzugt zwischen den zwei Rakelklingen angeordnet ist und gegenüber den zwei Rakelklingen in Richtung zum Wannenboden vorragt. Die dritte Rakelklinge wird dabei so positioniert bewegt, dass unverbrauchtes Material vom Wan¬ nenboden abgehoben wird. Auf diese Weise wird das unverb- rauchte Material bei jeder Hin- bzw. Herbewegung der Rakel vom Wannenboden angehoben und in die zwischen den beiden Rakelklingen ausgebildete Kammer gefördert, wo eine Durch¬ mischung und Homogenisierung erfolgen kann.
Um sicherzustellen, dass die dritte Rakelklinge bei einer Höhenverstellung der Rakel nicht gesondert nachgestellt werden muss, ist die dritte Rakelklinge bevorzugt gegen den Wannenboden federnd andrückbar angeordnet. Dies kann da¬ durch realisiert werden, dass die Klinge selbst aus elasti¬ schem Material gebildet ist oder dadurch, dass die Klinge gegen eine Rückstellkraft einwärts verlagerbar gehalten ist. Dadurch wird erreicht, dass die dritte Rakelklinge unabhängig von der jeweiligen Höhenposition der Rakel den Wannenboden kontaktiert. Sofern keine Erstarrung dünner aufgerakelter Schichten erfolgt, ist eine vergleichbare Ra¬ kelkonstruktion auch in einer Drehwanne vorteilhaft ausführbar .
Besonders bevorzugt ist die Rakel samt der zwei äußeren Ra¬ kelklingen einstückig ausgebildet. Die Rakel besteht dabei bevorzugt aus einem Polymerwerkstoff, z.B. Polytetrafluore- thylen oder Polyoxymethylen . Dadurch kann die Rakel besonders verschleißfest und steif ausgebildet werden. Auf Grund der hohen Verschleißfestigkeit kommt es während des Be¬ triebs zu keinem nennenswerten Abrieb, sodass das Photopo¬ lymer nicht verschmutzt wird. Die genannten Werkstoffe für die Rakel sind außerdem leicht zu reinigen.
Wie bereits erwähnt, ist die vorliegende Erfindung auch für hochviskose Ausgangsmaterialien geeignet. Eine besonders hohe Viskosität liegt beispielsweise bei Photopolymeren vor, die zur Plastifizierung und entsprechenden Zähigkeits- Steigerung hochmolekulare Monomersysteme enthalten. Im Rah¬ men der Erfindung sind folgende Photopolyme- re/Monomersysteme bevorzugt einsetzbar:
• Mono- und multifunktionelle Acrylate
• Multifunktionale Methacrylate
• Verschiedene Polyglycole mit einer molaren Masse zwi¬ schen 200 und 1000 g/mol.
Mit einer hohen Viskosität des Ausgangsmaterials ist man auch bei der Verarbeitung von gefüllten photopolymerisier- baren Materialien (Schlicker) konfrontiert. Hierbei wird ein sinterfähiges Material (z.B. Keramik oder Metall) in Pulverform einem zähflüssigen, lichtempfindlichen Kunstharz beigemengt. Beim Aushärten der einzelnen Schichten wirkt das ausgehärtete Polymer als Binder. Nachdem der schichtartige Aufbau des Formkörpers beendet ist, wird das ausgehär¬ tete Polymer thermisch entfernt und danach wird das übergebliebene Füllmaterial (z.B. Keramikpulver) zu einer fes¬ ten Struktur zusammengesintert. Dieses Verfahren erlaubt es, alle Vorteile der generativen Fertigung auch für Materialien zu nützen, die grundsätzlich nicht für diese Verfahren geeignet wären. Der Füllgrad, d.h. der Anteil an Pulver im Schlicker, ist hierbei einer der wichtigsten Faktoren bezüglich Verarbeitbarkeit und Materialqualität. Da¬ bei hat sich herausgestellt, dass insbesondere bei einem Füllgrad zwischen 42 und 65 vol% hochqualitative Bauteile erzeugt werden können. Hohe Füllgrade sind jedoch meistens mit einer hohen Viskosität des Ausgangsmaterials verbunden, was einige Probleme mit sich bringt, wie z.B. hohe Reakti¬ onskräfte, Entmischung des Schlickers und erschwerter Mate¬ rialnachtransport . Um die Viskosität des Photopolymers zu senken, ist bevor¬ zugt eine stationäre Heizeinrichtung zum Aufwärmen einer Schicht des in der Wanne befindlichen photopolymerisierba- ren Materials auf eine Temperatur von mindestens 30°C vor¬ gesehen. Dabei ist wesentlich, dass die Heizvorrichtung eine von der Belichtungseinheit verschiedene Einrichtung dar¬ stellt. Bevorzugt wird das Material auf mindestens 40°C aufgewärmt. Dem Merkmal der Heizeinrichtung liegt die Er¬ kenntnis zugrunde, dass verschiedene Strahlungsaushärtende Polymere bereits bei geringer Temperaturerhöhung eine deut¬ liche Verringerung der Viskosität zeigen. Im Allgemeinen reicht eine Erwärmung auf 50°C aus, sodass sich der zu¬ sätzliche Energiebedarf in vertretbaren Grenzen hält. In speziellen Fällen kann eine Erwärmung auf bis zu 80°C erforderlich sein. Bei höheren Temperaturen kommt es zur ungewollten thermischen Polymerisation der Photopolymere. Auf Grund der Erwärmung kann auch photopolymerisierbares Mate¬ rial zum Einsatz gelangen, das eine erhöhte intermolekulare Wechselwirkung aufweist. Die erhöhte intermolekulare Wech¬ selwirkung äußert sich durch eine erhöhte Viskosität bei Raumtemperatur (20°C). Die intermolekulare Wechselwirkung wird im vorliegenden Fall insbesondere dann als ausreichend betrachtet, wenn das Ausgangsmaterial bei Raumtemperatur eine Viskosität von mindestens 20 Pa-s aufweist.
Durch die erhöhte Temperatur in der Prozesszone wird auch die Reaktivität des Photopolymers erhöht. Im Vergleich zur Verarbeitung bei Raumtemperatur ist somit eine Reduktion von reaktiven Gruppen möglich, ohne die Reaktivität des Gesamtsystems zu verschlechtern.
Weiters wurde erkannt, dass eine zufriedenstellende Verrin¬ gerung der Viskosität derart, dass die Materialverteilung und Schichtbildung in der Wanne ohne großen Kraft- und Zeitaufwand gelingt, insbesondere dann sichergestellt ist, wenn das viskose Material vorzugsweise großflächig, direkt an der Grenzfläche (Wannenboden) erwärmt wird, an der auch die Reaktionskräfte hauptsächlich verursacht werden.
Die Erwärmung des Materials erfolgt dabei bevorzugt nur in der Prozesszone der Anlage. Die Prozesszone umfasst den Be¬ reich zwischen transparenter Wanne und dem bisher gebauten Formkörper. Typischerweise wird eine Photopolymerschicht mit einer Dicke zwischen lOpm und ΙΟΟΟμηι beheizt. Der verbleibende Prozessraum der Anlage, in dem sich der Formkörper befindet, kann eine Temperatur aufweisen, die unterhalb der Temperatur der Prozesszone liegt.
Bevorzugt umfasst die Heizeinrichtung wenigstens ein am oder im Wannenboden angeordnetes Heizelement, wie z.B. eine Heizfolie. Der Wärmeeintrag erfolgt somit über den Wannen¬ boden, sodass eine energieeffiziente Wärmeübertragung si¬ chergestellt ist. Eine Heizfolie umfasst ein dünnes Träger¬ element beispielsweise aus Kunststoff, in dem als Wider¬ standsheizung ausgebildete, meist mäanderartige Heizdrähte angeordnet sind. Dabei kann die Heizeinrichtung, wie z.B. die Heizfolie außerhalb des lichtdurchlässigen Bodenbe¬ reichs der Wanne angeordnet sein. Insbesondere können zwei Heizelemente, z.B. Heizfolien vorgesehen sein, wobei zu beiden Seiten des lichtdurchlässigen Bodenbereichs bzw. des Belichtungsbereichs jeweils ein Element angeordnet ist. In diesen seitlichen Bereichen befindet sich die Parkposition der Rakel während des Belichtungsvorgangs. Diese Anordnung erlaubt deshalb nicht nur eine störungsfreie Belichtung, sondern auch ein rasches Erwärmen des unverbrauchten Photopolymers, welches sich im Falle einer zwei Rakelklingen aufweisenden Rakel vorwiegend in der Kammer zwischen den beiden Rakelklingen befindet.
Alternativ oder zusätzlich kann vorgesehen sein, dass die Heizeinrichtung sich zumindest teilweise über den lichtdurchlässigen Bodenbereich der Wanne erstreckt und lichtdurchlässig ausgebildet ist. Dabei ist jedoch auf die opti¬ schen Eigenschaften der Heizfolie zu achten, insbesondere auf die Lichtdurchlässigkeit und darauf, dass keine gröbe¬ ren Partikel eingeschlossen sind.
Eine Temperaturregelung gelingt in besonders einfacher Weise dadurch, dass ein Temperatursensor vorgesehen ist, der mit der Steuereinheit zur Regelung der Heizleistung der Heizeinrichtung derart zusammenwirkt, dass eine vorgegebene Temperatur des photopolymerisierbaren Materials erreicht und/oder gehalten werden kann. Der Temperatursensor ist bevorzugt als PT-Temperaturfühler ausgebildet und kann in die Heizfolie eingearbeitet sein.
Die Belichtungseinheit kann grundsätzlich beliebig ausge¬ bildet sein, wobei die Erfindung nicht auf die Verwendung von sichtbarem Licht beschränkt ist. Vielmehr ist jede elektromagnetische Strahlung geeignet, die in der Lage ist, das jeweils eingesetzte photopolymerisierbare Material zu härten. Beispielsweise kann UV-Licht zur Anwendung gelangen. Alternativ kann Licht mit einer Wellenlänge im sichtbaren Bereich verwendet werden.
Die Belichtungseinheit ist bevorzugt unter dem Wannenboden angeordnet. Sie wird von der Steuereinheit gesteuert, um ein vorgegebenes Belichtungsfeld an der Unterseite des Wan¬ nenbodens selektiv mit einem Muster in gewünschter Geomet- rie zu belichten. Vorzugsweise weist die Belichtungseinheit eine Lichtquelle mit einer oder mehreren Leuchtdioden auf, wobei im Belichtungsfeld vorzugsweise eine Lichtleistung von etwa 15 bis 200 mW/cm2 erreicht wird. Die Wellenlänge des von der Belichtungseinheit abgestrahlten Lichts liegt vorzugsweise im Bereich von 350 bis 500 nm. Das Licht der Lichtquelle kann über einen Lichtmodulator ortsselektiv in seiner Intensität moduliert und in dem resultierenden Intensitätsmuster mit gewünschter Geometrie auf das Belichtungsfeld an der Unterseite des Wannenbodens abgebildet werden. Als Lichtmodulatoren können verschiedene Arten von sogenannten DLP-Chips (digital light processing Chips) die¬ nen, wie zum Beispiel Mikrospiegelfeider , LCD-Felder und dergleichen. Alternativ kann als Lichtquelle ein Laser verwendet werden, dessen Lichtstrahl über einen beweglichen Spiegel, der von der Steuereinheit gesteuert werden kann, das Belichtungsfeld sukzessive abtastet.
Bevorzugt ist die Bauplattform in einem Hubmechanismus durch die Steuereinheit höhenverstellbar oberhalb des Wan¬ nenbodens gehalten. Vorzugsweise ist die Steuereinheit dazu vorbereitet, die Dicke der Schicht, nämlich den Abstand zwischen der Bauplattform oder der letzten erzeugten Schicht und dem Wannenboden, über den Hubmechanismus einzustellen .
Die Wanne ist bevorzugt zweiteilig ausgebildet und umfasst einen vorzugsweise mehrschichtigen, transparenten Wannenboden und einen Materialwannenrahmen. Die unterste Schicht des Wannenbodens besteht hierbei z.B. aus einer massiven Glasplatte, die als tragendes Element dient. Darüber liegen eine Silikonschicht und eine Antihaftfolie, die für eine Reduktion der Reaktionskräfte während des Druckprozesses sorgen. Der Rahmen besteht bevorzugt aus einem chemisch beständigen Kunststoff.
Mit Vorteil dient der Wannenrahmen neben der Funktion als Materialbehälter gleichzeitig als Spannvorrichtung für das Wannensystem. So ist ein einfacher und schneller Wannenwechsel möglich. Die zweiteilige Ausführung des Wannensystems erlaubt ein unkompliziertes und rasches Reinigen nach dem Druckvorgang.
Weiters kann ein einzelner Wannenkörper durch Trennwände in mehrere voneinander getrennte Wannensegmente unterteilt sein und so eine Mehrzahl von Wannen im Sinne der Erfindung bilden .
Die Erfindung wird nachfolgend anhand von in der Zeichnung schematisch dargestellten Ausführungsbeispielen näher erläutert. In dieser zeigen Fig. 1 bis 3 schematische seitli¬ che Schnittansichten einer erfindungsgemäßen Vorrichtung in aufeinanderfolgenden Phasen des Verfahrensablaufs, Fig. 4 eine perspektivische Ansicht der Vorrichtung ohne Bauplatt¬ form, Fig. 5 eine perspektivische Ansicht der Wanne gemäß Fig. 4, Fig. 6 eine perspektivische Ansicht der erfindungs¬ gemäß zum Einsatz gelangenden Rakel und Fig. 7 eine schematische Schnittansicht der Rakel gemäß Fig. 6.
Die Funktionsweise einer erfindungsgemäßen Vorrichtung wird zunächst unter Bezugnahme auf die Fig. 1 bis 3 beschrieben, wobei diesbezüglich auf die in der EP 2505341 AI beschriebene Vorrichtung Bezug genommen wird. Die Vorrichtung weist eine Wanne 1 auf, deren Wannenboden 2 zumindest in einem Teilbereich 3 durchsichtig oder durchscheinend ist. Dieser Teilbereich 3 des Wannenbodens 2 überdeckt zumindest die Ausdehnung einer Belichtungseinheit 4, die unter dem Wannenboden 2 angeordnet ist. Die Belichtungseinheit 4 weist eine Lichtquelle und einen Lichtmodulator auf, mit dem die Intensität gesteuert von einer Steuereinheit ortsselektiv eingestellt wird, um ein Belichtungsfeld mit der für die momentan zu bildende Schicht gewünschten Geometrie an dem Wannenboden 2 zu erzeugen. Alternativ kann in der Belichtungseinheit 4 auch ein Laser verwendet werden, dessen Lichtstrahl über einen beweglichen Spiegel, der von einer Steuereinheit gesteuert wird, das Belichtungsfeld mit dem gewünschten Intensitätsmuster sukzessive abtastet.
Der Belichtungseinheit 4 gegenüber ist über der Wanne 1 ei¬ ne Bauplattform 5 vorgesehen, die von einem nicht dargestellten Hubmechanismus getragen wird, so dass sie in höhen¬ verstellbarer Weise über dem Wannenboden 2 im Bereich über der Belichtungseinheit 4 gehalten wird. Die Bauplattform 5 kann ebenfalls durchsichtig oder durchscheinend sein, so dass durch eine weitere Belichtungseinheit oberhalb der Bauplattform 5 Licht eingestrahlt werden kann, um zumindest bei der Bildung der ersten Schicht an der Unterseite der Bauplattform 5 diese auch von oben zu belichten, damit die erste an der Bauplattform 5 ausgehärtete Schicht auch mit hoher Verlässlichkeit an dieser anhaftet.
In der Wanne 1 befindet sich eine Füllung aus hochviskosem photopolymerisierbarem Material 6. Der Materialspiegel der Füllung liegt dabei deutlich höher als die Dicke der Schichten, die zur ortsselektiven Belichtung definiert werden sollen. Zur Definition einer Schicht aus photopolymerisierbarem Material wird in folgender Weise vorgegangen. Die Bauplattform 5 wird durch den Hubmechanismus in gesteuerter Weise abgesenkt, so dass (vor dem ersten Belichtungs- schritt) ihre Unterseite in die Füllung des photopolymeri¬ sierbaren Materials 6 eintaucht und sich dem Wannenboden 2 soweit nähert, dass zwischen der Unterseite der Bauplatt¬ form 5 und dem Wannenboden 2 genau die gewünschte Schicht¬ dicke a (siehe Fig. 2) verbleibt. Während dieses Eintauch¬ vorgangs wird photopolymerisierbares Material aus dem Zwi¬ schenraum zwischen der Unterseite der Bauplattform 5 und dem Wannenboden 2 verdrängt. Nach Einstellung der Schichtdicke a erfolgt die für diese Schicht gewünschte ortsselek¬ tive Belichtung der Schicht, um sie in der gewünschten Form auszuhärten. Insbesondere bei der Bildung der ersten Schicht kann auch eine Belichtung von oben durch die durchsichtige oder durchscheinende Bauplattform 5 erfolgen, da¬ mit insbesondere im Kontaktbereich zwischen der Unterseite der Bauplattform 5 und dem photopolymerisierbaren Material 6 eine sichere und vollständige Aushärtung erfolgt und da¬ mit eine gute Anhaftung der ersten Schicht an der Bauplatt¬ form 5 gewährleistet ist. Nach der Bildung der Schicht wird die Bauplattform 5 mittels des Hubmechanismus wieder ange¬ hoben .
Diese Schritte werden nachfolgend mehrfach wiederholt, wo¬ bei dann jeweils der Abstand der Unterseite der zuletzt ge¬ bildeten Schicht 7 zum Wannenboden 2 auf die gewünschte Schichtdicke a eingestellt wird und daraufhin die nächste Schicht in der gewünschten Weise ortsselektiv ausgehärtet wird .
Nach Anheben der Bauplattform 5 nach einem Belichtungsschritt liegt im belichteten Bereich ein Materialdefizit vor, wie in Fig. 3 angedeutet. Dies ist dadurch bedingt, dass nach Aushärtung der eingestellten Schicht mit der Dicke a das Material aus dieser Schicht ausgehärtet und mit der Bauplattform 5 und dem daran bereits gebildeten Teil des Formkörpers angehoben wird. Das damit fehlende photopo- lymerisierbare Material zwischen der Unterseite des bereits gebildeten Formkörperteils und dem Wannenboden 2 muss aus der Füllung des photopolymerisierbaren Materials 6 aus dem Umgebungsbereich des belichteten Bereichs aufgefüllt werden. Aufgrund der hohen Viskosität des Materials fließt dieses jedoch nicht von selbst wieder in den belichteten Bereich zwischen der Unterseite des Formkörperteils und dem Wannenboden zurück, so dass hier Materialsenken oder "Löcher" zurückbleiben können.
In der Darstellung gemäß Fig. 4 sind die in den Fig. 1 bis 3 der Übersichtlichkeit halber weggelassenen Bauelemente der Vorrichtung dargestellt. Die Wanne ist wieder mit 1 be¬ zeichnet, deren Boden einen durchsichtigen Bereich 3 aufweist. Der Wanne 1 ist eine Führungsschiene 8 zugeordnet, auf der ein Schlitten 9 in Richtung des Doppelpfeils 10 verschieblich geführt ist. Ein Antrieb sorgt für die Hin- und Herbewegung des Schlittens 9, der eine Halterung für eine Rakel 11 aufweist. Die Halterung weist eine Führung und eine Versteileinrichtung auf, um die Rakel 11 in Richtung des Doppelpfeils 12 in Höhenrichtung zu verstellen. Damit kann der Abstand der Unterkante der Rakel 11 vom Bo¬ den der Wanne 1 eingestellt werden. Die Rakel 11 kommt zum Einsatz, nachdem die Bauplattform wie in Fig. 3 dargestellt angehoben wurde, und dient dazu das Material 6 gleichmäßig unter Einstellung einer vorgegebenen Schichtdicke zu verteilen, um das im Bereich der Bauplattform 5 auftretende Materialdefizit auszugleichen und um ggf. neues Material nachzuliefern. Die sich beim Materialverteilungsvorgang ergebende Schichtdicke des Materials 6 ist durch den Abstand der Unterkante der Rakel 11 vom Boden 2 der Wanne 1 defi¬ niert .
Weiters sind in Fig. 4 beiderseits des durchsichtigen Be¬ reichs 6 des Wannenbodens 2 angeordnete Heizfolien 13 und 14 ersichtlich, die dazu dienen, das Material 6 aufzuwärmen, um dessen Viskosität herabzusetzen.
In Fig. 5 sind die Heizfolien 13 und 14 deutlicher ersichtlich. Weiters ist ein Temperatursensor 15 dargestellt, der dazu dient, die Temperatur der Heizfolie 14 bzw. des Mate¬ rials 6 zu messen.
In Fig. 6 ist die Ausbildung der Rakel 11 im Detail darges¬ tellt. Die Rakel weist zwei parallele Rakelklingen 16 und
17 auf, zwischen denen im Inneren der Rakel 11 eine Kammer
18 ausgebildet ist. An der Längsseite der Rakel 11 sind drei Überströmkanäle 19 vorgesehen, über welche Material 6 entsprechend den Pfeilen 20 in die Kammer 18 einströmen kann. Entsprechende Überströmkanäle sind auch an der rück¬ wärtigen Längsseite der Rakel 11 vorgesehen, die in Fig. 6 jedoch nicht sichtbar sind. Weiters ist die Kammer 18 an den Stirnseiten der Rakel 11 offen (Öffnungen 21), sodass auch hier ein Einströmen von Material 6 entsprechend dem Pfeil 22 ermöglicht wird. Über die obere Öffnung 25 kann erforderlichenfalls neues Material in die Kammer 18 eingeb¬ racht werden.
Die Funktionsweise der Rakel 11 wird nun anhand der Schnittansicht gemäß Fig. 7 erläutert. Bei einer Bewegung der Rakel 11 in Richtung des Pfeils 23 definiert die Unter¬ kante der Rakelklinge 16 bzw. 17 eine Materialschicht 26 mit einer vorgegebenen Schichtdicke. Die Rakelklingen 16 und 17 sind dabei in gleichem Abstand vom Boden 3 angeord¬ net. Überschüssiges Material 6 wird vor der in Bewegungs¬ richtung vorauseilenden Rakelklinge 17 hergeschoben, wobei sich eine Strömungsbewegung entsprechend dem Pfeil 24 ergibt. Wenn die Rakel 11 am Ende ihrer Bewegung gegen die Innenwand der Wanne 1 bewegt wird, wird das vor der Rakel¬ klinge 17 aufgestaute Material über die Überströmöffnungen 19 in die Kammer 18 gedrückt. Seitlich kann das Material über die seitlichen Öffnungen 21 in die Kammer 18 gelangen.
Zwischen den Rakelklingen 16 und 17 ist eine in Fig. 7 schematisch angedeutete dritte Rakelklinge 27 angeordnet, die tiefer angeordnet ist als die Rakelklingen 16 und 17. Die dritte Rakelklinge 27 berührt den Wannenboden 3 und hebt unverbrauchtes Material vom Wannenboden ab. Auf diese Weise wird das unverbrauchte Material bei jeder Hin- bzw. Herbewegung der Rakel 11 in die Kammer 18 gefördert, wo ei¬ ne Durchmischung und Homogenisierung erfolgen kann.
Dadurch, dass die Rakel 11 mit zwei Rakelklingen 16 und 17 und mit einer Kammer 18 und im Wesentlichen symmetrisch ausgebildet ist, genügt eine Hin- oder eine Herbewegung, um das Material für den nächsten Belichtungsschritt gleichmä¬ ßig zu verteilen. Dies ist ein wesentlicher Vorteil zu herkömmlichen Ausbildungen, bei denen zu diesem Zweck sowohl eine Hin- als auch ein Herbewegung erforderlich sind.
Die Arbeiten, die zu dieser Erfindung geführt haben, wurden von der Europäischen Union im Rahmen des Siebten Rahmenprogramms PHOCAM unter dem Förderungsvertrag Nr. 26043 ge¬ fördert .

Claims

Patentansprüche :
1. Vorrichtung zum Verarbeiten von hochviskosen photopo- lymerisierbarem Material zum schichtweisen Aufbau eines Formkörpers, umfassend
eine Wanne mit einem zumindest bereichsweise licht¬ durchlässigen Boden, in die photopolymerisierbares Ma¬ terial einfüllbar ist,
eine Bauplattform, die in einstellbarer Höhe über dem Wannenboden gehalten ist,
eine Belichtungseinheit, die zur ortsselektiven Belich¬ tung einer zwischen der Unterseite der Bauplattform und dem Wannenboden ausgebildeten Materialschicht von unten durch den Wannenboden ansteuerbar ist,
- eine Steuereinheit, die dazu vorbereitet ist, in aufei¬ nanderfolgenden Belichtungsschritten übereinanderliegende Schichten auf der Bauplattform jeweils mit vorge¬ gebener Geometrie durch Steuerung der Belichtungseinheit zu polymerisieren und nach jedem Belichtungsschritt für eine Schicht die Relativposition der Bau¬ plattform zum Wannenboden anzupassen, um so sukzessive den Formkörper in der gewünschten Form aufzubauen, und eine bewegbar geführte Rakel mit einer Antriebseinheit zum Hin- und Herbewegen der Rakel unter der Bauplattform hindurch,
dadurch gekennzeichnet, dass
die Rakel zwei in Bewegungsrichtung beabstandete Rakel¬ klingen aufweist, die in einstellbarem Abstand zum Wannenboden über diesen bewegbar sind,
die Wanne Wannenstirnwände aufweist, so dass die in Bewegungsrichtung vorauseilende Rakelklinge sich je¬ weils auf eine der Wannenstirnwände zu bewegt, dass zwischen den zwei Rakelklingen eine unten offene Kammer ausgebildet ist, deren Wände jeweils wenigstens eine die Wand in Bewegungsrichtung der Rakel durchset¬ zende Öffnung zur Ausbildung eines Überströmkanals auf¬ weisen, so dass sich zwischen der vorauseilenden Rakelklinge und der dieser zugewandten Wannenstirnwand auf¬ stauendes überschüssiges Material durch den wenigstens einen Überströmkanal in die Kammer gedrückt wird.
2. Vorrichtung nach Anspruchl, dadurch gekennzeichnet, dass die unten offene Kammer an den Stirnseiten zwischen den zwei Rakelklingen jeweils eine Einströmöffnung aufweist.
3. Vorrichtung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Kammer an ihrer Oberseite eine Nachfüllöffnung aufweist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass wenigstens eine dritte Rakelklinge vorgesehen wird, die bevorzugt zwischen den zwei Rakelklingen angeordnet ist und gegenüber den zwei Rakelklingen in Richtung zum Wannenboden vorragt.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die dritte Rakelklinge den Wannenboden berührt und be¬ vorzugt gegen den Wannenboden federnd andrückbar gehalten ist .
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Rakel samt der beiden äußeren Ra- kelklingen einstückig ausgebildet ist und bevorzugt aus ei- nem Polymerwerkstoff, z.B. Polytetrafluorethylen oder Po- lyoxymethylen, besteht.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine stationäre Heizeinrichtung vorge¬ sehen ist zum Aufwärmen einer Schicht des in der Wanne befindlichen photopolymerisierbaren Materials auf eine Temperatur von mindestens 30°C.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Heizeinrichtung wenigstens ein am oder im Wannenboden angeordnetes Heizelement, wie z.B. eine Heizfolie um- fasst .
9. Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Heizeinrichtung außerhalb des licht¬ durchlässigen Bodenbereichs der Wanne angeordnet ist.
10. Vorrichtung nach Anspruch 7, 8 oder 9, dadurch gekennzeichnet, dass die Heizeinrichtung sich zumindest teilweise über den lichtdurchlässigen Bodenbereich der Wanne erstreckt und lichtdurchlässig ausgebildet ist.
11. Vorrichtung nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass ein Temperatursensor vorgesehen ist, der mit der Steuereinheit zur Regelung der Heizleistung der Heizeinrichtung derart zusammenwirkt, dass eine vorgegebene Temperatur des photopolymerisierbaren Material erreicht und/oder gehalten werden kann.
12. Vorrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Rakel beheizbar ist, insbesondere mit wenigstens einem Heizelement, beispielsweise elektrischen Widerstandsheizelement ausgestattet ist.
PCT/EP2014/075061 2013-11-22 2014-11-19 Vorrichtung zum verarbeiten von photopolymerisierbarem material zum schichtweisen aufbau eines formkörpers WO2015075094A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016519349A JP6169268B2 (ja) 2013-11-22 2014-11-19 成形体の層毎の生成のために光重合可能な材料をプロセス処理するデバイス
CN201480054962.3A CN105593004B (zh) 2013-11-22 2014-11-19 用于加工可光聚合材料以逐层形成成型体的装置
US15/037,170 US9738034B2 (en) 2013-11-22 2014-11-19 Device for processing photo-polymerizable material for layer-by-layer generation of a shaped body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13450050.3A EP2875934B1 (de) 2013-11-22 2013-11-22 Vorrichtung zum Verarbeiten von photopolymerisierbarem Material zum schichtweisen Aufbau eines Formkörpers
EP13450050.3 2013-11-22

Publications (1)

Publication Number Publication Date
WO2015075094A1 true WO2015075094A1 (de) 2015-05-28

Family

ID=49841620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/075061 WO2015075094A1 (de) 2013-11-22 2014-11-19 Vorrichtung zum verarbeiten von photopolymerisierbarem material zum schichtweisen aufbau eines formkörpers

Country Status (5)

Country Link
US (1) US9738034B2 (de)
EP (1) EP2875934B1 (de)
JP (1) JP6169268B2 (de)
CN (1) CN105593004B (de)
WO (1) WO2015075094A1 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3202560A1 (de) * 2016-02-05 2017-08-09 Rolls-Royce plc Rakel für die wiederbeschichtung in einem gerät für die generative schichtfertigung
EP3396455A1 (de) 2017-04-28 2018-10-31 Technische Universität Wien Lichthärtbare zusammensetzung
EP3341187A4 (de) * 2015-08-28 2019-04-17 Formlabs, Inc. Techniken zur oberflächenbehandlung während der generativen fertigung sowie zugehörige systeme und verfahren
JP2019524519A (ja) * 2016-08-18 2019-09-05 クビキュア ゲーエムベーハー リソグラフィに基づいて三次元成形体を付加的に製造するための方法及び装置
EP3564206A1 (de) 2018-05-04 2019-11-06 Align Technology, Inc. Neue polymerisierbare monomere und deren verwendung als reaktivverdünner in härtbaren zusammensetzungen
EP3564282A1 (de) 2018-05-04 2019-11-06 Align Technology, Inc. Härtbare zusammensetzung zur verwendung in einem hochtemperatur-photopolymerisationsverfahren auf lithographiebasis und verfahren zur herstellung von vernetzten polymeren daraus
US10781275B2 (en) 2018-05-04 2020-09-22 Align Technology, Inc. Polymerizable monomers and method of polymerizing the same
WO2021087061A2 (en) 2019-10-31 2021-05-06 Align Technology, Inc. Crystallizable resins
EP3838592A1 (de) 2019-12-17 2021-06-23 Evonik Operations GmbH Zusammensetzung enthaltend polyester für die generative fertigung
WO2021178363A1 (en) 2020-03-02 2021-09-10 Align Technology, Inc. Low viscosity photo-curable resins for the direct fabrication of orthodontic appliances
WO2021183925A1 (en) 2020-03-13 2021-09-16 Align Technology, Inc. Weak covalent crosslinks in thermoset materials for increased toughness
WO2022047394A1 (en) 2020-08-31 2022-03-03 Align Technology, Inc. 3d printed composites from phase separated materials
EP4005777A1 (de) 2020-08-27 2022-06-01 Align Technology, Inc. Generative fertigung unter verwendung von variablen temperaturgesteuerten harzen
WO2022152775A1 (en) 2021-01-15 2022-07-21 Evonik Operations Gmbh Silicone urethane (meth)acrylates and their use in 3d printing resins and coating compositions
WO2022226416A1 (en) 2021-04-23 2022-10-27 Align Technology, Inc. Monomeric and polymeric compositions and methods of producing and using the same
WO2022263454A1 (de) 2021-06-14 2022-12-22 Technische Universität Wien Generative fertigungsverfahren zur herstellung von dreidimensionalen gegenständen
WO2022272142A1 (en) 2021-06-24 2022-12-29 Align Technology, Inc. Multi-valent polymerizable compositions and methods of producing and using the same
WO2023049377A1 (en) 2021-09-24 2023-03-30 Align Technology, Inc. Palatal expansion appliances and methods of producing and using the same
WO2023076570A1 (en) 2021-10-28 2023-05-04 Align Technology, Inc. Systems and methods for post-processing additively manufactured objects
WO2023130042A1 (en) 2021-12-30 2023-07-06 Align Technology, Inc. Synthesis of para-alkylated syringyl (meth)acrylate derivatives and photopolymerizable compositions for additive manufacturing in dental applications
WO2023130034A1 (en) 2021-12-30 2023-07-06 Align Technology, Inc. Devices and methods for controlling particle distribution in polymers
WO2023164569A1 (en) 2022-02-23 2023-08-31 Align Technology, Inc. Control systems for additive manufacturing and associated methods
WO2024010877A1 (en) 2022-07-06 2024-01-11 Align Technology, Inc. 3d printable material for the fabrication of printed dental attachments and dental attachment placement devices
WO2024040029A2 (en) 2022-08-15 2024-02-22 Align Technology, Inc. Methods for producing additively manufactured objects with heterogeneous properties
WO2024059749A2 (en) 2022-09-15 2024-03-21 Align Technology, Inc. Systems and methods for modifying surfaces of additively manufactured objects
WO2024064832A2 (en) 2022-09-22 2024-03-28 Cubicure Gmbh Modular build platforms for additive manufacturing
WO2024086752A1 (en) 2022-10-20 2024-04-25 Align Technology, Inc. Systems and methods for generating directly manufacturable dental appliances
WO2024092097A1 (en) 2022-10-26 2024-05-02 Align Technology, Inc. Additive manufacturing systems with fixed substrates
WO2024092007A1 (en) 2022-10-26 2024-05-02 Align Technology, Inc. Materials and additively manufactured objects with mechanically interlocking elements
WO2024092041A1 (en) 2022-10-26 2024-05-02 Align Technology, Inc. Curable compositions comprising a polymerizable reactive diluent for fabrication of orthodontic appliances
WO2024097181A1 (en) 2022-11-01 2024-05-10 Align Technology, Inc. Prefabricated support structures and/or overlays for additive manufacturing

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017165832A1 (en) * 2016-03-25 2017-09-28 Sprintray Inc. System and method for three-dimensional printing
AT518465B1 (de) * 2016-03-25 2017-11-15 Stadlmann Klaus Anlage und Verfahren zum Generieren eines dreidimensionalen Körpers
EP3263300A1 (de) * 2016-06-27 2018-01-03 Siemens Aktiengesellschaft Beschichtungsmechanismus und -vorrichtung zur additiven fertigung
CN106515011B (zh) * 2016-08-09 2019-07-05 杭州乐一新材料科技有限公司 一种树脂槽及3d打印设备
US11130286B2 (en) * 2016-09-07 2021-09-28 Canon Kabushiki Kaisha Three-dimensional manufacturing apparatus, three-dimensional manufactured object producing method, and container for three-dimensional manufacturing apparatus
CN106426914A (zh) * 2016-10-11 2017-02-22 张雅文 一种铺底挂扫式高速sla激光3d打印机
CN108081598A (zh) * 2016-11-22 2018-05-29 湖南华曙高科技有限责任公司 光固化成型设备及其加热装置
CN114750408A (zh) * 2017-05-15 2022-07-15 霍洛公司 粘性膜三维打印系统和方法
EP3418033B1 (de) * 2017-06-19 2020-01-01 Cubicure GmbH Verfahren und vorrichtung zur lithographiebasierten generativen fertigung von dreidimensionalen formkörpern
KR101969075B1 (ko) * 2017-08-21 2019-04-15 주식회사 씨에이텍 3차원 프린터의 리코팅 시스템
WO2019241253A1 (en) 2018-06-12 2019-12-19 Lightforce Orthodontics, Inc. Ceramic processing and design for the direct manufacture of customized labial and lingual orthodontic clear aligner attachments
CN108656308A (zh) * 2018-06-28 2018-10-16 清紫生物科技(深圳)有限公司 应用于高固相陶瓷浆料的3d打印机
US11104075B2 (en) 2018-11-01 2021-08-31 Stratasys, Inc. System for window separation in an additive manufacturing process
CN216941832U (zh) 2018-11-01 2022-07-12 斯特塔西公司 增材制造系统
CN109109313A (zh) * 2018-11-01 2019-01-01 上海梓域材料科技有限公司 光敏材料填充系统及采用该系统的3d打印机
EP3722074B1 (de) * 2019-04-09 2022-06-08 DENTSPLY SIRONA Inc. Verfahren zur verhinderung von flüssigkeitssammlung/-absaugung bei der generativen fertigung von 3d-objekten
CA3136654C (en) * 2019-04-17 2024-04-23 Origin Laboratories, Inc. Method for regulating temperature at a resin interface in an additive manufacturing process
US11376798B2 (en) 2019-08-02 2022-07-05 Stratasys, Inc. Method for interlayer feedback control and failure prevention in an additive manufacturing process
CN111002583A (zh) * 2019-12-04 2020-04-14 上海联泰科技股份有限公司 一种温控涂覆装置、3d打印设备及方法
DE102020125403A1 (de) 2020-09-29 2022-03-31 Mühlbauer Technology Gmbh 3D-Drucker und dessen Verwendung
US11865780B2 (en) 2021-02-26 2024-01-09 General Electric Company Accumalator assembly for additive manufacturing
US11951679B2 (en) 2021-06-16 2024-04-09 General Electric Company Additive manufacturing system
US11731367B2 (en) 2021-06-23 2023-08-22 General Electric Company Drive system for additive manufacturing
US11958250B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11958249B2 (en) 2021-06-24 2024-04-16 General Electric Company Reclamation system for additive manufacturing
US11826950B2 (en) 2021-07-09 2023-11-28 General Electric Company Resin management system for additive manufacturing
US11813799B2 (en) 2021-09-01 2023-11-14 General Electric Company Control systems and methods for additive manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103368A1 (de) * 1999-11-19 2001-05-30 Meiko Co., Ltd. Verfahren und Vorrichtung zur Herstellung von einem dreidimensionalen laminierten Gegenstand aus einer lichthardenden Flüssigkeit
DE102005022308A1 (de) * 2005-05-13 2006-11-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
DE102006056422B3 (de) * 2006-11-28 2008-04-17 Cl Schutzrechtsverwaltungs Gmbh Beschichter- oder Ausgleichseinrichtung für eine Bauvorrichtung zur Erstellung von Formteilen aus Baumaterial
WO2008061764A1 (de) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen herstellen eines dreidimensionalen objekts
EP2505341A1 (de) * 2011-03-29 2012-10-03 Ivoclar Vivadent AG Verfahren zum schichtweisen Aufbau eines Formkörpers aus hochviskosem photopolymerisierbarem Material
EP2612747A2 (de) * 2012-01-06 2013-07-10 Evonik Industries AG Vorrichtung zur schichtweisen Herstellung von dreidimensionalen Objekten

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5137662A (en) * 1988-11-08 1992-08-11 3-D Systems, Inc. Method and apparatus for production of three-dimensional objects by stereolithography
DE4402108A1 (de) * 1994-01-26 1994-06-30 Voith Gmbh J M Maschine zum Streichen einer laufenden Bahn, insbesondere einer Papierbahn
DE102006053121B3 (de) * 2006-11-10 2007-12-27 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes mittels eines Beschichters für pulverförmiges Aufbaumaterial

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1103368A1 (de) * 1999-11-19 2001-05-30 Meiko Co., Ltd. Verfahren und Vorrichtung zur Herstellung von einem dreidimensionalen laminierten Gegenstand aus einer lichthardenden Flüssigkeit
DE102005022308A1 (de) * 2005-05-13 2006-11-23 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts mit einem beheizten Beschichter für pulverförmiges Aufbaumaterial
WO2008061764A1 (de) * 2006-11-22 2008-05-29 Eos Gmbh Electro Optical Systems Vorrichtung zum schichtweisen herstellen eines dreidimensionalen objekts
DE102006056422B3 (de) * 2006-11-28 2008-04-17 Cl Schutzrechtsverwaltungs Gmbh Beschichter- oder Ausgleichseinrichtung für eine Bauvorrichtung zur Erstellung von Formteilen aus Baumaterial
EP2505341A1 (de) * 2011-03-29 2012-10-03 Ivoclar Vivadent AG Verfahren zum schichtweisen Aufbau eines Formkörpers aus hochviskosem photopolymerisierbarem Material
EP2612747A2 (de) * 2012-01-06 2013-07-10 Evonik Industries AG Vorrichtung zur schichtweisen Herstellung von dreidimensionalen Objekten

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3341187A4 (de) * 2015-08-28 2019-04-17 Formlabs, Inc. Techniken zur oberflächenbehandlung während der generativen fertigung sowie zugehörige systeme und verfahren
US11351721B2 (en) 2015-08-28 2022-06-07 Formlabs, Inc. Techniques for surface preparation during additive fabrication and related systems and methods
US10682811B2 (en) 2015-08-28 2020-06-16 Formlabs, Inc. Techniques for surface preparation during additive fabrication and related systems and methods
US10442176B2 (en) 2016-02-05 2019-10-15 Rolls-Royce Plc Additive layer manufacturing
EP3202560A1 (de) * 2016-02-05 2017-08-09 Rolls-Royce plc Rakel für die wiederbeschichtung in einem gerät für die generative schichtfertigung
JP2019524519A (ja) * 2016-08-18 2019-09-05 クビキュア ゲーエムベーハー リソグラフィに基づいて三次元成形体を付加的に製造するための方法及び装置
JP7097886B2 (ja) 2016-08-18 2022-07-08 クビキュア ゲーエムベーハー リソグラフィに基づいて三次元成形体を付加的に製造するための方法及び装置
US11492464B2 (en) 2017-04-28 2022-11-08 Technische Universität Wien Light-curable composition
EP3396455A1 (de) 2017-04-28 2018-10-31 Technische Universität Wien Lichthärtbare zusammensetzung
WO2018197677A1 (de) 2017-04-28 2018-11-01 Technische Universität Wien Lichthärtbare zusammensetzung
US10781274B2 (en) 2018-05-04 2020-09-22 Align Technology, Inc. Polymerizable monomers and method of polymerizing the same
EP3800176A1 (de) 2018-05-04 2021-04-07 Align Technology, Inc. Neue polymerisierbare monomere und deren verwendung als reaktivverdünner in härtbaren zusammensetzungen
US11174338B2 (en) 2018-05-04 2021-11-16 Align Technology, Inc. Curable composition for use in a high temperature lithography-based photopolymerization process and method of producing crosslinked polymers therefrom
US10781275B2 (en) 2018-05-04 2020-09-22 Align Technology, Inc. Polymerizable monomers and method of polymerizing the same
EP4272962A2 (de) 2018-05-04 2023-11-08 Align Technology, Inc. Härtbare zusammensetzung zur verwendung in einem hochtemperatur-photopolymerisationsverfahren auf lithographiebasis und verfahren zur herstellung von vernetzten polymeren daraus
EP3564282A1 (de) 2018-05-04 2019-11-06 Align Technology, Inc. Härtbare zusammensetzung zur verwendung in einem hochtemperatur-photopolymerisationsverfahren auf lithographiebasis und verfahren zur herstellung von vernetzten polymeren daraus
EP3564206A1 (de) 2018-05-04 2019-11-06 Align Technology, Inc. Neue polymerisierbare monomere und deren verwendung als reaktivverdünner in härtbaren zusammensetzungen
US11542362B2 (en) 2018-05-04 2023-01-03 Align Technology, Inc. Curable composition for use in a high temperature lithography-based photopolymerization process and method of producing crosslinked polymers therefrom
WO2021087061A2 (en) 2019-10-31 2021-05-06 Align Technology, Inc. Crystallizable resins
EP3838592A1 (de) 2019-12-17 2021-06-23 Evonik Operations GmbH Zusammensetzung enthaltend polyester für die generative fertigung
WO2021122058A1 (en) 2019-12-17 2021-06-24 Evonik Operations Gmbh Additive manufacturing process with a composition comprising polyesters
WO2021178363A1 (en) 2020-03-02 2021-09-10 Align Technology, Inc. Low viscosity photo-curable resins for the direct fabrication of orthodontic appliances
US11851510B2 (en) 2020-03-02 2023-12-26 Align Technology, Inc. Low viscosity photo-curable resins for the direct fabrication of orthodontic appliances
US11845868B2 (en) 2020-03-13 2023-12-19 Align Technology, Inc. Weak covalent crosslinks in thermoset materials for increased toughness
WO2021183925A1 (en) 2020-03-13 2021-09-16 Align Technology, Inc. Weak covalent crosslinks in thermoset materials for increased toughness
EP4005777A1 (de) 2020-08-27 2022-06-01 Align Technology, Inc. Generative fertigung unter verwendung von variablen temperaturgesteuerten harzen
US11661468B2 (en) 2020-08-27 2023-05-30 Align Technology, Inc. Additive manufacturing using variable temperature-controlled resins
WO2022047394A1 (en) 2020-08-31 2022-03-03 Align Technology, Inc. 3d printed composites from phase separated materials
WO2022152775A1 (en) 2021-01-15 2022-07-21 Evonik Operations Gmbh Silicone urethane (meth)acrylates and their use in 3d printing resins and coating compositions
WO2022226416A1 (en) 2021-04-23 2022-10-27 Align Technology, Inc. Monomeric and polymeric compositions and methods of producing and using the same
WO2022226424A1 (en) 2021-04-23 2022-10-27 Align Technology, Inc. Photopolymerizable block polymers and methods of producing and using the same
WO2022263454A1 (de) 2021-06-14 2022-12-22 Technische Universität Wien Generative fertigungsverfahren zur herstellung von dreidimensionalen gegenständen
WO2022272142A1 (en) 2021-06-24 2022-12-29 Align Technology, Inc. Multi-valent polymerizable compositions and methods of producing and using the same
WO2023049377A1 (en) 2021-09-24 2023-03-30 Align Technology, Inc. Palatal expansion appliances and methods of producing and using the same
WO2023076570A1 (en) 2021-10-28 2023-05-04 Align Technology, Inc. Systems and methods for post-processing additively manufactured objects
US11945166B2 (en) 2021-10-28 2024-04-02 Align Technology, Inc. Methods for cleaning and post-curing additively manufactured objects
WO2023130034A1 (en) 2021-12-30 2023-07-06 Align Technology, Inc. Devices and methods for controlling particle distribution in polymers
WO2023130042A1 (en) 2021-12-30 2023-07-06 Align Technology, Inc. Synthesis of para-alkylated syringyl (meth)acrylate derivatives and photopolymerizable compositions for additive manufacturing in dental applications
WO2023164569A1 (en) 2022-02-23 2023-08-31 Align Technology, Inc. Control systems for additive manufacturing and associated methods
WO2024010877A1 (en) 2022-07-06 2024-01-11 Align Technology, Inc. 3d printable material for the fabrication of printed dental attachments and dental attachment placement devices
WO2024040029A2 (en) 2022-08-15 2024-02-22 Align Technology, Inc. Methods for producing additively manufactured objects with heterogeneous properties
WO2024059749A2 (en) 2022-09-15 2024-03-21 Align Technology, Inc. Systems and methods for modifying surfaces of additively manufactured objects
WO2024064832A2 (en) 2022-09-22 2024-03-28 Cubicure Gmbh Modular build platforms for additive manufacturing
WO2024086752A1 (en) 2022-10-20 2024-04-25 Align Technology, Inc. Systems and methods for generating directly manufacturable dental appliances
WO2024092097A1 (en) 2022-10-26 2024-05-02 Align Technology, Inc. Additive manufacturing systems with fixed substrates
WO2024092007A1 (en) 2022-10-26 2024-05-02 Align Technology, Inc. Materials and additively manufactured objects with mechanically interlocking elements
WO2024092041A1 (en) 2022-10-26 2024-05-02 Align Technology, Inc. Curable compositions comprising a polymerizable reactive diluent for fabrication of orthodontic appliances
WO2024097181A1 (en) 2022-11-01 2024-05-10 Align Technology, Inc. Prefabricated support structures and/or overlays for additive manufacturing

Also Published As

Publication number Publication date
EP2875934A1 (de) 2015-05-27
CN105593004B (zh) 2017-09-12
CN105593004A (zh) 2016-05-18
US20160279869A1 (en) 2016-09-29
EP2875934B1 (de) 2017-04-05
JP2016538151A (ja) 2016-12-08
US9738034B2 (en) 2017-08-22
JP6169268B2 (ja) 2017-07-26

Similar Documents

Publication Publication Date Title
EP2875934B1 (de) Vorrichtung zum Verarbeiten von photopolymerisierbarem Material zum schichtweisen Aufbau eines Formkörpers
EP3071394B1 (de) Vorrichtung zum verarbeiten von photopolymerisierbarem material zum schichtweisen aufbau eines formkörpers
EP3284583B1 (de) Verfahren und vorrichtung zur lithographiebasierten generativen fertigung von dreidimensionalen formkörpern
EP2505341B1 (de) Verfahren zum schichtweisen Aufbau eines Formkörpers aus hochviskosem photopolymerisierbarem Material
EP3393754B1 (de) Verfahren und vorrichtung zur herstellung eines objekts unter einsatz einer 3d-druckvorrichtung
EP2083992B1 (de) Kontinuierliches generatives verfahren und vorrichtung zur herstellung eines dreidimensionalen objekts
EP2337667B1 (de) Vorrichtung und verfahren zur verarbeitung von lichtpolymerisierbarem material zum schichtweisen aufbau von formkörpern
EP2337668B1 (de) Verfahren und vorrichtung zur verarbeitung von lichtpolymerisierbarem material zum schichtweisen aufbau eines formkörpers
DE60012667T2 (de) Vorrichtung zur Herstellung eines dreidimensionalen laminierten Gegenstandes aus einer lichthärtenden Flüssigkeit
EP2855119B1 (de) Verfahren zum aufbau eines dreidimensionalen formkörpers
WO2019063094A1 (de) 3d-gedruckte formteile aus mehr als einem silicon-material
EP2251185A1 (de) Verfahren und Vorrichtung zur generativen Herstellung eines Formkörpers mit non-planaren Schichten
EP3297813B1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
AT518465A1 (de) Anlage und Verfahren zum Generieren eines dreidimensionalen Körpers
EP3157735A1 (de) Effizienteres verfahren zur herstellung dreidimensionaler objekte mittels rapid-prototyping
EP3290188A1 (de) Verfahren zum verfestigen eines photopolymerisierbaren, diffus reflektierenden materials
DE102015225300A1 (de) Verfahren und Anordnungen zur Verringerung der Grenzflächenadhäsion bei der Photopolymerisation
EP3774289B1 (de) Verfahren und anordnung zur kontinuierlichen oder quasikontinuierlichen generativen fertigung von bauteilen
DE4110903C2 (de)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14800059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016519349

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15037170

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14800059

Country of ref document: EP

Kind code of ref document: A1