WO2015074603A1 - 提高led光源良率的方法、荧光粉及led光源 - Google Patents

提高led光源良率的方法、荧光粉及led光源 Download PDF

Info

Publication number
WO2015074603A1
WO2015074603A1 PCT/CN2014/091897 CN2014091897W WO2015074603A1 WO 2015074603 A1 WO2015074603 A1 WO 2015074603A1 CN 2014091897 W CN2014091897 W CN 2014091897W WO 2015074603 A1 WO2015074603 A1 WO 2015074603A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
led
excitation
conversion
light source
Prior art date
Application number
PCT/CN2014/091897
Other languages
English (en)
French (fr)
Inventor
赵昆
王森
罗威
Original Assignee
四川新力光源股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310606855.4A external-priority patent/CN104659189B/zh
Application filed by 四川新力光源股份有限公司 filed Critical 四川新力光源股份有限公司
Priority to US15/039,319 priority Critical patent/US9923125B2/en
Priority to EP14864417.2A priority patent/EP3076441A4/en
Publication of WO2015074603A1 publication Critical patent/WO2015074603A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77342Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77347Silicon Nitrides or Silicon Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/508Wavelength conversion elements having a non-uniform spatial arrangement or non-uniform concentration, e.g. patterned wavelength conversion layer, wavelength conversion layer with a concentration gradient of the wavelength conversion material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the invention relates to a method for improving the optical performance of an LED light source, a light conversion filter obtained by the method and a corresponding LED light source; and specifically relates to an LED light source which can be applied to an LED chip with different emission wavelengths, and reduces The degree of dispersion of the chromaticity distribution, the method of increasing the yield thereof, the light conversion filter obtained by the method, particularly the phosphor, and the corresponding LED light source obtained by the method.
  • LED is the leading light source technology in the field of backlighting of incandescent lamps and fluorescent lamps. It has been widely used in lighting, display and backlight fields due to its advantages of energy saving, durability and pollution-free, and it is used as a new generation of lighting. The way has gradually emerged.
  • LEDs mainly use a blue LED chip or an ultraviolet (UV) LED chip together with a light conversion filter that converts the LED chip to emit light to realize visible light of white light or other colors.
  • chromaticity is the key, because chromaticity is the physical color of the light itself, especially In terms of light visible to the naked eye, the most sensitive to human light is the difference in color, followed by the brightness of different light (light effect), the warm and cold effect of light (color temperature), and the trueness of color (color rendering index). ) and so on.
  • the difference in chromaticity of light is too large, that is, the degree of dispersion of the chromaticity distribution is too large, which can be known by the human eye, which means that there is a quality difference in the LED light source, and the yield is relatively low.
  • LED light source with uniform chromaticity and high yield of light source. Therefore, according to the chromaticity value of light emitted by different LED light sources, different grades are divided; when preparing LED light source, one or two are preset.
  • the gear level is the qualified grade, the LED light source falling within the range of this grade is qualified, the ratio of the total number of qualified products to the total number of expected products is the yield; the LED light source falling outside the range of this grade is not Qualified products.
  • the influence of the chromaticity distribution of the LED light source is mainly determined by the wavelength of the light emitted by the LED chip.
  • different emission waves are used.
  • the luminescence properties of the emitted light excited by the long LED chip are quite different, especially the difference in chromaticity, which leads to the difference in chromaticity distribution of the light emitted by different LED light sources.
  • the LED chip emits most of the short-wavelength blue light and ultraviolet light (UV), its optical performance is difficult to detect. Therefore, if the LED chip itself produced by direct detection is used, the chromaticity distribution of the light emitted by the LED chip itself is not accurate enough.
  • the cutting method of the LED chip is usually adopted.
  • the patent document of CN201110036162.7 adopts an optical property of using a phosphor to convert light emitted from an LED chip to evaluate the wavelength of light emitted by the LED chip. Therefore, by adjusting the type of the phosphor and the content of the phosphor, the chromaticity distribution of the light emitted by the LED light source can be adjusted to improve the yield.
  • the above-mentioned improvement of the cutting method does not effectively utilize the LED chip which has fallen outside the gear stage, and the use of the phosphor as the conversion medium means that each LED chip must be inspected beforehand to be equipped with corresponding The phosphor powder causes the production process of the LED light source to be too cumbersome, which restricts the production capacity of the LED light source.
  • the present invention provides an LED light source which can be applied to an LED chip having different emission wavelengths, which reduces the dispersion degree of the chromaticity distribution and improves the yield thereof, and the light conversion filter obtained by the method
  • the phosphor, in particular, and the corresponding LED source obtained by the method are provided.
  • the technical solution of the first aspect of the present invention is a method for improving the yield of an LED light source, wherein the LED chip is packaged by using a light wavelength conversion component.
  • the light wavelength conversion component has at least two light conversion filters of light excitation performance; the two light conversion filters emit light after being converted from low to high wavelengths of light emitted by the LED chip.
  • the luminous intensity shows an opposite trend.
  • the two photoexcitation performance light conversion filters are a compliant excitation light conversion filter and a counter excitation light conversion filter, respectively;
  • the compliant excitation light conversion filter has a tendency to emit light from a weak to strong state after the wavelength of the light emitted by the LED chip is excited from low to high;
  • the inverse excitation light conversion filter has a tendency to emit light from strong to weak after the wavelength of the light emitted by the LED chip is excited from low to high.
  • the LED chip emits light of ultraviolet light, violet light or blue light.
  • the LED chip emits light at a wavelength of 380 nm to 480 nm.
  • the compliant excitation light conversion filter is excited by the wavelength of the light emitted from the LED chip from 380 nm to 480 nm, and the intensity of the emitted light after the conversion is linear or curved from a weak to a strong trend;
  • the slope is K1, K1>0; the slope of the curve is K2, K2>0.
  • the compliant excitation light conversion filter is excited by the wavelength of the light emitted from the LED chip from 400 nm to 465 nm, and the intensity of the emitted light after the conversion is from a weak to a strong trend is a straight line or a curve, a straight line
  • the slope is K1, K1>0; the slope of the curve is K2, K2>0.
  • the slope K1 of the straight line is: 0.1 ⁇ K1 ⁇ 10; the slope K2 of the curve gradually increases or decreases, and K2 is: 0.1 ⁇ K2 ⁇ 10.
  • the slope K1 of the straight line is: 0.5 ⁇ K1 ⁇ 2; the slope K2 of the curve gradually increases or decreases, and K2 is: 0.5 ⁇ K2 ⁇ 2.
  • the inverse excitation light conversion filter is in a straight line or a curve when the wavelength of the light emitted by the LED chip is increased from 380 nm to 480 nm, and the intensity of the emitted light changes from strong to weak after the conversion;
  • the slope of the curve is K1', K1' ⁇ 0; the slope of the curve is K2', K2' ⁇ 0.
  • the inverse excitation light conversion filter is excited by the wavelength of the light emitted from the LED chip from 400 nm to 465 nm, and the intensity of the emitted light after the conversion is linear or curved from strong to weak, and the straight line
  • the slope of the curve is K1', K1' ⁇ 0; the slope of the curve is K2', K2' ⁇ 0.
  • the slope K1' of the straight line is: -10 ⁇ K1' ⁇ -0.1; the slope K2' of the curve gradually increases or decreases, and K2' is: -10 ⁇ K2' ⁇ -0.1.
  • the slope K1' of the straight line is: -2 ⁇ K1' ⁇ -0.5; the slope K2' of the curve gradually increases or decreases, and K2' is: -2 ⁇ K2' ⁇ -0.5.
  • the weight ratio ⁇ of the compliant excitation light conversion filter and the inverse excitation light conversion filter is 1:100 ⁇ 100:1.
  • the weight ratio ⁇ of the compliant excitation light conversion filter and the counter excitation light conversion filter is 1:10 ⁇ 10:1.
  • the weight ratio ⁇ of the compliant excitation light conversion filter and the inverse excitation light conversion filter is 1:2 ⁇ 2:1.
  • the compliant excitation light conversion filter is excited by the wavelength of the light emitted from the LED chip from 380 nm to 480 nm, and the intensity of the emitted light after the conversion is linear or curved from weak to strong;
  • the slope K1 of the straight line is: 0.1 ⁇ K1 ⁇ 10; the slope K2 of the curve gradually increases or decreases, and K2 is: 0.1 ⁇ K2 ⁇ 10;
  • the inverse excitation light conversion filter is in the LED chip
  • the wavelength of the emitted light increases from 380 nm to 480 nm, and the intensity of the emitted light after conversion is linear or curved from strong to weak;
  • the slope of the straight line K1' is: -10 ⁇ K1' ⁇ -0.1;
  • the slope K2' of the curve gradually increases or decreases gradually, and K2' is: -10 ⁇ K2' ⁇ -0.1;
  • the weight ratio ⁇ of the conversion filter is 1:10
  • the compliant excitation light conversion filter and the reverse excitation light conversion is: 1:10 ⁇ ⁇ ⁇ 1:1; when the absolute value of any one of the K1/K1', K2/K2', K1/K2' or K2/K1' is less than 1
  • the weight ratio ⁇ of the compliant excitation light conversion filter and the counter excitation light conversion filter is: 1:1 ⁇ ⁇ ⁇ 10:1.
  • the light wavelength conversion component is located on or apart from the surface of the LED chip.
  • the light conversion filters in the light wavelength conversion component are mixed and disposed on the surface of the LED chip or disposed apart from the LED chip, or the light conversion filters in the light wavelength conversion component are independently set.
  • the surface of the LED chip is disposed apart from the LED chip.
  • the LED light source emits light including white light.
  • the light conversion filter is a phosphor.
  • the phosphor is a phosphor.
  • the invention also provides the technical solution of the second aspect, that is, an optical wavelength conversion component that improves the yield of the LED light source:
  • the light wavelength conversion component has at least two light conversion filters of light excitation performance; the two light conversion filters emit light after being converted from low to high wavelengths of light emitted by the LED chip.
  • the luminous intensity shows an opposite trend.
  • the two photoexcitation performance light conversion filters are a compliant excitation light conversion filter and a counter excitation light conversion filter, respectively;
  • the compliant excitation light conversion filter has a tendency to emit light from a weak to strong state after the wavelength of the light emitted by the LED chip is excited from low to high;
  • the inverse excitation light conversion filter has a tendency to emit light from strong to weak after the wavelength of the light emitted by the LED chip is excited from low to high.
  • the light conversion filter is a phosphor.
  • the light conversion filter is a phosphor; the cis-excited phosphor is excited by the wavelength of the light emitted from the LED chip from 380 nm to 480 nm, and the intensity of the emitted light is weak to strong after the conversion.
  • the counter-excited phosphor is a linear or curved trend from the strong to the weak trend when the wavelength of the light emitted by the LED chip is increased from 380 nm to 480 nm.
  • the slope of the straight line is K1', K1'. ⁇ 0; the slope K2' of the curve gradually increases or decreases gradually, and K2' ⁇ 0.
  • the absolute values of the K1, K2, K1', K2' range from 0.5-2.
  • the weight ratio of the cis-excited phosphor to the counter-excited phosphor ⁇ is: 1:10 ⁇ ⁇ ⁇ 1:1; when the absolute value of any of K1/K1', K2/K2', K1/K2' or K2/K1' is less than 1, the cis-excited phosphor
  • the weight ratio ⁇ with the counter-excited phosphor is: 1:1 ⁇ ⁇ ⁇ 10: 1.
  • the compliant excitation light conversion filter is selected from the group consisting of aluminate, silicate, and nitride; and the reverse excitation light conversion filter is selected from the group consisting of aluminate and silicon. Any of an acid salt or a nitride.
  • the technical solution of the third aspect provided by the present invention is the use of any of the foregoing optical wavelength conversion components to reduce the dispersion of the chromaticity distribution of the light emitted by the LED device in the LED field and to improve the yield.
  • the LED device is an LED chip or an LED light source that emits secondary light.
  • the LED light source that emits secondary light is a white light LED light source.
  • the LED field includes LED lighting and LED display.
  • the optical wavelength conversion component also reduces the application of color temperature, light effect or color rendering index dispersion of light emitted by the LED device in the LED field.
  • the present invention further provides a technical solution of the fourth aspect, that is, an LED light source for improving yield, the LED light source comprising an LED chip and a light wavelength conversion component;
  • the light wavelength conversion component has at least two light conversion filters of light excitation performance; the two light conversion filters emit light after being converted from low to high wavelengths of light emitted by the LED chip.
  • the luminous intensity shows an opposite trend.
  • the two photoexcitation performance light conversion filters are a compliant excitation light conversion filter and a counter excitation light conversion filter, respectively;
  • the compliant excitation light conversion filter has a tendency to emit light from a weak to strong state after the wavelength of the light emitted by the LED chip is excited from low to high;
  • the inverse excitation light conversion filter has a tendency to emit light from strong to weak after the wavelength of the light emitted by the LED chip is excited from low to high.
  • the present invention further provides the technical solution of the fifth aspect, that is, an LED light source device for improving yield, the LED light source device comprising an LED light source emitting secondary light, and a second light wavelength conversion component;
  • the LED light source includes an LED chip and a first optical wavelength conversion component;
  • the second light wavelength conversion component has at least two light conversion filters of light excitation performance; the two light conversion filters are excited by a wavelength of light emitted from the LED chip from low to high. The intensity of the emitted light exhibits an opposite trend.
  • the two photoexcitation performance light conversion filters are a compliant excitation light conversion filter and a counter excitation light conversion filter, respectively;
  • the compliant excitation light conversion filter has a tendency to emit light from a weak to strong state after the wavelength of the light emitted by the LED chip is excited from low to high;
  • the inverse excitation light conversion filter has a tendency to emit light from strong to weak after the wavelength of the light emitted by the LED chip is excited from low to high.
  • the LED light source that emits secondary light is a white light LED light source.
  • the first light wavelength conversion member is any one or more of phosphors.
  • the light conversion filter in the second optical wavelength conversion component is a phosphor
  • the compliant excitation phosphor is any one of an aluminate, a silicate, and a nitride
  • the counter-excited phosphor is Any of aluminate, silicate, and nitride.
  • the light conversion filter of the present invention is a light that can absorb light of a certain wavelength and convert it into light of another wavelength; or a light wavelength conversion component that absorbs part of light for conversion and another part of which directly transmits light.
  • the light conversion filter of the present invention may be a luminescent powder, which is a luminescent powder for LED; the existing luminescent powder can be classified into three types: phosphor, phosphor powder and afterglow powder.
  • the trend of the illuminating intensity of the present invention from weak to strong or from strong to weak respectively means that the compliant excitation light conversion filter is excited by the wavelength of the light emitted from the LED chip gradually increasing from low to high.
  • the intensity of the emitted light of the emitted light of the LED chip after being converted by the compliant excitation light conversion filter exhibits a tendency from weak to strong or from strong to weak, that is, a tendency of gradually increasing or decreasing.
  • the trend does not mean that at each excitation wavelength, after the conversion of the corresponding light conversion filter, the luminescence intensity of the resulting light relative to the adjacent small wavelength excitation conversion is larger or smaller; the more accurate definition is The overall trend of a set of luminous intensity data of a set of LED chips obtained by the conversion of the light conversion filter of the present invention, that is, the overall increase with the increase of the light emitted by the LED chip or decrease with the increase of the light emitted by the LED chip .
  • the LED chip of the present invention is a semiconductor device that does not include a light wavelength conversion member, that is, a light-emitting powder.
  • the LED light source of the present invention comprises an LED chip and a light wavelength conversion component, and the primary light directly emitted from the LED chip is converted into secondary light emitted from the LED light source after being converted by the light wavelength conversion component.
  • the LED device of the present invention refers to an LED chip or an LED light source that emits secondary light.
  • the LED light source device of the present invention includes an LED light source that emits secondary light and a second light wavelength conversion component, the LED light source that emits secondary light includes an LED chip and a first light wavelength conversion component; the first light wavelength conversion
  • the component may be any luminescent powder or the like used in the prior art, and the second optical wavelength conversion component is the optical wavelength conversion component of the present invention, that is, the chromaticity distribution can be reduced and the LED yield can be improved according to the present invention. Glowing powder.
  • Both the compliant excitation light conversion filter and the reverse excitation light conversion filter of the present invention are named according to their different tendency to exhibit post-conversion luminous intensity under excitation of different LED chip emission wavelengths.
  • the core idea of the technical solution of the present invention is to provide a method or product for preparing LED chips with different emission wavelengths into the same target level on the basis of LED chips having different emission wavelengths obtained under the existing LED chip fabrication conditions.
  • the color of the LED light source, and the obtained chromaticity value of the light emitted by the LED light source, and the color obtained by the ordinary LED light source obtained by packaging the LED chip with the light wavelength conversion component of the existing single or existing combination under the same standard test condition The degree of dispersion, the former is significantly lower than the latter, that is, the chromaticity distribution of the former is significantly lower than the latter.
  • the present invention mainly adopts four technical solutions.
  • the core technical features are to adopt a special optical wavelength conversion component, that is,
  • the light wavelength conversion component includes at least two light conversion filters having different light excitation properties, and the two light conversion filters are emitted after the conversion of the wavelength of the light emitted by the LED chip from low to high.
  • the luminous intensity of light exhibits an opposite trend.
  • a compliant excitation light conversion filter and a counter excitation light conversion filter are used; the compliant excitation light conversion filter is converted from low to high excitation wavelength of the LED chip, after being converted by the LED chip The intensity of the emitted light exhibits a tendency from weak to strong; the inverse excitation light conversion filter is excited from the low to high excitation of the wavelength of the light emitted by the LED chip, and the intensity of the emitted light after the conversion thereof is strong. To a weak trend.
  • the method for improving the yield of the LED light source or the optical wavelength conversion component provided by the invention adopts the special optical wavelength conversion component provided by the invention; the technical solution of the invention mainly utilizes the two optical excitation properties of the invention
  • the opposite light conversion filter achieves the effect of averaging the light obtained by the high-wavelength excitation conversion and the low-wavelength excitation conversion. Since the light emitted by the LED chip is both high-band and low-band, it will be absorbed and converted by the two kinds of light-converting filters, and both will be emitted simultaneously with different converted light. To the average effect on chromaticity.
  • the low-band light emitted by the LED chip has only one light intensity conversion light, and the high-band light also has only one light.
  • the intensity of the converted light, the difference between the two converted light is large, which will lead to a large difference in the chromaticity of the light emitted by the LED light source.
  • the invention also adopts the above-mentioned core technical solutions, and provides a more preferable technical solution, for example, adopting a specific range of the wavelength of the excitation light, and the inclination angle, the slope or the slope of the curve of the intensity of the converted light intensity after excitation is within a certain range.
  • a specific range of the wavelength of the excitation light, and the inclination angle, the slope or the slope of the curve of the intensity of the converted light intensity after excitation is within a certain range.
  • the optical wavelength conversion component of the present invention can be directly applied to an LED chip to prepare an LED light source, and can also be applied to chroma adjustment of an existing finished LED light source, and the optical wavelength conversion component of the present invention can be prepared as an LED light source.
  • the performance compensating device can adjust the chromaticity distribution of the LED light source that has been converted by the phosphor.
  • the technical solution of the present invention whether it is a method or a light wavelength conversion component, it further adjusts the light excitation performance characteristics of the light conversion filter used, for example, a tilt angle, a slope or a linear slope of the light conversion tendency thereof,
  • the adjustment of color or usage can further obtain an LED light source with less dispersion of optical properties such as color temperature, light effect or color rendering index, thereby further improving the yield of the finished LED light source falling into the target optical performance level.
  • 1 is a luminescence intensity conversion tendency of a compliant excitation light conversion filter A'-D' in a light wavelength conversion component according to an embodiment of the present invention, which is excited by light from different LED chips;
  • 2 is a luminescence intensity conversion tendency of a compliant excitation light conversion filter A-D in a light wavelength conversion component according to an embodiment of the present invention, which is excited by light from different LED chips;
  • 3 is a luminescence intensity conversion tendency of a reverse excitation light conversion filter E'-H' in a light wavelength conversion component according to an embodiment of the present invention, which is excited by light from different LED chips;
  • FIG. 4 is a diagram showing a reverse excitation light conversion filter E-H in an optical wavelength conversion member according to an embodiment of the present invention. The conversion trend of the luminous intensity under the excitation of the LED chip;
  • FIG. 8 are explanatory diagrams showing the conversion tendency of the illuminance intensity of the light wavelength conversion component compliant excitation light conversion filter of each embodiment in FIG.
  • FIG. 9 is a chromaticity distribution diagram of an LED light source prepared by a conventional wavelength conversion unit of the present embodiment.
  • Fig. 10 is a chromaticity distribution diagram of an LED light source prepared by an optical wavelength conversion member according to an embodiment of the present invention.
  • the optical wavelength conversion member according to the embodiment of the present invention is prepared according to the following Table 1 and Table 2, wherein the optical wavelength conversion member physically mixes various light conversion filters (for example, phosphors) or adopts film formation.
  • the process or the dispensing process can also be obtained by layering various light conversion filters on the outer periphery of the light emitting surface of the LED chip; the light wavelength conversion component or various light conversion filters obtained by mixing can be disposed on the LED
  • the surface of the chip or the LED chip is disposed separately, and an existing method of preparing an LED light source such as film formation, dispensing or coating may be selected.
  • the LED chip used in the invention can select an LED chip emitting blue light, ultraviolet light or violet light, and can also select an LED chip emitting light with a wavelength of 380-480 nm, preferably 400-465 nm; the final LED light source emits a light target.
  • the color can be selected from various colors in the visible range, or white light, and the color of the phosphor can be selected as needed.
  • This embodiment 1 only exemplifies the measurement experiment of the blue LED chip + yellow phosphor, but does not mean that the invention is limited to the embodiment 1, and the scope of the invention should be as follows in the embodiments listed below and the content of the invention in the specification. The content may be reasonably extended in accordance with the ordinary knowledge in the art.
  • the LED chip used in the first embodiment is an LED chip emitting light with a wavelength of 380-480 nm and an LED chip having an emission wavelength of 400-465 nm; the light conversion filter used is the following yellow phosphor:
  • G' silicate, purchased from Intermec, product number Y4750
  • Lu 3 Al 5 O 12 Ce: purchased from Xinli Light Source, product number XLLY-13-15
  • nitride Sr 2 Si 5 N 8 :Eu purchased from Xinli Light Source, product number XLLYR-63B
  • the conversion filters A, B, C, and D show the luminous intensity of the emitted light obtained by exciting the AD as the wavelength of the emitted light of the LED chip is gradually increased.
  • the illuminance intensity values shown in FIG. 5 and FIG. 7 are not all on the straight line or curve in which the data as a whole has a trend, but are distributed on both sides of the straight line or the curve, and the overall trend of the data is a straight line or a curve;
  • the luminous intensity indications of 6 and 8 are mostly concentrated on the lines or curves presented.
  • the weight ratio of each phosphor in the light wavelength conversion member containing two or more kinds of phosphors prepared in the following Table 1 is 1:1, 1:1:1 or 1:1:1:1; and the amount of the light wavelength conversion member is used.
  • the conventionally used amount of the conventional phosphor can be applied to the LED chip to prepare the LED light source.
  • Table 1 shows the composition of the phosphor in the wavelength conversion component
  • the optical wavelength conversion components obtained above are respectively applied to the LED chips produced in the same batch on the same production line, and are packaged, and the package method can select the light wavelength conversion component to be spotted on each LED chip by means of dispensing.
  • the light wavelength conversion member is disposed on the outer periphery of the light-emitting surface of each LED chip by a film forming process or a coating process, etc., and the table 1 and the table are respectively measured by means of being disposed on the LED chip or separated from the LED chip.
  • Each of the optical wavelength conversion components of the second is applied to the LED chips of the wavelengths of 380-480 nm and 400-465 nm, and the chromaticity values of the finally obtained white LED light sources are determined by GB/T 24982-2010 "White LED lamps” Rare earth yellow phosphor.
  • the obtained result can be referred to FIG. 9 and FIG. 10; wherein FIG. 9 is a chromaticity distribution diagram measured by a series of LED light sources prepared by using the optical wavelength conversion component 1, and FIG. 10 is prepared by using the optical wavelength conversion component 7. The chromaticity distribution measured by the series of LED light sources.
  • the optical wavelength conversion component of the present invention can effectively reduce the chromaticity difference of the light emitted by the LED light source prepared by the same batch of LED chips, so that it falls within the predetermined target range, that is, The chromaticity distribution of the light emitted by the LED light source can be reduced, and the product yield of the LED light source can be improved.
  • the light wavelength conversion component 1-13 of the above Table 1 is applied to the LED chip to prepare the LED light source of the same target chromaticity, and the chromaticity value, the range difference, and the standard deviation of the emitted light measured by the prepared LED light source are listed in In the table below.
  • the optical wavelength conversion components 1', 2', 3', 4' and 1, 2, 3, 4 are light conversion filters using existing LED chips and preparing the resulting LED light sources.
  • the chromaticity distribution of the light emitted by the LED light source is extremely poor and the standard deviation is large. Referring to FIG. 9, the chromaticity distribution value is largely dispersed.
  • the light wavelength conversion components 5'-13' and 5-13 all reduce the chromaticity of the emitted light from the LED light source and the standard deviation is reduced, which can reach 30% and 40% respectively, especially at the wavelength of light.
  • the LED light source prepared by the conversion members 5', 6', 7', 8' and 5, 6, 7, 8 emits chromaticity and standard deviation of the light, which are respectively relative to the control group (light wavelength conversion member 1)
  • the resulting chromaticity is extremely poor and the standard deviation can be reduced by 40% and more than 60%, indicating that the chromaticity distribution of the emitted light is small, and the yield of the obtained LED light source product is effectively improved. This difference can be clearly seen in Figures 9 and 10.
  • the method, the optical wavelength conversion component and the like used in the invention can further reduce the color temperature distribution, the light effect distribution and the color rendering index distribution of the emitted LED light source, thereby more effectively improving the finished LED light source falling into the target optical.
  • the optical wavelength conversion members 7 and 9 in the first embodiment are used, and the optical wavelength conversion members 7 and 9 are respectively applied to the LEDs in accordance with GB/T 24982-2010 "Rare Earth Yellow Phosphor for White LED Lamps".
  • the LED light source prepared by the chip emits a color temperature distribution, a light effect distribution and a color rendering index distribution of light, and emits light color temperature distribution, light effect distribution and color development of the series of LED light sources prepared by the optical wavelength conversion component 2 in the first embodiment.
  • the exponential distribution is compared and the results are shown in the table below.
  • Optical wavelength conversion component 7 is prepared to obtain optical properties of light emitted by the LED light source
  • Optical wavelength conversion component 9 is prepared to obtain optical properties of light emitted by the LED light source

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种提高LED光源光学性能的方法,通过该方法获得的光转换滤光器以及相应的LED光源。所述方法为采用一种光波长转换部件对LED芯片进行封装,所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。该方法可以减小LED光源发出光的色度分布的离散程度、提高成品LED光源良率。

Description

提高LED光源良率的方法、荧光粉及LED光源
本申请要求于2013年11月25日提交中国国家知识产权局、申请号为201310606855.4、发明名称为“提高LED光源良率的方法、荧光粉及LED光源”的中国专利申请的优先权,该在先申请的全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种提高LED光源光学性能的方法,通过该方法获得的光转换滤光器以及相应的LED光源;具体涉及到可应用于采用不同发射波长的LED芯片制作出来的LED光源,减小色度分布的离散程度、提高其良率的方法,通过该方法获得的光转换滤光器,特别是荧光粉,以及该方法获得的相应LED光源。
背景技术
LED是继白炽灯和荧光灯后照明领域中发展前沿的光源技术,其因节能、耐用、无污染等优点,现已广泛被应用于照明、显示和背光源等领域,并且其作为新一代的照明方式已逐渐显现。目前LED主要采用将蓝光LED芯片或紫外(UV)LED芯片与转换LED芯片发射光的光转换滤光器共同实现白光或其他颜色的可见光。
评价LED光源所发出光的性能参数的指标中重要的有色度、色温、光效以及显色指数等,其中尤其以色度为关键,原因在于色度是衡量光本身的物理颜色,特别是针对人肉眼可见的光而言,人肉眼对光最敏感的就是其颜色区别,其次才是对不同光的光亮度(光效)、光的冷暖效果(色温)以及色彩的真实度(显色指数)等进行判断。光的色度差异太大,也即色度分布的离散程度过大,则可通过人的肉眼即可得知,也就意味着该LED光源存在品质差异,其良率也相对较低。
人们总是希望得到光源色度品质统一,良率较高的LED光源,因此,根据不同LED光源所发出光的色度值,划分不同的档级;在制备LED光源时,预先设定一两个档级为合格档级,落在此档级范围之内的LED光源为合格品,合格品总数占预期生产产品总数的比率为良率;落在此档级范围之外的LED光源为不合格品。
实际上,经过长期的研究发现,对LED光源的色度分布产生影响的主要是由LED芯片发射光的波长决定的,对于同一种荧光粉而言,在不同发射波 长的LED芯片激发下所发出光的发光性能差异较大,尤其是色度的差异,从而导致了不同LED光源所发出光存在色度分布的差异。由于LED芯片发出光大多为波长较短的蓝光和紫外光(UV),其光学性能难以检测,所以若采用直接检测生产出来的LED芯片本身发出光的色度分布,则不够准确。
现有LED制造厂商为了减少所制造的LED芯片发射光的波长差异,通常会采用改善LED芯片的切割方式。另外,为了得到光的色度分布离散程度较小的LED光源,专利申请号为CN201110036162.7的专利文件中采用了利用荧光粉转换LED芯片发出光的光学性能来评价LED芯片发出光的波长,从而通过调节荧光粉的种类以及荧光粉的含量来达到调整所得LED光源发出光的色度分布,提高良率的目的。
但上述改变切割方式的改进并未将已经落在档级之外的LED芯片有效利用,并且采用荧光粉作为转换介质的方式,意味着每个LED芯片必须要事先检验过,才可配备相应的荧光粉,导致LED光源的生产工艺过于繁琐,制约着LED光源的产能。
发明内容
有鉴于此,本发明提供一种可应用于具有不同发射波长的LED芯片制作出来的LED光源,减小色度分布的离散程度、提高其良率的方法,通过该方法获得的光转换滤光器,特别是荧光体,以及该方法获得的相应LED光源。
为解决以上技术问题,本发明的提供的第一方面的技术方案是一种提高LED光源良率的方法,所述方法为采用一种光波长转换部件对LED芯片进行封装,
所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
优选的,所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
所述顺性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
所述反性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
优选的,所述LED芯片发射光为紫外光、紫光或蓝光。
优选的,所述LED芯片发射光的波长为380nm-480nm。
优选的,所述顺性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从弱到强变化趋势呈直线或曲线;直线的斜率为K1,K1>0;曲线的斜率为K2,K2>0。
优选的,所述顺性激发光转换滤光器在LED芯片发射光的波长从400nm增大到465nm激发下,经过其转换后发出光的发光强度从弱到强变化趋势呈直线或曲线,直线的斜率为K1,K1>0;曲线的斜率为K2,K2>0。
优选的,所述直线的斜率K1为:0.1≤K1≤10;所述曲线的斜率K2逐渐增大或逐渐减小,并且K2为:0.1≤K2≤10。
优选的,所述直线的斜率K1为:0.5≤K1≤2;所述曲线的斜率K2逐渐增大或逐渐减小,并且K2为:0.5≤K2≤2。
优选的,所述反性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从强到弱变化趋势呈直线或曲线;直线的斜率为K1',K1'<0;曲线的斜率为K2',K2'<0。
优选的,所述反性激发光转换滤光器在LED芯片发射光的波长从400nm增大到465nm激发下,经过其转换后发出光的发光强度从强到弱变化趋势呈直线或曲线,直线的斜率为K1',K1'<0;曲线的斜率为K2',K2'<0。
优选的,所述直线的斜率K1'为:-10≤K1'≤-0.1;所述曲线的斜率K2'逐渐增大或逐渐减小,并且K2'为:-10≤K2'≤-0.1。
优选的,所述直线的斜率K1'为:-2≤K1'≤-0.5;所述曲线的斜率K2'逐渐增大或逐渐减小,并且K2'为:-2≤K2'≤-0.5。
优选的,所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:100≤α≤100:1。
优选的,所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:10≤α≤10:1。
优选的,所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:2≤α≤2:1。
优选的,所述顺性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从弱到强变化趋势呈直线或曲线;所述直线的斜率K1为:0.1≤K1≤10;所述曲线的斜率K2逐渐增大或逐渐减小,并且K2为:0.1≤K2≤10;所述反性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从强到弱变化趋势呈直线或曲线;所述直线的斜率K1'为:-10≤ K1'≤-0.1;所述曲线的斜率K2'逐渐增大或逐渐减小,并且K2'为:-10≤K2'≤-0.1;所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:10≤α≤10:1。
优选的,所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值不小于1时,顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:10≤α≤1:1;所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值小于1时,顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:1<α≤10:1。
优选的,所述LED光源中,光波长转换部件位于LED芯片的表面或与LED芯片隔开设置。
优选的,所述光波长转换部件中的光转换滤光器混合后设置于LED芯片的表面或与LED芯片隔开设置,或者所述光波长转换部件中的光转换滤光器各自独立的设置于LED芯片的表面或与LED芯片隔开设置。
优选的,所述LED光源发出光包括白光。
优选的,所述光转换滤光器为荧光体。
优选的,所述荧光体为荧光粉。
本发明还提供第二方面的技术方案,即一种提高LED光源良率的光波长转换部件:
所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
优选的,所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
所述顺性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
所述反性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
优选的,所述光转换滤光器为荧光粉。
优选的,所述光转换滤光器为荧光粉;顺性激发荧光粉为在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从弱到强趋势呈直线或曲线;直线的斜率为K1,K1>0;曲线的斜率K2逐渐增大或逐渐减小,K2>0;
反性激发荧光粉为在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从强到弱趋势呈直线或曲线;直线的斜率为K1',K1'<0;曲线的斜率K2'逐渐增大或逐渐减小,K2'<0。
优选的,所述K1、K2、K1'、K2'的绝对值范围为0.5-2。
优选的,所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值不小于1时,顺性激发荧光粉与反性激发荧光粉的重量比例α为:1:10≤α≤1:1;所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值小于1时,顺性激发荧光粉与反性激发荧光粉的重量比例α为:1:1<α≤10:1。
优选的,所述顺性激发光转换滤光器为选自铝酸盐、硅酸盐、氮化物中的任意一种;所述反性激发光转换滤光器为选自铝酸盐、硅酸盐、氮化物中的任意一种。
本发明提供的第三方面的技术方案为前述任一种光波长转换部件在LED领域中减小LED装置发出光的色度分布离散程度、提高良率的应用。
优选的,所述LED装置为LED芯片或发出二次光的LED光源。
优选的,所述发出二次光的LED光源为白光LED光源。
优选的,所述LED领域包括LED照明和LED显示屏。
优选的,所述光波长转换部件还在LED领域中减小LED装置发出光的色温、光效或显色指数离散程度的应用。
本发明还提供第四方面技术方案,即一种提高良率的LED光源,所述LED光源包括有LED芯片、光波长转换部件;
所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
优选的,所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
所述顺性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
所述反性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
本发明还提供第五方面的技术方案,即一种提高良率的LED光源装置,所述LED光源装置包括有发出二次光的LED光源、第二光波长转换部件;所述发出二次光的LED光源包括有LED芯片和第一光波长转换部件;
所述第二光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
优选的,所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
所述顺性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
所述反性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
优选的,所述发出二次光的LED光源为白光LED光源。
优选的,所述第一光波长转换部件为荧光粉中的任意一种或多种。
优选的,所述第二光波长转换部件中的光转换滤光器为荧光粉;顺性激发荧光粉为铝酸盐、硅酸盐、氮化物中的任意一种,反性激发荧光粉为铝酸盐、硅酸盐、氮化物中的任意一种。
本发明与现有技术相比,其详细说明如下:
本发明所述光转换滤光器是一种可以吸收一定波长的光,并转换为另一种波长的光;还可以是吸收部分光进行转换,另一部分光进行直接透过的光波长转换部件。本发明所述光转换滤光器可以是发光粉,其是一种用于LED的发光粉;现有发光粉可分为三类:荧光粉、磷光粉和余辉粉。
本发明所述发光强度呈现从弱到强的趋势或从强到弱的趋势分别是指,顺性激发光转换滤光器在随LED芯片发射光的波长从低到高逐渐增大激发下,LED芯片发射光经过顺性激发光转换滤光器转换后所得的发出光的发光强度呈现从弱到强或从强到弱的趋势,也即逐渐增大或逐渐减小的趋势。趋势并非意味着每一激发波长下,在相应光转换滤光器的转换后,所得光相对于邻近偏小波长激发转换后所得光的发光强度均偏大或偏小;趋势更准确的定义是一组LED芯片在本发明所述光转换滤光器的转换作用下所得光一组发光强度数据的整体趋势,即整体为随LED芯片发出光增大而增大或是随其增大而减小。
本发明所述LED芯片为不包括光波长转换部件,也即发光粉的半导体装置。
本发明所述LED光源包括有LED芯片和光波长转换部件,从LED芯片直接发出的一次光经过光波长转换部件转换后,成为从LED光源发出的二次光。
本发明所述LED装置是指LED芯片或者是发出二次光的LED光源。
本发明所述LED光源装置包括发出二次光的LED光源和第二光波长转换部件,所述发出二次光的LED光源包括LED芯片和第一光波长转换部件;所述第一光波长转换部件可以是现有技术中任意采用的发光粉等,所述第二光波长转换部件为本发明所述的光波长转换部件,也即本发明所述的可减少色度分布,提高LED良率的发光粉。
本发明所述顺性激发光转换滤光器以及反性激发光转换滤光器均是根据其在不同LED芯片发射波长激发下,所呈现的转换后发光强度的趋势不同来命名。
本发明技术方案的核心思路为在现有LED芯片制作条件下得到的具有不同发射波长的LED芯片的基础上,提供一种方法或产品来将具有不同发射波长的LED芯片制备成同一目标档级色度的LED光源,并且得到的LED光源发出光的色度值,与采用现有单一或现有组合使用的光波长转换部件封装LED芯片得到的普通LED光源在同一标准测试条件下得到的色度值,其离散程度前者明显低于后者,即前者的色度分布明显低于后者。
为了实现本发明技术的核心思路,本发明主要采用了四种技术方案,虽然这四种技术方案的类型有差异,但其核心的技术特征均是采用了一种特殊的光波长转换部件,即所述光波长转换部件至少含有两种光激发性能不同的光转换滤光器,所述两种光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。优选为采用顺性激发光转换滤光器和反性激发光转换滤光器;所述顺性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;所述反性激发光转换滤光器为在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
本领域技术人员均知晓,不同的LED芯片上的半导体层将电能转换成光能时,所发出光的波长往往会有区别,即使是同一生产线上同一批次制备得到的LED芯片也存在这样的问题。当将本身发射不同波长的光的LED芯片再采用同一色系的、甚至于一样的光波长转换部件(通常为荧光体)制备长成品LED光源时,即使采用的荧光体的转换颜色相同,但由于LED芯片发射光的波长不同,因此,所得LED光源本身发出光的色度值就有差异,常常会出现偏离目标色度值较远的次品,有时甚至于通过人的肉眼就可觉察到。因此,这一问题也成为了LED生产厂家的产能瓶颈。
采用本发明提供的不论是提高LED光源良率的方法或是光波长转换部件,其均采用了本发明提供的特殊的光波长转换部件;本发明技术方案主要是利用本发明两种光激发性能相反的光转换滤光器来实现将高波长激发转换得到的光和低波长激发转换得到的光拉平均的作用。由于LED芯片发出的光不论是高波段还是低波段,其均会在两种光转换滤光器的作用下被吸收和转换,且均会以强弱不同的转换光的方式同时发出,从而起到对色度的平均效应。若仅采用顺性激发光转换滤光器或反性激发光转换滤光器,则其LED芯片发出的低波段的光则仅有一种光强度的转换光,高波段的光也仅有一种光强度的转换光,两种转换光的差距较大,就会导致LED光源发出光的色度差异较大。
本发明还采用在上述核心技术方案的基础上,提供了更为优选的技术方案,例如采用激发光波长的特定范围,激发后转化光强度趋势的倾斜角、斜率或曲线斜率在一定范围内的条件下,可以得到色度值极差或色度值标准偏差进一步减少,也即色度分布或离散程度减小的同一色系的LED光源。甚至于可以达到色度值极差减少30%或50%以上,色度值标准偏差减少40%或60%以上。
另外,本发明的光波长转换部件处可直接应用于LED芯片上制备LED光源外,还可应用于对现有成品LED光源进行色度调整,并可将本发明光波长转换部件制备成LED光源性能补偿装置,可对已经采用荧光体转换发出光的LED光源进行色度分布调整。
另外,本发明的技术方案中不论是方法或是光波长转换部件,其通过进一步调整所使用的光转换滤光器的光激发性能特征,例如对其光转换趋势倾斜角、斜率或直线斜率、颜色或使用量的调整,可进一步得到色温、光效或显色指数等光学性能离散程度较小的LED光源,从而进一步的提高所得成品LED光源落入目标光学性能档级的合格率。
附图说明
图1是本发明实施方式光波长转换部件中顺性激发光转换滤光器A'-D'在不同LED芯片发出光激发下的发光强度转换趋势;
图2是本发明实施方式光波长转换部件中顺性激发光转换滤光器A-D在不同LED芯片发出光激发下的发光强度转换趋势;
图3是本发明实施方式光波长转换部件中反性激发光转换滤光器E'-H'在不同LED芯片发出光激发下的发光强度转换趋势;
图4是本发明实施方式光波长转换部件中反性激发光转换滤光器E-H在不 同LED芯片发出光激发下的发光强度转换趋势;
图5-图8是图2中各实施方式光波长转换部件顺性激发光转换滤光器在不同LED芯片发出光激发下的发光强度转换趋势的示值图;
图9是现有实施方式光波长转换部件制备得到的LED光源的色度分布图;
图10是本发明实施方式光波长转换部件制备得到的LED光源的色度分布图。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合具体实施例对本发明作进一步的详细说明。
实施例1——色度分布测定实验
按照下表一和表二制备本发明实施方式所述的光波长转换部件,所述光波长转换部件为将各种光转换滤光器(比如,荧光体)进行物理混合,或是采用成膜工艺或点胶工艺得到,还可以是采用将各种光转换滤光器分层设置于LED芯片发光面的外周;可以将混合得到的光波长转换部件或各种光转换滤光器设置于LED芯片表面或与LED芯片隔开设置,可选择采用成膜、点胶或涂覆等现有制备LED光源的方式。
本发明所采用的LED芯片可选择发出蓝光、紫外光或紫光的LED芯片,还可选择是发射光波长为380-480nm,优选为400-465nm的LED芯片;最终得到的LED光源发出光的目标颜色可选择可见光范围内各种颜色的光,或是白光,荧光粉的颜色则可根据需要进行选择。本实施例1仅列举蓝光LED芯片+黄色荧光粉的测定实验,但不代表本发明仅限于此实施例1,本发明的范围应当是在以下所列举的实施例以及本说明书发明内容部分所涉及内容并且可根据本领域常规知识进行合理延伸的范围。
本实施例1所采用的LED芯片为发射光波长为380-480nm的LED芯片以及发射波长为400-465nm的LED芯片;所采用的光转换滤光器为以下黄色荧光粉:
A'、购自英特美,产品编号为CCFL-B
(随LED芯片波长从380-480nm激发下光转换趋势呈从弱到强的直线,并且直线的斜率为0.1)
B'、铝酸盐,购自新力光源,产品编号为XLLY-03B
(随LED芯片波长从380-480nm激发下光转换趋势呈从弱到强的直线,并且直线的斜率为10)
C'、铝酸盐,购自新力光源,产品编号为XLLY-04B
(随LED芯片波长从380-480nm激发下光转换趋势呈从弱到强的曲线,并且曲线的斜率逐渐增大,0.1增大至10)
D'、铝酸盐,购自新力光源,产品编号为XLLY-06B
(随LED芯片波长从380-480nm激发下光转换趋势呈从弱到强的曲线,并且曲线的斜率逐渐减小,10减小至0.1)
E'、硅酸盐,购自英特美,产品编号为Y3957
(随LED芯片波长从380-480nm激发下光转换趋势呈从强到弱的直线,并且直线的斜率为-0.1)
F'、硅酸盐,购自英特美,产品编号为Y4651
(随LED芯片波长从380-480nm激发下光转换趋势呈从强到弱的直线,并且直线的斜率为-10)
G'、硅酸盐,购自英特美,产品编号为Y4750
(随LED芯片波长从380-480nm激发下光转换趋势呈从强到弱的曲线,并且曲线的斜率逐渐增大,-10至-0.1)
H'、氮化物,购自三菱LMH-102
(随LED芯片波长从380-480nm激发下光转换趋势呈从强到弱的曲线,并且曲线的斜率逐渐减小,-0.1至-10)
A、Y3Al5O12:Ce:购买自新力光源,产品编号为XLLY-01A
(随LED芯片波长从400-465nm激发下光转换趋势呈从弱到强的直线,并且直线的斜率为0.5)
B、Lu3Al5O12:Ce:购买自新力光源,产品编号为XLLY-13-15
(随LED芯片波长从400-465nm激发下光转换趋势呈从弱到强的直线,并且直线的斜率为2)
C、Y3Al2Ga3O12:Ce:购买自弘大,产品编号为Y3957
(随LED芯片波长从400-465nm激发下光转换趋势呈从弱到强的曲线,并且曲线的斜率逐渐增大,0.5增大至2)
D、YGd2Al5O12:Ce:购买自有研,产品编号为SMD-02
(随LED芯片波长从400-465nm激发下光转换趋势呈从弱到强的曲线,并且曲线的斜率逐渐减小,2减小至0.5)
E、硅酸盐Ba2SiO4:Eu:购买自英特美,产品编号为G2762
(随LED芯片波长从400-465nm激发下光转换趋势呈从强到弱的直线, 并且直线的斜率为-0.5)
F、硅酸盐Sr3SiO5:Eu:购买自英特美,产品编号为O5742
(随LED芯片波长从400-465nm激发下光转换趋势呈从强到弱的直线,并且直线的斜率为-2)
G、氮化物Sr2Si5N8:Eu:购买自新力光源,产品编号为XLLYR-63B
(随LED芯片波长从400-465nm激发下光转换趋势呈从强到弱的曲线,并且曲线的斜率逐渐增大,-2至-0.5)
H、氮化物SrAlSiN3:Eu:购买自英特美,产品编号为0763
(随LED芯片波长从400-465nm激发下光转换趋势呈从强到弱的曲线,并且曲线的斜率逐渐减小,-0.5至-2)
从A'到D'、A到D,荧光体转换LED芯片发出的波长从低到高的光的趋势均为发光强度从弱到强,从A'到D'、A到D的转换趋势如图1和图2所示;E'至H'和E至H中,荧光体转换LED芯片发出的波长从高到低的光的趋势均为发光强度从高到弱,从E'至H'、E到H的转换趋势如图3和图4所示。
图5-8分别以光转换滤光器A-D为例分别具体示出了其随LED芯片发射波长的增大而转换发出光的图谱,图中所示的a、b、c、d分别为光转换滤光器A、B、C、D随LED芯片发射光波长逐渐增大下激发A-D所得的发出光的发光强度示值。图5与图7中所示的发光强度示值并非都在数据整体具备趋势呈现的直线或曲线上,而是其分布在直线或曲线的两边,数据整体呈呈现的趋势为直线或曲线;图6和图8的发光强度示值则大部分集中在所呈现直线或曲线上。
下表一中制备含有两种以上荧光粉的光波长转换部件中各荧光粉的重量比例均为1:1、1:1:1或1:1:1:1;并且光波长转换部件的用量可以按照现有普通荧光粉应用于LED芯片制备LED光源时的惯常用量。
表一光波长转换部件中荧光体组成
Figure PCTCN2014091897-appb-000001
Figure PCTCN2014091897-appb-000002
表二光波长转换部件中荧光体组成
Figure PCTCN2014091897-appb-000003
上表中,-表示不含有该荧光体,+表示含有该荧光体。
将上述获得的各光波长转换部件分别应用于同一生产线上同一批次生产出来的LED芯片,并对其进行封装,封装方式可以选择通过点胶方式将光波长转换部件点在各LED芯片上,或者是通过成膜工艺或涂覆工艺等将光波长转换部件设置在各LED芯片出光面外周;无论采用将其设置在LED芯片或是与LED芯片隔开设置的方式,分别测定表一和表二中每一光波长转换部件分别应用于发射波长在380-480nm以及400-465nm的LED芯片并最终得到的白光LED光源的色度值,测定方式为GB/T 24982-2010《白光LED灯用稀土黄色荧光粉》。所得结果可参考附图9和附图10;其中,附图9为采用光波长转换部件1制备而成的系列LED光源测得的色度分布图,附图10为采用光波长转换部件7制备而成的系列LED光源测得的色度分布图。从附图9和附图10 中可以看出,采用本发明的光波长转换部件可以有效地减小同批次LED芯片所制备得到的LED光源发出光的色度极差值,使其落入预定目标范围的档级,即可以减少所得LED光源发出光的色度分布,提高LED光源的产品良率。另外,上表一中光波长转换部件1-13应用于LED芯片制备同一目标色度的LED光源,制备得到的LED光源所测定得到的发出光的色度值、极差、标准偏差均列于下表中。
表三色度分布测定实验(光波长转换部件1'-3'+380-480nm LED芯片)
Figure PCTCN2014091897-appb-000004
表四色度分布测定实验(光波长转换部件4'-6'+380-480nmLED芯片)
Figure PCTCN2014091897-appb-000005
表五色度分布测定实验(光波长转换部件7'-9'+380-480nmLED芯片)
Figure PCTCN2014091897-appb-000006
表六色度分布测定实验(光波长转换部件10'-13'+380-480nmLED芯片)
Figure PCTCN2014091897-appb-000007
表七色度分布测定实验(光波长转换部件1-3+400-465nmLED芯片)
Figure PCTCN2014091897-appb-000008
Figure PCTCN2014091897-appb-000009
表八色度分布测定实验(光波长转换部件4-6+400-465nmLED芯片)
Figure PCTCN2014091897-appb-000010
表九色度分布测定实验(光波长转换部件7-9+400-465nmLED芯片)
Figure PCTCN2014091897-appb-000011
表十色度分布测定实验(光波长转换部件10-13+400-465nm LED芯片)
Figure PCTCN2014091897-appb-000012
Figure PCTCN2014091897-appb-000013
从上表中可以得知,光波长转换部件1'、2'、3'、4'以及1、2、3、4均是采用现有用于LED芯片并制备所得LED光源的光转换滤光器,其所得LED光源发出光的色度分布极差以及标准偏差均较大,可参考附图9,其色度分布值离散程度较大。而光波长转换部件5'-13'以及5-13均对所得LED光源发出光的色度极差以及标准偏差有所减小,几乎分别可以达到30%以及40%以上,尤其是以光波长转换部件5'、6'、7'、8'以及5、6、7、8所制备得到的LED光源发出光的色度极差以及标准偏差,其分别相对于对照组(光波长转换部件1)所得色度极差以及标准偏差可减少40%以及60%以上,说明其发出光的色度分布离散程度小,所得LED光源产品的良率得到有效提高。附图9和附图10可以明显的看出此区别。
从上表中选取极差和标准偏差分别相对于对照组(以光波长转换部件1-4中任一种制备得到的系列LED芯片)减少50%以上和60%以上时所采用的光波长转换部件6,调整其中各自含有的荧光体组分的重量比例,并进行与上表七至表十相同的实验,所得结果见下表。
表十一色度分布测定实验(荧光体不同重量比例含量的光波长转换部件+蓝光LED芯片)
Figure PCTCN2014091897-appb-000014
Figure PCTCN2014091897-appb-000015
表十二色度分布测定实验(荧光体不同重量比例含量的光波长转换部件+蓝光LED芯片)
Figure PCTCN2014091897-appb-000016
实施例2——色温、光效、显色指数分布测定实验
本发明中采用的方法、光波长转换部件等还可对进一步的减少制得的LED光源发出光的色温分布、光效分布、显色指数分布,从而更有效地提高成品LED光源落入目标光学性能档级的合格率,从而提高成品LED光源的良率。
本实施例2中采用实施例1中的光波长转换部件7和9,并按照GB/T 24982-2010《白光LED灯用稀土黄色荧光粉》测定将光波长转换部件7和9分别应用于LED芯片制备得到的LED光源发出光的色温分布、光效分布和显色指数分布,并与实施例1中光波长转换部件2制备得到的系列LED光源发出光的色温分布、光效分布和显色指数分布进行对比,结果见下表。
表十三光波长转换部件7制备得到LED光源发出光的光学性能
Figure PCTCN2014091897-appb-000017
Figure PCTCN2014091897-appb-000018
表十四光波长转换部件9制备得到LED光源发出光的光学性能
Figure PCTCN2014091897-appb-000019
以上仅是本发明的优选实施方式,应当指出的是,上述优选实施方式不应视为对本发明的限制,本发明的保护范围应当以权利要求所限定的范围为准。对于本技术领域的普通技术人员来说,在不脱离本发明的精神和范围内,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (41)

  1. 一种提高LED光源良率的方法,所述方法为采用一种光波长转换部件对LED芯片进行封装,其特征在于:
    所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光激发性能的光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
  2. 根据权利要求1所述的提高LED光源良率的方法,所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
    所述顺性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
    所述反性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
  3. 根据权利要求1所述的提高LED光源良率的方法,其特征在于:所述LED芯片发射光为紫外光、紫光或蓝光。
  4. 根据权利要求1所述的提高LED光源良率的方法,其特征在于:所述LED芯片发射光的波长为380nm-480nm。
  5. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述顺性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从弱到强变化趋势呈直线或曲线;直线的斜率为K1,K1>0;曲线的斜率为K2,K2>0。
  6. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述顺性激发光转换滤光器在LED芯片发射光的波长从400nm增大至465nm激发下,经过其转换后发出光的发光强度从弱到强变化趋势呈直线或曲线,直线的斜率为K1,K1>0;曲线的斜率为K2,K2>0。
  7. 根据权利要求5-6中任一权利要求所述的提高LED光源良率的方法,其特征在于:所述直线的斜率K1为:0.1≤K1≤10;所述曲线的斜率K2逐渐增大或逐渐减小,并且K2为:0.1≤K2≤10。
  8. 根据权利要求7所述的提高LED光源良率的方法,其特征在于:所述直线的斜率K1为:0.5≤K1≤2;所述曲线的斜率K2逐渐增大或逐渐减小,并且K2为:0.5≤K2≤2。
  9. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述反性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激 发下,经过其转换后发出光的发光强度从强到弱变化趋势呈直线或曲线;直线的斜率为K1',K1'<0;曲线的斜率为K2',K2'<0。
  10. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述反性激发光转换滤光器在LED芯片发射光的波长从400nm增大到465nm激发下,经过其转换后发出光的发光强度从强到弱变化趋势呈直线或曲线,直线的斜率为K1',K1'<0;曲线的斜率为K2',K2'<0。
  11. 根据权利要求9-10中任一权利要求所述的提高LED光源良率的方法,其特征在于:所述直线的斜率K1'为:-10≤K1'≤-0.1;所述曲线的斜率K2'逐渐增大或逐渐减小,并且K2'为:-10≤K2'≤-0.1。
  12. 根据权利要求11所述的提高LED光源良率的方法,其特征在于:所述直线的斜率K1'为:-2≤K1'≤-0.5;所述曲线的斜率K2'逐渐增大或逐渐减小,并且K2'为:-2≤K2'≤-0.5。
  13. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:100≤α≤100:1。
  14. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:10≤α≤10:1。
  15. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:2≤α≤2:1。
  16. 根据权利要求2所述的提高LED光源良率的方法,其特征在于:所述顺性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从弱到强变化趋势呈直线或曲线;所述直线的斜率K1为:0.1≤K1≤10;所述曲线的斜率K2逐渐增大或逐渐减小,并且K2为:0.1≤K2≤10;所述反性激发光转换滤光器在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从强到弱变化趋势呈直线或曲线;所述直线的斜率K1'为:-10≤K1'≤-0.1;所述曲线的斜率K2'逐渐增大或逐渐减小,并且K2'为:-10≤K2'≤-0.1;所述顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:10≤α≤10:1。
  17. 根据权利要求16所述的提高LED光源良率的方法,其特征在于: 所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值不小于1时,顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:10≤α≤1:1;所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值小于1时,顺性激发光转换滤光器与反性激发光转换滤光器的重量比例α为:1:1<α≤10:1。
  18. 根据权利要求1所述的提高LED光源良率的方法,其特征在于:所述LED光源中,光波长转换部件位于LED芯片的表面或与LED芯片隔开设置。
  19. 根据权利要求1所述的提高LED光源良率的方法,其特征在于:所述光波长转换部件中的光转换滤光器混合后设置于LED芯片的表面或与LED芯片隔开设置,或者所述光波长转换部件中的光转换滤光器各自独立的设置于LED芯片的表面或与LED芯片隔开设置。
  20. 根据权利要求1所述的提高LED光源良率的方法,其特征在于:所述LED光源发出光包括白光。
  21. 根据权利要求1所述的提高LED光源良率的方法,其特征在于:所述光转换滤光器为荧光体。
  22. 根据权利要求21所述的提高LED光源良率的方法,其特征在于:所述荧光体为荧光粉。
  23. 一种提高LED光源良率的光波长转换部件,其特征在于:
    所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光激发性能的光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
  24. 根据权利要求23所述的光波长转换部件,其特征在于:所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
    所述顺性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
    所述反性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
  25. 根据权利要求23所述的光波长转换部件,其特征在于:所述光转换滤光器为荧光粉。
  26. 根据权利要求24所述的光波长转换部件,其特征在于:所述光转换 滤光器为荧光粉;顺性激发荧光粉在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从弱到强趋势呈直线或曲线;直线的斜率为K1,K1>0;曲线的斜率K2逐渐增大或逐渐减小,K2>0;
    反性激发荧光粉在LED芯片发射光的波长从380nm增大到480nm激发下,经过其转换后发出光的发光强度从强到弱趋势呈直线或曲线;直线的斜率为K1',K1'<0;曲线的斜率K2'逐渐增大或逐渐减小,K2'<0。
  27. 根据权利要求26所述的光波长转换部件,其特征在于:所述K1、K2、K1'、K2'的绝对值范围为0.5-2。
  28. 根据权利要求27所述的光波长转换部件,其特征在于:所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值不小于1时,顺性激发荧光粉与反性激发荧光粉的重量比例α为:1:10≤α≤1:1;所述K1/K1'、K2/K2'、K1/K2'或K2/K1'中任一比例的绝对值小于1时,顺性激发荧光粉与反性激发荧光粉的重量比例α为:1:1<α≤10:1。
  29. 根据权利要求24所述的光波长转换部件,其特征在于:所述顺性激发光转换滤光器为选自铝酸盐、硅酸盐、氮化物中的任意一种;所述反性激发光转换滤光器为选自铝酸盐、硅酸盐、氮化物中的任意一种。
  30. 权利要求23-29中任一权利要求所述的光波长转换部件在LED领域中减小LED装置发出光的色度分布离散程度、提高良率的应用。
  31. 根据权利要求30所述的应用,其特征在于:所述LED装置为LED芯片或发出二次光的LED光源。
  32. 根据权利要求31所述的应用,其特征在于:所述发出二次光的LED光源为白光LED光源。
  33. 根据权利要求30所述的应用,其特征在于:所述LED领域包括LED照明和LED显示屏。
  34. 根据权利要求30所述的应用,其特征在于:所述光波长转换部件还在LED领域中减小LED装置发出光的色温、光效或显色指数离散程度的应用。
  35. 一种提高良率的LED光源,所述LED光源包括有LED芯片、光波长转换部件;其特征在于:
    所述光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光激发性能的光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
  36. 根据权利要求35所述的LED光源,其特征在于:所述两种光激发 性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
    所述顺性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
    所述反性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
  37. 一种提高良率的LED光源装置,所述LED光源装置包括有发出二次光的LED光源、第二光波长转换部件;所述发出二次光的LED光源包括有LED芯片和第一光波长转换部件;其特征在于:
    所述第二光波长转换部件至少具有两种光激发性能的光转换滤光器;所述两种光激发性能的光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现相反的变化趋势。
  38. 根据权利要求37所述的LED光源装置,其特征在于:所述两种光激发性能的光转换滤光器分别为顺性激发光转换滤光器和反性激发光转换滤光器;
    所述顺性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从弱到强的趋势;
    所述反性激发光转换滤光器在LED芯片发射光的波长从低到高激发下,经过其转换后发出光的发光强度呈现从强到弱的趋势。
  39. 根据权利要求37所述的LED光源装置,其特征在于:所述发出二次光的LED光源为白光LED光源。
  40. 根据权利要求37所述的LED光源装置,其特征在于:所述第一光波长转换部件为荧光粉中的任意一种或多种。
  41. 根据权利要求38所述的LED光源装置,其特征在于:所述第二光波长转换部件中的光转换滤光器为荧光粉;顺性激发荧光粉为铝酸盐、硅酸盐、氮化物中的任意一种,反性激发荧光粉为铝酸盐、硅酸盐、氮化物中的任意一种。
PCT/CN2014/091897 2013-11-25 2014-11-21 提高led光源良率的方法、荧光粉及led光源 WO2015074603A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/039,319 US9923125B2 (en) 2013-11-25 2014-11-21 Method for improving defect-free rate of LED light source, phosphor powder, and LED light source
EP14864417.2A EP3076441A4 (en) 2013-11-25 2014-11-21 Method for improving defect-free rate of led light source, phosphor powder, and led light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310606855.4A CN104659189B (zh) 2013-11-25 提高led光源良率的方法、荧光粉及led光源
CN201310606855.4 2013-11-25

Publications (1)

Publication Number Publication Date
WO2015074603A1 true WO2015074603A1 (zh) 2015-05-28

Family

ID=53178983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091897 WO2015074603A1 (zh) 2013-11-25 2014-11-21 提高led光源良率的方法、荧光粉及led光源

Country Status (3)

Country Link
US (1) US9923125B2 (zh)
EP (1) EP3076441A4 (zh)
WO (1) WO2015074603A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001532A1 (en) * 2003-07-02 2005-01-06 Srivastava Alok Mani Green phosphor for general illumination applications
US20060045832A1 (en) * 2004-08-27 2006-03-02 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
US20080129190A1 (en) * 2006-10-31 2008-06-05 Kabushiki Kaisha Toshiba Semiconductor light emitting device
CN101502174A (zh) * 2006-08-10 2009-08-05 英特曼帝克司公司 可自动调整色度的磷光体组合物
CN102192831A (zh) 2010-02-05 2011-09-21 三星Led株式会社 评估led的光学性能的设备和方法及制造led装置的方法
CN102549786A (zh) * 2009-07-29 2012-07-04 欧司朗光电半导体有限公司 具有补偿转换元件的发光二极管和相应的转换元件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100450647B1 (ko) * 1999-07-23 2004-10-01 파텐트-트로이한트-게젤샤프트 퓌어 엘렉트리쉐 글뤼람펜 엠베하 발광 물질, 파장 전환용 시일링 물질 및 광원
EP1490453B1 (en) * 2002-03-25 2012-08-15 Philips Intellectual Property & Standards GmbH Tri-color white light led lamp
US7311858B2 (en) * 2004-08-04 2007-12-25 Intematix Corporation Silicate-based yellow-green phosphors
US7575697B2 (en) * 2004-08-04 2009-08-18 Intematix Corporation Silicate-based green phosphors
KR100927154B1 (ko) * 2005-08-03 2009-11-18 인터매틱스 코포레이션 실리케이트계 오렌지 형광체
US7820075B2 (en) * 2006-08-10 2010-10-26 Intematix Corporation Phosphor composition with self-adjusting chromaticity
WO2012120433A1 (en) * 2011-03-10 2012-09-13 Koninklijke Philips Electronics N.V. Phosphor composition for leds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050001532A1 (en) * 2003-07-02 2005-01-06 Srivastava Alok Mani Green phosphor for general illumination applications
US20060045832A1 (en) * 2004-08-27 2006-03-02 Dowa Mining Co., Ltd. Phosphor mixture and light emitting device using the same
CN101502174A (zh) * 2006-08-10 2009-08-05 英特曼帝克司公司 可自动调整色度的磷光体组合物
US20080129190A1 (en) * 2006-10-31 2008-06-05 Kabushiki Kaisha Toshiba Semiconductor light emitting device
CN102549786A (zh) * 2009-07-29 2012-07-04 欧司朗光电半导体有限公司 具有补偿转换元件的发光二极管和相应的转换元件
CN102192831A (zh) 2010-02-05 2011-09-21 三星Led株式会社 评估led的光学性能的设备和方法及制造led装置的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3076441A4

Also Published As

Publication number Publication date
US9923125B2 (en) 2018-03-20
US20170162757A1 (en) 2017-06-08
EP3076441A4 (en) 2017-04-26
EP3076441A1 (en) 2016-10-05
CN104659189A (zh) 2015-05-27

Similar Documents

Publication Publication Date Title
US11563155B2 (en) White light source including LED and phosphors
US9722149B2 (en) Light emitting device and fabricating method thereof
CN107068838B (zh) 用于展示展示物的装置和用于展示展示物的系统
JP2021536118A (ja) フルスペクトル白色発光デバイス
WO2011108053A1 (ja) Ledランプおよびled照明装置
TWI567167B (zh) 黃光螢光體及使用該黃光螢光體的發光裝置封裝
US9923126B2 (en) Light emitting device having high color rendering using three phosphor types
WO2007120582A1 (en) WHITE LEDs WITH TAILORABLE COLOR TEMPERATURE
TWI405359B (zh) White light emitting diodes and the use of its backlight and liquid crystal display device
JP2010050438A (ja) 白色発光ダイオード
RU2455335C2 (ru) Фотолюминофор желто-оранжевого свечения и светодиод на его основе
JP4905627B2 (ja) 緑色蛍光体、白色ledおよびそれを用いたバックライト並びに液晶表示装置
CN107369742A (zh) 一种高显色指数高s/p值白光led及其获得方法和应用
JP5562534B2 (ja) 新規蛍光体およびその製造
TW201107917A (en) A modulating method for CCT and a LED light module with variable CCT
US20090153027A1 (en) Warm-white semiconductor and its phosphor with red-spectrum garent structure
WO2015074603A1 (zh) 提高led光源良率的方法、荧光粉及led光源
CN110970542A (zh) 发光装置和具备其的灯具
CN104659189B (zh) 提高led光源良率的方法、荧光粉及led光源
TWI567165B (zh) 一種螢光粉之配方及其合成方法
US20200083410A1 (en) Light source and illumination device including the light source
CN107507902A (zh) 一种紫外激发白光led灯结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15039319

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014864417

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014864417

Country of ref document: EP